inode.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/kernel.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/highmem.h>
  19. #include <linux/init.h>
  20. #include <linux/string.h>
  21. #include <linux/capability.h>
  22. #include <linux/ctype.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/pagevec.h>
  26. #include <linux/parser.h>
  27. #include <linux/mman.h>
  28. #include <linux/quotaops.h>
  29. #include <linux/slab.h>
  30. #include <linux/dnotify.h>
  31. #include <linux/statfs.h>
  32. #include <linux/security.h>
  33. #include <asm/uaccess.h>
  34. /* some random number */
  35. #define HUGETLBFS_MAGIC 0x958458f6
  36. static const struct super_operations hugetlbfs_ops;
  37. static const struct address_space_operations hugetlbfs_aops;
  38. const struct file_operations hugetlbfs_file_operations;
  39. static const struct inode_operations hugetlbfs_dir_inode_operations;
  40. static const struct inode_operations hugetlbfs_inode_operations;
  41. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  42. .ra_pages = 0, /* No readahead */
  43. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  44. };
  45. int sysctl_hugetlb_shm_group;
  46. enum {
  47. Opt_size, Opt_nr_inodes,
  48. Opt_mode, Opt_uid, Opt_gid,
  49. Opt_pagesize,
  50. Opt_err,
  51. };
  52. static const match_table_t tokens = {
  53. {Opt_size, "size=%s"},
  54. {Opt_nr_inodes, "nr_inodes=%s"},
  55. {Opt_mode, "mode=%o"},
  56. {Opt_uid, "uid=%u"},
  57. {Opt_gid, "gid=%u"},
  58. {Opt_pagesize, "pagesize=%s"},
  59. {Opt_err, NULL},
  60. };
  61. static void huge_pagevec_release(struct pagevec *pvec)
  62. {
  63. int i;
  64. for (i = 0; i < pagevec_count(pvec); ++i)
  65. put_page(pvec->pages[i]);
  66. pagevec_reinit(pvec);
  67. }
  68. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  69. {
  70. struct inode *inode = file->f_path.dentry->d_inode;
  71. loff_t len, vma_len;
  72. int ret;
  73. struct hstate *h = hstate_file(file);
  74. /*
  75. * vma address alignment (but not the pgoff alignment) has
  76. * already been checked by prepare_hugepage_range. If you add
  77. * any error returns here, do so after setting VM_HUGETLB, so
  78. * is_vm_hugetlb_page tests below unmap_region go the right
  79. * way when do_mmap_pgoff unwinds (may be important on powerpc
  80. * and ia64).
  81. */
  82. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  83. vma->vm_ops = &hugetlb_vm_ops;
  84. if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
  85. return -EINVAL;
  86. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  87. mutex_lock(&inode->i_mutex);
  88. file_accessed(file);
  89. ret = -ENOMEM;
  90. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  91. if (hugetlb_reserve_pages(inode,
  92. vma->vm_pgoff >> huge_page_order(h),
  93. len >> huge_page_shift(h), vma))
  94. goto out;
  95. ret = 0;
  96. hugetlb_prefault_arch_hook(vma->vm_mm);
  97. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  98. inode->i_size = len;
  99. out:
  100. mutex_unlock(&inode->i_mutex);
  101. return ret;
  102. }
  103. /*
  104. * Called under down_write(mmap_sem).
