md.c 224 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. static int remove_and_add_spares(struct mddev *mddev,
  62. struct md_rdev *this);
  63. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  64. /*
  65. * Default number of read corrections we'll attempt on an rdev
  66. * before ejecting it from the array. We divide the read error
  67. * count by 2 for every hour elapsed between read errors.
  68. */
  69. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  70. /*
  71. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  72. * is 1000 KB/sec, so the extra system load does not show up that much.
  73. * Increase it if you want to have more _guaranteed_ speed. Note that
  74. * the RAID driver will use the maximum available bandwidth if the IO
  75. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  76. * speed limit - in case reconstruction slows down your system despite
  77. * idle IO detection.
  78. *
  79. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  80. * or /sys/block/mdX/md/sync_speed_{min,max}
  81. */
  82. static int sysctl_speed_limit_min = 1000;
  83. static int sysctl_speed_limit_max = 200000;
  84. static inline int speed_min(struct mddev *mddev)
  85. {
  86. return mddev->sync_speed_min ?
  87. mddev->sync_speed_min : sysctl_speed_limit_min;
  88. }
  89. static inline int speed_max(struct mddev *mddev)
  90. {
  91. return mddev->sync_speed_max ?
  92. mddev->sync_speed_max : sysctl_speed_limit_max;
  93. }
  94. static struct ctl_table_header *raid_table_header;
  95. static ctl_table raid_table[] = {
  96. {
  97. .procname = "speed_limit_min",
  98. .data = &sysctl_speed_limit_min,
  99. .maxlen = sizeof(int),
  100. .mode = S_IRUGO|S_IWUSR,
  101. .proc_handler = proc_dointvec,
  102. },
  103. {
  104. .procname = "speed_limit_max",
  105. .data = &sysctl_speed_limit_max,
  106. .maxlen = sizeof(int),
  107. .mode = S_IRUGO|S_IWUSR,
  108. .proc_handler = proc_dointvec,
  109. },
  110. { }
  111. };
  112. static ctl_table raid_dir_table[] = {
  113. {
  114. .procname = "raid",
  115. .maxlen = 0,
  116. .mode = S_IRUGO|S_IXUGO,
  117. .child = raid_table,
  118. },
  119. { }
  120. };
  121. static ctl_table raid_root_table[] = {
  122. {
  123. .procname = "dev",
  124. .maxlen = 0,
  125. .mode = 0555,
  126. .child = raid_dir_table,
  127. },
  128. { }
  129. };
  130. static const struct block_device_operations md_fops;
  131. static int start_readonly;
  132. /* bio_clone_mddev
  133. * like bio_clone, but with a local bio set
  134. */
  135. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  136. struct mddev *mddev)
  137. {
  138. struct bio *b;
  139. if (!mddev || !mddev->bio_set)
  140. return bio_alloc(gfp_mask, nr_iovecs);
  141. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  142. if (!b)
  143. return NULL;
  144. return b;
  145. }
  146. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  147. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  148. struct mddev *mddev)
  149. {
  150. if (!mddev || !mddev->bio_set)
  151. return bio_clone(bio, gfp_mask);
  152. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  153. }
  154. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  155. void md_trim_bio(struct bio *bio, int offset, int size)
  156. {
  157. /* 'bio' is a cloned bio which we need to trim to match
  158. * the given offset and size.
  159. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  160. */
  161. int i;
  162. struct bio_vec *bvec;
  163. int sofar = 0;
  164. size <<= 9;
  165. if (offset == 0 && size == bio->bi_size)
  166. return;
  167. bio->bi_sector += offset;
  168. bio->bi_size = size;
  169. offset <<= 9;
  170. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  171. while (bio->bi_idx < bio->bi_vcnt &&
  172. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  173. /* remove this whole bio_vec */
  174. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  175. bio->bi_idx++;
  176. }
  177. if (bio->bi_idx < bio->bi_vcnt) {
  178. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  179. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  180. }
  181. /* avoid any complications with bi_idx being non-zero*/
  182. if (bio->bi_idx) {
  183. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  184. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  185. bio->bi_vcnt -= bio->bi_idx;
  186. bio->bi_idx = 0;
  187. }
  188. /* Make sure vcnt and last bv are not too big */
  189. bio_for_each_segment(bvec, bio, i) {
  190. if (sofar + bvec->bv_len > size)
  191. bvec->bv_len = size - sofar;
  192. if (bvec->bv_len == 0) {
  193. bio->bi_vcnt = i;
  194. break;
  195. }
  196. sofar += bvec->bv_len;
  197. }
  198. }
  199. EXPORT_SYMBOL_GPL(md_trim_bio);
  200. /*
  201. * We have a system wide 'event count' that is incremented
  202. * on any 'interesting' event, and readers of /proc/mdstat
  203. * can use 'poll' or 'select' to find out when the event
  204. * count increases.
  205. *
  206. * Events are:
  207. * start array, stop array, error, add device, remove device,
  208. * start build, activate spare
  209. */
  210. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  211. static atomic_t md_event_count;
  212. void md_new_event(struct mddev *mddev)
  213. {
  214. atomic_inc(&md_event_count);
  215. wake_up(&md_event_waiters);
  216. }
  217. EXPORT_SYMBOL_GPL(md_new_event);
  218. /* Alternate version that can be called from interrupts
  219. * when calling sysfs_notify isn't needed.
  220. */
  221. static void md_new_event_inintr(struct mddev *mddev)
  222. {
  223. atomic_inc(&md_event_count);
  224. wake_up(&md_event_waiters);
  225. }
  226. /*
  227. * Enables to iterate over all existing md arrays
  228. * all_mddevs_lock protects this list.
  229. */
  230. static LIST_HEAD(all_mddevs);
  231. static DEFINE_SPINLOCK(all_mddevs_lock);
  232. /*
  233. * iterates through all used mddevs in the system.
  234. * We take care to grab the all_mddevs_lock whenever navigating
  235. * the list, and to always hold a refcount when unlocked.
  236. * Any code which breaks out of this loop while own
  237. * a reference to the current mddev and must mddev_put it.
  238. */
  239. #define for_each_mddev(_mddev,_tmp) \
  240. \
  241. for (({ spin_lock(&all_mddevs_lock); \
  242. _tmp = all_mddevs.next; \
  243. _mddev = NULL;}); \
  244. ({ if (_tmp != &all_mddevs) \
  245. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  246. spin_unlock(&all_mddevs_lock); \
  247. if (_mddev) mddev_put(_mddev); \
  248. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  249. _tmp != &all_mddevs;}); \
  250. ({ spin_lock(&all_mddevs_lock); \
  251. _tmp = _tmp->next;}) \
  252. )
  253. /* Rather than calling directly into the personality make_request function,
  254. * IO requests come here first so that we can check if the device is
  255. * being suspended pending a reconfiguration.
  256. * We hold a refcount over the call to ->make_request. By the time that
  257. * call has finished, the bio has been linked into some internal structure
  258. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  259. */
  260. static void md_make_request(struct request_queue *q, struct bio *bio)
  261. {
  262. const int rw = bio_data_dir(bio);
  263. struct mddev *mddev = q->queuedata;
  264. int cpu;
  265. unsigned int sectors;
  266. if (mddev == NULL || mddev->pers == NULL
  267. || !mddev->ready) {
  268. bio_io_error(bio);
  269. return;
  270. }
  271. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  272. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  273. return;
  274. }
  275. smp_rmb(); /* Ensure implications of 'active' are visible */
  276. rcu_read_lock();
  277. if (mddev->suspended) {
  278. DEFINE_WAIT(__wait);
  279. for (;;) {
  280. prepare_to_wait(&mddev->sb_wait, &__wait,
  281. TASK_UNINTERRUPTIBLE);
  282. if (!mddev->suspended)
  283. break;
  284. rcu_read_unlock();
  285. schedule();
  286. rcu_read_lock();
  287. }
  288. finish_wait(&mddev->sb_wait, &__wait);
  289. }
  290. atomic_inc(&mddev->active_io);
  291. rcu_read_unlock();
  292. /*
  293. * save the sectors now since our bio can
  294. * go away inside make_request
  295. */
  296. sectors = bio_sectors(bio);
  297. mddev->pers->make_request(mddev, bio);
  298. cpu = part_stat_lock();
  299. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  300. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  301. part_stat_unlock();
  302. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  303. wake_up(&mddev->sb_wait);
  304. }
  305. /* mddev_suspend makes sure no new requests are submitted
  306. * to the device, and that any requests that have been submitted
  307. * are completely handled.
  308. * Once ->stop is called and completes, the module will be completely
  309. * unused.
  310. */
  311. void mddev_suspend(struct mddev *mddev)
  312. {
  313. BUG_ON(mddev->suspended);
  314. mddev->suspended = 1;
  315. synchronize_rcu();
  316. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  317. mddev->pers->quiesce(mddev, 1);
  318. del_timer_sync(&mddev->safemode_timer);
  319. }
  320. EXPORT_SYMBOL_GPL(mddev_suspend);
  321. void mddev_resume(struct mddev *mddev)
  322. {
  323. mddev->suspended = 0;
  324. wake_up(&mddev->sb_wait);
  325. mddev->pers->quiesce(mddev, 0);
  326. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  327. md_wakeup_thread(mddev->thread);
  328. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  329. }
  330. EXPORT_SYMBOL_GPL(mddev_resume);
  331. int mddev_congested(struct mddev *mddev, int bits)
  332. {
  333. return mddev->suspended;
  334. }
  335. EXPORT_SYMBOL(mddev_congested);
  336. /*
  337. * Generic flush handling for md
  338. */
  339. static void md_end_flush(struct bio *bio, int err)
  340. {
  341. struct md_rdev *rdev = bio->bi_private;
  342. struct mddev *mddev = rdev->mddev;
  343. rdev_dec_pending(rdev, mddev);
  344. if (atomic_dec_and_test(&mddev->flush_pending)) {
  345. /* The pre-request flush has finished */
  346. queue_work(md_wq, &mddev->flush_work);
  347. }
  348. bio_put(bio);
  349. }
  350. static void md_submit_flush_data(struct work_struct *ws);
  351. static void submit_flushes(struct work_struct *ws)
  352. {
  353. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  354. struct md_rdev *rdev;
  355. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  356. atomic_set(&mddev->flush_pending, 1);
  357. rcu_read_lock();
  358. rdev_for_each_rcu(rdev, mddev)
  359. if (rdev->raid_disk >= 0 &&
  360. !test_bit(Faulty, &rdev->flags)) {
  361. /* Take two references, one is dropped
  362. * when request finishes, one after
  363. * we reclaim rcu_read_lock
  364. */
  365. struct bio *bi;
  366. atomic_inc(&rdev->nr_pending);
  367. atomic_inc(&rdev->nr_pending);
  368. rcu_read_unlock();
  369. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  370. bi->bi_end_io = md_end_flush;
  371. bi->bi_private = rdev;
  372. bi->bi_bdev = rdev->bdev;
  373. atomic_inc(&mddev->flush_pending);
  374. submit_bio(WRITE_FLUSH, bi);
  375. rcu_read_lock();
  376. rdev_dec_pending(rdev, mddev);
  377. }
  378. rcu_read_unlock();
  379. if (atomic_dec_and_test(&mddev->flush_pending))
  380. queue_work(md_wq, &mddev->flush_work);
  381. }
  382. static void md_submit_flush_data(struct work_struct *ws)
  383. {
  384. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  385. struct bio *bio = mddev->flush_bio;
  386. if (bio->bi_size == 0)
  387. /* an empty barrier - all done */
  388. bio_endio(bio, 0);
  389. else {
  390. bio->bi_rw &= ~REQ_FLUSH;
  391. mddev->pers->make_request(mddev, bio);
  392. }
  393. mddev->flush_bio = NULL;
  394. wake_up(&mddev->sb_wait);
  395. }
  396. void md_flush_request(struct mddev *mddev, struct bio *bio)
  397. {
  398. spin_lock_irq(&mddev->write_lock);
  399. wait_event_lock_irq(mddev->sb_wait,
  400. !mddev->flush_bio,
  401. mddev->write_lock);
  402. mddev->flush_bio = bio;
  403. spin_unlock_irq(&mddev->write_lock);
  404. INIT_WORK(&mddev->flush_work, submit_flushes);
  405. queue_work(md_wq, &mddev->flush_work);
  406. }
  407. EXPORT_SYMBOL(md_flush_request);
  408. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  409. {
  410. struct mddev *mddev = cb->data;
  411. md_wakeup_thread(mddev->thread);
  412. kfree(cb);
  413. }
  414. EXPORT_SYMBOL(md_unplug);
  415. static inline struct mddev *mddev_get(struct mddev *mddev)
  416. {
  417. atomic_inc(&mddev->active);
  418. return mddev;
  419. }
  420. static void mddev_delayed_delete(struct work_struct *ws);
  421. static void mddev_put(struct mddev *mddev)
  422. {
  423. struct bio_set *bs = NULL;
  424. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  425. return;
  426. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  427. mddev->ctime == 0 && !mddev->hold_active) {
  428. /* Array is not configured at all, and not held active,
  429. * so destroy it */
  430. list_del_init(&mddev->all_mddevs);
  431. bs = mddev->bio_set;
  432. mddev->bio_set = NULL;
  433. if (mddev->gendisk) {
  434. /* We did a probe so need to clean up. Call
  435. * queue_work inside the spinlock so that
  436. * flush_workqueue() after mddev_find will
  437. * succeed in waiting for the work to be done.
  438. */
  439. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  440. queue_work(md_misc_wq, &mddev->del_work);
  441. } else
  442. kfree(mddev);
  443. }
  444. spin_unlock(&all_mddevs_lock);
  445. if (bs)
  446. bioset_free(bs);
  447. }
  448. void mddev_init(struct mddev *mddev)
  449. {
  450. mutex_init(&mddev->open_mutex);
  451. mutex_init(&mddev->reconfig_mutex);
  452. mutex_init(&mddev->bitmap_info.mutex);
  453. INIT_LIST_HEAD(&mddev->disks);
  454. INIT_LIST_HEAD(&mddev->all_mddevs);
  455. init_timer(&mddev->safemode_timer);
  456. atomic_set(&mddev->active, 1);
  457. atomic_set(&mddev->openers, 0);
  458. atomic_set(&mddev->active_io, 0);
  459. spin_lock_init(&mddev->write_lock);
  460. atomic_set(&mddev->flush_pending, 0);
  461. init_waitqueue_head(&mddev->sb_wait);
  462. init_waitqueue_head(&mddev->recovery_wait);
  463. mddev->reshape_position = MaxSector;
  464. mddev->reshape_backwards = 0;
  465. mddev->resync_min = 0;
  466. mddev->resync_max = MaxSector;
  467. mddev->level = LEVEL_NONE;
  468. }
  469. EXPORT_SYMBOL_GPL(mddev_init);
  470. static struct mddev * mddev_find(dev_t unit)
  471. {
  472. struct mddev *mddev, *new = NULL;
  473. if (unit && MAJOR(unit) != MD_MAJOR)
  474. unit &= ~((1<<MdpMinorShift)-1);
  475. retry:
  476. spin_lock(&all_mddevs_lock);
  477. if (unit) {
  478. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  479. if (mddev->unit == unit) {
  480. mddev_get(mddev);
  481. spin_unlock(&all_mddevs_lock);
  482. kfree(new);
  483. return mddev;
  484. }
  485. if (new) {
  486. list_add(&new->all_mddevs, &all_mddevs);
  487. spin_unlock(&all_mddevs_lock);
  488. new->hold_active = UNTIL_IOCTL;
  489. return new;
  490. }
  491. } else if (new) {
  492. /* find an unused unit number */
  493. static int next_minor = 512;
  494. int start = next_minor;
  495. int is_free = 0;
  496. int dev = 0;
  497. while (!is_free) {
  498. dev = MKDEV(MD_MAJOR, next_minor);
  499. next_minor++;
  500. if (next_minor > MINORMASK)
  501. next_minor = 0;
  502. if (next_minor == start) {
  503. /* Oh dear, all in use. */
  504. spin_unlock(&all_mddevs_lock);
  505. kfree(new);
  506. return NULL;
  507. }
  508. is_free = 1;
  509. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  510. if (mddev->unit == dev) {
  511. is_free = 0;
  512. break;
  513. }
  514. }
  515. new->unit = dev;
  516. new->md_minor = MINOR(dev);
  517. new->hold_active = UNTIL_STOP;
  518. list_add(&new->all_mddevs, &all_mddevs);
  519. spin_unlock(&all_mddevs_lock);
  520. return new;
  521. }
  522. spin_unlock(&all_mddevs_lock);
  523. new = kzalloc(sizeof(*new), GFP_KERNEL);
  524. if (!new)
  525. return NULL;
  526. new->unit = unit;
  527. if (MAJOR(unit) == MD_MAJOR)
  528. new->md_minor = MINOR(unit);
  529. else
  530. new->md_minor = MINOR(unit) >> MdpMinorShift;
  531. mddev_init(new);
  532. goto retry;
  533. }
  534. static inline int mddev_lock(struct mddev * mddev)
  535. {
  536. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  537. }
  538. static inline int mddev_is_locked(struct mddev *mddev)
  539. {
  540. return mutex_is_locked(&mddev->reconfig_mutex);
  541. }
  542. static inline int mddev_trylock(struct mddev * mddev)
  543. {
  544. return mutex_trylock(&mddev->reconfig_mutex);
  545. }
  546. static struct attribute_group md_redundancy_group;
  547. static void mddev_unlock(struct mddev * mddev)
  548. {
  549. if (mddev->to_remove) {
  550. /* These cannot be removed under reconfig_mutex as
  551. * an access to the files will try to take reconfig_mutex
  552. * while holding the file unremovable, which leads to
  553. * a deadlock.
  554. * So hold set sysfs_active while the remove in happeing,
  555. * and anything else which might set ->to_remove or my
  556. * otherwise change the sysfs namespace will fail with
  557. * -EBUSY if sysfs_active is still set.
  558. * We set sysfs_active under reconfig_mutex and elsewhere
  559. * test it under the same mutex to ensure its correct value
  560. * is seen.
  561. */
  562. struct attribute_group *to_remove = mddev->to_remove;
  563. mddev->to_remove = NULL;
  564. mddev->sysfs_active = 1;
  565. mutex_unlock(&mddev->reconfig_mutex);
  566. if (mddev->kobj.sd) {
  567. if (to_remove != &md_redundancy_group)
  568. sysfs_remove_group(&mddev->kobj, to_remove);
  569. if (mddev->pers == NULL ||
  570. mddev->pers->sync_request == NULL) {
  571. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  572. if (mddev->sysfs_action)
  573. sysfs_put(mddev->sysfs_action);
  574. mddev->sysfs_action = NULL;
  575. }
  576. }
  577. mddev->sysfs_active = 0;
  578. } else
  579. mutex_unlock(&mddev->reconfig_mutex);
  580. /* As we've dropped the mutex we need a spinlock to
  581. * make sure the thread doesn't disappear
  582. */
  583. spin_lock(&pers_lock);
  584. md_wakeup_thread(mddev->thread);
  585. spin_unlock(&pers_lock);
  586. }
  587. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  588. {
  589. struct md_rdev *rdev;
  590. rdev_for_each(rdev, mddev)
  591. if (rdev->desc_nr == nr)
  592. return rdev;
  593. return NULL;
  594. }
  595. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  596. {
  597. struct md_rdev *rdev;
  598. rdev_for_each_rcu(rdev, mddev)
  599. if (rdev->desc_nr == nr)
  600. return rdev;
  601. return NULL;
  602. }
  603. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  604. {
  605. struct md_rdev *rdev;
  606. rdev_for_each(rdev, mddev)
  607. if (rdev->bdev->bd_dev == dev)
  608. return rdev;
  609. return NULL;
  610. }
  611. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  612. {
  613. struct md_rdev *rdev;
  614. rdev_for_each_rcu(rdev, mddev)
  615. if (rdev->bdev->bd_dev == dev)
  616. return rdev;
  617. return NULL;
  618. }
  619. static struct md_personality *find_pers(int level, char *clevel)
  620. {
  621. struct md_personality *pers;
  622. list_for_each_entry(pers, &pers_list, list) {
  623. if (level != LEVEL_NONE && pers->level == level)
  624. return pers;
  625. if (strcmp(pers->name, clevel)==0)
  626. return pers;
  627. }
  628. return NULL;
  629. }
  630. /* return the offset of the super block in 512byte sectors */
  631. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  632. {
  633. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  634. return MD_NEW_SIZE_SECTORS(num_sectors);
  635. }
  636. static int alloc_disk_sb(struct md_rdev * rdev)
  637. {
  638. if (rdev->sb_page)
  639. MD_BUG();
  640. rdev->sb_page = alloc_page(GFP_KERNEL);
  641. if (!rdev->sb_page) {
  642. printk(KERN_ALERT "md: out of memory.\n");
  643. return -ENOMEM;
  644. }
  645. return 0;
  646. }
  647. void md_rdev_clear(struct md_rdev *rdev)
  648. {
  649. if (rdev->sb_page) {
  650. put_page(rdev->sb_page);
  651. rdev->sb_loaded = 0;
  652. rdev->sb_page = NULL;
  653. rdev->sb_start = 0;
  654. rdev->sectors = 0;
  655. }
  656. if (rdev->bb_page) {
  657. put_page(rdev->bb_page);
  658. rdev->bb_page = NULL;
  659. }
  660. kfree(rdev->badblocks.page);
  661. rdev->badblocks.page = NULL;
  662. }
  663. EXPORT_SYMBOL_GPL(md_rdev_clear);
  664. static void super_written(struct bio *bio, int error)
  665. {
  666. struct md_rdev *rdev = bio->bi_private;
  667. struct mddev *mddev = rdev->mddev;
  668. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  669. printk("md: super_written gets error=%d, uptodate=%d\n",
  670. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  671. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  672. md_error(mddev, rdev);
  673. }
  674. if (atomic_dec_and_test(&mddev->pending_writes))
  675. wake_up(&mddev->sb_wait);
  676. bio_put(bio);
  677. }
  678. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  679. sector_t sector, int size, struct page *page)
  680. {
  681. /* write first size bytes of page to sector of rdev
  682. * Increment mddev->pending_writes before returning
  683. * and decrement it on completion, waking up sb_wait
  684. * if zero is reached.
  685. * If an error occurred, call md_error
  686. */
  687. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  688. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  689. bio->bi_sector = sector;
  690. bio_add_page(bio, page, size, 0);
  691. bio->bi_private = rdev;
  692. bio->bi_end_io = super_written;
  693. atomic_inc(&mddev->pending_writes);
  694. submit_bio(WRITE_FLUSH_FUA, bio);
  695. }
  696. void md_super_wait(struct mddev *mddev)
  697. {
  698. /* wait for all superblock writes that were scheduled to complete */
  699. DEFINE_WAIT(wq);
  700. for(;;) {
  701. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  702. if (atomic_read(&mddev->pending_writes)==0)
  703. break;
  704. schedule();
  705. }
  706. finish_wait(&mddev->sb_wait, &wq);
  707. }
  708. static void bi_complete(struct bio *bio, int error)
  709. {
  710. complete((struct completion*)bio->bi_private);
  711. }
  712. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  713. struct page *page, int rw, bool metadata_op)
  714. {
  715. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  716. struct completion event;
  717. int ret;
  718. rw |= REQ_SYNC;
  719. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  720. rdev->meta_bdev : rdev->bdev;
  721. if (metadata_op)
  722. bio->bi_sector = sector + rdev->sb_start;
  723. else if (rdev->mddev->reshape_position != MaxSector &&
  724. (rdev->mddev->reshape_backwards ==
  725. (sector >= rdev->mddev->reshape_position)))
  726. bio->bi_sector = sector + rdev->new_data_offset;
  727. else
  728. bio->bi_sector = sector + rdev->data_offset;
  729. bio_add_page(bio, page, size, 0);
  730. init_completion(&event);
  731. bio->bi_private = &event;
  732. bio->bi_end_io = bi_complete;
  733. submit_bio(rw, bio);
  734. wait_for_completion(&event);
  735. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  736. bio_put(bio);
  737. return ret;
  738. }
  739. EXPORT_SYMBOL_GPL(sync_page_io);
  740. static int read_disk_sb(struct md_rdev * rdev, int size)
  741. {
  742. char b[BDEVNAME_SIZE];
  743. if (!rdev->sb_page) {
  744. MD_BUG();
  745. return -EINVAL;
  746. }
  747. if (rdev->sb_loaded)
  748. return 0;
  749. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  750. goto fail;
  751. rdev->sb_loaded = 1;
  752. return 0;
  753. fail:
  754. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  755. bdevname(rdev->bdev,b));
  756. return -EINVAL;
  757. }
  758. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  759. {
  760. return sb1->set_uuid0 == sb2->set_uuid0 &&
  761. sb1->set_uuid1 == sb2->set_uuid1 &&
  762. sb1->set_uuid2 == sb2->set_uuid2 &&
  763. sb1->set_uuid3 == sb2->set_uuid3;
  764. }
  765. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  766. {
  767. int ret;
  768. mdp_super_t *tmp1, *tmp2;
  769. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  770. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  771. if (!tmp1 || !tmp2) {
  772. ret = 0;
  773. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  774. goto abort;
  775. }
  776. *tmp1 = *sb1;
  777. *tmp2 = *sb2;
  778. /*
  779. * nr_disks is not constant
  780. */
  781. tmp1->nr_disks = 0;
  782. tmp2->nr_disks = 0;
  783. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  784. abort:
  785. kfree(tmp1);
  786. kfree(tmp2);
  787. return ret;
  788. }
  789. static u32 md_csum_fold(u32 csum)
  790. {
  791. csum = (csum & 0xffff) + (csum >> 16);
  792. return (csum & 0xffff) + (csum >> 16);
  793. }
  794. static unsigned int calc_sb_csum(mdp_super_t * sb)
  795. {
  796. u64 newcsum = 0;
  797. u32 *sb32 = (u32*)sb;
  798. int i;
  799. unsigned int disk_csum, csum;
  800. disk_csum = sb->sb_csum;
  801. sb->sb_csum = 0;
  802. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  803. newcsum += sb32[i];
  804. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  805. #ifdef CONFIG_ALPHA
  806. /* This used to use csum_partial, which was wrong for several
  807. * reasons including that different results are returned on
  808. * different architectures. It isn't critical that we get exactly
  809. * the same return value as before (we always csum_fold before
  810. * testing, and that removes any differences). However as we
  811. * know that csum_partial always returned a 16bit value on
  812. * alphas, do a fold to maximise conformity to previous behaviour.
  813. */
  814. sb->sb_csum = md_csum_fold(disk_csum);
  815. #else
  816. sb->sb_csum = disk_csum;
  817. #endif
  818. return csum;
  819. }
  820. /*
  821. * Handle superblock details.
  822. * We want to be able to handle multiple superblock formats
  823. * so we have a common interface to them all, and an array of
  824. * different handlers.
  825. * We rely on user-space to write the initial superblock, and support
  826. * reading and updating of superblocks.
  827. * Interface methods are:
  828. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  829. * loads and validates a superblock on dev.
  830. * if refdev != NULL, compare superblocks on both devices
  831. * Return:
  832. * 0 - dev has a superblock that is compatible with refdev
  833. * 1 - dev has a superblock that is compatible and newer than refdev
  834. * so dev should be used as the refdev in future
  835. * -EINVAL superblock incompatible or invalid
  836. * -othererror e.g. -EIO
  837. *
  838. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  839. * Verify that dev is acceptable into mddev.
  840. * The first time, mddev->raid_disks will be 0, and data from
  841. * dev should be merged in. Subsequent calls check that dev
  842. * is new enough. Return 0 or -EINVAL
  843. *
  844. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  845. * Update the superblock for rdev with data in mddev
  846. * This does not write to disc.
  847. *
  848. */
  849. struct super_type {
  850. char *name;
  851. struct module *owner;
  852. int (*load_super)(struct md_rdev *rdev,
  853. struct md_rdev *refdev,
  854. int minor_version);
  855. int (*validate_super)(struct mddev *mddev,
  856. struct md_rdev *rdev);
  857. void (*sync_super)(struct mddev *mddev,
  858. struct md_rdev *rdev);
  859. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  860. sector_t num_sectors);
  861. int (*allow_new_offset)(struct md_rdev *rdev,
  862. unsigned long long new_offset);
  863. };
  864. /*
  865. * Check that the given mddev has no bitmap.
  866. *
  867. * This function is called from the run method of all personalities that do not
  868. * support bitmaps. It prints an error message and returns non-zero if mddev
  869. * has a bitmap. Otherwise, it returns 0.
  870. *
  871. */
  872. int md_check_no_bitmap(struct mddev *mddev)
  873. {
  874. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  875. return 0;
  876. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  877. mdname(mddev), mddev->pers->name);
  878. return 1;
  879. }
  880. EXPORT_SYMBOL(md_check_no_bitmap);
  881. /*
  882. * load_super for 0.90.0
  883. */
  884. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  885. {
  886. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  887. mdp_super_t *sb;
  888. int ret;
  889. /*
  890. * Calculate the position of the superblock (512byte sectors),
  891. * it's at the end of the disk.
  892. *
  893. * It also happens to be a multiple of 4Kb.
  894. */
  895. rdev->sb_start = calc_dev_sboffset(rdev);
  896. ret = read_disk_sb(rdev, MD_SB_BYTES);
  897. if (ret) return ret;
  898. ret = -EINVAL;
  899. bdevname(rdev->bdev, b);
  900. sb = page_address(rdev->sb_page);
  901. if (sb->md_magic != MD_SB_MAGIC) {
  902. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  903. b);
  904. goto abort;
  905. }
  906. if (sb->major_version != 0 ||
  907. sb->minor_version < 90 ||
  908. sb->minor_version > 91) {
  909. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  910. sb->major_version, sb->minor_version,
  911. b);
  912. goto abort;
  913. }
  914. if (sb->raid_disks <= 0)
  915. goto abort;
  916. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  917. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  918. b);
  919. goto abort;
  920. }
  921. rdev->preferred_minor = sb->md_minor;
  922. rdev->data_offset = 0;
  923. rdev->new_data_offset = 0;
  924. rdev->sb_size = MD_SB_BYTES;
  925. rdev->badblocks.shift = -1;
  926. if (sb->level == LEVEL_MULTIPATH)
  927. rdev->desc_nr = -1;
  928. else
  929. rdev->desc_nr = sb->this_disk.number;
  930. if (!refdev) {
  931. ret = 1;
  932. } else {
  933. __u64 ev1, ev2;
  934. mdp_super_t *refsb = page_address(refdev->sb_page);
  935. if (!uuid_equal(refsb, sb)) {
  936. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  937. b, bdevname(refdev->bdev,b2));
  938. goto abort;
  939. }
  940. if (!sb_equal(refsb, sb)) {
  941. printk(KERN_WARNING "md: %s has same UUID"
  942. " but different superblock to %s\n",
  943. b, bdevname(refdev->bdev, b2));
  944. goto abort;
  945. }
  946. ev1 = md_event(sb);
  947. ev2 = md_event(refsb);
  948. if (ev1 > ev2)
  949. ret = 1;
  950. else
  951. ret = 0;
  952. }
  953. rdev->sectors = rdev->sb_start;
  954. /* Limit to 4TB as metadata cannot record more than that.
  955. * (not needed for Linear and RAID0 as metadata doesn't
  956. * record this size)
  957. */
  958. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  959. rdev->sectors = (2ULL << 32) - 2;
  960. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  961. /* "this cannot possibly happen" ... */
  962. ret = -EINVAL;
  963. abort:
  964. return ret;
  965. }
  966. /*
  967. * validate_super for 0.90.0
  968. */
  969. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  970. {
  971. mdp_disk_t *desc;
  972. mdp_super_t *sb = page_address(rdev->sb_page);
  973. __u64 ev1 = md_event(sb);
  974. rdev->raid_disk = -1;
  975. clear_bit(Faulty, &rdev->flags);
  976. clear_bit(In_sync, &rdev->flags);
  977. clear_bit(WriteMostly, &rdev->flags);
  978. if (mddev->raid_disks == 0) {
  979. mddev->major_version = 0;
  980. mddev->minor_version = sb->minor_version;
  981. mddev->patch_version = sb->patch_version;
  982. mddev->external = 0;
  983. mddev->chunk_sectors = sb->chunk_size >> 9;
  984. mddev->ctime = sb->ctime;
  985. mddev->utime = sb->utime;
  986. mddev->level = sb->level;
  987. mddev->clevel[0] = 0;
  988. mddev->layout = sb->layout;
  989. mddev->raid_disks = sb->raid_disks;
  990. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  991. mddev->events = ev1;
  992. mddev->bitmap_info.offset = 0;
  993. mddev->bitmap_info.space = 0;
  994. /* bitmap can use 60 K after the 4K superblocks */
  995. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  996. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  997. mddev->reshape_backwards = 0;
  998. if (mddev->minor_version >= 91) {
  999. mddev->reshape_position = sb->reshape_position;
  1000. mddev->delta_disks = sb->delta_disks;
  1001. mddev->new_level = sb->new_level;
  1002. mddev->new_layout = sb->new_layout;
  1003. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1004. if (mddev->delta_disks < 0)
  1005. mddev->reshape_backwards = 1;
  1006. } else {
  1007. mddev->reshape_position = MaxSector;
  1008. mddev->delta_disks = 0;
  1009. mddev->new_level = mddev->level;
  1010. mddev->new_layout = mddev->layout;
  1011. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1012. }
  1013. if (sb->state & (1<<MD_SB_CLEAN))
  1014. mddev->recovery_cp = MaxSector;
  1015. else {
  1016. if (sb->events_hi == sb->cp_events_hi &&
  1017. sb->events_lo == sb->cp_events_lo) {
  1018. mddev->recovery_cp = sb->recovery_cp;
  1019. } else
  1020. mddev->recovery_cp = 0;
  1021. }
  1022. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1023. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1024. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1025. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1026. mddev->max_disks = MD_SB_DISKS;
  1027. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1028. mddev->bitmap_info.file == NULL) {
  1029. mddev->bitmap_info.offset =
  1030. mddev->bitmap_info.default_offset;
  1031. mddev->bitmap_info.space =
  1032. mddev->bitmap_info.space;
  1033. }
  1034. } else if (mddev->pers == NULL) {
  1035. /* Insist on good event counter while assembling, except
  1036. * for spares (which don't need an event count) */
  1037. ++ev1;
  1038. if (sb->disks[rdev->desc_nr].state & (
  1039. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1040. if (ev1 < mddev->events)
  1041. return -EINVAL;
  1042. } else if (mddev->bitmap) {
  1043. /* if adding to array with a bitmap, then we can accept an
  1044. * older device ... but not too old.
