tcp_input.c 168 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/slab.h>
  64. #include <linux/module.h>
  65. #include <linux/sysctl.h>
  66. #include <linux/kernel.h>
  67. #include <net/dst.h>
  68. #include <net/tcp.h>
  69. #include <net/inet_common.h>
  70. #include <linux/ipsec.h>
  71. #include <asm/unaligned.h>
  72. #include <net/netdma.h>
  73. int sysctl_tcp_timestamps __read_mostly = 1;
  74. int sysctl_tcp_window_scaling __read_mostly = 1;
  75. int sysctl_tcp_sack __read_mostly = 1;
  76. int sysctl_tcp_fack __read_mostly = 1;
  77. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  78. int sysctl_tcp_ecn __read_mostly = 2;
  79. int sysctl_tcp_dsack __read_mostly = 1;
  80. int sysctl_tcp_app_win __read_mostly = 31;
  81. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  82. int sysctl_tcp_stdurg __read_mostly;
  83. int sysctl_tcp_rfc1337 __read_mostly;
  84. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  85. int sysctl_tcp_frto __read_mostly = 2;
  86. int sysctl_tcp_frto_response __read_mostly;
  87. int sysctl_tcp_nometrics_save __read_mostly;
  88. int sysctl_tcp_thin_dupack __read_mostly;
  89. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  90. int sysctl_tcp_abc __read_mostly;
  91. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  92. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  93. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  94. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  95. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  96. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  97. #define FLAG_ECE 0x40 /* ECE in this ACK */
  98. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  99. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  100. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  101. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  102. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  103. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  106. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  107. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  108. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  109. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  110. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  111. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  112. /* Adapt the MSS value used to make delayed ack decision to the
  113. * real world.
  114. */
  115. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  116. {
  117. struct inet_connection_sock *icsk = inet_csk(sk);
  118. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  119. unsigned int len;
  120. icsk->icsk_ack.last_seg_size = 0;
  121. /* skb->len may jitter because of SACKs, even if peer
  122. * sends good full-sized frames.
  123. */
  124. len = skb_shinfo(skb)->gso_size ? : skb->len;
  125. if (len >= icsk->icsk_ack.rcv_mss) {
  126. icsk->icsk_ack.rcv_mss = len;
  127. } else {
  128. /* Otherwise, we make more careful check taking into account,
  129. * that SACKs block is variable.
  130. *
  131. * "len" is invariant segment length, including TCP header.
  132. */
  133. len += skb->data - skb_transport_header(skb);
  134. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  135. /* If PSH is not set, packet should be
  136. * full sized, provided peer TCP is not badly broken.
  137. * This observation (if it is correct 8)) allows
  138. * to handle super-low mtu links fairly.
  139. */
  140. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  141. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  142. /* Subtract also invariant (if peer is RFC compliant),
  143. * tcp header plus fixed timestamp option length.
  144. * Resulting "len" is MSS free of SACK jitter.
  145. */
  146. len -= tcp_sk(sk)->tcp_header_len;
  147. icsk->icsk_ack.last_seg_size = len;
  148. if (len == lss) {
  149. icsk->icsk_ack.rcv_mss = len;
  150. return;
  151. }
  152. }
  153. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  155. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  156. }
  157. }
  158. static void tcp_incr_quickack(struct sock *sk)
  159. {
  160. struct inet_connection_sock *icsk = inet_csk(sk);
  161. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  162. if (quickacks == 0)
  163. quickacks = 2;
  164. if (quickacks > icsk->icsk_ack.quick)
  165. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  166. }
  167. void tcp_enter_quickack_mode(struct sock *sk)
  168. {
  169. struct inet_connection_sock *icsk = inet_csk(sk);
  170. tcp_incr_quickack(sk);
  171. icsk->icsk_ack.pingpong = 0;
  172. icsk->icsk_ack.ato = TCP_ATO_MIN;
  173. }
  174. /* Send ACKs quickly, if "quick" count is not exhausted
  175. * and the session is not interactive.
  176. */
  177. static inline int tcp_in_quickack_mode(const struct sock *sk)
  178. {
  179. const struct inet_connection_sock *icsk = inet_csk(sk);
  180. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  181. }
  182. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  183. {
  184. if (tp->ecn_flags & TCP_ECN_OK)
  185. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  186. }
  187. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  188. {
  189. if (tcp_hdr(skb)->cwr)
  190. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  191. }
  192. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  193. {
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  197. {
  198. if (tp->ecn_flags & TCP_ECN_OK) {
  199. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  200. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  201. /* Funny extension: if ECT is not set on a segment,
  202. * it is surely retransmit. It is not in ECN RFC,
  203. * but Linux follows this rule. */
  204. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  205. tcp_enter_quickack_mode((struct sock *)tp);
  206. }
  207. }
  208. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  209. {
  210. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  211. tp->ecn_flags &= ~TCP_ECN_OK;
  212. }
  213. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  214. {
  215. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  216. tp->ecn_flags &= ~TCP_ECN_OK;
  217. }
  218. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  219. {
  220. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  221. return 1;
  222. return 0;
  223. }
  224. /* Buffer size and advertised window tuning.
  225. *
  226. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  227. */
  228. static void tcp_fixup_sndbuf(struct sock *sk)
  229. {
  230. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  231. sizeof(struct sk_buff);
  232. if (sk->sk_sndbuf < 3 * sndmem)
  233. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  234. }
  235. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  236. *
  237. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  238. * forward and advertised in receiver window (tp->rcv_wnd) and
  239. * "application buffer", required to isolate scheduling/application
  240. * latencies from network.
  241. * window_clamp is maximal advertised window. It can be less than
  242. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  243. * is reserved for "application" buffer. The less window_clamp is
  244. * the smoother our behaviour from viewpoint of network, but the lower
  245. * throughput and the higher sensitivity of the connection to losses. 8)
  246. *
  247. * rcv_ssthresh is more strict window_clamp used at "slow start"
  248. * phase to predict further behaviour of this connection.
  249. * It is used for two goals:
  250. * - to enforce header prediction at sender, even when application
  251. * requires some significant "application buffer". It is check #1.
  252. * - to prevent pruning of receive queue because of misprediction
  253. * of receiver window. Check #2.
  254. *
  255. * The scheme does not work when sender sends good segments opening
  256. * window and then starts to feed us spaghetti. But it should work
  257. * in common situations. Otherwise, we have to rely on queue collapsing.
  258. */
  259. /* Slow part of check#2. */
  260. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  261. {
  262. struct tcp_sock *tp = tcp_sk(sk);
  263. /* Optimize this! */
  264. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  265. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  266. while (tp->rcv_ssthresh <= window) {
  267. if (truesize <= skb->len)
  268. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  269. truesize >>= 1;
  270. window >>= 1;
  271. }
  272. return 0;
  273. }
  274. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  275. {
  276. struct tcp_sock *tp = tcp_sk(sk);
  277. /* Check #1 */
  278. if (tp->rcv_ssthresh < tp->window_clamp &&
  279. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  280. !tcp_memory_pressure) {
  281. int incr;
  282. /* Check #2. Increase window, if skb with such overhead
  283. * will fit to rcvbuf in future.
  284. */
  285. if (tcp_win_from_space(skb->truesize) <= skb->len)
  286. incr = 2 * tp->advmss;
  287. else
  288. incr = __tcp_grow_window(sk, skb);
  289. if (incr) {
  290. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  291. tp->window_clamp);
  292. inet_csk(sk)->icsk_ack.quick |= 1;
  293. }
  294. }
  295. }
  296. /* 3. Tuning rcvbuf, when connection enters established state. */
  297. static void tcp_fixup_rcvbuf(struct sock *sk)
  298. {
  299. struct tcp_sock *tp = tcp_sk(sk);
  300. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  301. /* Try to select rcvbuf so that 4 mss-sized segments
  302. * will fit to window and corresponding skbs will fit to our rcvbuf.
  303. * (was 3; 4 is minimum to allow fast retransmit to work.)
  304. */
  305. while (tcp_win_from_space(rcvmem) < tp->advmss)
  306. rcvmem += 128;
  307. if (sk->sk_rcvbuf < 4 * rcvmem)
  308. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  309. }
  310. /* 4. Try to fixup all. It is made immediately after connection enters
  311. * established state.
  312. */
  313. static void tcp_init_buffer_space(struct sock *sk)
  314. {
  315. struct tcp_sock *tp = tcp_sk(sk);
  316. int maxwin;
  317. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  318. tcp_fixup_rcvbuf(sk);
  319. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  320. tcp_fixup_sndbuf(sk);
  321. tp->rcvq_space.space = tp->rcv_wnd;
  322. maxwin = tcp_full_space(sk);
  323. if (tp->window_clamp >= maxwin) {
  324. tp->window_clamp = maxwin;
  325. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  326. tp->window_clamp = max(maxwin -
  327. (maxwin >> sysctl_tcp_app_win),
  328. 4 * tp->advmss);
  329. }
  330. /* Force reservation of one segment. */
  331. if (sysctl_tcp_app_win &&
  332. tp->window_clamp > 2 * tp->advmss &&
  333. tp->window_clamp + tp->advmss > maxwin)
  334. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  335. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  336. tp->snd_cwnd_stamp = tcp_time_stamp;
  337. }
  338. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  339. static void tcp_clamp_window(struct sock *sk)
  340. {
  341. struct tcp_sock *tp = tcp_sk(sk);
  342. struct inet_connection_sock *icsk = inet_csk(sk);
  343. icsk->icsk_ack.quick = 0;
  344. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  345. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  346. !tcp_memory_pressure &&
  347. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  348. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  349. sysctl_tcp_rmem[2]);
  350. }
  351. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  352. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  353. }
  354. /* Initialize RCV_MSS value.
  355. * RCV_MSS is an our guess about MSS used by the peer.
  356. * We haven't any direct information about the MSS.
  357. * It's better to underestimate the RCV_MSS rather than overestimate.
  358. * Overestimations make us ACKing less frequently than needed.
  359. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  360. */
  361. void tcp_initialize_rcv_mss(struct sock *sk)
  362. {
  363. struct tcp_sock *tp = tcp_sk(sk);
  364. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  365. hint = min(hint, tp->rcv_wnd / 2);
  366. hint = min(hint, TCP_MSS_DEFAULT);
  367. hint = max(hint, TCP_MIN_MSS);
  368. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  369. }
  370. /* Receiver "autotuning" code.
  371. *
  372. * The algorithm for RTT estimation w/o timestamps is based on
  373. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  374. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  375. *
  376. * More detail on this code can be found at
  377. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  378. * though this reference is out of date. A new paper
  379. * is pending.
  380. */
  381. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  382. {
  383. u32 new_sample = tp->rcv_rtt_est.rtt;
  384. long m = sample;
  385. if (m == 0)
  386. m = 1;
  387. if (new_sample != 0) {
  388. /* If we sample in larger samples in the non-timestamp
  389. * case, we could grossly overestimate the RTT especially
  390. * with chatty applications or bulk transfer apps which
  391. * are stalled on filesystem I/O.
  392. *
  393. * Also, since we are only going for a minimum in the
  394. * non-timestamp case, we do not smooth things out
  395. * else with timestamps disabled convergence takes too
  396. * long.
  397. */
  398. if (!win_dep) {
  399. m -= (new_sample >> 3);
  400. new_sample += m;
  401. } else if (m < new_sample)
  402. new_sample = m << 3;
  403. } else {
  404. /* No previous measure. */
  405. new_sample = m << 3;
  406. }
  407. if (tp->rcv_rtt_est.rtt != new_sample)
  408. tp->rcv_rtt_est.rtt = new_sample;
  409. }
  410. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  411. {
  412. if (tp->rcv_rtt_est.time == 0)
  413. goto new_measure;
  414. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  415. return;
  416. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  417. new_measure:
  418. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  419. tp->rcv_rtt_est.time = tcp_time_stamp;
  420. }
  421. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  422. const struct sk_buff *skb)
  423. {
  424. struct tcp_sock *tp = tcp_sk(sk);
  425. if (tp->rx_opt.rcv_tsecr &&
  426. (TCP_SKB_CB(skb)->end_seq -
  427. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  428. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  429. }
  430. /*
  431. * This function should be called every time data is copied to user space.
  432. * It calculates the appropriate TCP receive buffer space.
  433. */
  434. void tcp_rcv_space_adjust(struct sock *sk)
  435. {
  436. struct tcp_sock *tp = tcp_sk(sk);
  437. int time;
  438. int space;
  439. if (tp->rcvq_space.time == 0)
  440. goto new_measure;
  441. time = tcp_time_stamp - tp->rcvq_space.time;
  442. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  443. return;
  444. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  445. space = max(tp->rcvq_space.space, space);
  446. if (tp->rcvq_space.space != space) {
  447. int rcvmem;
  448. tp->rcvq_space.space = space;
  449. if (sysctl_tcp_moderate_rcvbuf &&
  450. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  451. int new_clamp = space;
  452. /* Receive space grows, normalize in order to
  453. * take into account packet headers and sk_buff
  454. * structure overhead.
  455. */
  456. space /= tp->advmss;
  457. if (!space)
  458. space = 1;
  459. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  460. 16 + sizeof(struct sk_buff));
  461. while (tcp_win_from_space(rcvmem) < tp->advmss)
  462. rcvmem += 128;
  463. space *= rcvmem;
  464. space = min(space, sysctl_tcp_rmem[2]);
  465. if (space > sk->sk_rcvbuf) {
  466. sk->sk_rcvbuf = space;
  467. /* Make the window clamp follow along. */
  468. tp->window_clamp = new_clamp;
  469. }
  470. }
  471. }
  472. new_measure:
  473. tp->rcvq_space.seq = tp->copied_seq;
  474. tp->rcvq_space.time = tcp_time_stamp;
  475. }
  476. /* There is something which you must keep in mind when you analyze the
  477. * behavior of the tp->ato delayed ack timeout interval. When a
  478. * connection starts up, we want to ack as quickly as possible. The
  479. * problem is that "good" TCP's do slow start at the beginning of data
  480. * transmission. The means that until we send the first few ACK's the
  481. * sender will sit on his end and only queue most of his data, because
  482. * he can only send snd_cwnd unacked packets at any given time. For
  483. * each ACK we send, he increments snd_cwnd and transmits more of his
  484. * queue. -DaveM
  485. */
  486. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  487. {
  488. struct tcp_sock *tp = tcp_sk(sk);
  489. struct inet_connection_sock *icsk = inet_csk(sk);
  490. u32 now;
  491. inet_csk_schedule_ack(sk);
  492. tcp_measure_rcv_mss(sk, skb);
  493. tcp_rcv_rtt_measure(tp);
  494. now = tcp_time_stamp;
  495. if (!icsk->icsk_ack.ato) {
  496. /* The _first_ data packet received, initialize
  497. * delayed ACK engine.
  498. */
  499. tcp_incr_quickack(sk);
  500. icsk->icsk_ack.ato = TCP_ATO_MIN;
  501. } else {
  502. int m = now - icsk->icsk_ack.lrcvtime;
  503. if (m <= TCP_ATO_MIN / 2) {
  504. /* The fastest case is the first. */
  505. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  506. } else if (m < icsk->icsk_ack.ato) {
  507. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  508. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  509. icsk->icsk_ack.ato = icsk->icsk_rto;
  510. } else if (m > icsk->icsk_rto) {
  511. /* Too long gap. Apparently sender failed to
  512. * restart window, so that we send ACKs quickly.
  513. */
  514. tcp_incr_quickack(sk);
  515. sk_mem_reclaim(sk);
  516. }
  517. }
  518. icsk->icsk_ack.lrcvtime = now;
  519. TCP_ECN_check_ce(tp, skb);
  520. if (skb->len >= 128)
  521. tcp_grow_window(sk, skb);
  522. }
  523. /* Called to compute a smoothed rtt estimate. The data fed to this
  524. * routine either comes from timestamps, or from segments that were
  525. * known _not_ to have been retransmitted [see Karn/Partridge
  526. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  527. * piece by Van Jacobson.
  528. * NOTE: the next three routines used to be one big routine.
  529. * To save cycles in the RFC 1323 implementation it was better to break
  530. * it up into three procedures. -- erics
  531. */
  532. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  533. {
  534. struct tcp_sock *tp = tcp_sk(sk);
  535. long m = mrtt; /* RTT */
  536. /* The following amusing code comes from Jacobson's
  537. * article in SIGCOMM '88. Note that rtt and mdev
  538. * are scaled versions of rtt and mean deviation.
  539. * This is designed to be as fast as possible
  540. * m stands for "measurement".
  541. *
  542. * On a 1990 paper the rto value is changed to:
  543. * RTO = rtt + 4 * mdev
  544. *
  545. * Funny. This algorithm seems to be very broken.
  546. * These formulae increase RTO, when it should be decreased, increase
  547. * too slowly, when it should be increased quickly, decrease too quickly
  548. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  549. * does not matter how to _calculate_ it. Seems, it was trap
  550. * that VJ failed to avoid. 8)
  551. */
  552. if (m == 0)
  553. m = 1;
  554. if (tp->srtt != 0) {
  555. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  556. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  557. if (m < 0) {
  558. m = -m; /* m is now abs(error) */
  559. m -= (tp->mdev >> 2); /* similar update on mdev */
  560. /* This is similar to one of Eifel findings.
  561. * Eifel blocks mdev updates when rtt decreases.
  562. * This solution is a bit different: we use finer gain
  563. * for mdev in this case (alpha*beta).
  564. * Like Eifel it also prevents growth of rto,
  565. * but also it limits too fast rto decreases,
  566. * happening in pure Eifel.
  567. */
  568. if (m > 0)
  569. m >>= 3;
  570. } else {
  571. m -= (tp->mdev >> 2); /* similar update on mdev */
  572. }
  573. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  574. if (tp->mdev > tp->mdev_max) {
  575. tp->mdev_max = tp->mdev;
  576. if (tp->mdev_max > tp->rttvar)
  577. tp->rttvar = tp->mdev_max;
  578. }
  579. if (after(tp->snd_una, tp->rtt_seq)) {
  580. if (tp->mdev_max < tp->rttvar)
  581. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  582. tp->rtt_seq = tp->snd_nxt;
  583. tp->mdev_max = tcp_rto_min(sk);
  584. }
  585. } else {
  586. /* no previous measure. */
  587. tp->srtt = m << 3; /* take the measured time to be rtt */
  588. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  589. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  590. tp->rtt_seq = tp->snd_nxt;
  591. }
  592. }
  593. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  594. * routine referred to above.
  595. */
  596. static inline void tcp_set_rto(struct sock *sk)
  597. {
  598. const struct tcp_sock *tp = tcp_sk(sk);
  599. /* Old crap is replaced with new one. 8)
  600. *
  601. * More seriously:
  602. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  603. * It cannot be less due to utterly erratic ACK generation made
  604. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  605. * to do with delayed acks, because at cwnd>2 true delack timeout
  606. * is invisible. Actually, Linux-2.4 also generates erratic
  607. * ACKs in some circumstances.
  608. */
  609. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  610. /* 2. Fixups made earlier cannot be right.
  611. * If we do not estimate RTO correctly without them,
  612. * all the algo is pure shit and should be replaced
  613. * with correct one. It is exactly, which we pretend to do.
  614. */
  615. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  616. * guarantees that rto is higher.
  617. */
  618. tcp_bound_rto(sk);
  619. }
  620. /* Save metrics learned by this TCP session.
  621. This function is called only, when TCP finishes successfully
  622. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  623. */
  624. void tcp_update_metrics(struct sock *sk)
  625. {
  626. struct tcp_sock *tp = tcp_sk(sk);
  627. struct dst_entry *dst = __sk_dst_get(sk);
  628. if (sysctl_tcp_nometrics_save)
  629. return;
  630. dst_confirm(dst);
  631. if (dst && (dst->flags & DST_HOST)) {
  632. const struct inet_connection_sock *icsk = inet_csk(sk);
  633. int m;
  634. unsigned long rtt;
  635. if (icsk->icsk_backoff || !tp->srtt) {
  636. /* This session failed to estimate rtt. Why?
  637. * Probably, no packets returned in time.
  638. * Reset our results.
  639. */
  640. if (!(dst_metric_locked(dst, RTAX_RTT)))
  641. dst->metrics[RTAX_RTT - 1] = 0;
  642. return;
  643. }
  644. rtt = dst_metric_rtt(dst, RTAX_RTT);
  645. m = rtt - tp->srtt;
  646. /* If newly calculated rtt larger than stored one,
  647. * store new one. Otherwise, use EWMA. Remember,
  648. * rtt overestimation is always better than underestimation.
  649. */
  650. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  651. if (m <= 0)
  652. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  653. else
  654. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  655. }
  656. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  657. unsigned long var;
  658. if (m < 0)
  659. m = -m;
  660. /* Scale deviation to rttvar fixed point */
  661. m >>= 1;
  662. if (m < tp->mdev)
  663. m = tp->mdev;
  664. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  665. if (m >= var)
  666. var = m;
  667. else
  668. var -= (var - m) >> 2;
  669. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  670. }
  671. if (tcp_in_initial_slowstart(tp)) {
  672. /* Slow start still did not finish. */
  673. if (dst_metric(dst, RTAX_SSTHRESH) &&
  674. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  675. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  676. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  677. if (!dst_metric_locked(dst, RTAX_CWND) &&
  678. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  679. dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
  680. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  681. icsk->icsk_ca_state == TCP_CA_Open) {
  682. /* Cong. avoidance phase, cwnd is reliable. */
  683. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  684. dst->metrics[RTAX_SSTHRESH-1] =
  685. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  686. if (!dst_metric_locked(dst, RTAX_CWND))
  687. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
  688. } else {
  689. /* Else slow start did not finish, cwnd is non-sense,
  690. ssthresh may be also invalid.
  691. */
  692. if (!dst_metric_locked(dst, RTAX_CWND))
  693. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
  694. if (dst_metric(dst, RTAX_SSTHRESH) &&
  695. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  696. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  697. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  698. }
  699. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  700. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  701. tp->reordering != sysctl_tcp_reordering)
  702. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  703. }
  704. }
  705. }
  706. /* Numbers are taken from RFC3390.
  707. *
  708. * John Heffner states:
  709. *
  710. * The RFC specifies a window of no more than 4380 bytes
  711. * unless 2*MSS > 4380. Reading the pseudocode in the RFC
  712. * is a bit misleading because they use a clamp at 4380 bytes
  713. * rather than use a multiplier in the relevant range.