  105. */
  106. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  107. static unsigned long
  108. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  109. unsigned long len, unsigned long pgoff, unsigned long flags)
  110. {
  111. struct mm_struct *mm = current->mm;
  112. struct vm_area_struct *vma;
  113. unsigned long start_addr;
  114. struct hstate *h = hstate_file(file);
  115. if (len & ~huge_page_mask(h))
  116. return -EINVAL;
  117. if (len > TASK_SIZE)
  118. return -ENOMEM;
  119. if (flags & MAP_FIXED) {
  120. if (prepare_hugepage_range(file, addr, len))
  121. return -EINVAL;
  122. return addr;
  123. }
  124. if (addr) {
  125. addr = ALIGN(addr, huge_page_size(h));
  126. vma = find_vma(mm, addr);
  127. if (TASK_SIZE - len >= addr &&
  128. (!vma || addr + len <= vma->vm_start))
  129. return addr;
  130. }
  131. start_addr = mm->free_area_cache;
  132. if (len <= mm->cached_hole_size)
  133. start_addr = TASK_UNMAPPED_BASE;
  134. full_search:
  135. addr = ALIGN(start_addr, huge_page_size(h));
  136. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  137. /* At this point: (!vma || addr < vma->vm_end). */
  138. if (TASK_SIZE - len < addr) {
  139. /*
  140. * Start a new search - just in case we missed
  141. * some holes.
  142. */
  143. if (start_addr != TASK_UNMAPPED_BASE) {
  144. start_addr = TASK_UNMAPPED_BASE;
  145. goto full_search;
  146. }
  147. return -ENOMEM;
  148. }
  149. if (!vma || addr + len <= vma->vm_start)
  150. return addr;
  151. addr = ALIGN(vma->vm_end, huge_page_size(h));
  152. }
  153. }
  154. #endif
  155. static int
  156. hugetlbfs_read_actor(struct page *page, unsigned long offset,
  157. char __user *buf, unsigned long count,
  158. unsigned long size)
  159. {
  160. char *kaddr;
  161. unsigned long left, copied = 0;
  162. int i, chunksize;
  163. if (size > count)
  164. size = count;
  165. /* Find which 4k chunk and offset with in that chunk */
  166. i = offset >> PAGE_CACHE_SHIFT;
  167. offset = offset & ~PAGE_CACHE_MASK;
  168. while (size) {
  169. chunksize = PAGE_CACHE_SIZE;
  170. if (offset)
  171. chunksize -= offset;
  172. if (chunksize > size)
  173. chunksize = size;
  174. kaddr = kmap(&page[i]);
  175. left = __copy_to_user(buf, kaddr + offset, chunksize);
  176. kunmap(&page[i]);
  177. if (left) {
  178. copied += (chunksize - left);
  179. break;
  180. }
  181. offset = 0;
  182. size -= chunksize;
  183. buf += chunksize;
  184. copied += chunksize;
  185. i++;
  186. }
  187. return copied ? copied : -EFAULT;
  188. }
  189. /*
  190. * Support for read() - Find the page attached to f_mapping and copy out the
  191. * data. Its *very* similar to do_generic_mapping_read(), we can't use that
  192. * since it has PAGE_CACHE_SIZE assumptions.
  193. */
  194. static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
  195. size_t len, loff_t *ppos)
  196. {
  197. struct hstate *h = hstate_file(filp);
  198. struct address_space *mapping = filp->f_mapping;
  199. struct inode *inode = mapping->host;
  200. unsigned long index = *ppos >> huge_page_shift(h);
  201. unsigned long offset = *ppos & ~huge_page_mask(h);
  202. unsigned long end_index;
  203. loff_t isize;
  204. ssize_t retval = 0;
  205. mutex_lock(&inode->i_mutex);
  206. /* validate length */
  207. if (len == 0)
  208. goto out;
  209. isize = i_size_read(inode);
  210. if (!isize)
  211. goto out;
  212. end_index = (isize - 1) >> huge_page_shift(h);
  213. for (;;) {
  214. struct page *page;
  215. unsigned long nr, ret;
  216. /* nr is the maximum number of bytes to copy from this page */
  217. nr = huge_page_size(h);
  218. if (index >= end_index) {
  219. if (index > end_index)
  220. goto out;
  221. nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
  222. if (nr <= offset) {
  223. goto out;
  224. }
  225. }
  226. nr = nr - offset;
  227. /* Find the page */
  228. page = find_get_page(mapping, index);
  229. if (unlikely(page == NULL)) {
  230. /*
  231. * We have a HOLE, zero out the user-buffer for the
  232. * length of the hole or request.