  1045. */
  1046. if (ev1 < mddev->bitmap->events_cleared)
  1047. return 0;
  1048. } else {
  1049. if (ev1 < mddev->events)
  1050. /* just a hot-add of a new device, leave raid_disk at -1 */
  1051. return 0;
  1052. }
  1053. if (mddev->level != LEVEL_MULTIPATH) {
  1054. desc = sb->disks + rdev->desc_nr;
  1055. if (desc->state & (1<<MD_DISK_FAULTY))
  1056. set_bit(Faulty, &rdev->flags);
  1057. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1058. desc->raid_disk < mddev->raid_disks */) {
  1059. set_bit(In_sync, &rdev->flags);
  1060. rdev->raid_disk = desc->raid_disk;
  1061. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1062. /* active but not in sync implies recovery up to
  1063. * reshape position. We don't know exactly where
  1064. * that is, so set to zero for now */
  1065. if (mddev->minor_version >= 91) {
  1066. rdev->recovery_offset = 0;
  1067. rdev->raid_disk = desc->raid_disk;
  1068. }
  1069. }
  1070. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1071. set_bit(WriteMostly, &rdev->flags);
  1072. } else /* MULTIPATH are always insync */
  1073. set_bit(In_sync, &rdev->flags);
  1074. return 0;
  1075. }
  1076. /*
  1077. * sync_super for 0.90.0
  1078. */
  1079. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1080. {
  1081. mdp_super_t *sb;
  1082. struct md_rdev *rdev2;
  1083. int next_spare = mddev->raid_disks;
  1084. /* make rdev->sb match mddev data..
  1085. *
  1086. * 1/ zero out disks
  1087. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1088. * 3/ any empty disks < next_spare become removed
  1089. *
  1090. * disks[0] gets initialised to REMOVED because
  1091. * we cannot be sure from other fields if it has
  1092. * been initialised or not.
  1093. */
  1094. int i;
  1095. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1096. rdev->sb_size = MD_SB_BYTES;
  1097. sb = page_address(rdev->sb_page);
  1098. memset(sb, 0, sizeof(*sb));
  1099. sb->md_magic = MD_SB_MAGIC;
  1100. sb->major_version = mddev->major_version;
  1101. sb->patch_version = mddev->patch_version;
  1102. sb->gvalid_words = 0; /* ignored */
  1103. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1104. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1105. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1106. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1107. sb->ctime = mddev->ctime;
  1108. sb->level = mddev->level;
  1109. sb->size = mddev->dev_sectors / 2;
  1110. sb->raid_disks = mddev->raid_disks;
  1111. sb->md_minor = mddev->md_minor;
  1112. sb->not_persistent = 0;
  1113. sb->utime = mddev->utime;
  1114. sb->state = 0;
  1115. sb->events_hi = (mddev->events>>32);
  1116. sb->events_lo = (u32)mddev->events;
  1117. if (mddev->reshape_position == MaxSector)
  1118. sb->minor_version = 90;
  1119. else {
  1120. sb->minor_version = 91;
  1121. sb->reshape_position = mddev->reshape_position;
  1122. sb->new_level = mddev->new_level;
  1123. sb->delta_disks = mddev->delta_disks;
  1124. sb->new_layout = mddev->new_layout;
  1125. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1126. }
  1127. mddev->minor_version = sb->minor_version;
  1128. if (mddev->in_sync)
  1129. {
  1130. sb->recovery_cp = mddev->recovery_cp;
  1131. sb->cp_events_hi = (mddev->events>>32);
  1132. sb->cp_events_lo = (u32)mddev->events;
  1133. if (mddev->recovery_cp == MaxSector)
  1134. sb->state = (1<< MD_SB_CLEAN);
  1135. } else
  1136. sb->recovery_cp = 0;
  1137. sb->layout = mddev->layout;
  1138. sb->chunk_size = mddev->chunk_sectors << 9;
  1139. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1140. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1141. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1142. rdev_for_each(rdev2, mddev) {
  1143. mdp_disk_t *d;
  1144. int desc_nr;
  1145. int is_active = test_bit(In_sync, &rdev2->flags);
  1146. if (rdev2->raid_disk >= 0 &&
  1147. sb->minor_version >= 91)
  1148. /* we have nowhere to store the recovery_offset,
  1149. * but if it is not below the reshape_position,
  1150. * we can piggy-back on that.
  1151. */
  1152. is_active = 1;
  1153. if (rdev2->raid_disk < 0 ||
  1154. test_bit(Faulty, &rdev2->flags))
  1155. is_active = 0;
  1156. if (is_active)
  1157. desc_nr = rdev2->raid_disk;
  1158. else
  1159. desc_nr = next_spare++;
  1160. rdev2->desc_nr = desc_nr;
  1161. d = &sb->disks[rdev2->desc_nr];
  1162. nr_disks++;
  1163. d->number = rdev2->desc_nr;
  1164. d->major = MAJOR(rdev2->bdev->bd_dev);
  1165. d->minor = MINOR(rdev2->bdev->bd_dev);
  1166. if (is_active)
  1167. d->raid_disk = rdev2->raid_disk;
  1168. else
  1169. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1170. if (test_bit(Faulty, &rdev2->flags))
  1171. d->state = (1<<MD_DISK_FAULTY);
  1172. else if (is_active) {
  1173. d->state = (1<<MD_DISK_ACTIVE);
  1174. if (test_bit(In_sync, &rdev2->flags))
  1175. d->state |= (1<<MD_DISK_SYNC);
  1176. active++;
  1177. working++;
  1178. } else {
  1179. d->state = 0;
  1180. spare++;
  1181. working++;
  1182. }
  1183. if (test_bit(WriteMostly, &rdev2->flags))
  1184. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1185. }
  1186. /* now set the "removed" and "faulty" bits on any missing devices */
  1187. for (i=0 ; i < mddev->raid_disks ; i++) {
  1188. mdp_disk_t *d = &sb->disks[i];
  1189. if (d->state == 0 && d->number == 0) {
  1190. d->number = i;
  1191. d->raid_disk = i;
  1192. d->state = (1<<MD_DISK_REMOVED);
  1193. d->state |= (1<<MD_DISK_FAULTY);
  1194. failed++;
  1195. }
  1196. }
  1197. sb->nr_disks = nr_disks;
  1198. sb->active_disks = active;
  1199. sb->working_disks = working;
  1200. sb->failed_disks = failed;
  1201. sb->spare_disks = spare;
  1202. sb->this_disk = sb->disks[rdev->desc_nr];
  1203. sb->sb_csum = calc_sb_csum(sb);
  1204. }
  1205. /*
  1206. * rdev_size_change for 0.90.0
  1207. */
  1208. static unsigned long long
  1209. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1210. {
  1211. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1212. return 0; /* component must fit device */
  1213. if (rdev->mddev->bitmap_info.offset)
  1214. return 0; /* can't move bitmap */
  1215. rdev->sb_start = calc_dev_sboffset(rdev);
  1216. if (!num_sectors || num_sectors > rdev->sb_start)
  1217. num_sectors = rdev->sb_start;
  1218. /* Limit to 4TB as metadata cannot record more than that.
  1219. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1220. */
  1221. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1222. num_sectors = (2ULL << 32) - 2;
  1223. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1224. rdev->sb_page);
  1225. md_super_wait(rdev->mddev);
  1226. return num_sectors;
  1227. }
  1228. static int
  1229. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1230. {
  1231. /* non-zero offset changes not possible with v0.90 */
  1232. return new_offset == 0;
  1233. }
  1234. /*
  1235. * version 1 superblock
  1236. */
  1237. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1238. {
  1239. __le32 disk_csum;
  1240. u32 csum;
  1241. unsigned long long newcsum;
  1242. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1243. __le32 *isuper = (__le32*)sb;
  1244. disk_csum = sb->sb_csum;
  1245. sb->sb_csum = 0;
  1246. newcsum = 0;
  1247. for (; size >= 4; size -= 4)
  1248. newcsum += le32_to_cpu(*isuper++);
  1249. if (size == 2)
  1250. newcsum += le16_to_cpu(*(__le16*) isuper);
  1251. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1252. sb->sb_csum = disk_csum;
  1253. return cpu_to_le32(csum);
  1254. }
  1255. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1256. int acknowledged);
  1257. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1258. {
  1259. struct mdp_superblock_1 *sb;
  1260. int ret;
  1261. sector_t sb_start;
  1262. sector_t sectors;
  1263. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1264. int bmask;
  1265. /*
  1266. * Calculate the position of the superblock in 512byte sectors.
  1267. * It is always aligned to a 4K boundary and
  1268. * depeding on minor_version, it can be:
  1269. * 0: At least 8K, but less than 12K, from end of device
  1270. * 1: At start of device
  1271. * 2: 4K from start of device.
  1272. */
  1273. switch(minor_version) {
  1274. case 0:
  1275. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1276. sb_start -= 8*2;
  1277. sb_start &= ~(sector_t)(4*2-1);
  1278. break;
  1279. case 1:
  1280. sb_start = 0;
  1281. break;
  1282. case 2:
  1283. sb_start = 8;
  1284. break;
  1285. default:
  1286. return -EINVAL;
  1287. }
  1288. rdev->sb_start = sb_start;
  1289. /* superblock is rarely larger than 1K, but it can be larger,
  1290. * and it is safe to read 4k, so we do that
  1291. */
  1292. ret = read_disk_sb(rdev, 4096);
  1293. if (ret) return ret;
  1294. sb = page_address(rdev->sb_page);
  1295. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1296. sb->major_version != cpu_to_le32(1) ||
  1297. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1298. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1299. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1300. return -EINVAL;
  1301. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1302. printk("md: invalid superblock checksum on %s\n",
  1303. bdevname(rdev->bdev,b));
  1304. return -EINVAL;
  1305. }
  1306. if (le64_to_cpu(sb->data_size) < 10) {
  1307. printk("md: data_size too small on %s\n",
  1308. bdevname(rdev->bdev,b));
  1309. return -EINVAL;
  1310. }
  1311. if (sb->pad0 ||
  1312. sb->pad3[0] ||
  1313. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1314. /* Some padding is non-zero, might be a new feature */
  1315. return -EINVAL;
  1316. rdev->preferred_minor = 0xffff;
  1317. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1318. rdev->new_data_offset = rdev->data_offset;
  1319. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1320. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1321. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1322. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1323. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1324. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1325. if (rdev->sb_size & bmask)
  1326. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1327. if (minor_version
  1328. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1329. return -EINVAL;
  1330. if (minor_version
  1331. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1332. return -EINVAL;
  1333. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1334. rdev->desc_nr = -1;
  1335. else
  1336. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1337. if (!rdev->bb_page) {
  1338. rdev->bb_page = alloc_page(GFP_KERNEL);
  1339. if (!rdev->bb_page)
  1340. return -ENOMEM;
  1341. }
  1342. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1343. rdev->badblocks.count == 0) {
  1344. /* need to load the bad block list.
  1345. * Currently we limit it to one page.
  1346. */
  1347. s32 offset;
  1348. sector_t bb_sector;
  1349. u64 *bbp;
  1350. int i;
  1351. int sectors = le16_to_cpu(sb->bblog_size);
  1352. if (sectors > (PAGE_SIZE / 512))
  1353. return -EINVAL;
  1354. offset = le32_to_cpu(sb->bblog_offset);
  1355. if (offset == 0)
  1356. return -EINVAL;
  1357. bb_sector = (long long)offset;
  1358. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1359. rdev->bb_page, READ, true))
  1360. return -EIO;
  1361. bbp = (u64 *)page_address(rdev->bb_page);
  1362. rdev->badblocks.shift = sb->bblog_shift;
  1363. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1364. u64 bb = le64_to_cpu(*bbp);
  1365. int count = bb & (0x3ff);
  1366. u64 sector = bb >> 10;
  1367. sector <<= sb->bblog_shift;
  1368. count <<= sb->bblog_shift;
  1369. if (bb + 1 == 0)
  1370. break;
  1371. if (md_set_badblocks(&rdev->badblocks,
  1372. sector, count, 1) == 0)
  1373. return -EINVAL;
  1374. }
  1375. } else if (sb->bblog_offset == 0)
  1376. rdev->badblocks.shift = -1;
  1377. if (!refdev) {
  1378. ret = 1;
  1379. } else {
  1380. __u64 ev1, ev2;
  1381. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1382. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1383. sb->level != refsb->level ||
  1384. sb->layout != refsb->layout ||
  1385. sb->chunksize != refsb->chunksize) {
  1386. printk(KERN_WARNING "md: %s has strangely different"
  1387. " superblock to %s\n",
  1388. bdevname(rdev->bdev,b),
  1389. bdevname(refdev->bdev,b2));
  1390. return -EINVAL;
  1391. }
  1392. ev1 = le64_to_cpu(sb->events);
  1393. ev2 = le64_to_cpu(refsb->events);
  1394. if (ev1 > ev2)
  1395. ret = 1;
  1396. else
  1397. ret = 0;
  1398. }
  1399. if (minor_version) {
  1400. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1401. sectors -= rdev->data_offset;
  1402. } else
  1403. sectors = rdev->sb_start;
  1404. if (sectors < le64_to_cpu(sb->data_size))
  1405. return -EINVAL;
  1406. rdev->sectors = le64_to_cpu(sb->data_size);
  1407. return ret;
  1408. }
  1409. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1410. {
  1411. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1412. __u64 ev1 = le64_to_cpu(sb->events);
  1413. rdev->raid_disk = -1;
  1414. clear_bit(Faulty, &rdev->flags);
  1415. clear_bit(In_sync, &rdev->flags);
  1416. clear_bit(WriteMostly, &rdev->flags);
  1417. if (mddev->raid_disks == 0) {
  1418. mddev->major_version = 1;
  1419. mddev->patch_version = 0;
  1420. mddev->external = 0;
  1421. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1422. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1423. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1424. mddev->level = le32_to_cpu(sb->level);
  1425. mddev->clevel[0] = 0;
  1426. mddev->layout = le32_to_cpu(sb->layout);
  1427. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1428. mddev->dev_sectors = le64_to_cpu(sb->size);
  1429. mddev->events = ev1;
  1430. mddev->bitmap_info.offset = 0;
  1431. mddev->bitmap_info.space = 0;
  1432. /* Default location for bitmap is 1K after superblock
  1433. * using 3K - total of 4K
  1434. */
  1435. mddev->bitmap_info.default_offset = 1024 >> 9;
  1436. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1437. mddev->reshape_backwards = 0;
  1438. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1439. memcpy(mddev->uuid, sb->set_uuid, 16);
  1440. mddev->max_disks = (4096-256)/2;
  1441. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1442. mddev->bitmap_info.file == NULL) {
  1443. mddev->bitmap_info.offset =
  1444. (__s32)le32_to_cpu(sb->bitmap_offset);
  1445. /* Metadata doesn't record how much space is available.
  1446. * For 1.0, we assume we can use up to the superblock
  1447. * if before, else to 4K beyond superblock.
  1448. * For others, assume no change is possible.
  1449. */
  1450. if (mddev->minor_version > 0)
  1451. mddev->bitmap_info.space = 0;
  1452. else if (mddev->bitmap_info.offset > 0)
  1453. mddev->bitmap_info.space =
  1454. 8 - mddev->bitmap_info.offset;
  1455. else
  1456. mddev->bitmap_info.space =
  1457. -mddev->bitmap_info.offset;
  1458. }
  1459. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1460. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1461. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1462. mddev->new_level = le32_to_cpu(sb->new_level);
  1463. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1464. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1465. if (mddev->delta_disks < 0 ||
  1466. (mddev->delta_disks == 0 &&
  1467. (le32_to_cpu(sb->feature_map)
  1468. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1469. mddev->reshape_backwards = 1;
  1470. } else {
  1471. mddev->reshape_position = MaxSector;
  1472. mddev->delta_disks = 0;
  1473. mddev->new_level = mddev->level;
  1474. mddev->new_layout = mddev->layout;
  1475. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1476. }
  1477. } else if (mddev->pers == NULL) {
  1478. /* Insist of good event counter while assembling, except for
  1479. * spares (which don't need an event count) */
  1480. ++ev1;
  1481. if (rdev->desc_nr >= 0 &&
  1482. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1483. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1484. if (ev1 < mddev->events)
  1485. return -EINVAL;
  1486. } else if (mddev->bitmap) {
  1487. /* If adding to array with a bitmap, then we can accept an
  1488. * older device, but not too old.
  1489. */
  1490. if (ev1 < mddev->bitmap->events_cleared)
  1491. return 0;
  1492. } else {
  1493. if (ev1 < mddev->events)
  1494. /* just a hot-add of a new device, leave raid_disk at -1 */
  1495. return 0;
  1496. }
  1497. if (mddev->level != LEVEL_MULTIPATH) {
  1498. int role;
  1499. if (rdev->desc_nr < 0 ||
  1500. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1501. role = 0xffff;
  1502. rdev->desc_nr = -1;
  1503. } else
  1504. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1505. switch(role) {
  1506. case 0xffff: /* spare */
  1507. break;
  1508. case 0xfffe: /* faulty */
  1509. set_bit(Faulty, &rdev->flags);
  1510. break;
  1511. default:
  1512. if ((le32_to_cpu(sb->feature_map) &
  1513. MD_FEATURE_RECOVERY_OFFSET))
  1514. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1515. else
  1516. set_bit(In_sync, &rdev->flags);
  1517. rdev->raid_disk = role;
  1518. break;
  1519. }
  1520. if (sb->devflags & WriteMostly1)
  1521. set_bit(WriteMostly, &rdev->flags);
  1522. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1523. set_bit(Replacement, &rdev->flags);
  1524. } else /* MULTIPATH are always insync */
  1525. set_bit(In_sync, &rdev->flags);
  1526. return 0;
  1527. }
  1528. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1529. {
  1530. struct mdp_superblock_1 *sb;
  1531. struct md_rdev *rdev2;
  1532. int max_dev, i;
  1533. /* make rdev->sb match mddev and rdev data. */
  1534. sb = page_address(rdev->sb_page);
  1535. sb->feature_map = 0;
  1536. sb->pad0 = 0;
  1537. sb->recovery_offset = cpu_to_le64(0);
  1538. memset(sb->pad3, 0, sizeof(sb->pad3));
  1539. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1540. sb->events = cpu_to_le64(mddev->events);
  1541. if (mddev->in_sync)
  1542. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1543. else
  1544. sb->resync_offset = cpu_to_le64(0);
  1545. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1546. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1547. sb->size = cpu_to_le64(mddev->dev_sectors);
  1548. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1549. sb->level = cpu_to_le32(mddev->level);
  1550. sb->layout = cpu_to_le32(mddev->layout);
  1551. if (test_bit(WriteMostly, &rdev->flags))
  1552. sb->devflags |= WriteMostly1;
  1553. else
  1554. sb->devflags &= ~WriteMostly1;
  1555. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1556. sb->data_size = cpu_to_le64(rdev->sectors);
  1557. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1558. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1559. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1560. }
  1561. if (rdev->raid_disk >= 0 &&
  1562. !test_bit(In_sync, &rdev->flags)) {
  1563. sb->feature_map |=
  1564. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1565. sb->recovery_offset =
  1566. cpu_to_le64(rdev->recovery_offset);
  1567. }
  1568. if (test_bit(Replacement, &rdev->flags))
  1569. sb->feature_map |=
  1570. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1571. if (mddev->reshape_position != MaxSector) {
  1572. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1573. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1574. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1575. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1576. sb->new_level = cpu_to_le32(mddev->new_level);
  1577. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1578. if (mddev->delta_disks == 0 &&
  1579. mddev->reshape_backwards)
  1580. sb->feature_map
  1581. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1582. if (rdev->new_data_offset != rdev->data_offset) {
  1583. sb->feature_map
  1584. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1585. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1586. - rdev->data_offset));
  1587. }
  1588. }
  1589. if (rdev->badblocks.count == 0)
  1590. /* Nothing to do for bad blocks*/ ;
  1591. else if (sb->bblog_offset == 0)
  1592. /* Cannot record bad blocks on this device */
  1593. md_error(mddev, rdev);
  1594. else {
  1595. struct badblocks *bb = &rdev->badblocks;
  1596. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1597. u64 *p = bb->page;
  1598. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1599. if (bb->changed) {
  1600. unsigned seq;
  1601. retry:
  1602. seq = read_seqbegin(&bb->lock);
  1603. memset(bbp, 0xff, PAGE_SIZE);
  1604. for (i = 0 ; i < bb->count ; i++) {
  1605. u64 internal_bb = p[i];
  1606. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1607. | BB_LEN(internal_bb));
  1608. bbp[i] = cpu_to_le64(store_bb);
  1609. }
  1610. bb->changed = 0;
  1611. if (read_seqretry(&bb->lock, seq))
  1612. goto retry;
  1613. bb->sector = (rdev->sb_start +
  1614. (int)le32_to_cpu(sb->bblog_offset));
  1615. bb->size = le16_to_cpu(sb->bblog_size);
  1616. }
  1617. }
  1618. max_dev = 0;
  1619. rdev_for_each(rdev2, mddev)
  1620. if (rdev2->desc_nr+1 > max_dev)
  1621. max_dev = rdev2->desc_nr+1;
  1622. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1623. int bmask;
  1624. sb->max_dev = cpu_to_le32(max_dev);
  1625. rdev->sb_size = max_dev * 2 + 256;
  1626. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1627. if (rdev->sb_size & bmask)
  1628. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1629. } else
  1630. max_dev = le32_to_cpu(sb->max_dev);
  1631. for (i=0; i<max_dev;i++)
  1632. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1633. rdev_for_each(rdev2, mddev) {
  1634. i = rdev2->desc_nr;
  1635. if (test_bit(Faulty, &rdev2->flags))
  1636. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1637. else if (test_bit(In_sync, &rdev2->flags))
  1638. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1639. else if (rdev2->raid_disk >= 0)
  1640. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1641. else
  1642. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1643. }
  1644. sb->sb_csum = calc_sb_1_csum(sb);
  1645. }
  1646. static unsigned long long
  1647. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1648. {
  1649. struct mdp_superblock_1 *sb;
  1650. sector_t max_sectors;
  1651. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1652. return 0; /* component must fit device */
  1653. if (rdev->data_offset != rdev->new_data_offset)
  1654. return 0; /* too confusing */
  1655. if (rdev->sb_start < rdev->data_offset) {
  1656. /* minor versions 1 and 2; superblock before data */
  1657. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1658. max_sectors -= rdev->data_offset;
  1659. if (!num_sectors || num_sectors > max_sectors)
  1660. num_sectors = max_sectors;
  1661. } else if (rdev->mddev->bitmap_info.offset) {
  1662. /* minor version 0 with bitmap we can't move */
  1663. return 0;
  1664. } else {
  1665. /* minor version 0; superblock after data */
  1666. sector_t sb_start;
  1667. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1668. sb_start &= ~(sector_t)(4*2 - 1);
  1669. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1670. if (!num_sectors || num_sectors > max_sectors)
  1671. num_sectors = max_sectors;
  1672. rdev->sb_start = sb_start;
  1673. }
  1674. sb = page_address(rdev->sb_page);
  1675. sb->data_size = cpu_to_le64(num_sectors);
  1676. sb->super_offset = rdev->sb_start;
  1677. sb->sb_csum = calc_sb_1_csum(sb);
  1678. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1679. rdev->sb_page);
  1680. md_super_wait(rdev->mddev);
  1681. return num_sectors;
  1682. }
  1683. static int
  1684. super_1_allow_new_offset(struct md_rdev *rdev,
  1685. unsigned long long new_offset)
  1686. {
  1687. /* All necessary checks on new >= old have been done */
  1688. struct bitmap *bitmap;
  1689. if (new_offset >= rdev->data_offset)
  1690. return 1;
  1691. /* with 1.0 metadata, there is no metadata to tread on
  1692. * so we can always move back */
  1693. if (rdev->mddev->minor_version == 0)
  1694. return 1;
  1695. /* otherwise we must be sure not to step on
  1696. * any metadata, so stay:
  1697. * 36K beyond start of superblock
  1698. * beyond end of badblocks
  1699. * beyond write-intent bitmap
  1700. */
  1701. if (rdev->sb_start + (32+4)*2 > new_offset)
  1702. return 0;
  1703. bitmap = rdev->mddev->bitmap;
  1704. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1705. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1706. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1707. return 0;
  1708. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1709. return 0;
  1710. return 1;
  1711. }
  1712. static struct super_type super_types[] = {
  1713. [0] = {
  1714. .name = "0.90.0",
  1715. .owner = THIS_MODULE,
  1716. .load_super = super_90_load,
  1717. .validate_super = super_90_validate,
  1718. .sync_super = super_90_sync,
  1719. .rdev_size_change = super_90_rdev_size_change,
  1720. .allow_new_offset = super_90_allow_new_offset,
  1721. },
  1722. [1] = {
  1723. .name = "md-1",
  1724. .owner = THIS_MODULE,
  1725. .load_super = super_1_load,
  1726. .validate_super = super_1_validate,
  1727. .sync_super = super_1_sync,
  1728. .rdev_size_change = super_1_rdev_size_change,
  1729. .allow_new_offset = super_1_allow_new_offset,
  1730. },
  1731. };
  1732. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1733. {
  1734. if (mddev->sync_super) {
  1735. mddev->sync_super(mddev, rdev);
  1736. return;
  1737. }
  1738. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1739. super_types[mddev->major_version].sync_super(mddev, rdev);
  1740. }
  1741. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1742. {
  1743. struct md_rdev *rdev, *rdev2;
  1744. rcu_read_lock();
  1745. rdev_for_each_rcu(rdev, mddev1)
  1746. rdev_for_each_rcu(rdev2, mddev2)
  1747. if (rdev->bdev->bd_contains ==
  1748. rdev2->bdev->bd_contains) {
  1749. rcu_read_unlock();
  1750. return 1;
  1751. }
  1752. rcu_read_unlock();
  1753. return 0;
  1754. }
  1755. static LIST_HEAD(pending_raid_disks);
  1756. /*
  1757. * Try to register data integrity profile for an mddev
  1758. *
  1759. * This is called when an array is started and after a disk has been kicked
  1760. * from the array. It only succeeds if all working and active component devices
  1761. * are integrity capable with matching profiles.
  1762. */
  1763. int md_integrity_register(struct mddev *mddev)
  1764. {
  1765. struct md_rdev *rdev, *reference = NULL;
  1766. if (list_empty(&mddev->disks))
  1767. return 0; /* nothing to do */
  1768. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1769. return 0; /* shouldn't register, or already is */
  1770. rdev_for_each(rdev, mddev) {
  1771. /* skip spares and non-functional disks */
  1772. if (test_bit(Faulty, &rdev->flags))
  1773. continue;
  1774. if (rdev->raid_disk < 0)
  1775. continue;
  1776. if (!reference) {
  1777. /* Use the first rdev as the reference */
  1778. reference = rdev;
  1779. continue;
  1780. }
  1781. /* does this rdev's profile match the reference profile? */
  1782. if (blk_integrity_compare(reference->bdev->bd_disk,
  1783. rdev->bdev->bd_disk) < 0)
  1784. return -EINVAL;
  1785. }
  1786. if (!reference || !bdev_get_integrity(reference->bdev))
  1787. return 0;
  1788. /*
  1789. * All component devices are integrity capable and have matching
  1790. * profiles, register the common profile for the md device.
  1791. */
  1792. if (blk_integrity_register(mddev->gendisk,
  1793. bdev_get_integrity(reference->bdev)) != 0) {
  1794. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1795. mdname(mddev));
  1796. return -EINVAL;
  1797. }
  1798. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1799. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1800. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1801. mdname(mddev));
  1802. return -EINVAL;
  1803. }
  1804. return 0;
  1805. }
  1806. EXPORT_SYMBOL(md_integrity_register);
  1807. /* Disable data integrity if non-capable/non-matching disk is being added */
  1808. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1809. {
  1810. struct blk_integrity *bi_rdev;
  1811. struct blk_integrity *bi_mddev;
  1812. if (!mddev->gendisk)
  1813. return;
  1814. bi_rdev = bdev_get_integrity(rdev->bdev);
  1815. bi_mddev = blk_get_integrity(mddev->gendisk);
  1816. if (!bi_mddev) /* nothing to do */
  1817. return;
  1818. if (rdev->raid_disk < 0) /* skip spares */
  1819. return;
  1820. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1821. rdev->bdev->bd_disk) >= 0)
  1822. return;
  1823. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1824. blk_integrity_unregister(mddev->gendisk);
  1825. }
  1826. EXPORT_SYMBOL(md_integrity_add_rdev);
  1827. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1828. {
  1829. char b[BDEVNAME_SIZE];
  1830. struct kobject *ko;
  1831. char *s;
  1832. int err;
  1833. if (rdev->mddev) {
  1834. MD_BUG();
  1835. return -EINVAL;
  1836. }
  1837. /* prevent duplicates */
  1838. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1839. return -EEXIST;
  1840. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1841. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1842. rdev->sectors < mddev->dev_sectors)) {
  1843. if (mddev->pers) {
  1844. /* Cannot change size, so fail
  1845. * If mddev->level <= 0, then we don't care
  1846. * about aligning sizes (e.g. linear)
  1847. */
  1848. if (mddev->level > 0)
  1849. return -ENOSPC;
  1850. } else
  1851. mddev->dev_sectors = rdev->sectors;
  1852. }
  1853. /* Verify rdev->desc_nr is unique.
  1854. * If it is -1, assign a free number, else
  1855. * check number is not in use
  1856. */
  1857. if (rdev->desc_nr < 0) {
  1858. int choice = 0;
  1859. if (mddev->pers) choice = mddev->raid_disks;
  1860. while (find_rdev_nr(mddev, choice))
  1861. choice++;
  1862. rdev->desc_nr = choice;
  1863. } else {
  1864. if (find_rdev_nr(mddev, rdev->desc_nr))
  1865. return -EBUSY;
  1866. }
  1867. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1868. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1869. mdname(mddev), mddev->max_disks);
  1870. return -EBUSY;
  1871. }
  1872. bdevname(rdev->bdev,b);
  1873. while ( (s=strchr(b, '/')) != NULL)
  1874. *s = '!';
  1875. rdev->mddev = mddev;
  1876. printk(KERN_INFO "md: bind<%s>\n", b);
  1877. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1878. goto fail;
  1879. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1880. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1881. /* failure here is OK */;
  1882. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1883. list_add_rcu(&rdev->same_set, &mddev->disks);
  1884. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1885. /* May as well allow recovery to be retried once */
  1886. mddev->recovery_disabled++;
  1887. return 0;
  1888. fail:
  1889. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1890. b, mdname(mddev));
  1891. return err;
  1892. }
  1893. static void md_delayed_delete(struct work_struct *ws)
  1894. {
  1895. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1896. kobject_del(&rdev->kobj);
  1897. kobject_put(&rdev->kobj);
  1898. }
  1899. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1900. {
  1901. char b[BDEVNAME_SIZE];
  1902. if (!rdev->mddev) {
  1903. MD_BUG();
  1904. return;
  1905. }
  1906. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1907. list_del_rcu(&rdev->same_set);
  1908. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1909. rdev->mddev = NULL;
  1910. sysfs_remove_link(&rdev->kobj, "block");
  1911. sysfs_put(rdev->sysfs_state);
  1912. rdev->sysfs_state = NULL;
  1913. rdev->badblocks.count = 0;
  1914. /* We need to delay this, otherwise we can deadlock when
  1915. * writing to 'remove' to "dev/state". We also need
  1916. * to delay it due to rcu usage.
  1917. */
  1918. synchronize_rcu();
  1919. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1920. kobject_get(&rdev->kobj);
  1921. queue_work(md_misc_wq, &rdev->del_work);
  1922. }
  1923. /*
  1924. * prevent the device from being mounted, repartitioned or
  1925. * otherwise reused by a RAID array (or any other kernel
  1926. * subsystem), by bd_claiming the device.