  714. */
  715. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  716. {
  717. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  718. if (!cwnd) {
  719. if (tp->mss_cache > 1460)
  720. cwnd = 2;
  721. else
  722. cwnd = (tp->mss_cache > 1095) ? 3 : 4;
  723. }
  724. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  725. }
  726. /* Set slow start threshold and cwnd not falling to slow start */
  727. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  728. {
  729. struct tcp_sock *tp = tcp_sk(sk);
  730. const struct inet_connection_sock *icsk = inet_csk(sk);
  731. tp->prior_ssthresh = 0;
  732. tp->bytes_acked = 0;
  733. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  734. tp->undo_marker = 0;
  735. if (set_ssthresh)
  736. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  737. tp->snd_cwnd = min(tp->snd_cwnd,
  738. tcp_packets_in_flight(tp) + 1U);
  739. tp->snd_cwnd_cnt = 0;
  740. tp->high_seq = tp->snd_nxt;
  741. tp->snd_cwnd_stamp = tcp_time_stamp;
  742. TCP_ECN_queue_cwr(tp);
  743. tcp_set_ca_state(sk, TCP_CA_CWR);
  744. }
  745. }
  746. /*
  747. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  748. * disables it when reordering is detected
  749. */
  750. static void tcp_disable_fack(struct tcp_sock *tp)
  751. {
  752. /* RFC3517 uses different metric in lost marker => reset on change */
  753. if (tcp_is_fack(tp))
  754. tp->lost_skb_hint = NULL;
  755. tp->rx_opt.sack_ok &= ~2;
  756. }
  757. /* Take a notice that peer is sending D-SACKs */
  758. static void tcp_dsack_seen(struct tcp_sock *tp)
  759. {
  760. tp->rx_opt.sack_ok |= 4;
  761. }
  762. /* Initialize metrics on socket. */
  763. static void tcp_init_metrics(struct sock *sk)
  764. {
  765. struct tcp_sock *tp = tcp_sk(sk);
  766. struct dst_entry *dst = __sk_dst_get(sk);
  767. if (dst == NULL)
  768. goto reset;
  769. dst_confirm(dst);
  770. if (dst_metric_locked(dst, RTAX_CWND))
  771. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  772. if (dst_metric(dst, RTAX_SSTHRESH)) {
  773. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  774. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  775. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  776. }
  777. if (dst_metric(dst, RTAX_REORDERING) &&
  778. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  779. tcp_disable_fack(tp);
  780. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  781. }
  782. if (dst_metric(dst, RTAX_RTT) == 0)
  783. goto reset;
  784. if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  785. goto reset;
  786. /* Initial rtt is determined from SYN,SYN-ACK.
  787. * The segment is small and rtt may appear much
  788. * less than real one. Use per-dst memory
  789. * to make it more realistic.
  790. *
  791. * A bit of theory. RTT is time passed after "normal" sized packet
  792. * is sent until it is ACKed. In normal circumstances sending small
  793. * packets force peer to delay ACKs and calculation is correct too.
  794. * The algorithm is adaptive and, provided we follow specs, it
  795. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  796. * tricks sort of "quick acks" for time long enough to decrease RTT
  797. * to low value, and then abruptly stops to do it and starts to delay
  798. * ACKs, wait for troubles.
  799. */
  800. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  801. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  802. tp->rtt_seq = tp->snd_nxt;
  803. }
  804. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  805. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  806. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  807. }
  808. tcp_set_rto(sk);
  809. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  810. goto reset;
  811. cwnd:
  812. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  813. tp->snd_cwnd_stamp = tcp_time_stamp;
  814. return;
  815. reset:
  816. /* Play conservative. If timestamps are not
  817. * supported, TCP will fail to recalculate correct
  818. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  819. */
  820. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  821. tp->srtt = 0;
  822. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  823. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  824. }
  825. goto cwnd;
  826. }
  827. static void tcp_update_reordering(struct sock *sk, const int metric,
  828. const int ts)
  829. {
  830. struct tcp_sock *tp = tcp_sk(sk);
  831. if (metric > tp->reordering) {
  832. int mib_idx;
  833. tp->reordering = min(TCP_MAX_REORDERING, metric);
  834. /* This exciting event is worth to be remembered. 8) */
  835. if (ts)
  836. mib_idx = LINUX_MIB_TCPTSREORDER;
  837. else if (tcp_is_reno(tp))
  838. mib_idx = LINUX_MIB_TCPRENOREORDER;
  839. else if (tcp_is_fack(tp))
  840. mib_idx = LINUX_MIB_TCPFACKREORDER;
  841. else
  842. mib_idx = LINUX_MIB_TCPSACKREORDER;
  843. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  844. #if FASTRETRANS_DEBUG > 1
  845. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  846. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  847. tp->reordering,
  848. tp->fackets_out,
  849. tp->sacked_out,
  850. tp->undo_marker ? tp->undo_retrans : 0);
  851. #endif
  852. tcp_disable_fack(tp);
  853. }
  854. }
  855. /* This must be called before lost_out is incremented */
  856. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  857. {
  858. if ((tp->retransmit_skb_hint == NULL) ||
  859. before(TCP_SKB_CB(skb)->seq,
  860. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  861. tp->retransmit_skb_hint = skb;
  862. if (!tp->lost_out ||
  863. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  864. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  865. }
  866. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  867. {
  868. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  869. tcp_verify_retransmit_hint(tp, skb);
  870. tp->lost_out += tcp_skb_pcount(skb);
  871. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  872. }
  873. }
  874. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  875. struct sk_buff *skb)
  876. {
  877. tcp_verify_retransmit_hint(tp, skb);
  878. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  879. tp->lost_out += tcp_skb_pcount(skb);
  880. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  881. }
  882. }
  883. /* This procedure tags the retransmission queue when SACKs arrive.
  884. *
  885. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  886. * Packets in queue with these bits set are counted in variables
  887. * sacked_out, retrans_out and lost_out, correspondingly.
  888. *
  889. * Valid combinations are:
  890. * Tag InFlight Description
  891. * 0 1 - orig segment is in flight.
  892. * S 0 - nothing flies, orig reached receiver.
  893. * L 0 - nothing flies, orig lost by net.
  894. * R 2 - both orig and retransmit are in flight.
  895. * L|R 1 - orig is lost, retransmit is in flight.
  896. * S|R 1 - orig reached receiver, retrans is still in flight.
  897. * (L|S|R is logically valid, it could occur when L|R is sacked,
  898. * but it is equivalent to plain S and code short-curcuits it to S.
  899. * L|S is logically invalid, it would mean -1 packet in flight 8))
  900. *
  901. * These 6 states form finite state machine, controlled by the following events:
  902. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  903. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  904. * 3. Loss detection event of one of three flavors:
  905. * A. Scoreboard estimator decided the packet is lost.
  906. * A'. Reno "three dupacks" marks head of queue lost.
  907. * A''. Its FACK modfication, head until snd.fack is lost.
  908. * B. SACK arrives sacking data transmitted after never retransmitted
  909. * hole was sent out.
  910. * C. SACK arrives sacking SND.NXT at the moment, when the
  911. * segment was retransmitted.
  912. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  913. *
  914. * It is pleasant to note, that state diagram turns out to be commutative,
  915. * so that we are allowed not to be bothered by order of our actions,
  916. * when multiple events arrive simultaneously. (see the function below).
  917. *
  918. * Reordering detection.
  919. * --------------------
  920. * Reordering metric is maximal distance, which a packet can be displaced
  921. * in packet stream. With SACKs we can estimate it:
  922. *
  923. * 1. SACK fills old hole and the corresponding segment was not
  924. * ever retransmitted -> reordering. Alas, we cannot use it
  925. * when segment was retransmitted.
  926. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  927. * for retransmitted and already SACKed segment -> reordering..
  928. * Both of these heuristics are not used in Loss state, when we cannot
  929. * account for retransmits accurately.
  930. *
  931. * SACK block validation.
  932. * ----------------------
  933. *
  934. * SACK block range validation checks that the received SACK block fits to
  935. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  936. * Note that SND.UNA is not included to the range though being valid because
  937. * it means that the receiver is rather inconsistent with itself reporting
  938. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  939. * perfectly valid, however, in light of RFC2018 which explicitly states
  940. * that "SACK block MUST reflect the newest segment. Even if the newest
  941. * segment is going to be discarded ...", not that it looks very clever
  942. * in case of head skb. Due to potentional receiver driven attacks, we
  943. * choose to avoid immediate execution of a walk in write queue due to
  944. * reneging and defer head skb's loss recovery to standard loss recovery
  945. * procedure that will eventually trigger (nothing forbids us doing this).
  946. *
  947. * Implements also blockage to start_seq wrap-around. Problem lies in the
  948. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  949. * there's no guarantee that it will be before snd_nxt (n). The problem
  950. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  951. * wrap (s_w):
  952. *
  953. * <- outs wnd -> <- wrapzone ->
  954. * u e n u_w e_w s n_w
  955. * | | | | | | |
  956. * |<------------+------+----- TCP seqno space --------------+---------->|
  957. * ...-- <2^31 ->| |<--------...
  958. * ...---- >2^31 ------>| |<--------...
  959. *
  960. * Current code wouldn't be vulnerable but it's better still to discard such
  961. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  962. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  963. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  964. * equal to the ideal case (infinite seqno space without wrap caused issues).
  965. *
  966. * With D-SACK the lower bound is extended to cover sequence space below
  967. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  968. * again, D-SACK block must not to go across snd_una (for the same reason as
  969. * for the normal SACK blocks, explained above). But there all simplicity
  970. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  971. * fully below undo_marker they do not affect behavior in anyway and can
  972. * therefore be safely ignored. In rare cases (which are more or less
  973. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  974. * fragmentation and packet reordering past skb's retransmission. To consider
  975. * them correctly, the acceptable range must be extended even more though
  976. * the exact amount is rather hard to quantify. However, tp->max_window can
  977. * be used as an exaggerated estimate.
  978. */
  979. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  980. u32 start_seq, u32 end_seq)
  981. {
  982. /* Too far in future, or reversed (interpretation is ambiguous) */
  983. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  984. return 0;
  985. /* Nasty start_seq wrap-around check (see comments above) */
  986. if (!before(start_seq, tp->snd_nxt))
  987. return 0;
  988. /* In outstanding window? ...This is valid exit for D-SACKs too.
  989. * start_seq == snd_una is non-sensical (see comments above)
  990. */
  991. if (after(start_seq, tp->snd_una))
  992. return 1;
  993. if (!is_dsack || !tp->undo_marker)
  994. return 0;
  995. /* ...Then it's D-SACK, and must reside below snd_una completely */
  996. if (!after(end_seq, tp->snd_una))
  997. return 0;
  998. if (!before(start_seq, tp->undo_marker))
  999. return 1;
  1000. /* Too old */
  1001. if (!after(end_seq, tp->undo_marker))
  1002. return 0;
  1003. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1004. * start_seq < undo_marker and end_seq >= undo_marker.
  1005. */
  1006. return !before(start_seq, end_seq - tp->max_window);
  1007. }
  1008. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1009. * Event "C". Later note: FACK people cheated me again 8), we have to account
  1010. * for reordering! Ugly, but should help.
  1011. *
  1012. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1013. * less than what is now known to be received by the other end (derived from
  1014. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1015. * retransmitted skbs to avoid some costly processing per ACKs.
  1016. */
  1017. static void tcp_mark_lost_retrans(struct sock *sk)
  1018. {
  1019. const struct inet_connection_sock *icsk = inet_csk(sk);
  1020. struct tcp_sock *tp = tcp_sk(sk);
  1021. struct sk_buff *skb;
  1022. int cnt = 0;
  1023. u32 new_low_seq = tp->snd_nxt;
  1024. u32 received_upto = tcp_highest_sack_seq(tp);
  1025. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1026. !after(received_upto, tp->lost_retrans_low) ||
  1027. icsk->icsk_ca_state != TCP_CA_Recovery)
  1028. return;
  1029. tcp_for_write_queue(skb, sk) {
  1030. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1031. if (skb == tcp_send_head(sk))
  1032. break;
  1033. if (cnt == tp->retrans_out)
  1034. break;
  1035. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1036. continue;
  1037. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1038. continue;
  1039. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1040. * constraint here (see above) but figuring out that at
  1041. * least tp->reordering SACK blocks reside between ack_seq
  1042. * and received_upto is not easy task to do cheaply with
  1043. * the available datastructures.
  1044. *
  1045. * Whether FACK should check here for tp->reordering segs
  1046. * in-between one could argue for either way (it would be
  1047. * rather simple to implement as we could count fack_count
  1048. * during the walk and do tp->fackets_out - fack_count).
  1049. */
  1050. if (after(received_upto, ack_seq)) {
  1051. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1052. tp->retrans_out -= tcp_skb_pcount(skb);
  1053. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1054. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1055. } else {
  1056. if (before(ack_seq, new_low_seq))
  1057. new_low_seq = ack_seq;
  1058. cnt += tcp_skb_pcount(skb);
  1059. }
  1060. }
  1061. if (tp->retrans_out)
  1062. tp->lost_retrans_low = new_low_seq;
  1063. }
  1064. static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
  1065. struct tcp_sack_block_wire *sp, int num_sacks,
  1066. u32 prior_snd_una)
  1067. {
  1068. struct tcp_sock *tp = tcp_sk(sk);
  1069. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1070. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1071. int dup_sack = 0;
  1072. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1073. dup_sack = 1;
  1074. tcp_dsack_seen(tp);
  1075. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1076. } else if (num_sacks > 1) {
  1077. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1078. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1079. if (!after(end_seq_0, end_seq_1) &&
  1080. !before(start_seq_0, start_seq_1)) {
  1081. dup_sack = 1;
  1082. tcp_dsack_seen(tp);
  1083. NET_INC_STATS_BH(sock_net(sk),
  1084. LINUX_MIB_TCPDSACKOFORECV);
  1085. }
  1086. }
  1087. /* D-SACK for already forgotten data... Do dumb counting. */
  1088. if (dup_sack &&
  1089. !after(end_seq_0, prior_snd_una) &&
  1090. after(end_seq_0, tp->undo_marker))
  1091. tp->undo_retrans--;
  1092. return dup_sack;
  1093. }
  1094. struct tcp_sacktag_state {
  1095. int reord;
  1096. int fack_count;
  1097. int flag;
  1098. };
  1099. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1100. * the incoming SACK may not exactly match but we can find smaller MSS
  1101. * aligned portion of it that matches. Therefore we might need to fragment
  1102. * which may fail and creates some hassle (caller must handle error case
  1103. * returns).
  1104. *
  1105. * FIXME: this could be merged to shift decision code
  1106. */
  1107. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1108. u32 start_seq, u32 end_seq)
  1109. {
  1110. int in_sack, err;
  1111. unsigned int pkt_len;
  1112. unsigned int mss;
  1113. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1114. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1115. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1116. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1117. mss = tcp_skb_mss(skb);
  1118. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1119. if (!in_sack) {
  1120. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1121. if (pkt_len < mss)
  1122. pkt_len = mss;
  1123. } else {
  1124. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1125. if (pkt_len < mss)
  1126. return -EINVAL;
  1127. }
  1128. /* Round if necessary so that SACKs cover only full MSSes
  1129. * and/or the remaining small portion (if present)
  1130. */
  1131. if (pkt_len > mss) {
  1132. unsigned int new_len = (pkt_len / mss) * mss;
  1133. if (!in_sack && new_len < pkt_len) {
  1134. new_len += mss;
  1135. if (new_len > skb->len)
  1136. return 0;
  1137. }
  1138. pkt_len = new_len;
  1139. }
  1140. err = tcp_fragment(sk, skb, pkt_len, mss);
  1141. if (err < 0)
  1142. return err;
  1143. }
  1144. return in_sack;
  1145. }
  1146. static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1147. struct tcp_sacktag_state *state,
  1148. int dup_sack, int pcount)
  1149. {
  1150. struct tcp_sock *tp = tcp_sk(sk);
  1151. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1152. int fack_count = state->fack_count;
  1153. /* Account D-SACK for retransmitted packet. */
  1154. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1155. if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1156. tp->undo_retrans--;
  1157. if (sacked & TCPCB_SACKED_ACKED)
  1158. state->reord = min(fack_count, state->reord);
  1159. }
  1160. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1161. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1162. return sacked;
  1163. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1164. if (sacked & TCPCB_SACKED_RETRANS) {
  1165. /* If the segment is not tagged as lost,
  1166. * we do not clear RETRANS, believing
  1167. * that retransmission is still in flight.
  1168. */
  1169. if (sacked & TCPCB_LOST) {
  1170. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1171. tp->lost_out -= pcount;
  1172. tp->retrans_out -= pcount;
  1173. }
  1174. } else {
  1175. if (!(sacked & TCPCB_RETRANS)) {
  1176. /* New sack for not retransmitted frame,
  1177. * which was in hole. It is reordering.
  1178. */
  1179. if (before(TCP_SKB_CB(skb)->seq,
  1180. tcp_highest_sack_seq(tp)))
  1181. state->reord = min(fack_count,
  1182. state->reord);
  1183. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1184. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1185. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1186. }
  1187. if (sacked & TCPCB_LOST) {
  1188. sacked &= ~TCPCB_LOST;
  1189. tp->lost_out -= pcount;
  1190. }
  1191. }
  1192. sacked |= TCPCB_SACKED_ACKED;
  1193. state->flag |= FLAG_DATA_SACKED;
  1194. tp->sacked_out += pcount;
  1195. fack_count += pcount;
  1196. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1197. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1198. before(TCP_SKB_CB(skb)->seq,
  1199. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1200. tp->lost_cnt_hint += pcount;
  1201. if (fack_count > tp->fackets_out)
  1202. tp->fackets_out = fack_count;
  1203. }
  1204. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1205. * frames and clear it. undo_retrans is decreased above, L|R frames
  1206. * are accounted above as well.
  1207. */
  1208. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1209. sacked &= ~TCPCB_SACKED_RETRANS;
  1210. tp->retrans_out -= pcount;
  1211. }
  1212. return sacked;
  1213. }
  1214. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1215. struct tcp_sacktag_state *state,
  1216. unsigned int pcount, int shifted, int mss,
  1217. int dup_sack)
  1218. {
  1219. struct tcp_sock *tp = tcp_sk(sk);
  1220. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1221. BUG_ON(!pcount);
  1222. /* Tweak before seqno plays */
  1223. if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
  1224. !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
  1225. tp->lost_cnt_hint += pcount;
  1226. TCP_SKB_CB(prev)->end_seq += shifted;
  1227. TCP_SKB_CB(skb)->seq += shifted;
  1228. skb_shinfo(prev)->gso_segs += pcount;
  1229. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1230. skb_shinfo(skb)->gso_segs -= pcount;
  1231. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1232. * in theory this shouldn't be necessary but as long as DSACK
  1233. * code can come after this skb later on it's better to keep
  1234. * setting gso_size to something.
  1235. */
  1236. if (!skb_shinfo(prev)->gso_size) {
  1237. skb_shinfo(prev)->gso_size = mss;
  1238. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1239. }
  1240. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1241. if (skb_shinfo(skb)->gso_segs <= 1) {
  1242. skb_shinfo(skb)->gso_size = 0;
  1243. skb_shinfo(skb)->gso_type = 0;
  1244. }
  1245. /* We discard results */
  1246. tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
  1247. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1248. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1249. if (skb->len > 0) {
  1250. BUG_ON(!tcp_skb_pcount(skb));
  1251. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1252. return 0;
  1253. }
  1254. /* Whole SKB was eaten :-) */
  1255. if (skb == tp->retransmit_skb_hint)
  1256. tp->retransmit_skb_hint = prev;
  1257. if (skb == tp->scoreboard_skb_hint)
  1258. tp->scoreboard_skb_hint = prev;
  1259. if (skb == tp->lost_skb_hint) {
  1260. tp->lost_skb_hint = prev;
  1261. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1262. }
  1263. TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
  1264. if (skb == tcp_highest_sack(sk))
  1265. tcp_advance_highest_sack(sk, skb);
  1266. tcp_unlink_write_queue(skb, sk);
  1267. sk_wmem_free_skb(sk, skb);
  1268. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1269. return 1;
  1270. }
  1271. /* I wish gso_size would have a bit more sane initialization than
  1272. * something-or-zero which complicates things
  1273. */
  1274. static int tcp_skb_seglen(struct sk_buff *skb)
  1275. {
  1276. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1277. }
  1278. /* Shifting pages past head area doesn't work */
  1279. static int skb_can_shift(struct sk_buff *skb)
  1280. {
  1281. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1282. }
  1283. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1284. * skb.
  1285. */
  1286. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1287. struct tcp_sacktag_state *state,
  1288. u32 start_seq, u32 end_seq,
  1289. int dup_sack)
  1290. {
  1291. struct tcp_sock *tp = tcp_sk(sk);
  1292. struct sk_buff *prev;
  1293. int mss;
  1294. int pcount = 0;
  1295. int len;
  1296. int in_sack;
  1297. if (!sk_can_gso(sk))
  1298. goto fallback;
  1299. /* Normally R but no L won't result in plain S */
  1300. if (!dup_sack &&
  1301. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1302. goto fallback;
  1303. if (!skb_can_shift(skb))
  1304. goto fallback;
  1305. /* This frame is about to be dropped (was ACKed). */
  1306. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1307. goto fallback;
  1308. /* Can only happen with delayed DSACK + discard craziness */
  1309. if (unlikely(skb == tcp_write_queue_head(sk)))
  1310. goto fallback;
  1311. prev = tcp_write_queue_prev(sk, skb);
  1312. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1313. goto fallback;
  1314. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1315. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1316. if (in_sack) {
  1317. len = skb->len;
  1318. pcount = tcp_skb_pcount(skb);
  1319. mss = tcp_skb_seglen(skb);
  1320. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1321. * drop this restriction as unnecessary
  1322. */
  1323. if (mss != tcp_skb_seglen(prev))
  1324. goto fallback;
  1325. } else {
  1326. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1327. goto noop;
  1328. /* CHECKME: This is non-MSS split case only?, this will
  1329. * cause skipped skbs due to advancing loop btw, original
  1330. * has that feature too
  1331. */
  1332. if (tcp_skb_pcount(skb) <= 1)
  1333. goto noop;
  1334. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1335. if (!in_sack) {
  1336. /* TODO: head merge to next could be attempted here
  1337. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1338. * though it might not be worth of the additional hassle
  1339. *
  1340. * ...we can probably just fallback to what was done
  1341. * previously. We could try merging non-SACKed ones
  1342. * as well but it probably isn't going to buy off
  1343. * because later SACKs might again split them, and
  1344. * it would make skb timestamp tracking considerably
  1345. * harder problem.