  233. */
  234. ret = len < nr ? len : nr;
  235. if (clear_user(buf, ret))
  236. ret = -EFAULT;
  237. } else {
  238. /*
  239. * We have the page, copy it to user space buffer.
  240. */
  241. ret = hugetlbfs_read_actor(page, offset, buf, len, nr);
  242. }
  243. if (ret < 0) {
  244. if (retval == 0)
  245. retval = ret;
  246. if (page)
  247. page_cache_release(page);
  248. goto out;
  249. }
  250. offset += ret;
  251. retval += ret;
  252. len -= ret;
  253. index += offset >> huge_page_shift(h);
  254. offset &= ~huge_page_mask(h);
  255. if (page)
  256. page_cache_release(page);
  257. /* short read or no more work */
  258. if ((ret != nr) || (len == 0))
  259. break;
  260. }
  261. out:
  262. *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
  263. mutex_unlock(&inode->i_mutex);
  264. return retval;
  265. }
  266. /*
  267. * Read a page. Again trivial. If it didn't already exist
  268. * in the page cache, it is zero-filled.
  269. */
  270. static int hugetlbfs_readpage(struct file *file, struct page * page)
  271. {
  272. unlock_page(page);
  273. return -EINVAL;
  274. }
  275. static int hugetlbfs_write_begin(struct file *file,
  276. struct address_space *mapping,
  277. loff_t pos, unsigned len, unsigned flags,
  278. struct page **pagep, void **fsdata)
  279. {
  280. return -EINVAL;
  281. }
  282. static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
  283. loff_t pos, unsigned len, unsigned copied,
  284. struct page *page, void *fsdata)
  285. {
  286. BUG();
  287. return -EINVAL;
  288. }
  289. static void truncate_huge_page(struct page *page)
  290. {
  291. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  292. ClearPageUptodate(page);
  293. remove_from_page_cache(page);
  294. put_page(page);
  295. }
  296. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  297. {
  298. struct hstate *h = hstate_inode(inode);
  299. struct address_space *mapping = &inode->i_data;
  300. const pgoff_t start = lstart >> huge_page_shift(h);
  301. struct pagevec pvec;
  302. pgoff_t next;
  303. int i, freed = 0;
  304. pagevec_init(&pvec, 0);
  305. next = start;
  306. while (1) {
  307. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  308. if (next == start)
  309. break;
  310. next = start;
  311. continue;
  312. }
  313. for (i = 0; i < pagevec_count(&pvec); ++i) {
  314. struct page *page = pvec.pages[i];
  315. lock_page(page);
  316. if (page->index > next)
  317. next = page->index;
  318. ++next;
  319. truncate_huge_page(page);
  320. unlock_page(page);
  321. freed++;
  322. }
  323. huge_pagevec_release(&pvec);
  324. }
  325. BUG_ON(!lstart && mapping->nrpages);
  326. hugetlb_unreserve_pages(inode, start, freed);
  327. }
  328. static void hugetlbfs_delete_inode(struct inode *inode)
  329. {
  330. truncate_hugepages(inode, 0);
  331. clear_inode(inode);
  332. }
  333. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  334. {
  335. struct super_block *sb = inode->i_sb;
  336. if (!hlist_unhashed(&inode->i_hash)) {
  337. if (!(inode->i_state & (I_DIRTY|I_SYNC)))
  338. list_move(&inode->i_list, &inode_unused);
  339. inodes_stat.nr_unused++;
  340. if (!sb || (sb->s_flags & MS_ACTIVE)) {
  341. spin_unlock(&inode_lock);
  342. return;
  343. }
  344. inode->i_state |= I_WILL_FREE;
  345. spin_unlock(&inode_lock);
  346. /*
  347. * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
  348. * in our backing_dev_info.