  1927. */
  1928. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1929. {
  1930. int err = 0;
  1931. struct block_device *bdev;
  1932. char b[BDEVNAME_SIZE];
  1933. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1934. shared ? (struct md_rdev *)lock_rdev : rdev);
  1935. if (IS_ERR(bdev)) {
  1936. printk(KERN_ERR "md: could not open %s.\n",
  1937. __bdevname(dev, b));
  1938. return PTR_ERR(bdev);
  1939. }
  1940. rdev->bdev = bdev;
  1941. return err;
  1942. }
  1943. static void unlock_rdev(struct md_rdev *rdev)
  1944. {
  1945. struct block_device *bdev = rdev->bdev;
  1946. rdev->bdev = NULL;
  1947. if (!bdev)
  1948. MD_BUG();
  1949. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1950. }
  1951. void md_autodetect_dev(dev_t dev);
  1952. static void export_rdev(struct md_rdev * rdev)
  1953. {
  1954. char b[BDEVNAME_SIZE];
  1955. printk(KERN_INFO "md: export_rdev(%s)\n",
  1956. bdevname(rdev->bdev,b));
  1957. if (rdev->mddev)
  1958. MD_BUG();
  1959. md_rdev_clear(rdev);
  1960. #ifndef MODULE
  1961. if (test_bit(AutoDetected, &rdev->flags))
  1962. md_autodetect_dev(rdev->bdev->bd_dev);
  1963. #endif
  1964. unlock_rdev(rdev);
  1965. kobject_put(&rdev->kobj);
  1966. }
  1967. static void kick_rdev_from_array(struct md_rdev * rdev)
  1968. {
  1969. unbind_rdev_from_array(rdev);
  1970. export_rdev(rdev);
  1971. }
  1972. static void export_array(struct mddev *mddev)
  1973. {
  1974. struct md_rdev *rdev, *tmp;
  1975. rdev_for_each_safe(rdev, tmp, mddev) {
  1976. if (!rdev->mddev) {
  1977. MD_BUG();
  1978. continue;
  1979. }
  1980. kick_rdev_from_array(rdev);
  1981. }
  1982. if (!list_empty(&mddev->disks))
  1983. MD_BUG();
  1984. mddev->raid_disks = 0;
  1985. mddev->major_version = 0;
  1986. }
  1987. static void print_desc(mdp_disk_t *desc)
  1988. {
  1989. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1990. desc->major,desc->minor,desc->raid_disk,desc->state);
  1991. }
  1992. static void print_sb_90(mdp_super_t *sb)
  1993. {
  1994. int i;
  1995. printk(KERN_INFO
  1996. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1997. sb->major_version, sb->minor_version, sb->patch_version,
  1998. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1999. sb->ctime);
  2000. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  2001. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  2002. sb->md_minor, sb->layout, sb->chunk_size);
  2003. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2004. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2005. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2006. sb->failed_disks, sb->spare_disks,
  2007. sb->sb_csum, (unsigned long)sb->events_lo);
  2008. printk(KERN_INFO);
  2009. for (i = 0; i < MD_SB_DISKS; i++) {
  2010. mdp_disk_t *desc;
  2011. desc = sb->disks + i;
  2012. if (desc->number || desc->major || desc->minor ||
  2013. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2014. printk(" D %2d: ", i);
  2015. print_desc(desc);
  2016. }
  2017. }
  2018. printk(KERN_INFO "md: THIS: ");
  2019. print_desc(&sb->this_disk);
  2020. }
  2021. static void print_sb_1(struct mdp_superblock_1 *sb)
  2022. {
  2023. __u8 *uuid;
  2024. uuid = sb->set_uuid;
  2025. printk(KERN_INFO
  2026. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2027. "md: Name: \"%s\" CT:%llu\n",
  2028. le32_to_cpu(sb->major_version),
  2029. le32_to_cpu(sb->feature_map),
  2030. uuid,
  2031. sb->set_name,
  2032. (unsigned long long)le64_to_cpu(sb->ctime)
  2033. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2034. uuid = sb->device_uuid;
  2035. printk(KERN_INFO
  2036. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2037. " RO:%llu\n"
  2038. "md: Dev:%08x UUID: %pU\n"
  2039. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2040. "md: (MaxDev:%u) \n",
  2041. le32_to_cpu(sb->level),
  2042. (unsigned long long)le64_to_cpu(sb->size),
  2043. le32_to_cpu(sb->raid_disks),
  2044. le32_to_cpu(sb->layout),
  2045. le32_to_cpu(sb->chunksize),
  2046. (unsigned long long)le64_to_cpu(sb->data_offset),
  2047. (unsigned long long)le64_to_cpu(sb->data_size),
  2048. (unsigned long long)le64_to_cpu(sb->super_offset),
  2049. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2050. le32_to_cpu(sb->dev_number),
  2051. uuid,
  2052. sb->devflags,
  2053. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2054. (unsigned long long)le64_to_cpu(sb->events),
  2055. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2056. le32_to_cpu(sb->sb_csum),
  2057. le32_to_cpu(sb->max_dev)
  2058. );
  2059. }
  2060. static void print_rdev(struct md_rdev *rdev, int major_version)
  2061. {
  2062. char b[BDEVNAME_SIZE];
  2063. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2064. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2065. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2066. rdev->desc_nr);
  2067. if (rdev->sb_loaded) {
  2068. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2069. switch (major_version) {
  2070. case 0:
  2071. print_sb_90(page_address(rdev->sb_page));
  2072. break;
  2073. case 1:
  2074. print_sb_1(page_address(rdev->sb_page));
  2075. break;
  2076. }
  2077. } else
  2078. printk(KERN_INFO "md: no rdev superblock!\n");
  2079. }
  2080. static void md_print_devices(void)
  2081. {
  2082. struct list_head *tmp;
  2083. struct md_rdev *rdev;
  2084. struct mddev *mddev;
  2085. char b[BDEVNAME_SIZE];
  2086. printk("\n");
  2087. printk("md: **********************************\n");
  2088. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2089. printk("md: **********************************\n");
  2090. for_each_mddev(mddev, tmp) {
  2091. if (mddev->bitmap)
  2092. bitmap_print_sb(mddev->bitmap);
  2093. else
  2094. printk("%s: ", mdname(mddev));
  2095. rdev_for_each(rdev, mddev)
  2096. printk("<%s>", bdevname(rdev->bdev,b));
  2097. printk("\n");
  2098. rdev_for_each(rdev, mddev)
  2099. print_rdev(rdev, mddev->major_version);
  2100. }
  2101. printk("md: **********************************\n");
  2102. printk("\n");
  2103. }
  2104. static void sync_sbs(struct mddev * mddev, int nospares)
  2105. {
  2106. /* Update each superblock (in-memory image), but
  2107. * if we are allowed to, skip spares which already
  2108. * have the right event counter, or have one earlier
  2109. * (which would mean they aren't being marked as dirty
  2110. * with the rest of the array)
  2111. */
  2112. struct md_rdev *rdev;
  2113. rdev_for_each(rdev, mddev) {
  2114. if (rdev->sb_events == mddev->events ||
  2115. (nospares &&
  2116. rdev->raid_disk < 0 &&
  2117. rdev->sb_events+1 == mddev->events)) {
  2118. /* Don't update this superblock */
  2119. rdev->sb_loaded = 2;
  2120. } else {
  2121. sync_super(mddev, rdev);
  2122. rdev->sb_loaded = 1;
  2123. }
  2124. }
  2125. }
  2126. static void md_update_sb(struct mddev * mddev, int force_change)
  2127. {
  2128. struct md_rdev *rdev;
  2129. int sync_req;
  2130. int nospares = 0;
  2131. int any_badblocks_changed = 0;
  2132. if (mddev->ro) {
  2133. if (force_change)
  2134. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2135. return;
  2136. }
  2137. repeat:
  2138. /* First make sure individual recovery_offsets are correct */
  2139. rdev_for_each(rdev, mddev) {
  2140. if (rdev->raid_disk >= 0 &&
  2141. mddev->delta_disks >= 0 &&
  2142. !test_bit(In_sync, &rdev->flags) &&
  2143. mddev->curr_resync_completed > rdev->recovery_offset)
  2144. rdev->recovery_offset = mddev->curr_resync_completed;
  2145. }
  2146. if (!mddev->persistent) {
  2147. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2148. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2149. if (!mddev->external) {
  2150. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2151. rdev_for_each(rdev, mddev) {
  2152. if (rdev->badblocks.changed) {
  2153. rdev->badblocks.changed = 0;
  2154. md_ack_all_badblocks(&rdev->badblocks);
  2155. md_error(mddev, rdev);
  2156. }
  2157. clear_bit(Blocked, &rdev->flags);
  2158. clear_bit(BlockedBadBlocks, &rdev->flags);
  2159. wake_up(&rdev->blocked_wait);
  2160. }
  2161. }
  2162. wake_up(&mddev->sb_wait);
  2163. return;
  2164. }
  2165. spin_lock_irq(&mddev->write_lock);
  2166. mddev->utime = get_seconds();
  2167. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2168. force_change = 1;
  2169. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2170. /* just a clean<-> dirty transition, possibly leave spares alone,
  2171. * though if events isn't the right even/odd, we will have to do
  2172. * spares after all
  2173. */
  2174. nospares = 1;
  2175. if (force_change)
  2176. nospares = 0;
  2177. if (mddev->degraded)
  2178. /* If the array is degraded, then skipping spares is both
  2179. * dangerous and fairly pointless.
  2180. * Dangerous because a device that was removed from the array
  2181. * might have a event_count that still looks up-to-date,
  2182. * so it can be re-added without a resync.
  2183. * Pointless because if there are any spares to skip,
  2184. * then a recovery will happen and soon that array won't
  2185. * be degraded any more and the spare can go back to sleep then.
  2186. */
  2187. nospares = 0;
  2188. sync_req = mddev->in_sync;
  2189. /* If this is just a dirty<->clean transition, and the array is clean
  2190. * and 'events' is odd, we can roll back to the previous clean state */
  2191. if (nospares
  2192. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2193. && mddev->can_decrease_events
  2194. && mddev->events != 1) {
  2195. mddev->events--;
  2196. mddev->can_decrease_events = 0;
  2197. } else {
  2198. /* otherwise we have to go forward and ... */
  2199. mddev->events ++;
  2200. mddev->can_decrease_events = nospares;
  2201. }
  2202. if (!mddev->events) {
  2203. /*
  2204. * oops, this 64-bit counter should never wrap.
  2205. * Either we are in around ~1 trillion A.C., assuming
  2206. * 1 reboot per second, or we have a bug:
  2207. */
  2208. MD_BUG();
  2209. mddev->events --;
  2210. }
  2211. rdev_for_each(rdev, mddev) {
  2212. if (rdev->badblocks.changed)
  2213. any_badblocks_changed++;
  2214. if (test_bit(Faulty, &rdev->flags))
  2215. set_bit(FaultRecorded, &rdev->flags);
  2216. }
  2217. sync_sbs(mddev, nospares);
  2218. spin_unlock_irq(&mddev->write_lock);
  2219. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2220. mdname(mddev), mddev->in_sync);
  2221. bitmap_update_sb(mddev->bitmap);
  2222. rdev_for_each(rdev, mddev) {
  2223. char b[BDEVNAME_SIZE];
  2224. if (rdev->sb_loaded != 1)
  2225. continue; /* no noise on spare devices */
  2226. if (!test_bit(Faulty, &rdev->flags) &&
  2227. rdev->saved_raid_disk == -1) {
  2228. md_super_write(mddev,rdev,
  2229. rdev->sb_start, rdev->sb_size,
  2230. rdev->sb_page);
  2231. pr_debug("md: (write) %s's sb offset: %llu\n",
  2232. bdevname(rdev->bdev, b),
  2233. (unsigned long long)rdev->sb_start);
  2234. rdev->sb_events = mddev->events;
  2235. if (rdev->badblocks.size) {
  2236. md_super_write(mddev, rdev,
  2237. rdev->badblocks.sector,
  2238. rdev->badblocks.size << 9,
  2239. rdev->bb_page);
  2240. rdev->badblocks.size = 0;
  2241. }
  2242. } else if (test_bit(Faulty, &rdev->flags))
  2243. pr_debug("md: %s (skipping faulty)\n",
  2244. bdevname(rdev->bdev, b));
  2245. else
  2246. pr_debug("(skipping incremental s/r ");
  2247. if (mddev->level == LEVEL_MULTIPATH)
  2248. /* only need to write one superblock... */
  2249. break;
  2250. }
  2251. md_super_wait(mddev);
  2252. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2253. spin_lock_irq(&mddev->write_lock);
  2254. if (mddev->in_sync != sync_req ||
  2255. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2256. /* have to write it out again */
  2257. spin_unlock_irq(&mddev->write_lock);
  2258. goto repeat;
  2259. }
  2260. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2261. spin_unlock_irq(&mddev->write_lock);
  2262. wake_up(&mddev->sb_wait);
  2263. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2264. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2265. rdev_for_each(rdev, mddev) {
  2266. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2267. clear_bit(Blocked, &rdev->flags);
  2268. if (any_badblocks_changed)
  2269. md_ack_all_badblocks(&rdev->badblocks);
  2270. clear_bit(BlockedBadBlocks, &rdev->flags);
  2271. wake_up(&rdev->blocked_wait);
  2272. }
  2273. }
  2274. /* words written to sysfs files may, or may not, be \n terminated.
  2275. * We want to accept with case. For this we use cmd_match.
  2276. */
  2277. static int cmd_match(const char *cmd, const char *str)
  2278. {
  2279. /* See if cmd, written into a sysfs file, matches
  2280. * str. They must either be the same, or cmd can
  2281. * have a trailing newline
  2282. */
  2283. while (*cmd && *str && *cmd == *str) {
  2284. cmd++;
  2285. str++;
  2286. }
  2287. if (*cmd == '\n')
  2288. cmd++;
  2289. if (*str || *cmd)
  2290. return 0;
  2291. return 1;
  2292. }
  2293. struct rdev_sysfs_entry {
  2294. struct attribute attr;
  2295. ssize_t (*show)(struct md_rdev *, char *);
  2296. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2297. };
  2298. static ssize_t
  2299. state_show(struct md_rdev *rdev, char *page)
  2300. {
  2301. char *sep = "";
  2302. size_t len = 0;
  2303. if (test_bit(Faulty, &rdev->flags) ||
  2304. rdev->badblocks.unacked_exist) {
  2305. len+= sprintf(page+len, "%sfaulty",sep);
  2306. sep = ",";
  2307. }
  2308. if (test_bit(In_sync, &rdev->flags)) {
  2309. len += sprintf(page+len, "%sin_sync",sep);
  2310. sep = ",";
  2311. }
  2312. if (test_bit(WriteMostly, &rdev->flags)) {
  2313. len += sprintf(page+len, "%swrite_mostly",sep);
  2314. sep = ",";
  2315. }
  2316. if (test_bit(Blocked, &rdev->flags) ||
  2317. (rdev->badblocks.unacked_exist
  2318. && !test_bit(Faulty, &rdev->flags))) {
  2319. len += sprintf(page+len, "%sblocked", sep);
  2320. sep = ",";
  2321. }
  2322. if (!test_bit(Faulty, &rdev->flags) &&
  2323. !test_bit(In_sync, &rdev->flags)) {
  2324. len += sprintf(page+len, "%sspare", sep);
  2325. sep = ",";
  2326. }
  2327. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2328. len += sprintf(page+len, "%swrite_error", sep);
  2329. sep = ",";
  2330. }
  2331. if (test_bit(WantReplacement, &rdev->flags)) {
  2332. len += sprintf(page+len, "%swant_replacement", sep);
  2333. sep = ",";
  2334. }
  2335. if (test_bit(Replacement, &rdev->flags)) {
  2336. len += sprintf(page+len, "%sreplacement", sep);
  2337. sep = ",";
  2338. }
  2339. return len+sprintf(page+len, "\n");
  2340. }
  2341. static ssize_t
  2342. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2343. {
  2344. /* can write
  2345. * faulty - simulates an error
  2346. * remove - disconnects the device
  2347. * writemostly - sets write_mostly
  2348. * -writemostly - clears write_mostly
  2349. * blocked - sets the Blocked flags
  2350. * -blocked - clears the Blocked and possibly simulates an error
  2351. * insync - sets Insync providing device isn't active
  2352. * write_error - sets WriteErrorSeen
  2353. * -write_error - clears WriteErrorSeen
  2354. */
  2355. int err = -EINVAL;
  2356. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2357. md_error(rdev->mddev, rdev);
  2358. if (test_bit(Faulty, &rdev->flags))
  2359. err = 0;
  2360. else
  2361. err = -EBUSY;
  2362. } else if (cmd_match(buf, "remove")) {
  2363. if (rdev->raid_disk >= 0)
  2364. err = -EBUSY;
  2365. else {
  2366. struct mddev *mddev = rdev->mddev;
  2367. kick_rdev_from_array(rdev);
  2368. if (mddev->pers)
  2369. md_update_sb(mddev, 1);
  2370. md_new_event(mddev);
  2371. err = 0;
  2372. }
  2373. } else if (cmd_match(buf, "writemostly")) {
  2374. set_bit(WriteMostly, &rdev->flags);
  2375. err = 0;
  2376. } else if (cmd_match(buf, "-writemostly")) {
  2377. clear_bit(WriteMostly, &rdev->flags);
  2378. err = 0;
  2379. } else if (cmd_match(buf, "blocked")) {
  2380. set_bit(Blocked, &rdev->flags);
  2381. err = 0;
  2382. } else if (cmd_match(buf, "-blocked")) {
  2383. if (!test_bit(Faulty, &rdev->flags) &&
  2384. rdev->badblocks.unacked_exist) {
  2385. /* metadata handler doesn't understand badblocks,
  2386. * so we need to fail the device
  2387. */
  2388. md_error(rdev->mddev, rdev);
  2389. }
  2390. clear_bit(Blocked, &rdev->flags);
  2391. clear_bit(BlockedBadBlocks, &rdev->flags);
  2392. wake_up(&rdev->blocked_wait);
  2393. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2394. md_wakeup_thread(rdev->mddev->thread);
  2395. err = 0;
  2396. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2397. set_bit(In_sync, &rdev->flags);
  2398. err = 0;
  2399. } else if (cmd_match(buf, "write_error")) {
  2400. set_bit(WriteErrorSeen, &rdev->flags);
  2401. err = 0;
  2402. } else if (cmd_match(buf, "-write_error")) {
  2403. clear_bit(WriteErrorSeen, &rdev->flags);
  2404. err = 0;
  2405. } else if (cmd_match(buf, "want_replacement")) {
  2406. /* Any non-spare device that is not a replacement can
  2407. * become want_replacement at any time, but we then need to
  2408. * check if recovery is needed.
  2409. */
  2410. if (rdev->raid_disk >= 0 &&
  2411. !test_bit(Replacement, &rdev->flags))
  2412. set_bit(WantReplacement, &rdev->flags);
  2413. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2414. md_wakeup_thread(rdev->mddev->thread);
  2415. err = 0;
  2416. } else if (cmd_match(buf, "-want_replacement")) {
  2417. /* Clearing 'want_replacement' is always allowed.
  2418. * Once replacements starts it is too late though.
  2419. */
  2420. err = 0;
  2421. clear_bit(WantReplacement, &rdev->flags);
  2422. } else if (cmd_match(buf, "replacement")) {
  2423. /* Can only set a device as a replacement when array has not
  2424. * yet been started. Once running, replacement is automatic
  2425. * from spares, or by assigning 'slot'.
  2426. */
  2427. if (rdev->mddev->pers)
  2428. err = -EBUSY;
  2429. else {
  2430. set_bit(Replacement, &rdev->flags);
  2431. err = 0;
  2432. }
  2433. } else if (cmd_match(buf, "-replacement")) {
  2434. /* Similarly, can only clear Replacement before start */
  2435. if (rdev->mddev->pers)
  2436. err = -EBUSY;
  2437. else {
  2438. clear_bit(Replacement, &rdev->flags);
  2439. err = 0;
  2440. }
  2441. }
  2442. if (!err)
  2443. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2444. return err ? err : len;
  2445. }
  2446. static struct rdev_sysfs_entry rdev_state =
  2447. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2448. static ssize_t
  2449. errors_show(struct md_rdev *rdev, char *page)
  2450. {
  2451. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2452. }
  2453. static ssize_t
  2454. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2455. {
  2456. char *e;
  2457. unsigned long n = simple_strtoul(buf, &e, 10);
  2458. if (*buf && (*e == 0 || *e == '\n')) {
  2459. atomic_set(&rdev->corrected_errors, n);
  2460. return len;
  2461. }
  2462. return -EINVAL;
  2463. }
  2464. static struct rdev_sysfs_entry rdev_errors =
  2465. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2466. static ssize_t
  2467. slot_show(struct md_rdev *rdev, char *page)
  2468. {
  2469. if (rdev->raid_disk < 0)
  2470. return sprintf(page, "none\n");
  2471. else
  2472. return sprintf(page, "%d\n", rdev->raid_disk);
  2473. }
  2474. static ssize_t
  2475. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2476. {
  2477. char *e;
  2478. int err;
  2479. int slot = simple_strtoul(buf, &e, 10);
  2480. if (strncmp(buf, "none", 4)==0)
  2481. slot = -1;
  2482. else if (e==buf || (*e && *e!= '\n'))
  2483. return -EINVAL;
  2484. if (rdev->mddev->pers && slot == -1) {
  2485. /* Setting 'slot' on an active array requires also
  2486. * updating the 'rd%d' link, and communicating
  2487. * with the personality with ->hot_*_disk.
  2488. * For now we only support removing
  2489. * failed/spare devices. This normally happens automatically,
  2490. * but not when the metadata is externally managed.
  2491. */
  2492. if (rdev->raid_disk == -1)
  2493. return -EEXIST;
  2494. /* personality does all needed checks */
  2495. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2496. return -EINVAL;
  2497. clear_bit(Blocked, &rdev->flags);
  2498. remove_and_add_spares(rdev->mddev, rdev);
  2499. if (rdev->raid_disk >= 0)
  2500. return -EBUSY;
  2501. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2502. md_wakeup_thread(rdev->mddev->thread);
  2503. } else if (rdev->mddev->pers) {
  2504. /* Activating a spare .. or possibly reactivating
  2505. * if we ever get bitmaps working here.
  2506. */
  2507. if (rdev->raid_disk != -1)
  2508. return -EBUSY;
  2509. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2510. return -EBUSY;
  2511. if (rdev->mddev->pers->hot_add_disk == NULL)
  2512. return -EINVAL;
  2513. if (slot >= rdev->mddev->raid_disks &&
  2514. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2515. return -ENOSPC;
  2516. rdev->raid_disk = slot;
  2517. if (test_bit(In_sync, &rdev->flags))
  2518. rdev->saved_raid_disk = slot;
  2519. else
  2520. rdev->saved_raid_disk = -1;
  2521. clear_bit(In_sync, &rdev->flags);
  2522. err = rdev->mddev->pers->
  2523. hot_add_disk(rdev->mddev, rdev);
  2524. if (err) {
  2525. rdev->raid_disk = -1;
  2526. return err;
  2527. } else
  2528. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2529. if (sysfs_link_rdev(rdev->mddev, rdev))
  2530. /* failure here is OK */;
  2531. /* don't wakeup anyone, leave that to userspace. */
  2532. } else {
  2533. if (slot >= rdev->mddev->raid_disks &&
  2534. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2535. return -ENOSPC;
  2536. rdev->raid_disk = slot;
  2537. /* assume it is working */
  2538. clear_bit(Faulty, &rdev->flags);
  2539. clear_bit(WriteMostly, &rdev->flags);
  2540. set_bit(In_sync, &rdev->flags);
  2541. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2542. }
  2543. return len;
  2544. }
  2545. static struct rdev_sysfs_entry rdev_slot =
  2546. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2547. static ssize_t
  2548. offset_show(struct md_rdev *rdev, char *page)
  2549. {
  2550. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2551. }
  2552. static ssize_t
  2553. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2554. {
  2555. unsigned long long offset;
  2556. if (strict_strtoull(buf, 10, &offset) < 0)
  2557. return -EINVAL;
  2558. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2559. return -EBUSY;
  2560. if (rdev->sectors && rdev->mddev->external)
  2561. /* Must set offset before size, so overlap checks
  2562. * can be sane */
  2563. return -EBUSY;
  2564. rdev->data_offset = offset;
  2565. rdev->new_data_offset = offset;
  2566. return len;
  2567. }
  2568. static struct rdev_sysfs_entry rdev_offset =
  2569. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2570. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2571. {
  2572. return sprintf(page, "%llu\n",
  2573. (unsigned long long)rdev->new_data_offset);
  2574. }
  2575. static ssize_t new_offset_store(struct md_rdev *rdev,
  2576. const char *buf, size_t len)
  2577. {
  2578. unsigned long long new_offset;
  2579. struct mddev *mddev = rdev->mddev;
  2580. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2581. return -EINVAL;
  2582. if (mddev->sync_thread)
  2583. return -EBUSY;
  2584. if (new_offset == rdev->data_offset)
  2585. /* reset is always permitted */
  2586. ;
  2587. else if (new_offset > rdev->data_offset) {
  2588. /* must not push array size beyond rdev_sectors */
  2589. if (new_offset - rdev->data_offset
  2590. + mddev->dev_sectors > rdev->sectors)
  2591. return -E2BIG;
  2592. }
  2593. /* Metadata worries about other space details. */
  2594. /* decreasing the offset is inconsistent with a backwards
  2595. * reshape.
  2596. */
  2597. if (new_offset < rdev->data_offset &&
  2598. mddev->reshape_backwards)
  2599. return -EINVAL;
  2600. /* Increasing offset is inconsistent with forwards
  2601. * reshape. reshape_direction should be set to
  2602. * 'backwards' first.
  2603. */
  2604. if (new_offset > rdev->data_offset &&
  2605. !mddev->reshape_backwards)
  2606. return -EINVAL;
  2607. if (mddev->pers && mddev->persistent &&
  2608. !super_types[mddev->major_version]
  2609. .allow_new_offset(rdev, new_offset))
  2610. return -E2BIG;
  2611. rdev->new_data_offset = new_offset;
  2612. if (new_offset > rdev->data_offset)
  2613. mddev->reshape_backwards = 1;
  2614. else if (new_offset < rdev->data_offset)
  2615. mddev->reshape_backwards = 0;
  2616. return len;
  2617. }
  2618. static struct rdev_sysfs_entry rdev_new_offset =
  2619. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2620. static ssize_t
  2621. rdev_size_show(struct md_rdev *rdev, char *page)
  2622. {
  2623. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2624. }
  2625. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2626. {
  2627. /* check if two start/length pairs overlap */
  2628. if (s1+l1 <= s2)
  2629. return 0;
  2630. if (s2+l2 <= s1)
  2631. return 0;
  2632. return 1;
  2633. }
  2634. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2635. {
  2636. unsigned long long blocks;
  2637. sector_t new;
  2638. if (strict_strtoull(buf, 10, &blocks) < 0)
  2639. return -EINVAL;
  2640. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2641. return -EINVAL; /* sector conversion overflow */
  2642. new = blocks * 2;
  2643. if (new != blocks * 2)
  2644. return -EINVAL; /* unsigned long long to sector_t overflow */
  2645. *sectors = new;
  2646. return 0;
  2647. }
  2648. static ssize_t
  2649. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2650. {
  2651. struct mddev *my_mddev = rdev->mddev;
  2652. sector_t oldsectors = rdev->sectors;
  2653. sector_t sectors;
  2654. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2655. return -EINVAL;
  2656. if (rdev->data_offset != rdev->new_data_offset)
  2657. return -EINVAL; /* too confusing */
  2658. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2659. if (my_mddev->persistent) {
  2660. sectors = super_types[my_mddev->major_version].
  2661. rdev_size_change(rdev, sectors);
  2662. if (!sectors)
  2663. return -EBUSY;
  2664. } else if (!sectors)
  2665. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2666. rdev->data_offset;
  2667. if (!my_mddev->pers->resize)
  2668. /* Cannot change size for RAID0 or Linear etc */
  2669. return -EINVAL;
  2670. }
  2671. if (sectors < my_mddev->dev_sectors)
  2672. return -EINVAL; /* component must fit device */
  2673. rdev->sectors = sectors;
  2674. if (sectors > oldsectors && my_mddev->external) {
  2675. /* need to check that all other rdevs with the same ->bdev
  2676. * do not overlap. We need to unlock the mddev to avoid
  2677. * a deadlock. We have already changed rdev->sectors, and if
  2678. * we have to change it back, we will have the lock again.
  2679. */
  2680. struct mddev *mddev;
  2681. int overlap = 0;
  2682. struct list_head *tmp;
  2683. mddev_unlock(my_mddev);
  2684. for_each_mddev(mddev, tmp) {
  2685. struct md_rdev *rdev2;
  2686. mddev_lock(mddev);
  2687. rdev_for_each(rdev2, mddev)
  2688. if (rdev->bdev == rdev2->bdev &&
  2689. rdev != rdev2 &&
  2690. overlaps(rdev->data_offset, rdev->sectors,
  2691. rdev2->data_offset,
  2692. rdev2->sectors)) {
  2693. overlap = 1;
  2694. break;
  2695. }
  2696. mddev_unlock(mddev);
  2697. if (overlap) {
  2698. mddev_put(mddev);
  2699. break;
  2700. }
  2701. }
  2702. mddev_lock(my_mddev);
  2703. if (overlap) {
  2704. /* Someone else could have slipped in a size
  2705. * change here, but doing so is just silly.
  2706. * We put oldsectors back because we *know* it is
  2707. * safe, and trust userspace not to race with
  2708. * itself
  2709. */
  2710. rdev->sectors = oldsectors;
  2711. return -EBUSY;
  2712. }
  2713. }
  2714. return len;
  2715. }
  2716. static struct rdev_sysfs_entry rdev_size =
  2717. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2718. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2719. {
  2720. unsigned long long recovery_start = rdev->recovery_offset;
  2721. if (test_bit(In_sync, &rdev->flags) ||
  2722. recovery_start == MaxSector)
  2723. return sprintf(page, "none\n");
  2724. return sprintf(page, "%llu\n", recovery_start);
  2725. }
  2726. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2727. {
  2728. unsigned long long recovery_start;
  2729. if (cmd_match(buf, "none"))
  2730. recovery_start = MaxSector;
  2731. else if (strict_strtoull(buf, 10, &recovery_start))
  2732. return -EINVAL;
  2733. if (rdev->mddev->pers &&
  2734. rdev->raid_disk >= 0)
  2735. return -EBUSY;
  2736. rdev->recovery_offset = recovery_start;
  2737. if (recovery_start == MaxSector)
  2738. set_bit(In_sync, &rdev->flags);
  2739. else
  2740. clear_bit(In_sync, &rdev->flags);
  2741. return len;
  2742. }
  2743. static struct rdev_sysfs_entry rdev_recovery_start =
  2744. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2745. static ssize_t
  2746. badblocks_show(struct badblocks *bb, char *page, int unack);
  2747. static ssize_t
  2748. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2749. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2750. {
  2751. return badblocks_show(&rdev->badblocks, page, 0);
  2752. }
  2753. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2754. {
  2755. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2756. /* Maybe that ack was all we needed */
  2757. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2758. wake_up(&rdev->blocked_wait);
  2759. return rv;
  2760. }
  2761. static struct rdev_sysfs_entry rdev_bad_blocks =
  2762. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2763. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2764. {
  2765. return badblocks_show(&rdev->badblocks, page, 1);
  2766. }
  2767. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2768. {
  2769. return badblocks_store(&rdev->badblocks, page, len, 1);
  2770. }
  2771. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2772. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2773. static struct attribute *rdev_default_attrs[] = {
  2774. &rdev_state.attr,
  2775. &rdev_errors.attr,
  2776. &rdev_slot.attr,
  2777. &rdev_offset.attr,
  2778. &rdev_new_offset.attr,
  2779. &rdev_size.attr,
  2780. &rdev_recovery_start.attr,
  2781. &rdev_bad_blocks.attr,
  2782. &rdev_unack_bad_blocks.attr,
  2783. NULL,
  2784. };
  2785. static ssize_t
  2786. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2787. {
  2788. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2789. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2790. struct mddev *mddev = rdev->mddev;
  2791. ssize_t rv;
  2792. if (!entry->show)
  2793. return -EIO;
  2794. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2795. if (!rv) {
  2796. if (rdev->mddev == NULL)
  2797. rv = -EBUSY;
  2798. else
  2799. rv = entry->show(rdev, page);
  2800. mddev_unlock(mddev);
  2801. }
  2802. return rv;
  2803. }
  2804. static ssize_t
  2805. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2806. const char *page, size_t length)
  2807. {
  2808. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2809. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2810. ssize_t rv;
  2811. struct mddev *mddev = rdev->mddev;
  2812. if (!entry->store)
  2813. return -EIO;
  2814. if (!capable(CAP_SYS_ADMIN))
  2815. return -EACCES;
  2816. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2817. if (!rv) {
  2818. if (rdev->mddev == NULL)
  2819. rv = -EBUSY;
  2820. else
  2821. rv = entry->store(rdev, page, length);
  2822. mddev_unlock(mddev);
  2823. }
  2824. return rv;
  2825. }
  2826. static void rdev_free(struct kobject *ko)
  2827. {
  2828. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2829. kfree(rdev);
  2830. }
  2831. static const struct sysfs_ops rdev_sysfs_ops = {
  2832. .show = rdev_attr_show,
  2833. .store = rdev_attr_store,
  2834. };
  2835. static struct kobj_type rdev_ktype = {
  2836. .release = rdev_free,
  2837. .sysfs_ops = &rdev_sysfs_ops,
  2838. .default_attrs = rdev_default_attrs,
  2839. };
  2840. int md_rdev_init(struct md_rdev *rdev)
  2841. {
  2842. rdev->desc_nr = -1;
  2843. rdev->saved_raid_disk = -1;
  2844. rdev->raid_disk = -1;
  2845. rdev->flags = 0;
  2846. rdev->data_offset = 0;
  2847. rdev->new_data_offset = 0;
  2848. rdev->sb_events = 0;
  2849. rdev->last_read_error.tv_sec = 0;
  2850. rdev->last_read_error.tv_nsec = 0;
  2851. rdev->sb_loaded = 0;
  2852. rdev->bb_page = NULL;
  2853. atomic_set(&rdev->nr_pending, 0);
  2854. atomic_set(&rdev->read_errors, 0);
  2855. atomic_set(&rdev->corrected_errors, 0);
  2856. INIT_LIST_HEAD(&rdev->same_set);
  2857. init_waitqueue_head(&rdev->blocked_wait);
  2858. /* Add space to store bad block list.
  2859. * This reserves the space even on arrays where it cannot
  2860. * be used - I wonder if that matters
  2861. */
  2862. rdev->badblocks.count = 0;
  2863. rdev->badblocks.shift = 0;
  2864. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2865. seqlock_init(&rdev->badblocks.lock);
  2866. if (rdev->badblocks.page == NULL)
  2867. return -ENOMEM;
  2868. return 0;
  2869. }
  2870. EXPORT_SYMBOL_GPL(md_rdev_init);
  2871. /*
  2872. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2873. *
  2874. * mark the device faulty if:
  2875. *
  2876. * - the device is nonexistent (zero size)
  2877. * - the device has no valid superblock
  2878. *
  2879. * a faulty rdev _never_ has rdev->sb set.
