intel_display.c 255 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/cpufreq.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_update_watermarks(struct drm_device *dev);
  45. static void intel_increase_pllclock(struct drm_crtc *crtc);
  46. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  47. typedef struct {
  48. /* given values */
  49. int n;
  50. int m1, m2;
  51. int p1, p2;
  52. /* derived values */
  53. int dot;
  54. int vco;
  55. int m;
  56. int p;
  57. } intel_clock_t;
  58. typedef struct {
  59. int min, max;
  60. } intel_range_t;
  61. typedef struct {
  62. int dot_limit;
  63. int p2_slow, p2_fast;
  64. } intel_p2_t;
  65. #define INTEL_P2_NUM 2
  66. typedef struct intel_limit intel_limit_t;
  67. struct intel_limit {
  68. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  69. intel_p2_t p2;
  70. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  71. int, int, intel_clock_t *, intel_clock_t *);
  72. };
  73. /* FDI */
  74. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  75. static bool
  76. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  77. int target, int refclk, intel_clock_t *match_clock,
  78. intel_clock_t *best_clock);
  79. static bool
  80. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  81. int target, int refclk, intel_clock_t *match_clock,
  82. intel_clock_t *best_clock);
  83. static bool
  84. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  85. int target, int refclk, intel_clock_t *match_clock,
  86. intel_clock_t *best_clock);
  87. static bool
  88. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  89. int target, int refclk, intel_clock_t *match_clock,
  90. intel_clock_t *best_clock);
  91. static inline u32 /* units of 100MHz */
  92. intel_fdi_link_freq(struct drm_device *dev)
  93. {
  94. if (IS_GEN5(dev)) {
  95. struct drm_i915_private *dev_priv = dev->dev_private;
  96. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  97. } else
  98. return 27;
  99. }
  100. static const intel_limit_t intel_limits_i8xx_dvo = {
  101. .dot = { .min = 25000, .max = 350000 },
  102. .vco = { .min = 930000, .max = 1400000 },
  103. .n = { .min = 3, .max = 16 },
  104. .m = { .min = 96, .max = 140 },
  105. .m1 = { .min = 18, .max = 26 },
  106. .m2 = { .min = 6, .max = 16 },
  107. .p = { .min = 4, .max = 128 },
  108. .p1 = { .min = 2, .max = 33 },
  109. .p2 = { .dot_limit = 165000,
  110. .p2_slow = 4, .p2_fast = 2 },
  111. .find_pll = intel_find_best_PLL,
  112. };
  113. static const intel_limit_t intel_limits_i8xx_lvds = {
  114. .dot = { .min = 25000, .max = 350000 },
  115. .vco = { .min = 930000, .max = 1400000 },
  116. .n = { .min = 3, .max = 16 },
  117. .m = { .min = 96, .max = 140 },
  118. .m1 = { .min = 18, .max = 26 },
  119. .m2 = { .min = 6, .max = 16 },
  120. .p = { .min = 4, .max = 128 },
  121. .p1 = { .min = 1, .max = 6 },
  122. .p2 = { .dot_limit = 165000,
  123. .p2_slow = 14, .p2_fast = 7 },
  124. .find_pll = intel_find_best_PLL,
  125. };
  126. static const intel_limit_t intel_limits_i9xx_sdvo = {
  127. .dot = { .min = 20000, .max = 400000 },
  128. .vco = { .min = 1400000, .max = 2800000 },
  129. .n = { .min = 1, .max = 6 },
  130. .m = { .min = 70, .max = 120 },
  131. .m1 = { .min = 10, .max = 22 },
  132. .m2 = { .min = 5, .max = 9 },
  133. .p = { .min = 5, .max = 80 },
  134. .p1 = { .min = 1, .max = 8 },
  135. .p2 = { .dot_limit = 200000,
  136. .p2_slow = 10, .p2_fast = 5 },
  137. .find_pll = intel_find_best_PLL,
  138. };
  139. static const intel_limit_t intel_limits_i9xx_lvds = {
  140. .dot = { .min = 20000, .max = 400000 },
  141. .vco = { .min = 1400000, .max = 2800000 },
  142. .n = { .min = 1, .max = 6 },
  143. .m = { .min = 70, .max = 120 },
  144. .m1 = { .min = 10, .max = 22 },
  145. .m2 = { .min = 5, .max = 9 },
  146. .p = { .min = 7, .max = 98 },
  147. .p1 = { .min = 1, .max = 8 },
  148. .p2 = { .dot_limit = 112000,
  149. .p2_slow = 14, .p2_fast = 7 },
  150. .find_pll = intel_find_best_PLL,
  151. };
  152. static const intel_limit_t intel_limits_g4x_sdvo = {
  153. .dot = { .min = 25000, .max = 270000 },
  154. .vco = { .min = 1750000, .max = 3500000},
  155. .n = { .min = 1, .max = 4 },
  156. .m = { .min = 104, .max = 138 },
  157. .m1 = { .min = 17, .max = 23 },
  158. .m2 = { .min = 5, .max = 11 },
  159. .p = { .min = 10, .max = 30 },
  160. .p1 = { .min = 1, .max = 3},
  161. .p2 = { .dot_limit = 270000,
  162. .p2_slow = 10,
  163. .p2_fast = 10
  164. },
  165. .find_pll = intel_g4x_find_best_PLL,
  166. };
  167. static const intel_limit_t intel_limits_g4x_hdmi = {
  168. .dot = { .min = 22000, .max = 400000 },
  169. .vco = { .min = 1750000, .max = 3500000},
  170. .n = { .min = 1, .max = 4 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 16, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 5, .max = 80 },
  175. .p1 = { .min = 1, .max = 8},
  176. .p2 = { .dot_limit = 165000,
  177. .p2_slow = 10, .p2_fast = 5 },
  178. .find_pll = intel_g4x_find_best_PLL,
  179. };
  180. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  181. .dot = { .min = 20000, .max = 115000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 28, .max = 112 },
  188. .p1 = { .min = 2, .max = 8 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 14, .p2_fast = 14
  191. },
  192. .find_pll = intel_g4x_find_best_PLL,
  193. };
  194. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  195. .dot = { .min = 80000, .max = 224000 },
  196. .vco = { .min = 1750000, .max = 3500000 },
  197. .n = { .min = 1, .max = 3 },
  198. .m = { .min = 104, .max = 138 },
  199. .m1 = { .min = 17, .max = 23 },
  200. .m2 = { .min = 5, .max = 11 },
  201. .p = { .min = 14, .max = 42 },
  202. .p1 = { .min = 2, .max = 6 },
  203. .p2 = { .dot_limit = 0,
  204. .p2_slow = 7, .p2_fast = 7
  205. },
  206. .find_pll = intel_g4x_find_best_PLL,
  207. };
  208. static const intel_limit_t intel_limits_g4x_display_port = {
  209. .dot = { .min = 161670, .max = 227000 },
  210. .vco = { .min = 1750000, .max = 3500000},
  211. .n = { .min = 1, .max = 2 },
  212. .m = { .min = 97, .max = 108 },
  213. .m1 = { .min = 0x10, .max = 0x12 },
  214. .m2 = { .min = 0x05, .max = 0x06 },
  215. .p = { .min = 10, .max = 20 },
  216. .p1 = { .min = 1, .max = 2},
  217. .p2 = { .dot_limit = 0,
  218. .p2_slow = 10, .p2_fast = 10 },
  219. .find_pll = intel_find_pll_g4x_dp,
  220. };
  221. static const intel_limit_t intel_limits_pineview_sdvo = {
  222. .dot = { .min = 20000, .max = 400000},
  223. .vco = { .min = 1700000, .max = 3500000 },
  224. /* Pineview's Ncounter is a ring counter */
  225. .n = { .min = 3, .max = 6 },
  226. .m = { .min = 2, .max = 256 },
  227. /* Pineview only has one combined m divider, which we treat as m2. */
  228. .m1 = { .min = 0, .max = 0 },
  229. .m2 = { .min = 0, .max = 254 },
  230. .p = { .min = 5, .max = 80 },
  231. .p1 = { .min = 1, .max = 8 },
  232. .p2 = { .dot_limit = 200000,
  233. .p2_slow = 10, .p2_fast = 5 },
  234. .find_pll = intel_find_best_PLL,
  235. };
  236. static const intel_limit_t intel_limits_pineview_lvds = {
  237. .dot = { .min = 20000, .max = 400000 },
  238. .vco = { .min = 1700000, .max = 3500000 },
  239. .n = { .min = 3, .max = 6 },
  240. .m = { .min = 2, .max = 256 },
  241. .m1 = { .min = 0, .max = 0 },
  242. .m2 = { .min = 0, .max = 254 },
  243. .p = { .min = 7, .max = 112 },
  244. .p1 = { .min = 1, .max = 8 },
  245. .p2 = { .dot_limit = 112000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. .find_pll = intel_find_best_PLL,
  248. };
  249. /* Ironlake / Sandybridge
  250. *
  251. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  252. * the range value for them is (actual_value - 2).
  253. */
  254. static const intel_limit_t intel_limits_ironlake_dac = {
  255. .dot = { .min = 25000, .max = 350000 },
  256. .vco = { .min = 1760000, .max = 3510000 },
  257. .n = { .min = 1, .max = 5 },
  258. .m = { .min = 79, .max = 127 },
  259. .m1 = { .min = 12, .max = 22 },
  260. .m2 = { .min = 5, .max = 9 },
  261. .p = { .min = 5, .max = 80 },
  262. .p1 = { .min = 1, .max = 8 },
  263. .p2 = { .dot_limit = 225000,
  264. .p2_slow = 10, .p2_fast = 5 },
  265. .find_pll = intel_g4x_find_best_PLL,
  266. };
  267. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  268. .dot = { .min = 25000, .max = 350000 },
  269. .vco = { .min = 1760000, .max = 3510000 },
  270. .n = { .min = 1, .max = 3 },
  271. .m = { .min = 79, .max = 118 },
  272. .m1 = { .min = 12, .max = 22 },
  273. .m2 = { .min = 5, .max = 9 },
  274. .p = { .min = 28, .max = 112 },
  275. .p1 = { .min = 2, .max = 8 },
  276. .p2 = { .dot_limit = 225000,
  277. .p2_slow = 14, .p2_fast = 14 },
  278. .find_pll = intel_g4x_find_best_PLL,
  279. };
  280. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  281. .dot = { .min = 25000, .max = 350000 },
  282. .vco = { .min = 1760000, .max = 3510000 },
  283. .n = { .min = 1, .max = 3 },
  284. .m = { .min = 79, .max = 127 },
  285. .m1 = { .min = 12, .max = 22 },
  286. .m2 = { .min = 5, .max = 9 },
  287. .p = { .min = 14, .max = 56 },
  288. .p1 = { .min = 2, .max = 8 },
  289. .p2 = { .dot_limit = 225000,
  290. .p2_slow = 7, .p2_fast = 7 },
  291. .find_pll = intel_g4x_find_best_PLL,
  292. };
  293. /* LVDS 100mhz refclk limits. */
  294. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  295. .dot = { .min = 25000, .max = 350000 },
  296. .vco = { .min = 1760000, .max = 3510000 },
  297. .n = { .min = 1, .max = 2 },
  298. .m = { .min = 79, .max = 126 },
  299. .m1 = { .min = 12, .max = 22 },
  300. .m2 = { .min = 5, .max = 9 },
  301. .p = { .min = 28, .max = 112 },
  302. .p1 = { .min = 2, .max = 8 },
  303. .p2 = { .dot_limit = 225000,
  304. .p2_slow = 14, .p2_fast = 14 },
  305. .find_pll = intel_g4x_find_best_PLL,
  306. };
  307. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  308. .dot = { .min = 25000, .max = 350000 },
  309. .vco = { .min = 1760000, .max = 3510000 },
  310. .n = { .min = 1, .max = 3 },
  311. .m = { .min = 79, .max = 126 },
  312. .m1 = { .min = 12, .max = 22 },
  313. .m2 = { .min = 5, .max = 9 },
  314. .p = { .min = 14, .max = 42 },
  315. .p1 = { .min = 2, .max = 6 },
  316. .p2 = { .dot_limit = 225000,
  317. .p2_slow = 7, .p2_fast = 7 },
  318. .find_pll = intel_g4x_find_best_PLL,
  319. };
  320. static const intel_limit_t intel_limits_ironlake_display_port = {
  321. .dot = { .min = 25000, .max = 350000 },
  322. .vco = { .min = 1760000, .max = 3510000},
  323. .n = { .min = 1, .max = 2 },
  324. .m = { .min = 81, .max = 90 },
  325. .m1 = { .min = 12, .max = 22 },
  326. .m2 = { .min = 5, .max = 9 },
  327. .p = { .min = 10, .max = 20 },
  328. .p1 = { .min = 1, .max = 2},
  329. .p2 = { .dot_limit = 0,
  330. .p2_slow = 10, .p2_fast = 10 },
  331. .find_pll = intel_find_pll_ironlake_dp,
  332. };
  333. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  334. int refclk)
  335. {
  336. struct drm_device *dev = crtc->dev;
  337. struct drm_i915_private *dev_priv = dev->dev_private;
  338. const intel_limit_t *limit;
  339. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  340. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  341. LVDS_CLKB_POWER_UP) {
  342. /* LVDS dual channel */
  343. if (refclk == 100000)
  344. limit = &intel_limits_ironlake_dual_lvds_100m;
  345. else
  346. limit = &intel_limits_ironlake_dual_lvds;
  347. } else {
  348. if (refclk == 100000)
  349. limit = &intel_limits_ironlake_single_lvds_100m;
  350. else
  351. limit = &intel_limits_ironlake_single_lvds;
  352. }
  353. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  354. HAS_eDP)
  355. limit = &intel_limits_ironlake_display_port;
  356. else
  357. limit = &intel_limits_ironlake_dac;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. struct drm_i915_private *dev_priv = dev->dev_private;
  364. const intel_limit_t *limit;
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  366. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  367. LVDS_CLKB_POWER_UP)
  368. /* LVDS with dual channel */
  369. limit = &intel_limits_g4x_dual_channel_lvds;
  370. else
  371. /* LVDS with dual channel */
  372. limit = &intel_limits_g4x_single_channel_lvds;
  373. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  374. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  375. limit = &intel_limits_g4x_hdmi;
  376. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  377. limit = &intel_limits_g4x_sdvo;
  378. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  379. limit = &intel_limits_g4x_display_port;
  380. } else /* The option is for other outputs */
  381. limit = &intel_limits_i9xx_sdvo;
  382. return limit;
  383. }
  384. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  385. {
  386. struct drm_device *dev = crtc->dev;
  387. const intel_limit_t *limit;
  388. if (HAS_PCH_SPLIT(dev))
  389. limit = intel_ironlake_limit(crtc, refclk);
  390. else if (IS_G4X(dev)) {
  391. limit = intel_g4x_limit(crtc);
  392. } else if (IS_PINEVIEW(dev)) {
  393. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  394. limit = &intel_limits_pineview_lvds;
  395. else
  396. limit = &intel_limits_pineview_sdvo;
  397. } else if (!IS_GEN2(dev)) {
  398. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  399. limit = &intel_limits_i9xx_lvds;
  400. else
  401. limit = &intel_limits_i9xx_sdvo;
  402. } else {
  403. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  404. limit = &intel_limits_i8xx_lvds;
  405. else
  406. limit = &intel_limits_i8xx_dvo;
  407. }
  408. return limit;
  409. }
  410. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  411. static void pineview_clock(int refclk, intel_clock_t *clock)
  412. {
  413. clock->m = clock->m2 + 2;
  414. clock->p = clock->p1 * clock->p2;
  415. clock->vco = refclk * clock->m / clock->n;
  416. clock->dot = clock->vco / clock->p;
  417. }
  418. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  419. {
  420. if (IS_PINEVIEW(dev)) {
  421. pineview_clock(refclk, clock);
  422. return;
  423. }
  424. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  425. clock->p = clock->p1 * clock->p2;
  426. clock->vco = refclk * clock->m / (clock->n + 2);
  427. clock->dot = clock->vco / clock->p;
  428. }
  429. /**
  430. * Returns whether any output on the specified pipe is of the specified type
  431. */
  432. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  433. {
  434. struct drm_device *dev = crtc->dev;
  435. struct drm_mode_config *mode_config = &dev->mode_config;
  436. struct intel_encoder *encoder;
  437. list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
  438. if (encoder->base.crtc == crtc && encoder->type == type)
  439. return true;
  440. return false;
  441. }
  442. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  443. /**
  444. * Returns whether the given set of divisors are valid for a given refclk with
  445. * the given connectors.