  349. */
  350. write_inode_now(inode, 1);
  351. spin_lock(&inode_lock);
  352. inode->i_state &= ~I_WILL_FREE;
  353. inodes_stat.nr_unused--;
  354. hlist_del_init(&inode->i_hash);
  355. }
  356. list_del_init(&inode->i_list);
  357. list_del_init(&inode->i_sb_list);
  358. inode->i_state |= I_FREEING;
  359. inodes_stat.nr_inodes--;
  360. spin_unlock(&inode_lock);
  361. truncate_hugepages(inode, 0);
  362. clear_inode(inode);
  363. destroy_inode(inode);
  364. }
  365. static void hugetlbfs_drop_inode(struct inode *inode)
  366. {
  367. if (!inode->i_nlink)
  368. generic_delete_inode(inode);
  369. else
  370. hugetlbfs_forget_inode(inode);
  371. }
  372. static inline void
  373. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  374. {
  375. struct vm_area_struct *vma;
  376. struct prio_tree_iter iter;
  377. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  378. unsigned long v_offset;
  379. /*
  380. * Can the expression below overflow on 32-bit arches?
  381. * No, because the prio_tree returns us only those vmas
  382. * which overlap the truncated area starting at pgoff,
  383. * and no vma on a 32-bit arch can span beyond the 4GB.
  384. */
  385. if (vma->vm_pgoff < pgoff)
  386. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  387. else
  388. v_offset = 0;
  389. __unmap_hugepage_range(vma,
  390. vma->vm_start + v_offset, vma->vm_end, NULL);
  391. }
  392. }
  393. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  394. {
  395. pgoff_t pgoff;
  396. struct address_space *mapping = inode->i_mapping;
  397. struct hstate *h = hstate_inode(inode);
  398. BUG_ON(offset & ~huge_page_mask(h));
  399. pgoff = offset >> PAGE_SHIFT;
  400. i_size_write(inode, offset);
  401. spin_lock(&mapping->i_mmap_lock);
  402. if (!prio_tree_empty(&mapping->i_mmap))
  403. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  404. spin_unlock(&mapping->i_mmap_lock);
  405. truncate_hugepages(inode, offset);
  406. return 0;
  407. }
  408. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  409. {
  410. struct inode *inode = dentry->d_inode;
  411. struct hstate *h = hstate_inode(inode);
  412. int error;
  413. unsigned int ia_valid = attr->ia_valid;
  414. BUG_ON(!inode);
  415. error = inode_change_ok(inode, attr);
  416. if (error)
  417. goto out;
  418. if (ia_valid & ATTR_SIZE) {
  419. error = -EINVAL;
  420. if (!(attr->ia_size & ~huge_page_mask(h)))
  421. error = hugetlb_vmtruncate(inode, attr->ia_size);
  422. if (error)
  423. goto out;
  424. attr->ia_valid &= ~ATTR_SIZE;
  425. }
  426. error = inode_setattr(inode, attr);
  427. out:
  428. return error;
  429. }
  430. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  431. gid_t gid, int mode, dev_t dev)
  432. {
  433. struct inode *inode;
  434. inode = new_inode(sb);
  435. if (inode) {
  436. struct hugetlbfs_inode_info *info;
  437. inode->i_mode = mode;
  438. inode->i_uid = uid;
  439. inode->i_gid = gid;
  440. inode->i_blocks = 0;
  441. inode->i_mapping->a_ops = &hugetlbfs_aops;
  442. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  443. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  444. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  445. info = HUGETLBFS_I(inode);
  446. mpol_shared_policy_init(&info->policy, NULL);
  447. switch (mode & S_IFMT) {
  448. default:
  449. init_special_inode(inode, mode, dev);
  450. break;
  451. case S_IFREG:
  452. inode->i_op = &hugetlbfs_inode_operations;
  453. inode->i_fop = &hugetlbfs_file_operations;
  454. break;
  455. case S_IFDIR:
  456. inode->i_op = &hugetlbfs_dir_inode_operations;
  457. inode->i_fop = &simple_dir_operations;
  458. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  459. inc_nlink(inode);
  460. break;
  461. case S_IFLNK:
  462. inode->i_op = &page_symlink_inode_operations;
  463. break;
  464. }
  465. }
  466. return inode;
  467. }
  468. /*
  469. * File creation. Allocate an inode, and we're done..