  1346. */
  1347. goto fallback;
  1348. }
  1349. len = end_seq - TCP_SKB_CB(skb)->seq;
  1350. BUG_ON(len < 0);
  1351. BUG_ON(len > skb->len);
  1352. /* MSS boundaries should be honoured or else pcount will
  1353. * severely break even though it makes things bit trickier.
  1354. * Optimize common case to avoid most of the divides
  1355. */
  1356. mss = tcp_skb_mss(skb);
  1357. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1358. * drop this restriction as unnecessary
  1359. */
  1360. if (mss != tcp_skb_seglen(prev))
  1361. goto fallback;
  1362. if (len == mss) {
  1363. pcount = 1;
  1364. } else if (len < mss) {
  1365. goto noop;
  1366. } else {
  1367. pcount = len / mss;
  1368. len = pcount * mss;
  1369. }
  1370. }
  1371. if (!skb_shift(prev, skb, len))
  1372. goto fallback;
  1373. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1374. goto out;
  1375. /* Hole filled allows collapsing with the next as well, this is very
  1376. * useful when hole on every nth skb pattern happens
  1377. */
  1378. if (prev == tcp_write_queue_tail(sk))
  1379. goto out;
  1380. skb = tcp_write_queue_next(sk, prev);
  1381. if (!skb_can_shift(skb) ||
  1382. (skb == tcp_send_head(sk)) ||
  1383. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1384. (mss != tcp_skb_seglen(skb)))
  1385. goto out;
  1386. len = skb->len;
  1387. if (skb_shift(prev, skb, len)) {
  1388. pcount += tcp_skb_pcount(skb);
  1389. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1390. }
  1391. out:
  1392. state->fack_count += pcount;
  1393. return prev;
  1394. noop:
  1395. return skb;
  1396. fallback:
  1397. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1398. return NULL;
  1399. }
  1400. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1401. struct tcp_sack_block *next_dup,
  1402. struct tcp_sacktag_state *state,
  1403. u32 start_seq, u32 end_seq,
  1404. int dup_sack_in)
  1405. {
  1406. struct tcp_sock *tp = tcp_sk(sk);
  1407. struct sk_buff *tmp;
  1408. tcp_for_write_queue_from(skb, sk) {
  1409. int in_sack = 0;
  1410. int dup_sack = dup_sack_in;
  1411. if (skb == tcp_send_head(sk))
  1412. break;
  1413. /* queue is in-order => we can short-circuit the walk early */
  1414. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1415. break;
  1416. if ((next_dup != NULL) &&
  1417. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1418. in_sack = tcp_match_skb_to_sack(sk, skb,
  1419. next_dup->start_seq,
  1420. next_dup->end_seq);
  1421. if (in_sack > 0)
  1422. dup_sack = 1;
  1423. }
  1424. /* skb reference here is a bit tricky to get right, since
  1425. * shifting can eat and free both this skb and the next,
  1426. * so not even _safe variant of the loop is enough.
  1427. */
  1428. if (in_sack <= 0) {
  1429. tmp = tcp_shift_skb_data(sk, skb, state,
  1430. start_seq, end_seq, dup_sack);
  1431. if (tmp != NULL) {
  1432. if (tmp != skb) {
  1433. skb = tmp;
  1434. continue;
  1435. }
  1436. in_sack = 0;
  1437. } else {
  1438. in_sack = tcp_match_skb_to_sack(sk, skb,
  1439. start_seq,
  1440. end_seq);
  1441. }
  1442. }
  1443. if (unlikely(in_sack < 0))
  1444. break;
  1445. if (in_sack) {
  1446. TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
  1447. state,
  1448. dup_sack,
  1449. tcp_skb_pcount(skb));
  1450. if (!before(TCP_SKB_CB(skb)->seq,
  1451. tcp_highest_sack_seq(tp)))
  1452. tcp_advance_highest_sack(sk, skb);
  1453. }
  1454. state->fack_count += tcp_skb_pcount(skb);
  1455. }
  1456. return skb;
  1457. }
  1458. /* Avoid all extra work that is being done by sacktag while walking in
  1459. * a normal way
  1460. */
  1461. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1462. struct tcp_sacktag_state *state,
  1463. u32 skip_to_seq)
  1464. {
  1465. tcp_for_write_queue_from(skb, sk) {
  1466. if (skb == tcp_send_head(sk))
  1467. break;
  1468. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1469. break;
  1470. state->fack_count += tcp_skb_pcount(skb);
  1471. }
  1472. return skb;
  1473. }
  1474. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1475. struct sock *sk,
  1476. struct tcp_sack_block *next_dup,
  1477. struct tcp_sacktag_state *state,
  1478. u32 skip_to_seq)
  1479. {
  1480. if (next_dup == NULL)
  1481. return skb;
  1482. if (before(next_dup->start_seq, skip_to_seq)) {
  1483. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1484. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1485. next_dup->start_seq, next_dup->end_seq,
  1486. 1);
  1487. }
  1488. return skb;
  1489. }
  1490. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1491. {
  1492. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1493. }
  1494. static int
  1495. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1496. u32 prior_snd_una)
  1497. {
  1498. const struct inet_connection_sock *icsk = inet_csk(sk);
  1499. struct tcp_sock *tp = tcp_sk(sk);
  1500. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1501. TCP_SKB_CB(ack_skb)->sacked);
  1502. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1503. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1504. struct tcp_sack_block *cache;
  1505. struct tcp_sacktag_state state;
  1506. struct sk_buff *skb;
  1507. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1508. int used_sacks;
  1509. int found_dup_sack = 0;
  1510. int i, j;
  1511. int first_sack_index;
  1512. state.flag = 0;
  1513. state.reord = tp->packets_out;
  1514. if (!tp->sacked_out) {
  1515. if (WARN_ON(tp->fackets_out))
  1516. tp->fackets_out = 0;
  1517. tcp_highest_sack_reset(sk);
  1518. }
  1519. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1520. num_sacks, prior_snd_una);
  1521. if (found_dup_sack)
  1522. state.flag |= FLAG_DSACKING_ACK;
  1523. /* Eliminate too old ACKs, but take into
  1524. * account more or less fresh ones, they can
  1525. * contain valid SACK info.
  1526. */
  1527. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1528. return 0;
  1529. if (!tp->packets_out)
  1530. goto out;
  1531. used_sacks = 0;
  1532. first_sack_index = 0;
  1533. for (i = 0; i < num_sacks; i++) {
  1534. int dup_sack = !i && found_dup_sack;
  1535. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1536. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1537. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1538. sp[used_sacks].start_seq,
  1539. sp[used_sacks].end_seq)) {
  1540. int mib_idx;
  1541. if (dup_sack) {
  1542. if (!tp->undo_marker)
  1543. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1544. else
  1545. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1546. } else {
  1547. /* Don't count olds caused by ACK reordering */
  1548. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1549. !after(sp[used_sacks].end_seq, tp->snd_una))
  1550. continue;
  1551. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1552. }
  1553. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1554. if (i == 0)
  1555. first_sack_index = -1;
  1556. continue;
  1557. }
  1558. /* Ignore very old stuff early */
  1559. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1560. continue;
  1561. used_sacks++;
  1562. }
  1563. /* order SACK blocks to allow in order walk of the retrans queue */
  1564. for (i = used_sacks - 1; i > 0; i--) {
  1565. for (j = 0; j < i; j++) {
  1566. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1567. swap(sp[j], sp[j + 1]);
  1568. /* Track where the first SACK block goes to */
  1569. if (j == first_sack_index)
  1570. first_sack_index = j + 1;
  1571. }
  1572. }
  1573. }
  1574. skb = tcp_write_queue_head(sk);
  1575. state.fack_count = 0;
  1576. i = 0;
  1577. if (!tp->sacked_out) {
  1578. /* It's already past, so skip checking against it */
  1579. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1580. } else {
  1581. cache = tp->recv_sack_cache;
  1582. /* Skip empty blocks in at head of the cache */
  1583. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1584. !cache->end_seq)
  1585. cache++;
  1586. }
  1587. while (i < used_sacks) {
  1588. u32 start_seq = sp[i].start_seq;
  1589. u32 end_seq = sp[i].end_seq;
  1590. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1591. struct tcp_sack_block *next_dup = NULL;
  1592. if (found_dup_sack && ((i + 1) == first_sack_index))
  1593. next_dup = &sp[i + 1];
  1594. /* Event "B" in the comment above. */
  1595. if (after(end_seq, tp->high_seq))
  1596. state.flag |= FLAG_DATA_LOST;
  1597. /* Skip too early cached blocks */
  1598. while (tcp_sack_cache_ok(tp, cache) &&
  1599. !before(start_seq, cache->end_seq))
  1600. cache++;
  1601. /* Can skip some work by looking recv_sack_cache? */
  1602. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1603. after(end_seq, cache->start_seq)) {
  1604. /* Head todo? */
  1605. if (before(start_seq, cache->start_seq)) {
  1606. skb = tcp_sacktag_skip(skb, sk, &state,
  1607. start_seq);
  1608. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1609. &state,
  1610. start_seq,
  1611. cache->start_seq,
  1612. dup_sack);
  1613. }
  1614. /* Rest of the block already fully processed? */
  1615. if (!after(end_seq, cache->end_seq))
  1616. goto advance_sp;
  1617. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1618. &state,
  1619. cache->end_seq);
  1620. /* ...tail remains todo... */
  1621. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1622. /* ...but better entrypoint exists! */
  1623. skb = tcp_highest_sack(sk);
  1624. if (skb == NULL)
  1625. break;
  1626. state.fack_count = tp->fackets_out;
  1627. cache++;
  1628. goto walk;
  1629. }
  1630. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1631. /* Check overlap against next cached too (past this one already) */
  1632. cache++;
  1633. continue;
  1634. }
  1635. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1636. skb = tcp_highest_sack(sk);
  1637. if (skb == NULL)
  1638. break;
  1639. state.fack_count = tp->fackets_out;
  1640. }
  1641. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1642. walk:
  1643. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1644. start_seq, end_seq, dup_sack);
  1645. advance_sp:
  1646. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1647. * due to in-order walk
  1648. */
  1649. if (after(end_seq, tp->frto_highmark))
  1650. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1651. i++;
  1652. }
  1653. /* Clear the head of the cache sack blocks so we can skip it next time */
  1654. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1655. tp->recv_sack_cache[i].start_seq = 0;
  1656. tp->recv_sack_cache[i].end_seq = 0;
  1657. }
  1658. for (j = 0; j < used_sacks; j++)
  1659. tp->recv_sack_cache[i++] = sp[j];
  1660. tcp_mark_lost_retrans(sk);
  1661. tcp_verify_left_out(tp);
  1662. if ((state.reord < tp->fackets_out) &&
  1663. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1664. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1665. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1666. out:
  1667. #if FASTRETRANS_DEBUG > 0
  1668. WARN_ON((int)tp->sacked_out < 0);
  1669. WARN_ON((int)tp->lost_out < 0);
  1670. WARN_ON((int)tp->retrans_out < 0);
  1671. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1672. #endif
  1673. return state.flag;
  1674. }
  1675. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1676. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1677. */
  1678. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1679. {
  1680. u32 holes;
  1681. holes = max(tp->lost_out, 1U);
  1682. holes = min(holes, tp->packets_out);
  1683. if ((tp->sacked_out + holes) > tp->packets_out) {
  1684. tp->sacked_out = tp->packets_out - holes;
  1685. return 1;
  1686. }
  1687. return 0;
  1688. }
  1689. /* If we receive more dupacks than we expected counting segments
  1690. * in assumption of absent reordering, interpret this as reordering.
  1691. * The only another reason could be bug in receiver TCP.
  1692. */
  1693. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1694. {
  1695. struct tcp_sock *tp = tcp_sk(sk);
  1696. if (tcp_limit_reno_sacked(tp))
  1697. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1698. }
  1699. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1700. static void tcp_add_reno_sack(struct sock *sk)
  1701. {
  1702. struct tcp_sock *tp = tcp_sk(sk);
  1703. tp->sacked_out++;
  1704. tcp_check_reno_reordering(sk, 0);
  1705. tcp_verify_left_out(tp);
  1706. }
  1707. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1708. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1709. {
  1710. struct tcp_sock *tp = tcp_sk(sk);
  1711. if (acked > 0) {
  1712. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1713. if (acked - 1 >= tp->sacked_out)
  1714. tp->sacked_out = 0;
  1715. else
  1716. tp->sacked_out -= acked - 1;
  1717. }
  1718. tcp_check_reno_reordering(sk, acked);
  1719. tcp_verify_left_out(tp);
  1720. }
  1721. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1722. {
  1723. tp->sacked_out = 0;
  1724. }
  1725. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1726. {
  1727. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1728. }
  1729. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1730. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1731. */
  1732. int tcp_use_frto(struct sock *sk)
  1733. {
  1734. const struct tcp_sock *tp = tcp_sk(sk);
  1735. const struct inet_connection_sock *icsk = inet_csk(sk);
  1736. struct sk_buff *skb;
  1737. if (!sysctl_tcp_frto)
  1738. return 0;
  1739. /* MTU probe and F-RTO won't really play nicely along currently */
  1740. if (icsk->icsk_mtup.probe_size)
  1741. return 0;
  1742. if (tcp_is_sackfrto(tp))
  1743. return 1;
  1744. /* Avoid expensive walking of rexmit queue if possible */
  1745. if (tp->retrans_out > 1)
  1746. return 0;
  1747. skb = tcp_write_queue_head(sk);
  1748. if (tcp_skb_is_last(sk, skb))
  1749. return 1;
  1750. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1751. tcp_for_write_queue_from(skb, sk) {
  1752. if (skb == tcp_send_head(sk))
  1753. break;
  1754. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1755. return 0;
  1756. /* Short-circuit when first non-SACKed skb has been checked */
  1757. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1758. break;
  1759. }
  1760. return 1;
  1761. }
  1762. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1763. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1764. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1765. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1766. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1767. * bits are handled if the Loss state is really to be entered (in
  1768. * tcp_enter_frto_loss).
  1769. *
  1770. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1771. * does:
  1772. * "Reduce ssthresh if it has not yet been made inside this window."
  1773. */
  1774. void tcp_enter_frto(struct sock *sk)
  1775. {
  1776. const struct inet_connection_sock *icsk = inet_csk(sk);
  1777. struct tcp_sock *tp = tcp_sk(sk);
  1778. struct sk_buff *skb;
  1779. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1780. tp->snd_una == tp->high_seq ||
  1781. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1782. !icsk->icsk_retransmits)) {
  1783. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1784. /* Our state is too optimistic in ssthresh() call because cwnd
  1785. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1786. * recovery has not yet completed. Pattern would be this: RTO,
  1787. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1788. * up here twice).
  1789. * RFC4138 should be more specific on what to do, even though
  1790. * RTO is quite unlikely to occur after the first Cumulative ACK
  1791. * due to back-off and complexity of triggering events ...
  1792. */
  1793. if (tp->frto_counter) {
  1794. u32 stored_cwnd;
  1795. stored_cwnd = tp->snd_cwnd;
  1796. tp->snd_cwnd = 2;
  1797. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1798. tp->snd_cwnd = stored_cwnd;
  1799. } else {
  1800. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1801. }
  1802. /* ... in theory, cong.control module could do "any tricks" in
  1803. * ssthresh(), which means that ca_state, lost bits and lost_out
  1804. * counter would have to be faked before the call occurs. We
  1805. * consider that too expensive, unlikely and hacky, so modules
  1806. * using these in ssthresh() must deal these incompatibility
  1807. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1808. */
  1809. tcp_ca_event(sk, CA_EVENT_FRTO);
  1810. }
  1811. tp->undo_marker = tp->snd_una;
  1812. tp->undo_retrans = 0;
  1813. skb = tcp_write_queue_head(sk);
  1814. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1815. tp->undo_marker = 0;
  1816. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1817. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1818. tp->retrans_out -= tcp_skb_pcount(skb);
  1819. }
  1820. tcp_verify_left_out(tp);
  1821. /* Too bad if TCP was application limited */
  1822. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1823. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1824. * The last condition is necessary at least in tp->frto_counter case.
  1825. */
  1826. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1827. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1828. after(tp->high_seq, tp->snd_una)) {
  1829. tp->frto_highmark = tp->high_seq;
  1830. } else {
  1831. tp->frto_highmark = tp->snd_nxt;
  1832. }
  1833. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1834. tp->high_seq = tp->snd_nxt;
  1835. tp->frto_counter = 1;
  1836. }
  1837. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1838. * which indicates that we should follow the traditional RTO recovery,
  1839. * i.e. mark everything lost and do go-back-N retransmission.
  1840. */
  1841. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1842. {
  1843. struct tcp_sock *tp = tcp_sk(sk);
  1844. struct sk_buff *skb;
  1845. tp->lost_out = 0;
  1846. tp->retrans_out = 0;
  1847. if (tcp_is_reno(tp))
  1848. tcp_reset_reno_sack(tp);
  1849. tcp_for_write_queue(skb, sk) {
  1850. if (skb == tcp_send_head(sk))
  1851. break;
  1852. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1853. /*
  1854. * Count the retransmission made on RTO correctly (only when
  1855. * waiting for the first ACK and did not get it)...
  1856. */
  1857. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1858. /* For some reason this R-bit might get cleared? */
  1859. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1860. tp->retrans_out += tcp_skb_pcount(skb);
  1861. /* ...enter this if branch just for the first segment */
  1862. flag |= FLAG_DATA_ACKED;
  1863. } else {
  1864. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1865. tp->undo_marker = 0;
  1866. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1867. }
  1868. /* Marking forward transmissions that were made after RTO lost
  1869. * can cause unnecessary retransmissions in some scenarios,
  1870. * SACK blocks will mitigate that in some but not in all cases.
  1871. * We used to not mark them but it was causing break-ups with
  1872. * receivers that do only in-order receival.
  1873. *
  1874. * TODO: we could detect presence of such receiver and select
  1875. * different behavior per flow.
  1876. */
  1877. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1878. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1879. tp->lost_out += tcp_skb_pcount(skb);
  1880. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1881. }
  1882. }
  1883. tcp_verify_left_out(tp);
  1884. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1885. tp->snd_cwnd_cnt = 0;
  1886. tp->snd_cwnd_stamp = tcp_time_stamp;
  1887. tp->frto_counter = 0;
  1888. tp->bytes_acked = 0;
  1889. tp->reordering = min_t(unsigned int, tp->reordering,
  1890. sysctl_tcp_reordering);
  1891. tcp_set_ca_state(sk, TCP_CA_Loss);
  1892. tp->high_seq = tp->snd_nxt;
  1893. TCP_ECN_queue_cwr(tp);
  1894. tcp_clear_all_retrans_hints(tp);
  1895. }
  1896. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1897. {
  1898. tp->retrans_out = 0;
  1899. tp->lost_out = 0;
  1900. tp->undo_marker = 0;
  1901. tp->undo_retrans = 0;
  1902. }
  1903. void tcp_clear_retrans(struct tcp_sock *tp)
  1904. {
  1905. tcp_clear_retrans_partial(tp);
  1906. tp->fackets_out = 0;
  1907. tp->sacked_out = 0;
  1908. }
  1909. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1910. * and reset tags completely, otherwise preserve SACKs. If receiver
  1911. * dropped its ofo queue, we will know this due to reneging detection.
  1912. */
  1913. void tcp_enter_loss(struct sock *sk, int how)
  1914. {
  1915. const struct inet_connection_sock *icsk = inet_csk(sk);
  1916. struct tcp_sock *tp = tcp_sk(sk);
  1917. struct sk_buff *skb;
  1918. /* Reduce ssthresh if it has not yet been made inside this window. */
  1919. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1920. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1921. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1922. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1923. tcp_ca_event(sk, CA_EVENT_LOSS);
  1924. }
  1925. tp->snd_cwnd = 1;
  1926. tp->snd_cwnd_cnt = 0;
  1927. tp->snd_cwnd_stamp = tcp_time_stamp;
  1928. tp->bytes_acked = 0;
  1929. tcp_clear_retrans_partial(tp);
  1930. if (tcp_is_reno(tp))
  1931. tcp_reset_reno_sack(tp);
  1932. if (!how) {
  1933. /* Push undo marker, if it was plain RTO and nothing
  1934. * was retransmitted. */
  1935. tp->undo_marker = tp->snd_una;
  1936. } else {
  1937. tp->sacked_out = 0;
  1938. tp->fackets_out = 0;
  1939. }
  1940. tcp_clear_all_retrans_hints(tp);
  1941. tcp_for_write_queue(skb, sk) {
  1942. if (skb == tcp_send_head(sk))
  1943. break;
  1944. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1945. tp->undo_marker = 0;
  1946. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1947. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1948. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1949. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1950. tp->lost_out += tcp_skb_pcount(skb);
  1951. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1952. }
  1953. }
  1954. tcp_verify_left_out(tp);
  1955. tp->reordering = min_t(unsigned int, tp->reordering,
  1956. sysctl_tcp_reordering);
  1957. tcp_set_ca_state(sk, TCP_CA_Loss);
  1958. tp->high_seq = tp->snd_nxt;
  1959. TCP_ECN_queue_cwr(tp);
  1960. /* Abort F-RTO algorithm if one is in progress */
  1961. tp->frto_counter = 0;
  1962. }
  1963. /* If ACK arrived pointing to a remembered SACK, it means that our
  1964. * remembered SACKs do not reflect real state of receiver i.e.
  1965. * receiver _host_ is heavily congested (or buggy).
  1966. *
  1967. * Do processing similar to RTO timeout.
  1968. */
  1969. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1970. {
  1971. if (flag & FLAG_SACK_RENEGING) {
  1972. struct inet_connection_sock *icsk = inet_csk(sk);
  1973. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1974. tcp_enter_loss(sk, 1);
  1975. icsk->icsk_retransmits++;
  1976. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1977. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1978. icsk->icsk_rto, TCP_RTO_MAX);
  1979. return 1;
  1980. }
  1981. return 0;
  1982. }
  1983. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1984. {
  1985. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1986. }
  1987. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1988. * counter when SACK is enabled (without SACK, sacked_out is used for
  1989. * that purpose).