  446. */
  447. static bool intel_PLL_is_valid(struct drm_device *dev,
  448. const intel_limit_t *limit,
  449. const intel_clock_t *clock)
  450. {
  451. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  452. INTELPllInvalid("p1 out of range\n");
  453. if (clock->p < limit->p.min || limit->p.max < clock->p)
  454. INTELPllInvalid("p out of range\n");
  455. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  456. INTELPllInvalid("m2 out of range\n");
  457. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  458. INTELPllInvalid("m1 out of range\n");
  459. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  460. INTELPllInvalid("m1 <= m2\n");
  461. if (clock->m < limit->m.min || limit->m.max < clock->m)
  462. INTELPllInvalid("m out of range\n");
  463. if (clock->n < limit->n.min || limit->n.max < clock->n)
  464. INTELPllInvalid("n out of range\n");
  465. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  466. INTELPllInvalid("vco out of range\n");
  467. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  468. * connector, etc., rather than just a single range.
  469. */
  470. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  471. INTELPllInvalid("dot out of range\n");
  472. return true;
  473. }
  474. static bool
  475. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  476. int target, int refclk, intel_clock_t *match_clock,
  477. intel_clock_t *best_clock)
  478. {
  479. struct drm_device *dev = crtc->dev;
  480. struct drm_i915_private *dev_priv = dev->dev_private;
  481. intel_clock_t clock;
  482. int err = target;
  483. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  484. (I915_READ(LVDS)) != 0) {
  485. /*
  486. * For LVDS, if the panel is on, just rely on its current
  487. * settings for dual-channel. We haven't figured out how to
  488. * reliably set up different single/dual channel state, if we
  489. * even can.
  490. */
  491. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  492. LVDS_CLKB_POWER_UP)
  493. clock.p2 = limit->p2.p2_fast;
  494. else
  495. clock.p2 = limit->p2.p2_slow;
  496. } else {
  497. if (target < limit->p2.dot_limit)
  498. clock.p2 = limit->p2.p2_slow;
  499. else
  500. clock.p2 = limit->p2.p2_fast;
  501. }
  502. memset(best_clock, 0, sizeof(*best_clock));
  503. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  504. clock.m1++) {
  505. for (clock.m2 = limit->m2.min;
  506. clock.m2 <= limit->m2.max; clock.m2++) {
  507. /* m1 is always 0 in Pineview */
  508. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  509. break;
  510. for (clock.n = limit->n.min;
  511. clock.n <= limit->n.max; clock.n++) {
  512. for (clock.p1 = limit->p1.min;
  513. clock.p1 <= limit->p1.max; clock.p1++) {
  514. int this_err;
  515. intel_clock(dev, refclk, &clock);
  516. if (!intel_PLL_is_valid(dev, limit,
  517. &clock))
  518. continue;
  519. if (match_clock &&
  520. clock.p != match_clock->p)
  521. continue;
  522. this_err = abs(clock.dot - target);
  523. if (this_err < err) {
  524. *best_clock = clock;
  525. err = this_err;
  526. }
  527. }
  528. }
  529. }
  530. }
  531. return (err != target);
  532. }
  533. static bool
  534. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  535. int target, int refclk, intel_clock_t *match_clock,
  536. intel_clock_t *best_clock)
  537. {
  538. struct drm_device *dev = crtc->dev;
  539. struct drm_i915_private *dev_priv = dev->dev_private;
  540. intel_clock_t clock;
  541. int max_n;
  542. bool found;
  543. /* approximately equals target * 0.00585 */
  544. int err_most = (target >> 8) + (target >> 9);
  545. found = false;
  546. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  547. int lvds_reg;
  548. if (HAS_PCH_SPLIT(dev))
  549. lvds_reg = PCH_LVDS;
  550. else
  551. lvds_reg = LVDS;
  552. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  553. LVDS_CLKB_POWER_UP)
  554. clock.p2 = limit->p2.p2_fast;
  555. else
  556. clock.p2 = limit->p2.p2_slow;
  557. } else {
  558. if (target < limit->p2.dot_limit)
  559. clock.p2 = limit->p2.p2_slow;
  560. else
  561. clock.p2 = limit->p2.p2_fast;
  562. }
  563. memset(best_clock, 0, sizeof(*best_clock));
  564. max_n = limit->n.max;
  565. /* based on hardware requirement, prefer smaller n to precision */
  566. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  567. /* based on hardware requirement, prefere larger m1,m2 */
  568. for (clock.m1 = limit->m1.max;
  569. clock.m1 >= limit->m1.min; clock.m1--) {
  570. for (clock.m2 = limit->m2.max;
  571. clock.m2 >= limit->m2.min; clock.m2--) {
  572. for (clock.p1 = limit->p1.max;
  573. clock.p1 >= limit->p1.min; clock.p1--) {
  574. int this_err;
  575. intel_clock(dev, refclk, &clock);
  576. if (!intel_PLL_is_valid(dev, limit,
  577. &clock))
  578. continue;
  579. if (match_clock &&
  580. clock.p != match_clock->p)
  581. continue;
  582. this_err = abs(clock.dot - target);
  583. if (this_err < err_most) {
  584. *best_clock = clock;
  585. err_most = this_err;
  586. max_n = clock.n;
  587. found = true;
  588. }
  589. }
  590. }
  591. }
  592. }
  593. return found;
  594. }
  595. static bool
  596. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  597. int target, int refclk, intel_clock_t *match_clock,
  598. intel_clock_t *best_clock)
  599. {
  600. struct drm_device *dev = crtc->dev;
  601. intel_clock_t clock;
  602. if (target < 200000) {
  603. clock.n = 1;
  604. clock.p1 = 2;
  605. clock.p2 = 10;
  606. clock.m1 = 12;
  607. clock.m2 = 9;
  608. } else {
  609. clock.n = 2;
  610. clock.p1 = 1;
  611. clock.p2 = 10;
  612. clock.m1 = 14;
  613. clock.m2 = 8;
  614. }
  615. intel_clock(dev, refclk, &clock);
  616. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  617. return true;
  618. }
  619. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  620. static bool
  621. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  622. int target, int refclk, intel_clock_t *match_clock,
  623. intel_clock_t *best_clock)
  624. {
  625. intel_clock_t clock;
  626. if (target < 200000) {
  627. clock.p1 = 2;
  628. clock.p2 = 10;
  629. clock.n = 2;
  630. clock.m1 = 23;
  631. clock.m2 = 8;
  632. } else {
  633. clock.p1 = 1;
  634. clock.p2 = 10;
  635. clock.n = 1;
  636. clock.m1 = 14;
  637. clock.m2 = 2;
  638. }
  639. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  640. clock.p = (clock.p1 * clock.p2);
  641. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  642. clock.vco = 0;
  643. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  644. return true;
  645. }
  646. /**
  647. * intel_wait_for_vblank - wait for vblank on a given pipe
  648. * @dev: drm device
  649. * @pipe: pipe to wait for
  650. *
  651. * Wait for vblank to occur on a given pipe. Needed for various bits of
  652. * mode setting code.
  653. */
  654. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  655. {
  656. struct drm_i915_private *dev_priv = dev->dev_private;
  657. int pipestat_reg = PIPESTAT(pipe);
  658. /* Clear existing vblank status. Note this will clear any other
  659. * sticky status fields as well.
  660. *
  661. * This races with i915_driver_irq_handler() with the result
  662. * that either function could miss a vblank event. Here it is not
  663. * fatal, as we will either wait upon the next vblank interrupt or
  664. * timeout. Generally speaking intel_wait_for_vblank() is only
  665. * called during modeset at which time the GPU should be idle and
  666. * should *not* be performing page flips and thus not waiting on
  667. * vblanks...
  668. * Currently, the result of us stealing a vblank from the irq
  669. * handler is that a single frame will be skipped during swapbuffers.
  670. */
  671. I915_WRITE(pipestat_reg,
  672. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  673. /* Wait for vblank interrupt bit to set */
  674. if (wait_for(I915_READ(pipestat_reg) &
  675. PIPE_VBLANK_INTERRUPT_STATUS,
  676. 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /*
  680. * intel_wait_for_pipe_off - wait for pipe to turn off
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * After disabling a pipe, we can't wait for vblank in the usual way,
  685. * spinning on the vblank interrupt status bit, since we won't actually
  686. * see an interrupt when the pipe is disabled.
  687. *
  688. * On Gen4 and above:
  689. * wait for the pipe register state bit to turn off
  690. *
  691. * Otherwise:
  692. * wait for the display line value to settle (it usually
  693. * ends up stopping at the start of the next frame).
  694. *
  695. */
  696. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  697. {
  698. struct drm_i915_private *dev_priv = dev->dev_private;
  699. if (INTEL_INFO(dev)->gen >= 4) {
  700. int reg = PIPECONF(pipe);
  701. /* Wait for the Pipe State to go off */
  702. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  703. 100))
  704. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  705. } else {
  706. u32 last_line;
  707. int reg = PIPEDSL(pipe);
  708. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  709. /* Wait for the display line to settle */
  710. do {
  711. last_line = I915_READ(reg) & DSL_LINEMASK;
  712. mdelay(5);
  713. } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
  714. time_after(timeout, jiffies));
  715. if (time_after(jiffies, timeout))
  716. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  717. }
  718. }
  719. static const char *state_string(bool enabled)
  720. {
  721. return enabled ? "on" : "off";
  722. }
  723. /* Only for pre-ILK configs */
  724. static void assert_pll(struct drm_i915_private *dev_priv,
  725. enum pipe pipe, bool state)
  726. {
  727. int reg;
  728. u32 val;
  729. bool cur_state;
  730. reg = DPLL(pipe);
  731. val = I915_READ(reg);
  732. cur_state = !!(val & DPLL_VCO_ENABLE);
  733. WARN(cur_state != state,
  734. "PLL state assertion failure (expected %s, current %s)\n",
  735. state_string(state), state_string(cur_state));
  736. }
  737. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  738. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  739. /* For ILK+ */
  740. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  741. enum pipe pipe, bool state)
  742. {
  743. int reg;
  744. u32 val;
  745. bool cur_state;
  746. if (HAS_PCH_CPT(dev_priv->dev)) {
  747. u32 pch_dpll;
  748. pch_dpll = I915_READ(PCH_DPLL_SEL);
  749. /* Make sure the selected PLL is enabled to the transcoder */
  750. WARN(!((pch_dpll >> (4 * pipe)) & 8),
  751. "transcoder %d PLL not enabled\n", pipe);
  752. /* Convert the transcoder pipe number to a pll pipe number */
  753. pipe = (pch_dpll >> (4 * pipe)) & 1;
  754. }
  755. reg = PCH_DPLL(pipe);
  756. val = I915_READ(reg);
  757. cur_state = !!(val & DPLL_VCO_ENABLE);
  758. WARN(cur_state != state,
  759. "PCH PLL state assertion failure (expected %s, current %s)\n",
  760. state_string(state), state_string(cur_state));
  761. }
  762. #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
  763. #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
  764. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  765. enum pipe pipe, bool state)
  766. {
  767. int reg;
  768. u32 val;
  769. bool cur_state;
  770. reg = FDI_TX_CTL(pipe);
  771. val = I915_READ(reg);
  772. cur_state = !!(val & FDI_TX_ENABLE);
  773. WARN(cur_state != state,
  774. "FDI TX state assertion failure (expected %s, current %s)\n",
  775. state_string(state), state_string(cur_state));
  776. }
  777. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  778. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  779. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  780. enum pipe pipe, bool state)
  781. {
  782. int reg;
  783. u32 val;
  784. bool cur_state;
  785. reg = FDI_RX_CTL(pipe);
  786. val = I915_READ(reg);
  787. cur_state = !!(val & FDI_RX_ENABLE);
  788. WARN(cur_state != state,
  789. "FDI RX state assertion failure (expected %s, current %s)\n",
  790. state_string(state), state_string(cur_state));
  791. }
  792. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  793. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  794. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  795. enum pipe pipe)
  796. {
  797. int reg;
  798. u32 val;
  799. /* ILK FDI PLL is always enabled */
  800. if (dev_priv->info->gen == 5)
  801. return;
  802. reg = FDI_TX_CTL(pipe);
  803. val = I915_READ(reg);
  804. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  805. }
  806. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  807. enum pipe pipe)
  808. {
  809. int reg;
  810. u32 val;
  811. reg = FDI_RX_CTL(pipe);
  812. val = I915_READ(reg);
  813. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  814. }
  815. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  816. enum pipe pipe)
  817. {
  818. int pp_reg, lvds_reg;
  819. u32 val;
  820. enum pipe panel_pipe = PIPE_A;
  821. bool locked = true;
  822. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  823. pp_reg = PCH_PP_CONTROL;
  824. lvds_reg = PCH_LVDS;
  825. } else {
  826. pp_reg = PP_CONTROL;
  827. lvds_reg = LVDS;
  828. }
  829. val = I915_READ(pp_reg);
  830. if (!(val & PANEL_POWER_ON) ||
  831. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  832. locked = false;
  833. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  834. panel_pipe = PIPE_B;
  835. WARN(panel_pipe == pipe && locked,
  836. "panel assertion failure, pipe %c regs locked\n",
  837. pipe_name(pipe));
  838. }
  839. void assert_pipe(struct drm_i915_private *dev_priv,
  840. enum pipe pipe, bool state)
  841. {
  842. int reg;
  843. u32 val;
  844. bool cur_state;
  845. /* if we need the pipe A quirk it must be always on */
  846. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  847. state = true;
  848. reg = PIPECONF(pipe);
  849. val = I915_READ(reg);
  850. cur_state = !!(val & PIPECONF_ENABLE);
  851. WARN(cur_state != state,
  852. "pipe %c assertion failure (expected %s, current %s)\n",
  853. pipe_name(pipe), state_string(state), state_string(cur_state));
  854. }
  855. static void assert_plane(struct drm_i915_private *dev_priv,
  856. enum plane plane, bool state)
  857. {
  858. int reg;
  859. u32 val;
  860. bool cur_state;
  861. reg = DSPCNTR(plane);
  862. val = I915_READ(reg);
  863. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  864. WARN(cur_state != state,
  865. "plane %c assertion failure (expected %s, current %s)\n",
  866. plane_name(plane), state_string(state), state_string(cur_state));
  867. }
  868. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  869. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  870. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  871. enum pipe pipe)
  872. {
  873. int reg, i;
  874. u32 val;
  875. int cur_pipe;
  876. /* Planes are fixed to pipes on ILK+ */
  877. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  878. reg = DSPCNTR(pipe);
  879. val = I915_READ(reg);
  880. WARN((val & DISPLAY_PLANE_ENABLE),
  881. "plane %c assertion failure, should be disabled but not\n",
  882. plane_name(pipe));
  883. return;
  884. }
  885. /* Need to check both planes against the pipe */
  886. for (i = 0; i < 2; i++) {
  887. reg = DSPCNTR(i);
  888. val = I915_READ(reg);
  889. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  890. DISPPLANE_SEL_PIPE_SHIFT;
  891. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  892. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  893. plane_name(i), pipe_name(pipe));
  894. }
  895. }
  896. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  897. {
  898. u32 val;
  899. bool enabled;
  900. val = I915_READ(PCH_DREF_CONTROL);
  901. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  902. DREF_SUPERSPREAD_SOURCE_MASK));
  903. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  904. }
  905. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  906. enum pipe pipe)
  907. {
  908. int reg;
  909. u32 val;
  910. bool enabled;
  911. reg = TRANSCONF(pipe);
  912. val = I915_READ(reg);
  913. enabled = !!(val & TRANS_ENABLE);
  914. WARN(enabled,
  915. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  916. pipe_name(pipe));
  917. }
  918. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, u32 port_sel, u32 val)
  920. {
  921. if ((val & DP_PORT_EN) == 0)
  922. return false;
  923. if (HAS_PCH_CPT(dev_priv->dev)) {
  924. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  925. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  926. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  927. return false;
  928. } else {
  929. if ((val & DP_PIPE_MASK) != (pipe << 30))
  930. return false;
  931. }
  932. return true;
  933. }
  934. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  935. enum pipe pipe, u32 val)
  936. {
  937. if ((val & PORT_ENABLE) == 0)
  938. return false;
  939. if (HAS_PCH_CPT(dev_priv->dev)) {
  940. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  941. return false;
  942. } else {
  943. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  944. return false;
  945. }
  946. return true;
  947. }
  948. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  949. enum pipe pipe, u32 val)
  950. {
  951. if ((val & LVDS_PORT_EN) == 0)
  952. return false;
  953. if (HAS_PCH_CPT(dev_priv->dev)) {
  954. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  955. return false;
  956. } else {
  957. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  958. return false;
  959. }
  960. return true;
  961. }
  962. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  963. enum pipe pipe, u32 val)
  964. {
  965. if ((val & ADPA_DAC_ENABLE) == 0)
  966. return false;
  967. if (HAS_PCH_CPT(dev_priv->dev)) {
  968. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  969. return false;
  970. } else {
  971. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  972. return false;
  973. }
  974. return true;
  975. }
  976. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  977. enum pipe pipe, int reg, u32 port_sel)
  978. {
  979. u32 val = I915_READ(reg);
  980. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  981. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  982. reg, pipe_name(pipe));
  983. }
  984. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  985. enum pipe pipe, int reg)
  986. {
  987. u32 val = I915_READ(reg);
  988. WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
  989. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  990. reg, pipe_name(pipe));
  991. }
  992. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  993. enum pipe pipe)
  994. {
  995. int reg;
  996. u32 val;
  997. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  998. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  999. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1000. reg = PCH_ADPA;
  1001. val = I915_READ(reg);
  1002. WARN(adpa_pipe_enabled(dev_priv, val, pipe),
  1003. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1004. pipe_name(pipe));
  1005. reg = PCH_LVDS;
  1006. val = I915_READ(reg);
  1007. WARN(lvds_pipe_enabled(dev_priv, val, pipe),
  1008. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1009. pipe_name(pipe));
  1010. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1011. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1012. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1013. }
  1014. /**
  1015. * intel_enable_pll - enable a PLL
  1016. * @dev_priv: i915 private structure
  1017. * @pipe: pipe PLL to enable
  1018. *
  1019. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1020. * make sure the PLL reg is writable first though, since the panel write
  1021. * protect mechanism may be enabled.