  470. */
  471. static int hugetlbfs_mknod(struct inode *dir,
  472. struct dentry *dentry, int mode, dev_t dev)
  473. {
  474. struct inode *inode;
  475. int error = -ENOSPC;
  476. gid_t gid;
  477. if (dir->i_mode & S_ISGID) {
  478. gid = dir->i_gid;
  479. if (S_ISDIR(mode))
  480. mode |= S_ISGID;
  481. } else {
  482. gid = current_fsgid();
  483. }
  484. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(), gid, mode, dev);
  485. if (inode) {
  486. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  487. d_instantiate(dentry, inode);
  488. dget(dentry); /* Extra count - pin the dentry in core */
  489. error = 0;
  490. }
  491. return error;
  492. }
  493. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  494. {
  495. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  496. if (!retval)
  497. inc_nlink(dir);
  498. return retval;
  499. }
  500. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  501. {
  502. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  503. }
  504. static int hugetlbfs_symlink(struct inode *dir,
  505. struct dentry *dentry, const char *symname)
  506. {
  507. struct inode *inode;
  508. int error = -ENOSPC;
  509. gid_t gid;
  510. if (dir->i_mode & S_ISGID)
  511. gid = dir->i_gid;
  512. else
  513. gid = current_fsgid();
  514. inode = hugetlbfs_get_inode(dir->i_sb, current_fsuid(),
  515. gid, S_IFLNK|S_IRWXUGO, 0);
  516. if (inode) {
  517. int l = strlen(symname)+1;
  518. error = page_symlink(inode, symname, l);
  519. if (!error) {
  520. d_instantiate(dentry, inode);
  521. dget(dentry);
  522. } else
  523. iput(inode);
  524. }
  525. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  526. return error;
  527. }
  528. /*
  529. * mark the head page dirty
  530. */
  531. static int hugetlbfs_set_page_dirty(struct page *page)
  532. {
  533. struct page *head = compound_head(page);
  534. SetPageDirty(head);
  535. return 0;
  536. }
  537. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  538. {
  539. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  540. struct hstate *h = hstate_inode(dentry->d_inode);
  541. buf->f_type = HUGETLBFS_MAGIC;
  542. buf->f_bsize = huge_page_size(h);
  543. if (sbinfo) {
  544. spin_lock(&sbinfo->stat_lock);
  545. /* If no limits set, just report 0 for max/free/used
  546. * blocks, like simple_statfs() */
  547. if (sbinfo->max_blocks >= 0) {
  548. buf->f_blocks = sbinfo->max_blocks;
  549. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  550. buf->f_files = sbinfo->max_inodes;
  551. buf->f_ffree = sbinfo->free_inodes;
  552. }
  553. spin_unlock(&sbinfo->stat_lock);
  554. }
  555. buf->f_namelen = NAME_MAX;
  556. return 0;
  557. }
  558. static void hugetlbfs_put_super(struct super_block *sb)
  559. {
  560. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  561. if (sbi) {
  562. sb->s_fs_info = NULL;
  563. kfree(sbi);
  564. }
  565. }
  566. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  567. {
  568. if (sbinfo->free_inodes >= 0) {
  569. spin_lock(&sbinfo->stat_lock);
  570. if (unlikely(!sbinfo->free_inodes)) {
  571. spin_unlock(&sbinfo->stat_lock);
  572. return 0;
  573. }
  574. sbinfo->free_inodes--;
  575. spin_unlock(&sbinfo->stat_lock);
  576. }
  577. return 1;
  578. }
  579. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  580. {
  581. if (sbinfo->free_inodes >= 0) {
  582. spin_lock(&sbinfo->stat_lock);
  583. sbinfo->free_inodes++;