  2880. */
  2881. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2882. {
  2883. char b[BDEVNAME_SIZE];
  2884. int err;
  2885. struct md_rdev *rdev;
  2886. sector_t size;
  2887. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2888. if (!rdev) {
  2889. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2890. return ERR_PTR(-ENOMEM);
  2891. }
  2892. err = md_rdev_init(rdev);
  2893. if (err)
  2894. goto abort_free;
  2895. err = alloc_disk_sb(rdev);
  2896. if (err)
  2897. goto abort_free;
  2898. err = lock_rdev(rdev, newdev, super_format == -2);
  2899. if (err)
  2900. goto abort_free;
  2901. kobject_init(&rdev->kobj, &rdev_ktype);
  2902. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2903. if (!size) {
  2904. printk(KERN_WARNING
  2905. "md: %s has zero or unknown size, marking faulty!\n",
  2906. bdevname(rdev->bdev,b));
  2907. err = -EINVAL;
  2908. goto abort_free;
  2909. }
  2910. if (super_format >= 0) {
  2911. err = super_types[super_format].
  2912. load_super(rdev, NULL, super_minor);
  2913. if (err == -EINVAL) {
  2914. printk(KERN_WARNING
  2915. "md: %s does not have a valid v%d.%d "
  2916. "superblock, not importing!\n",
  2917. bdevname(rdev->bdev,b),
  2918. super_format, super_minor);
  2919. goto abort_free;
  2920. }
  2921. if (err < 0) {
  2922. printk(KERN_WARNING
  2923. "md: could not read %s's sb, not importing!\n",
  2924. bdevname(rdev->bdev,b));
  2925. goto abort_free;
  2926. }
  2927. }
  2928. if (super_format == -1)
  2929. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2930. rdev->badblocks.shift = -1;
  2931. return rdev;
  2932. abort_free:
  2933. if (rdev->bdev)
  2934. unlock_rdev(rdev);
  2935. md_rdev_clear(rdev);
  2936. kfree(rdev);
  2937. return ERR_PTR(err);
  2938. }
  2939. /*
  2940. * Check a full RAID array for plausibility
  2941. */
  2942. static void analyze_sbs(struct mddev * mddev)
  2943. {
  2944. int i;
  2945. struct md_rdev *rdev, *freshest, *tmp;
  2946. char b[BDEVNAME_SIZE];
  2947. freshest = NULL;
  2948. rdev_for_each_safe(rdev, tmp, mddev)
  2949. switch (super_types[mddev->major_version].
  2950. load_super(rdev, freshest, mddev->minor_version)) {
  2951. case 1:
  2952. freshest = rdev;
  2953. break;
  2954. case 0:
  2955. break;
  2956. default:
  2957. printk( KERN_ERR \
  2958. "md: fatal superblock inconsistency in %s"
  2959. " -- removing from array\n",
  2960. bdevname(rdev->bdev,b));
  2961. kick_rdev_from_array(rdev);
  2962. }
  2963. super_types[mddev->major_version].
  2964. validate_super(mddev, freshest);
  2965. i = 0;
  2966. rdev_for_each_safe(rdev, tmp, mddev) {
  2967. if (mddev->max_disks &&
  2968. (rdev->desc_nr >= mddev->max_disks ||
  2969. i > mddev->max_disks)) {
  2970. printk(KERN_WARNING
  2971. "md: %s: %s: only %d devices permitted\n",
  2972. mdname(mddev), bdevname(rdev->bdev, b),
  2973. mddev->max_disks);
  2974. kick_rdev_from_array(rdev);
  2975. continue;
  2976. }
  2977. if (rdev != freshest)
  2978. if (super_types[mddev->major_version].
  2979. validate_super(mddev, rdev)) {
  2980. printk(KERN_WARNING "md: kicking non-fresh %s"
  2981. " from array!\n",
  2982. bdevname(rdev->bdev,b));
  2983. kick_rdev_from_array(rdev);
  2984. continue;
  2985. }
  2986. if (mddev->level == LEVEL_MULTIPATH) {
  2987. rdev->desc_nr = i++;
  2988. rdev->raid_disk = rdev->desc_nr;
  2989. set_bit(In_sync, &rdev->flags);
  2990. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2991. rdev->raid_disk = -1;
  2992. clear_bit(In_sync, &rdev->flags);
  2993. }
  2994. }
  2995. }
  2996. /* Read a fixed-point number.
  2997. * Numbers in sysfs attributes should be in "standard" units where
  2998. * possible, so time should be in seconds.
  2999. * However we internally use a a much smaller unit such as
  3000. * milliseconds or jiffies.
  3001. * This function takes a decimal number with a possible fractional
  3002. * component, and produces an integer which is the result of
  3003. * multiplying that number by 10^'scale'.
  3004. * all without any floating-point arithmetic.
  3005. */
  3006. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  3007. {
  3008. unsigned long result = 0;
  3009. long decimals = -1;
  3010. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3011. if (*cp == '.')
  3012. decimals = 0;
  3013. else if (decimals < scale) {
  3014. unsigned int value;
  3015. value = *cp - '0';
  3016. result = result * 10 + value;
  3017. if (decimals >= 0)
  3018. decimals++;
  3019. }
  3020. cp++;
  3021. }
  3022. if (*cp == '\n')
  3023. cp++;
  3024. if (*cp)
  3025. return -EINVAL;
  3026. if (decimals < 0)
  3027. decimals = 0;
  3028. while (decimals < scale) {
  3029. result *= 10;
  3030. decimals ++;
  3031. }
  3032. *res = result;
  3033. return 0;
  3034. }
  3035. static void md_safemode_timeout(unsigned long data);
  3036. static ssize_t
  3037. safe_delay_show(struct mddev *mddev, char *page)
  3038. {
  3039. int msec = (mddev->safemode_delay*1000)/HZ;
  3040. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3041. }
  3042. static ssize_t
  3043. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3044. {
  3045. unsigned long msec;
  3046. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3047. return -EINVAL;
  3048. if (msec == 0)
  3049. mddev->safemode_delay = 0;
  3050. else {
  3051. unsigned long old_delay = mddev->safemode_delay;
  3052. mddev->safemode_delay = (msec*HZ)/1000;
  3053. if (mddev->safemode_delay == 0)
  3054. mddev->safemode_delay = 1;
  3055. if (mddev->safemode_delay < old_delay)
  3056. md_safemode_timeout((unsigned long)mddev);
  3057. }
  3058. return len;
  3059. }
  3060. static struct md_sysfs_entry md_safe_delay =
  3061. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3062. static ssize_t
  3063. level_show(struct mddev *mddev, char *page)
  3064. {
  3065. struct md_personality *p = mddev->pers;
  3066. if (p)
  3067. return sprintf(page, "%s\n", p->name);
  3068. else if (mddev->clevel[0])
  3069. return sprintf(page, "%s\n", mddev->clevel);
  3070. else if (mddev->level != LEVEL_NONE)
  3071. return sprintf(page, "%d\n", mddev->level);
  3072. else
  3073. return 0;
  3074. }
  3075. static ssize_t
  3076. level_store(struct mddev *mddev, const char *buf, size_t len)
  3077. {
  3078. char clevel[16];
  3079. ssize_t rv = len;
  3080. struct md_personality *pers;
  3081. long level;
  3082. void *priv;
  3083. struct md_rdev *rdev;
  3084. if (mddev->pers == NULL) {
  3085. if (len == 0)
  3086. return 0;
  3087. if (len >= sizeof(mddev->clevel))
  3088. return -ENOSPC;
  3089. strncpy(mddev->clevel, buf, len);
  3090. if (mddev->clevel[len-1] == '\n')
  3091. len--;
  3092. mddev->clevel[len] = 0;
  3093. mddev->level = LEVEL_NONE;
  3094. return rv;
  3095. }
  3096. /* request to change the personality. Need to ensure:
  3097. * - array is not engaged in resync/recovery/reshape
  3098. * - old personality can be suspended
  3099. * - new personality will access other array.
  3100. */
  3101. if (mddev->sync_thread ||
  3102. mddev->reshape_position != MaxSector ||
  3103. mddev->sysfs_active)
  3104. return -EBUSY;
  3105. if (!mddev->pers->quiesce) {
  3106. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3107. mdname(mddev), mddev->pers->name);
  3108. return -EINVAL;
  3109. }
  3110. /* Now find the new personality */
  3111. if (len == 0 || len >= sizeof(clevel))
  3112. return -EINVAL;
  3113. strncpy(clevel, buf, len);
  3114. if (clevel[len-1] == '\n')
  3115. len--;
  3116. clevel[len] = 0;
  3117. if (strict_strtol(clevel, 10, &level))
  3118. level = LEVEL_NONE;
  3119. if (request_module("md-%s", clevel) != 0)
  3120. request_module("md-level-%s", clevel);
  3121. spin_lock(&pers_lock);
  3122. pers = find_pers(level, clevel);
  3123. if (!pers || !try_module_get(pers->owner)) {
  3124. spin_unlock(&pers_lock);
  3125. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3126. return -EINVAL;
  3127. }
  3128. spin_unlock(&pers_lock);
  3129. if (pers == mddev->pers) {
  3130. /* Nothing to do! */
  3131. module_put(pers->owner);
  3132. return rv;
  3133. }
  3134. if (!pers->takeover) {
  3135. module_put(pers->owner);
  3136. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3137. mdname(mddev), clevel);
  3138. return -EINVAL;
  3139. }
  3140. rdev_for_each(rdev, mddev)
  3141. rdev->new_raid_disk = rdev->raid_disk;
  3142. /* ->takeover must set new_* and/or delta_disks
  3143. * if it succeeds, and may set them when it fails.
  3144. */
  3145. priv = pers->takeover(mddev);
  3146. if (IS_ERR(priv)) {
  3147. mddev->new_level = mddev->level;
  3148. mddev->new_layout = mddev->layout;
  3149. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3150. mddev->raid_disks -= mddev->delta_disks;
  3151. mddev->delta_disks = 0;
  3152. mddev->reshape_backwards = 0;
  3153. module_put(pers->owner);
  3154. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3155. mdname(mddev), clevel);
  3156. return PTR_ERR(priv);
  3157. }
  3158. /* Looks like we have a winner */
  3159. mddev_suspend(mddev);
  3160. mddev->pers->stop(mddev);
  3161. if (mddev->pers->sync_request == NULL &&
  3162. pers->sync_request != NULL) {
  3163. /* need to add the md_redundancy_group */
  3164. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3165. printk(KERN_WARNING
  3166. "md: cannot register extra attributes for %s\n",
  3167. mdname(mddev));
  3168. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3169. }
  3170. if (mddev->pers->sync_request != NULL &&
  3171. pers->sync_request == NULL) {
  3172. /* need to remove the md_redundancy_group */
  3173. if (mddev->to_remove == NULL)
  3174. mddev->to_remove = &md_redundancy_group;
  3175. }
  3176. if (mddev->pers->sync_request == NULL &&
  3177. mddev->external) {
  3178. /* We are converting from a no-redundancy array
  3179. * to a redundancy array and metadata is managed
  3180. * externally so we need to be sure that writes
  3181. * won't block due to a need to transition
  3182. * clean->dirty
  3183. * until external management is started.
  3184. */
  3185. mddev->in_sync = 0;
  3186. mddev->safemode_delay = 0;
  3187. mddev->safemode = 0;
  3188. }
  3189. rdev_for_each(rdev, mddev) {
  3190. if (rdev->raid_disk < 0)
  3191. continue;
  3192. if (rdev->new_raid_disk >= mddev->raid_disks)
  3193. rdev->new_raid_disk = -1;
  3194. if (rdev->new_raid_disk == rdev->raid_disk)
  3195. continue;
  3196. sysfs_unlink_rdev(mddev, rdev);
  3197. }
  3198. rdev_for_each(rdev, mddev) {
  3199. if (rdev->raid_disk < 0)
  3200. continue;
  3201. if (rdev->new_raid_disk == rdev->raid_disk)
  3202. continue;
  3203. rdev->raid_disk = rdev->new_raid_disk;
  3204. if (rdev->raid_disk < 0)
  3205. clear_bit(In_sync, &rdev->flags);
  3206. else {
  3207. if (sysfs_link_rdev(mddev, rdev))
  3208. printk(KERN_WARNING "md: cannot register rd%d"
  3209. " for %s after level change\n",
  3210. rdev->raid_disk, mdname(mddev));
  3211. }
  3212. }
  3213. module_put(mddev->pers->owner);
  3214. mddev->pers = pers;
  3215. mddev->private = priv;
  3216. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3217. mddev->level = mddev->new_level;
  3218. mddev->layout = mddev->new_layout;
  3219. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3220. mddev->delta_disks = 0;
  3221. mddev->reshape_backwards = 0;
  3222. mddev->degraded = 0;
  3223. if (mddev->pers->sync_request == NULL) {
  3224. /* this is now an array without redundancy, so
  3225. * it must always be in_sync
  3226. */
  3227. mddev->in_sync = 1;
  3228. del_timer_sync(&mddev->safemode_timer);
  3229. }
  3230. pers->run(mddev);
  3231. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3232. mddev_resume(mddev);
  3233. sysfs_notify(&mddev->kobj, NULL, "level");
  3234. md_new_event(mddev);
  3235. return rv;
  3236. }
  3237. static struct md_sysfs_entry md_level =
  3238. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3239. static ssize_t
  3240. layout_show(struct mddev *mddev, char *page)
  3241. {
  3242. /* just a number, not meaningful for all levels */
  3243. if (mddev->reshape_position != MaxSector &&
  3244. mddev->layout != mddev->new_layout)
  3245. return sprintf(page, "%d (%d)\n",
  3246. mddev->new_layout, mddev->layout);
  3247. return sprintf(page, "%d\n", mddev->layout);
  3248. }
  3249. static ssize_t
  3250. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3251. {
  3252. char *e;
  3253. unsigned long n = simple_strtoul(buf, &e, 10);
  3254. if (!*buf || (*e && *e != '\n'))
  3255. return -EINVAL;
  3256. if (mddev->pers) {
  3257. int err;
  3258. if (mddev->pers->check_reshape == NULL)
  3259. return -EBUSY;
  3260. mddev->new_layout = n;
  3261. err = mddev->pers->check_reshape(mddev);
  3262. if (err) {
  3263. mddev->new_layout = mddev->layout;
  3264. return err;
  3265. }
  3266. } else {
  3267. mddev->new_layout = n;
  3268. if (mddev->reshape_position == MaxSector)
  3269. mddev->layout = n;
  3270. }
  3271. return len;
  3272. }
  3273. static struct md_sysfs_entry md_layout =
  3274. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3275. static ssize_t
  3276. raid_disks_show(struct mddev *mddev, char *page)
  3277. {
  3278. if (mddev->raid_disks == 0)
  3279. return 0;
  3280. if (mddev->reshape_position != MaxSector &&
  3281. mddev->delta_disks != 0)
  3282. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3283. mddev->raid_disks - mddev->delta_disks);
  3284. return sprintf(page, "%d\n", mddev->raid_disks);
  3285. }
  3286. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3287. static ssize_t
  3288. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3289. {
  3290. char *e;
  3291. int rv = 0;
  3292. unsigned long n = simple_strtoul(buf, &e, 10);
  3293. if (!*buf || (*e && *e != '\n'))
  3294. return -EINVAL;
  3295. if (mddev->pers)
  3296. rv = update_raid_disks(mddev, n);
  3297. else if (mddev->reshape_position != MaxSector) {
  3298. struct md_rdev *rdev;
  3299. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3300. rdev_for_each(rdev, mddev) {
  3301. if (olddisks < n &&
  3302. rdev->data_offset < rdev->new_data_offset)
  3303. return -EINVAL;
  3304. if (olddisks > n &&
  3305. rdev->data_offset > rdev->new_data_offset)
  3306. return -EINVAL;
  3307. }
  3308. mddev->delta_disks = n - olddisks;
  3309. mddev->raid_disks = n;
  3310. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3311. } else
  3312. mddev->raid_disks = n;
  3313. return rv ? rv : len;
  3314. }
  3315. static struct md_sysfs_entry md_raid_disks =
  3316. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3317. static ssize_t
  3318. chunk_size_show(struct mddev *mddev, char *page)
  3319. {
  3320. if (mddev->reshape_position != MaxSector &&
  3321. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3322. return sprintf(page, "%d (%d)\n",
  3323. mddev->new_chunk_sectors << 9,
  3324. mddev->chunk_sectors << 9);
  3325. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3326. }
  3327. static ssize_t
  3328. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3329. {
  3330. char *e;
  3331. unsigned long n = simple_strtoul(buf, &e, 10);
  3332. if (!*buf || (*e && *e != '\n'))
  3333. return -EINVAL;
  3334. if (mddev->pers) {
  3335. int err;
  3336. if (mddev->pers->check_reshape == NULL)
  3337. return -EBUSY;
  3338. mddev->new_chunk_sectors = n >> 9;
  3339. err = mddev->pers->check_reshape(mddev);
  3340. if (err) {
  3341. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3342. return err;
  3343. }
  3344. } else {
  3345. mddev->new_chunk_sectors = n >> 9;
  3346. if (mddev->reshape_position == MaxSector)
  3347. mddev->chunk_sectors = n >> 9;
  3348. }
  3349. return len;
  3350. }
  3351. static struct md_sysfs_entry md_chunk_size =
  3352. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3353. static ssize_t
  3354. resync_start_show(struct mddev *mddev, char *page)
  3355. {
  3356. if (mddev->recovery_cp == MaxSector)
  3357. return sprintf(page, "none\n");
  3358. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3359. }
  3360. static ssize_t
  3361. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3362. {
  3363. char *e;
  3364. unsigned long long n = simple_strtoull(buf, &e, 10);
  3365. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3366. return -EBUSY;
  3367. if (cmd_match(buf, "none"))
  3368. n = MaxSector;
  3369. else if (!*buf || (*e && *e != '\n'))
  3370. return -EINVAL;
  3371. mddev->recovery_cp = n;
  3372. if (mddev->pers)
  3373. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3374. return len;
  3375. }
  3376. static struct md_sysfs_entry md_resync_start =
  3377. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3378. /*
  3379. * The array state can be:
  3380. *
  3381. * clear
  3382. * No devices, no size, no level
  3383. * Equivalent to STOP_ARRAY ioctl
  3384. * inactive
  3385. * May have some settings, but array is not active
  3386. * all IO results in error
  3387. * When written, doesn't tear down array, but just stops it
  3388. * suspended (not supported yet)
  3389. * All IO requests will block. The array can be reconfigured.
  3390. * Writing this, if accepted, will block until array is quiescent
  3391. * readonly
  3392. * no resync can happen. no superblocks get written.
  3393. * write requests fail
  3394. * read-auto
  3395. * like readonly, but behaves like 'clean' on a write request.
  3396. *
  3397. * clean - no pending writes, but otherwise active.
  3398. * When written to inactive array, starts without resync
  3399. * If a write request arrives then
  3400. * if metadata is known, mark 'dirty' and switch to 'active'.
  3401. * if not known, block and switch to write-pending
  3402. * If written to an active array that has pending writes, then fails.
  3403. * active
  3404. * fully active: IO and resync can be happening.
  3405. * When written to inactive array, starts with resync
  3406. *
  3407. * write-pending
  3408. * clean, but writes are blocked waiting for 'active' to be written.
  3409. *
  3410. * active-idle
  3411. * like active, but no writes have been seen for a while (100msec).
  3412. *
  3413. */
  3414. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3415. write_pending, active_idle, bad_word};
  3416. static char *array_states[] = {
  3417. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3418. "write-pending", "active-idle", NULL };
  3419. static int match_word(const char *word, char **list)
  3420. {
  3421. int n;
  3422. for (n=0; list[n]; n++)
  3423. if (cmd_match(word, list[n]))
  3424. break;
  3425. return n;
  3426. }
  3427. static ssize_t
  3428. array_state_show(struct mddev *mddev, char *page)
  3429. {
  3430. enum array_state st = inactive;
  3431. if (mddev->pers)
  3432. switch(mddev->ro) {
  3433. case 1:
  3434. st = readonly;
  3435. break;
  3436. case 2:
  3437. st = read_auto;
  3438. break;
  3439. case 0:
  3440. if (mddev->in_sync)
  3441. st = clean;
  3442. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3443. st = write_pending;
  3444. else if (mddev->safemode)
  3445. st = active_idle;
  3446. else
  3447. st = active;
  3448. }
  3449. else {
  3450. if (list_empty(&mddev->disks) &&
  3451. mddev->raid_disks == 0 &&
  3452. mddev->dev_sectors == 0)
  3453. st = clear;
  3454. else
  3455. st = inactive;
  3456. }
  3457. return sprintf(page, "%s\n", array_states[st]);
  3458. }
  3459. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3460. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3461. static int do_md_run(struct mddev * mddev);
  3462. static int restart_array(struct mddev *mddev);
  3463. static ssize_t
  3464. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3465. {
  3466. int err = -EINVAL;
  3467. enum array_state st = match_word(buf, array_states);
  3468. switch(st) {
  3469. case bad_word:
  3470. break;
  3471. case clear:
  3472. /* stopping an active array */
  3473. err = do_md_stop(mddev, 0, NULL);
  3474. break;
  3475. case inactive:
  3476. /* stopping an active array */
  3477. if (mddev->pers)
  3478. err = do_md_stop(mddev, 2, NULL);
  3479. else
  3480. err = 0; /* already inactive */
  3481. break;
  3482. case suspended:
  3483. break; /* not supported yet */
  3484. case readonly:
  3485. if (mddev->pers)
  3486. err = md_set_readonly(mddev, NULL);
  3487. else {
  3488. mddev->ro = 1;
  3489. set_disk_ro(mddev->gendisk, 1);
  3490. err = do_md_run(mddev);
  3491. }
  3492. break;
  3493. case read_auto:
  3494. if (mddev->pers) {
  3495. if (mddev->ro == 0)
  3496. err = md_set_readonly(mddev, NULL);
  3497. else if (mddev->ro == 1)
  3498. err = restart_array(mddev);
  3499. if (err == 0) {
  3500. mddev->ro = 2;
  3501. set_disk_ro(mddev->gendisk, 0);
  3502. }
  3503. } else {
  3504. mddev->ro = 2;
  3505. err = do_md_run(mddev);
  3506. }
  3507. break;
  3508. case clean:
  3509. if (mddev->pers) {
  3510. restart_array(mddev);
  3511. spin_lock_irq(&mddev->write_lock);
  3512. if (atomic_read(&mddev->writes_pending) == 0) {
  3513. if (mddev->in_sync == 0) {
  3514. mddev->in_sync = 1;
  3515. if (mddev->safemode == 1)
  3516. mddev->safemode = 0;
  3517. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3518. }
  3519. err = 0;
  3520. } else
  3521. err = -EBUSY;
  3522. spin_unlock_irq(&mddev->write_lock);
  3523. } else
  3524. err = -EINVAL;
  3525. break;
  3526. case active:
  3527. if (mddev->pers) {
  3528. restart_array(mddev);
  3529. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3530. wake_up(&mddev->sb_wait);
  3531. err = 0;
  3532. } else {
  3533. mddev->ro = 0;
  3534. set_disk_ro(mddev->gendisk, 0);
  3535. err = do_md_run(mddev);
  3536. }
  3537. break;
  3538. case write_pending:
  3539. case active_idle:
  3540. /* these cannot be set */
  3541. break;
  3542. }
  3543. if (err)
  3544. return err;
  3545. else {
  3546. if (mddev->hold_active == UNTIL_IOCTL)
  3547. mddev->hold_active = 0;
  3548. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3549. return len;
  3550. }
  3551. }
  3552. static struct md_sysfs_entry md_array_state =
  3553. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3554. static ssize_t
  3555. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3556. return sprintf(page, "%d\n",
  3557. atomic_read(&mddev->max_corr_read_errors));
  3558. }
  3559. static ssize_t
  3560. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3561. {
  3562. char *e;
  3563. unsigned long n = simple_strtoul(buf, &e, 10);
  3564. if (*buf && (*e == 0 || *e == '\n')) {
  3565. atomic_set(&mddev->max_corr_read_errors, n);
  3566. return len;
  3567. }
  3568. return -EINVAL;
  3569. }
  3570. static struct md_sysfs_entry max_corr_read_errors =
  3571. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3572. max_corrected_read_errors_store);
  3573. static ssize_t
  3574. null_show(struct mddev *mddev, char *page)
  3575. {
  3576. return -EINVAL;
  3577. }
  3578. static ssize_t
  3579. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3580. {
  3581. /* buf must be %d:%d\n? giving major and minor numbers */
  3582. /* The new device is added to the array.
  3583. * If the array has a persistent superblock, we read the
  3584. * superblock to initialise info and check validity.
  3585. * Otherwise, only checking done is that in bind_rdev_to_array,
  3586. * which mainly checks size.
  3587. */
  3588. char *e;
  3589. int major = simple_strtoul(buf, &e, 10);
  3590. int minor;
  3591. dev_t dev;
  3592. struct md_rdev *rdev;
  3593. int err;
  3594. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3595. return -EINVAL;
  3596. minor = simple_strtoul(e+1, &e, 10);
  3597. if (*e && *e != '\n')
  3598. return -EINVAL;
  3599. dev = MKDEV(major, minor);
  3600. if (major != MAJOR(dev) ||
  3601. minor != MINOR(dev))
  3602. return -EOVERFLOW;
  3603. if (mddev->persistent) {
  3604. rdev = md_import_device(dev, mddev->major_version,
  3605. mddev->minor_version);
  3606. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3607. struct md_rdev *rdev0
  3608. = list_entry(mddev->disks.next,
  3609. struct md_rdev, same_set);
  3610. err = super_types[mddev->major_version]
  3611. .load_super(rdev, rdev0, mddev->minor_version);
  3612. if (err < 0)
  3613. goto out;
  3614. }
  3615. } else if (mddev->external)
  3616. rdev = md_import_device(dev, -2, -1);
  3617. else
  3618. rdev = md_import_device(dev, -1, -1);
  3619. if (IS_ERR(rdev))
  3620. return PTR_ERR(rdev);
  3621. err = bind_rdev_to_array(rdev, mddev);
  3622. out:
  3623. if (err)
  3624. export_rdev(rdev);
  3625. return err ? err : len;
  3626. }
  3627. static struct md_sysfs_entry md_new_device =
  3628. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3629. static ssize_t
  3630. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3631. {
  3632. char *end;
  3633. unsigned long chunk, end_chunk;
  3634. if (!mddev->bitmap)
  3635. goto out;
  3636. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3637. while (*buf) {
  3638. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3639. if (buf == end) break;
  3640. if (*end == '-') { /* range */
  3641. buf = end + 1;
  3642. end_chunk = simple_strtoul(buf, &end, 0);
  3643. if (buf == end) break;
  3644. }
  3645. if (*end && !isspace(*end)) break;
  3646. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3647. buf = skip_spaces(end);
  3648. }
  3649. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3650. out:
  3651. return len;
  3652. }
  3653. static struct md_sysfs_entry md_bitmap =
  3654. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3655. static ssize_t
  3656. size_show(struct mddev *mddev, char *page)
  3657. {
  3658. return sprintf(page, "%llu\n",
  3659. (unsigned long long)mddev->dev_sectors / 2);
  3660. }
  3661. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3662. static ssize_t
  3663. size_store(struct mddev *mddev, const char *buf, size_t len)
  3664. {
  3665. /* If array is inactive, we can reduce the component size, but
  3666. * not increase it (except from 0).
  3667. * If array is active, we can try an on-line resize
  3668. */
  3669. sector_t sectors;
  3670. int err = strict_blocks_to_sectors(buf, &sectors);
  3671. if (err < 0)
  3672. return err;
  3673. if (mddev->pers) {
  3674. err = update_size(mddev, sectors);
  3675. md_update_sb(mddev, 1);
  3676. } else {
  3677. if (mddev->dev_sectors == 0 ||
  3678. mddev->dev_sectors > sectors)
  3679. mddev->dev_sectors = sectors;
  3680. else
  3681. err = -ENOSPC;
  3682. }
  3683. return err ? err : len;
  3684. }
  3685. static struct md_sysfs_entry md_size =
  3686. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3687. /* Metadata version.
  3688. * This is one of
  3689. * 'none' for arrays with no metadata (good luck...)
  3690. * 'external' for arrays with externally managed metadata,
  3691. * or N.M for internally known formats
  3692. */
  3693. static ssize_t
  3694. metadata_show(struct mddev *mddev, char *page)
  3695. {
  3696. if (mddev->persistent)
  3697. return sprintf(page, "%d.%d\n",
  3698. mddev->major_version, mddev->minor_version);
  3699. else if (mddev->external)
  3700. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3701. else
  3702. return sprintf(page, "none\n");
  3703. }
  3704. static ssize_t
  3705. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3706. {
  3707. int major, minor;
  3708. char *e;
  3709. /* Changing the details of 'external' metadata is
  3710. * always permitted. Otherwise there must be
  3711. * no devices attached to the array.
  3712. */
  3713. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3714. ;
  3715. else if (!list_empty(&mddev->disks))
  3716. return -EBUSY;
  3717. if (cmd_match(buf, "none")) {
  3718. mddev->persistent = 0;
  3719. mddev->external = 0;
  3720. mddev->major_version = 0;
  3721. mddev->minor_version = 90;
  3722. return len;
  3723. }
  3724. if (strncmp(buf, "external:", 9) == 0) {
  3725. size_t namelen = len-9;
  3726. if (namelen >= sizeof(mddev->metadata_type))
  3727. namelen = sizeof(mddev->metadata_type)-1;
  3728. strncpy(mddev->metadata_type, buf+9, namelen);
  3729. mddev->metadata_type[namelen] = 0;
  3730. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3731. mddev->metadata_type[--namelen] = 0;
  3732. mddev->persistent = 0;
  3733. mddev->external = 1;
  3734. mddev->major_version = 0;
  3735. mddev->minor_version = 90;
  3736. return len;
  3737. }
  3738. major = simple_strtoul(buf, &e, 10);
  3739. if (e==buf || *e != '.')