  1022. *
  1023. * Note! This is for pre-ILK only.
  1024. */
  1025. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1026. {
  1027. int reg;
  1028. u32 val;
  1029. /* No really, not for ILK+ */
  1030. BUG_ON(dev_priv->info->gen >= 5);
  1031. /* PLL is protected by panel, make sure we can write it */
  1032. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1033. assert_panel_unlocked(dev_priv, pipe);
  1034. reg = DPLL(pipe);
  1035. val = I915_READ(reg);
  1036. val |= DPLL_VCO_ENABLE;
  1037. /* We do this three times for luck */
  1038. I915_WRITE(reg, val);
  1039. POSTING_READ(reg);
  1040. udelay(150); /* wait for warmup */
  1041. I915_WRITE(reg, val);
  1042. POSTING_READ(reg);
  1043. udelay(150); /* wait for warmup */
  1044. I915_WRITE(reg, val);
  1045. POSTING_READ(reg);
  1046. udelay(150); /* wait for warmup */
  1047. }
  1048. /**
  1049. * intel_disable_pll - disable a PLL
  1050. * @dev_priv: i915 private structure
  1051. * @pipe: pipe PLL to disable
  1052. *
  1053. * Disable the PLL for @pipe, making sure the pipe is off first.
  1054. *
  1055. * Note! This is for pre-ILK only.
  1056. */
  1057. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1058. {
  1059. int reg;
  1060. u32 val;
  1061. /* Don't disable pipe A or pipe A PLLs if needed */
  1062. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1063. return;
  1064. /* Make sure the pipe isn't still relying on us */
  1065. assert_pipe_disabled(dev_priv, pipe);
  1066. reg = DPLL(pipe);
  1067. val = I915_READ(reg);
  1068. val &= ~DPLL_VCO_ENABLE;
  1069. I915_WRITE(reg, val);
  1070. POSTING_READ(reg);
  1071. }
  1072. /**
  1073. * intel_enable_pch_pll - enable PCH PLL
  1074. * @dev_priv: i915 private structure
  1075. * @pipe: pipe PLL to enable
  1076. *
  1077. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1078. * drives the transcoder clock.
  1079. */
  1080. static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
  1081. enum pipe pipe)
  1082. {
  1083. int reg;
  1084. u32 val;
  1085. if (pipe > 1)
  1086. return;
  1087. /* PCH only available on ILK+ */
  1088. BUG_ON(dev_priv->info->gen < 5);
  1089. /* PCH refclock must be enabled first */
  1090. assert_pch_refclk_enabled(dev_priv);
  1091. reg = PCH_DPLL(pipe);
  1092. val = I915_READ(reg);
  1093. val |= DPLL_VCO_ENABLE;
  1094. I915_WRITE(reg, val);
  1095. POSTING_READ(reg);
  1096. udelay(200);
  1097. }
  1098. static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
  1099. enum pipe pipe)
  1100. {
  1101. int reg;
  1102. u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
  1103. pll_sel = TRANSC_DPLL_ENABLE;
  1104. if (pipe > 1)
  1105. return;
  1106. /* PCH only available on ILK+ */
  1107. BUG_ON(dev_priv->info->gen < 5);
  1108. /* Make sure transcoder isn't still depending on us */
  1109. assert_transcoder_disabled(dev_priv, pipe);
  1110. if (pipe == 0)
  1111. pll_sel |= TRANSC_DPLLA_SEL;
  1112. else if (pipe == 1)
  1113. pll_sel |= TRANSC_DPLLB_SEL;
  1114. if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
  1115. return;
  1116. reg = PCH_DPLL(pipe);
  1117. val = I915_READ(reg);
  1118. val &= ~DPLL_VCO_ENABLE;
  1119. I915_WRITE(reg, val);
  1120. POSTING_READ(reg);
  1121. udelay(200);
  1122. }
  1123. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1124. enum pipe pipe)
  1125. {
  1126. int reg;
  1127. u32 val, pipeconf_val;
  1128. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1129. /* PCH only available on ILK+ */
  1130. BUG_ON(dev_priv->info->gen < 5);
  1131. /* Make sure PCH DPLL is enabled */
  1132. assert_pch_pll_enabled(dev_priv, pipe);
  1133. /* FDI must be feeding us bits for PCH ports */
  1134. assert_fdi_tx_enabled(dev_priv, pipe);
  1135. assert_fdi_rx_enabled(dev_priv, pipe);
  1136. reg = TRANSCONF(pipe);
  1137. val = I915_READ(reg);
  1138. pipeconf_val = I915_READ(PIPECONF(pipe));
  1139. if (HAS_PCH_IBX(dev_priv->dev)) {
  1140. /*
  1141. * make the BPC in transcoder be consistent with
  1142. * that in pipeconf reg.
  1143. */
  1144. val &= ~PIPE_BPC_MASK;
  1145. val |= pipeconf_val & PIPE_BPC_MASK;
  1146. }
  1147. val &= ~TRANS_INTERLACE_MASK;
  1148. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1149. if (HAS_PCH_IBX(dev_priv->dev) &&
  1150. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1151. val |= TRANS_LEGACY_INTERLACED_ILK;
  1152. else
  1153. val |= TRANS_INTERLACED;
  1154. else
  1155. val |= TRANS_PROGRESSIVE;
  1156. I915_WRITE(reg, val | TRANS_ENABLE);
  1157. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1158. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1159. }
  1160. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1161. enum pipe pipe)
  1162. {
  1163. int reg;
  1164. u32 val;
  1165. /* FDI relies on the transcoder */
  1166. assert_fdi_tx_disabled(dev_priv, pipe);
  1167. assert_fdi_rx_disabled(dev_priv, pipe);
  1168. /* Ports must be off as well */
  1169. assert_pch_ports_disabled(dev_priv, pipe);
  1170. reg = TRANSCONF(pipe);
  1171. val = I915_READ(reg);
  1172. val &= ~TRANS_ENABLE;
  1173. I915_WRITE(reg, val);
  1174. /* wait for PCH transcoder off, transcoder state */
  1175. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1176. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1177. }
  1178. /**
  1179. * intel_enable_pipe - enable a pipe, asserting requirements
  1180. * @dev_priv: i915 private structure
  1181. * @pipe: pipe to enable
  1182. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1183. *
  1184. * Enable @pipe, making sure that various hardware specific requirements
  1185. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1186. *
  1187. * @pipe should be %PIPE_A or %PIPE_B.
  1188. *
  1189. * Will wait until the pipe is actually running (i.e. first vblank) before
  1190. * returning.
  1191. */
  1192. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1193. bool pch_port)
  1194. {
  1195. int reg;
  1196. u32 val;
  1197. /*
  1198. * A pipe without a PLL won't actually be able to drive bits from
  1199. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1200. * need the check.
  1201. */
  1202. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1203. assert_pll_enabled(dev_priv, pipe);
  1204. else {
  1205. if (pch_port) {
  1206. /* if driving the PCH, we need FDI enabled */
  1207. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1208. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1209. }
  1210. /* FIXME: assert CPU port conditions for SNB+ */
  1211. }
  1212. reg = PIPECONF(pipe);
  1213. val = I915_READ(reg);
  1214. if (val & PIPECONF_ENABLE)
  1215. return;
  1216. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1217. intel_wait_for_vblank(dev_priv->dev, pipe);
  1218. }
  1219. /**
  1220. * intel_disable_pipe - disable a pipe, asserting requirements
  1221. * @dev_priv: i915 private structure
  1222. * @pipe: pipe to disable
  1223. *
  1224. * Disable @pipe, making sure that various hardware specific requirements
  1225. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1226. *
  1227. * @pipe should be %PIPE_A or %PIPE_B.
  1228. *
  1229. * Will wait until the pipe has shut down before returning.
  1230. */
  1231. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1232. enum pipe pipe)
  1233. {
  1234. int reg;
  1235. u32 val;
  1236. /*
  1237. * Make sure planes won't keep trying to pump pixels to us,
  1238. * or we might hang the display.
  1239. */
  1240. assert_planes_disabled(dev_priv, pipe);
  1241. /* Don't disable pipe A or pipe A PLLs if needed */
  1242. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1243. return;
  1244. reg = PIPECONF(pipe);
  1245. val = I915_READ(reg);
  1246. if ((val & PIPECONF_ENABLE) == 0)
  1247. return;
  1248. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1249. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1250. }
  1251. /*
  1252. * Plane regs are double buffered, going from enabled->disabled needs a
  1253. * trigger in order to latch. The display address reg provides this.
  1254. */
  1255. static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1256. enum plane plane)
  1257. {
  1258. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1259. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1260. }
  1261. /**
  1262. * intel_enable_plane - enable a display plane on a given pipe
  1263. * @dev_priv: i915 private structure
  1264. * @plane: plane to enable
  1265. * @pipe: pipe being fed
  1266. *
  1267. * Enable @plane on @pipe, making sure that @pipe is running first.
  1268. */
  1269. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1270. enum plane plane, enum pipe pipe)
  1271. {
  1272. int reg;
  1273. u32 val;
  1274. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1275. assert_pipe_enabled(dev_priv, pipe);
  1276. reg = DSPCNTR(plane);
  1277. val = I915_READ(reg);
  1278. if (val & DISPLAY_PLANE_ENABLE)
  1279. return;
  1280. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1281. intel_flush_display_plane(dev_priv, plane);
  1282. intel_wait_for_vblank(dev_priv->dev, pipe);
  1283. }
  1284. /**
  1285. * intel_disable_plane - disable a display plane
  1286. * @dev_priv: i915 private structure
  1287. * @plane: plane to disable
  1288. * @pipe: pipe consuming the data
  1289. *
  1290. * Disable @plane; should be an independent operation.