  584. spin_unlock(&sbinfo->stat_lock);
  585. }
  586. }
  587. static struct kmem_cache *hugetlbfs_inode_cachep;
  588. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  589. {
  590. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  591. struct hugetlbfs_inode_info *p;
  592. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  593. return NULL;
  594. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  595. if (unlikely(!p)) {
  596. hugetlbfs_inc_free_inodes(sbinfo);
  597. return NULL;
  598. }
  599. return &p->vfs_inode;
  600. }
  601. static void hugetlbfs_destroy_inode(struct inode *inode)
  602. {
  603. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  604. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  605. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  606. }
  607. static const struct address_space_operations hugetlbfs_aops = {
  608. .readpage = hugetlbfs_readpage,
  609. .write_begin = hugetlbfs_write_begin,
  610. .write_end = hugetlbfs_write_end,
  611. .set_page_dirty = hugetlbfs_set_page_dirty,
  612. };
  613. static void init_once(void *foo)
  614. {
  615. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  616. inode_init_once(&ei->vfs_inode);
  617. }
  618. const struct file_operations hugetlbfs_file_operations = {
  619. .read = hugetlbfs_read,
  620. .mmap = hugetlbfs_file_mmap,
  621. .fsync = simple_sync_file,
  622. .get_unmapped_area = hugetlb_get_unmapped_area,
  623. };
  624. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  625. .create = hugetlbfs_create,
  626. .lookup = simple_lookup,
  627. .link = simple_link,
  628. .unlink = simple_unlink,
  629. .symlink = hugetlbfs_symlink,
  630. .mkdir = hugetlbfs_mkdir,
  631. .rmdir = simple_rmdir,
  632. .mknod = hugetlbfs_mknod,
  633. .rename = simple_rename,
  634. .setattr = hugetlbfs_setattr,
  635. };
  636. static const struct inode_operations hugetlbfs_inode_operations = {
  637. .setattr = hugetlbfs_setattr,
  638. };
  639. static const struct super_operations hugetlbfs_ops = {
  640. .alloc_inode = hugetlbfs_alloc_inode,
  641. .destroy_inode = hugetlbfs_destroy_inode,
  642. .statfs = hugetlbfs_statfs,
  643. .delete_inode = hugetlbfs_delete_inode,
  644. .drop_inode = hugetlbfs_drop_inode,
  645. .put_super = hugetlbfs_put_super,
  646. .show_options = generic_show_options,
  647. };
  648. static int
  649. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  650. {
  651. char *p, *rest;
  652. substring_t args[MAX_OPT_ARGS];
  653. int option;
  654. unsigned long long size = 0;
  655. enum { NO_SIZE, SIZE_STD, SIZE_PERCENT } setsize = NO_SIZE;
  656. if (!options)
  657. return 0;
  658. while ((p = strsep(&options, ",")) != NULL) {
  659. int token;
  660. if (!*p)
  661. continue;
  662. token = match_token(p, tokens, args);
  663. switch (token) {
  664. case Opt_uid:
  665. if (match_int(&args[0], &option))
  666. goto bad_val;
  667. pconfig->uid = option;
  668. break;
  669. case Opt_gid:
  670. if (match_int(&args[0], &option))
  671. goto bad_val;
  672. pconfig->gid = option;
  673. break;
  674. case Opt_mode:
  675. if (match_octal(&args[0], &option))
  676. goto bad_val;
  677. pconfig->mode = option & 01777U;
  678. break;
  679. case Opt_size: {
  680. /* memparse() will accept a K/M/G without a digit */
  681. if (!isdigit(*args[0].from))
  682. goto bad_val;
  683. size = memparse(args[0].from, &rest);
  684. setsize = SIZE_STD;
  685. if (*rest == '%')