  1990. *
  1991. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1992. * segments up to the highest received SACK block so far and holes in
  1993. * between them.
  1994. *
  1995. * With reordering, holes may still be in flight, so RFC3517 recovery
  1996. * uses pure sacked_out (total number of SACKed segments) even though
  1997. * it violates the RFC that uses duplicate ACKs, often these are equal
  1998. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1999. * they differ. Since neither occurs due to loss, TCP should really
  2000. * ignore them.
  2001. */
  2002. static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
  2003. {
  2004. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2005. }
  2006. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  2007. {
  2008. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  2009. }
  2010. static inline int tcp_head_timedout(struct sock *sk)
  2011. {
  2012. struct tcp_sock *tp = tcp_sk(sk);
  2013. return tp->packets_out &&
  2014. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2015. }
  2016. /* Linux NewReno/SACK/FACK/ECN state machine.
  2017. * --------------------------------------
  2018. *
  2019. * "Open" Normal state, no dubious events, fast path.
  2020. * "Disorder" In all the respects it is "Open",
  2021. * but requires a bit more attention. It is entered when
  2022. * we see some SACKs or dupacks. It is split of "Open"
  2023. * mainly to move some processing from fast path to slow one.
  2024. * "CWR" CWND was reduced due to some Congestion Notification event.
  2025. * It can be ECN, ICMP source quench, local device congestion.
  2026. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2027. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2028. *
  2029. * tcp_fastretrans_alert() is entered:
  2030. * - each incoming ACK, if state is not "Open"
  2031. * - when arrived ACK is unusual, namely:
  2032. * * SACK
  2033. * * Duplicate ACK.
  2034. * * ECN ECE.
  2035. *
  2036. * Counting packets in flight is pretty simple.
  2037. *
  2038. * in_flight = packets_out - left_out + retrans_out
  2039. *
  2040. * packets_out is SND.NXT-SND.UNA counted in packets.
  2041. *
  2042. * retrans_out is number of retransmitted segments.
  2043. *
  2044. * left_out is number of segments left network, but not ACKed yet.
  2045. *
  2046. * left_out = sacked_out + lost_out
  2047. *
  2048. * sacked_out: Packets, which arrived to receiver out of order
  2049. * and hence not ACKed. With SACKs this number is simply
  2050. * amount of SACKed data. Even without SACKs
  2051. * it is easy to give pretty reliable estimate of this number,
  2052. * counting duplicate ACKs.
  2053. *
  2054. * lost_out: Packets lost by network. TCP has no explicit
  2055. * "loss notification" feedback from network (for now).
  2056. * It means that this number can be only _guessed_.
  2057. * Actually, it is the heuristics to predict lossage that
  2058. * distinguishes different algorithms.
  2059. *
  2060. * F.e. after RTO, when all the queue is considered as lost,
  2061. * lost_out = packets_out and in_flight = retrans_out.
  2062. *
  2063. * Essentially, we have now two algorithms counting
  2064. * lost packets.
  2065. *
  2066. * FACK: It is the simplest heuristics. As soon as we decided
  2067. * that something is lost, we decide that _all_ not SACKed
  2068. * packets until the most forward SACK are lost. I.e.
  2069. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2070. * It is absolutely correct estimate, if network does not reorder
  2071. * packets. And it loses any connection to reality when reordering
  2072. * takes place. We use FACK by default until reordering
  2073. * is suspected on the path to this destination.
  2074. *
  2075. * NewReno: when Recovery is entered, we assume that one segment
  2076. * is lost (classic Reno). While we are in Recovery and
  2077. * a partial ACK arrives, we assume that one more packet
  2078. * is lost (NewReno). This heuristics are the same in NewReno
  2079. * and SACK.
  2080. *
  2081. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2082. * deflation etc. CWND is real congestion window, never inflated, changes
  2083. * only according to classic VJ rules.
  2084. *
  2085. * Really tricky (and requiring careful tuning) part of algorithm
  2086. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2087. * The first determines the moment _when_ we should reduce CWND and,
  2088. * hence, slow down forward transmission. In fact, it determines the moment
  2089. * when we decide that hole is caused by loss, rather than by a reorder.
  2090. *
  2091. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2092. * holes, caused by lost packets.
  2093. *
  2094. * And the most logically complicated part of algorithm is undo
  2095. * heuristics. We detect false retransmits due to both too early
  2096. * fast retransmit (reordering) and underestimated RTO, analyzing
  2097. * timestamps and D-SACKs. When we detect that some segments were
  2098. * retransmitted by mistake and CWND reduction was wrong, we undo
  2099. * window reduction and abort recovery phase. This logic is hidden
  2100. * inside several functions named tcp_try_undo_<something>.
  2101. */
  2102. /* This function decides, when we should leave Disordered state
  2103. * and enter Recovery phase, reducing congestion window.
  2104. *
  2105. * Main question: may we further continue forward transmission
  2106. * with the same cwnd?
  2107. */
  2108. static int tcp_time_to_recover(struct sock *sk)
  2109. {
  2110. struct tcp_sock *tp = tcp_sk(sk);
  2111. __u32 packets_out;
  2112. /* Do not perform any recovery during F-RTO algorithm */
  2113. if (tp->frto_counter)
  2114. return 0;
  2115. /* Trick#1: The loss is proven. */
  2116. if (tp->lost_out)
  2117. return 1;
  2118. /* Not-A-Trick#2 : Classic rule... */
  2119. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2120. return 1;
  2121. /* Trick#3 : when we use RFC2988 timer restart, fast
  2122. * retransmit can be triggered by timeout of queue head.
  2123. */
  2124. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2125. return 1;
  2126. /* Trick#4: It is still not OK... But will it be useful to delay
  2127. * recovery more?
  2128. */
  2129. packets_out = tp->packets_out;
  2130. if (packets_out <= tp->reordering &&
  2131. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2132. !tcp_may_send_now(sk)) {
  2133. /* We have nothing to send. This connection is limited
  2134. * either by receiver window or by application.
  2135. */
  2136. return 1;
  2137. }
  2138. /* If a thin stream is detected, retransmit after first
  2139. * received dupack. Employ only if SACK is supported in order
  2140. * to avoid possible corner-case series of spurious retransmissions
  2141. * Use only if there are no unsent data.
  2142. */
  2143. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2144. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2145. tcp_is_sack(tp) && !tcp_send_head(sk))
  2146. return 1;
  2147. return 0;
  2148. }
  2149. /* New heuristics: it is possible only after we switched to restart timer
  2150. * each time when something is ACKed. Hence, we can detect timed out packets
  2151. * during fast retransmit without falling to slow start.
  2152. *
  2153. * Usefulness of this as is very questionable, since we should know which of
  2154. * the segments is the next to timeout which is relatively expensive to find
  2155. * in general case unless we add some data structure just for that. The
  2156. * current approach certainly won't find the right one too often and when it
  2157. * finally does find _something_ it usually marks large part of the window
  2158. * right away (because a retransmission with a larger timestamp blocks the
  2159. * loop from advancing). -ij
  2160. */
  2161. static void tcp_timeout_skbs(struct sock *sk)
  2162. {
  2163. struct tcp_sock *tp = tcp_sk(sk);
  2164. struct sk_buff *skb;
  2165. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2166. return;
  2167. skb = tp->scoreboard_skb_hint;
  2168. if (tp->scoreboard_skb_hint == NULL)
  2169. skb = tcp_write_queue_head(sk);
  2170. tcp_for_write_queue_from(skb, sk) {
  2171. if (skb == tcp_send_head(sk))
  2172. break;
  2173. if (!tcp_skb_timedout(sk, skb))
  2174. break;
  2175. tcp_skb_mark_lost(tp, skb);
  2176. }
  2177. tp->scoreboard_skb_hint = skb;
  2178. tcp_verify_left_out(tp);
  2179. }
  2180. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  2181. * is against sacked "cnt", otherwise it's against facked "cnt"
  2182. */
  2183. static void tcp_mark_head_lost(struct sock *sk, int packets)
  2184. {
  2185. struct tcp_sock *tp = tcp_sk(sk);
  2186. struct sk_buff *skb;
  2187. int cnt, oldcnt;
  2188. int err;
  2189. unsigned int mss;
  2190. if (packets == 0)
  2191. return;
  2192. WARN_ON(packets > tp->packets_out);
  2193. if (tp->lost_skb_hint) {
  2194. skb = tp->lost_skb_hint;
  2195. cnt = tp->lost_cnt_hint;
  2196. } else {
  2197. skb = tcp_write_queue_head(sk);
  2198. cnt = 0;
  2199. }
  2200. tcp_for_write_queue_from(skb, sk) {
  2201. if (skb == tcp_send_head(sk))
  2202. break;
  2203. /* TODO: do this better */
  2204. /* this is not the most efficient way to do this... */
  2205. tp->lost_skb_hint = skb;
  2206. tp->lost_cnt_hint = cnt;
  2207. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  2208. break;
  2209. oldcnt = cnt;
  2210. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2211. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2212. cnt += tcp_skb_pcount(skb);
  2213. if (cnt > packets) {
  2214. if (tcp_is_sack(tp) || (oldcnt >= packets))
  2215. break;
  2216. mss = skb_shinfo(skb)->gso_size;
  2217. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2218. if (err < 0)
  2219. break;
  2220. cnt = packets;
  2221. }
  2222. tcp_skb_mark_lost(tp, skb);
  2223. }
  2224. tcp_verify_left_out(tp);
  2225. }
  2226. /* Account newly detected lost packet(s) */
  2227. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2228. {
  2229. struct tcp_sock *tp = tcp_sk(sk);
  2230. if (tcp_is_reno(tp)) {
  2231. tcp_mark_head_lost(sk, 1);
  2232. } else if (tcp_is_fack(tp)) {
  2233. int lost = tp->fackets_out - tp->reordering;
  2234. if (lost <= 0)
  2235. lost = 1;
  2236. tcp_mark_head_lost(sk, lost);
  2237. } else {
  2238. int sacked_upto = tp->sacked_out - tp->reordering;
  2239. if (sacked_upto < fast_rexmit)
  2240. sacked_upto = fast_rexmit;
  2241. tcp_mark_head_lost(sk, sacked_upto);
  2242. }
  2243. tcp_timeout_skbs(sk);
  2244. }
  2245. /* CWND moderation, preventing bursts due to too big ACKs
  2246. * in dubious situations.
  2247. */
  2248. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2249. {
  2250. tp->snd_cwnd = min(tp->snd_cwnd,
  2251. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2252. tp->snd_cwnd_stamp = tcp_time_stamp;
  2253. }
  2254. /* Lower bound on congestion window is slow start threshold
  2255. * unless congestion avoidance choice decides to overide it.
  2256. */
  2257. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2258. {
  2259. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2260. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2261. }
  2262. /* Decrease cwnd each second ack. */
  2263. static void tcp_cwnd_down(struct sock *sk, int flag)
  2264. {
  2265. struct tcp_sock *tp = tcp_sk(sk);
  2266. int decr = tp->snd_cwnd_cnt + 1;
  2267. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2268. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2269. tp->snd_cwnd_cnt = decr & 1;
  2270. decr >>= 1;
  2271. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2272. tp->snd_cwnd -= decr;
  2273. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2274. tp->snd_cwnd_stamp = tcp_time_stamp;
  2275. }
  2276. }
  2277. /* Nothing was retransmitted or returned timestamp is less
  2278. * than timestamp of the first retransmission.
  2279. */
  2280. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2281. {
  2282. return !tp->retrans_stamp ||
  2283. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2284. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2285. }
  2286. /* Undo procedures. */
  2287. #if FASTRETRANS_DEBUG > 1
  2288. static void DBGUNDO(struct sock *sk, const char *msg)
  2289. {
  2290. struct tcp_sock *tp = tcp_sk(sk);
  2291. struct inet_sock *inet = inet_sk(sk);
  2292. if (sk->sk_family == AF_INET) {
  2293. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2294. msg,
  2295. &inet->daddr, ntohs(inet->dport),
  2296. tp->snd_cwnd, tcp_left_out(tp),
  2297. tp->snd_ssthresh, tp->prior_ssthresh,
  2298. tp->packets_out);
  2299. }
  2300. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2301. else if (sk->sk_family == AF_INET6) {
  2302. struct ipv6_pinfo *np = inet6_sk(sk);
  2303. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2304. msg,
  2305. &np->daddr, ntohs(inet->dport),
  2306. tp->snd_cwnd, tcp_left_out(tp),
  2307. tp->snd_ssthresh, tp->prior_ssthresh,
  2308. tp->packets_out);
  2309. }
  2310. #endif
  2311. }
  2312. #else
  2313. #define DBGUNDO(x...) do { } while (0)
  2314. #endif
  2315. static void tcp_undo_cwr(struct sock *sk, const int undo)
  2316. {
  2317. struct tcp_sock *tp = tcp_sk(sk);
  2318. if (tp->prior_ssthresh) {
  2319. const struct inet_connection_sock *icsk = inet_csk(sk);
  2320. if (icsk->icsk_ca_ops->undo_cwnd)
  2321. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2322. else
  2323. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2324. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  2325. tp->snd_ssthresh = tp->prior_ssthresh;
  2326. TCP_ECN_withdraw_cwr(tp);
  2327. }
  2328. } else {
  2329. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2330. }
  2331. tcp_moderate_cwnd(tp);
  2332. tp->snd_cwnd_stamp = tcp_time_stamp;
  2333. }
  2334. static inline int tcp_may_undo(struct tcp_sock *tp)
  2335. {
  2336. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2337. }
  2338. /* People celebrate: "We love our President!" */
  2339. static int tcp_try_undo_recovery(struct sock *sk)
  2340. {
  2341. struct tcp_sock *tp = tcp_sk(sk);
  2342. if (tcp_may_undo(tp)) {
  2343. int mib_idx;
  2344. /* Happy end! We did not retransmit anything
  2345. * or our original transmission succeeded.
  2346. */
  2347. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2348. tcp_undo_cwr(sk, 1);
  2349. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2350. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2351. else
  2352. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2353. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2354. tp->undo_marker = 0;
  2355. }
  2356. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2357. /* Hold old state until something *above* high_seq
  2358. * is ACKed. For Reno it is MUST to prevent false
  2359. * fast retransmits (RFC2582). SACK TCP is safe. */
  2360. tcp_moderate_cwnd(tp);
  2361. return 1;
  2362. }
  2363. tcp_set_ca_state(sk, TCP_CA_Open);
  2364. return 0;
  2365. }
  2366. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2367. static void tcp_try_undo_dsack(struct sock *sk)
  2368. {
  2369. struct tcp_sock *tp = tcp_sk(sk);
  2370. if (tp->undo_marker && !tp->undo_retrans) {
  2371. DBGUNDO(sk, "D-SACK");
  2372. tcp_undo_cwr(sk, 1);
  2373. tp->undo_marker = 0;
  2374. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2375. }
  2376. }
  2377. /* We can clear retrans_stamp when there are no retransmissions in the
  2378. * window. It would seem that it is trivially available for us in
  2379. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2380. * what will happen if errors occur when sending retransmission for the
  2381. * second time. ...It could the that such segment has only
  2382. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2383. * the head skb is enough except for some reneging corner cases that
  2384. * are not worth the effort.
  2385. *
  2386. * Main reason for all this complexity is the fact that connection dying
  2387. * time now depends on the validity of the retrans_stamp, in particular,
  2388. * that successive retransmissions of a segment must not advance
  2389. * retrans_stamp under any conditions.
  2390. */
  2391. static int tcp_any_retrans_done(struct sock *sk)
  2392. {
  2393. struct tcp_sock *tp = tcp_sk(sk);
  2394. struct sk_buff *skb;
  2395. if (tp->retrans_out)
  2396. return 1;
  2397. skb = tcp_write_queue_head(sk);
  2398. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2399. return 1;
  2400. return 0;
  2401. }
  2402. /* Undo during fast recovery after partial ACK. */
  2403. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2404. {
  2405. struct tcp_sock *tp = tcp_sk(sk);
  2406. /* Partial ACK arrived. Force Hoe's retransmit. */
  2407. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2408. if (tcp_may_undo(tp)) {
  2409. /* Plain luck! Hole if filled with delayed
  2410. * packet, rather than with a retransmit.
  2411. */
  2412. if (!tcp_any_retrans_done(sk))
  2413. tp->retrans_stamp = 0;
  2414. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2415. DBGUNDO(sk, "Hoe");
  2416. tcp_undo_cwr(sk, 0);
  2417. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2418. /* So... Do not make Hoe's retransmit yet.
  2419. * If the first packet was delayed, the rest
  2420. * ones are most probably delayed as well.
  2421. */
  2422. failed = 0;
  2423. }
  2424. return failed;
  2425. }
  2426. /* Undo during loss recovery after partial ACK. */
  2427. static int tcp_try_undo_loss(struct sock *sk)
  2428. {
  2429. struct tcp_sock *tp = tcp_sk(sk);
  2430. if (tcp_may_undo(tp)) {
  2431. struct sk_buff *skb;
  2432. tcp_for_write_queue(skb, sk) {
  2433. if (skb == tcp_send_head(sk))
  2434. break;
  2435. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2436. }
  2437. tcp_clear_all_retrans_hints(tp);
  2438. DBGUNDO(sk, "partial loss");
  2439. tp->lost_out = 0;
  2440. tcp_undo_cwr(sk, 1);
  2441. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2442. inet_csk(sk)->icsk_retransmits = 0;
  2443. tp->undo_marker = 0;
  2444. if (tcp_is_sack(tp))
  2445. tcp_set_ca_state(sk, TCP_CA_Open);
  2446. return 1;
  2447. }
  2448. return 0;
  2449. }
  2450. static inline void tcp_complete_cwr(struct sock *sk)
  2451. {
  2452. struct tcp_sock *tp = tcp_sk(sk);
  2453. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2454. tp->snd_cwnd_stamp = tcp_time_stamp;
  2455. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2456. }
  2457. static void tcp_try_keep_open(struct sock *sk)
  2458. {
  2459. struct tcp_sock *tp = tcp_sk(sk);
  2460. int state = TCP_CA_Open;
  2461. if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
  2462. state = TCP_CA_Disorder;
  2463. if (inet_csk(sk)->icsk_ca_state != state) {
  2464. tcp_set_ca_state(sk, state);
  2465. tp->high_seq = tp->snd_nxt;
  2466. }
  2467. }
  2468. static void tcp_try_to_open(struct sock *sk, int flag)
  2469. {
  2470. struct tcp_sock *tp = tcp_sk(sk);
  2471. tcp_verify_left_out(tp);
  2472. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2473. tp->retrans_stamp = 0;
  2474. if (flag & FLAG_ECE)
  2475. tcp_enter_cwr(sk, 1);
  2476. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2477. tcp_try_keep_open(sk);
  2478. tcp_moderate_cwnd(tp);
  2479. } else {
  2480. tcp_cwnd_down(sk, flag);
  2481. }
  2482. }
  2483. static void tcp_mtup_probe_failed(struct sock *sk)
  2484. {
  2485. struct inet_connection_sock *icsk = inet_csk(sk);
  2486. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2487. icsk->icsk_mtup.probe_size = 0;
  2488. }
  2489. static void tcp_mtup_probe_success(struct sock *sk)
  2490. {
  2491. struct tcp_sock *tp = tcp_sk(sk);
  2492. struct inet_connection_sock *icsk = inet_csk(sk);
  2493. /* FIXME: breaks with very large cwnd */
  2494. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2495. tp->snd_cwnd = tp->snd_cwnd *
  2496. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2497. icsk->icsk_mtup.probe_size;
  2498. tp->snd_cwnd_cnt = 0;
  2499. tp->snd_cwnd_stamp = tcp_time_stamp;
  2500. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  2501. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2502. icsk->icsk_mtup.probe_size = 0;
  2503. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2504. }
  2505. /* Do a simple retransmit without using the backoff mechanisms in
  2506. * tcp_timer. This is used for path mtu discovery.
  2507. * The socket is already locked here.
  2508. */
  2509. void tcp_simple_retransmit(struct sock *sk)
  2510. {
  2511. const struct inet_connection_sock *icsk = inet_csk(sk);
  2512. struct tcp_sock *tp = tcp_sk(sk);
  2513. struct sk_buff *skb;
  2514. unsigned int mss = tcp_current_mss(sk);
  2515. u32 prior_lost = tp->lost_out;
  2516. tcp_for_write_queue(skb, sk) {
  2517. if (skb == tcp_send_head(sk))
  2518. break;
  2519. if (tcp_skb_seglen(skb) > mss &&
  2520. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2521. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2522. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2523. tp->retrans_out -= tcp_skb_pcount(skb);
  2524. }
  2525. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2526. }
  2527. }
  2528. tcp_clear_retrans_hints_partial(tp);
  2529. if (prior_lost == tp->lost_out)
  2530. return;
  2531. if (tcp_is_reno(tp))
  2532. tcp_limit_reno_sacked(tp);
  2533. tcp_verify_left_out(tp);
  2534. /* Don't muck with the congestion window here.
  2535. * Reason is that we do not increase amount of _data_
  2536. * in network, but units changed and effective
  2537. * cwnd/ssthresh really reduced now.
  2538. */
  2539. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2540. tp->high_seq = tp->snd_nxt;
  2541. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2542. tp->prior_ssthresh = 0;
  2543. tp->undo_marker = 0;
  2544. tcp_set_ca_state(sk, TCP_CA_Loss);
  2545. }
  2546. tcp_xmit_retransmit_queue(sk);
  2547. }
  2548. /* Process an event, which can update packets-in-flight not trivially.
  2549. * Main goal of this function is to calculate new estimate for left_out,
  2550. * taking into account both packets sitting in receiver's buffer and
  2551. * packets lost by network.
  2552. *
  2553. * Besides that it does CWND reduction, when packet loss is detected
  2554. * and changes state of machine.
  2555. *
  2556. * It does _not_ decide what to send, it is made in function
  2557. * tcp_xmit_retransmit_queue().
  2558. */
  2559. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2560. {
  2561. struct inet_connection_sock *icsk = inet_csk(sk);
  2562. struct tcp_sock *tp = tcp_sk(sk);
  2563. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2564. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2565. (tcp_fackets_out(tp) > tp->reordering));
  2566. int fast_rexmit = 0, mib_idx;
  2567. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2568. tp->sacked_out = 0;
  2569. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2570. tp->fackets_out = 0;
  2571. /* Now state machine starts.