  1291. */
  1292. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1293. enum plane plane, enum pipe pipe)
  1294. {
  1295. int reg;
  1296. u32 val;
  1297. reg = DSPCNTR(plane);
  1298. val = I915_READ(reg);
  1299. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1300. return;
  1301. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1302. intel_flush_display_plane(dev_priv, plane);
  1303. intel_wait_for_vblank(dev_priv->dev, pipe);
  1304. }
  1305. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1306. enum pipe pipe, int reg, u32 port_sel)
  1307. {
  1308. u32 val = I915_READ(reg);
  1309. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1310. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1311. I915_WRITE(reg, val & ~DP_PORT_EN);
  1312. }
  1313. }
  1314. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1315. enum pipe pipe, int reg)
  1316. {
  1317. u32 val = I915_READ(reg);
  1318. if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
  1319. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1320. reg, pipe);
  1321. I915_WRITE(reg, val & ~PORT_ENABLE);
  1322. }
  1323. }
  1324. /* Disable any ports connected to this transcoder */
  1325. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1326. enum pipe pipe)
  1327. {
  1328. u32 reg, val;
  1329. val = I915_READ(PCH_PP_CONTROL);
  1330. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1331. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1332. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1333. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1334. reg = PCH_ADPA;
  1335. val = I915_READ(reg);
  1336. if (adpa_pipe_enabled(dev_priv, val, pipe))
  1337. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1338. reg = PCH_LVDS;
  1339. val = I915_READ(reg);
  1340. if (lvds_pipe_enabled(dev_priv, val, pipe)) {
  1341. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1342. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1343. POSTING_READ(reg);
  1344. udelay(100);
  1345. }
  1346. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1347. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1348. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1349. }
  1350. static void i8xx_disable_fbc(struct drm_device *dev)
  1351. {
  1352. struct drm_i915_private *dev_priv = dev->dev_private;
  1353. u32 fbc_ctl;
  1354. /* Disable compression */
  1355. fbc_ctl = I915_READ(FBC_CONTROL);
  1356. if ((fbc_ctl & FBC_CTL_EN) == 0)
  1357. return;
  1358. fbc_ctl &= ~FBC_CTL_EN;
  1359. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1360. /* Wait for compressing bit to clear */
  1361. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  1362. DRM_DEBUG_KMS("FBC idle timed out\n");
  1363. return;
  1364. }
  1365. DRM_DEBUG_KMS("disabled FBC\n");
  1366. }
  1367. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1368. {
  1369. struct drm_device *dev = crtc->dev;
  1370. struct drm_i915_private *dev_priv = dev->dev_private;
  1371. struct drm_framebuffer *fb = crtc->fb;
  1372. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1373. struct drm_i915_gem_object *obj = intel_fb->obj;
  1374. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1375. int cfb_pitch;
  1376. int plane, i;
  1377. u32 fbc_ctl, fbc_ctl2;
  1378. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  1379. if (fb->pitches[0] < cfb_pitch)
  1380. cfb_pitch = fb->pitches[0];
  1381. /* FBC_CTL wants 64B units */
  1382. cfb_pitch = (cfb_pitch / 64) - 1;
  1383. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  1384. /* Clear old tags */
  1385. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  1386. I915_WRITE(FBC_TAG + (i * 4), 0);
  1387. /* Set it up... */
  1388. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  1389. fbc_ctl2 |= plane;
  1390. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  1391. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  1392. /* enable it... */
  1393. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  1394. if (IS_I945GM(dev))
  1395. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  1396. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  1397. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  1398. fbc_ctl |= obj->fence_reg;
  1399. I915_WRITE(FBC_CONTROL, fbc_ctl);
  1400. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  1401. cfb_pitch, crtc->y, intel_crtc->plane);
  1402. }
  1403. static bool i8xx_fbc_enabled(struct drm_device *dev)
  1404. {
  1405. struct drm_i915_private *dev_priv = dev->dev_private;
  1406. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  1407. }
  1408. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1409. {
  1410. struct drm_device *dev = crtc->dev;
  1411. struct drm_i915_private *dev_priv = dev->dev_private;
  1412. struct drm_framebuffer *fb = crtc->fb;
  1413. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1414. struct drm_i915_gem_object *obj = intel_fb->obj;
  1415. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1416. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1417. unsigned long stall_watermark = 200;
  1418. u32 dpfc_ctl;
  1419. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  1420. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  1421. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  1422. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1423. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1424. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1425. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  1426. /* enable it... */
  1427. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  1428. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1429. }
  1430. static void g4x_disable_fbc(struct drm_device *dev)
  1431. {
  1432. struct drm_i915_private *dev_priv = dev->dev_private;
  1433. u32 dpfc_ctl;
  1434. /* Disable compression */
  1435. dpfc_ctl = I915_READ(DPFC_CONTROL);
  1436. if (dpfc_ctl & DPFC_CTL_EN) {
  1437. dpfc_ctl &= ~DPFC_CTL_EN;
  1438. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  1439. DRM_DEBUG_KMS("disabled FBC\n");
  1440. }
  1441. }
  1442. static bool g4x_fbc_enabled(struct drm_device *dev)
  1443. {
  1444. struct drm_i915_private *dev_priv = dev->dev_private;
  1445. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  1446. }
  1447. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  1448. {
  1449. struct drm_i915_private *dev_priv = dev->dev_private;
  1450. u32 blt_ecoskpd;
  1451. /* Make sure blitter notifies FBC of writes */
  1452. gen6_gt_force_wake_get(dev_priv);
  1453. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  1454. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  1455. GEN6_BLITTER_LOCK_SHIFT;
  1456. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1457. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  1458. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1459. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  1460. GEN6_BLITTER_LOCK_SHIFT);
  1461. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  1462. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  1463. gen6_gt_force_wake_put(dev_priv);
  1464. }
  1465. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1466. {
  1467. struct drm_device *dev = crtc->dev;
  1468. struct drm_i915_private *dev_priv = dev->dev_private;
  1469. struct drm_framebuffer *fb = crtc->fb;
  1470. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  1471. struct drm_i915_gem_object *obj = intel_fb->obj;
  1472. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1473. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  1474. unsigned long stall_watermark = 200;
  1475. u32 dpfc_ctl;
  1476. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1477. dpfc_ctl &= DPFC_RESERVED;
  1478. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  1479. /* Set persistent mode for front-buffer rendering, ala X. */
  1480. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  1481. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  1482. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  1483. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  1484. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  1485. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  1486. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  1487. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  1488. /* enable it... */
  1489. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  1490. if (IS_GEN6(dev)) {
  1491. I915_WRITE(SNB_DPFC_CTL_SA,
  1492. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  1493. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  1494. sandybridge_blit_fbc_update(dev);
  1495. }
  1496. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  1497. }
  1498. static void ironlake_disable_fbc(struct drm_device *dev)
  1499. {
  1500. struct drm_i915_private *dev_priv = dev->dev_private;
  1501. u32 dpfc_ctl;
  1502. /* Disable compression */
  1503. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  1504. if (dpfc_ctl & DPFC_CTL_EN) {
  1505. dpfc_ctl &= ~DPFC_CTL_EN;
  1506. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  1507. DRM_DEBUG_KMS("disabled FBC\n");
  1508. }
  1509. }
  1510. static bool ironlake_fbc_enabled(struct drm_device *dev)
  1511. {
  1512. struct drm_i915_private *dev_priv = dev->dev_private;
  1513. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  1514. }
  1515. bool intel_fbc_enabled(struct drm_device *dev)
  1516. {
  1517. struct drm_i915_private *dev_priv = dev->dev_private;
  1518. if (!dev_priv->display.fbc_enabled)
  1519. return false;
  1520. return dev_priv->display.fbc_enabled(dev);
  1521. }
  1522. static void intel_fbc_work_fn(struct work_struct *__work)
  1523. {
  1524. struct intel_fbc_work *work =
  1525. container_of(to_delayed_work(__work),
  1526. struct intel_fbc_work, work);
  1527. struct drm_device *dev = work->crtc->dev;
  1528. struct drm_i915_private *dev_priv = dev->dev_private;
  1529. mutex_lock(&dev->struct_mutex);
  1530. if (work == dev_priv->fbc_work) {
  1531. /* Double check that we haven't switched fb without cancelling
  1532. * the prior work.
  1533. */
  1534. if (work->crtc->fb == work->fb) {
  1535. dev_priv->display.enable_fbc(work->crtc,
  1536. work->interval);
  1537. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  1538. dev_priv->cfb_fb = work->crtc->fb->base.id;
  1539. dev_priv->cfb_y = work->crtc->y;
  1540. }
  1541. dev_priv->fbc_work = NULL;
  1542. }
  1543. mutex_unlock(&dev->struct_mutex);
  1544. kfree(work);
  1545. }
  1546. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  1547. {
  1548. if (dev_priv->fbc_work == NULL)
  1549. return;
  1550. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  1551. /* Synchronisation is provided by struct_mutex and checking of
  1552. * dev_priv->fbc_work, so we can perform the cancellation
  1553. * entirely asynchronously.
  1554. */
  1555. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  1556. /* tasklet was killed before being run, clean up */
  1557. kfree(dev_priv->fbc_work);
  1558. /* Mark the work as no longer wanted so that if it does
  1559. * wake-up (because the work was already running and waiting
  1560. * for our mutex), it will discover that is no longer
  1561. * necessary to run.
  1562. */
  1563. dev_priv->fbc_work = NULL;
  1564. }
  1565. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  1566. {
  1567. struct intel_fbc_work *work;
  1568. struct drm_device *dev = crtc->dev;
  1569. struct drm_i915_private *dev_priv = dev->dev_private;
  1570. if (!dev_priv->display.enable_fbc)
  1571. return;
  1572. intel_cancel_fbc_work(dev_priv);
  1573. work = kzalloc(sizeof *work, GFP_KERNEL);
  1574. if (work == NULL) {
  1575. dev_priv->display.enable_fbc(crtc, interval);
  1576. return;
  1577. }
  1578. work->crtc = crtc;
  1579. work->fb = crtc->fb;
  1580. work->interval = interval;
  1581. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  1582. dev_priv->fbc_work = work;
  1583. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  1584. /* Delay the actual enabling to let pageflipping cease and the
  1585. * display to settle before starting the compression. Note that
  1586. * this delay also serves a second purpose: it allows for a
  1587. * vblank to pass after disabling the FBC before we attempt
  1588. * to modify the control registers.
  1589. *
  1590. * A more complicated solution would involve tracking vblanks
  1591. * following the termination of the page-flipping sequence
  1592. * and indeed performing the enable as a co-routine and not
  1593. * waiting synchronously upon the vblank.
  1594. */
  1595. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  1596. }
  1597. void intel_disable_fbc(struct drm_device *dev)
  1598. {
  1599. struct drm_i915_private *dev_priv = dev->dev_private;
  1600. intel_cancel_fbc_work(dev_priv);
  1601. if (!dev_priv->display.disable_fbc)
  1602. return;
  1603. dev_priv->display.disable_fbc(dev);
  1604. dev_priv->cfb_plane = -1;
  1605. }
  1606. /**
  1607. * intel_update_fbc - enable/disable FBC as needed
  1608. * @dev: the drm_device
  1609. *
  1610. * Set up the framebuffer compression hardware at mode set time. We
  1611. * enable it if possible:
  1612. * - plane A only (on pre-965)
  1613. * - no pixel mulitply/line duplication
  1614. * - no alpha buffer discard
  1615. * - no dual wide
  1616. * - framebuffer <= 2048 in width, 1536 in height
  1617. *
  1618. * We can't assume that any compression will take place (worst case),
  1619. * so the compressed buffer has to be the same size as the uncompressed
  1620. * one. It also must reside (along with the line length buffer) in
  1621. * stolen memory.
  1622. *
  1623. * We need to enable/disable FBC on a global basis.
  1624. */
  1625. static void intel_update_fbc(struct drm_device *dev)
  1626. {
  1627. struct drm_i915_private *dev_priv = dev->dev_private;
  1628. struct drm_crtc *crtc = NULL, *tmp_crtc;
  1629. struct intel_crtc *intel_crtc;
  1630. struct drm_framebuffer *fb;
  1631. struct intel_framebuffer *intel_fb;
  1632. struct drm_i915_gem_object *obj;
  1633. int enable_fbc;
  1634. DRM_DEBUG_KMS("\n");
  1635. if (!i915_powersave)
  1636. return;
  1637. if (!I915_HAS_FBC(dev))
  1638. return;
  1639. /*
  1640. * If FBC is already on, we just have to verify that we can
  1641. * keep it that way...
  1642. * Need to disable if:
  1643. * - more than one pipe is active
  1644. * - changing FBC params (stride, fence, mode)
  1645. * - new fb is too large to fit in compressed buffer
  1646. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1647. */
  1648. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  1649. if (tmp_crtc->enabled && tmp_crtc->fb) {
  1650. if (crtc) {
  1651. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  1652. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  1653. goto out_disable;
  1654. }
  1655. crtc = tmp_crtc;
  1656. }
  1657. }
  1658. if (!crtc || crtc->fb == NULL) {
  1659. DRM_DEBUG_KMS("no output, disabling\n");
  1660. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  1661. goto out_disable;
  1662. }
  1663. intel_crtc = to_intel_crtc(crtc);
  1664. fb = crtc->fb;
  1665. intel_fb = to_intel_framebuffer(fb);
  1666. obj = intel_fb->obj;
  1667. enable_fbc = i915_enable_fbc;
  1668. if (enable_fbc < 0) {
  1669. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  1670. enable_fbc = 1;
  1671. if (INTEL_INFO(dev)->gen <= 6)
  1672. enable_fbc = 0;
  1673. }
  1674. if (!enable_fbc) {
  1675. DRM_DEBUG_KMS("fbc disabled per module param\n");
  1676. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  1677. goto out_disable;
  1678. }
  1679. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  1680. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1681. "compression\n");
  1682. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  1683. goto out_disable;
  1684. }
  1685. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  1686. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  1687. DRM_DEBUG_KMS("mode incompatible with compression, "
  1688. "disabling\n");
  1689. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  1690. goto out_disable;
  1691. }
  1692. if ((crtc->mode.hdisplay > 2048) ||
  1693. (crtc->mode.vdisplay > 1536)) {
  1694. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1695. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  1696. goto out_disable;
  1697. }
  1698. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  1699. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1700. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  1701. goto out_disable;
  1702. }
  1703. /* The use of a CPU fence is mandatory in order to detect writes
  1704. * by the CPU to the scanout and trigger updates to the FBC.
  1705. */
  1706. if (obj->tiling_mode != I915_TILING_X ||
  1707. obj->fence_reg == I915_FENCE_REG_NONE) {
  1708. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  1709. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  1710. goto out_disable;
  1711. }
  1712. /* If the kernel debugger is active, always disable compression */
  1713. if (in_dbg_master())
  1714. goto out_disable;
  1715. /* If the scanout has not changed, don't modify the FBC settings.
  1716. * Note that we make the fundamental assumption that the fb->obj
  1717. * cannot be unpinned (and have its GTT offset and fence revoked)
  1718. * without first being decoupled from the scanout and FBC disabled.
  1719. */
  1720. if (dev_priv->cfb_plane == intel_crtc->plane &&
  1721. dev_priv->cfb_fb == fb->base.id &&
  1722. dev_priv->cfb_y == crtc->y)
  1723. return;
  1724. if (intel_fbc_enabled(dev)) {
  1725. /* We update FBC along two paths, after changing fb/crtc
  1726. * configuration (modeswitching) and after page-flipping
  1727. * finishes. For the latter, we know that not only did
  1728. * we disable the FBC at the start of the page-flip
  1729. * sequence, but also more than one vblank has passed.
  1730. *
  1731. * For the former case of modeswitching, it is possible
  1732. * to switch between two FBC valid configurations
  1733. * instantaneously so we do need to disable the FBC
  1734. * before we can modify its control registers. We also
  1735. * have to wait for the next vblank for that to take
  1736. * effect. However, since we delay enabling FBC we can
  1737. * assume that a vblank has passed since disabling and
  1738. * that we can safely alter the registers in the deferred
  1739. * callback.
  1740. *
  1741. * In the scenario that we go from a valid to invalid
  1742. * and then back to valid FBC configuration we have
  1743. * no strict enforcement that a vblank occurred since
  1744. * disabling the FBC. However, along all current pipe
  1745. * disabling paths we do need to wait for a vblank at
  1746. * some point. And we wait before enabling FBC anyway.