  686. setsize = SIZE_PERCENT;
  687. break;
  688. }
  689. case Opt_nr_inodes:
  690. /* memparse() will accept a K/M/G without a digit */
  691. if (!isdigit(*args[0].from))
  692. goto bad_val;
  693. pconfig->nr_inodes = memparse(args[0].from, &rest);
  694. break;
  695. case Opt_pagesize: {
  696. unsigned long ps;
  697. ps = memparse(args[0].from, &rest);
  698. pconfig->hstate = size_to_hstate(ps);
  699. if (!pconfig->hstate) {
  700. printk(KERN_ERR
  701. "hugetlbfs: Unsupported page size %lu MB\n",
  702. ps >> 20);
  703. return -EINVAL;
  704. }
  705. break;
  706. }
  707. default:
  708. printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
  709. p);
  710. return -EINVAL;
  711. break;
  712. }
  713. }
  714. /* Do size after hstate is set up */
  715. if (setsize > NO_SIZE) {
  716. struct hstate *h = pconfig->hstate;
  717. if (setsize == SIZE_PERCENT) {
  718. size <<= huge_page_shift(h);
  719. size *= h->max_huge_pages;
  720. do_div(size, 100);
  721. }
  722. pconfig->nr_blocks = (size >> huge_page_shift(h));
  723. }
  724. return 0;
  725. bad_val:
  726. printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
  727. args[0].from, p);
  728. return 1;
  729. }
  730. static int
  731. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  732. {
  733. struct inode * inode;
  734. struct dentry * root;
  735. int ret;
  736. struct hugetlbfs_config config;
  737. struct hugetlbfs_sb_info *sbinfo;
  738. save_mount_options(sb, data);
  739. config.nr_blocks = -1; /* No limit on size by default */
  740. config.nr_inodes = -1; /* No limit on number of inodes by default */
  741. config.uid = current_fsuid();
  742. config.gid = current_fsgid();
  743. config.mode = 0755;
  744. config.hstate = &default_hstate;
  745. ret = hugetlbfs_parse_options(data, &config);
  746. if (ret)
  747. return ret;
  748. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  749. if (!sbinfo)
  750. return -ENOMEM;
  751. sb->s_fs_info = sbinfo;
  752. sbinfo->hstate = config.hstate;
  753. spin_lock_init(&sbinfo->stat_lock);
  754. sbinfo->max_blocks = config.nr_blocks;
  755. sbinfo->free_blocks = config.nr_blocks;
  756. sbinfo->max_inodes = config.nr_inodes;
  757. sbinfo->free_inodes = config.nr_inodes;
  758. sb->s_maxbytes = MAX_LFS_FILESIZE;
  759. sb->s_blocksize = huge_page_size(config.hstate);
  760. sb->s_blocksize_bits = huge_page_shift(config.hstate);
  761. sb->s_magic = HUGETLBFS_MAGIC;
  762. sb->s_op = &hugetlbfs_ops;
  763. sb->s_time_gran = 1;
  764. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  765. S_IFDIR | config.mode, 0);
  766. if (!inode)
  767. goto out_free;
  768. root = d_alloc_root(inode);
  769. if (!root) {
  770. iput(inode);
  771. goto out_free;
  772. }
  773. sb->s_root = root;
  774. return 0;
  775. out_free:
  776. kfree(sbinfo);
  777. return -ENOMEM;
  778. }
  779. int hugetlb_get_quota(struct address_space *mapping, long delta)
  780. {
  781. int ret = 0;
  782. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  783. if (sbinfo->free_blocks > -1) {
  784. spin_lock(&sbinfo->stat_lock);
  785. if (sbinfo->free_blocks - delta >= 0)
  786. sbinfo->free_blocks -= delta;
  787. else
  788. ret = -ENOMEM;
  789. spin_unlock(&sbinfo->stat_lock);
  790. }
  791. return ret;
  792. }
  793. void hugetlb_put_quota(struct address_space *mapping, long delta)
  794. {
  795. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  796. if (sbinfo->free_blocks > -1) {