  3740. return -EINVAL;
  3741. buf = e+1;
  3742. minor = simple_strtoul(buf, &e, 10);
  3743. if (e==buf || (*e && *e != '\n') )
  3744. return -EINVAL;
  3745. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3746. return -ENOENT;
  3747. mddev->major_version = major;
  3748. mddev->minor_version = minor;
  3749. mddev->persistent = 1;
  3750. mddev->external = 0;
  3751. return len;
  3752. }
  3753. static struct md_sysfs_entry md_metadata =
  3754. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3755. static ssize_t
  3756. action_show(struct mddev *mddev, char *page)
  3757. {
  3758. char *type = "idle";
  3759. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3760. type = "frozen";
  3761. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3762. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3763. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3764. type = "reshape";
  3765. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3766. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3767. type = "resync";
  3768. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3769. type = "check";
  3770. else
  3771. type = "repair";
  3772. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3773. type = "recover";
  3774. }
  3775. return sprintf(page, "%s\n", type);
  3776. }
  3777. static void reap_sync_thread(struct mddev *mddev);
  3778. static ssize_t
  3779. action_store(struct mddev *mddev, const char *page, size_t len)
  3780. {
  3781. if (!mddev->pers || !mddev->pers->sync_request)
  3782. return -EINVAL;
  3783. if (cmd_match(page, "frozen"))
  3784. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3785. else
  3786. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3787. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3788. if (mddev->sync_thread) {
  3789. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3790. reap_sync_thread(mddev);
  3791. }
  3792. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3793. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3794. return -EBUSY;
  3795. else if (cmd_match(page, "resync"))
  3796. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3797. else if (cmd_match(page, "recover")) {
  3798. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3799. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3800. } else if (cmd_match(page, "reshape")) {
  3801. int err;
  3802. if (mddev->pers->start_reshape == NULL)
  3803. return -EINVAL;
  3804. err = mddev->pers->start_reshape(mddev);
  3805. if (err)
  3806. return err;
  3807. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3808. } else {
  3809. if (cmd_match(page, "check"))
  3810. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3811. else if (!cmd_match(page, "repair"))
  3812. return -EINVAL;
  3813. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3814. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3815. }
  3816. if (mddev->ro == 2) {
  3817. /* A write to sync_action is enough to justify
  3818. * canceling read-auto mode
  3819. */
  3820. mddev->ro = 0;
  3821. md_wakeup_thread(mddev->sync_thread);
  3822. }
  3823. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3824. md_wakeup_thread(mddev->thread);
  3825. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3826. return len;
  3827. }
  3828. static ssize_t
  3829. mismatch_cnt_show(struct mddev *mddev, char *page)
  3830. {
  3831. return sprintf(page, "%llu\n",
  3832. (unsigned long long)
  3833. atomic64_read(&mddev->resync_mismatches));
  3834. }
  3835. static struct md_sysfs_entry md_scan_mode =
  3836. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3837. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3838. static ssize_t
  3839. sync_min_show(struct mddev *mddev, char *page)
  3840. {
  3841. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3842. mddev->sync_speed_min ? "local": "system");
  3843. }
  3844. static ssize_t
  3845. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3846. {
  3847. int min;
  3848. char *e;
  3849. if (strncmp(buf, "system", 6)==0) {
  3850. mddev->sync_speed_min = 0;
  3851. return len;
  3852. }
  3853. min = simple_strtoul(buf, &e, 10);
  3854. if (buf == e || (*e && *e != '\n') || min <= 0)
  3855. return -EINVAL;
  3856. mddev->sync_speed_min = min;
  3857. return len;
  3858. }
  3859. static struct md_sysfs_entry md_sync_min =
  3860. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3861. static ssize_t
  3862. sync_max_show(struct mddev *mddev, char *page)
  3863. {
  3864. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3865. mddev->sync_speed_max ? "local": "system");
  3866. }
  3867. static ssize_t
  3868. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3869. {
  3870. int max;
  3871. char *e;
  3872. if (strncmp(buf, "system", 6)==0) {
  3873. mddev->sync_speed_max = 0;
  3874. return len;
  3875. }
  3876. max = simple_strtoul(buf, &e, 10);
  3877. if (buf == e || (*e && *e != '\n') || max <= 0)
  3878. return -EINVAL;
  3879. mddev->sync_speed_max = max;
  3880. return len;
  3881. }
  3882. static struct md_sysfs_entry md_sync_max =
  3883. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3884. static ssize_t
  3885. degraded_show(struct mddev *mddev, char *page)
  3886. {
  3887. return sprintf(page, "%d\n", mddev->degraded);
  3888. }
  3889. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3890. static ssize_t
  3891. sync_force_parallel_show(struct mddev *mddev, char *page)
  3892. {
  3893. return sprintf(page, "%d\n", mddev->parallel_resync);
  3894. }
  3895. static ssize_t
  3896. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3897. {
  3898. long n;
  3899. if (strict_strtol(buf, 10, &n))
  3900. return -EINVAL;
  3901. if (n != 0 && n != 1)
  3902. return -EINVAL;
  3903. mddev->parallel_resync = n;
  3904. if (mddev->sync_thread)
  3905. wake_up(&resync_wait);
  3906. return len;
  3907. }
  3908. /* force parallel resync, even with shared block devices */
  3909. static struct md_sysfs_entry md_sync_force_parallel =
  3910. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3911. sync_force_parallel_show, sync_force_parallel_store);
  3912. static ssize_t
  3913. sync_speed_show(struct mddev *mddev, char *page)
  3914. {
  3915. unsigned long resync, dt, db;
  3916. if (mddev->curr_resync == 0)
  3917. return sprintf(page, "none\n");
  3918. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3919. dt = (jiffies - mddev->resync_mark) / HZ;
  3920. if (!dt) dt++;
  3921. db = resync - mddev->resync_mark_cnt;
  3922. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3923. }
  3924. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3925. static ssize_t
  3926. sync_completed_show(struct mddev *mddev, char *page)
  3927. {
  3928. unsigned long long max_sectors, resync;
  3929. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3930. return sprintf(page, "none\n");
  3931. if (mddev->curr_resync == 1 ||
  3932. mddev->curr_resync == 2)
  3933. return sprintf(page, "delayed\n");
  3934. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3935. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3936. max_sectors = mddev->resync_max_sectors;
  3937. else
  3938. max_sectors = mddev->dev_sectors;
  3939. resync = mddev->curr_resync_completed;
  3940. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3941. }
  3942. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3943. static ssize_t
  3944. min_sync_show(struct mddev *mddev, char *page)
  3945. {
  3946. return sprintf(page, "%llu\n",
  3947. (unsigned long long)mddev->resync_min);
  3948. }
  3949. static ssize_t
  3950. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3951. {
  3952. unsigned long long min;
  3953. if (strict_strtoull(buf, 10, &min))
  3954. return -EINVAL;
  3955. if (min > mddev->resync_max)
  3956. return -EINVAL;
  3957. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3958. return -EBUSY;
  3959. /* Must be a multiple of chunk_size */
  3960. if (mddev->chunk_sectors) {
  3961. sector_t temp = min;
  3962. if (sector_div(temp, mddev->chunk_sectors))
  3963. return -EINVAL;
  3964. }
  3965. mddev->resync_min = min;
  3966. return len;
  3967. }
  3968. static struct md_sysfs_entry md_min_sync =
  3969. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3970. static ssize_t
  3971. max_sync_show(struct mddev *mddev, char *page)
  3972. {
  3973. if (mddev->resync_max == MaxSector)
  3974. return sprintf(page, "max\n");
  3975. else
  3976. return sprintf(page, "%llu\n",
  3977. (unsigned long long)mddev->resync_max);
  3978. }
  3979. static ssize_t
  3980. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3981. {
  3982. if (strncmp(buf, "max", 3) == 0)
  3983. mddev->resync_max = MaxSector;
  3984. else {
  3985. unsigned long long max;
  3986. if (strict_strtoull(buf, 10, &max))
  3987. return -EINVAL;
  3988. if (max < mddev->resync_min)
  3989. return -EINVAL;
  3990. if (max < mddev->resync_max &&
  3991. mddev->ro == 0 &&
  3992. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3993. return -EBUSY;
  3994. /* Must be a multiple of chunk_size */
  3995. if (mddev->chunk_sectors) {
  3996. sector_t temp = max;
  3997. if (sector_div(temp, mddev->chunk_sectors))
  3998. return -EINVAL;
  3999. }
  4000. mddev->resync_max = max;
  4001. }
  4002. wake_up(&mddev->recovery_wait);
  4003. return len;
  4004. }
  4005. static struct md_sysfs_entry md_max_sync =
  4006. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4007. static ssize_t
  4008. suspend_lo_show(struct mddev *mddev, char *page)
  4009. {
  4010. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4011. }
  4012. static ssize_t
  4013. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4014. {
  4015. char *e;
  4016. unsigned long long new = simple_strtoull(buf, &e, 10);
  4017. unsigned long long old = mddev->suspend_lo;
  4018. if (mddev->pers == NULL ||
  4019. mddev->pers->quiesce == NULL)
  4020. return -EINVAL;
  4021. if (buf == e || (*e && *e != '\n'))
  4022. return -EINVAL;
  4023. mddev->suspend_lo = new;
  4024. if (new >= old)
  4025. /* Shrinking suspended region */
  4026. mddev->pers->quiesce(mddev, 2);
  4027. else {
  4028. /* Expanding suspended region - need to wait */
  4029. mddev->pers->quiesce(mddev, 1);
  4030. mddev->pers->quiesce(mddev, 0);
  4031. }
  4032. return len;
  4033. }
  4034. static struct md_sysfs_entry md_suspend_lo =
  4035. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4036. static ssize_t
  4037. suspend_hi_show(struct mddev *mddev, char *page)
  4038. {
  4039. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4040. }
  4041. static ssize_t
  4042. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4043. {
  4044. char *e;
  4045. unsigned long long new = simple_strtoull(buf, &e, 10);
  4046. unsigned long long old = mddev->suspend_hi;
  4047. if (mddev->pers == NULL ||
  4048. mddev->pers->quiesce == NULL)
  4049. return -EINVAL;
  4050. if (buf == e || (*e && *e != '\n'))
  4051. return -EINVAL;
  4052. mddev->suspend_hi = new;
  4053. if (new <= old)
  4054. /* Shrinking suspended region */
  4055. mddev->pers->quiesce(mddev, 2);
  4056. else {
  4057. /* Expanding suspended region - need to wait */
  4058. mddev->pers->quiesce(mddev, 1);
  4059. mddev->pers->quiesce(mddev, 0);
  4060. }
  4061. return len;
  4062. }
  4063. static struct md_sysfs_entry md_suspend_hi =
  4064. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4065. static ssize_t
  4066. reshape_position_show(struct mddev *mddev, char *page)
  4067. {
  4068. if (mddev->reshape_position != MaxSector)
  4069. return sprintf(page, "%llu\n",
  4070. (unsigned long long)mddev->reshape_position);
  4071. strcpy(page, "none\n");
  4072. return 5;
  4073. }
  4074. static ssize_t
  4075. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4076. {
  4077. struct md_rdev *rdev;
  4078. char *e;
  4079. unsigned long long new = simple_strtoull(buf, &e, 10);
  4080. if (mddev->pers)
  4081. return -EBUSY;
  4082. if (buf == e || (*e && *e != '\n'))
  4083. return -EINVAL;
  4084. mddev->reshape_position = new;
  4085. mddev->delta_disks = 0;
  4086. mddev->reshape_backwards = 0;
  4087. mddev->new_level = mddev->level;
  4088. mddev->new_layout = mddev->layout;
  4089. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4090. rdev_for_each(rdev, mddev)
  4091. rdev->new_data_offset = rdev->data_offset;
  4092. return len;
  4093. }
  4094. static struct md_sysfs_entry md_reshape_position =
  4095. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4096. reshape_position_store);
  4097. static ssize_t
  4098. reshape_direction_show(struct mddev *mddev, char *page)
  4099. {
  4100. return sprintf(page, "%s\n",
  4101. mddev->reshape_backwards ? "backwards" : "forwards");
  4102. }
  4103. static ssize_t
  4104. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4105. {
  4106. int backwards = 0;
  4107. if (cmd_match(buf, "forwards"))
  4108. backwards = 0;
  4109. else if (cmd_match(buf, "backwards"))
  4110. backwards = 1;
  4111. else
  4112. return -EINVAL;
  4113. if (mddev->reshape_backwards == backwards)
  4114. return len;
  4115. /* check if we are allowed to change */
  4116. if (mddev->delta_disks)
  4117. return -EBUSY;
  4118. if (mddev->persistent &&
  4119. mddev->major_version == 0)
  4120. return -EINVAL;
  4121. mddev->reshape_backwards = backwards;
  4122. return len;
  4123. }
  4124. static struct md_sysfs_entry md_reshape_direction =
  4125. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4126. reshape_direction_store);
  4127. static ssize_t
  4128. array_size_show(struct mddev *mddev, char *page)
  4129. {
  4130. if (mddev->external_size)
  4131. return sprintf(page, "%llu\n",
  4132. (unsigned long long)mddev->array_sectors/2);
  4133. else
  4134. return sprintf(page, "default\n");
  4135. }
  4136. static ssize_t
  4137. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4138. {
  4139. sector_t sectors;
  4140. if (strncmp(buf, "default", 7) == 0) {
  4141. if (mddev->pers)
  4142. sectors = mddev->pers->size(mddev, 0, 0);
  4143. else
  4144. sectors = mddev->array_sectors;
  4145. mddev->external_size = 0;
  4146. } else {
  4147. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4148. return -EINVAL;
  4149. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4150. return -E2BIG;
  4151. mddev->external_size = 1;
  4152. }
  4153. mddev->array_sectors = sectors;
  4154. if (mddev->pers) {
  4155. set_capacity(mddev->gendisk, mddev->array_sectors);
  4156. revalidate_disk(mddev->gendisk);
  4157. }
  4158. return len;
  4159. }
  4160. static struct md_sysfs_entry md_array_size =
  4161. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4162. array_size_store);
  4163. static struct attribute *md_default_attrs[] = {
  4164. &md_level.attr,
  4165. &md_layout.attr,
  4166. &md_raid_disks.attr,
  4167. &md_chunk_size.attr,
  4168. &md_size.attr,
  4169. &md_resync_start.attr,
  4170. &md_metadata.attr,
  4171. &md_new_device.attr,
  4172. &md_safe_delay.attr,
  4173. &md_array_state.attr,
  4174. &md_reshape_position.attr,
  4175. &md_reshape_direction.attr,
  4176. &md_array_size.attr,
  4177. &max_corr_read_errors.attr,
  4178. NULL,
  4179. };
  4180. static struct attribute *md_redundancy_attrs[] = {
  4181. &md_scan_mode.attr,
  4182. &md_mismatches.attr,
  4183. &md_sync_min.attr,
  4184. &md_sync_max.attr,
  4185. &md_sync_speed.attr,
  4186. &md_sync_force_parallel.attr,
  4187. &md_sync_completed.attr,
  4188. &md_min_sync.attr,
  4189. &md_max_sync.attr,
  4190. &md_suspend_lo.attr,
  4191. &md_suspend_hi.attr,
  4192. &md_bitmap.attr,
  4193. &md_degraded.attr,
  4194. NULL,
  4195. };
  4196. static struct attribute_group md_redundancy_group = {
  4197. .name = NULL,
  4198. .attrs = md_redundancy_attrs,
  4199. };
  4200. static ssize_t
  4201. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4202. {
  4203. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4204. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4205. ssize_t rv;
  4206. if (!entry->show)
  4207. return -EIO;
  4208. spin_lock(&all_mddevs_lock);
  4209. if (list_empty(&mddev->all_mddevs)) {
  4210. spin_unlock(&all_mddevs_lock);
  4211. return -EBUSY;
  4212. }
  4213. mddev_get(mddev);
  4214. spin_unlock(&all_mddevs_lock);
  4215. rv = mddev_lock(mddev);
  4216. if (!rv) {
  4217. rv = entry->show(mddev, page);
  4218. mddev_unlock(mddev);
  4219. }
  4220. mddev_put(mddev);
  4221. return rv;
  4222. }
  4223. static ssize_t
  4224. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4225. const char *page, size_t length)
  4226. {
  4227. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4228. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4229. ssize_t rv;
  4230. if (!entry->store)
  4231. return -EIO;
  4232. if (!capable(CAP_SYS_ADMIN))
  4233. return -EACCES;
  4234. spin_lock(&all_mddevs_lock);
  4235. if (list_empty(&mddev->all_mddevs)) {
  4236. spin_unlock(&all_mddevs_lock);
  4237. return -EBUSY;
  4238. }
  4239. mddev_get(mddev);
  4240. spin_unlock(&all_mddevs_lock);
  4241. if (entry->store == new_dev_store)
  4242. flush_workqueue(md_misc_wq);
  4243. rv = mddev_lock(mddev);
  4244. if (!rv) {
  4245. rv = entry->store(mddev, page, length);
  4246. mddev_unlock(mddev);
  4247. }
  4248. mddev_put(mddev);
  4249. return rv;
  4250. }
  4251. static void md_free(struct kobject *ko)
  4252. {
  4253. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4254. if (mddev->sysfs_state)
  4255. sysfs_put(mddev->sysfs_state);
  4256. if (mddev->gendisk) {
  4257. del_gendisk(mddev->gendisk);
  4258. put_disk(mddev->gendisk);
  4259. }
  4260. if (mddev->queue)
  4261. blk_cleanup_queue(mddev->queue);
  4262. kfree(mddev);
  4263. }
  4264. static const struct sysfs_ops md_sysfs_ops = {
  4265. .show = md_attr_show,
  4266. .store = md_attr_store,
  4267. };
  4268. static struct kobj_type md_ktype = {
  4269. .release = md_free,
  4270. .sysfs_ops = &md_sysfs_ops,
  4271. .default_attrs = md_default_attrs,
  4272. };
  4273. int mdp_major = 0;
  4274. static void mddev_delayed_delete(struct work_struct *ws)
  4275. {
  4276. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4277. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4278. kobject_del(&mddev->kobj);
  4279. kobject_put(&mddev->kobj);
  4280. }
  4281. static int md_alloc(dev_t dev, char *name)
  4282. {
  4283. static DEFINE_MUTEX(disks_mutex);
  4284. struct mddev *mddev = mddev_find(dev);
  4285. struct gendisk *disk;
  4286. int partitioned;
  4287. int shift;
  4288. int unit;
  4289. int error;
  4290. if (!mddev)
  4291. return -ENODEV;
  4292. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4293. shift = partitioned ? MdpMinorShift : 0;
  4294. unit = MINOR(mddev->unit) >> shift;
  4295. /* wait for any previous instance of this device to be
  4296. * completely removed (mddev_delayed_delete).
  4297. */
  4298. flush_workqueue(md_misc_wq);
  4299. mutex_lock(&disks_mutex);
  4300. error = -EEXIST;
  4301. if (mddev->gendisk)
  4302. goto abort;
  4303. if (name) {
  4304. /* Need to ensure that 'name' is not a duplicate.
  4305. */
  4306. struct mddev *mddev2;
  4307. spin_lock(&all_mddevs_lock);
  4308. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4309. if (mddev2->gendisk &&
  4310. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4311. spin_unlock(&all_mddevs_lock);
  4312. goto abort;
  4313. }
  4314. spin_unlock(&all_mddevs_lock);
  4315. }
  4316. error = -ENOMEM;
  4317. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4318. if (!mddev->queue)
  4319. goto abort;
  4320. mddev->queue->queuedata = mddev;
  4321. blk_queue_make_request(mddev->queue, md_make_request);
  4322. blk_set_stacking_limits(&mddev->queue->limits);
  4323. disk = alloc_disk(1 << shift);
  4324. if (!disk) {
  4325. blk_cleanup_queue(mddev->queue);
  4326. mddev->queue = NULL;
  4327. goto abort;
  4328. }
  4329. disk->major = MAJOR(mddev->unit);
  4330. disk->first_minor = unit << shift;
  4331. if (name)
  4332. strcpy(disk->disk_name, name);
  4333. else if (partitioned)
  4334. sprintf(disk->disk_name, "md_d%d", unit);
  4335. else
  4336. sprintf(disk->disk_name, "md%d", unit);
  4337. disk->fops = &md_fops;
  4338. disk->private_data = mddev;
  4339. disk->queue = mddev->queue;
  4340. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4341. /* Allow extended partitions. This makes the
  4342. * 'mdp' device redundant, but we can't really
  4343. * remove it now.
  4344. */
  4345. disk->flags |= GENHD_FL_EXT_DEVT;
  4346. mddev->gendisk = disk;
  4347. /* As soon as we call add_disk(), another thread could get
  4348. * through to md_open, so make sure it doesn't get too far
  4349. */
  4350. mutex_lock(&mddev->open_mutex);
  4351. add_disk(disk);
  4352. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4353. &disk_to_dev(disk)->kobj, "%s", "md");
  4354. if (error) {
  4355. /* This isn't possible, but as kobject_init_and_add is marked
  4356. * __must_check, we must do something with the result
  4357. */
  4358. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4359. disk->disk_name);
  4360. error = 0;
  4361. }
  4362. if (mddev->kobj.sd &&
  4363. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4364. printk(KERN_DEBUG "pointless warning\n");
  4365. mutex_unlock(&mddev->open_mutex);
  4366. abort:
  4367. mutex_unlock(&disks_mutex);
  4368. if (!error && mddev->kobj.sd) {
  4369. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4370. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4371. }
  4372. mddev_put(mddev);
  4373. return error;
  4374. }
  4375. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4376. {
  4377. md_alloc(dev, NULL);
  4378. return NULL;
  4379. }
  4380. static int add_named_array(const char *val, struct kernel_param *kp)
  4381. {
  4382. /* val must be "md_*" where * is not all digits.
  4383. * We allocate an array with a large free minor number, and
  4384. * set the name to val. val must not already be an active name.
  4385. */
  4386. int len = strlen(val);
  4387. char buf[DISK_NAME_LEN];
  4388. while (len && val[len-1] == '\n')
  4389. len--;
  4390. if (len >= DISK_NAME_LEN)
  4391. return -E2BIG;
  4392. strlcpy(buf, val, len+1);
  4393. if (strncmp(buf, "md_", 3) != 0)
  4394. return -EINVAL;
  4395. return md_alloc(0, buf);
  4396. }
  4397. static void md_safemode_timeout(unsigned long data)
  4398. {
  4399. struct mddev *mddev = (struct mddev *) data;
  4400. if (!atomic_read(&mddev->writes_pending)) {
  4401. mddev->safemode = 1;
  4402. if (mddev->external)
  4403. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4404. }
  4405. md_wakeup_thread(mddev->thread);
  4406. }
  4407. static int start_dirty_degraded;
  4408. int md_run(struct mddev *mddev)
  4409. {
  4410. int err;
  4411. struct md_rdev *rdev;
  4412. struct md_personality *pers;
  4413. if (list_empty(&mddev->disks))
  4414. /* cannot run an array with no devices.. */
  4415. return -EINVAL;
  4416. if (mddev->pers)
  4417. return -EBUSY;
  4418. /* Cannot run until previous stop completes properly */
  4419. if (mddev->sysfs_active)
  4420. return -EBUSY;
  4421. /*
  4422. * Analyze all RAID superblock(s)
  4423. */
  4424. if (!mddev->raid_disks) {
  4425. if (!mddev->persistent)
  4426. return -EINVAL;
  4427. analyze_sbs(mddev);
  4428. }
  4429. if (mddev->level != LEVEL_NONE)
  4430. request_module("md-level-%d", mddev->level);
  4431. else if (mddev->clevel[0])
  4432. request_module("md-%s", mddev->clevel);
  4433. /*
  4434. * Drop all container device buffers, from now on
  4435. * the only valid external interface is through the md
  4436. * device.
  4437. */
  4438. rdev_for_each(rdev, mddev) {
  4439. if (test_bit(Faulty, &rdev->flags))
  4440. continue;
  4441. sync_blockdev(rdev->bdev);
  4442. invalidate_bdev(rdev->bdev);
  4443. /* perform some consistency tests on the device.
  4444. * We don't want the data to overlap the metadata,
  4445. * Internal Bitmap issues have been handled elsewhere.
  4446. */
  4447. if (rdev->meta_bdev) {
  4448. /* Nothing to check */;
  4449. } else if (rdev->data_offset < rdev->sb_start) {
  4450. if (mddev->dev_sectors &&
  4451. rdev->data_offset + mddev->dev_sectors
  4452. > rdev->sb_start) {
  4453. printk("md: %s: data overlaps metadata\n",
  4454. mdname(mddev));
  4455. return -EINVAL;
  4456. }
  4457. } else {
  4458. if (rdev->sb_start + rdev->sb_size/512
  4459. > rdev->data_offset) {
  4460. printk("md: %s: metadata overlaps data\n",
  4461. mdname(mddev));
  4462. return -EINVAL;
  4463. }
  4464. }
  4465. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4466. }
  4467. if (mddev->bio_set == NULL)
  4468. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4469. spin_lock(&pers_lock);
  4470. pers = find_pers(mddev->level, mddev->clevel);
  4471. if (!pers || !try_module_get(pers->owner)) {
  4472. spin_unlock(&pers_lock);
  4473. if (mddev->level != LEVEL_NONE)
  4474. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4475. mddev->level);
  4476. else
  4477. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4478. mddev->clevel);
  4479. return -EINVAL;
  4480. }
  4481. mddev->pers = pers;
  4482. spin_unlock(&pers_lock);
  4483. if (mddev->level != pers->level) {
  4484. mddev->level = pers->level;
  4485. mddev->new_level = pers->level;
  4486. }
  4487. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4488. if (mddev->reshape_position != MaxSector &&
  4489. pers->start_reshape == NULL) {
  4490. /* This personality cannot handle reshaping... */
  4491. mddev->pers = NULL;
  4492. module_put(pers->owner);
  4493. return -EINVAL;
  4494. }
  4495. if (pers->sync_request) {
  4496. /* Warn if this is a potentially silly
  4497. * configuration.
  4498. */
  4499. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4500. struct md_rdev *rdev2;
  4501. int warned = 0;
  4502. rdev_for_each(rdev, mddev)
  4503. rdev_for_each(rdev2, mddev) {
  4504. if (rdev < rdev2 &&
  4505. rdev->bdev->bd_contains ==
  4506. rdev2->bdev->bd_contains) {
  4507. printk(KERN_WARNING
  4508. "%s: WARNING: %s appears to be"
  4509. " on the same physical disk as"
  4510. " %s.\n",
  4511. mdname(mddev),
  4512. bdevname(rdev->bdev,b),
  4513. bdevname(rdev2->bdev,b2));
  4514. warned = 1;
  4515. }
  4516. }
  4517. if (warned)
  4518. printk(KERN_WARNING
  4519. "True protection against single-disk"
  4520. " failure might be compromised.\n");
  4521. }
  4522. mddev->recovery = 0;
  4523. /* may be over-ridden by personality */
  4524. mddev->resync_max_sectors = mddev->dev_sectors;
  4525. mddev->ok_start_degraded = start_dirty_degraded;
  4526. if (start_readonly && mddev->ro == 0)
  4527. mddev->ro = 2; /* read-only, but switch on first write */
  4528. err = mddev->pers->run(mddev);
  4529. if (err)
  4530. printk(KERN_ERR "md: pers->run() failed ...\n");
  4531. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4532. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4533. " but 'external_size' not in effect?\n", __func__);
  4534. printk(KERN_ERR
  4535. "md: invalid array_size %llu > default size %llu\n",
  4536. (unsigned long long)mddev->array_sectors / 2,
  4537. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4538. err = -EINVAL;
  4539. mddev->pers->stop(mddev);
  4540. }
  4541. if (err == 0 && mddev->pers->sync_request &&
  4542. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4543. err = bitmap_create(mddev);
  4544. if (err) {
  4545. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4546. mdname(mddev), err);
  4547. mddev->pers->stop(mddev);
  4548. }
  4549. }
  4550. if (err) {
  4551. module_put(mddev->pers->owner);
  4552. mddev->pers = NULL;
  4553. bitmap_destroy(mddev);
  4554. return err;
  4555. }
  4556. if (mddev->pers->sync_request) {
  4557. if (mddev->kobj.sd &&
  4558. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4559. printk(KERN_WARNING
  4560. "md: cannot register extra attributes for %s\n",
  4561. mdname(mddev));
  4562. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4563. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4564. mddev->ro = 0;
  4565. atomic_set(&mddev->writes_pending,0);
  4566. atomic_set(&mddev->max_corr_read_errors,
  4567. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4568. mddev->safemode = 0;
  4569. mddev->safemode_timer.function = md_safemode_timeout;
  4570. mddev->safemode_timer.data = (unsigned long) mddev;
  4571. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4572. mddev->in_sync = 1;
  4573. smp_wmb();
  4574. mddev->ready = 1;
  4575. rdev_for_each(rdev, mddev)
  4576. if (rdev->raid_disk >= 0)
  4577. if (sysfs_link_rdev(mddev, rdev))
  4578. /* failure here is OK */;
  4579. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4580. if (mddev->flags)
  4581. md_update_sb(mddev, 0);
  4582. md_new_event(mddev);
  4583. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4584. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4585. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4586. return 0;
  4587. }
  4588. EXPORT_SYMBOL_GPL(md_run);
  4589. static int do_md_run(struct mddev *mddev)
  4590. {
  4591. int err;
  4592. err = md_run(mddev);
  4593. if (err)
  4594. goto out;
  4595. err = bitmap_load(mddev);
  4596. if (err) {
  4597. bitmap_destroy(mddev);
  4598. goto out;
  4599. }
  4600. md_wakeup_thread(mddev->thread);
  4601. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4602. set_capacity(mddev->gendisk, mddev->array_sectors);
  4603. revalidate_disk(mddev->gendisk);
  4604. mddev->changed = 1;
  4605. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4606. out:
  4607. return err;
  4608. }
  4609. static int restart_array(struct mddev *mddev)
  4610. {
  4611. struct gendisk *disk = mddev->gendisk;
  4612. /* Complain if it has no devices */
  4613. if (list_empty(&mddev->disks))
  4614. return -ENXIO;
  4615. if (!mddev->pers)
  4616. return -EINVAL;
  4617. if (!mddev->ro)
  4618. return -EBUSY;
  4619. mddev->safemode = 0;
  4620. mddev->ro = 0;
  4621. set_disk_ro(disk, 0);
  4622. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4623. mdname(mddev));
  4624. /* Kick recovery or resync if necessary */
  4625. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4626. md_wakeup_thread(mddev->thread);
  4627. md_wakeup_thread(mddev->sync_thread);
  4628. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4629. return 0;
  4630. }
  4631. /* similar to deny_write_access, but accounts for our holding a reference
  4632. * to the file ourselves */
  4633. static int deny_bitmap_write_access(struct file * file)
  4634. {
  4635. struct inode *inode = file->f_mapping->host;
  4636. spin_lock(&inode->i_lock);
  4637. if (atomic_read(&inode->i_writecount) > 1) {
  4638. spin_unlock(&inode->i_lock);
  4639. return -ETXTBSY;
  4640. }
  4641. atomic_set(&inode->i_writecount, -1);
  4642. spin_unlock(&inode->i_lock);
  4643. return 0;
  4644. }
  4645. void restore_bitmap_write_access(struct file *file)
  4646. {
  4647. struct inode *inode = file->f_mapping->host;
  4648. spin_lock(&inode->i_lock);
  4649. atomic_set(&inode->i_writecount, 1);
  4650. spin_unlock(&inode->i_lock);
  4651. }
  4652. static void md_clean(struct mddev *mddev)
  4653. {
  4654. mddev->array_sectors = 0;
  4655. mddev->external_size = 0;
  4656. mddev->dev_sectors = 0;
  4657. mddev->raid_disks = 0;
  4658. mddev->recovery_cp = 0;
  4659. mddev->resync_min = 0;
  4660. mddev->resync_max = MaxSector;
  4661. mddev->reshape_position = MaxSector;
  4662. mddev->external = 0;
  4663. mddev->persistent = 0;
  4664. mddev->level = LEVEL_NONE;
  4665. mddev->clevel[0] = 0;
  4666. mddev->flags = 0;
  4667. mddev->ro = 0;
  4668. mddev->metadata_type[0] = 0;
  4669. mddev->chunk_sectors = 0;
  4670. mddev->ctime = mddev->utime = 0;
  4671. mddev->layout = 0;
  4672. mddev->max_disks = 0;
  4673. mddev->events = 0;
  4674. mddev->can_decrease_events = 0;
  4675. mddev->delta_disks = 0;
  4676. mddev->reshape_backwards = 0;
  4677. mddev->new_level = LEVEL_NONE;
  4678. mddev->new_layout = 0;
  4679. mddev->new_chunk_sectors = 0;
  4680. mddev->curr_resync = 0;
  4681. atomic64_set(&mddev->resync_mismatches, 0);
  4682. mddev->suspend_lo = mddev->suspend_hi = 0;
  4683. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4684. mddev->recovery = 0;
  4685. mddev->in_sync = 0;
  4686. mddev->changed = 0;
  4687. mddev->degraded = 0;
  4688. mddev->safemode = 0;
  4689. mddev->merge_check_needed = 0;
  4690. mddev->bitmap_info.offset = 0;
  4691. mddev->bitmap_info.default_offset = 0;
  4692. mddev->bitmap_info.default_space = 0;
  4693. mddev->bitmap_info.chunksize = 0;
  4694. mddev->bitmap_info.daemon_sleep = 0;
  4695. mddev->bitmap_info.max_write_behind = 0;
  4696. }
  4697. static void __md_stop_writes(struct mddev *mddev)
  4698. {
  4699. if (mddev->sync_thread) {
  4700. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4701. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4702. reap_sync_thread(mddev);
  4703. }
  4704. del_timer_sync(&mddev->safemode_timer);
  4705. bitmap_flush(mddev);
  4706. md_super_wait(mddev);
  4707. if (mddev->ro == 0 &&
  4708. (!mddev->in_sync || mddev->flags)) {
  4709. /* mark array as shutdown cleanly */
  4710. mddev->in_sync = 1;
  4711. md_update_sb(mddev, 1);
  4712. }
  4713. }
  4714. void md_stop_writes(struct mddev *mddev)
  4715. {
  4716. mddev_lock(mddev);
  4717. __md_stop_writes(mddev);
  4718. mddev_unlock(mddev);
  4719. }
  4720. EXPORT_SYMBOL_GPL(md_stop_writes);
  4721. static void __md_stop(struct mddev *mddev)
  4722. {
  4723. mddev->ready = 0;
  4724. mddev->pers->stop(mddev);
  4725. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4726. mddev->to_remove = &md_redundancy_group;
  4727. module_put(mddev->pers->owner);
  4728. mddev->pers = NULL;
  4729. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4730. }
  4731. void md_stop(struct mddev *mddev)
  4732. {
  4733. /* stop the array and free an attached data structures.
  4734. * This is called from dm-raid
  4735. */
  4736. __md_stop(mddev);
  4737. bitmap_destroy(mddev);
  4738. if (mddev->bio_set)
  4739. bioset_free(mddev->bio_set);
  4740. }
  4741. EXPORT_SYMBOL_GPL(md_stop);
  4742. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4743. {
  4744. int err = 0;
  4745. mutex_lock(&mddev->open_mutex);
  4746. if (atomic_read(&mddev->openers) > !!bdev) {
  4747. printk("md: %s still in use.\n",mdname(mddev));
  4748. err = -EBUSY;
  4749. goto out;
  4750. }
  4751. if (bdev)
  4752. sync_blockdev(bdev);
  4753. if (mddev->pers) {
  4754. __md_stop_writes(mddev);
  4755. err = -ENXIO;
  4756. if (mddev->ro==1)
  4757. goto out;
  4758. mddev->ro = 1;
  4759. set_disk_ro(mddev->gendisk, 1);
  4760. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4761. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4762. err = 0;
  4763. }
  4764. out:
  4765. mutex_unlock(&mddev->open_mutex);
  4766. return err;
  4767. }
  4768. /* mode:
  4769. * 0 - completely stop and dis-assemble array
  4770. * 2 - stop but do not disassemble array
  4771. */
  4772. static int do_md_stop(struct mddev * mddev, int mode,
  4773. struct block_device *bdev)
  4774. {
  4775. struct gendisk *disk = mddev->gendisk;
  4776. struct md_rdev *rdev;
  4777. mutex_lock(&mddev->open_mutex);
  4778. if (atomic_read(&mddev->openers) > !!bdev ||
  4779. mddev->sysfs_active) {
  4780. printk("md: %s still in use.\n",mdname(mddev));
  4781. mutex_unlock(&mddev->open_mutex);
  4782. return -EBUSY;
  4783. }
  4784. if (bdev)
  4785. /* It is possible IO was issued on some other
  4786. * open file which was closed before we took ->open_mutex.
  4787. * As that was not the last close __blkdev_put will not
  4788. * have called sync_blockdev, so we must.
  4789. */
  4790. sync_blockdev(bdev);
  4791. if (mddev->pers) {
  4792. if (mddev->ro)
  4793. set_disk_ro(disk, 0);
  4794. __md_stop_writes(mddev);
  4795. __md_stop(mddev);
  4796. mddev->queue->merge_bvec_fn = NULL;
  4797. mddev->queue->backing_dev_info.congested_fn = NULL;
  4798. /* tell userspace to handle 'inactive' */
  4799. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4800. rdev_for_each(rdev, mddev)
  4801. if (rdev->raid_disk >= 0)
  4802. sysfs_unlink_rdev(mddev, rdev);
  4803. set_capacity(disk, 0);
  4804. mutex_unlock(&mddev->open_mutex);
  4805. mddev->changed = 1;
  4806. revalidate_disk(disk);
  4807. if (mddev->ro)
  4808. mddev->ro = 0;
  4809. } else
  4810. mutex_unlock(&mddev->open_mutex);
  4811. /*
  4812. * Free resources if final stop
  4813. */
  4814. if (mode == 0) {
  4815. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4816. bitmap_destroy(mddev);
  4817. if (mddev->bitmap_info.file) {
  4818. restore_bitmap_write_access(mddev->bitmap_info.file);
  4819. fput(mddev->bitmap_info.file);
  4820. mddev->bitmap_info.file = NULL;
  4821. }
  4822. mddev->bitmap_info.offset = 0;
  4823. export_array(mddev);
  4824. md_clean(mddev);
  4825. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4826. if (mddev->hold_active == UNTIL_STOP)
  4827. mddev->hold_active = 0;
  4828. }
  4829. blk_integrity_unregister(disk);
  4830. md_new_event(mddev);
  4831. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4832. return 0;
  4833. }
  4834. #ifndef MODULE
  4835. static void autorun_array(struct mddev *mddev)
  4836. {
  4837. struct md_rdev *rdev;
  4838. int err;
  4839. if (list_empty(&mddev->disks))
  4840. return;
  4841. printk(KERN_INFO "md: running: ");
  4842. rdev_for_each(rdev, mddev) {
  4843. char b[BDEVNAME_SIZE];
  4844. printk("<%s>", bdevname(rdev->bdev,b));
  4845. }
  4846. printk("\n");
  4847. err = do_md_run(mddev);
  4848. if (err) {
  4849. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4850. do_md_stop(mddev, 0, NULL);
  4851. }
  4852. }
  4853. /*
  4854. * lets try to run arrays based on all disks that have arrived
  4855. * until now. (those are in pending_raid_disks)
  4856. *
  4857. * the method: pick the first pending disk, collect all disks with
  4858. * the same UUID, remove all from the pending list and put them into
  4859. * the 'same_array' list. Then order this list based on superblock
  4860. * update time (freshest comes first), kick out 'old' disks and
  4861. * compare superblocks. If everything's fine then run it.