  1747. */
  1748. DRM_DEBUG_KMS("disabling active FBC for update\n");
  1749. intel_disable_fbc(dev);
  1750. }
  1751. intel_enable_fbc(crtc, 500);
  1752. return;
  1753. out_disable:
  1754. /* Multiple disables should be harmless */
  1755. if (intel_fbc_enabled(dev)) {
  1756. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1757. intel_disable_fbc(dev);
  1758. }
  1759. }
  1760. int
  1761. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1762. struct drm_i915_gem_object *obj,
  1763. struct intel_ring_buffer *pipelined)
  1764. {
  1765. struct drm_i915_private *dev_priv = dev->dev_private;
  1766. u32 alignment;
  1767. int ret;
  1768. switch (obj->tiling_mode) {
  1769. case I915_TILING_NONE:
  1770. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1771. alignment = 128 * 1024;
  1772. else if (INTEL_INFO(dev)->gen >= 4)
  1773. alignment = 4 * 1024;
  1774. else
  1775. alignment = 64 * 1024;
  1776. break;
  1777. case I915_TILING_X:
  1778. /* pin() will align the object as required by fence */
  1779. alignment = 0;
  1780. break;
  1781. case I915_TILING_Y:
  1782. /* FIXME: Is this true? */
  1783. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1784. return -EINVAL;
  1785. default:
  1786. BUG();
  1787. }
  1788. dev_priv->mm.interruptible = false;
  1789. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1790. if (ret)
  1791. goto err_interruptible;
  1792. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1793. * fence, whereas 965+ only requires a fence if using
  1794. * framebuffer compression. For simplicity, we always install
  1795. * a fence as the cost is not that onerous.
  1796. */
  1797. if (obj->tiling_mode != I915_TILING_NONE) {
  1798. ret = i915_gem_object_get_fence(obj, pipelined);
  1799. if (ret)
  1800. goto err_unpin;
  1801. i915_gem_object_pin_fence(obj);
  1802. }
  1803. dev_priv->mm.interruptible = true;
  1804. return 0;
  1805. err_unpin:
  1806. i915_gem_object_unpin(obj);
  1807. err_interruptible:
  1808. dev_priv->mm.interruptible = true;
  1809. return ret;
  1810. }
  1811. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1812. {
  1813. i915_gem_object_unpin_fence(obj);
  1814. i915_gem_object_unpin(obj);
  1815. }
  1816. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1817. int x, int y)
  1818. {
  1819. struct drm_device *dev = crtc->dev;
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1822. struct intel_framebuffer *intel_fb;
  1823. struct drm_i915_gem_object *obj;
  1824. int plane = intel_crtc->plane;
  1825. unsigned long Start, Offset;
  1826. u32 dspcntr;
  1827. u32 reg;
  1828. switch (plane) {
  1829. case 0:
  1830. case 1:
  1831. break;
  1832. default:
  1833. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1834. return -EINVAL;
  1835. }
  1836. intel_fb = to_intel_framebuffer(fb);
  1837. obj = intel_fb->obj;
  1838. reg = DSPCNTR(plane);
  1839. dspcntr = I915_READ(reg);
  1840. /* Mask out pixel format bits in case we change it */
  1841. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1842. switch (fb->bits_per_pixel) {
  1843. case 8:
  1844. dspcntr |= DISPPLANE_8BPP;
  1845. break;
  1846. case 16:
  1847. if (fb->depth == 15)
  1848. dspcntr |= DISPPLANE_15_16BPP;
  1849. else
  1850. dspcntr |= DISPPLANE_16BPP;
  1851. break;
  1852. case 24:
  1853. case 32:
  1854. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1855. break;
  1856. default:
  1857. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1858. return -EINVAL;
  1859. }
  1860. if (INTEL_INFO(dev)->gen >= 4) {
  1861. if (obj->tiling_mode != I915_TILING_NONE)
  1862. dspcntr |= DISPPLANE_TILED;
  1863. else
  1864. dspcntr &= ~DISPPLANE_TILED;
  1865. }
  1866. I915_WRITE(reg, dspcntr);
  1867. Start = obj->gtt_offset;
  1868. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1869. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1870. Start, Offset, x, y, fb->pitches[0]);
  1871. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1872. if (INTEL_INFO(dev)->gen >= 4) {
  1873. I915_WRITE(DSPSURF(plane), Start);
  1874. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1875. I915_WRITE(DSPADDR(plane), Offset);
  1876. } else
  1877. I915_WRITE(DSPADDR(plane), Start + Offset);
  1878. POSTING_READ(reg);
  1879. return 0;
  1880. }
  1881. static int ironlake_update_plane(struct drm_crtc *crtc,
  1882. struct drm_framebuffer *fb, int x, int y)
  1883. {
  1884. struct drm_device *dev = crtc->dev;
  1885. struct drm_i915_private *dev_priv = dev->dev_private;
  1886. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1887. struct intel_framebuffer *intel_fb;
  1888. struct drm_i915_gem_object *obj;
  1889. int plane = intel_crtc->plane;
  1890. unsigned long Start, Offset;
  1891. u32 dspcntr;
  1892. u32 reg;
  1893. switch (plane) {
  1894. case 0:
  1895. case 1:
  1896. case 2:
  1897. break;
  1898. default:
  1899. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1900. return -EINVAL;
  1901. }
  1902. intel_fb = to_intel_framebuffer(fb);
  1903. obj = intel_fb->obj;
  1904. reg = DSPCNTR(plane);
  1905. dspcntr = I915_READ(reg);
  1906. /* Mask out pixel format bits in case we change it */
  1907. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1908. switch (fb->bits_per_pixel) {
  1909. case 8:
  1910. dspcntr |= DISPPLANE_8BPP;
  1911. break;
  1912. case 16:
  1913. if (fb->depth != 16)
  1914. return -EINVAL;
  1915. dspcntr |= DISPPLANE_16BPP;
  1916. break;
  1917. case 24:
  1918. case 32:
  1919. if (fb->depth == 24)
  1920. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1921. else if (fb->depth == 30)
  1922. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1923. else
  1924. return -EINVAL;
  1925. break;
  1926. default:
  1927. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1928. return -EINVAL;
  1929. }
  1930. if (obj->tiling_mode != I915_TILING_NONE)
  1931. dspcntr |= DISPPLANE_TILED;
  1932. else
  1933. dspcntr &= ~DISPPLANE_TILED;
  1934. /* must disable */
  1935. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1936. I915_WRITE(reg, dspcntr);
  1937. Start = obj->gtt_offset;
  1938. Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1939. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1940. Start, Offset, x, y, fb->pitches[0]);
  1941. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1942. I915_WRITE(DSPSURF(plane), Start);
  1943. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1944. I915_WRITE(DSPADDR(plane), Offset);
  1945. POSTING_READ(reg);
  1946. return 0;
  1947. }
  1948. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1949. static int
  1950. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1951. int x, int y, enum mode_set_atomic state)
  1952. {
  1953. struct drm_device *dev = crtc->dev;
  1954. struct drm_i915_private *dev_priv = dev->dev_private;
  1955. int ret;
  1956. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1957. if (ret)
  1958. return ret;
  1959. intel_update_fbc(dev);
  1960. intel_increase_pllclock(crtc);
  1961. return 0;
  1962. }
  1963. static int
  1964. intel_finish_fb(struct drm_framebuffer *old_fb)
  1965. {
  1966. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1967. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1968. bool was_interruptible = dev_priv->mm.interruptible;
  1969. int ret;
  1970. wait_event(dev_priv->pending_flip_queue,
  1971. atomic_read(&dev_priv->mm.wedged) ||
  1972. atomic_read(&obj->pending_flip) == 0);
  1973. /* Big Hammer, we also need to ensure that any pending
  1974. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1975. * current scanout is retired before unpinning the old
  1976. * framebuffer.
  1977. *
  1978. * This should only fail upon a hung GPU, in which case we
  1979. * can safely continue.
  1980. */
  1981. dev_priv->mm.interruptible = false;
  1982. ret = i915_gem_object_finish_gpu(obj);
  1983. dev_priv->mm.interruptible = was_interruptible;
  1984. return ret;
  1985. }
  1986. static int
  1987. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1988. struct drm_framebuffer *old_fb)
  1989. {
  1990. struct drm_device *dev = crtc->dev;
  1991. struct drm_i915_master_private *master_priv;
  1992. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1993. int ret;
  1994. /* no fb bound */
  1995. if (!crtc->fb) {
  1996. DRM_ERROR("No FB bound\n");
  1997. return 0;
  1998. }
  1999. switch (intel_crtc->plane) {
  2000. case 0:
  2001. case 1:
  2002. break;
  2003. case 2:
  2004. if (IS_IVYBRIDGE(dev))
  2005. break;
  2006. /* fall through otherwise */
  2007. default:
  2008. DRM_ERROR("no plane for crtc\n");
  2009. return -EINVAL;
  2010. }
  2011. mutex_lock(&dev->struct_mutex);
  2012. ret = intel_pin_and_fence_fb_obj(dev,
  2013. to_intel_framebuffer(crtc->fb)->obj,
  2014. NULL);
  2015. if (ret != 0) {
  2016. mutex_unlock(&dev->struct_mutex);
  2017. DRM_ERROR("pin & fence failed\n");
  2018. return ret;
  2019. }
  2020. if (old_fb)
  2021. intel_finish_fb(old_fb);
  2022. ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
  2023. LEAVE_ATOMIC_MODE_SET);
  2024. if (ret) {
  2025. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2026. mutex_unlock(&dev->struct_mutex);
  2027. DRM_ERROR("failed to update base address\n");
  2028. return ret;
  2029. }
  2030. if (old_fb) {
  2031. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2032. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2033. }
  2034. mutex_unlock(&dev->struct_mutex);
  2035. if (!dev->primary->master)
  2036. return 0;
  2037. master_priv = dev->primary->master->driver_priv;
  2038. if (!master_priv->sarea_priv)
  2039. return 0;
  2040. if (intel_crtc->pipe) {
  2041. master_priv->sarea_priv->pipeB_x = x;
  2042. master_priv->sarea_priv->pipeB_y = y;
  2043. } else {
  2044. master_priv->sarea_priv->pipeA_x = x;
  2045. master_priv->sarea_priv->pipeA_y = y;
  2046. }
  2047. return 0;
  2048. }
  2049. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2050. {
  2051. struct drm_device *dev = crtc->dev;
  2052. struct drm_i915_private *dev_priv = dev->dev_private;
  2053. u32 dpa_ctl;
  2054. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2055. dpa_ctl = I915_READ(DP_A);
  2056. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2057. if (clock < 200000) {
  2058. u32 temp;
  2059. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2060. /* workaround for 160Mhz:
  2061. 1) program 0x4600c bits 15:0 = 0x8124
  2062. 2) program 0x46010 bit 0 = 1
  2063. 3) program 0x46034 bit 24 = 1
  2064. 4) program 0x64000 bit 14 = 1
  2065. */
  2066. temp = I915_READ(0x4600c);
  2067. temp &= 0xffff0000;
  2068. I915_WRITE(0x4600c, temp | 0x8124);
  2069. temp = I915_READ(0x46010);
  2070. I915_WRITE(0x46010, temp | 1);
  2071. temp = I915_READ(0x46034);
  2072. I915_WRITE(0x46034, temp | (1 << 24));
  2073. } else {
  2074. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2075. }
  2076. I915_WRITE(DP_A, dpa_ctl);
  2077. POSTING_READ(DP_A);
  2078. udelay(500);
  2079. }
  2080. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2081. {
  2082. struct drm_device *dev = crtc->dev;
  2083. struct drm_i915_private *dev_priv = dev->dev_private;
  2084. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2085. int pipe = intel_crtc->pipe;
  2086. u32 reg, temp;
  2087. /* enable normal train */
  2088. reg = FDI_TX_CTL(pipe);
  2089. temp = I915_READ(reg);
  2090. if (IS_IVYBRIDGE(dev)) {
  2091. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2092. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2093. } else {
  2094. temp &= ~FDI_LINK_TRAIN_NONE;
  2095. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2096. }
  2097. I915_WRITE(reg, temp);
  2098. reg = FDI_RX_CTL(pipe);
  2099. temp = I915_READ(reg);
  2100. if (HAS_PCH_CPT(dev)) {
  2101. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2102. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2103. } else {
  2104. temp &= ~FDI_LINK_TRAIN_NONE;
  2105. temp |= FDI_LINK_TRAIN_NONE;
  2106. }
  2107. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2108. /* wait one idle pattern time */
  2109. POSTING_READ(reg);
  2110. udelay(1000);
  2111. /* IVB wants error correction enabled */
  2112. if (IS_IVYBRIDGE(dev))
  2113. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2114. FDI_FE_ERRC_ENABLE);
  2115. }
  2116. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2117. {
  2118. struct drm_i915_private *dev_priv = dev->dev_private;
  2119. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2120. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2121. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2122. flags |= FDI_PHASE_SYNC_EN(pipe);
  2123. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2124. POSTING_READ(SOUTH_CHICKEN1);
  2125. }
  2126. /* The FDI link training functions for ILK/Ibexpeak. */
  2127. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2128. {
  2129. struct drm_device *dev = crtc->dev;
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2132. int pipe = intel_crtc->pipe;
  2133. int plane = intel_crtc->plane;
  2134. u32 reg, temp, tries;
  2135. /* FDI needs bits from pipe & plane first */
  2136. assert_pipe_enabled(dev_priv, pipe);
  2137. assert_plane_enabled(dev_priv, plane);
  2138. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2139. for train result */
  2140. reg = FDI_RX_IMR(pipe);
  2141. temp = I915_READ(reg);
  2142. temp &= ~FDI_RX_SYMBOL_LOCK;
  2143. temp &= ~FDI_RX_BIT_LOCK;
  2144. I915_WRITE(reg, temp);
  2145. I915_READ(reg);
  2146. udelay(150);
  2147. /* enable CPU FDI TX and PCH FDI RX */
  2148. reg = FDI_TX_CTL(pipe);
  2149. temp = I915_READ(reg);
  2150. temp &= ~(7 << 19);
  2151. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2152. temp &= ~FDI_LINK_TRAIN_NONE;
  2153. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2154. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2155. reg = FDI_RX_CTL(pipe);
  2156. temp = I915_READ(reg);
  2157. temp &= ~FDI_LINK_TRAIN_NONE;
  2158. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2159. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2160. POSTING_READ(reg);
  2161. udelay(150);
  2162. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2163. if (HAS_PCH_IBX(dev)) {
  2164. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2165. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2166. FDI_RX_PHASE_SYNC_POINTER_EN);
  2167. }
  2168. reg = FDI_RX_IIR(pipe);
  2169. for (tries = 0; tries < 5; tries++) {
  2170. temp = I915_READ(reg);
  2171. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2172. if ((temp & FDI_RX_BIT_LOCK)) {
  2173. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2174. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2175. break;
  2176. }
  2177. }
  2178. if (tries == 5)
  2179. DRM_ERROR("FDI train 1 fail!\n");
  2180. /* Train 2 */
  2181. reg = FDI_TX_CTL(pipe);
  2182. temp = I915_READ(reg);
  2183. temp &= ~FDI_LINK_TRAIN_NONE;
  2184. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2185. I915_WRITE(reg, temp);
  2186. reg = FDI_RX_CTL(pipe);
  2187. temp = I915_READ(reg);
  2188. temp &= ~FDI_LINK_TRAIN_NONE;
  2189. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2190. I915_WRITE(reg, temp);
  2191. POSTING_READ(reg);
  2192. udelay(150);
  2193. reg = FDI_RX_IIR(pipe);
  2194. for (tries = 0; tries < 5; tries++) {
  2195. temp = I915_READ(reg);
  2196. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2197. if (temp & FDI_RX_SYMBOL_LOCK) {
  2198. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2199. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2200. break;
  2201. }
  2202. }
  2203. if (tries == 5)
  2204. DRM_ERROR("FDI train 2 fail!\n");
  2205. DRM_DEBUG_KMS("FDI train done\n");
  2206. }
  2207. static const int snb_b_fdi_train_param[] = {
  2208. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2209. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2210. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2211. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2212. };
  2213. /* The FDI link training functions for SNB/Cougarpoint. */
  2214. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2215. {
  2216. struct drm_device *dev = crtc->dev;
  2217. struct drm_i915_private *dev_priv = dev->dev_private;
  2218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2219. int pipe = intel_crtc->pipe;
  2220. u32 reg, temp, i;
  2221. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2222. for train result */
  2223. reg = FDI_RX_IMR(pipe);
  2224. temp = I915_READ(reg);
  2225. temp &= ~FDI_RX_SYMBOL_LOCK;
  2226. temp &= ~FDI_RX_BIT_LOCK;
  2227. I915_WRITE(reg, temp);
  2228. POSTING_READ(reg);
  2229. udelay(150);
  2230. /* enable CPU FDI TX and PCH FDI RX */
  2231. reg = FDI_TX_CTL(pipe);
  2232. temp = I915_READ(reg);
  2233. temp &= ~(7 << 19);
  2234. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2235. temp &= ~FDI_LINK_TRAIN_NONE;