  2572. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2573. if (flag & FLAG_ECE)
  2574. tp->prior_ssthresh = 0;
  2575. /* B. In all the states check for reneging SACKs. */
  2576. if (tcp_check_sack_reneging(sk, flag))
  2577. return;
  2578. /* C. Process data loss notification, provided it is valid. */
  2579. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2580. before(tp->snd_una, tp->high_seq) &&
  2581. icsk->icsk_ca_state != TCP_CA_Open &&
  2582. tp->fackets_out > tp->reordering) {
  2583. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
  2584. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2585. }
  2586. /* D. Check consistency of the current state. */
  2587. tcp_verify_left_out(tp);
  2588. /* E. Check state exit conditions. State can be terminated
  2589. * when high_seq is ACKed. */
  2590. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2591. WARN_ON(tp->retrans_out != 0);
  2592. tp->retrans_stamp = 0;
  2593. } else if (!before(tp->snd_una, tp->high_seq)) {
  2594. switch (icsk->icsk_ca_state) {
  2595. case TCP_CA_Loss:
  2596. icsk->icsk_retransmits = 0;
  2597. if (tcp_try_undo_recovery(sk))
  2598. return;
  2599. break;
  2600. case TCP_CA_CWR:
  2601. /* CWR is to be held something *above* high_seq
  2602. * is ACKed for CWR bit to reach receiver. */
  2603. if (tp->snd_una != tp->high_seq) {
  2604. tcp_complete_cwr(sk);
  2605. tcp_set_ca_state(sk, TCP_CA_Open);
  2606. }
  2607. break;
  2608. case TCP_CA_Disorder:
  2609. tcp_try_undo_dsack(sk);
  2610. if (!tp->undo_marker ||
  2611. /* For SACK case do not Open to allow to undo
  2612. * catching for all duplicate ACKs. */
  2613. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2614. tp->undo_marker = 0;
  2615. tcp_set_ca_state(sk, TCP_CA_Open);
  2616. }
  2617. break;
  2618. case TCP_CA_Recovery:
  2619. if (tcp_is_reno(tp))
  2620. tcp_reset_reno_sack(tp);
  2621. if (tcp_try_undo_recovery(sk))
  2622. return;
  2623. tcp_complete_cwr(sk);
  2624. break;
  2625. }
  2626. }
  2627. /* F. Process state. */
  2628. switch (icsk->icsk_ca_state) {
  2629. case TCP_CA_Recovery:
  2630. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2631. if (tcp_is_reno(tp) && is_dupack)
  2632. tcp_add_reno_sack(sk);
  2633. } else
  2634. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2635. break;
  2636. case TCP_CA_Loss:
  2637. if (flag & FLAG_DATA_ACKED)
  2638. icsk->icsk_retransmits = 0;
  2639. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2640. tcp_reset_reno_sack(tp);
  2641. if (!tcp_try_undo_loss(sk)) {
  2642. tcp_moderate_cwnd(tp);
  2643. tcp_xmit_retransmit_queue(sk);
  2644. return;
  2645. }
  2646. if (icsk->icsk_ca_state != TCP_CA_Open)
  2647. return;
  2648. /* Loss is undone; fall through to processing in Open state. */
  2649. default:
  2650. if (tcp_is_reno(tp)) {
  2651. if (flag & FLAG_SND_UNA_ADVANCED)
  2652. tcp_reset_reno_sack(tp);
  2653. if (is_dupack)
  2654. tcp_add_reno_sack(sk);
  2655. }
  2656. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2657. tcp_try_undo_dsack(sk);
  2658. if (!tcp_time_to_recover(sk)) {
  2659. tcp_try_to_open(sk, flag);
  2660. return;
  2661. }
  2662. /* MTU probe failure: don't reduce cwnd */
  2663. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2664. icsk->icsk_mtup.probe_size &&
  2665. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2666. tcp_mtup_probe_failed(sk);
  2667. /* Restores the reduction we did in tcp_mtup_probe() */
  2668. tp->snd_cwnd++;
  2669. tcp_simple_retransmit(sk);
  2670. return;
  2671. }
  2672. /* Otherwise enter Recovery state */
  2673. if (tcp_is_reno(tp))
  2674. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2675. else
  2676. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2677. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2678. tp->high_seq = tp->snd_nxt;
  2679. tp->prior_ssthresh = 0;
  2680. tp->undo_marker = tp->snd_una;
  2681. tp->undo_retrans = tp->retrans_out;
  2682. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2683. if (!(flag & FLAG_ECE))
  2684. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2685. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2686. TCP_ECN_queue_cwr(tp);
  2687. }
  2688. tp->bytes_acked = 0;
  2689. tp->snd_cwnd_cnt = 0;
  2690. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2691. fast_rexmit = 1;
  2692. }
  2693. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2694. tcp_update_scoreboard(sk, fast_rexmit);
  2695. tcp_cwnd_down(sk, flag);
  2696. tcp_xmit_retransmit_queue(sk);
  2697. }
  2698. static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2699. {
  2700. tcp_rtt_estimator(sk, seq_rtt);
  2701. tcp_set_rto(sk);
  2702. inet_csk(sk)->icsk_backoff = 0;
  2703. }
  2704. /* Read draft-ietf-tcplw-high-performance before mucking
  2705. * with this code. (Supersedes RFC1323)
  2706. */
  2707. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2708. {
  2709. /* RTTM Rule: A TSecr value received in a segment is used to
  2710. * update the averaged RTT measurement only if the segment
  2711. * acknowledges some new data, i.e., only if it advances the
  2712. * left edge of the send window.
  2713. *
  2714. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2715. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2716. *
  2717. * Changed: reset backoff as soon as we see the first valid sample.
  2718. * If we do not, we get strongly overestimated rto. With timestamps
  2719. * samples are accepted even from very old segments: f.e., when rtt=1
  2720. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2721. * answer arrives rto becomes 120 seconds! If at least one of segments
  2722. * in window is lost... Voila. --ANK (010210)
  2723. */
  2724. struct tcp_sock *tp = tcp_sk(sk);
  2725. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2726. }
  2727. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2728. {
  2729. /* We don't have a timestamp. Can only use
  2730. * packets that are not retransmitted to determine
  2731. * rtt estimates. Also, we must not reset the
  2732. * backoff for rto until we get a non-retransmitted
  2733. * packet. This allows us to deal with a situation
  2734. * where the network delay has increased suddenly.
  2735. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2736. */
  2737. if (flag & FLAG_RETRANS_DATA_ACKED)
  2738. return;
  2739. tcp_valid_rtt_meas(sk, seq_rtt);
  2740. }
  2741. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2742. const s32 seq_rtt)
  2743. {
  2744. const struct tcp_sock *tp = tcp_sk(sk);
  2745. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2746. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2747. tcp_ack_saw_tstamp(sk, flag);
  2748. else if (seq_rtt >= 0)
  2749. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2750. }
  2751. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2752. {
  2753. const struct inet_connection_sock *icsk = inet_csk(sk);
  2754. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2755. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2756. }
  2757. /* Restart timer after forward progress on connection.
  2758. * RFC2988 recommends to restart timer to now+rto.
  2759. */
  2760. static void tcp_rearm_rto(struct sock *sk)
  2761. {
  2762. struct tcp_sock *tp = tcp_sk(sk);
  2763. if (!tp->packets_out) {
  2764. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2765. } else {
  2766. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2767. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2768. }
  2769. }
  2770. /* If we get here, the whole TSO packet has not been acked. */
  2771. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2772. {
  2773. struct tcp_sock *tp = tcp_sk(sk);
  2774. u32 packets_acked;
  2775. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2776. packets_acked = tcp_skb_pcount(skb);
  2777. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2778. return 0;
  2779. packets_acked -= tcp_skb_pcount(skb);
  2780. if (packets_acked) {
  2781. BUG_ON(tcp_skb_pcount(skb) == 0);
  2782. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2783. }
  2784. return packets_acked;
  2785. }
  2786. /* Remove acknowledged frames from the retransmission queue. If our packet
  2787. * is before the ack sequence we can discard it as it's confirmed to have
  2788. * arrived at the other end.
  2789. */
  2790. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2791. u32 prior_snd_una)
  2792. {
  2793. struct tcp_sock *tp = tcp_sk(sk);
  2794. const struct inet_connection_sock *icsk = inet_csk(sk);
  2795. struct sk_buff *skb;
  2796. u32 now = tcp_time_stamp;
  2797. int fully_acked = 1;
  2798. int flag = 0;
  2799. u32 pkts_acked = 0;
  2800. u32 reord = tp->packets_out;
  2801. u32 prior_sacked = tp->sacked_out;
  2802. s32 seq_rtt = -1;
  2803. s32 ca_seq_rtt = -1;
  2804. ktime_t last_ackt = net_invalid_timestamp();
  2805. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2806. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2807. u32 acked_pcount;
  2808. u8 sacked = scb->sacked;
  2809. /* Determine how many packets and what bytes were acked, tso and else */
  2810. if (after(scb->end_seq, tp->snd_una)) {
  2811. if (tcp_skb_pcount(skb) == 1 ||
  2812. !after(tp->snd_una, scb->seq))
  2813. break;
  2814. acked_pcount = tcp_tso_acked(sk, skb);
  2815. if (!acked_pcount)
  2816. break;
  2817. fully_acked = 0;
  2818. } else {
  2819. acked_pcount = tcp_skb_pcount(skb);
  2820. }
  2821. if (sacked & TCPCB_RETRANS) {
  2822. if (sacked & TCPCB_SACKED_RETRANS)
  2823. tp->retrans_out -= acked_pcount;
  2824. flag |= FLAG_RETRANS_DATA_ACKED;
  2825. ca_seq_rtt = -1;
  2826. seq_rtt = -1;
  2827. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2828. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2829. } else {
  2830. ca_seq_rtt = now - scb->when;
  2831. last_ackt = skb->tstamp;
  2832. if (seq_rtt < 0) {
  2833. seq_rtt = ca_seq_rtt;
  2834. }
  2835. if (!(sacked & TCPCB_SACKED_ACKED))
  2836. reord = min(pkts_acked, reord);
  2837. }
  2838. if (sacked & TCPCB_SACKED_ACKED)
  2839. tp->sacked_out -= acked_pcount;
  2840. if (sacked & TCPCB_LOST)
  2841. tp->lost_out -= acked_pcount;
  2842. tp->packets_out -= acked_pcount;
  2843. pkts_acked += acked_pcount;
  2844. /* Initial outgoing SYN's get put onto the write_queue
  2845. * just like anything else we transmit. It is not
  2846. * true data, and if we misinform our callers that
  2847. * this ACK acks real data, we will erroneously exit
  2848. * connection startup slow start one packet too
  2849. * quickly. This is severely frowned upon behavior.
  2850. */
  2851. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2852. flag |= FLAG_DATA_ACKED;
  2853. } else {
  2854. flag |= FLAG_SYN_ACKED;
  2855. tp->retrans_stamp = 0;
  2856. }
  2857. if (!fully_acked)
  2858. break;
  2859. tcp_unlink_write_queue(skb, sk);
  2860. sk_wmem_free_skb(sk, skb);
  2861. tp->scoreboard_skb_hint = NULL;
  2862. if (skb == tp->retransmit_skb_hint)
  2863. tp->retransmit_skb_hint = NULL;
  2864. if (skb == tp->lost_skb_hint)
  2865. tp->lost_skb_hint = NULL;
  2866. }
  2867. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2868. tp->snd_up = tp->snd_una;
  2869. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2870. flag |= FLAG_SACK_RENEGING;
  2871. if (flag & FLAG_ACKED) {
  2872. const struct tcp_congestion_ops *ca_ops
  2873. = inet_csk(sk)->icsk_ca_ops;
  2874. if (unlikely(icsk->icsk_mtup.probe_size &&
  2875. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2876. tcp_mtup_probe_success(sk);
  2877. }
  2878. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2879. tcp_rearm_rto(sk);
  2880. if (tcp_is_reno(tp)) {
  2881. tcp_remove_reno_sacks(sk, pkts_acked);
  2882. } else {
  2883. int delta;
  2884. /* Non-retransmitted hole got filled? That's reordering */
  2885. if (reord < prior_fackets)
  2886. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2887. delta = tcp_is_fack(tp) ? pkts_acked :
  2888. prior_sacked - tp->sacked_out;
  2889. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2890. }
  2891. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2892. if (ca_ops->pkts_acked) {
  2893. s32 rtt_us = -1;
  2894. /* Is the ACK triggering packet unambiguous? */
  2895. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2896. /* High resolution needed and available? */
  2897. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2898. !ktime_equal(last_ackt,
  2899. net_invalid_timestamp()))
  2900. rtt_us = ktime_us_delta(ktime_get_real(),
  2901. last_ackt);
  2902. else if (ca_seq_rtt > 0)
  2903. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2904. }
  2905. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2906. }
  2907. }
  2908. #if FASTRETRANS_DEBUG > 0
  2909. WARN_ON((int)tp->sacked_out < 0);
  2910. WARN_ON((int)tp->lost_out < 0);
  2911. WARN_ON((int)tp->retrans_out < 0);
  2912. if (!tp->packets_out && tcp_is_sack(tp)) {
  2913. icsk = inet_csk(sk);
  2914. if (tp->lost_out) {
  2915. printk(KERN_DEBUG "Leak l=%u %d\n",
  2916. tp->lost_out, icsk->icsk_ca_state);
  2917. tp->lost_out = 0;
  2918. }
  2919. if (tp->sacked_out) {
  2920. printk(KERN_DEBUG "Leak s=%u %d\n",
  2921. tp->sacked_out, icsk->icsk_ca_state);
  2922. tp->sacked_out = 0;
  2923. }
  2924. if (tp->retrans_out) {
  2925. printk(KERN_DEBUG "Leak r=%u %d\n",
  2926. tp->retrans_out, icsk->icsk_ca_state);
  2927. tp->retrans_out = 0;
  2928. }
  2929. }
  2930. #endif
  2931. return flag;
  2932. }
  2933. static void tcp_ack_probe(struct sock *sk)
  2934. {
  2935. const struct tcp_sock *tp = tcp_sk(sk);
  2936. struct inet_connection_sock *icsk = inet_csk(sk);
  2937. /* Was it a usable window open? */
  2938. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2939. icsk->icsk_backoff = 0;
  2940. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2941. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2942. * This function is not for random using!
  2943. */
  2944. } else {
  2945. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2946. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2947. TCP_RTO_MAX);
  2948. }
  2949. }
  2950. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2951. {
  2952. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2953. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2954. }
  2955. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2956. {
  2957. const struct tcp_sock *tp = tcp_sk(sk);
  2958. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2959. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2960. }
  2961. /* Check that window update is acceptable.
  2962. * The function assumes that snd_una<=ack<=snd_next.
  2963. */
  2964. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  2965. const u32 ack, const u32 ack_seq,
  2966. const u32 nwin)
  2967. {
  2968. return (after(ack, tp->snd_una) ||
  2969. after(ack_seq, tp->snd_wl1) ||
  2970. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2971. }
  2972. /* Update our send window.
  2973. *
  2974. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2975. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2976. */
  2977. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2978. u32 ack_seq)
  2979. {
  2980. struct tcp_sock *tp = tcp_sk(sk);
  2981. int flag = 0;
  2982. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2983. if (likely(!tcp_hdr(skb)->syn))
  2984. nwin <<= tp->rx_opt.snd_wscale;
  2985. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2986. flag |= FLAG_WIN_UPDATE;
  2987. tcp_update_wl(tp, ack_seq);
  2988. if (tp->snd_wnd != nwin) {
  2989. tp->snd_wnd = nwin;
  2990. /* Note, it is the only place, where
  2991. * fast path is recovered for sending TCP.
  2992. */
  2993. tp->pred_flags = 0;
  2994. tcp_fast_path_check(sk);
  2995. if (nwin > tp->max_window) {
  2996. tp->max_window = nwin;
  2997. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2998. }
  2999. }
  3000. }
  3001. tp->snd_una = ack;
  3002. return flag;
  3003. }
  3004. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3005. * continue in congestion avoidance.
  3006. */
  3007. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3008. {
  3009. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3010. tp->snd_cwnd_cnt = 0;
  3011. tp->bytes_acked = 0;
  3012. TCP_ECN_queue_cwr(tp);
  3013. tcp_moderate_cwnd(tp);
  3014. }
  3015. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3016. * rate halving and continue in congestion avoidance.
  3017. */
  3018. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3019. {
  3020. tcp_enter_cwr(sk, 0);
  3021. }
  3022. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3023. {
  3024. if (flag & FLAG_ECE)
  3025. tcp_ratehalving_spur_to_response(sk);
  3026. else
  3027. tcp_undo_cwr(sk, 1);
  3028. }
  3029. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3030. *
  3031. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3032. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3033. * window (but not to or beyond highest sequence sent before RTO):
  3034. * On First ACK, send two new segments out.
  3035. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3036. * algorithm is not part of the F-RTO detection algorithm
  3037. * given in RFC4138 but can be selected separately).
  3038. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3039. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3040. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3041. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3042. *
  3043. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3044. * original window even after we transmit two new data segments.
  3045. *
  3046. * SACK version:
  3047. * on first step, wait until first cumulative ACK arrives, then move to
  3048. * the second step. In second step, the next ACK decides.
  3049. *
  3050. * F-RTO is implemented (mainly) in four functions:
  3051. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3052. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3053. * called when tcp_use_frto() showed green light
  3054. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3055. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3056. * to prove that the RTO is indeed spurious. It transfers the control
  3057. * from F-RTO to the conventional RTO recovery
  3058. */
  3059. static int tcp_process_frto(struct sock *sk, int flag)
  3060. {
  3061. struct tcp_sock *tp = tcp_sk(sk);
  3062. tcp_verify_left_out(tp);
  3063. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3064. if (flag & FLAG_DATA_ACKED)
  3065. inet_csk(sk)->icsk_retransmits = 0;
  3066. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3067. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3068. tp->undo_marker = 0;
  3069. if (!before(tp->snd_una, tp->frto_highmark)) {
  3070. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3071. return 1;
  3072. }
  3073. if (!tcp_is_sackfrto(tp)) {
  3074. /* RFC4138 shortcoming in step 2; should also have case c):
  3075. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3076. * data, winupdate
  3077. */
  3078. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3079. return 1;
  3080. if (!(flag & FLAG_DATA_ACKED)) {
  3081. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3082. flag);
  3083. return 1;
  3084. }
  3085. } else {
  3086. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3087. /* Prevent sending of new data. */
  3088. tp->snd_cwnd = min(tp->snd_cwnd,
  3089. tcp_packets_in_flight(tp));
  3090. return 1;
  3091. }
  3092. if ((tp->frto_counter >= 2) &&
  3093. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3094. ((flag & FLAG_DATA_SACKED) &&
  3095. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3096. /* RFC4138 shortcoming (see comment above) */
  3097. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3098. (flag & FLAG_NOT_DUP))
  3099. return 1;
  3100. tcp_enter_frto_loss(sk, 3, flag);
  3101. return 1;
  3102. }
  3103. }
  3104. if (tp->frto_counter == 1) {
  3105. /* tcp_may_send_now needs to see updated state */
  3106. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3107. tp->frto_counter = 2;
  3108. if (!tcp_may_send_now(sk))
  3109. tcp_enter_frto_loss(sk, 2, flag);
  3110. return 1;
  3111. } else {
  3112. switch (sysctl_tcp_frto_response) {
  3113. case 2:
  3114. tcp_undo_spur_to_response(sk, flag);
  3115. break;
  3116. case 1:
  3117. tcp_conservative_spur_to_response(tp);
  3118. break;
  3119. default:
  3120. tcp_ratehalving_spur_to_response(sk);
  3121. break;
  3122. }
  3123. tp->frto_counter = 0;
  3124. tp->undo_marker = 0;
  3125. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3126. }
  3127. return 0;
  3128. }
  3129. /* This routine deals with incoming acks, but not outgoing ones. */
  3130. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  3131. {
  3132. struct inet_connection_sock *icsk = inet_csk(sk);
  3133. struct tcp_sock *tp = tcp_sk(sk);
  3134. u32 prior_snd_una = tp->snd_una;
  3135. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3136. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3137. u32 prior_in_flight;
  3138. u32 prior_fackets;
  3139. int prior_packets;
  3140. int frto_cwnd = 0;
  3141. /* If the ack is older than previous acks
  3142. * then we can probably ignore it.
  3143. */
  3144. if (before(ack, prior_snd_una))
  3145. goto old_ack;
  3146. /* If the ack includes data we haven't sent yet, discard
  3147. * this segment (RFC793 Section 3.9).
  3148. */
  3149. if (after(ack, tp->snd_nxt))
  3150. goto invalid_ack;
  3151. if (after(ack, prior_snd_una))
  3152. flag |= FLAG_SND_UNA_ADVANCED;
  3153. if (sysctl_tcp_abc) {
  3154. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3155. tp->bytes_acked += ack - prior_snd_una;
  3156. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3157. /* we assume just one segment left network */
  3158. tp->bytes_acked += min(ack - prior_snd_una,
  3159. tp->mss_cache);
  3160. }
  3161. prior_fackets = tp->fackets_out;
  3162. prior_in_flight = tcp_packets_in_flight(tp);
  3163. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3164. /* Window is constant, pure forward advance.
  3165. * No more checks are required.
  3166. * Note, we use the fact that SND.UNA>=SND.WL2.
  3167. */
  3168. tcp_update_wl(tp, ack_seq);
  3169. tp->snd_una = ack;
  3170. flag |= FLAG_WIN_UPDATE;
  3171. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3172. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3173. } else {
  3174. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3175. flag |= FLAG_DATA;
  3176. else
  3177. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3178. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3179. if (TCP_SKB_CB(skb)->sacked)
  3180. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3181. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3182. flag |= FLAG_ECE;
  3183. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3184. }
  3185. /* We passed data and got it acked, remove any soft error
  3186. * log. Something worked...