  797. spin_lock(&sbinfo->stat_lock);
  798. sbinfo->free_blocks += delta;
  799. spin_unlock(&sbinfo->stat_lock);
  800. }
  801. }
  802. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  803. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  804. {
  805. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  806. }
  807. static struct file_system_type hugetlbfs_fs_type = {
  808. .name = "hugetlbfs",
  809. .get_sb = hugetlbfs_get_sb,
  810. .kill_sb = kill_litter_super,
  811. };
  812. static struct vfsmount *hugetlbfs_vfsmount;
  813. static int can_do_hugetlb_shm(void)
  814. {
  815. return likely(capable(CAP_IPC_LOCK) ||
  816. in_group_p(sysctl_hugetlb_shm_group) ||
  817. can_do_mlock());
  818. }
  819. struct file *hugetlb_file_setup(const char *name, size_t size)
  820. {
  821. int error = -ENOMEM;
  822. struct file *file;
  823. struct inode *inode;
  824. struct dentry *dentry, *root;
  825. struct qstr quick_string;
  826. if (!hugetlbfs_vfsmount)
  827. return ERR_PTR(-ENOENT);
  828. if (!can_do_hugetlb_shm())
  829. return ERR_PTR(-EPERM);
  830. if (!user_shm_lock(size, current->cred->user))
  831. return ERR_PTR(-ENOMEM);
  832. root = hugetlbfs_vfsmount->mnt_root;
  833. quick_string.name = name;
  834. quick_string.len = strlen(quick_string.name);
  835. quick_string.hash = 0;
  836. dentry = d_alloc(root, &quick_string);
  837. if (!dentry)
  838. goto out_shm_unlock;
  839. error = -ENOSPC;
  840. inode = hugetlbfs_get_inode(root->d_sb, current_fsuid(),
  841. current_fsgid(), S_IFREG | S_IRWXUGO, 0);
  842. if (!inode)
  843. goto out_dentry;
  844. error = -ENOMEM;
  845. if (hugetlb_reserve_pages(inode, 0,
  846. size >> huge_page_shift(hstate_inode(inode)), NULL))
  847. goto out_inode;
  848. d_instantiate(dentry, inode);
  849. inode->i_size = size;
  850. inode->i_nlink = 0;
  851. error = -ENFILE;
  852. file = alloc_file(hugetlbfs_vfsmount, dentry,
  853. FMODE_WRITE | FMODE_READ,
  854. &hugetlbfs_file_operations);
  855. if (!file)
  856. goto out_dentry; /* inode is already attached */
  857. return file;
  858. out_inode:
  859. iput(inode);
  860. out_dentry:
  861. dput(dentry);
  862. out_shm_unlock:
  863. user_shm_unlock(size, current->cred->user);
  864. return ERR_PTR(error);
  865. }
  866. static int __init init_hugetlbfs_fs(void)
  867. {
  868. int error;
  869. struct vfsmount *vfsmount;
  870. error = bdi_init(&hugetlbfs_backing_dev_info);
  871. if (error)
  872. return error;
  873. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  874. sizeof(struct hugetlbfs_inode_info),
  875. 0, 0, init_once);
  876. if (hugetlbfs_inode_cachep == NULL)
  877. goto out2;
  878. error = register_filesystem(&hugetlbfs_fs_type);
  879. if (error)
  880. goto out;
  881. vfsmount = kern_mount(&hugetlbfs_fs_type);
  882. if (!IS_ERR(vfsmount)) {
  883. hugetlbfs_vfsmount = vfsmount;
  884. return 0;
  885. }
  886. error = PTR_ERR(vfsmount);
  887. out:
  888. if (error)
  889. kmem_cache_destroy(hugetlbfs_inode_cachep);
  890. out2:
  891. bdi_destroy(&hugetlbfs_backing_dev_info);
  892. return error;
  893. }
  894. static void __exit exit_hugetlbfs_fs(void)
  895. {
  896. kmem_cache_destroy(hugetlbfs_inode_cachep);
  897. unregister_filesystem(&hugetlbfs_fs_type);
  898. bdi_destroy(&hugetlbfs_backing_dev_info);
  899. }
  900. module_init(init_hugetlbfs_fs)
  901. module_exit(exit_hugetlbfs_fs)
  902. MODULE_LICENSE("GPL");