  4862. *
  4863. * If "unit" is allocated, then bump its reference count
  4864. */
  4865. static void autorun_devices(int part)
  4866. {
  4867. struct md_rdev *rdev0, *rdev, *tmp;
  4868. struct mddev *mddev;
  4869. char b[BDEVNAME_SIZE];
  4870. printk(KERN_INFO "md: autorun ...\n");
  4871. while (!list_empty(&pending_raid_disks)) {
  4872. int unit;
  4873. dev_t dev;
  4874. LIST_HEAD(candidates);
  4875. rdev0 = list_entry(pending_raid_disks.next,
  4876. struct md_rdev, same_set);
  4877. printk(KERN_INFO "md: considering %s ...\n",
  4878. bdevname(rdev0->bdev,b));
  4879. INIT_LIST_HEAD(&candidates);
  4880. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4881. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4882. printk(KERN_INFO "md: adding %s ...\n",
  4883. bdevname(rdev->bdev,b));
  4884. list_move(&rdev->same_set, &candidates);
  4885. }
  4886. /*
  4887. * now we have a set of devices, with all of them having
  4888. * mostly sane superblocks. It's time to allocate the
  4889. * mddev.
  4890. */
  4891. if (part) {
  4892. dev = MKDEV(mdp_major,
  4893. rdev0->preferred_minor << MdpMinorShift);
  4894. unit = MINOR(dev) >> MdpMinorShift;
  4895. } else {
  4896. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4897. unit = MINOR(dev);
  4898. }
  4899. if (rdev0->preferred_minor != unit) {
  4900. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4901. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4902. break;
  4903. }
  4904. md_probe(dev, NULL, NULL);
  4905. mddev = mddev_find(dev);
  4906. if (!mddev || !mddev->gendisk) {
  4907. if (mddev)
  4908. mddev_put(mddev);
  4909. printk(KERN_ERR
  4910. "md: cannot allocate memory for md drive.\n");
  4911. break;
  4912. }
  4913. if (mddev_lock(mddev))
  4914. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4915. mdname(mddev));
  4916. else if (mddev->raid_disks || mddev->major_version
  4917. || !list_empty(&mddev->disks)) {
  4918. printk(KERN_WARNING
  4919. "md: %s already running, cannot run %s\n",
  4920. mdname(mddev), bdevname(rdev0->bdev,b));
  4921. mddev_unlock(mddev);
  4922. } else {
  4923. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4924. mddev->persistent = 1;
  4925. rdev_for_each_list(rdev, tmp, &candidates) {
  4926. list_del_init(&rdev->same_set);
  4927. if (bind_rdev_to_array(rdev, mddev))
  4928. export_rdev(rdev);
  4929. }
  4930. autorun_array(mddev);
  4931. mddev_unlock(mddev);
  4932. }
  4933. /* on success, candidates will be empty, on error
  4934. * it won't...
  4935. */
  4936. rdev_for_each_list(rdev, tmp, &candidates) {
  4937. list_del_init(&rdev->same_set);
  4938. export_rdev(rdev);
  4939. }
  4940. mddev_put(mddev);
  4941. }
  4942. printk(KERN_INFO "md: ... autorun DONE.\n");
  4943. }
  4944. #endif /* !MODULE */
  4945. static int get_version(void __user * arg)
  4946. {
  4947. mdu_version_t ver;
  4948. ver.major = MD_MAJOR_VERSION;
  4949. ver.minor = MD_MINOR_VERSION;
  4950. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4951. if (copy_to_user(arg, &ver, sizeof(ver)))
  4952. return -EFAULT;
  4953. return 0;
  4954. }
  4955. static int get_array_info(struct mddev * mddev, void __user * arg)
  4956. {
  4957. mdu_array_info_t info;
  4958. int nr,working,insync,failed,spare;
  4959. struct md_rdev *rdev;
  4960. nr = working = insync = failed = spare = 0;
  4961. rcu_read_lock();
  4962. rdev_for_each_rcu(rdev, mddev) {
  4963. nr++;
  4964. if (test_bit(Faulty, &rdev->flags))
  4965. failed++;
  4966. else {
  4967. working++;
  4968. if (test_bit(In_sync, &rdev->flags))
  4969. insync++;
  4970. else
  4971. spare++;
  4972. }
  4973. }
  4974. rcu_read_unlock();
  4975. info.major_version = mddev->major_version;
  4976. info.minor_version = mddev->minor_version;
  4977. info.patch_version = MD_PATCHLEVEL_VERSION;
  4978. info.ctime = mddev->ctime;
  4979. info.level = mddev->level;
  4980. info.size = mddev->dev_sectors / 2;
  4981. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4982. info.size = -1;
  4983. info.nr_disks = nr;
  4984. info.raid_disks = mddev->raid_disks;
  4985. info.md_minor = mddev->md_minor;
  4986. info.not_persistent= !mddev->persistent;
  4987. info.utime = mddev->utime;
  4988. info.state = 0;
  4989. if (mddev->in_sync)
  4990. info.state = (1<<MD_SB_CLEAN);
  4991. if (mddev->bitmap && mddev->bitmap_info.offset)
  4992. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4993. info.active_disks = insync;
  4994. info.working_disks = working;
  4995. info.failed_disks = failed;
  4996. info.spare_disks = spare;
  4997. info.layout = mddev->layout;
  4998. info.chunk_size = mddev->chunk_sectors << 9;
  4999. if (copy_to_user(arg, &info, sizeof(info)))
  5000. return -EFAULT;
  5001. return 0;
  5002. }
  5003. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  5004. {
  5005. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5006. char *ptr, *buf = NULL;
  5007. int err = -ENOMEM;
  5008. if (md_allow_write(mddev))
  5009. file = kmalloc(sizeof(*file), GFP_NOIO);
  5010. else
  5011. file = kmalloc(sizeof(*file), GFP_KERNEL);
  5012. if (!file)
  5013. goto out;
  5014. /* bitmap disabled, zero the first byte and copy out */
  5015. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5016. file->pathname[0] = '\0';
  5017. goto copy_out;
  5018. }
  5019. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5020. if (!buf)
  5021. goto out;
  5022. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5023. buf, sizeof(file->pathname));
  5024. if (IS_ERR(ptr))
  5025. goto out;
  5026. strcpy(file->pathname, ptr);
  5027. copy_out:
  5028. err = 0;
  5029. if (copy_to_user(arg, file, sizeof(*file)))
  5030. err = -EFAULT;
  5031. out:
  5032. kfree(buf);
  5033. kfree(file);
  5034. return err;
  5035. }
  5036. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5037. {
  5038. mdu_disk_info_t info;
  5039. struct md_rdev *rdev;
  5040. if (copy_from_user(&info, arg, sizeof(info)))
  5041. return -EFAULT;
  5042. rcu_read_lock();
  5043. rdev = find_rdev_nr_rcu(mddev, info.number);
  5044. if (rdev) {
  5045. info.major = MAJOR(rdev->bdev->bd_dev);
  5046. info.minor = MINOR(rdev->bdev->bd_dev);
  5047. info.raid_disk = rdev->raid_disk;
  5048. info.state = 0;
  5049. if (test_bit(Faulty, &rdev->flags))
  5050. info.state |= (1<<MD_DISK_FAULTY);
  5051. else if (test_bit(In_sync, &rdev->flags)) {
  5052. info.state |= (1<<MD_DISK_ACTIVE);
  5053. info.state |= (1<<MD_DISK_SYNC);
  5054. }
  5055. if (test_bit(WriteMostly, &rdev->flags))
  5056. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5057. } else {
  5058. info.major = info.minor = 0;
  5059. info.raid_disk = -1;
  5060. info.state = (1<<MD_DISK_REMOVED);
  5061. }
  5062. rcu_read_unlock();
  5063. if (copy_to_user(arg, &info, sizeof(info)))
  5064. return -EFAULT;
  5065. return 0;
  5066. }
  5067. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5068. {
  5069. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5070. struct md_rdev *rdev;
  5071. dev_t dev = MKDEV(info->major,info->minor);
  5072. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5073. return -EOVERFLOW;
  5074. if (!mddev->raid_disks) {
  5075. int err;
  5076. /* expecting a device which has a superblock */
  5077. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5078. if (IS_ERR(rdev)) {
  5079. printk(KERN_WARNING
  5080. "md: md_import_device returned %ld\n",
  5081. PTR_ERR(rdev));
  5082. return PTR_ERR(rdev);
  5083. }
  5084. if (!list_empty(&mddev->disks)) {
  5085. struct md_rdev *rdev0
  5086. = list_entry(mddev->disks.next,
  5087. struct md_rdev, same_set);
  5088. err = super_types[mddev->major_version]
  5089. .load_super(rdev, rdev0, mddev->minor_version);
  5090. if (err < 0) {
  5091. printk(KERN_WARNING
  5092. "md: %s has different UUID to %s\n",
  5093. bdevname(rdev->bdev,b),
  5094. bdevname(rdev0->bdev,b2));
  5095. export_rdev(rdev);
  5096. return -EINVAL;
  5097. }
  5098. }
  5099. err = bind_rdev_to_array(rdev, mddev);
  5100. if (err)
  5101. export_rdev(rdev);
  5102. return err;
  5103. }
  5104. /*
  5105. * add_new_disk can be used once the array is assembled
  5106. * to add "hot spares". They must already have a superblock
  5107. * written
  5108. */
  5109. if (mddev->pers) {
  5110. int err;
  5111. if (!mddev->pers->hot_add_disk) {
  5112. printk(KERN_WARNING
  5113. "%s: personality does not support diskops!\n",
  5114. mdname(mddev));
  5115. return -EINVAL;
  5116. }
  5117. if (mddev->persistent)
  5118. rdev = md_import_device(dev, mddev->major_version,
  5119. mddev->minor_version);
  5120. else
  5121. rdev = md_import_device(dev, -1, -1);
  5122. if (IS_ERR(rdev)) {
  5123. printk(KERN_WARNING
  5124. "md: md_import_device returned %ld\n",
  5125. PTR_ERR(rdev));
  5126. return PTR_ERR(rdev);
  5127. }
  5128. /* set saved_raid_disk if appropriate */
  5129. if (!mddev->persistent) {
  5130. if (info->state & (1<<MD_DISK_SYNC) &&
  5131. info->raid_disk < mddev->raid_disks) {
  5132. rdev->raid_disk = info->raid_disk;
  5133. set_bit(In_sync, &rdev->flags);
  5134. } else
  5135. rdev->raid_disk = -1;
  5136. } else
  5137. super_types[mddev->major_version].
  5138. validate_super(mddev, rdev);
  5139. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5140. rdev->raid_disk != info->raid_disk) {
  5141. /* This was a hot-add request, but events doesn't
  5142. * match, so reject it.
  5143. */
  5144. export_rdev(rdev);
  5145. return -EINVAL;
  5146. }
  5147. if (test_bit(In_sync, &rdev->flags))
  5148. rdev->saved_raid_disk = rdev->raid_disk;
  5149. else
  5150. rdev->saved_raid_disk = -1;
  5151. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5152. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5153. set_bit(WriteMostly, &rdev->flags);
  5154. else
  5155. clear_bit(WriteMostly, &rdev->flags);
  5156. rdev->raid_disk = -1;
  5157. err = bind_rdev_to_array(rdev, mddev);
  5158. if (!err && !mddev->pers->hot_remove_disk) {
  5159. /* If there is hot_add_disk but no hot_remove_disk
  5160. * then added disks for geometry changes,
  5161. * and should be added immediately.
  5162. */
  5163. super_types[mddev->major_version].
  5164. validate_super(mddev, rdev);
  5165. err = mddev->pers->hot_add_disk(mddev, rdev);
  5166. if (err)
  5167. unbind_rdev_from_array(rdev);
  5168. }
  5169. if (err)
  5170. export_rdev(rdev);
  5171. else
  5172. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5173. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5174. if (mddev->degraded)
  5175. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5176. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5177. if (!err)
  5178. md_new_event(mddev);
  5179. md_wakeup_thread(mddev->thread);
  5180. return err;
  5181. }
  5182. /* otherwise, add_new_disk is only allowed
  5183. * for major_version==0 superblocks
  5184. */
  5185. if (mddev->major_version != 0) {
  5186. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5187. mdname(mddev));
  5188. return -EINVAL;
  5189. }
  5190. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5191. int err;
  5192. rdev = md_import_device(dev, -1, 0);
  5193. if (IS_ERR(rdev)) {
  5194. printk(KERN_WARNING
  5195. "md: error, md_import_device() returned %ld\n",
  5196. PTR_ERR(rdev));
  5197. return PTR_ERR(rdev);
  5198. }
  5199. rdev->desc_nr = info->number;
  5200. if (info->raid_disk < mddev->raid_disks)
  5201. rdev->raid_disk = info->raid_disk;
  5202. else
  5203. rdev->raid_disk = -1;
  5204. if (rdev->raid_disk < mddev->raid_disks)
  5205. if (info->state & (1<<MD_DISK_SYNC))
  5206. set_bit(In_sync, &rdev->flags);
  5207. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5208. set_bit(WriteMostly, &rdev->flags);
  5209. if (!mddev->persistent) {
  5210. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5211. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5212. } else
  5213. rdev->sb_start = calc_dev_sboffset(rdev);
  5214. rdev->sectors = rdev->sb_start;
  5215. err = bind_rdev_to_array(rdev, mddev);
  5216. if (err) {
  5217. export_rdev(rdev);
  5218. return err;
  5219. }
  5220. }
  5221. return 0;
  5222. }
  5223. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5224. {
  5225. char b[BDEVNAME_SIZE];
  5226. struct md_rdev *rdev;
  5227. rdev = find_rdev(mddev, dev);
  5228. if (!rdev)
  5229. return -ENXIO;
  5230. clear_bit(Blocked, &rdev->flags);
  5231. remove_and_add_spares(mddev, rdev);
  5232. if (rdev->raid_disk >= 0)
  5233. goto busy;
  5234. kick_rdev_from_array(rdev);
  5235. md_update_sb(mddev, 1);
  5236. md_new_event(mddev);
  5237. return 0;
  5238. busy:
  5239. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5240. bdevname(rdev->bdev,b), mdname(mddev));
  5241. return -EBUSY;
  5242. }
  5243. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5244. {
  5245. char b[BDEVNAME_SIZE];
  5246. int err;
  5247. struct md_rdev *rdev;
  5248. if (!mddev->pers)
  5249. return -ENODEV;
  5250. if (mddev->major_version != 0) {
  5251. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5252. " version-0 superblocks.\n",
  5253. mdname(mddev));
  5254. return -EINVAL;
  5255. }
  5256. if (!mddev->pers->hot_add_disk) {
  5257. printk(KERN_WARNING
  5258. "%s: personality does not support diskops!\n",
  5259. mdname(mddev));
  5260. return -EINVAL;
  5261. }
  5262. rdev = md_import_device(dev, -1, 0);
  5263. if (IS_ERR(rdev)) {
  5264. printk(KERN_WARNING
  5265. "md: error, md_import_device() returned %ld\n",
  5266. PTR_ERR(rdev));
  5267. return -EINVAL;
  5268. }
  5269. if (mddev->persistent)
  5270. rdev->sb_start = calc_dev_sboffset(rdev);
  5271. else
  5272. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5273. rdev->sectors = rdev->sb_start;
  5274. if (test_bit(Faulty, &rdev->flags)) {
  5275. printk(KERN_WARNING
  5276. "md: can not hot-add faulty %s disk to %s!\n",
  5277. bdevname(rdev->bdev,b), mdname(mddev));
  5278. err = -EINVAL;
  5279. goto abort_export;
  5280. }
  5281. clear_bit(In_sync, &rdev->flags);
  5282. rdev->desc_nr = -1;
  5283. rdev->saved_raid_disk = -1;
  5284. err = bind_rdev_to_array(rdev, mddev);
  5285. if (err)
  5286. goto abort_export;
  5287. /*
  5288. * The rest should better be atomic, we can have disk failures
  5289. * noticed in interrupt contexts ...
  5290. */
  5291. rdev->raid_disk = -1;
  5292. md_update_sb(mddev, 1);
  5293. /*
  5294. * Kick recovery, maybe this spare has to be added to the
  5295. * array immediately.
  5296. */
  5297. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5298. md_wakeup_thread(mddev->thread);
  5299. md_new_event(mddev);
  5300. return 0;
  5301. abort_export:
  5302. export_rdev(rdev);
  5303. return err;
  5304. }
  5305. static int set_bitmap_file(struct mddev *mddev, int fd)
  5306. {
  5307. int err;
  5308. if (mddev->pers) {
  5309. if (!mddev->pers->quiesce)
  5310. return -EBUSY;
  5311. if (mddev->recovery || mddev->sync_thread)
  5312. return -EBUSY;
  5313. /* we should be able to change the bitmap.. */
  5314. }
  5315. if (fd >= 0) {
  5316. if (mddev->bitmap)
  5317. return -EEXIST; /* cannot add when bitmap is present */
  5318. mddev->bitmap_info.file = fget(fd);
  5319. if (mddev->bitmap_info.file == NULL) {
  5320. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5321. mdname(mddev));
  5322. return -EBADF;
  5323. }
  5324. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5325. if (err) {
  5326. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5327. mdname(mddev));
  5328. fput(mddev->bitmap_info.file);
  5329. mddev->bitmap_info.file = NULL;
  5330. return err;
  5331. }
  5332. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5333. } else if (mddev->bitmap == NULL)
  5334. return -ENOENT; /* cannot remove what isn't there */
  5335. err = 0;
  5336. if (mddev->pers) {
  5337. mddev->pers->quiesce(mddev, 1);
  5338. if (fd >= 0) {
  5339. err = bitmap_create(mddev);
  5340. if (!err)
  5341. err = bitmap_load(mddev);
  5342. }
  5343. if (fd < 0 || err) {
  5344. bitmap_destroy(mddev);
  5345. fd = -1; /* make sure to put the file */
  5346. }
  5347. mddev->pers->quiesce(mddev, 0);
  5348. }
  5349. if (fd < 0) {
  5350. if (mddev->bitmap_info.file) {
  5351. restore_bitmap_write_access(mddev->bitmap_info.file);
  5352. fput(mddev->bitmap_info.file);
  5353. }
  5354. mddev->bitmap_info.file = NULL;
  5355. }
  5356. return err;
  5357. }
  5358. /*
  5359. * set_array_info is used two different ways
  5360. * The original usage is when creating a new array.
  5361. * In this usage, raid_disks is > 0 and it together with
  5362. * level, size, not_persistent,layout,chunksize determine the
  5363. * shape of the array.
  5364. * This will always create an array with a type-0.90.0 superblock.
  5365. * The newer usage is when assembling an array.
  5366. * In this case raid_disks will be 0, and the major_version field is
  5367. * use to determine which style super-blocks are to be found on the devices.
  5368. * The minor and patch _version numbers are also kept incase the
  5369. * super_block handler wishes to interpret them.
  5370. */
  5371. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5372. {
  5373. if (info->raid_disks == 0) {
  5374. /* just setting version number for superblock loading */
  5375. if (info->major_version < 0 ||
  5376. info->major_version >= ARRAY_SIZE(super_types) ||
  5377. super_types[info->major_version].name == NULL) {
  5378. /* maybe try to auto-load a module? */
  5379. printk(KERN_INFO
  5380. "md: superblock version %d not known\n",
  5381. info->major_version);
  5382. return -EINVAL;
  5383. }
  5384. mddev->major_version = info->major_version;
  5385. mddev->minor_version = info->minor_version;
  5386. mddev->patch_version = info->patch_version;
  5387. mddev->persistent = !info->not_persistent;
  5388. /* ensure mddev_put doesn't delete this now that there
  5389. * is some minimal configuration.
  5390. */
  5391. mddev->ctime = get_seconds();
  5392. return 0;
  5393. }
  5394. mddev->major_version = MD_MAJOR_VERSION;
  5395. mddev->minor_version = MD_MINOR_VERSION;
  5396. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5397. mddev->ctime = get_seconds();
  5398. mddev->level = info->level;
  5399. mddev->clevel[0] = 0;
  5400. mddev->dev_sectors = 2 * (sector_t)info->size;
  5401. mddev->raid_disks = info->raid_disks;
  5402. /* don't set md_minor, it is determined by which /dev/md* was
  5403. * openned
  5404. */
  5405. if (info->state & (1<<MD_SB_CLEAN))
  5406. mddev->recovery_cp = MaxSector;
  5407. else
  5408. mddev->recovery_cp = 0;
  5409. mddev->persistent = ! info->not_persistent;
  5410. mddev->external = 0;
  5411. mddev->layout = info->layout;
  5412. mddev->chunk_sectors = info->chunk_size >> 9;
  5413. mddev->max_disks = MD_SB_DISKS;
  5414. if (mddev->persistent)
  5415. mddev->flags = 0;
  5416. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5417. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5418. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5419. mddev->bitmap_info.offset = 0;
  5420. mddev->reshape_position = MaxSector;
  5421. /*
  5422. * Generate a 128 bit UUID
  5423. */
  5424. get_random_bytes(mddev->uuid, 16);
  5425. mddev->new_level = mddev->level;
  5426. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5427. mddev->new_layout = mddev->layout;
  5428. mddev->delta_disks = 0;
  5429. mddev->reshape_backwards = 0;
  5430. return 0;
  5431. }
  5432. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5433. {
  5434. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5435. if (mddev->external_size)
  5436. return;
  5437. mddev->array_sectors = array_sectors;
  5438. }
  5439. EXPORT_SYMBOL(md_set_array_sectors);
  5440. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5441. {
  5442. struct md_rdev *rdev;
  5443. int rv;
  5444. int fit = (num_sectors == 0);
  5445. if (mddev->pers->resize == NULL)
  5446. return -EINVAL;
  5447. /* The "num_sectors" is the number of sectors of each device that
  5448. * is used. This can only make sense for arrays with redundancy.
  5449. * linear and raid0 always use whatever space is available. We can only
  5450. * consider changing this number if no resync or reconstruction is
  5451. * happening, and if the new size is acceptable. It must fit before the
  5452. * sb_start or, if that is <data_offset, it must fit before the size
  5453. * of each device. If num_sectors is zero, we find the largest size
  5454. * that fits.
  5455. */
  5456. if (mddev->sync_thread)
  5457. return -EBUSY;
  5458. rdev_for_each(rdev, mddev) {
  5459. sector_t avail = rdev->sectors;
  5460. if (fit && (num_sectors == 0 || num_sectors > avail))
  5461. num_sectors = avail;
  5462. if (avail < num_sectors)
  5463. return -ENOSPC;
  5464. }
  5465. rv = mddev->pers->resize(mddev, num_sectors);
  5466. if (!rv)
  5467. revalidate_disk(mddev->gendisk);
  5468. return rv;
  5469. }
  5470. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5471. {
  5472. int rv;
  5473. struct md_rdev *rdev;
  5474. /* change the number of raid disks */
  5475. if (mddev->pers->check_reshape == NULL)
  5476. return -EINVAL;
  5477. if (raid_disks <= 0 ||
  5478. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5479. return -EINVAL;
  5480. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5481. return -EBUSY;
  5482. rdev_for_each(rdev, mddev) {
  5483. if (mddev->raid_disks < raid_disks &&
  5484. rdev->data_offset < rdev->new_data_offset)
  5485. return -EINVAL;
  5486. if (mddev->raid_disks > raid_disks &&
  5487. rdev->data_offset > rdev->new_data_offset)
  5488. return -EINVAL;
  5489. }
  5490. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5491. if (mddev->delta_disks < 0)
  5492. mddev->reshape_backwards = 1;
  5493. else if (mddev->delta_disks > 0)
  5494. mddev->reshape_backwards = 0;
  5495. rv = mddev->pers->check_reshape(mddev);
  5496. if (rv < 0) {
  5497. mddev->delta_disks = 0;
  5498. mddev->reshape_backwards = 0;
  5499. }
  5500. return rv;
  5501. }
  5502. /*
  5503. * update_array_info is used to change the configuration of an
  5504. * on-line array.
  5505. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5506. * fields in the info are checked against the array.
  5507. * Any differences that cannot be handled will cause an error.
  5508. * Normally, only one change can be managed at a time.
  5509. */
  5510. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5511. {
  5512. int rv = 0;
  5513. int cnt = 0;
  5514. int state = 0;
  5515. /* calculate expected state,ignoring low bits */
  5516. if (mddev->bitmap && mddev->bitmap_info.offset)
  5517. state |= (1 << MD_SB_BITMAP_PRESENT);
  5518. if (mddev->major_version != info->major_version ||
  5519. mddev->minor_version != info->minor_version ||
  5520. /* mddev->patch_version != info->patch_version || */
  5521. mddev->ctime != info->ctime ||
  5522. mddev->level != info->level ||
  5523. /* mddev->layout != info->layout || */
  5524. !mddev->persistent != info->not_persistent||
  5525. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5526. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5527. ((state^info->state) & 0xfffffe00)
  5528. )
  5529. return -EINVAL;
  5530. /* Check there is only one change */
  5531. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5532. cnt++;
  5533. if (mddev->raid_disks != info->raid_disks)
  5534. cnt++;
  5535. if (mddev->layout != info->layout)
  5536. cnt++;
  5537. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5538. cnt++;
  5539. if (cnt == 0)
  5540. return 0;
  5541. if (cnt > 1)
  5542. return -EINVAL;
  5543. if (mddev->layout != info->layout) {
  5544. /* Change layout
  5545. * we don't need to do anything at the md level, the
  5546. * personality will take care of it all.
  5547. */
  5548. if (mddev->pers->check_reshape == NULL)
  5549. return -EINVAL;
  5550. else {
  5551. mddev->new_layout = info->layout;
  5552. rv = mddev->pers->check_reshape(mddev);
  5553. if (rv)
  5554. mddev->new_layout = mddev->layout;
  5555. return rv;
  5556. }
  5557. }
  5558. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5559. rv = update_size(mddev, (sector_t)info->size * 2);
  5560. if (mddev->raid_disks != info->raid_disks)
  5561. rv = update_raid_disks(mddev, info->raid_disks);
  5562. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5563. if (mddev->pers->quiesce == NULL)
  5564. return -EINVAL;
  5565. if (mddev->recovery || mddev->sync_thread)
  5566. return -EBUSY;
  5567. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5568. /* add the bitmap */
  5569. if (mddev->bitmap)
  5570. return -EEXIST;
  5571. if (mddev->bitmap_info.default_offset == 0)
  5572. return -EINVAL;
  5573. mddev->bitmap_info.offset =
  5574. mddev->bitmap_info.default_offset;
  5575. mddev->bitmap_info.space =
  5576. mddev->bitmap_info.default_space;
  5577. mddev->pers->quiesce(mddev, 1);
  5578. rv = bitmap_create(mddev);
  5579. if (!rv)
  5580. rv = bitmap_load(mddev);
  5581. if (rv)
  5582. bitmap_destroy(mddev);
  5583. mddev->pers->quiesce(mddev, 0);
  5584. } else {
  5585. /* remove the bitmap */
  5586. if (!mddev->bitmap)
  5587. return -ENOENT;
  5588. if (mddev->bitmap->storage.file)
  5589. return -EINVAL;
  5590. mddev->pers->quiesce(mddev, 1);
  5591. bitmap_destroy(mddev);
  5592. mddev->pers->quiesce(mddev, 0);
  5593. mddev->bitmap_info.offset = 0;
  5594. }
  5595. }
  5596. md_update_sb(mddev, 1);
  5597. return rv;
  5598. }
  5599. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5600. {
  5601. struct md_rdev *rdev;
  5602. int err = 0;
  5603. if (mddev->pers == NULL)
  5604. return -ENODEV;
  5605. rcu_read_lock();
  5606. rdev = find_rdev_rcu(mddev, dev);
  5607. if (!rdev)
  5608. err = -ENODEV;
  5609. else {
  5610. md_error(mddev, rdev);
  5611. if (!test_bit(Faulty, &rdev->flags))
  5612. err = -EBUSY;
  5613. }
  5614. rcu_read_unlock();
  5615. return err;
  5616. }
  5617. /*
  5618. * We have a problem here : there is no easy way to give a CHS
  5619. * virtual geometry. We currently pretend that we have a 2 heads
  5620. * 4 sectors (with a BIG number of cylinders...). This drives
  5621. * dosfs just mad... ;-)
  5622. */
  5623. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5624. {
  5625. struct mddev *mddev = bdev->bd_disk->private_data;
  5626. geo->heads = 2;
  5627. geo->sectors = 4;
  5628. geo->cylinders = mddev->array_sectors / 8;
  5629. return 0;
  5630. }
  5631. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5632. unsigned int cmd, unsigned long arg)
  5633. {
  5634. int err = 0;
  5635. void __user *argp = (void __user *)arg;
  5636. struct mddev *mddev = NULL;
  5637. int ro;
  5638. switch (cmd) {
  5639. case RAID_VERSION:
  5640. case GET_ARRAY_INFO:
  5641. case GET_DISK_INFO:
  5642. break;
  5643. default:
  5644. if (!capable(CAP_SYS_ADMIN))
  5645. return -EACCES;
  5646. }
  5647. /*
  5648. * Commands dealing with the RAID driver but not any
  5649. * particular array:
  5650. */
  5651. switch (cmd) {
  5652. case RAID_VERSION:
  5653. err = get_version(argp);
  5654. goto done;
  5655. case PRINT_RAID_DEBUG:
  5656. err = 0;
  5657. md_print_devices();
  5658. goto done;
  5659. #ifndef MODULE
  5660. case RAID_AUTORUN:
  5661. err = 0;
  5662. autostart_arrays(arg);
  5663. goto done;
  5664. #endif
  5665. default:;
  5666. }
  5667. /*
  5668. * Commands creating/starting a new array:
  5669. */
  5670. mddev = bdev->bd_disk->private_data;
  5671. if (!mddev) {
  5672. BUG();
  5673. goto abort;
  5674. }
  5675. /* Some actions do not requires the mutex */
  5676. switch (cmd) {
  5677. case GET_ARRAY_INFO:
  5678. if (!mddev->raid_disks && !mddev->external)
  5679. err = -ENODEV;
  5680. else
  5681. err = get_array_info(mddev, argp);
  5682. goto abort;
  5683. case GET_DISK_INFO:
  5684. if (!mddev->raid_disks && !mddev->external)
  5685. err = -ENODEV;
  5686. else
  5687. err = get_disk_info(mddev, argp);
  5688. goto abort;
  5689. case SET_DISK_FAULTY:
  5690. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5691. goto abort;
  5692. }
  5693. if (cmd == ADD_NEW_DISK)
  5694. /* need to ensure md_delayed_delete() has completed */
  5695. flush_workqueue(md_misc_wq);
  5696. err = mddev_lock(mddev);
  5697. if (err) {
  5698. printk(KERN_INFO
  5699. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5700. err, cmd);
  5701. goto abort;
  5702. }
  5703. if (cmd == SET_ARRAY_INFO) {
  5704. mdu_array_info_t info;
  5705. if (!arg)
  5706. memset(&info, 0, sizeof(info));
  5707. else if (copy_from_user(&info, argp, sizeof(info))) {
  5708. err = -EFAULT;
  5709. goto abort_unlock;
  5710. }
  5711. if (mddev->pers) {
  5712. err = update_array_info(mddev, &info);
  5713. if (err) {
  5714. printk(KERN_WARNING "md: couldn't update"
  5715. " array info. %d\n", err);
  5716. goto abort_unlock;
  5717. }
  5718. goto done_unlock;
  5719. }
  5720. if (!list_empty(&mddev->disks)) {
  5721. printk(KERN_WARNING
  5722. "md: array %s already has disks!\n",
  5723. mdname(mddev));
  5724. err = -EBUSY;
  5725. goto abort_unlock;
  5726. }
  5727. if (mddev->raid_disks) {
  5728. printk(KERN_WARNING
  5729. "md: array %s already initialised!\n",
  5730. mdname(mddev));
  5731. err = -EBUSY;
  5732. goto abort_unlock;
  5733. }
  5734. err = set_array_info(mddev, &info);
  5735. if (err) {
  5736. printk(KERN_WARNING "md: couldn't set"
  5737. " array info. %d\n", err);
  5738. goto abort_unlock;
  5739. }
  5740. goto done_unlock;
  5741. }
  5742. /*
  5743. * Commands querying/configuring an existing array:
  5744. */
  5745. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5746. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5747. if ((!mddev->raid_disks && !mddev->external)
  5748. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5749. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5750. && cmd != GET_BITMAP_FILE) {
  5751. err = -ENODEV;
  5752. goto abort_unlock;
  5753. }
  5754. /*
  5755. * Commands even a read-only array can execute:
  5756. */
  5757. switch (cmd) {
  5758. case GET_BITMAP_FILE:
  5759. err = get_bitmap_file(mddev, argp);
  5760. goto done_unlock;
  5761. case RESTART_ARRAY_RW:
  5762. err = restart_array(mddev);
  5763. goto done_unlock;
  5764. case STOP_ARRAY:
  5765. err = do_md_stop(mddev, 0, bdev);
  5766. goto done_unlock;
  5767. case STOP_ARRAY_RO:
  5768. err = md_set_readonly(mddev, bdev);
  5769. goto done_unlock;
  5770. case HOT_REMOVE_DISK:
  5771. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5772. goto done_unlock;
  5773. case ADD_NEW_DISK:
  5774. /* We can support ADD_NEW_DISK on read-only arrays
  5775. * on if we are re-adding a preexisting device.