  3187. */
  3188. sk->sk_err_soft = 0;
  3189. icsk->icsk_probes_out = 0;
  3190. tp->rcv_tstamp = tcp_time_stamp;
  3191. prior_packets = tp->packets_out;
  3192. if (!prior_packets)
  3193. goto no_queue;
  3194. /* See if we can take anything off of the retransmit queue. */
  3195. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3196. if (tp->frto_counter)
  3197. frto_cwnd = tcp_process_frto(sk, flag);
  3198. /* Guarantee sacktag reordering detection against wrap-arounds */
  3199. if (before(tp->frto_highmark, tp->snd_una))
  3200. tp->frto_highmark = 0;
  3201. if (tcp_ack_is_dubious(sk, flag)) {
  3202. /* Advance CWND, if state allows this. */
  3203. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3204. tcp_may_raise_cwnd(sk, flag))
  3205. tcp_cong_avoid(sk, ack, prior_in_flight);
  3206. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  3207. flag);
  3208. } else {
  3209. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3210. tcp_cong_avoid(sk, ack, prior_in_flight);
  3211. }
  3212. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3213. dst_confirm(__sk_dst_get(sk));
  3214. return 1;
  3215. no_queue:
  3216. /* If this ack opens up a zero window, clear backoff. It was
  3217. * being used to time the probes, and is probably far higher than
  3218. * it needs to be for normal retransmission.
  3219. */
  3220. if (tcp_send_head(sk))
  3221. tcp_ack_probe(sk);
  3222. return 1;
  3223. invalid_ack:
  3224. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3225. return -1;
  3226. old_ack:
  3227. if (TCP_SKB_CB(skb)->sacked) {
  3228. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3229. if (icsk->icsk_ca_state == TCP_CA_Open)
  3230. tcp_try_keep_open(sk);
  3231. }
  3232. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3233. return 0;
  3234. }
  3235. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3236. * But, this can also be called on packets in the established flow when
  3237. * the fast version below fails.
  3238. */
  3239. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3240. u8 **hvpp, int estab)
  3241. {
  3242. unsigned char *ptr;
  3243. struct tcphdr *th = tcp_hdr(skb);
  3244. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3245. ptr = (unsigned char *)(th + 1);
  3246. opt_rx->saw_tstamp = 0;
  3247. while (length > 0) {
  3248. int opcode = *ptr++;
  3249. int opsize;
  3250. switch (opcode) {
  3251. case TCPOPT_EOL:
  3252. return;
  3253. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3254. length--;
  3255. continue;
  3256. default:
  3257. opsize = *ptr++;
  3258. if (opsize < 2) /* "silly options" */
  3259. return;
  3260. if (opsize > length)
  3261. return; /* don't parse partial options */
  3262. switch (opcode) {
  3263. case TCPOPT_MSS:
  3264. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3265. u16 in_mss = get_unaligned_be16(ptr);
  3266. if (in_mss) {
  3267. if (opt_rx->user_mss &&
  3268. opt_rx->user_mss < in_mss)
  3269. in_mss = opt_rx->user_mss;
  3270. opt_rx->mss_clamp = in_mss;
  3271. }
  3272. }
  3273. break;
  3274. case TCPOPT_WINDOW:
  3275. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3276. !estab && sysctl_tcp_window_scaling) {
  3277. __u8 snd_wscale = *(__u8 *)ptr;
  3278. opt_rx->wscale_ok = 1;
  3279. if (snd_wscale > 14) {
  3280. if (net_ratelimit())
  3281. printk(KERN_INFO "tcp_parse_options: Illegal window "
  3282. "scaling value %d >14 received.\n",
  3283. snd_wscale);
  3284. snd_wscale = 14;
  3285. }
  3286. opt_rx->snd_wscale = snd_wscale;
  3287. }
  3288. break;
  3289. case TCPOPT_TIMESTAMP:
  3290. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3291. ((estab && opt_rx->tstamp_ok) ||
  3292. (!estab && sysctl_tcp_timestamps))) {
  3293. opt_rx->saw_tstamp = 1;
  3294. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3295. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3296. }
  3297. break;
  3298. case TCPOPT_SACK_PERM:
  3299. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3300. !estab && sysctl_tcp_sack) {
  3301. opt_rx->sack_ok = 1;
  3302. tcp_sack_reset(opt_rx);
  3303. }
  3304. break;
  3305. case TCPOPT_SACK:
  3306. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3307. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3308. opt_rx->sack_ok) {
  3309. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3310. }
  3311. break;
  3312. #ifdef CONFIG_TCP_MD5SIG
  3313. case TCPOPT_MD5SIG:
  3314. /*
  3315. * The MD5 Hash has already been
  3316. * checked (see tcp_v{4,6}_do_rcv()).
  3317. */
  3318. break;
  3319. #endif
  3320. case TCPOPT_COOKIE:
  3321. /* This option is variable length.
  3322. */
  3323. switch (opsize) {
  3324. case TCPOLEN_COOKIE_BASE:
  3325. /* not yet implemented */
  3326. break;
  3327. case TCPOLEN_COOKIE_PAIR:
  3328. /* not yet implemented */
  3329. break;
  3330. case TCPOLEN_COOKIE_MIN+0:
  3331. case TCPOLEN_COOKIE_MIN+2:
  3332. case TCPOLEN_COOKIE_MIN+4:
  3333. case TCPOLEN_COOKIE_MIN+6:
  3334. case TCPOLEN_COOKIE_MAX:
  3335. /* 16-bit multiple */
  3336. opt_rx->cookie_plus = opsize;
  3337. *hvpp = ptr;
  3338. default:
  3339. /* ignore option */
  3340. break;
  3341. };
  3342. break;
  3343. };
  3344. ptr += opsize-2;
  3345. length -= opsize;
  3346. }
  3347. }
  3348. }
  3349. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
  3350. {
  3351. __be32 *ptr = (__be32 *)(th + 1);
  3352. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3353. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3354. tp->rx_opt.saw_tstamp = 1;
  3355. ++ptr;
  3356. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3357. ++ptr;
  3358. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3359. return 1;
  3360. }
  3361. return 0;
  3362. }
  3363. /* Fast parse options. This hopes to only see timestamps.
  3364. * If it is wrong it falls back on tcp_parse_options().
  3365. */
  3366. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  3367. struct tcp_sock *tp, u8 **hvpp)
  3368. {
  3369. /* In the spirit of fast parsing, compare doff directly to constant
  3370. * values. Because equality is used, short doff can be ignored here.
  3371. */
  3372. if (th->doff == (sizeof(*th) / 4)) {
  3373. tp->rx_opt.saw_tstamp = 0;
  3374. return 0;
  3375. } else if (tp->rx_opt.tstamp_ok &&
  3376. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3377. if (tcp_parse_aligned_timestamp(tp, th))
  3378. return 1;
  3379. }
  3380. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3381. return 1;
  3382. }
  3383. #ifdef CONFIG_TCP_MD5SIG
  3384. /*
  3385. * Parse MD5 Signature option
  3386. */
  3387. u8 *tcp_parse_md5sig_option(struct tcphdr *th)
  3388. {
  3389. int length = (th->doff << 2) - sizeof (*th);
  3390. u8 *ptr = (u8*)(th + 1);
  3391. /* If the TCP option is too short, we can short cut */
  3392. if (length < TCPOLEN_MD5SIG)
  3393. return NULL;
  3394. while (length > 0) {
  3395. int opcode = *ptr++;
  3396. int opsize;
  3397. switch(opcode) {
  3398. case TCPOPT_EOL:
  3399. return NULL;
  3400. case TCPOPT_NOP:
  3401. length--;
  3402. continue;
  3403. default:
  3404. opsize = *ptr++;
  3405. if (opsize < 2 || opsize > length)
  3406. return NULL;
  3407. if (opcode == TCPOPT_MD5SIG)
  3408. return ptr;
  3409. }
  3410. ptr += opsize - 2;
  3411. length -= opsize;
  3412. }
  3413. return NULL;
  3414. }
  3415. #endif
  3416. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3417. {
  3418. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3419. tp->rx_opt.ts_recent_stamp = get_seconds();
  3420. }
  3421. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3422. {
  3423. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3424. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3425. * extra check below makes sure this can only happen
  3426. * for pure ACK frames. -DaveM
  3427. *
  3428. * Not only, also it occurs for expired timestamps.
  3429. */
  3430. if (tcp_paws_check(&tp->rx_opt, 0))
  3431. tcp_store_ts_recent(tp);
  3432. }
  3433. }
  3434. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3435. *
  3436. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3437. * it can pass through stack. So, the following predicate verifies that
  3438. * this segment is not used for anything but congestion avoidance or
  3439. * fast retransmit. Moreover, we even are able to eliminate most of such
  3440. * second order effects, if we apply some small "replay" window (~RTO)
  3441. * to timestamp space.
  3442. *
  3443. * All these measures still do not guarantee that we reject wrapped ACKs
  3444. * on networks with high bandwidth, when sequence space is recycled fastly,
  3445. * but it guarantees that such events will be very rare and do not affect
  3446. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3447. * buggy extension.
  3448. *
  3449. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3450. * states that events when retransmit arrives after original data are rare.
  3451. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3452. * the biggest problem on large power networks even with minor reordering.
  3453. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3454. * up to bandwidth of 18Gigabit/sec. 8) ]
  3455. */
  3456. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3457. {
  3458. struct tcp_sock *tp = tcp_sk(sk);
  3459. struct tcphdr *th = tcp_hdr(skb);
  3460. u32 seq = TCP_SKB_CB(skb)->seq;
  3461. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3462. return (/* 1. Pure ACK with correct sequence number. */
  3463. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3464. /* 2. ... and duplicate ACK. */
  3465. ack == tp->snd_una &&
  3466. /* 3. ... and does not update window. */
  3467. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3468. /* 4. ... and sits in replay window. */
  3469. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3470. }
  3471. static inline int tcp_paws_discard(const struct sock *sk,
  3472. const struct sk_buff *skb)
  3473. {
  3474. const struct tcp_sock *tp = tcp_sk(sk);
  3475. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3476. !tcp_disordered_ack(sk, skb);
  3477. }
  3478. /* Check segment sequence number for validity.
  3479. *
  3480. * Segment controls are considered valid, if the segment
  3481. * fits to the window after truncation to the window. Acceptability
  3482. * of data (and SYN, FIN, of course) is checked separately.
  3483. * See tcp_data_queue(), for example.
  3484. *
  3485. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3486. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3487. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3488. * (borrowed from freebsd)
  3489. */
  3490. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3491. {
  3492. return !before(end_seq, tp->rcv_wup) &&
  3493. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3494. }
  3495. /* When we get a reset we do this. */
  3496. static void tcp_reset(struct sock *sk)
  3497. {
  3498. /* We want the right error as BSD sees it (and indeed as we do). */
  3499. switch (sk->sk_state) {
  3500. case TCP_SYN_SENT:
  3501. sk->sk_err = ECONNREFUSED;
  3502. break;
  3503. case TCP_CLOSE_WAIT:
  3504. sk->sk_err = EPIPE;
  3505. break;
  3506. case TCP_CLOSE:
  3507. return;
  3508. default:
  3509. sk->sk_err = ECONNRESET;
  3510. }
  3511. if (!sock_flag(sk, SOCK_DEAD))
  3512. sk->sk_error_report(sk);
  3513. tcp_done(sk);
  3514. }
  3515. /*
  3516. * Process the FIN bit. This now behaves as it is supposed to work
  3517. * and the FIN takes effect when it is validly part of sequence
  3518. * space. Not before when we get holes.
  3519. *
  3520. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3521. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3522. * TIME-WAIT)
  3523. *
  3524. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3525. * close and we go into CLOSING (and later onto TIME-WAIT)
  3526. *
  3527. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3528. */
  3529. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3530. {
  3531. struct tcp_sock *tp = tcp_sk(sk);
  3532. inet_csk_schedule_ack(sk);
  3533. sk->sk_shutdown |= RCV_SHUTDOWN;
  3534. sock_set_flag(sk, SOCK_DONE);
  3535. switch (sk->sk_state) {
  3536. case TCP_SYN_RECV:
  3537. case TCP_ESTABLISHED:
  3538. /* Move to CLOSE_WAIT */
  3539. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3540. inet_csk(sk)->icsk_ack.pingpong = 1;
  3541. break;
  3542. case TCP_CLOSE_WAIT:
  3543. case TCP_CLOSING:
  3544. /* Received a retransmission of the FIN, do
  3545. * nothing.
  3546. */
  3547. break;
  3548. case TCP_LAST_ACK:
  3549. /* RFC793: Remain in the LAST-ACK state. */
  3550. break;
  3551. case TCP_FIN_WAIT1:
  3552. /* This case occurs when a simultaneous close
  3553. * happens, we must ack the received FIN and
  3554. * enter the CLOSING state.
  3555. */
  3556. tcp_send_ack(sk);
  3557. tcp_set_state(sk, TCP_CLOSING);
  3558. break;
  3559. case TCP_FIN_WAIT2:
  3560. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3561. tcp_send_ack(sk);
  3562. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3563. break;
  3564. default:
  3565. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3566. * cases we should never reach this piece of code.
  3567. */
  3568. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3569. __func__, sk->sk_state);
  3570. break;
  3571. }
  3572. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3573. * Probably, we should reset in this case. For now drop them.
  3574. */
  3575. __skb_queue_purge(&tp->out_of_order_queue);
  3576. if (tcp_is_sack(tp))
  3577. tcp_sack_reset(&tp->rx_opt);
  3578. sk_mem_reclaim(sk);
  3579. if (!sock_flag(sk, SOCK_DEAD)) {
  3580. sk->sk_state_change(sk);
  3581. /* Do not send POLL_HUP for half duplex close. */
  3582. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3583. sk->sk_state == TCP_CLOSE)
  3584. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3585. else
  3586. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3587. }
  3588. }
  3589. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3590. u32 end_seq)
  3591. {
  3592. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3593. if (before(seq, sp->start_seq))
  3594. sp->start_seq = seq;
  3595. if (after(end_seq, sp->end_seq))
  3596. sp->end_seq = end_seq;
  3597. return 1;
  3598. }
  3599. return 0;
  3600. }
  3601. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3602. {
  3603. struct tcp_sock *tp = tcp_sk(sk);
  3604. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3605. int mib_idx;
  3606. if (before(seq, tp->rcv_nxt))
  3607. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3608. else
  3609. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3610. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3611. tp->rx_opt.dsack = 1;
  3612. tp->duplicate_sack[0].start_seq = seq;
  3613. tp->duplicate_sack[0].end_seq = end_seq;
  3614. }
  3615. }
  3616. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3617. {
  3618. struct tcp_sock *tp = tcp_sk(sk);
  3619. if (!tp->rx_opt.dsack)
  3620. tcp_dsack_set(sk, seq, end_seq);
  3621. else
  3622. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3623. }
  3624. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3625. {
  3626. struct tcp_sock *tp = tcp_sk(sk);
  3627. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3628. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3629. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3630. tcp_enter_quickack_mode(sk);
  3631. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3632. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3633. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3634. end_seq = tp->rcv_nxt;
  3635. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3636. }
  3637. }
  3638. tcp_send_ack(sk);
  3639. }
  3640. /* These routines update the SACK block as out-of-order packets arrive or
  3641. * in-order packets close up the sequence space.
  3642. */
  3643. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3644. {
  3645. int this_sack;
  3646. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3647. struct tcp_sack_block *swalk = sp + 1;
  3648. /* See if the recent change to the first SACK eats into
  3649. * or hits the sequence space of other SACK blocks, if so coalesce.
  3650. */
  3651. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3652. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3653. int i;
  3654. /* Zap SWALK, by moving every further SACK up by one slot.
  3655. * Decrease num_sacks.
  3656. */
  3657. tp->rx_opt.num_sacks--;
  3658. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3659. sp[i] = sp[i + 1];
  3660. continue;
  3661. }
  3662. this_sack++, swalk++;
  3663. }
  3664. }
  3665. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3666. {
  3667. struct tcp_sock *tp = tcp_sk(sk);
  3668. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3669. int cur_sacks = tp->rx_opt.num_sacks;
  3670. int this_sack;
  3671. if (!cur_sacks)
  3672. goto new_sack;
  3673. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3674. if (tcp_sack_extend(sp, seq, end_seq)) {
  3675. /* Rotate this_sack to the first one. */
  3676. for (; this_sack > 0; this_sack--, sp--)
  3677. swap(*sp, *(sp - 1));
  3678. if (cur_sacks > 1)
  3679. tcp_sack_maybe_coalesce(tp);
  3680. return;
  3681. }
  3682. }
  3683. /* Could not find an adjacent existing SACK, build a new one,
  3684. * put it at the front, and shift everyone else down. We
  3685. * always know there is at least one SACK present already here.
  3686. *
  3687. * If the sack array is full, forget about the last one.
  3688. */
  3689. if (this_sack >= TCP_NUM_SACKS) {
  3690. this_sack--;
  3691. tp->rx_opt.num_sacks--;
  3692. sp--;
  3693. }
  3694. for (; this_sack > 0; this_sack--, sp--)
  3695. *sp = *(sp - 1);
  3696. new_sack:
  3697. /* Build the new head SACK, and we're done. */
  3698. sp->start_seq = seq;
  3699. sp->end_seq = end_seq;
  3700. tp->rx_opt.num_sacks++;
  3701. }
  3702. /* RCV.NXT advances, some SACKs should be eaten. */
  3703. static void tcp_sack_remove(struct tcp_sock *tp)
  3704. {
  3705. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3706. int num_sacks = tp->rx_opt.num_sacks;
  3707. int this_sack;
  3708. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3709. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3710. tp->rx_opt.num_sacks = 0;
  3711. return;
  3712. }
  3713. for (this_sack = 0; this_sack < num_sacks;) {
  3714. /* Check if the start of the sack is covered by RCV.NXT. */
  3715. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3716. int i;
  3717. /* RCV.NXT must cover all the block! */
  3718. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3719. /* Zap this SACK, by moving forward any other SACKS. */
  3720. for (i=this_sack+1; i < num_sacks; i++)
  3721. tp->selective_acks[i-1] = tp->selective_acks[i];
  3722. num_sacks--;
  3723. continue;
  3724. }
  3725. this_sack++;
  3726. sp++;
  3727. }
  3728. tp->rx_opt.num_sacks = num_sacks;
  3729. }
  3730. /* This one checks to see if we can put data from the
  3731. * out_of_order queue into the receive_queue.
  3732. */
  3733. static void tcp_ofo_queue(struct sock *sk)
  3734. {
  3735. struct tcp_sock *tp = tcp_sk(sk);
  3736. __u32 dsack_high = tp->rcv_nxt;
  3737. struct sk_buff *skb;
  3738. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3739. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3740. break;
  3741. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3742. __u32 dsack = dsack_high;
  3743. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3744. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3745. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3746. }
  3747. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3748. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3749. __skb_unlink(skb, &tp->out_of_order_queue);
  3750. __kfree_skb(skb);
  3751. continue;
  3752. }
  3753. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3754. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3755. TCP_SKB_CB(skb)->end_seq);
  3756. __skb_unlink(skb, &tp->out_of_order_queue);
  3757. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3758. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3759. if (tcp_hdr(skb)->fin)
  3760. tcp_fin(skb, sk, tcp_hdr(skb));
  3761. }
  3762. }
  3763. static int tcp_prune_ofo_queue(struct sock *sk);
  3764. static int tcp_prune_queue(struct sock *sk);
  3765. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3766. {
  3767. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3768. !sk_rmem_schedule(sk, size)) {
  3769. if (tcp_prune_queue(sk) < 0)
  3770. return -1;
  3771. if (!sk_rmem_schedule(sk, size)) {
  3772. if (!tcp_prune_ofo_queue(sk))
  3773. return -1;
  3774. if (!sk_rmem_schedule(sk, size))
  3775. return -1;
  3776. }
  3777. }
  3778. return 0;
  3779. }
  3780. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3781. {
  3782. struct tcphdr *th = tcp_hdr(skb);
  3783. struct tcp_sock *tp = tcp_sk(sk);
  3784. int eaten = -1;
  3785. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3786. goto drop;
  3787. __skb_pull(skb, th->doff * 4);
  3788. TCP_ECN_accept_cwr(tp, skb);
  3789. tp->rx_opt.dsack = 0;
  3790. /* Queue data for delivery to the user.
  3791. * Packets in sequence go to the receive queue.
  3792. * Out of sequence packets to the out_of_order_queue.
  3793. */
  3794. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3795. if (tcp_receive_window(tp) == 0)
  3796. goto out_of_window;
  3797. /* Ok. In sequence. In window. */
  3798. if (tp->ucopy.task == current &&
  3799. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3800. sock_owned_by_user(sk) && !tp->urg_data) {
  3801. int chunk = min_t(unsigned int, skb->len,
  3802. tp->ucopy.len);
  3803. __set_current_state(TASK_RUNNING);
  3804. local_bh_enable();
  3805. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3806. tp->ucopy.len -= chunk;
  3807. tp->copied_seq += chunk;
  3808. eaten = (chunk == skb->len && !th->fin);
  3809. tcp_rcv_space_adjust(sk);
  3810. }
  3811. local_bh_disable();
  3812. }
  3813. if (eaten <= 0) {
  3814. queue_and_out:
  3815. if (eaten < 0 &&
  3816. tcp_try_rmem_schedule(sk, skb->truesize))
  3817. goto drop;
  3818. skb_set_owner_r(skb, sk);
  3819. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3820. }
  3821. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3822. if (skb->len)
  3823. tcp_event_data_recv(sk, skb);
  3824. if (th->fin)
  3825. tcp_fin(skb, sk, th);
  3826. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3827. tcp_ofo_queue(sk);
  3828. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3829. * gap in queue is filled.
  3830. */
  3831. if (skb_queue_empty(&tp->out_of_order_queue))
  3832. inet_csk(sk)->icsk_ack.pingpong = 0;
  3833. }
  3834. if (tp->rx_opt.num_sacks)
  3835. tcp_sack_remove(tp);
  3836. tcp_fast_path_check(sk);
  3837. if (eaten > 0)
  3838. __kfree_skb(skb);
  3839. else if (!sock_flag(sk, SOCK_DEAD))
  3840. sk->sk_data_ready(sk, 0);
  3841. return;
  3842. }
  3843. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3844. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3845. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3846. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3847. out_of_window:
  3848. tcp_enter_quickack_mode(sk);
  3849. inet_csk_schedule_ack(sk);
  3850. drop:
  3851. __kfree_skb(skb);
  3852. return;
  3853. }
  3854. /* Out of window. F.e. zero window probe. */
  3855. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3856. goto out_of_window;
  3857. tcp_enter_quickack_mode(sk);
  3858. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3859. /* Partial packet, seq < rcv_next < end_seq */
  3860. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3861. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3862. TCP_SKB_CB(skb)->end_seq);
  3863. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3864. /* If window is closed, drop tail of packet. But after
  3865. * remembering D-SACK for its head made in previous line.