  2236. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2237. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2238. /* SNB-B */
  2239. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2240. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2241. reg = FDI_RX_CTL(pipe);
  2242. temp = I915_READ(reg);
  2243. if (HAS_PCH_CPT(dev)) {
  2244. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2245. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2246. } else {
  2247. temp &= ~FDI_LINK_TRAIN_NONE;
  2248. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2249. }
  2250. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2251. POSTING_READ(reg);
  2252. udelay(150);
  2253. if (HAS_PCH_CPT(dev))
  2254. cpt_phase_pointer_enable(dev, pipe);
  2255. for (i = 0; i < 4; i++) {
  2256. reg = FDI_TX_CTL(pipe);
  2257. temp = I915_READ(reg);
  2258. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2259. temp |= snb_b_fdi_train_param[i];
  2260. I915_WRITE(reg, temp);
  2261. POSTING_READ(reg);
  2262. udelay(500);
  2263. reg = FDI_RX_IIR(pipe);
  2264. temp = I915_READ(reg);
  2265. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2266. if (temp & FDI_RX_BIT_LOCK) {
  2267. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2268. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2269. break;
  2270. }
  2271. }
  2272. if (i == 4)
  2273. DRM_ERROR("FDI train 1 fail!\n");
  2274. /* Train 2 */
  2275. reg = FDI_TX_CTL(pipe);
  2276. temp = I915_READ(reg);
  2277. temp &= ~FDI_LINK_TRAIN_NONE;
  2278. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2279. if (IS_GEN6(dev)) {
  2280. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2281. /* SNB-B */
  2282. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2283. }
  2284. I915_WRITE(reg, temp);
  2285. reg = FDI_RX_CTL(pipe);
  2286. temp = I915_READ(reg);
  2287. if (HAS_PCH_CPT(dev)) {
  2288. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2289. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2290. } else {
  2291. temp &= ~FDI_LINK_TRAIN_NONE;
  2292. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2293. }
  2294. I915_WRITE(reg, temp);
  2295. POSTING_READ(reg);
  2296. udelay(150);
  2297. for (i = 0; i < 4; i++) {
  2298. reg = FDI_TX_CTL(pipe);
  2299. temp = I915_READ(reg);
  2300. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2301. temp |= snb_b_fdi_train_param[i];
  2302. I915_WRITE(reg, temp);
  2303. POSTING_READ(reg);
  2304. udelay(500);
  2305. reg = FDI_RX_IIR(pipe);
  2306. temp = I915_READ(reg);
  2307. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2308. if (temp & FDI_RX_SYMBOL_LOCK) {
  2309. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2310. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2311. break;
  2312. }
  2313. }
  2314. if (i == 4)
  2315. DRM_ERROR("FDI train 2 fail!\n");
  2316. DRM_DEBUG_KMS("FDI train done.\n");
  2317. }
  2318. /* Manual link training for Ivy Bridge A0 parts */
  2319. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2320. {
  2321. struct drm_device *dev = crtc->dev;
  2322. struct drm_i915_private *dev_priv = dev->dev_private;
  2323. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2324. int pipe = intel_crtc->pipe;
  2325. u32 reg, temp, i;
  2326. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2327. for train result */
  2328. reg = FDI_RX_IMR(pipe);
  2329. temp = I915_READ(reg);
  2330. temp &= ~FDI_RX_SYMBOL_LOCK;
  2331. temp &= ~FDI_RX_BIT_LOCK;
  2332. I915_WRITE(reg, temp);
  2333. POSTING_READ(reg);
  2334. udelay(150);
  2335. /* enable CPU FDI TX and PCH FDI RX */
  2336. reg = FDI_TX_CTL(pipe);
  2337. temp = I915_READ(reg);
  2338. temp &= ~(7 << 19);
  2339. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2340. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2341. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2342. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2343. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2344. temp |= FDI_COMPOSITE_SYNC;
  2345. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2346. reg = FDI_RX_CTL(pipe);
  2347. temp = I915_READ(reg);
  2348. temp &= ~FDI_LINK_TRAIN_AUTO;
  2349. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2350. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2351. temp |= FDI_COMPOSITE_SYNC;
  2352. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2353. POSTING_READ(reg);
  2354. udelay(150);
  2355. if (HAS_PCH_CPT(dev))
  2356. cpt_phase_pointer_enable(dev, pipe);
  2357. for (i = 0; i < 4; i++) {
  2358. reg = FDI_TX_CTL(pipe);
  2359. temp = I915_READ(reg);
  2360. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2361. temp |= snb_b_fdi_train_param[i];
  2362. I915_WRITE(reg, temp);
  2363. POSTING_READ(reg);
  2364. udelay(500);
  2365. reg = FDI_RX_IIR(pipe);
  2366. temp = I915_READ(reg);
  2367. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2368. if (temp & FDI_RX_BIT_LOCK ||
  2369. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2370. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2371. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2372. break;
  2373. }
  2374. }
  2375. if (i == 4)
  2376. DRM_ERROR("FDI train 1 fail!\n");
  2377. /* Train 2 */
  2378. reg = FDI_TX_CTL(pipe);
  2379. temp = I915_READ(reg);
  2380. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2381. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2382. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2383. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2384. I915_WRITE(reg, temp);
  2385. reg = FDI_RX_CTL(pipe);
  2386. temp = I915_READ(reg);
  2387. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2388. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2389. I915_WRITE(reg, temp);
  2390. POSTING_READ(reg);
  2391. udelay(150);
  2392. for (i = 0; i < 4; i++) {
  2393. reg = FDI_TX_CTL(pipe);
  2394. temp = I915_READ(reg);
  2395. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2396. temp |= snb_b_fdi_train_param[i];
  2397. I915_WRITE(reg, temp);
  2398. POSTING_READ(reg);
  2399. udelay(500);
  2400. reg = FDI_RX_IIR(pipe);
  2401. temp = I915_READ(reg);
  2402. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2403. if (temp & FDI_RX_SYMBOL_LOCK) {
  2404. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2405. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2406. break;
  2407. }
  2408. }
  2409. if (i == 4)
  2410. DRM_ERROR("FDI train 2 fail!\n");
  2411. DRM_DEBUG_KMS("FDI train done.\n");
  2412. }
  2413. static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
  2414. {
  2415. struct drm_device *dev = crtc->dev;
  2416. struct drm_i915_private *dev_priv = dev->dev_private;
  2417. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2418. int pipe = intel_crtc->pipe;
  2419. u32 reg, temp;
  2420. /* Write the TU size bits so error detection works */
  2421. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2422. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2423. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2424. reg = FDI_RX_CTL(pipe);
  2425. temp = I915_READ(reg);
  2426. temp &= ~((0x7 << 19) | (0x7 << 16));
  2427. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2428. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2429. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2430. POSTING_READ(reg);
  2431. udelay(200);
  2432. /* Switch from Rawclk to PCDclk */
  2433. temp = I915_READ(reg);
  2434. I915_WRITE(reg, temp | FDI_PCDCLK);
  2435. POSTING_READ(reg);
  2436. udelay(200);
  2437. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2438. reg = FDI_TX_CTL(pipe);
  2439. temp = I915_READ(reg);
  2440. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2441. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2442. POSTING_READ(reg);
  2443. udelay(100);
  2444. }
  2445. }
  2446. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2447. {
  2448. struct drm_i915_private *dev_priv = dev->dev_private;
  2449. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2450. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2451. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2452. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2453. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2454. POSTING_READ(SOUTH_CHICKEN1);
  2455. }
  2456. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2457. {
  2458. struct drm_device *dev = crtc->dev;
  2459. struct drm_i915_private *dev_priv = dev->dev_private;
  2460. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2461. int pipe = intel_crtc->pipe;
  2462. u32 reg, temp;
  2463. /* disable CPU FDI tx and PCH FDI rx */
  2464. reg = FDI_TX_CTL(pipe);
  2465. temp = I915_READ(reg);
  2466. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2467. POSTING_READ(reg);
  2468. reg = FDI_RX_CTL(pipe);
  2469. temp = I915_READ(reg);
  2470. temp &= ~(0x7 << 16);
  2471. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2472. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2473. POSTING_READ(reg);
  2474. udelay(100);
  2475. /* Ironlake workaround, disable clock pointer after downing FDI */
  2476. if (HAS_PCH_IBX(dev)) {
  2477. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2478. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2479. I915_READ(FDI_RX_CHICKEN(pipe) &
  2480. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2481. } else if (HAS_PCH_CPT(dev)) {
  2482. cpt_phase_pointer_disable(dev, pipe);
  2483. }
  2484. /* still set train pattern 1 */
  2485. reg = FDI_TX_CTL(pipe);
  2486. temp = I915_READ(reg);
  2487. temp &= ~FDI_LINK_TRAIN_NONE;
  2488. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2489. I915_WRITE(reg, temp);
  2490. reg = FDI_RX_CTL(pipe);
  2491. temp = I915_READ(reg);
  2492. if (HAS_PCH_CPT(dev)) {
  2493. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2494. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2495. } else {
  2496. temp &= ~FDI_LINK_TRAIN_NONE;
  2497. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2498. }
  2499. /* BPC in FDI rx is consistent with that in PIPECONF */
  2500. temp &= ~(0x07 << 16);
  2501. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2502. I915_WRITE(reg, temp);
  2503. POSTING_READ(reg);
  2504. udelay(100);
  2505. }
  2506. /*
  2507. * When we disable a pipe, we need to clear any pending scanline wait events
  2508. * to avoid hanging the ring, which we assume we are waiting on.
  2509. */
  2510. static void intel_clear_scanline_wait(struct drm_device *dev)
  2511. {
  2512. struct drm_i915_private *dev_priv = dev->dev_private;
  2513. struct intel_ring_buffer *ring;
  2514. u32 tmp;
  2515. if (IS_GEN2(dev))
  2516. /* Can't break the hang on i8xx */
  2517. return;
  2518. ring = LP_RING(dev_priv);
  2519. tmp = I915_READ_CTL(ring);
  2520. if (tmp & RING_WAIT)
  2521. I915_WRITE_CTL(ring, tmp);
  2522. }
  2523. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2524. {
  2525. struct drm_i915_gem_object *obj;
  2526. struct drm_i915_private *dev_priv;
  2527. if (crtc->fb == NULL)
  2528. return;
  2529. obj = to_intel_framebuffer(crtc->fb)->obj;
  2530. dev_priv = crtc->dev->dev_private;
  2531. wait_event(dev_priv->pending_flip_queue,
  2532. atomic_read(&obj->pending_flip) == 0);
  2533. }
  2534. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2535. {
  2536. struct drm_device *dev = crtc->dev;
  2537. struct drm_mode_config *mode_config = &dev->mode_config;
  2538. struct intel_encoder *encoder;
  2539. /*
  2540. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2541. * must be driven by its own crtc; no sharing is possible.
  2542. */
  2543. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  2544. if (encoder->base.crtc != crtc)
  2545. continue;
  2546. switch (encoder->type) {
  2547. case INTEL_OUTPUT_EDP:
  2548. if (!intel_encoder_is_pch_edp(&encoder->base))
  2549. return false;
  2550. continue;
  2551. }
  2552. }
  2553. return true;
  2554. }
  2555. /*
  2556. * Enable PCH resources required for PCH ports:
  2557. * - PCH PLLs
  2558. * - FDI training & RX/TX
  2559. * - update transcoder timings
  2560. * - DP transcoding bits
  2561. * - transcoder
  2562. */
  2563. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2564. {
  2565. struct drm_device *dev = crtc->dev;
  2566. struct drm_i915_private *dev_priv = dev->dev_private;
  2567. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2568. int pipe = intel_crtc->pipe;
  2569. u32 reg, temp, transc_sel;
  2570. /* For PCH output, training FDI link */
  2571. dev_priv->display.fdi_link_train(crtc);
  2572. intel_enable_pch_pll(dev_priv, pipe);
  2573. if (HAS_PCH_CPT(dev)) {
  2574. transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
  2575. TRANSC_DPLLB_SEL;
  2576. /* Be sure PCH DPLL SEL is set */
  2577. temp = I915_READ(PCH_DPLL_SEL);
  2578. if (pipe == 0) {
  2579. temp &= ~(TRANSA_DPLLB_SEL);
  2580. temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
  2581. } else if (pipe == 1) {
  2582. temp &= ~(TRANSB_DPLLB_SEL);
  2583. temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2584. } else if (pipe == 2) {
  2585. temp &= ~(TRANSC_DPLLB_SEL);
  2586. temp |= (TRANSC_DPLL_ENABLE | transc_sel);
  2587. }
  2588. I915_WRITE(PCH_DPLL_SEL, temp);
  2589. }
  2590. /* set transcoder timing, panel must allow it */
  2591. assert_panel_unlocked(dev_priv, pipe);
  2592. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2593. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2594. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2595. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2596. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2597. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2598. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2599. intel_fdi_normal_train(crtc);
  2600. /* For PCH DP, enable TRANS_DP_CTL */
  2601. if (HAS_PCH_CPT(dev) &&
  2602. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2603. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2604. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2605. reg = TRANS_DP_CTL(pipe);
  2606. temp = I915_READ(reg);
  2607. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2608. TRANS_DP_SYNC_MASK |
  2609. TRANS_DP_BPC_MASK);
  2610. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2611. TRANS_DP_ENH_FRAMING);
  2612. temp |= bpc << 9; /* same format but at 11:9 */
  2613. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2614. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2615. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2616. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2617. switch (intel_trans_dp_port_sel(crtc)) {
  2618. case PCH_DP_B:
  2619. temp |= TRANS_DP_PORT_SEL_B;
  2620. break;
  2621. case PCH_DP_C:
  2622. temp |= TRANS_DP_PORT_SEL_C;
  2623. break;
  2624. case PCH_DP_D:
  2625. temp |= TRANS_DP_PORT_SEL_D;
  2626. break;
  2627. default:
  2628. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2629. temp |= TRANS_DP_PORT_SEL_B;
  2630. break;
  2631. }
  2632. I915_WRITE(reg, temp);
  2633. }
  2634. intel_enable_transcoder(dev_priv, pipe);
  2635. }
  2636. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2637. {
  2638. struct drm_i915_private *dev_priv = dev->dev_private;
  2639. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2640. u32 temp;
  2641. temp = I915_READ(dslreg);
  2642. udelay(500);
  2643. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2644. /* Without this, mode sets may fail silently on FDI */
  2645. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2646. udelay(250);
  2647. I915_WRITE(tc2reg, 0);
  2648. if (wait_for(I915_READ(dslreg) != temp, 5))
  2649. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2650. }
  2651. }
  2652. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2653. {
  2654. struct drm_device *dev = crtc->dev;
  2655. struct drm_i915_private *dev_priv = dev->dev_private;
  2656. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2657. int pipe = intel_crtc->pipe;
  2658. int plane = intel_crtc->plane;
  2659. u32 temp;
  2660. bool is_pch_port;
  2661. if (intel_crtc->active)
  2662. return;
  2663. intel_crtc->active = true;
  2664. intel_update_watermarks(dev);
  2665. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2666. temp = I915_READ(PCH_LVDS);
  2667. if ((temp & LVDS_PORT_EN) == 0)
  2668. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2669. }
  2670. is_pch_port = intel_crtc_driving_pch(crtc);
  2671. if (is_pch_port)
  2672. ironlake_fdi_pll_enable(crtc);
  2673. else
  2674. ironlake_fdi_disable(crtc);
  2675. /* Enable panel fitting for LVDS */
  2676. if (dev_priv->pch_pf_size &&
  2677. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2678. /* Force use of hard-coded filter coefficients
  2679. * as some pre-programmed values are broken,
  2680. * e.g. x201.