  5776. * So require mddev->pers and MD_DISK_SYNC.
  5777. */
  5778. if (mddev->pers) {
  5779. mdu_disk_info_t info;
  5780. if (copy_from_user(&info, argp, sizeof(info)))
  5781. err = -EFAULT;
  5782. else if (!(info.state & (1<<MD_DISK_SYNC)))
  5783. /* Need to clear read-only for this */
  5784. break;
  5785. else
  5786. err = add_new_disk(mddev, &info);
  5787. goto done_unlock;
  5788. }
  5789. break;
  5790. case BLKROSET:
  5791. if (get_user(ro, (int __user *)(arg))) {
  5792. err = -EFAULT;
  5793. goto done_unlock;
  5794. }
  5795. err = -EINVAL;
  5796. /* if the bdev is going readonly the value of mddev->ro
  5797. * does not matter, no writes are coming
  5798. */
  5799. if (ro)
  5800. goto done_unlock;
  5801. /* are we are already prepared for writes? */
  5802. if (mddev->ro != 1)
  5803. goto done_unlock;
  5804. /* transitioning to readauto need only happen for
  5805. * arrays that call md_write_start
  5806. */
  5807. if (mddev->pers) {
  5808. err = restart_array(mddev);
  5809. if (err == 0) {
  5810. mddev->ro = 2;
  5811. set_disk_ro(mddev->gendisk, 0);
  5812. }
  5813. }
  5814. goto done_unlock;
  5815. }
  5816. /*
  5817. * The remaining ioctls are changing the state of the
  5818. * superblock, so we do not allow them on read-only arrays.
  5819. * However non-MD ioctls (e.g. get-size) will still come through
  5820. * here and hit the 'default' below, so only disallow
  5821. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5822. */
  5823. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5824. if (mddev->ro == 2) {
  5825. mddev->ro = 0;
  5826. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5827. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5828. /* mddev_unlock will wake thread */
  5829. /* If a device failed while we were read-only, we
  5830. * need to make sure the metadata is updated now.
  5831. */
  5832. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5833. mddev_unlock(mddev);
  5834. wait_event(mddev->sb_wait,
  5835. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5836. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5837. mddev_lock(mddev);
  5838. }
  5839. } else {
  5840. err = -EROFS;
  5841. goto abort_unlock;
  5842. }
  5843. }
  5844. switch (cmd) {
  5845. case ADD_NEW_DISK:
  5846. {
  5847. mdu_disk_info_t info;
  5848. if (copy_from_user(&info, argp, sizeof(info)))
  5849. err = -EFAULT;
  5850. else
  5851. err = add_new_disk(mddev, &info);
  5852. goto done_unlock;
  5853. }
  5854. case HOT_ADD_DISK:
  5855. err = hot_add_disk(mddev, new_decode_dev(arg));
  5856. goto done_unlock;
  5857. case RUN_ARRAY:
  5858. err = do_md_run(mddev);
  5859. goto done_unlock;
  5860. case SET_BITMAP_FILE:
  5861. err = set_bitmap_file(mddev, (int)arg);
  5862. goto done_unlock;
  5863. default:
  5864. err = -EINVAL;
  5865. goto abort_unlock;
  5866. }
  5867. done_unlock:
  5868. abort_unlock:
  5869. if (mddev->hold_active == UNTIL_IOCTL &&
  5870. err != -EINVAL)
  5871. mddev->hold_active = 0;
  5872. mddev_unlock(mddev);
  5873. return err;
  5874. done:
  5875. if (err)
  5876. MD_BUG();
  5877. abort:
  5878. return err;
  5879. }
  5880. #ifdef CONFIG_COMPAT
  5881. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5882. unsigned int cmd, unsigned long arg)
  5883. {
  5884. switch (cmd) {
  5885. case HOT_REMOVE_DISK:
  5886. case HOT_ADD_DISK:
  5887. case SET_DISK_FAULTY:
  5888. case SET_BITMAP_FILE:
  5889. /* These take in integer arg, do not convert */
  5890. break;
  5891. default:
  5892. arg = (unsigned long)compat_ptr(arg);
  5893. break;
  5894. }
  5895. return md_ioctl(bdev, mode, cmd, arg);
  5896. }
  5897. #endif /* CONFIG_COMPAT */
  5898. static int md_open(struct block_device *bdev, fmode_t mode)
  5899. {
  5900. /*
  5901. * Succeed if we can lock the mddev, which confirms that
  5902. * it isn't being stopped right now.
  5903. */
  5904. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5905. int err;
  5906. if (!mddev)
  5907. return -ENODEV;
  5908. if (mddev->gendisk != bdev->bd_disk) {
  5909. /* we are racing with mddev_put which is discarding this
  5910. * bd_disk.
  5911. */
  5912. mddev_put(mddev);
  5913. /* Wait until bdev->bd_disk is definitely gone */
  5914. flush_workqueue(md_misc_wq);
  5915. /* Then retry the open from the top */
  5916. return -ERESTARTSYS;
  5917. }
  5918. BUG_ON(mddev != bdev->bd_disk->private_data);
  5919. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5920. goto out;
  5921. err = 0;
  5922. atomic_inc(&mddev->openers);
  5923. mutex_unlock(&mddev->open_mutex);
  5924. check_disk_change(bdev);
  5925. out:
  5926. return err;
  5927. }
  5928. static int md_release(struct gendisk *disk, fmode_t mode)
  5929. {
  5930. struct mddev *mddev = disk->private_data;
  5931. BUG_ON(!mddev);
  5932. atomic_dec(&mddev->openers);
  5933. mddev_put(mddev);
  5934. return 0;
  5935. }
  5936. static int md_media_changed(struct gendisk *disk)
  5937. {
  5938. struct mddev *mddev = disk->private_data;
  5939. return mddev->changed;
  5940. }
  5941. static int md_revalidate(struct gendisk *disk)
  5942. {
  5943. struct mddev *mddev = disk->private_data;
  5944. mddev->changed = 0;
  5945. return 0;
  5946. }
  5947. static const struct block_device_operations md_fops =
  5948. {
  5949. .owner = THIS_MODULE,
  5950. .open = md_open,
  5951. .release = md_release,
  5952. .ioctl = md_ioctl,
  5953. #ifdef CONFIG_COMPAT
  5954. .compat_ioctl = md_compat_ioctl,
  5955. #endif
  5956. .getgeo = md_getgeo,
  5957. .media_changed = md_media_changed,
  5958. .revalidate_disk= md_revalidate,
  5959. };
  5960. static int md_thread(void * arg)
  5961. {
  5962. struct md_thread *thread = arg;
  5963. /*
  5964. * md_thread is a 'system-thread', it's priority should be very
  5965. * high. We avoid resource deadlocks individually in each
  5966. * raid personality. (RAID5 does preallocation) We also use RR and
  5967. * the very same RT priority as kswapd, thus we will never get
  5968. * into a priority inversion deadlock.
  5969. *
  5970. * we definitely have to have equal or higher priority than
  5971. * bdflush, otherwise bdflush will deadlock if there are too
  5972. * many dirty RAID5 blocks.
  5973. */
  5974. allow_signal(SIGKILL);
  5975. while (!kthread_should_stop()) {
  5976. /* We need to wait INTERRUPTIBLE so that
  5977. * we don't add to the load-average.
  5978. * That means we need to be sure no signals are
  5979. * pending
  5980. */
  5981. if (signal_pending(current))
  5982. flush_signals(current);
  5983. wait_event_interruptible_timeout
  5984. (thread->wqueue,
  5985. test_bit(THREAD_WAKEUP, &thread->flags)
  5986. || kthread_should_stop(),
  5987. thread->timeout);
  5988. clear_bit(THREAD_WAKEUP, &thread->flags);
  5989. if (!kthread_should_stop())
  5990. thread->run(thread);
  5991. }
  5992. return 0;
  5993. }
  5994. void md_wakeup_thread(struct md_thread *thread)
  5995. {
  5996. if (thread) {
  5997. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5998. set_bit(THREAD_WAKEUP, &thread->flags);
  5999. wake_up(&thread->wqueue);
  6000. }
  6001. }
  6002. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  6003. struct mddev *mddev, const char *name)
  6004. {
  6005. struct md_thread *thread;
  6006. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  6007. if (!thread)
  6008. return NULL;
  6009. init_waitqueue_head(&thread->wqueue);
  6010. thread->run = run;
  6011. thread->mddev = mddev;
  6012. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  6013. thread->tsk = kthread_run(md_thread, thread,
  6014. "%s_%s",
  6015. mdname(thread->mddev),
  6016. name);
  6017. if (IS_ERR(thread->tsk)) {
  6018. kfree(thread);
  6019. return NULL;
  6020. }
  6021. return thread;
  6022. }
  6023. void md_unregister_thread(struct md_thread **threadp)
  6024. {
  6025. struct md_thread *thread = *threadp;
  6026. if (!thread)
  6027. return;
  6028. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6029. /* Locking ensures that mddev_unlock does not wake_up a
  6030. * non-existent thread
  6031. */
  6032. spin_lock(&pers_lock);
  6033. *threadp = NULL;
  6034. spin_unlock(&pers_lock);
  6035. kthread_stop(thread->tsk);
  6036. kfree(thread);
  6037. }
  6038. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6039. {
  6040. if (!mddev) {
  6041. MD_BUG();
  6042. return;
  6043. }
  6044. if (!rdev || test_bit(Faulty, &rdev->flags))
  6045. return;
  6046. if (!mddev->pers || !mddev->pers->error_handler)
  6047. return;
  6048. mddev->pers->error_handler(mddev,rdev);
  6049. if (mddev->degraded)
  6050. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6051. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6052. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6053. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6054. md_wakeup_thread(mddev->thread);
  6055. if (mddev->event_work.func)
  6056. queue_work(md_misc_wq, &mddev->event_work);
  6057. md_new_event_inintr(mddev);
  6058. }
  6059. /* seq_file implementation /proc/mdstat */
  6060. static void status_unused(struct seq_file *seq)
  6061. {
  6062. int i = 0;
  6063. struct md_rdev *rdev;
  6064. seq_printf(seq, "unused devices: ");
  6065. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6066. char b[BDEVNAME_SIZE];
  6067. i++;
  6068. seq_printf(seq, "%s ",
  6069. bdevname(rdev->bdev,b));
  6070. }
  6071. if (!i)
  6072. seq_printf(seq, "<none>");
  6073. seq_printf(seq, "\n");
  6074. }
  6075. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6076. {
  6077. sector_t max_sectors, resync, res;
  6078. unsigned long dt, db;
  6079. sector_t rt;
  6080. int scale;
  6081. unsigned int per_milli;
  6082. if (mddev->curr_resync <= 3)
  6083. resync = 0;
  6084. else
  6085. resync = mddev->curr_resync
  6086. - atomic_read(&mddev->recovery_active);
  6087. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6088. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6089. max_sectors = mddev->resync_max_sectors;
  6090. else
  6091. max_sectors = mddev->dev_sectors;
  6092. /*
  6093. * Should not happen.
  6094. */
  6095. if (!max_sectors) {
  6096. MD_BUG();
  6097. return;
  6098. }
  6099. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6100. * in a sector_t, and (max_sectors>>scale) will fit in a
  6101. * u32, as those are the requirements for sector_div.
  6102. * Thus 'scale' must be at least 10
  6103. */
  6104. scale = 10;
  6105. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6106. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6107. scale++;
  6108. }
  6109. res = (resync>>scale)*1000;
  6110. sector_div(res, (u32)((max_sectors>>scale)+1));
  6111. per_milli = res;
  6112. {
  6113. int i, x = per_milli/50, y = 20-x;
  6114. seq_printf(seq, "[");
  6115. for (i = 0; i < x; i++)
  6116. seq_printf(seq, "=");
  6117. seq_printf(seq, ">");
  6118. for (i = 0; i < y; i++)
  6119. seq_printf(seq, ".");
  6120. seq_printf(seq, "] ");
  6121. }
  6122. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6123. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6124. "reshape" :
  6125. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6126. "check" :
  6127. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6128. "resync" : "recovery"))),
  6129. per_milli/10, per_milli % 10,
  6130. (unsigned long long) resync/2,
  6131. (unsigned long long) max_sectors/2);
  6132. /*
  6133. * dt: time from mark until now
  6134. * db: blocks written from mark until now
  6135. * rt: remaining time
  6136. *
  6137. * rt is a sector_t, so could be 32bit or 64bit.
  6138. * So we divide before multiply in case it is 32bit and close
  6139. * to the limit.
  6140. * We scale the divisor (db) by 32 to avoid losing precision
  6141. * near the end of resync when the number of remaining sectors
  6142. * is close to 'db'.
  6143. * We then divide rt by 32 after multiplying by db to compensate.
  6144. * The '+1' avoids division by zero if db is very small.
  6145. */
  6146. dt = ((jiffies - mddev->resync_mark) / HZ);
  6147. if (!dt) dt++;
  6148. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6149. - mddev->resync_mark_cnt;
  6150. rt = max_sectors - resync; /* number of remaining sectors */
  6151. sector_div(rt, db/32+1);
  6152. rt *= dt;
  6153. rt >>= 5;
  6154. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6155. ((unsigned long)rt % 60)/6);
  6156. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6157. }
  6158. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6159. {
  6160. struct list_head *tmp;
  6161. loff_t l = *pos;
  6162. struct mddev *mddev;
  6163. if (l >= 0x10000)
  6164. return NULL;
  6165. if (!l--)
  6166. /* header */
  6167. return (void*)1;
  6168. spin_lock(&all_mddevs_lock);
  6169. list_for_each(tmp,&all_mddevs)
  6170. if (!l--) {
  6171. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6172. mddev_get(mddev);
  6173. spin_unlock(&all_mddevs_lock);
  6174. return mddev;
  6175. }
  6176. spin_unlock(&all_mddevs_lock);
  6177. if (!l--)
  6178. return (void*)2;/* tail */
  6179. return NULL;
  6180. }
  6181. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6182. {
  6183. struct list_head *tmp;
  6184. struct mddev *next_mddev, *mddev = v;
  6185. ++*pos;
  6186. if (v == (void*)2)
  6187. return NULL;
  6188. spin_lock(&all_mddevs_lock);
  6189. if (v == (void*)1)
  6190. tmp = all_mddevs.next;
  6191. else
  6192. tmp = mddev->all_mddevs.next;
  6193. if (tmp != &all_mddevs)
  6194. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6195. else {
  6196. next_mddev = (void*)2;
  6197. *pos = 0x10000;
  6198. }
  6199. spin_unlock(&all_mddevs_lock);
  6200. if (v != (void*)1)
  6201. mddev_put(mddev);
  6202. return next_mddev;
  6203. }
  6204. static void md_seq_stop(struct seq_file *seq, void *v)
  6205. {
  6206. struct mddev *mddev = v;
  6207. if (mddev && v != (void*)1 && v != (void*)2)
  6208. mddev_put(mddev);
  6209. }
  6210. static int md_seq_show(struct seq_file *seq, void *v)
  6211. {
  6212. struct mddev *mddev = v;
  6213. sector_t sectors;
  6214. struct md_rdev *rdev;
  6215. if (v == (void*)1) {
  6216. struct md_personality *pers;
  6217. seq_printf(seq, "Personalities : ");
  6218. spin_lock(&pers_lock);
  6219. list_for_each_entry(pers, &pers_list, list)
  6220. seq_printf(seq, "[%s] ", pers->name);
  6221. spin_unlock(&pers_lock);
  6222. seq_printf(seq, "\n");
  6223. seq->poll_event = atomic_read(&md_event_count);
  6224. return 0;
  6225. }
  6226. if (v == (void*)2) {
  6227. status_unused(seq);
  6228. return 0;
  6229. }
  6230. if (mddev_lock(mddev) < 0)
  6231. return -EINTR;
  6232. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6233. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6234. mddev->pers ? "" : "in");
  6235. if (mddev->pers) {
  6236. if (mddev->ro==1)
  6237. seq_printf(seq, " (read-only)");
  6238. if (mddev->ro==2)
  6239. seq_printf(seq, " (auto-read-only)");
  6240. seq_printf(seq, " %s", mddev->pers->name);
  6241. }
  6242. sectors = 0;
  6243. rdev_for_each(rdev, mddev) {
  6244. char b[BDEVNAME_SIZE];
  6245. seq_printf(seq, " %s[%d]",
  6246. bdevname(rdev->bdev,b), rdev->desc_nr);
  6247. if (test_bit(WriteMostly, &rdev->flags))
  6248. seq_printf(seq, "(W)");
  6249. if (test_bit(Faulty, &rdev->flags)) {
  6250. seq_printf(seq, "(F)");
  6251. continue;
  6252. }
  6253. if (rdev->raid_disk < 0)
  6254. seq_printf(seq, "(S)"); /* spare */
  6255. if (test_bit(Replacement, &rdev->flags))
  6256. seq_printf(seq, "(R)");
  6257. sectors += rdev->sectors;
  6258. }
  6259. if (!list_empty(&mddev->disks)) {
  6260. if (mddev->pers)
  6261. seq_printf(seq, "\n %llu blocks",
  6262. (unsigned long long)
  6263. mddev->array_sectors / 2);
  6264. else
  6265. seq_printf(seq, "\n %llu blocks",
  6266. (unsigned long long)sectors / 2);
  6267. }
  6268. if (mddev->persistent) {
  6269. if (mddev->major_version != 0 ||
  6270. mddev->minor_version != 90) {
  6271. seq_printf(seq," super %d.%d",
  6272. mddev->major_version,
  6273. mddev->minor_version);
  6274. }
  6275. } else if (mddev->external)
  6276. seq_printf(seq, " super external:%s",
  6277. mddev->metadata_type);
  6278. else
  6279. seq_printf(seq, " super non-persistent");
  6280. if (mddev->pers) {
  6281. mddev->pers->status(seq, mddev);
  6282. seq_printf(seq, "\n ");
  6283. if (mddev->pers->sync_request) {
  6284. if (mddev->curr_resync > 2) {
  6285. status_resync(seq, mddev);
  6286. seq_printf(seq, "\n ");
  6287. } else if (mddev->curr_resync >= 1)
  6288. seq_printf(seq, "\tresync=DELAYED\n ");
  6289. else if (mddev->recovery_cp < MaxSector)
  6290. seq_printf(seq, "\tresync=PENDING\n ");
  6291. }
  6292. } else
  6293. seq_printf(seq, "\n ");
  6294. bitmap_status(seq, mddev->bitmap);
  6295. seq_printf(seq, "\n");
  6296. }
  6297. mddev_unlock(mddev);
  6298. return 0;
  6299. }
  6300. static const struct seq_operations md_seq_ops = {
  6301. .start = md_seq_start,
  6302. .next = md_seq_next,
  6303. .stop = md_seq_stop,
  6304. .show = md_seq_show,
  6305. };
  6306. static int md_seq_open(struct inode *inode, struct file *file)
  6307. {
  6308. struct seq_file *seq;
  6309. int error;
  6310. error = seq_open(file, &md_seq_ops);
  6311. if (error)
  6312. return error;
  6313. seq = file->private_data;
  6314. seq->poll_event = atomic_read(&md_event_count);
  6315. return error;
  6316. }
  6317. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6318. {
  6319. struct seq_file *seq = filp->private_data;
  6320. int mask;
  6321. poll_wait(filp, &md_event_waiters, wait);
  6322. /* always allow read */
  6323. mask = POLLIN | POLLRDNORM;
  6324. if (seq->poll_event != atomic_read(&md_event_count))
  6325. mask |= POLLERR | POLLPRI;
  6326. return mask;
  6327. }
  6328. static const struct file_operations md_seq_fops = {
  6329. .owner = THIS_MODULE,
  6330. .open = md_seq_open,
  6331. .read = seq_read,
  6332. .llseek = seq_lseek,
  6333. .release = seq_release_private,
  6334. .poll = mdstat_poll,
  6335. };
  6336. int register_md_personality(struct md_personality *p)
  6337. {
  6338. spin_lock(&pers_lock);
  6339. list_add_tail(&p->list, &pers_list);
  6340. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6341. spin_unlock(&pers_lock);
  6342. return 0;
  6343. }
  6344. int unregister_md_personality(struct md_personality *p)
  6345. {
  6346. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6347. spin_lock(&pers_lock);
  6348. list_del_init(&p->list);
  6349. spin_unlock(&pers_lock);
  6350. return 0;
  6351. }
  6352. static int is_mddev_idle(struct mddev *mddev, int init)
  6353. {
  6354. struct md_rdev * rdev;
  6355. int idle;
  6356. int curr_events;
  6357. idle = 1;
  6358. rcu_read_lock();
  6359. rdev_for_each_rcu(rdev, mddev) {
  6360. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6361. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6362. (int)part_stat_read(&disk->part0, sectors[1]) -
  6363. atomic_read(&disk->sync_io);
  6364. /* sync IO will cause sync_io to increase before the disk_stats
  6365. * as sync_io is counted when a request starts, and
  6366. * disk_stats is counted when it completes.
  6367. * So resync activity will cause curr_events to be smaller than
  6368. * when there was no such activity.
  6369. * non-sync IO will cause disk_stat to increase without
  6370. * increasing sync_io so curr_events will (eventually)
  6371. * be larger than it was before. Once it becomes
  6372. * substantially larger, the test below will cause
  6373. * the array to appear non-idle, and resync will slow
  6374. * down.
  6375. * If there is a lot of outstanding resync activity when
  6376. * we set last_event to curr_events, then all that activity
  6377. * completing might cause the array to appear non-idle
  6378. * and resync will be slowed down even though there might
  6379. * not have been non-resync activity. This will only
  6380. * happen once though. 'last_events' will soon reflect
  6381. * the state where there is little or no outstanding
  6382. * resync requests, and further resync activity will
  6383. * always make curr_events less than last_events.
  6384. *
  6385. */
  6386. if (init || curr_events - rdev->last_events > 64) {
  6387. rdev->last_events = curr_events;
  6388. idle = 0;
  6389. }
  6390. }
  6391. rcu_read_unlock();
  6392. return idle;
  6393. }
  6394. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6395. {
  6396. /* another "blocks" (512byte) blocks have been synced */
  6397. atomic_sub(blocks, &mddev->recovery_active);
  6398. wake_up(&mddev->recovery_wait);
  6399. if (!ok) {
  6400. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6401. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6402. md_wakeup_thread(mddev->thread);
  6403. // stop recovery, signal do_sync ....
  6404. }
  6405. }
  6406. /* md_write_start(mddev, bi)
  6407. * If we need to update some array metadata (e.g. 'active' flag
  6408. * in superblock) before writing, schedule a superblock update
  6409. * and wait for it to complete.
  6410. */
  6411. void md_write_start(struct mddev *mddev, struct bio *bi)
  6412. {
  6413. int did_change = 0;
  6414. if (bio_data_dir(bi) != WRITE)
  6415. return;
  6416. BUG_ON(mddev->ro == 1);
  6417. if (mddev->ro == 2) {
  6418. /* need to switch to read/write */
  6419. mddev->ro = 0;
  6420. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6421. md_wakeup_thread(mddev->thread);
  6422. md_wakeup_thread(mddev->sync_thread);
  6423. did_change = 1;
  6424. }
  6425. atomic_inc(&mddev->writes_pending);
  6426. if (mddev->safemode == 1)
  6427. mddev->safemode = 0;
  6428. if (mddev->in_sync) {
  6429. spin_lock_irq(&mddev->write_lock);
  6430. if (mddev->in_sync) {
  6431. mddev->in_sync = 0;
  6432. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6433. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6434. md_wakeup_thread(mddev->thread);
  6435. did_change = 1;
  6436. }
  6437. spin_unlock_irq(&mddev->write_lock);
  6438. }
  6439. if (did_change)
  6440. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6441. wait_event(mddev->sb_wait,
  6442. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6443. }
  6444. void md_write_end(struct mddev *mddev)
  6445. {
  6446. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6447. if (mddev->safemode == 2)
  6448. md_wakeup_thread(mddev->thread);
  6449. else if (mddev->safemode_delay)
  6450. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6451. }
  6452. }
  6453. /* md_allow_write(mddev)
  6454. * Calling this ensures that the array is marked 'active' so that writes
  6455. * may proceed without blocking. It is important to call this before
  6456. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6457. * Must be called with mddev_lock held.
  6458. *
  6459. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6460. * is dropped, so return -EAGAIN after notifying userspace.
  6461. */
  6462. int md_allow_write(struct mddev *mddev)
  6463. {
  6464. if (!mddev->pers)
  6465. return 0;
  6466. if (mddev->ro)
  6467. return 0;
  6468. if (!mddev->pers->sync_request)
  6469. return 0;
  6470. spin_lock_irq(&mddev->write_lock);
  6471. if (mddev->in_sync) {
  6472. mddev->in_sync = 0;
  6473. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6474. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6475. if (mddev->safemode_delay &&
  6476. mddev->safemode == 0)
  6477. mddev->safemode = 1;
  6478. spin_unlock_irq(&mddev->write_lock);
  6479. md_update_sb(mddev, 0);
  6480. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6481. } else
  6482. spin_unlock_irq(&mddev->write_lock);
  6483. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6484. return -EAGAIN;
  6485. else
  6486. return 0;
  6487. }
  6488. EXPORT_SYMBOL_GPL(md_allow_write);
  6489. #define SYNC_MARKS 10
  6490. #define SYNC_MARK_STEP (3*HZ)
  6491. #define UPDATE_FREQUENCY (5*60*HZ)
  6492. void md_do_sync(struct md_thread *thread)
  6493. {
  6494. struct mddev *mddev = thread->mddev;
  6495. struct mddev *mddev2;
  6496. unsigned int currspeed = 0,
  6497. window;
  6498. sector_t max_sectors,j, io_sectors;
  6499. unsigned long mark[SYNC_MARKS];
  6500. unsigned long update_time;
  6501. sector_t mark_cnt[SYNC_MARKS];
  6502. int last_mark,m;
  6503. struct list_head *tmp;
  6504. sector_t last_check;
  6505. int skipped = 0;
  6506. struct md_rdev *rdev;
  6507. char *desc;
  6508. struct blk_plug plug;
  6509. /* just incase thread restarts... */
  6510. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6511. return;
  6512. if (mddev->ro) /* never try to sync a read-only array */
  6513. return;
  6514. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6515. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6516. desc = "data-check";
  6517. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6518. desc = "requested-resync";
  6519. else
  6520. desc = "resync";
  6521. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6522. desc = "reshape";
  6523. else
  6524. desc = "recovery";
  6525. /* we overload curr_resync somewhat here.
  6526. * 0 == not engaged in resync at all
  6527. * 2 == checking that there is no conflict with another sync
  6528. * 1 == like 2, but have yielded to allow conflicting resync to
  6529. * commense
  6530. * other == active in resync - this many blocks
  6531. *
  6532. * Before starting a resync we must have set curr_resync to
  6533. * 2, and then checked that every "conflicting" array has curr_resync
  6534. * less than ours. When we find one that is the same or higher
  6535. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6536. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6537. * This will mean we have to start checking from the beginning again.
  6538. *
  6539. */
  6540. do {
  6541. mddev->curr_resync = 2;
  6542. try_again:
  6543. if (kthread_should_stop())
  6544. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6545. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6546. goto skip;
  6547. for_each_mddev(mddev2, tmp) {
  6548. if (mddev2 == mddev)
  6549. continue;
  6550. if (!mddev->parallel_resync
  6551. && mddev2->curr_resync
  6552. && match_mddev_units(mddev, mddev2)) {
  6553. DEFINE_WAIT(wq);
  6554. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6555. /* arbitrarily yield */
  6556. mddev->curr_resync = 1;
  6557. wake_up(&resync_wait);
  6558. }
  6559. if (mddev > mddev2 && mddev->curr_resync == 1)
  6560. /* no need to wait here, we can wait the next
  6561. * time 'round when curr_resync == 2
  6562. */
  6563. continue;
  6564. /* We need to wait 'interruptible' so as not to
  6565. * contribute to the load average, and not to
  6566. * be caught by 'softlockup'
  6567. */
  6568. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6569. if (!kthread_should_stop() &&
  6570. mddev2->curr_resync >= mddev->curr_resync) {
  6571. printk(KERN_INFO "md: delaying %s of %s"
  6572. " until %s has finished (they"
  6573. " share one or more physical units)\n",
  6574. desc, mdname(mddev), mdname(mddev2));
  6575. mddev_put(mddev2);
  6576. if (signal_pending(current))
  6577. flush_signals(current);
  6578. schedule();
  6579. finish_wait(&resync_wait, &wq);
  6580. goto try_again;
  6581. }
  6582. finish_wait(&resync_wait, &wq);
  6583. }
  6584. }
  6585. } while (mddev->curr_resync < 2);
  6586. j = 0;
  6587. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6588. /* resync follows the size requested by the personality,
  6589. * which defaults to physical size, but can be virtual size
  6590. */
  6591. max_sectors = mddev->resync_max_sectors;
  6592. atomic64_set(&mddev->resync_mismatches, 0);
  6593. /* we don't use the checkpoint if there's a bitmap */
  6594. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6595. j = mddev->resync_min;
  6596. else if (!mddev->bitmap)
  6597. j = mddev->recovery_cp;
  6598. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6599. max_sectors = mddev->resync_max_sectors;
  6600. else {
  6601. /* recovery follows the physical size of devices */
  6602. max_sectors = mddev->dev_sectors;
  6603. j = MaxSector;
  6604. rcu_read_lock();
  6605. rdev_for_each_rcu(rdev, mddev)
  6606. if (rdev->raid_disk >= 0 &&
  6607. !test_bit(Faulty, &rdev->flags) &&
  6608. !test_bit(In_sync, &rdev->flags) &&
  6609. rdev->recovery_offset < j)
  6610. j = rdev->recovery_offset;
  6611. rcu_read_unlock();
  6612. }
  6613. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6614. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6615. " %d KB/sec/disk.\n", speed_min(mddev));
  6616. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6617. "(but not more than %d KB/sec) for %s.\n",
  6618. speed_max(mddev), desc);
  6619. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6620. io_sectors = 0;
  6621. for (m = 0; m < SYNC_MARKS; m++) {
  6622. mark[m] = jiffies;
  6623. mark_cnt[m] = io_sectors;
  6624. }
  6625. last_mark = 0;
  6626. mddev->resync_mark = mark[last_mark];
  6627. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6628. /*
  6629. * Tune reconstruction:
  6630. */
  6631. window = 32*(PAGE_SIZE/512);
  6632. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6633. window/2, (unsigned long long)max_sectors/2);
  6634. atomic_set(&mddev->recovery_active, 0);
  6635. last_check = 0;
  6636. if (j>2) {
  6637. printk(KERN_INFO
  6638. "md: resuming %s of %s from checkpoint.\n",
  6639. desc, mdname(mddev));
  6640. mddev->curr_resync = j;
  6641. } else
  6642. mddev->curr_resync = 3; /* no longer delayed */
  6643. mddev->curr_resync_completed = j;
  6644. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6645. md_new_event(mddev);
  6646. update_time = jiffies;
  6647. blk_start_plug(&plug);
  6648. while (j < max_sectors) {
  6649. sector_t sectors;
  6650. skipped = 0;
  6651. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6652. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6653. (mddev->curr_resync - mddev->curr_resync_completed)
  6654. > (max_sectors >> 4)) ||
  6655. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6656. (j - mddev->curr_resync_completed)*2
  6657. >= mddev->resync_max - mddev->curr_resync_completed
  6658. )) {
  6659. /* time to update curr_resync_completed */
  6660. wait_event(mddev->recovery_wait,
  6661. atomic_read(&mddev->recovery_active) == 0);
  6662. mddev->curr_resync_completed = j;
  6663. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6664. j > mddev->recovery_cp)
  6665. mddev->recovery_cp = j;
  6666. update_time = jiffies;
  6667. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6668. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6669. }
  6670. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6671. /* As this condition is controlled by user-space,
  6672. * we can block indefinitely, so use '_interruptible'
  6673. * to avoid triggering warnings.
  6674. */
  6675. flush_signals(current); /* just in case */
  6676. wait_event_interruptible(mddev->recovery_wait,
  6677. mddev->resync_max > j
  6678. || kthread_should_stop());
  6679. }
  6680. if (kthread_should_stop())
  6681. goto interrupted;
  6682. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6683. currspeed < speed_min(mddev));
  6684. if (sectors == 0) {
  6685. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6686. goto out;
  6687. }
  6688. if (!skipped) { /* actual IO requested */
  6689. io_sectors += sectors;
  6690. atomic_add(sectors, &mddev->recovery_active);
  6691. }
  6692. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6693. break;
  6694. j += sectors;
  6695. if (j > 2)
  6696. mddev->curr_resync = j;
  6697. mddev->curr_mark_cnt = io_sectors;
  6698. if (last_check == 0)
  6699. /* this is the earliest that rebuild will be
  6700. * visible in /proc/mdstat
  6701. */
  6702. md_new_event(mddev);
  6703. if (last_check + window > io_sectors || j == max_sectors)
  6704. continue;
  6705. last_check = io_sectors;
  6706. repeat:
  6707. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6708. /* step marks */
  6709. int next = (last_mark+1) % SYNC_MARKS;
  6710. mddev->resync_mark = mark[next];
  6711. mddev->resync_mark_cnt = mark_cnt[next];
  6712. mark[next] = jiffies;
  6713. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6714. last_mark = next;
  6715. }
  6716. if (kthread_should_stop())
  6717. goto interrupted;
  6718. /*
  6719. * this loop exits only if either when we are slower than
  6720. * the 'hard' speed limit, or the system was IO-idle for
  6721. * a jiffy.