  3866. */
  3867. if (!tcp_receive_window(tp))
  3868. goto out_of_window;
  3869. goto queue_and_out;
  3870. }
  3871. TCP_ECN_check_ce(tp, skb);
  3872. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3873. goto drop;
  3874. /* Disable header prediction. */
  3875. tp->pred_flags = 0;
  3876. inet_csk_schedule_ack(sk);
  3877. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3878. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3879. skb_set_owner_r(skb, sk);
  3880. if (!skb_peek(&tp->out_of_order_queue)) {
  3881. /* Initial out of order segment, build 1 SACK. */
  3882. if (tcp_is_sack(tp)) {
  3883. tp->rx_opt.num_sacks = 1;
  3884. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3885. tp->selective_acks[0].end_seq =
  3886. TCP_SKB_CB(skb)->end_seq;
  3887. }
  3888. __skb_queue_head(&tp->out_of_order_queue, skb);
  3889. } else {
  3890. struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3891. u32 seq = TCP_SKB_CB(skb)->seq;
  3892. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3893. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3894. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3895. if (!tp->rx_opt.num_sacks ||
  3896. tp->selective_acks[0].end_seq != seq)
  3897. goto add_sack;
  3898. /* Common case: data arrive in order after hole. */
  3899. tp->selective_acks[0].end_seq = end_seq;
  3900. return;
  3901. }
  3902. /* Find place to insert this segment. */
  3903. while (1) {
  3904. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3905. break;
  3906. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3907. skb1 = NULL;
  3908. break;
  3909. }
  3910. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3911. }
  3912. /* Do skb overlap to previous one? */
  3913. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3914. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3915. /* All the bits are present. Drop. */
  3916. __kfree_skb(skb);
  3917. tcp_dsack_set(sk, seq, end_seq);
  3918. goto add_sack;
  3919. }
  3920. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3921. /* Partial overlap. */
  3922. tcp_dsack_set(sk, seq,
  3923. TCP_SKB_CB(skb1)->end_seq);
  3924. } else {
  3925. if (skb_queue_is_first(&tp->out_of_order_queue,
  3926. skb1))
  3927. skb1 = NULL;
  3928. else
  3929. skb1 = skb_queue_prev(
  3930. &tp->out_of_order_queue,
  3931. skb1);
  3932. }
  3933. }
  3934. if (!skb1)
  3935. __skb_queue_head(&tp->out_of_order_queue, skb);
  3936. else
  3937. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3938. /* And clean segments covered by new one as whole. */
  3939. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3940. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3941. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3942. break;
  3943. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3944. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3945. end_seq);
  3946. break;
  3947. }
  3948. __skb_unlink(skb1, &tp->out_of_order_queue);
  3949. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3950. TCP_SKB_CB(skb1)->end_seq);
  3951. __kfree_skb(skb1);
  3952. }
  3953. add_sack:
  3954. if (tcp_is_sack(tp))
  3955. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3956. }
  3957. }
  3958. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3959. struct sk_buff_head *list)
  3960. {
  3961. struct sk_buff *next = NULL;
  3962. if (!skb_queue_is_last(list, skb))
  3963. next = skb_queue_next(list, skb);
  3964. __skb_unlink(skb, list);
  3965. __kfree_skb(skb);
  3966. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3967. return next;
  3968. }
  3969. /* Collapse contiguous sequence of skbs head..tail with
  3970. * sequence numbers start..end.
  3971. *
  3972. * If tail is NULL, this means until the end of the list.
  3973. *
  3974. * Segments with FIN/SYN are not collapsed (only because this
  3975. * simplifies code)
  3976. */
  3977. static void
  3978. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3979. struct sk_buff *head, struct sk_buff *tail,
  3980. u32 start, u32 end)
  3981. {
  3982. struct sk_buff *skb, *n;
  3983. bool end_of_skbs;
  3984. /* First, check that queue is collapsible and find
  3985. * the point where collapsing can be useful. */
  3986. skb = head;
  3987. restart:
  3988. end_of_skbs = true;
  3989. skb_queue_walk_from_safe(list, skb, n) {
  3990. if (skb == tail)
  3991. break;
  3992. /* No new bits? It is possible on ofo queue. */
  3993. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3994. skb = tcp_collapse_one(sk, skb, list);
  3995. if (!skb)
  3996. break;
  3997. goto restart;
  3998. }
  3999. /* The first skb to collapse is:
  4000. * - not SYN/FIN and
  4001. * - bloated or contains data before "start" or
  4002. * overlaps to the next one.
  4003. */
  4004. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4005. (tcp_win_from_space(skb->truesize) > skb->len ||
  4006. before(TCP_SKB_CB(skb)->seq, start))) {
  4007. end_of_skbs = false;
  4008. break;
  4009. }
  4010. if (!skb_queue_is_last(list, skb)) {
  4011. struct sk_buff *next = skb_queue_next(list, skb);
  4012. if (next != tail &&
  4013. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4014. end_of_skbs = false;
  4015. break;
  4016. }
  4017. }
  4018. /* Decided to skip this, advance start seq. */
  4019. start = TCP_SKB_CB(skb)->end_seq;
  4020. }
  4021. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4022. return;
  4023. while (before(start, end)) {
  4024. struct sk_buff *nskb;
  4025. unsigned int header = skb_headroom(skb);
  4026. int copy = SKB_MAX_ORDER(header, 0);
  4027. /* Too big header? This can happen with IPv6. */
  4028. if (copy < 0)
  4029. return;
  4030. if (end - start < copy)
  4031. copy = end - start;
  4032. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4033. if (!nskb)
  4034. return;
  4035. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4036. skb_set_network_header(nskb, (skb_network_header(skb) -
  4037. skb->head));
  4038. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4039. skb->head));
  4040. skb_reserve(nskb, header);
  4041. memcpy(nskb->head, skb->head, header);
  4042. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4043. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4044. __skb_queue_before(list, skb, nskb);
  4045. skb_set_owner_r(nskb, sk);
  4046. /* Copy data, releasing collapsed skbs. */
  4047. while (copy > 0) {
  4048. int offset = start - TCP_SKB_CB(skb)->seq;
  4049. int size = TCP_SKB_CB(skb)->end_seq - start;
  4050. BUG_ON(offset < 0);
  4051. if (size > 0) {
  4052. size = min(copy, size);
  4053. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4054. BUG();
  4055. TCP_SKB_CB(nskb)->end_seq += size;
  4056. copy -= size;
  4057. start += size;
  4058. }
  4059. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4060. skb = tcp_collapse_one(sk, skb, list);
  4061. if (!skb ||
  4062. skb == tail ||
  4063. tcp_hdr(skb)->syn ||
  4064. tcp_hdr(skb)->fin)
  4065. return;
  4066. }
  4067. }
  4068. }
  4069. }
  4070. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4071. * and tcp_collapse() them until all the queue is collapsed.
  4072. */
  4073. static void tcp_collapse_ofo_queue(struct sock *sk)
  4074. {
  4075. struct tcp_sock *tp = tcp_sk(sk);
  4076. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4077. struct sk_buff *head;
  4078. u32 start, end;
  4079. if (skb == NULL)
  4080. return;
  4081. start = TCP_SKB_CB(skb)->seq;
  4082. end = TCP_SKB_CB(skb)->end_seq;
  4083. head = skb;
  4084. for (;;) {
  4085. struct sk_buff *next = NULL;
  4086. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4087. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4088. skb = next;
  4089. /* Segment is terminated when we see gap or when
  4090. * we are at the end of all the queue. */
  4091. if (!skb ||
  4092. after(TCP_SKB_CB(skb)->seq, end) ||
  4093. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4094. tcp_collapse(sk, &tp->out_of_order_queue,
  4095. head, skb, start, end);
  4096. head = skb;
  4097. if (!skb)
  4098. break;
  4099. /* Start new segment */
  4100. start = TCP_SKB_CB(skb)->seq;
  4101. end = TCP_SKB_CB(skb)->end_seq;
  4102. } else {
  4103. if (before(TCP_SKB_CB(skb)->seq, start))
  4104. start = TCP_SKB_CB(skb)->seq;
  4105. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4106. end = TCP_SKB_CB(skb)->end_seq;
  4107. }
  4108. }
  4109. }
  4110. /*
  4111. * Purge the out-of-order queue.
  4112. * Return true if queue was pruned.
  4113. */
  4114. static int tcp_prune_ofo_queue(struct sock *sk)
  4115. {
  4116. struct tcp_sock *tp = tcp_sk(sk);
  4117. int res = 0;
  4118. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4119. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4120. __skb_queue_purge(&tp->out_of_order_queue);
  4121. /* Reset SACK state. A conforming SACK implementation will
  4122. * do the same at a timeout based retransmit. When a connection
  4123. * is in a sad state like this, we care only about integrity
  4124. * of the connection not performance.
  4125. */
  4126. if (tp->rx_opt.sack_ok)
  4127. tcp_sack_reset(&tp->rx_opt);
  4128. sk_mem_reclaim(sk);
  4129. res = 1;
  4130. }
  4131. return res;
  4132. }
  4133. /* Reduce allocated memory if we can, trying to get
  4134. * the socket within its memory limits again.
  4135. *
  4136. * Return less than zero if we should start dropping frames
  4137. * until the socket owning process reads some of the data
  4138. * to stabilize the situation.
  4139. */
  4140. static int tcp_prune_queue(struct sock *sk)
  4141. {
  4142. struct tcp_sock *tp = tcp_sk(sk);
  4143. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4144. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4145. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4146. tcp_clamp_window(sk);
  4147. else if (tcp_memory_pressure)
  4148. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4149. tcp_collapse_ofo_queue(sk);
  4150. if (!skb_queue_empty(&sk->sk_receive_queue))
  4151. tcp_collapse(sk, &sk->sk_receive_queue,
  4152. skb_peek(&sk->sk_receive_queue),
  4153. NULL,
  4154. tp->copied_seq, tp->rcv_nxt);
  4155. sk_mem_reclaim(sk);
  4156. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4157. return 0;
  4158. /* Collapsing did not help, destructive actions follow.
  4159. * This must not ever occur. */
  4160. tcp_prune_ofo_queue(sk);
  4161. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4162. return 0;
  4163. /* If we are really being abused, tell the caller to silently
  4164. * drop receive data on the floor. It will get retransmitted
  4165. * and hopefully then we'll have sufficient space.
  4166. */
  4167. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4168. /* Massive buffer overcommit. */
  4169. tp->pred_flags = 0;
  4170. return -1;
  4171. }
  4172. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4173. * As additional protections, we do not touch cwnd in retransmission phases,
  4174. * and if application hit its sndbuf limit recently.
  4175. */
  4176. void tcp_cwnd_application_limited(struct sock *sk)
  4177. {
  4178. struct tcp_sock *tp = tcp_sk(sk);
  4179. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4180. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4181. /* Limited by application or receiver window. */
  4182. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4183. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4184. if (win_used < tp->snd_cwnd) {
  4185. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4186. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4187. }
  4188. tp->snd_cwnd_used = 0;
  4189. }
  4190. tp->snd_cwnd_stamp = tcp_time_stamp;
  4191. }
  4192. static int tcp_should_expand_sndbuf(struct sock *sk)
  4193. {
  4194. struct tcp_sock *tp = tcp_sk(sk);
  4195. /* If the user specified a specific send buffer setting, do
  4196. * not modify it.
  4197. */
  4198. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4199. return 0;
  4200. /* If we are under global TCP memory pressure, do not expand. */
  4201. if (tcp_memory_pressure)
  4202. return 0;
  4203. /* If we are under soft global TCP memory pressure, do not expand. */
  4204. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  4205. return 0;
  4206. /* If we filled the congestion window, do not expand. */
  4207. if (tp->packets_out >= tp->snd_cwnd)
  4208. return 0;
  4209. return 1;
  4210. }
  4211. /* When incoming ACK allowed to free some skb from write_queue,
  4212. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4213. * on the exit from tcp input handler.
  4214. *
  4215. * PROBLEM: sndbuf expansion does not work well with largesend.
  4216. */
  4217. static void tcp_new_space(struct sock *sk)
  4218. {
  4219. struct tcp_sock *tp = tcp_sk(sk);
  4220. if (tcp_should_expand_sndbuf(sk)) {
  4221. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  4222. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  4223. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4224. tp->reordering + 1);
  4225. sndmem *= 2 * demanded;
  4226. if (sndmem > sk->sk_sndbuf)
  4227. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4228. tp->snd_cwnd_stamp = tcp_time_stamp;
  4229. }
  4230. sk->sk_write_space(sk);
  4231. }
  4232. static void tcp_check_space(struct sock *sk)
  4233. {
  4234. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4235. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4236. if (sk->sk_socket &&
  4237. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4238. tcp_new_space(sk);
  4239. }
  4240. }
  4241. static inline void tcp_data_snd_check(struct sock *sk)
  4242. {
  4243. tcp_push_pending_frames(sk);
  4244. tcp_check_space(sk);
  4245. }
  4246. /*
  4247. * Check if sending an ack is needed.
  4248. */
  4249. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4250. {
  4251. struct tcp_sock *tp = tcp_sk(sk);
  4252. /* More than one full frame received... */
  4253. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4254. /* ... and right edge of window advances far enough.
  4255. * (tcp_recvmsg() will send ACK otherwise). Or...
  4256. */
  4257. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4258. /* We ACK each frame or... */
  4259. tcp_in_quickack_mode(sk) ||
  4260. /* We have out of order data. */
  4261. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4262. /* Then ack it now */
  4263. tcp_send_ack(sk);
  4264. } else {
  4265. /* Else, send delayed ack. */
  4266. tcp_send_delayed_ack(sk);
  4267. }
  4268. }
  4269. static inline void tcp_ack_snd_check(struct sock *sk)
  4270. {
  4271. if (!inet_csk_ack_scheduled(sk)) {
  4272. /* We sent a data segment already. */
  4273. return;
  4274. }
  4275. __tcp_ack_snd_check(sk, 1);
  4276. }
  4277. /*
  4278. * This routine is only called when we have urgent data
  4279. * signaled. Its the 'slow' part of tcp_urg. It could be
  4280. * moved inline now as tcp_urg is only called from one
  4281. * place. We handle URGent data wrong. We have to - as
  4282. * BSD still doesn't use the correction from RFC961.
  4283. * For 1003.1g we should support a new option TCP_STDURG to permit
  4284. * either form (or just set the sysctl tcp_stdurg).
  4285. */
  4286. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  4287. {
  4288. struct tcp_sock *tp = tcp_sk(sk);
  4289. u32 ptr = ntohs(th->urg_ptr);
  4290. if (ptr && !sysctl_tcp_stdurg)
  4291. ptr--;
  4292. ptr += ntohl(th->seq);
  4293. /* Ignore urgent data that we've already seen and read. */
  4294. if (after(tp->copied_seq, ptr))
  4295. return;
  4296. /* Do not replay urg ptr.
  4297. *
  4298. * NOTE: interesting situation not covered by specs.
  4299. * Misbehaving sender may send urg ptr, pointing to segment,
  4300. * which we already have in ofo queue. We are not able to fetch
  4301. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4302. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4303. * situations. But it is worth to think about possibility of some
  4304. * DoSes using some hypothetical application level deadlock.
  4305. */
  4306. if (before(ptr, tp->rcv_nxt))
  4307. return;
  4308. /* Do we already have a newer (or duplicate) urgent pointer? */
  4309. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4310. return;
  4311. /* Tell the world about our new urgent pointer. */
  4312. sk_send_sigurg(sk);
  4313. /* We may be adding urgent data when the last byte read was
  4314. * urgent. To do this requires some care. We cannot just ignore
  4315. * tp->copied_seq since we would read the last urgent byte again
  4316. * as data, nor can we alter copied_seq until this data arrives
  4317. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4318. *
  4319. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4320. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4321. * and expect that both A and B disappear from stream. This is _wrong_.
  4322. * Though this happens in BSD with high probability, this is occasional.
  4323. * Any application relying on this is buggy. Note also, that fix "works"
  4324. * only in this artificial test. Insert some normal data between A and B and we will
  4325. * decline of BSD again. Verdict: it is better to remove to trap
  4326. * buggy users.
  4327. */
  4328. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4329. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4330. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4331. tp->copied_seq++;
  4332. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4333. __skb_unlink(skb, &sk->sk_receive_queue);
  4334. __kfree_skb(skb);
  4335. }
  4336. }
  4337. tp->urg_data = TCP_URG_NOTYET;
  4338. tp->urg_seq = ptr;
  4339. /* Disable header prediction. */
  4340. tp->pred_flags = 0;
  4341. }
  4342. /* This is the 'fast' part of urgent handling. */
  4343. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  4344. {
  4345. struct tcp_sock *tp = tcp_sk(sk);
  4346. /* Check if we get a new urgent pointer - normally not. */
  4347. if (th->urg)
  4348. tcp_check_urg(sk, th);
  4349. /* Do we wait for any urgent data? - normally not... */
  4350. if (tp->urg_data == TCP_URG_NOTYET) {
  4351. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4352. th->syn;
  4353. /* Is the urgent pointer pointing into this packet? */
  4354. if (ptr < skb->len) {
  4355. u8 tmp;
  4356. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4357. BUG();
  4358. tp->urg_data = TCP_URG_VALID | tmp;
  4359. if (!sock_flag(sk, SOCK_DEAD))
  4360. sk->sk_data_ready(sk, 0);
  4361. }
  4362. }
  4363. }
  4364. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4365. {
  4366. struct tcp_sock *tp = tcp_sk(sk);
  4367. int chunk = skb->len - hlen;
  4368. int err;
  4369. local_bh_enable();
  4370. if (skb_csum_unnecessary(skb))
  4371. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4372. else
  4373. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4374. tp->ucopy.iov);
  4375. if (!err) {
  4376. tp->ucopy.len -= chunk;
  4377. tp->copied_seq += chunk;
  4378. tcp_rcv_space_adjust(sk);
  4379. }
  4380. local_bh_disable();
  4381. return err;
  4382. }
  4383. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4384. struct sk_buff *skb)
  4385. {
  4386. __sum16 result;
  4387. if (sock_owned_by_user(sk)) {
  4388. local_bh_enable();
  4389. result = __tcp_checksum_complete(skb);
  4390. local_bh_disable();
  4391. } else {
  4392. result = __tcp_checksum_complete(skb);
  4393. }
  4394. return result;
  4395. }
  4396. static inline int tcp_checksum_complete_user(struct sock *sk,
  4397. struct sk_buff *skb)
  4398. {
  4399. return !skb_csum_unnecessary(skb) &&
  4400. __tcp_checksum_complete_user(sk, skb);
  4401. }
  4402. #ifdef CONFIG_NET_DMA
  4403. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4404. int hlen)
  4405. {
  4406. struct tcp_sock *tp = tcp_sk(sk);
  4407. int chunk = skb->len - hlen;
  4408. int dma_cookie;
  4409. int copied_early = 0;
  4410. if (tp->ucopy.wakeup)
  4411. return 0;
  4412. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4413. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4414. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4415. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4416. skb, hlen,
  4417. tp->ucopy.iov, chunk,
  4418. tp->ucopy.pinned_list);
  4419. if (dma_cookie < 0)
  4420. goto out;
  4421. tp->ucopy.dma_cookie = dma_cookie;
  4422. copied_early = 1;
  4423. tp->ucopy.len -= chunk;
  4424. tp->copied_seq += chunk;
  4425. tcp_rcv_space_adjust(sk);
  4426. if ((tp->ucopy.len == 0) ||
  4427. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4428. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4429. tp->ucopy.wakeup = 1;
  4430. sk->sk_data_ready(sk, 0);
  4431. }
  4432. } else if (chunk > 0) {
  4433. tp->ucopy.wakeup = 1;
  4434. sk->sk_data_ready(sk, 0);
  4435. }
  4436. out:
  4437. return copied_early;
  4438. }
  4439. #endif /* CONFIG_NET_DMA */
  4440. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4441. * play significant role here.
  4442. */
  4443. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4444. struct tcphdr *th, int syn_inerr)
  4445. {
  4446. u8 *hash_location;
  4447. struct tcp_sock *tp = tcp_sk(sk);
  4448. /* RFC1323: H1. Apply PAWS check first. */
  4449. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4450. tp->rx_opt.saw_tstamp &&
  4451. tcp_paws_discard(sk, skb)) {
  4452. if (!th->rst) {
  4453. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4454. tcp_send_dupack(sk, skb);
  4455. goto discard;
  4456. }
  4457. /* Reset is accepted even if it did not pass PAWS. */
  4458. }
  4459. /* Step 1: check sequence number */
  4460. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4461. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4462. * (RST) segments are validated by checking their SEQ-fields."
  4463. * And page 69: "If an incoming segment is not acceptable,
  4464. * an acknowledgment should be sent in reply (unless the RST
  4465. * bit is set, if so drop the segment and return)".
  4466. */
  4467. if (!th->rst)
  4468. tcp_send_dupack(sk, skb);
  4469. goto discard;
  4470. }
  4471. /* Step 2: check RST bit */
  4472. if (th->rst) {
  4473. tcp_reset(sk);
  4474. goto discard;
  4475. }
  4476. /* ts_recent update must be made after we are sure that the packet
  4477. * is in window.
  4478. */
  4479. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4480. /* step 3: check security and precedence [ignored] */
  4481. /* step 4: Check for a SYN in window. */
  4482. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4483. if (syn_inerr)
  4484. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4485. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4486. tcp_reset(sk);
  4487. return -1;
  4488. }
  4489. return 1;
  4490. discard:
  4491. __kfree_skb(skb);
  4492. return 0;
  4493. }
  4494. /*
  4495. * TCP receive function for the ESTABLISHED state.
  4496. *
  4497. * It is split into a fast path and a slow path. The fast path is
  4498. * disabled when:
  4499. * - A zero window was announced from us - zero window probing
  4500. * is only handled properly in the slow path.
  4501. * - Out of order segments arrived.
  4502. * - Urgent data is expected.
  4503. * - There is no buffer space left
  4504. * - Unexpected TCP flags/window values/header lengths are received
  4505. * (detected by checking the TCP header against pred_flags)
  4506. * - Data is sent in both directions. Fast path only supports pure senders
  4507. * or pure receivers (this means either the sequence number or the ack
  4508. * value must stay constant)
  4509. * - Unexpected TCP option.
  4510. *
  4511. * When these conditions are not satisfied it drops into a standard
  4512. * receive procedure patterned after RFC793 to handle all cases.