  2681. */
  2682. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2683. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2684. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2685. }
  2686. /*
  2687. * On ILK+ LUT must be loaded before the pipe is running but with
  2688. * clocks enabled
  2689. */
  2690. intel_crtc_load_lut(crtc);
  2691. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2692. intel_enable_plane(dev_priv, plane, pipe);
  2693. if (is_pch_port)
  2694. ironlake_pch_enable(crtc);
  2695. mutex_lock(&dev->struct_mutex);
  2696. intel_update_fbc(dev);
  2697. mutex_unlock(&dev->struct_mutex);
  2698. intel_crtc_update_cursor(crtc, true);
  2699. }
  2700. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2701. {
  2702. struct drm_device *dev = crtc->dev;
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2705. int pipe = intel_crtc->pipe;
  2706. int plane = intel_crtc->plane;
  2707. u32 reg, temp;
  2708. if (!intel_crtc->active)
  2709. return;
  2710. intel_crtc_wait_for_pending_flips(crtc);
  2711. drm_vblank_off(dev, pipe);
  2712. intel_crtc_update_cursor(crtc, false);
  2713. intel_disable_plane(dev_priv, plane, pipe);
  2714. if (dev_priv->cfb_plane == plane)
  2715. intel_disable_fbc(dev);
  2716. intel_disable_pipe(dev_priv, pipe);
  2717. /* Disable PF */
  2718. I915_WRITE(PF_CTL(pipe), 0);
  2719. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2720. ironlake_fdi_disable(crtc);
  2721. /* This is a horrible layering violation; we should be doing this in
  2722. * the connector/encoder ->prepare instead, but we don't always have
  2723. * enough information there about the config to know whether it will
  2724. * actually be necessary or just cause undesired flicker.
  2725. */
  2726. intel_disable_pch_ports(dev_priv, pipe);
  2727. intel_disable_transcoder(dev_priv, pipe);
  2728. if (HAS_PCH_CPT(dev)) {
  2729. /* disable TRANS_DP_CTL */
  2730. reg = TRANS_DP_CTL(pipe);
  2731. temp = I915_READ(reg);
  2732. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2733. temp |= TRANS_DP_PORT_SEL_NONE;
  2734. I915_WRITE(reg, temp);
  2735. /* disable DPLL_SEL */
  2736. temp = I915_READ(PCH_DPLL_SEL);
  2737. switch (pipe) {
  2738. case 0:
  2739. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2740. break;
  2741. case 1:
  2742. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2743. break;
  2744. case 2:
  2745. /* C shares PLL A or B */
  2746. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2747. break;
  2748. default:
  2749. BUG(); /* wtf */
  2750. }
  2751. I915_WRITE(PCH_DPLL_SEL, temp);
  2752. }
  2753. /* disable PCH DPLL */
  2754. if (!intel_crtc->no_pll)
  2755. intel_disable_pch_pll(dev_priv, pipe);
  2756. /* Switch from PCDclk to Rawclk */
  2757. reg = FDI_RX_CTL(pipe);
  2758. temp = I915_READ(reg);
  2759. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2760. /* Disable CPU FDI TX PLL */
  2761. reg = FDI_TX_CTL(pipe);
  2762. temp = I915_READ(reg);
  2763. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2764. POSTING_READ(reg);
  2765. udelay(100);
  2766. reg = FDI_RX_CTL(pipe);
  2767. temp = I915_READ(reg);
  2768. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2769. /* Wait for the clocks to turn off. */
  2770. POSTING_READ(reg);
  2771. udelay(100);
  2772. intel_crtc->active = false;
  2773. intel_update_watermarks(dev);
  2774. mutex_lock(&dev->struct_mutex);
  2775. intel_update_fbc(dev);
  2776. intel_clear_scanline_wait(dev);
  2777. mutex_unlock(&dev->struct_mutex);
  2778. }
  2779. static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
  2780. {
  2781. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2782. int pipe = intel_crtc->pipe;
  2783. int plane = intel_crtc->plane;
  2784. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2785. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2786. */
  2787. switch (mode) {
  2788. case DRM_MODE_DPMS_ON:
  2789. case DRM_MODE_DPMS_STANDBY:
  2790. case DRM_MODE_DPMS_SUSPEND:
  2791. DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
  2792. ironlake_crtc_enable(crtc);
  2793. break;
  2794. case DRM_MODE_DPMS_OFF:
  2795. DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
  2796. ironlake_crtc_disable(crtc);
  2797. break;
  2798. }
  2799. }
  2800. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2801. {
  2802. if (!enable && intel_crtc->overlay) {
  2803. struct drm_device *dev = intel_crtc->base.dev;
  2804. struct drm_i915_private *dev_priv = dev->dev_private;
  2805. mutex_lock(&dev->struct_mutex);
  2806. dev_priv->mm.interruptible = false;
  2807. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2808. dev_priv->mm.interruptible = true;
  2809. mutex_unlock(&dev->struct_mutex);
  2810. }
  2811. /* Let userspace switch the overlay on again. In most cases userspace
  2812. * has to recompute where to put it anyway.
  2813. */
  2814. }
  2815. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2816. {
  2817. struct drm_device *dev = crtc->dev;
  2818. struct drm_i915_private *dev_priv = dev->dev_private;
  2819. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2820. int pipe = intel_crtc->pipe;
  2821. int plane = intel_crtc->plane;
  2822. if (intel_crtc->active)
  2823. return;
  2824. intel_crtc->active = true;
  2825. intel_update_watermarks(dev);
  2826. intel_enable_pll(dev_priv, pipe);
  2827. intel_enable_pipe(dev_priv, pipe, false);
  2828. intel_enable_plane(dev_priv, plane, pipe);
  2829. intel_crtc_load_lut(crtc);
  2830. intel_update_fbc(dev);
  2831. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2832. intel_crtc_dpms_overlay(intel_crtc, true);
  2833. intel_crtc_update_cursor(crtc, true);
  2834. }
  2835. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2836. {
  2837. struct drm_device *dev = crtc->dev;
  2838. struct drm_i915_private *dev_priv = dev->dev_private;
  2839. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2840. int pipe = intel_crtc->pipe;
  2841. int plane = intel_crtc->plane;
  2842. if (!intel_crtc->active)
  2843. return;
  2844. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2845. intel_crtc_wait_for_pending_flips(crtc);
  2846. drm_vblank_off(dev, pipe);
  2847. intel_crtc_dpms_overlay(intel_crtc, false);
  2848. intel_crtc_update_cursor(crtc, false);
  2849. if (dev_priv->cfb_plane == plane)
  2850. intel_disable_fbc(dev);
  2851. intel_disable_plane(dev_priv, plane, pipe);
  2852. intel_disable_pipe(dev_priv, pipe);
  2853. intel_disable_pll(dev_priv, pipe);
  2854. intel_crtc->active = false;
  2855. intel_update_fbc(dev);
  2856. intel_update_watermarks(dev);
  2857. intel_clear_scanline_wait(dev);
  2858. }
  2859. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  2860. {
  2861. /* XXX: When our outputs are all unaware of DPMS modes other than off
  2862. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  2863. */
  2864. switch (mode) {
  2865. case DRM_MODE_DPMS_ON:
  2866. case DRM_MODE_DPMS_STANDBY:
  2867. case DRM_MODE_DPMS_SUSPEND:
  2868. i9xx_crtc_enable(crtc);
  2869. break;
  2870. case DRM_MODE_DPMS_OFF:
  2871. i9xx_crtc_disable(crtc);
  2872. break;
  2873. }
  2874. }
  2875. /**
  2876. * Sets the power management mode of the pipe and plane.
  2877. */
  2878. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  2879. {
  2880. struct drm_device *dev = crtc->dev;
  2881. struct drm_i915_private *dev_priv = dev->dev_private;
  2882. struct drm_i915_master_private *master_priv;
  2883. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2884. int pipe = intel_crtc->pipe;
  2885. bool enabled;
  2886. if (intel_crtc->dpms_mode == mode)
  2887. return;
  2888. intel_crtc->dpms_mode = mode;
  2889. dev_priv->display.dpms(crtc, mode);
  2890. if (!dev->primary->master)
  2891. return;
  2892. master_priv = dev->primary->master->driver_priv;
  2893. if (!master_priv->sarea_priv)
  2894. return;
  2895. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  2896. switch (pipe) {
  2897. case 0:
  2898. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  2899. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  2900. break;
  2901. case 1:
  2902. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  2903. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  2904. break;
  2905. default:
  2906. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  2907. break;
  2908. }
  2909. }
  2910. static void intel_crtc_disable(struct drm_crtc *crtc)
  2911. {
  2912. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  2913. struct drm_device *dev = crtc->dev;
  2914. /* Flush any pending WAITs before we disable the pipe. Note that
  2915. * we need to drop the struct_mutex in order to acquire it again
  2916. * during the lowlevel dpms routines around a couple of the
  2917. * operations. It does not look trivial nor desirable to move
  2918. * that locking higher. So instead we leave a window for the
  2919. * submission of further commands on the fb before we can actually
  2920. * disable it. This race with userspace exists anyway, and we can
  2921. * only rely on the pipe being disabled by userspace after it
  2922. * receives the hotplug notification and has flushed any pending
  2923. * batches.
  2924. */
  2925. if (crtc->fb) {
  2926. mutex_lock(&dev->struct_mutex);
  2927. intel_finish_fb(crtc->fb);
  2928. mutex_unlock(&dev->struct_mutex);
  2929. }
  2930. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  2931. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  2932. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  2933. if (crtc->fb) {
  2934. mutex_lock(&dev->struct_mutex);
  2935. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  2936. mutex_unlock(&dev->struct_mutex);
  2937. }
  2938. }
  2939. /* Prepare for a mode set.
  2940. *
  2941. * Note we could be a lot smarter here. We need to figure out which outputs
  2942. * will be enabled, which disabled (in short, how the config will changes)
  2943. * and perform the minimum necessary steps to accomplish that, e.g. updating
  2944. * watermarks, FBC configuration, making sure PLLs are programmed correctly,
  2945. * panel fitting is in the proper state, etc.
  2946. */
  2947. static void i9xx_crtc_prepare(struct drm_crtc *crtc)
  2948. {
  2949. i9xx_crtc_disable(crtc);
  2950. }
  2951. static void i9xx_crtc_commit(struct drm_crtc *crtc)
  2952. {
  2953. i9xx_crtc_enable(crtc);
  2954. }
  2955. static void ironlake_crtc_prepare(struct drm_crtc *crtc)
  2956. {
  2957. ironlake_crtc_disable(crtc);
  2958. }
  2959. static void ironlake_crtc_commit(struct drm_crtc *crtc)
  2960. {
  2961. ironlake_crtc_enable(crtc);
  2962. }
  2963. void intel_encoder_prepare(struct drm_encoder *encoder)
  2964. {
  2965. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2966. /* lvds has its own version of prepare see intel_lvds_prepare */
  2967. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  2968. }
  2969. void intel_encoder_commit(struct drm_encoder *encoder)
  2970. {
  2971. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  2972. struct drm_device *dev = encoder->dev;
  2973. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2974. struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  2975. /* lvds has its own version of commit see intel_lvds_commit */
  2976. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  2977. if (HAS_PCH_CPT(dev))
  2978. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2979. }
  2980. void intel_encoder_destroy(struct drm_encoder *encoder)
  2981. {
  2982. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  2983. drm_encoder_cleanup(encoder);
  2984. kfree(intel_encoder);
  2985. }
  2986. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  2987. struct drm_display_mode *mode,
  2988. struct drm_display_mode *adjusted_mode)
  2989. {
  2990. struct drm_device *dev = crtc->dev;
  2991. if (HAS_PCH_SPLIT(dev)) {
  2992. /* FDI link clock is fixed at 2.7G */
  2993. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  2994. return false;
  2995. }
  2996. /* All interlaced capable intel hw wants timings in frames. Note though
  2997. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  2998. * timings, so we need to be careful not to clobber these.*/
  2999. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3000. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3001. return true;
  3002. }
  3003. static int i945_get_display_clock_speed(struct drm_device *dev)
  3004. {
  3005. return 400000;
  3006. }
  3007. static int i915_get_display_clock_speed(struct drm_device *dev)
  3008. {
  3009. return 333000;
  3010. }
  3011. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3012. {
  3013. return 200000;
  3014. }
  3015. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3016. {
  3017. u16 gcfgc = 0;
  3018. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3019. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3020. return 133000;
  3021. else {
  3022. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3023. case GC_DISPLAY_CLOCK_333_MHZ:
  3024. return 333000;
  3025. default:
  3026. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3027. return 190000;
  3028. }
  3029. }
  3030. }
  3031. static int i865_get_display_clock_speed(struct drm_device *dev)
  3032. {
  3033. return 266000;
  3034. }
  3035. static int i855_get_display_clock_speed(struct drm_device *dev)
  3036. {
  3037. u16 hpllcc = 0;
  3038. /* Assume that the hardware is in the high speed state. This
  3039. * should be the default.