  6722. * the system might be non-idle CPU-wise, but we only care
  6723. * about not overloading the IO subsystem. (things like an
  6724. * e2fsck being done on the RAID array should execute fast)
  6725. */
  6726. cond_resched();
  6727. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6728. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6729. if (currspeed > speed_min(mddev)) {
  6730. if ((currspeed > speed_max(mddev)) ||
  6731. !is_mddev_idle(mddev, 0)) {
  6732. msleep(500);
  6733. goto repeat;
  6734. }
  6735. }
  6736. }
  6737. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6738. /*
  6739. * this also signals 'finished resyncing' to md_stop
  6740. */
  6741. out:
  6742. blk_finish_plug(&plug);
  6743. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6744. /* tell personality that we are finished */
  6745. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6746. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6747. mddev->curr_resync > 2) {
  6748. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6749. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6750. if (mddev->curr_resync >= mddev->recovery_cp) {
  6751. printk(KERN_INFO
  6752. "md: checkpointing %s of %s.\n",
  6753. desc, mdname(mddev));
  6754. if (test_bit(MD_RECOVERY_ERROR,
  6755. &mddev->recovery))
  6756. mddev->recovery_cp =
  6757. mddev->curr_resync_completed;
  6758. else
  6759. mddev->recovery_cp =
  6760. mddev->curr_resync;
  6761. }
  6762. } else
  6763. mddev->recovery_cp = MaxSector;
  6764. } else {
  6765. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6766. mddev->curr_resync = MaxSector;
  6767. rcu_read_lock();
  6768. rdev_for_each_rcu(rdev, mddev)
  6769. if (rdev->raid_disk >= 0 &&
  6770. mddev->delta_disks >= 0 &&
  6771. !test_bit(Faulty, &rdev->flags) &&
  6772. !test_bit(In_sync, &rdev->flags) &&
  6773. rdev->recovery_offset < mddev->curr_resync)
  6774. rdev->recovery_offset = mddev->curr_resync;
  6775. rcu_read_unlock();
  6776. }
  6777. }
  6778. skip:
  6779. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6780. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6781. /* We completed so min/max setting can be forgotten if used. */
  6782. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6783. mddev->resync_min = 0;
  6784. mddev->resync_max = MaxSector;
  6785. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6786. mddev->resync_min = mddev->curr_resync_completed;
  6787. mddev->curr_resync = 0;
  6788. wake_up(&resync_wait);
  6789. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6790. md_wakeup_thread(mddev->thread);
  6791. return;
  6792. interrupted:
  6793. /*
  6794. * got a signal, exit.
  6795. */
  6796. printk(KERN_INFO
  6797. "md: md_do_sync() got signal ... exiting\n");
  6798. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6799. goto out;
  6800. }
  6801. EXPORT_SYMBOL_GPL(md_do_sync);
  6802. static int remove_and_add_spares(struct mddev *mddev,
  6803. struct md_rdev *this)
  6804. {
  6805. struct md_rdev *rdev;
  6806. int spares = 0;
  6807. int removed = 0;
  6808. rdev_for_each(rdev, mddev)
  6809. if ((this == NULL || rdev == this) &&
  6810. rdev->raid_disk >= 0 &&
  6811. !test_bit(Blocked, &rdev->flags) &&
  6812. (test_bit(Faulty, &rdev->flags) ||
  6813. ! test_bit(In_sync, &rdev->flags)) &&
  6814. atomic_read(&rdev->nr_pending)==0) {
  6815. if (mddev->pers->hot_remove_disk(
  6816. mddev, rdev) == 0) {
  6817. sysfs_unlink_rdev(mddev, rdev);
  6818. rdev->raid_disk = -1;
  6819. removed++;
  6820. }
  6821. }
  6822. if (removed && mddev->kobj.sd)
  6823. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6824. if (this)
  6825. goto no_add;
  6826. rdev_for_each(rdev, mddev) {
  6827. if (rdev->raid_disk >= 0 &&
  6828. !test_bit(In_sync, &rdev->flags) &&
  6829. !test_bit(Faulty, &rdev->flags))
  6830. spares++;
  6831. if (rdev->raid_disk >= 0)
  6832. continue;
  6833. if (test_bit(Faulty, &rdev->flags))
  6834. continue;
  6835. if (mddev->ro &&
  6836. rdev->saved_raid_disk < 0)
  6837. continue;
  6838. rdev->recovery_offset = 0;
  6839. if (rdev->saved_raid_disk >= 0 && mddev->in_sync) {
  6840. spin_lock_irq(&mddev->write_lock);
  6841. if (mddev->in_sync)
  6842. /* OK, this device, which is in_sync,
  6843. * will definitely be noticed before
  6844. * the next write, so recovery isn't
  6845. * needed.
  6846. */
  6847. rdev->recovery_offset = mddev->recovery_cp;
  6848. spin_unlock_irq(&mddev->write_lock);
  6849. }
  6850. if (mddev->ro && rdev->recovery_offset != MaxSector)
  6851. /* not safe to add this disk now */
  6852. continue;
  6853. if (mddev->pers->
  6854. hot_add_disk(mddev, rdev) == 0) {
  6855. if (sysfs_link_rdev(mddev, rdev))
  6856. /* failure here is OK */;
  6857. spares++;
  6858. md_new_event(mddev);
  6859. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6860. }
  6861. }
  6862. no_add:
  6863. if (removed)
  6864. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6865. return spares;
  6866. }
  6867. static void reap_sync_thread(struct mddev *mddev)
  6868. {
  6869. struct md_rdev *rdev;
  6870. /* resync has finished, collect result */
  6871. md_unregister_thread(&mddev->sync_thread);
  6872. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6873. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6874. /* success...*/
  6875. /* activate any spares */
  6876. if (mddev->pers->spare_active(mddev)) {
  6877. sysfs_notify(&mddev->kobj, NULL,
  6878. "degraded");
  6879. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6880. }
  6881. }
  6882. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6883. mddev->pers->finish_reshape)
  6884. mddev->pers->finish_reshape(mddev);
  6885. /* If array is no-longer degraded, then any saved_raid_disk
  6886. * information must be scrapped. Also if any device is now
  6887. * In_sync we must scrape the saved_raid_disk for that device
  6888. * do the superblock for an incrementally recovered device
  6889. * written out.
  6890. */
  6891. rdev_for_each(rdev, mddev)
  6892. if (!mddev->degraded ||
  6893. test_bit(In_sync, &rdev->flags))
  6894. rdev->saved_raid_disk = -1;
  6895. md_update_sb(mddev, 1);
  6896. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6897. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6898. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6899. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6900. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6901. /* flag recovery needed just to double check */
  6902. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6903. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6904. md_new_event(mddev);
  6905. if (mddev->event_work.func)
  6906. queue_work(md_misc_wq, &mddev->event_work);
  6907. }
  6908. /*
  6909. * This routine is regularly called by all per-raid-array threads to
  6910. * deal with generic issues like resync and super-block update.
  6911. * Raid personalities that don't have a thread (linear/raid0) do not
  6912. * need this as they never do any recovery or update the superblock.
  6913. *
  6914. * It does not do any resync itself, but rather "forks" off other threads
  6915. * to do that as needed.
  6916. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6917. * "->recovery" and create a thread at ->sync_thread.
  6918. * When the thread finishes it sets MD_RECOVERY_DONE
  6919. * and wakeups up this thread which will reap the thread and finish up.
  6920. * This thread also removes any faulty devices (with nr_pending == 0).
  6921. *
  6922. * The overall approach is:
  6923. * 1/ if the superblock needs updating, update it.
  6924. * 2/ If a recovery thread is running, don't do anything else.
  6925. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6926. * 4/ If there are any faulty devices, remove them.
  6927. * 5/ If array is degraded, try to add spares devices
  6928. * 6/ If array has spares or is not in-sync, start a resync thread.
  6929. */
  6930. void md_check_recovery(struct mddev *mddev)
  6931. {
  6932. if (mddev->suspended)
  6933. return;
  6934. if (mddev->bitmap)
  6935. bitmap_daemon_work(mddev);
  6936. if (signal_pending(current)) {
  6937. if (mddev->pers->sync_request && !mddev->external) {
  6938. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6939. mdname(mddev));
  6940. mddev->safemode = 2;
  6941. }
  6942. flush_signals(current);
  6943. }
  6944. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6945. return;
  6946. if ( ! (
  6947. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6948. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6949. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6950. (mddev->external == 0 && mddev->safemode == 1) ||
  6951. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6952. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6953. ))
  6954. return;
  6955. if (mddev_trylock(mddev)) {
  6956. int spares = 0;
  6957. if (mddev->ro) {
  6958. /* On a read-only array we can:
  6959. * - remove failed devices
  6960. * - add already-in_sync devices if the array itself
  6961. * is in-sync.
  6962. * As we only add devices that are already in-sync,
  6963. * we can activate the spares immediately.
  6964. */
  6965. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6966. remove_and_add_spares(mddev, NULL);
  6967. mddev->pers->spare_active(mddev);
  6968. goto unlock;
  6969. }
  6970. if (!mddev->external) {
  6971. int did_change = 0;
  6972. spin_lock_irq(&mddev->write_lock);
  6973. if (mddev->safemode &&
  6974. !atomic_read(&mddev->writes_pending) &&
  6975. !mddev->in_sync &&
  6976. mddev->recovery_cp == MaxSector) {
  6977. mddev->in_sync = 1;
  6978. did_change = 1;
  6979. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6980. }
  6981. if (mddev->safemode == 1)
  6982. mddev->safemode = 0;
  6983. spin_unlock_irq(&mddev->write_lock);
  6984. if (did_change)
  6985. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6986. }
  6987. if (mddev->flags)
  6988. md_update_sb(mddev, 0);
  6989. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6990. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6991. /* resync/recovery still happening */
  6992. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6993. goto unlock;
  6994. }
  6995. if (mddev->sync_thread) {
  6996. reap_sync_thread(mddev);
  6997. goto unlock;
  6998. }
  6999. /* Set RUNNING before clearing NEEDED to avoid
  7000. * any transients in the value of "sync_action".
  7001. */
  7002. mddev->curr_resync_completed = 0;
  7003. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7004. /* Clear some bits that don't mean anything, but
  7005. * might be left set
  7006. */
  7007. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  7008. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  7009. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  7010. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  7011. goto unlock;
  7012. /* no recovery is running.
  7013. * remove any failed drives, then
  7014. * add spares if possible.
  7015. * Spares are also removed and re-added, to allow
  7016. * the personality to fail the re-add.
  7017. */
  7018. if (mddev->reshape_position != MaxSector) {
  7019. if (mddev->pers->check_reshape == NULL ||
  7020. mddev->pers->check_reshape(mddev) != 0)
  7021. /* Cannot proceed */
  7022. goto unlock;
  7023. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7024. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7025. } else if ((spares = remove_and_add_spares(mddev, NULL))) {
  7026. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7027. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7028. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7029. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7030. } else if (mddev->recovery_cp < MaxSector) {
  7031. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7032. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  7033. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  7034. /* nothing to be done ... */
  7035. goto unlock;
  7036. if (mddev->pers->sync_request) {
  7037. if (spares) {
  7038. /* We are adding a device or devices to an array
  7039. * which has the bitmap stored on all devices.
  7040. * So make sure all bitmap pages get written
  7041. */
  7042. bitmap_write_all(mddev->bitmap);
  7043. }
  7044. mddev->sync_thread = md_register_thread(md_do_sync,
  7045. mddev,
  7046. "resync");
  7047. if (!mddev->sync_thread) {
  7048. printk(KERN_ERR "%s: could not start resync"
  7049. " thread...\n",
  7050. mdname(mddev));
  7051. /* leave the spares where they are, it shouldn't hurt */
  7052. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7053. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7054. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7055. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7056. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7057. } else
  7058. md_wakeup_thread(mddev->sync_thread);
  7059. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7060. md_new_event(mddev);
  7061. }
  7062. unlock:
  7063. if (!mddev->sync_thread) {
  7064. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7065. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7066. &mddev->recovery))
  7067. if (mddev->sysfs_action)
  7068. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7069. }
  7070. mddev_unlock(mddev);
  7071. }
  7072. }
  7073. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7074. {
  7075. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7076. wait_event_timeout(rdev->blocked_wait,
  7077. !test_bit(Blocked, &rdev->flags) &&
  7078. !test_bit(BlockedBadBlocks, &rdev->flags),
  7079. msecs_to_jiffies(5000));
  7080. rdev_dec_pending(rdev, mddev);
  7081. }
  7082. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7083. void md_finish_reshape(struct mddev *mddev)
  7084. {
  7085. /* called be personality module when reshape completes. */
  7086. struct md_rdev *rdev;
  7087. rdev_for_each(rdev, mddev) {
  7088. if (rdev->data_offset > rdev->new_data_offset)
  7089. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7090. else
  7091. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7092. rdev->data_offset = rdev->new_data_offset;
  7093. }
  7094. }
  7095. EXPORT_SYMBOL(md_finish_reshape);
  7096. /* Bad block management.
  7097. * We can record which blocks on each device are 'bad' and so just
  7098. * fail those blocks, or that stripe, rather than the whole device.
  7099. * Entries in the bad-block table are 64bits wide. This comprises:
  7100. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7101. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7102. * A 'shift' can be set so that larger blocks are tracked and
  7103. * consequently larger devices can be covered.
  7104. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7105. *
  7106. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7107. * might need to retry if it is very unlucky.
  7108. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7109. * so we use the write_seqlock_irq variant.
  7110. *
  7111. * When looking for a bad block we specify a range and want to
  7112. * know if any block in the range is bad. So we binary-search
  7113. * to the last range that starts at-or-before the given endpoint,
  7114. * (or "before the sector after the target range")
  7115. * then see if it ends after the given start.
  7116. * We return
  7117. * 0 if there are no known bad blocks in the range
  7118. * 1 if there are known bad block which are all acknowledged
  7119. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7120. * plus the start/length of the first bad section we overlap.
  7121. */
  7122. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7123. sector_t *first_bad, int *bad_sectors)
  7124. {
  7125. int hi;
  7126. int lo;
  7127. u64 *p = bb->page;
  7128. int rv;
  7129. sector_t target = s + sectors;
  7130. unsigned seq;
  7131. if (bb->shift > 0) {
  7132. /* round the start down, and the end up */
  7133. s >>= bb->shift;
  7134. target += (1<<bb->shift) - 1;
  7135. target >>= bb->shift;
  7136. sectors = target - s;
  7137. }
  7138. /* 'target' is now the first block after the bad range */
  7139. retry:
  7140. seq = read_seqbegin(&bb->lock);
  7141. lo = 0;
  7142. rv = 0;
  7143. hi = bb->count;
  7144. /* Binary search between lo and hi for 'target'
  7145. * i.e. for the last range that starts before 'target'
  7146. */
  7147. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7148. * are known not to be the last range before target.
  7149. * VARIANT: hi-lo is the number of possible
  7150. * ranges, and decreases until it reaches 1
  7151. */
  7152. while (hi - lo > 1) {
  7153. int mid = (lo + hi) / 2;
  7154. sector_t a = BB_OFFSET(p[mid]);
  7155. if (a < target)
  7156. /* This could still be the one, earlier ranges
  7157. * could not. */
  7158. lo = mid;
  7159. else
  7160. /* This and later ranges are definitely out. */
  7161. hi = mid;
  7162. }
  7163. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7164. if (hi > lo) {
  7165. /* need to check all range that end after 's' to see if
  7166. * any are unacknowledged.
  7167. */
  7168. while (lo >= 0 &&
  7169. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7170. if (BB_OFFSET(p[lo]) < target) {
  7171. /* starts before the end, and finishes after
  7172. * the start, so they must overlap
  7173. */
  7174. if (rv != -1 && BB_ACK(p[lo]))
  7175. rv = 1;
  7176. else
  7177. rv = -1;
  7178. *first_bad = BB_OFFSET(p[lo]);
  7179. *bad_sectors = BB_LEN(p[lo]);
  7180. }
  7181. lo--;
  7182. }
  7183. }
  7184. if (read_seqretry(&bb->lock, seq))
  7185. goto retry;
  7186. return rv;
  7187. }
  7188. EXPORT_SYMBOL_GPL(md_is_badblock);
  7189. /*
  7190. * Add a range of bad blocks to the table.
  7191. * This might extend the table, or might contract it
  7192. * if two adjacent ranges can be merged.
  7193. * We binary-search to find the 'insertion' point, then
  7194. * decide how best to handle it.
  7195. */
  7196. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7197. int acknowledged)
  7198. {
  7199. u64 *p;
  7200. int lo, hi;
  7201. int rv = 1;
  7202. if (bb->shift < 0)
  7203. /* badblocks are disabled */
  7204. return 0;
  7205. if (bb->shift) {
  7206. /* round the start down, and the end up */
  7207. sector_t next = s + sectors;
  7208. s >>= bb->shift;
  7209. next += (1<<bb->shift) - 1;
  7210. next >>= bb->shift;
  7211. sectors = next - s;
  7212. }
  7213. write_seqlock_irq(&bb->lock);
  7214. p = bb->page;
  7215. lo = 0;
  7216. hi = bb->count;
  7217. /* Find the last range that starts at-or-before 's' */
  7218. while (hi - lo > 1) {
  7219. int mid = (lo + hi) / 2;
  7220. sector_t a = BB_OFFSET(p[mid]);
  7221. if (a <= s)
  7222. lo = mid;
  7223. else
  7224. hi = mid;
  7225. }
  7226. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7227. hi = lo;
  7228. if (hi > lo) {
  7229. /* we found a range that might merge with the start
  7230. * of our new range
  7231. */
  7232. sector_t a = BB_OFFSET(p[lo]);
  7233. sector_t e = a + BB_LEN(p[lo]);
  7234. int ack = BB_ACK(p[lo]);
  7235. if (e >= s) {
  7236. /* Yes, we can merge with a previous range */
  7237. if (s == a && s + sectors >= e)
  7238. /* new range covers old */
  7239. ack = acknowledged;
  7240. else
  7241. ack = ack && acknowledged;
  7242. if (e < s + sectors)
  7243. e = s + sectors;
  7244. if (e - a <= BB_MAX_LEN) {
  7245. p[lo] = BB_MAKE(a, e-a, ack);
  7246. s = e;
  7247. } else {
  7248. /* does not all fit in one range,
  7249. * make p[lo] maximal
  7250. */
  7251. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7252. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7253. s = a + BB_MAX_LEN;
  7254. }
  7255. sectors = e - s;
  7256. }
  7257. }
  7258. if (sectors && hi < bb->count) {
  7259. /* 'hi' points to the first range that starts after 's'.
  7260. * Maybe we can merge with the start of that range */
  7261. sector_t a = BB_OFFSET(p[hi]);
  7262. sector_t e = a + BB_LEN(p[hi]);
  7263. int ack = BB_ACK(p[hi]);
  7264. if (a <= s + sectors) {
  7265. /* merging is possible */
  7266. if (e <= s + sectors) {
  7267. /* full overlap */
  7268. e = s + sectors;
  7269. ack = acknowledged;
  7270. } else
  7271. ack = ack && acknowledged;
  7272. a = s;
  7273. if (e - a <= BB_MAX_LEN) {
  7274. p[hi] = BB_MAKE(a, e-a, ack);
  7275. s = e;
  7276. } else {
  7277. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7278. s = a + BB_MAX_LEN;
  7279. }
  7280. sectors = e - s;
  7281. lo = hi;
  7282. hi++;
  7283. }
  7284. }
  7285. if (sectors == 0 && hi < bb->count) {
  7286. /* we might be able to combine lo and hi */
  7287. /* Note: 's' is at the end of 'lo' */
  7288. sector_t a = BB_OFFSET(p[hi]);
  7289. int lolen = BB_LEN(p[lo]);
  7290. int hilen = BB_LEN(p[hi]);
  7291. int newlen = lolen + hilen - (s - a);
  7292. if (s >= a && newlen < BB_MAX_LEN) {
  7293. /* yes, we can combine them */
  7294. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7295. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7296. memmove(p + hi, p + hi + 1,
  7297. (bb->count - hi - 1) * 8);
  7298. bb->count--;
  7299. }
  7300. }
  7301. while (sectors) {
  7302. /* didn't merge (it all).
  7303. * Need to add a range just before 'hi' */
  7304. if (bb->count >= MD_MAX_BADBLOCKS) {
  7305. /* No room for more */
  7306. rv = 0;
  7307. break;
  7308. } else {
  7309. int this_sectors = sectors;
  7310. memmove(p + hi + 1, p + hi,
  7311. (bb->count - hi) * 8);
  7312. bb->count++;
  7313. if (this_sectors > BB_MAX_LEN)
  7314. this_sectors = BB_MAX_LEN;
  7315. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7316. sectors -= this_sectors;
  7317. s += this_sectors;
  7318. }
  7319. }
  7320. bb->changed = 1;
  7321. if (!acknowledged)
  7322. bb->unacked_exist = 1;
  7323. write_sequnlock_irq(&bb->lock);
  7324. return rv;
  7325. }
  7326. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7327. int is_new)
  7328. {
  7329. int rv;
  7330. if (is_new)
  7331. s += rdev->new_data_offset;
  7332. else
  7333. s += rdev->data_offset;
  7334. rv = md_set_badblocks(&rdev->badblocks,
  7335. s, sectors, 0);
  7336. if (rv) {
  7337. /* Make sure they get written out promptly */
  7338. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7339. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7340. md_wakeup_thread(rdev->mddev->thread);
  7341. }
  7342. return rv;
  7343. }
  7344. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7345. /*
  7346. * Remove a range of bad blocks from the table.
  7347. * This may involve extending the table if we spilt a region,
  7348. * but it must not fail. So if the table becomes full, we just
  7349. * drop the remove request.
  7350. */
  7351. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7352. {
  7353. u64 *p;
  7354. int lo, hi;
  7355. sector_t target = s + sectors;
  7356. int rv = 0;
  7357. if (bb->shift > 0) {
  7358. /* When clearing we round the start up and the end down.
  7359. * This should not matter as the shift should align with
  7360. * the block size and no rounding should ever be needed.
  7361. * However it is better the think a block is bad when it
  7362. * isn't than to think a block is not bad when it is.
  7363. */
  7364. s += (1<<bb->shift) - 1;
  7365. s >>= bb->shift;
  7366. target >>= bb->shift;
  7367. sectors = target - s;
  7368. }
  7369. write_seqlock_irq(&bb->lock);
  7370. p = bb->page;
  7371. lo = 0;
  7372. hi = bb->count;
  7373. /* Find the last range that starts before 'target' */
  7374. while (hi - lo > 1) {
  7375. int mid = (lo + hi) / 2;
  7376. sector_t a = BB_OFFSET(p[mid]);
  7377. if (a < target)
  7378. lo = mid;
  7379. else
  7380. hi = mid;
  7381. }
  7382. if (hi > lo) {
  7383. /* p[lo] is the last range that could overlap the
  7384. * current range. Earlier ranges could also overlap,
  7385. * but only this one can overlap the end of the range.
  7386. */
  7387. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7388. /* Partial overlap, leave the tail of this range */
  7389. int ack = BB_ACK(p[lo]);
  7390. sector_t a = BB_OFFSET(p[lo]);
  7391. sector_t end = a + BB_LEN(p[lo]);
  7392. if (a < s) {
  7393. /* we need to split this range */
  7394. if (bb->count >= MD_MAX_BADBLOCKS) {
  7395. rv = 0;
  7396. goto out;
  7397. }
  7398. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7399. bb->count++;
  7400. p[lo] = BB_MAKE(a, s-a, ack);
  7401. lo++;
  7402. }
  7403. p[lo] = BB_MAKE(target, end - target, ack);
  7404. /* there is no longer an overlap */
  7405. hi = lo;
  7406. lo--;
  7407. }
  7408. while (lo >= 0 &&
  7409. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7410. /* This range does overlap */
  7411. if (BB_OFFSET(p[lo]) < s) {
  7412. /* Keep the early parts of this range. */
  7413. int ack = BB_ACK(p[lo]);
  7414. sector_t start = BB_OFFSET(p[lo]);
  7415. p[lo] = BB_MAKE(start, s - start, ack);
  7416. /* now low doesn't overlap, so.. */
  7417. break;
  7418. }
  7419. lo--;
  7420. }
  7421. /* 'lo' is strictly before, 'hi' is strictly after,
  7422. * anything between needs to be discarded
  7423. */
  7424. if (hi - lo > 1) {
  7425. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7426. bb->count -= (hi - lo - 1);
  7427. }
  7428. }
  7429. bb->changed = 1;
  7430. out:
  7431. write_sequnlock_irq(&bb->lock);
  7432. return rv;
  7433. }
  7434. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7435. int is_new)
  7436. {
  7437. if (is_new)
  7438. s += rdev->new_data_offset;
  7439. else
  7440. s += rdev->data_offset;
  7441. return md_clear_badblocks(&rdev->badblocks,
  7442. s, sectors);
  7443. }
  7444. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7445. /*
  7446. * Acknowledge all bad blocks in a list.
  7447. * This only succeeds if ->changed is clear. It is used by
  7448. * in-kernel metadata updates
  7449. */
  7450. void md_ack_all_badblocks(struct badblocks *bb)
  7451. {
  7452. if (bb->page == NULL || bb->changed)
  7453. /* no point even trying */
  7454. return;
  7455. write_seqlock_irq(&bb->lock);
  7456. if (bb->changed == 0 && bb->unacked_exist) {
  7457. u64 *p = bb->page;
  7458. int i;
  7459. for (i = 0; i < bb->count ; i++) {
  7460. if (!BB_ACK(p[i])) {
  7461. sector_t start = BB_OFFSET(p[i]);
  7462. int len = BB_LEN(p[i]);
  7463. p[i] = BB_MAKE(start, len, 1);
  7464. }
  7465. }
  7466. bb->unacked_exist = 0;
  7467. }
  7468. write_sequnlock_irq(&bb->lock);
  7469. }
  7470. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7471. /* sysfs access to bad-blocks list.
  7472. * We present two files.
  7473. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7474. * are recorded as bad. The list is truncated to fit within
  7475. * the one-page limit of sysfs.
  7476. * Writing "sector length" to this file adds an acknowledged
  7477. * bad block list.
  7478. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7479. * been acknowledged. Writing to this file adds bad blocks
  7480. * without acknowledging them. This is largely for testing.
  7481. */
  7482. static ssize_t
  7483. badblocks_show(struct badblocks *bb, char *page, int unack)
  7484. {
  7485. size_t len;
  7486. int i;
  7487. u64 *p = bb->page;
  7488. unsigned seq;
  7489. if (bb->shift < 0)
  7490. return 0;
  7491. retry:
  7492. seq = read_seqbegin(&bb->lock);
  7493. len = 0;
  7494. i = 0;
  7495. while (len < PAGE_SIZE && i < bb->count) {
  7496. sector_t s = BB_OFFSET(p[i]);
  7497. unsigned int length = BB_LEN(p[i]);
  7498. int ack = BB_ACK(p[i]);
  7499. i++;
  7500. if (unack && ack)
  7501. continue;
  7502. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7503. (unsigned long long)s << bb->shift,
  7504. length << bb->shift);
  7505. }
  7506. if (unack && len == 0)
  7507. bb->unacked_exist = 0;
  7508. if (read_seqretry(&bb->lock, seq))
  7509. goto retry;
  7510. return len;
  7511. }
  7512. #define DO_DEBUG 1
  7513. static ssize_t
  7514. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7515. {
  7516. unsigned long long sector;
  7517. int length;
  7518. char newline;
  7519. #ifdef DO_DEBUG
  7520. /* Allow clearing via sysfs *only* for testing/debugging.
  7521. * Normally only a successful write may clear a badblock
  7522. */
  7523. int clear = 0;
  7524. if (page[0] == '-') {
  7525. clear = 1;
  7526. page++;
  7527. }
  7528. #endif /* DO_DEBUG */
  7529. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7530. case 3:
  7531. if (newline != '\n')
  7532. return -EINVAL;
  7533. case 2:
  7534. if (length <= 0)
  7535. return -EINVAL;
  7536. break;
  7537. default:
  7538. return -EINVAL;
  7539. }
  7540. #ifdef DO_DEBUG
  7541. if (clear) {
  7542. md_clear_badblocks(bb, sector, length);
  7543. return len;
  7544. }
  7545. #endif /* DO_DEBUG */
  7546. if (md_set_badblocks(bb, sector, length, !unack))
  7547. return len;
  7548. else
  7549. return -ENOSPC;
  7550. }
  7551. static int md_notify_reboot(struct notifier_block *this,
  7552. unsigned long code, void *x)
  7553. {
  7554. struct list_head *tmp;
  7555. struct mddev *mddev;
  7556. int need_delay = 0;
  7557. for_each_mddev(mddev, tmp) {
  7558. if (mddev_trylock(mddev)) {
  7559. if (mddev->pers)
  7560. __md_stop_writes(mddev);
  7561. mddev->safemode = 2;
  7562. mddev_unlock(mddev);
  7563. }
  7564. need_delay = 1;
  7565. }
  7566. /*
  7567. * certain more exotic SCSI devices are known to be
  7568. * volatile wrt too early system reboots. While the
  7569. * right place to handle this issue is the given
  7570. * driver, we do want to have a safe RAID driver ...
  7571. */
  7572. if (need_delay)
  7573. mdelay(1000*1);
  7574. return NOTIFY_DONE;
  7575. }
  7576. static struct notifier_block md_notifier = {
  7577. .notifier_call = md_notify_reboot,
  7578. .next = NULL,
  7579. .priority = INT_MAX, /* before any real devices */
  7580. };
  7581. static void md_geninit(void)
  7582. {
  7583. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7584. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7585. }
  7586. static int __init md_init(void)
  7587. {
  7588. int ret = -ENOMEM;
  7589. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7590. if (!md_wq)
  7591. goto err_wq;
  7592. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7593. if (!md_misc_wq)
  7594. goto err_misc_wq;
  7595. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7596. goto err_md;
  7597. if ((ret = register_blkdev(0, "mdp")) < 0)
  7598. goto err_mdp;
  7599. mdp_major = ret;
  7600. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7601. md_probe, NULL, NULL);
  7602. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7603. md_probe, NULL, NULL);
  7604. register_reboot_notifier(&md_notifier);
  7605. raid_table_header = register_sysctl_table(raid_root_table);
  7606. md_geninit();
  7607. return 0;
  7608. err_mdp:
  7609. unregister_blkdev(MD_MAJOR, "md");
  7610. err_md:
  7611. destroy_workqueue(md_misc_wq);
  7612. err_misc_wq:
  7613. destroy_workqueue(md_wq);
  7614. err_wq:
  7615. return ret;
  7616. }
  7617. #ifndef MODULE
  7618. /*
  7619. * Searches all registered partitions for autorun RAID arrays
  7620. * at boot time.
  7621. */
  7622. static LIST_HEAD(all_detected_devices);
  7623. struct detected_devices_node {
  7624. struct list_head list;
  7625. dev_t dev;
  7626. };
  7627. void md_autodetect_dev(dev_t dev)
  7628. {
  7629. struct detected_devices_node *node_detected_dev;
  7630. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7631. if (node_detected_dev) {
  7632. node_detected_dev->dev = dev;
  7633. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7634. } else {
  7635. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7636. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7637. }
  7638. }
  7639. static void autostart_arrays(int part)
  7640. {
  7641. struct md_rdev *rdev;
  7642. struct detected_devices_node *node_detected_dev;
  7643. dev_t dev;
  7644. int i_scanned, i_passed;
  7645. i_scanned = 0;
  7646. i_passed = 0;
  7647. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7648. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7649. i_scanned++;
  7650. node_detected_dev = list_entry(all_detected_devices.next,
  7651. struct detected_devices_node, list);
  7652. list_del(&node_detected_dev->list);
  7653. dev = node_detected_dev->dev;
  7654. kfree(node_detected_dev);
  7655. rdev = md_import_device(dev,0, 90);
  7656. if (IS_ERR(rdev))
  7657. continue;
  7658. if (test_bit(Faulty, &rdev->flags)) {
  7659. MD_BUG();
  7660. continue;
  7661. }
  7662. set_bit(AutoDetected, &rdev->flags);
  7663. list_add(&rdev->same_set, &pending_raid_disks);
  7664. i_passed++;
  7665. }
  7666. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7667. i_scanned, i_passed);
  7668. autorun_devices(part);
  7669. }
  7670. #endif /* !MODULE */
  7671. static __exit void md_exit(void)
  7672. {
  7673. struct mddev *mddev;
  7674. struct list_head *tmp;
  7675. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7676. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7677. unregister_blkdev(MD_MAJOR,"md");
  7678. unregister_blkdev(mdp_major, "mdp");
  7679. unregister_reboot_notifier(&md_notifier);
  7680. unregister_sysctl_table(raid_table_header);
  7681. remove_proc_entry("mdstat", NULL);
  7682. for_each_mddev(mddev, tmp) {
  7683. export_array(mddev);
  7684. mddev->hold_active = 0;
  7685. }
  7686. destroy_workqueue(md_misc_wq);
  7687. destroy_workqueue(md_wq);
  7688. }
  7689. subsys_initcall(md_init);
  7690. module_exit(md_exit)
  7691. static int get_ro(char *buffer, struct kernel_param *kp)
  7692. {
  7693. return sprintf(buffer, "%d", start_readonly);
  7694. }
  7695. static int set_ro(const char *val, struct kernel_param *kp)
  7696. {
  7697. char *e;
  7698. int num = simple_strtoul(val, &e, 10);
  7699. if (*val && (*e == '\0' || *e == '\n')) {
  7700. start_readonly = num;
  7701. return 0;
  7702. }
  7703. return -EINVAL;
  7704. }
  7705. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7706. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7707. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7708. EXPORT_SYMBOL(register_md_personality);
  7709. EXPORT_SYMBOL(unregister_md_personality);
  7710. EXPORT_SYMBOL(md_error);
  7711. EXPORT_SYMBOL(md_done_sync);
  7712. EXPORT_SYMBOL(md_write_start);
  7713. EXPORT_SYMBOL(md_write_end);
  7714. EXPORT_SYMBOL(md_register_thread);
  7715. EXPORT_SYMBOL(md_unregister_thread);
  7716. EXPORT_SYMBOL(md_wakeup_thread);
  7717. EXPORT_SYMBOL(md_check_recovery);
  7718. MODULE_LICENSE("GPL");
  7719. MODULE_DESCRIPTION("MD RAID framework");
  7720. MODULE_ALIAS("md");
  7721. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);