  4513. * The first three cases are guaranteed by proper pred_flags setting,
  4514. * the rest is checked inline. Fast processing is turned on in
  4515. * tcp_data_queue when everything is OK.
  4516. */
  4517. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4518. struct tcphdr *th, unsigned len)
  4519. {
  4520. struct tcp_sock *tp = tcp_sk(sk);
  4521. int res;
  4522. /*
  4523. * Header prediction.
  4524. * The code loosely follows the one in the famous
  4525. * "30 instruction TCP receive" Van Jacobson mail.
  4526. *
  4527. * Van's trick is to deposit buffers into socket queue
  4528. * on a device interrupt, to call tcp_recv function
  4529. * on the receive process context and checksum and copy
  4530. * the buffer to user space. smart...
  4531. *
  4532. * Our current scheme is not silly either but we take the
  4533. * extra cost of the net_bh soft interrupt processing...
  4534. * We do checksum and copy also but from device to kernel.
  4535. */
  4536. tp->rx_opt.saw_tstamp = 0;
  4537. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4538. * if header_prediction is to be made
  4539. * 'S' will always be tp->tcp_header_len >> 2
  4540. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4541. * turn it off (when there are holes in the receive
  4542. * space for instance)
  4543. * PSH flag is ignored.
  4544. */
  4545. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4546. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4547. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4548. int tcp_header_len = tp->tcp_header_len;
  4549. /* Timestamp header prediction: tcp_header_len
  4550. * is automatically equal to th->doff*4 due to pred_flags
  4551. * match.
  4552. */
  4553. /* Check timestamp */
  4554. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4555. /* No? Slow path! */
  4556. if (!tcp_parse_aligned_timestamp(tp, th))
  4557. goto slow_path;
  4558. /* If PAWS failed, check it more carefully in slow path */
  4559. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4560. goto slow_path;
  4561. /* DO NOT update ts_recent here, if checksum fails
  4562. * and timestamp was corrupted part, it will result
  4563. * in a hung connection since we will drop all
  4564. * future packets due to the PAWS test.
  4565. */
  4566. }
  4567. if (len <= tcp_header_len) {
  4568. /* Bulk data transfer: sender */
  4569. if (len == tcp_header_len) {
  4570. /* Predicted packet is in window by definition.
  4571. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4572. * Hence, check seq<=rcv_wup reduces to:
  4573. */
  4574. if (tcp_header_len ==
  4575. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4576. tp->rcv_nxt == tp->rcv_wup)
  4577. tcp_store_ts_recent(tp);
  4578. /* We know that such packets are checksummed
  4579. * on entry.
  4580. */
  4581. tcp_ack(sk, skb, 0);
  4582. __kfree_skb(skb);
  4583. tcp_data_snd_check(sk);
  4584. return 0;
  4585. } else { /* Header too small */
  4586. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4587. goto discard;
  4588. }
  4589. } else {
  4590. int eaten = 0;
  4591. int copied_early = 0;
  4592. if (tp->copied_seq == tp->rcv_nxt &&
  4593. len - tcp_header_len <= tp->ucopy.len) {
  4594. #ifdef CONFIG_NET_DMA
  4595. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4596. copied_early = 1;
  4597. eaten = 1;
  4598. }
  4599. #endif
  4600. if (tp->ucopy.task == current &&
  4601. sock_owned_by_user(sk) && !copied_early) {
  4602. __set_current_state(TASK_RUNNING);
  4603. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4604. eaten = 1;
  4605. }
  4606. if (eaten) {
  4607. /* Predicted packet is in window by definition.
  4608. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4609. * Hence, check seq<=rcv_wup reduces to:
  4610. */
  4611. if (tcp_header_len ==
  4612. (sizeof(struct tcphdr) +
  4613. TCPOLEN_TSTAMP_ALIGNED) &&
  4614. tp->rcv_nxt == tp->rcv_wup)
  4615. tcp_store_ts_recent(tp);
  4616. tcp_rcv_rtt_measure_ts(sk, skb);
  4617. __skb_pull(skb, tcp_header_len);
  4618. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4619. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4620. }
  4621. if (copied_early)
  4622. tcp_cleanup_rbuf(sk, skb->len);
  4623. }
  4624. if (!eaten) {
  4625. if (tcp_checksum_complete_user(sk, skb))
  4626. goto csum_error;
  4627. /* Predicted packet is in window by definition.
  4628. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4629. * Hence, check seq<=rcv_wup reduces to:
  4630. */
  4631. if (tcp_header_len ==
  4632. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4633. tp->rcv_nxt == tp->rcv_wup)
  4634. tcp_store_ts_recent(tp);
  4635. tcp_rcv_rtt_measure_ts(sk, skb);
  4636. if ((int)skb->truesize > sk->sk_forward_alloc)
  4637. goto step5;
  4638. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4639. /* Bulk data transfer: receiver */
  4640. __skb_pull(skb, tcp_header_len);
  4641. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4642. skb_set_owner_r(skb, sk);
  4643. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4644. }
  4645. tcp_event_data_recv(sk, skb);
  4646. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4647. /* Well, only one small jumplet in fast path... */
  4648. tcp_ack(sk, skb, FLAG_DATA);
  4649. tcp_data_snd_check(sk);
  4650. if (!inet_csk_ack_scheduled(sk))
  4651. goto no_ack;
  4652. }
  4653. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4654. __tcp_ack_snd_check(sk, 0);
  4655. no_ack:
  4656. #ifdef CONFIG_NET_DMA
  4657. if (copied_early)
  4658. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4659. else
  4660. #endif
  4661. if (eaten)
  4662. __kfree_skb(skb);
  4663. else
  4664. sk->sk_data_ready(sk, 0);
  4665. return 0;
  4666. }
  4667. }
  4668. slow_path:
  4669. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4670. goto csum_error;
  4671. /*
  4672. * Standard slow path.
  4673. */
  4674. res = tcp_validate_incoming(sk, skb, th, 1);
  4675. if (res <= 0)
  4676. return -res;
  4677. step5:
  4678. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4679. goto discard;
  4680. tcp_rcv_rtt_measure_ts(sk, skb);
  4681. /* Process urgent data. */
  4682. tcp_urg(sk, skb, th);
  4683. /* step 7: process the segment text */
  4684. tcp_data_queue(sk, skb);
  4685. tcp_data_snd_check(sk);
  4686. tcp_ack_snd_check(sk);
  4687. return 0;
  4688. csum_error:
  4689. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4690. discard:
  4691. __kfree_skb(skb);
  4692. return 0;
  4693. }
  4694. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4695. struct tcphdr *th, unsigned len)
  4696. {
  4697. u8 *hash_location;
  4698. struct inet_connection_sock *icsk = inet_csk(sk);
  4699. struct tcp_sock *tp = tcp_sk(sk);
  4700. struct tcp_cookie_values *cvp = tp->cookie_values;
  4701. int saved_clamp = tp->rx_opt.mss_clamp;
  4702. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4703. if (th->ack) {
  4704. /* rfc793:
  4705. * "If the state is SYN-SENT then
  4706. * first check the ACK bit
  4707. * If the ACK bit is set
  4708. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4709. * a reset (unless the RST bit is set, if so drop
  4710. * the segment and return)"
  4711. *
  4712. * We do not send data with SYN, so that RFC-correct
  4713. * test reduces to:
  4714. */
  4715. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4716. goto reset_and_undo;
  4717. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4718. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4719. tcp_time_stamp)) {
  4720. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4721. goto reset_and_undo;
  4722. }
  4723. /* Now ACK is acceptable.
  4724. *
  4725. * "If the RST bit is set
  4726. * If the ACK was acceptable then signal the user "error:
  4727. * connection reset", drop the segment, enter CLOSED state,
  4728. * delete TCB, and return."
  4729. */
  4730. if (th->rst) {
  4731. tcp_reset(sk);
  4732. goto discard;
  4733. }
  4734. /* rfc793:
  4735. * "fifth, if neither of the SYN or RST bits is set then
  4736. * drop the segment and return."
  4737. *
  4738. * See note below!
  4739. * --ANK(990513)
  4740. */
  4741. if (!th->syn)
  4742. goto discard_and_undo;
  4743. /* rfc793:
  4744. * "If the SYN bit is on ...
  4745. * are acceptable then ...
  4746. * (our SYN has been ACKed), change the connection
  4747. * state to ESTABLISHED..."
  4748. */
  4749. TCP_ECN_rcv_synack(tp, th);
  4750. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4751. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4752. /* Ok.. it's good. Set up sequence numbers and
  4753. * move to established.
  4754. */
  4755. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4756. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4757. /* RFC1323: The window in SYN & SYN/ACK segments is
  4758. * never scaled.
  4759. */
  4760. tp->snd_wnd = ntohs(th->window);
  4761. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4762. if (!tp->rx_opt.wscale_ok) {
  4763. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4764. tp->window_clamp = min(tp->window_clamp, 65535U);
  4765. }
  4766. if (tp->rx_opt.saw_tstamp) {
  4767. tp->rx_opt.tstamp_ok = 1;
  4768. tp->tcp_header_len =
  4769. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4770. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4771. tcp_store_ts_recent(tp);
  4772. } else {
  4773. tp->tcp_header_len = sizeof(struct tcphdr);
  4774. }
  4775. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4776. tcp_enable_fack(tp);
  4777. tcp_mtup_init(sk);
  4778. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4779. tcp_initialize_rcv_mss(sk);
  4780. /* Remember, tcp_poll() does not lock socket!
  4781. * Change state from SYN-SENT only after copied_seq
  4782. * is initialized. */
  4783. tp->copied_seq = tp->rcv_nxt;
  4784. if (cvp != NULL &&
  4785. cvp->cookie_pair_size > 0 &&
  4786. tp->rx_opt.cookie_plus > 0) {
  4787. int cookie_size = tp->rx_opt.cookie_plus
  4788. - TCPOLEN_COOKIE_BASE;
  4789. int cookie_pair_size = cookie_size
  4790. + cvp->cookie_desired;
  4791. /* A cookie extension option was sent and returned.
  4792. * Note that each incoming SYNACK replaces the
  4793. * Responder cookie. The initial exchange is most
  4794. * fragile, as protection against spoofing relies
  4795. * entirely upon the sequence and timestamp (above).
  4796. * This replacement strategy allows the correct pair to
  4797. * pass through, while any others will be filtered via
  4798. * Responder verification later.
  4799. */
  4800. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4801. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4802. hash_location, cookie_size);
  4803. cvp->cookie_pair_size = cookie_pair_size;
  4804. }
  4805. }
  4806. smp_mb();
  4807. tcp_set_state(sk, TCP_ESTABLISHED);
  4808. security_inet_conn_established(sk, skb);
  4809. /* Make sure socket is routed, for correct metrics. */
  4810. icsk->icsk_af_ops->rebuild_header(sk);
  4811. tcp_init_metrics(sk);
  4812. tcp_init_congestion_control(sk);
  4813. /* Prevent spurious tcp_cwnd_restart() on first data
  4814. * packet.
  4815. */
  4816. tp->lsndtime = tcp_time_stamp;
  4817. tcp_init_buffer_space(sk);
  4818. if (sock_flag(sk, SOCK_KEEPOPEN))
  4819. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4820. if (!tp->rx_opt.snd_wscale)
  4821. __tcp_fast_path_on(tp, tp->snd_wnd);
  4822. else
  4823. tp->pred_flags = 0;
  4824. if (!sock_flag(sk, SOCK_DEAD)) {
  4825. sk->sk_state_change(sk);
  4826. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4827. }
  4828. if (sk->sk_write_pending ||
  4829. icsk->icsk_accept_queue.rskq_defer_accept ||
  4830. icsk->icsk_ack.pingpong) {
  4831. /* Save one ACK. Data will be ready after
  4832. * several ticks, if write_pending is set.
  4833. *
  4834. * It may be deleted, but with this feature tcpdumps
  4835. * look so _wonderfully_ clever, that I was not able
  4836. * to stand against the temptation 8) --ANK
  4837. */
  4838. inet_csk_schedule_ack(sk);
  4839. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4840. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4841. tcp_incr_quickack(sk);
  4842. tcp_enter_quickack_mode(sk);
  4843. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4844. TCP_DELACK_MAX, TCP_RTO_MAX);
  4845. discard:
  4846. __kfree_skb(skb);
  4847. return 0;
  4848. } else {
  4849. tcp_send_ack(sk);
  4850. }
  4851. return -1;
  4852. }
  4853. /* No ACK in the segment */
  4854. if (th->rst) {
  4855. /* rfc793:
  4856. * "If the RST bit is set
  4857. *
  4858. * Otherwise (no ACK) drop the segment and return."
  4859. */
  4860. goto discard_and_undo;
  4861. }
  4862. /* PAWS check. */
  4863. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4864. tcp_paws_reject(&tp->rx_opt, 0))
  4865. goto discard_and_undo;
  4866. if (th->syn) {
  4867. /* We see SYN without ACK. It is attempt of
  4868. * simultaneous connect with crossed SYNs.
  4869. * Particularly, it can be connect to self.
  4870. */
  4871. tcp_set_state(sk, TCP_SYN_RECV);
  4872. if (tp->rx_opt.saw_tstamp) {
  4873. tp->rx_opt.tstamp_ok = 1;
  4874. tcp_store_ts_recent(tp);
  4875. tp->tcp_header_len =
  4876. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4877. } else {
  4878. tp->tcp_header_len = sizeof(struct tcphdr);
  4879. }
  4880. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4881. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4882. /* RFC1323: The window in SYN & SYN/ACK segments is
  4883. * never scaled.
  4884. */
  4885. tp->snd_wnd = ntohs(th->window);
  4886. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4887. tp->max_window = tp->snd_wnd;
  4888. TCP_ECN_rcv_syn(tp, th);
  4889. tcp_mtup_init(sk);
  4890. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4891. tcp_initialize_rcv_mss(sk);
  4892. tcp_send_synack(sk);
  4893. #if 0
  4894. /* Note, we could accept data and URG from this segment.
  4895. * There are no obstacles to make this.
  4896. *
  4897. * However, if we ignore data in ACKless segments sometimes,
  4898. * we have no reasons to accept it sometimes.
  4899. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4900. * is not flawless. So, discard packet for sanity.
  4901. * Uncomment this return to process the data.
  4902. */
  4903. return -1;
  4904. #else
  4905. goto discard;
  4906. #endif
  4907. }
  4908. /* "fifth, if neither of the SYN or RST bits is set then
  4909. * drop the segment and return."
  4910. */
  4911. discard_and_undo:
  4912. tcp_clear_options(&tp->rx_opt);
  4913. tp->rx_opt.mss_clamp = saved_clamp;
  4914. goto discard;
  4915. reset_and_undo:
  4916. tcp_clear_options(&tp->rx_opt);
  4917. tp->rx_opt.mss_clamp = saved_clamp;
  4918. return 1;
  4919. }
  4920. /*
  4921. * This function implements the receiving procedure of RFC 793 for
  4922. * all states except ESTABLISHED and TIME_WAIT.
  4923. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4924. * address independent.
  4925. */
  4926. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4927. struct tcphdr *th, unsigned len)
  4928. {
  4929. struct tcp_sock *tp = tcp_sk(sk);
  4930. struct inet_connection_sock *icsk = inet_csk(sk);
  4931. int queued = 0;
  4932. int res;
  4933. tp->rx_opt.saw_tstamp = 0;
  4934. switch (sk->sk_state) {
  4935. case TCP_CLOSE:
  4936. goto discard;
  4937. case TCP_LISTEN:
  4938. if (th->ack)
  4939. return 1;
  4940. if (th->rst)
  4941. goto discard;
  4942. if (th->syn) {
  4943. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4944. return 1;
  4945. /* Now we have several options: In theory there is
  4946. * nothing else in the frame. KA9Q has an option to
  4947. * send data with the syn, BSD accepts data with the
  4948. * syn up to the [to be] advertised window and
  4949. * Solaris 2.1 gives you a protocol error. For now
  4950. * we just ignore it, that fits the spec precisely
  4951. * and avoids incompatibilities. It would be nice in
  4952. * future to drop through and process the data.
  4953. *
  4954. * Now that TTCP is starting to be used we ought to
  4955. * queue this data.
  4956. * But, this leaves one open to an easy denial of
  4957. * service attack, and SYN cookies can't defend
  4958. * against this problem. So, we drop the data
  4959. * in the interest of security over speed unless
  4960. * it's still in use.
  4961. */
  4962. kfree_skb(skb);
  4963. return 0;
  4964. }
  4965. goto discard;
  4966. case TCP_SYN_SENT:
  4967. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4968. if (queued >= 0)
  4969. return queued;
  4970. /* Do step6 onward by hand. */
  4971. tcp_urg(sk, skb, th);
  4972. __kfree_skb(skb);
  4973. tcp_data_snd_check(sk);
  4974. return 0;
  4975. }
  4976. res = tcp_validate_incoming(sk, skb, th, 0);
  4977. if (res <= 0)
  4978. return -res;
  4979. /* step 5: check the ACK field */
  4980. if (th->ack) {
  4981. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  4982. switch (sk->sk_state) {
  4983. case TCP_SYN_RECV:
  4984. if (acceptable) {
  4985. tp->copied_seq = tp->rcv_nxt;
  4986. smp_mb();
  4987. tcp_set_state(sk, TCP_ESTABLISHED);
  4988. sk->sk_state_change(sk);
  4989. /* Note, that this wakeup is only for marginal
  4990. * crossed SYN case. Passively open sockets
  4991. * are not waked up, because sk->sk_sleep ==
  4992. * NULL and sk->sk_socket == NULL.
  4993. */
  4994. if (sk->sk_socket)
  4995. sk_wake_async(sk,
  4996. SOCK_WAKE_IO, POLL_OUT);
  4997. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4998. tp->snd_wnd = ntohs(th->window) <<
  4999. tp->rx_opt.snd_wscale;
  5000. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5001. /* tcp_ack considers this ACK as duplicate
  5002. * and does not calculate rtt.
  5003. * Force it here.
  5004. */
  5005. tcp_ack_update_rtt(sk, 0, 0);
  5006. if (tp->rx_opt.tstamp_ok)
  5007. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5008. /* Make sure socket is routed, for
  5009. * correct metrics.
  5010. */
  5011. icsk->icsk_af_ops->rebuild_header(sk);
  5012. tcp_init_metrics(sk);
  5013. tcp_init_congestion_control(sk);
  5014. /* Prevent spurious tcp_cwnd_restart() on
  5015. * first data packet.
  5016. */
  5017. tp->lsndtime = tcp_time_stamp;
  5018. tcp_mtup_init(sk);
  5019. tcp_initialize_rcv_mss(sk);
  5020. tcp_init_buffer_space(sk);
  5021. tcp_fast_path_on(tp);
  5022. } else {
  5023. return 1;
  5024. }
  5025. break;
  5026. case TCP_FIN_WAIT1:
  5027. if (tp->snd_una == tp->write_seq) {
  5028. tcp_set_state(sk, TCP_FIN_WAIT2);
  5029. sk->sk_shutdown |= SEND_SHUTDOWN;
  5030. dst_confirm(__sk_dst_get(sk));
  5031. if (!sock_flag(sk, SOCK_DEAD))
  5032. /* Wake up lingering close() */
  5033. sk->sk_state_change(sk);
  5034. else {
  5035. int tmo;
  5036. if (tp->linger2 < 0 ||
  5037. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5038. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5039. tcp_done(sk);
  5040. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5041. return 1;
  5042. }
  5043. tmo = tcp_fin_time(sk);
  5044. if (tmo > TCP_TIMEWAIT_LEN) {
  5045. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5046. } else if (th->fin || sock_owned_by_user(sk)) {
  5047. /* Bad case. We could lose such FIN otherwise.
  5048. * It is not a big problem, but it looks confusing
  5049. * and not so rare event. We still can lose it now,
  5050. * if it spins in bh_lock_sock(), but it is really
  5051. * marginal case.
  5052. */
  5053. inet_csk_reset_keepalive_timer(sk, tmo);
  5054. } else {
  5055. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5056. goto discard;
  5057. }
  5058. }
  5059. }
  5060. break;
  5061. case TCP_CLOSING:
  5062. if (tp->snd_una == tp->write_seq) {
  5063. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5064. goto discard;
  5065. }
  5066. break;
  5067. case TCP_LAST_ACK:
  5068. if (tp->snd_una == tp->write_seq) {
  5069. tcp_update_metrics(sk);
  5070. tcp_done(sk);
  5071. goto discard;
  5072. }
  5073. break;
  5074. }
  5075. } else
  5076. goto discard;
  5077. /* step 6: check the URG bit */
  5078. tcp_urg(sk, skb, th);
  5079. /* step 7: process the segment text */
  5080. switch (sk->sk_state) {
  5081. case TCP_CLOSE_WAIT:
  5082. case TCP_CLOSING:
  5083. case TCP_LAST_ACK:
  5084. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5085. break;
  5086. case TCP_FIN_WAIT1:
  5087. case TCP_FIN_WAIT2:
  5088. /* RFC 793 says to queue data in these states,
  5089. * RFC 1122 says we MUST send a reset.
  5090. * BSD 4.4 also does reset.
  5091. */
  5092. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5093. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5094. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5095. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5096. tcp_reset(sk);
  5097. return 1;
  5098. }
  5099. }
  5100. /* Fall through */
  5101. case TCP_ESTABLISHED:
  5102. tcp_data_queue(sk, skb);
  5103. queued = 1;
  5104. break;
  5105. }
  5106. /* tcp_data could move socket to TIME-WAIT */
  5107. if (sk->sk_state != TCP_CLOSE) {
  5108. tcp_data_snd_check(sk);
  5109. tcp_ack_snd_check(sk);
  5110. }
  5111. if (!queued) {
  5112. discard:
  5113. __kfree_skb(skb);
  5114. }
  5115. return 0;
  5116. }
  5117. EXPORT_SYMBOL(sysctl_tcp_ecn);
  5118. EXPORT_SYMBOL(sysctl_tcp_reordering);
  5119. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  5120. EXPORT_SYMBOL(tcp_parse_options);
  5121. #ifdef CONFIG_TCP_MD5SIG
  5122. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  5123. #endif
  5124. EXPORT_SYMBOL(tcp_rcv_established);
  5125. EXPORT_SYMBOL(tcp_rcv_state_process);
  5126. EXPORT_SYMBOL(tcp_initialize_rcv_mss);