  3040. */
  3041. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3042. case GC_CLOCK_133_200:
  3043. case GC_CLOCK_100_200:
  3044. return 200000;
  3045. case GC_CLOCK_166_250:
  3046. return 250000;
  3047. case GC_CLOCK_100_133:
  3048. return 133000;
  3049. }
  3050. /* Shouldn't happen */
  3051. return 0;
  3052. }
  3053. static int i830_get_display_clock_speed(struct drm_device *dev)
  3054. {
  3055. return 133000;
  3056. }
  3057. struct fdi_m_n {
  3058. u32 tu;
  3059. u32 gmch_m;
  3060. u32 gmch_n;
  3061. u32 link_m;
  3062. u32 link_n;
  3063. };
  3064. static void
  3065. fdi_reduce_ratio(u32 *num, u32 *den)
  3066. {
  3067. while (*num > 0xffffff || *den > 0xffffff) {
  3068. *num >>= 1;
  3069. *den >>= 1;
  3070. }
  3071. }
  3072. static void
  3073. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3074. int link_clock, struct fdi_m_n *m_n)
  3075. {
  3076. m_n->tu = 64; /* default size */
  3077. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3078. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3079. m_n->gmch_n = link_clock * nlanes * 8;
  3080. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3081. m_n->link_m = pixel_clock;
  3082. m_n->link_n = link_clock;
  3083. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3084. }
  3085. struct intel_watermark_params {
  3086. unsigned long fifo_size;
  3087. unsigned long max_wm;
  3088. unsigned long default_wm;
  3089. unsigned long guard_size;
  3090. unsigned long cacheline_size;
  3091. };
  3092. /* Pineview has different values for various configs */
  3093. static const struct intel_watermark_params pineview_display_wm = {
  3094. PINEVIEW_DISPLAY_FIFO,
  3095. PINEVIEW_MAX_WM,
  3096. PINEVIEW_DFT_WM,
  3097. PINEVIEW_GUARD_WM,
  3098. PINEVIEW_FIFO_LINE_SIZE
  3099. };
  3100. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  3101. PINEVIEW_DISPLAY_FIFO,
  3102. PINEVIEW_MAX_WM,
  3103. PINEVIEW_DFT_HPLLOFF_WM,
  3104. PINEVIEW_GUARD_WM,
  3105. PINEVIEW_FIFO_LINE_SIZE
  3106. };
  3107. static const struct intel_watermark_params pineview_cursor_wm = {
  3108. PINEVIEW_CURSOR_FIFO,
  3109. PINEVIEW_CURSOR_MAX_WM,
  3110. PINEVIEW_CURSOR_DFT_WM,
  3111. PINEVIEW_CURSOR_GUARD_WM,
  3112. PINEVIEW_FIFO_LINE_SIZE,
  3113. };
  3114. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  3115. PINEVIEW_CURSOR_FIFO,
  3116. PINEVIEW_CURSOR_MAX_WM,
  3117. PINEVIEW_CURSOR_DFT_WM,
  3118. PINEVIEW_CURSOR_GUARD_WM,
  3119. PINEVIEW_FIFO_LINE_SIZE
  3120. };
  3121. static const struct intel_watermark_params g4x_wm_info = {
  3122. G4X_FIFO_SIZE,
  3123. G4X_MAX_WM,
  3124. G4X_MAX_WM,
  3125. 2,
  3126. G4X_FIFO_LINE_SIZE,
  3127. };
  3128. static const struct intel_watermark_params g4x_cursor_wm_info = {
  3129. I965_CURSOR_FIFO,
  3130. I965_CURSOR_MAX_WM,
  3131. I965_CURSOR_DFT_WM,
  3132. 2,
  3133. G4X_FIFO_LINE_SIZE,
  3134. };
  3135. static const struct intel_watermark_params i965_cursor_wm_info = {
  3136. I965_CURSOR_FIFO,
  3137. I965_CURSOR_MAX_WM,
  3138. I965_CURSOR_DFT_WM,
  3139. 2,
  3140. I915_FIFO_LINE_SIZE,
  3141. };
  3142. static const struct intel_watermark_params i945_wm_info = {
  3143. I945_FIFO_SIZE,
  3144. I915_MAX_WM,
  3145. 1,
  3146. 2,
  3147. I915_FIFO_LINE_SIZE
  3148. };
  3149. static const struct intel_watermark_params i915_wm_info = {
  3150. I915_FIFO_SIZE,
  3151. I915_MAX_WM,
  3152. 1,
  3153. 2,
  3154. I915_FIFO_LINE_SIZE
  3155. };
  3156. static const struct intel_watermark_params i855_wm_info = {
  3157. I855GM_FIFO_SIZE,
  3158. I915_MAX_WM,
  3159. 1,
  3160. 2,
  3161. I830_FIFO_LINE_SIZE
  3162. };
  3163. static const struct intel_watermark_params i830_wm_info = {
  3164. I830_FIFO_SIZE,
  3165. I915_MAX_WM,
  3166. 1,
  3167. 2,
  3168. I830_FIFO_LINE_SIZE
  3169. };
  3170. static const struct intel_watermark_params ironlake_display_wm_info = {
  3171. ILK_DISPLAY_FIFO,
  3172. ILK_DISPLAY_MAXWM,
  3173. ILK_DISPLAY_DFTWM,
  3174. 2,
  3175. ILK_FIFO_LINE_SIZE
  3176. };
  3177. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  3178. ILK_CURSOR_FIFO,
  3179. ILK_CURSOR_MAXWM,
  3180. ILK_CURSOR_DFTWM,
  3181. 2,
  3182. ILK_FIFO_LINE_SIZE
  3183. };
  3184. static const struct intel_watermark_params ironlake_display_srwm_info = {
  3185. ILK_DISPLAY_SR_FIFO,
  3186. ILK_DISPLAY_MAX_SRWM,
  3187. ILK_DISPLAY_DFT_SRWM,
  3188. 2,
  3189. ILK_FIFO_LINE_SIZE
  3190. };
  3191. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  3192. ILK_CURSOR_SR_FIFO,
  3193. ILK_CURSOR_MAX_SRWM,
  3194. ILK_CURSOR_DFT_SRWM,
  3195. 2,
  3196. ILK_FIFO_LINE_SIZE
  3197. };
  3198. static const struct intel_watermark_params sandybridge_display_wm_info = {
  3199. SNB_DISPLAY_FIFO,
  3200. SNB_DISPLAY_MAXWM,
  3201. SNB_DISPLAY_DFTWM,
  3202. 2,
  3203. SNB_FIFO_LINE_SIZE
  3204. };
  3205. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  3206. SNB_CURSOR_FIFO,
  3207. SNB_CURSOR_MAXWM,
  3208. SNB_CURSOR_DFTWM,
  3209. 2,
  3210. SNB_FIFO_LINE_SIZE
  3211. };
  3212. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  3213. SNB_DISPLAY_SR_FIFO,
  3214. SNB_DISPLAY_MAX_SRWM,
  3215. SNB_DISPLAY_DFT_SRWM,
  3216. 2,
  3217. SNB_FIFO_LINE_SIZE
  3218. };
  3219. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  3220. SNB_CURSOR_SR_FIFO,
  3221. SNB_CURSOR_MAX_SRWM,
  3222. SNB_CURSOR_DFT_SRWM,
  3223. 2,
  3224. SNB_FIFO_LINE_SIZE
  3225. };
  3226. /**
  3227. * intel_calculate_wm - calculate watermark level
  3228. * @clock_in_khz: pixel clock
  3229. * @wm: chip FIFO params
  3230. * @pixel_size: display pixel size
  3231. * @latency_ns: memory latency for the platform
  3232. *
  3233. * Calculate the watermark level (the level at which the display plane will
  3234. * start fetching from memory again). Each chip has a different display
  3235. * FIFO size and allocation, so the caller needs to figure that out and pass
  3236. * in the correct intel_watermark_params structure.
  3237. *
  3238. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  3239. * on the pixel size. When it reaches the watermark level, it'll start
  3240. * fetching FIFO line sized based chunks from memory until the FIFO fills
  3241. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  3242. * will occur, and a display engine hang could result.
  3243. */
  3244. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  3245. const struct intel_watermark_params *wm,
  3246. int fifo_size,
  3247. int pixel_size,
  3248. unsigned long latency_ns)
  3249. {
  3250. long entries_required, wm_size;
  3251. /*
  3252. * Note: we need to make sure we don't overflow for various clock &
  3253. * latency values.
  3254. * clocks go from a few thousand to several hundred thousand.
  3255. * latency is usually a few thousand
  3256. */
  3257. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  3258. 1000;
  3259. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  3260. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  3261. wm_size = fifo_size - (entries_required + wm->guard_size);
  3262. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  3263. /* Don't promote wm_size to unsigned... */
  3264. if (wm_size > (long)wm->max_wm)
  3265. wm_size = wm->max_wm;
  3266. if (wm_size <= 0)
  3267. wm_size = wm->default_wm;
  3268. return wm_size;
  3269. }
  3270. struct cxsr_latency {
  3271. int is_desktop;
  3272. int is_ddr3;
  3273. unsigned long fsb_freq;
  3274. unsigned long mem_freq;
  3275. unsigned long display_sr;
  3276. unsigned long display_hpll_disable;
  3277. unsigned long cursor_sr;
  3278. unsigned long cursor_hpll_disable;
  3279. };
  3280. static const struct cxsr_latency cxsr_latency_table[] = {
  3281. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  3282. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  3283. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  3284. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  3285. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  3286. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  3287. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  3288. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  3289. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  3290. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  3291. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  3292. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  3293. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  3294. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  3295. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  3296. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  3297. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  3298. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  3299. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  3300. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  3301. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  3302. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  3303. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  3304. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  3305. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  3306. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  3307. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  3308. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  3309. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  3310. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  3311. };
  3312. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  3313. int is_ddr3,
  3314. int fsb,
  3315. int mem)
  3316. {
  3317. const struct cxsr_latency *latency;
  3318. int i;
  3319. if (fsb == 0 || mem == 0)
  3320. return NULL;
  3321. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  3322. latency = &cxsr_latency_table[i];
  3323. if (is_desktop == latency->is_desktop &&
  3324. is_ddr3 == latency->is_ddr3 &&
  3325. fsb == latency->fsb_freq && mem == latency->mem_freq)
  3326. return latency;
  3327. }
  3328. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3329. return NULL;
  3330. }
  3331. static void pineview_disable_cxsr(struct drm_device *dev)
  3332. {
  3333. struct drm_i915_private *dev_priv = dev->dev_private;
  3334. /* deactivate cxsr */
  3335. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  3336. }
  3337. /*
  3338. * Latency for FIFO fetches is dependent on several factors:
  3339. * - memory configuration (speed, channels)
  3340. * - chipset
  3341. * - current MCH state
  3342. * It can be fairly high in some situations, so here we assume a fairly
  3343. * pessimal value. It's a tradeoff between extra memory fetches (if we
  3344. * set this value too high, the FIFO will fetch frequently to stay full)
  3345. * and power consumption (set it too low to save power and we might see
  3346. * FIFO underruns and display "flicker").
  3347. *
  3348. * A value of 5us seems to be a good balance; safe for very low end
  3349. * platforms but not overly aggressive on lower latency configs.
  3350. */
  3351. static const int latency_ns = 5000;
  3352. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  3353. {
  3354. struct drm_i915_private *dev_priv = dev->dev_private;
  3355. uint32_t dsparb = I915_READ(DSPARB);
  3356. int size;
  3357. size = dsparb & 0x7f;
  3358. if (plane)
  3359. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  3360. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3361. plane ? "B" : "A", size);
  3362. return size;
  3363. }
  3364. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  3365. {
  3366. struct drm_i915_private *dev_priv = dev->dev_private;
  3367. uint32_t dsparb = I915_READ(DSPARB);
  3368. int size;
  3369. size = dsparb & 0x1ff;
  3370. if (plane)
  3371. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  3372. size >>= 1; /* Convert to cachelines */
  3373. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3374. plane ? "B" : "A", size);
  3375. return size;
  3376. }
  3377. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  3378. {
  3379. struct drm_i915_private *dev_priv = dev->dev_private;
  3380. uint32_t dsparb = I915_READ(DSPARB);
  3381. int size;
  3382. size = dsparb & 0x7f;
  3383. size >>= 2; /* Convert to cachelines */
  3384. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3385. plane ? "B" : "A",
  3386. size);
  3387. return size;
  3388. }
  3389. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  3390. {
  3391. struct drm_i915_private *dev_priv = dev->dev_private;
  3392. uint32_t dsparb = I915_READ(DSPARB);
  3393. int size;
  3394. size = dsparb & 0x7f;
  3395. size >>= 1; /* Convert to cachelines */
  3396. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  3397. plane ? "B" : "A", size);
  3398. return size;
  3399. }
  3400. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  3401. {
  3402. struct drm_crtc *crtc, *enabled = NULL;
  3403. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3404. if (crtc->enabled && crtc->fb) {
  3405. if (enabled)
  3406. return NULL;
  3407. enabled = crtc;
  3408. }
  3409. }
  3410. return enabled;
  3411. }
  3412. static void pineview_update_wm(struct drm_device *dev)
  3413. {
  3414. struct drm_i915_private *dev_priv = dev->dev_private;
  3415. struct drm_crtc *crtc;
  3416. const struct cxsr_latency *latency;
  3417. u32 reg;
  3418. unsigned long wm;
  3419. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  3420. dev_priv->fsb_freq, dev_priv->mem_freq);
  3421. if (!latency) {
  3422. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  3423. pineview_disable_cxsr(dev);
  3424. return;
  3425. }
  3426. crtc = single_enabled_crtc(dev);
  3427. if (crtc) {
  3428. int clock = crtc->mode.clock;
  3429. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3430. /* Display SR */
  3431. wm = intel_calculate_wm(clock, &pineview_display_wm,
  3432. pineview_display_wm.fifo_size,
  3433. pixel_size, latency->display_sr);
  3434. reg = I915_READ(DSPFW1);
  3435. reg &= ~DSPFW_SR_MASK;
  3436. reg |= wm << DSPFW_SR_SHIFT;
  3437. I915_WRITE(DSPFW1, reg);
  3438. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  3439. /* cursor SR */
  3440. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  3441. pineview_display_wm.fifo_size,
  3442. pixel_size, latency->cursor_sr);
  3443. reg = I915_READ(DSPFW3);
  3444. reg &= ~DSPFW_CURSOR_SR_MASK;
  3445. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  3446. I915_WRITE(DSPFW3, reg);
  3447. /* Display HPLL off SR */
  3448. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  3449. pineview_display_hplloff_wm.fifo_size,
  3450. pixel_size, latency->display_hpll_disable);
  3451. reg = I915_READ(DSPFW3);
  3452. reg &= ~DSPFW_HPLL_SR_MASK;
  3453. reg |= wm & DSPFW_HPLL_SR_MASK;
  3454. I915_WRITE(DSPFW3, reg);
  3455. /* cursor HPLL off SR */
  3456. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  3457. pineview_display_hplloff_wm.fifo_size,
  3458. pixel_size, latency->cursor_hpll_disable);
  3459. reg = I915_READ(DSPFW3);
  3460. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  3461. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  3462. I915_WRITE(DSPFW3, reg);
  3463. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  3464. /* activate cxsr */
  3465. I915_WRITE(DSPFW3,
  3466. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  3467. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  3468. } else {
  3469. pineview_disable_cxsr(dev);
  3470. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  3471. }
  3472. }
  3473. static bool g4x_compute_wm0(struct drm_device *dev,
  3474. int plane,
  3475. const struct intel_watermark_params *display,
  3476. int display_latency_ns,
  3477. const struct intel_watermark_params *cursor,
  3478. int cursor_latency_ns,
  3479. int *plane_wm,
  3480. int *cursor_wm)
  3481. {
  3482. struct drm_crtc *crtc;
  3483. int htotal, hdisplay, clock, pixel_size;
  3484. int line_time_us, line_count;
  3485. int entries, tlb_miss;
  3486. crtc = intel_get_crtc_for_plane(dev, plane);
  3487. if (crtc->fb == NULL || !crtc->enabled) {
  3488. *cursor_wm = cursor->guard_size;
  3489. *plane_wm = display->guard_size;
  3490. return false;
  3491. }
  3492. htotal = crtc->mode.htotal;
  3493. hdisplay = crtc->mode.hdisplay;
  3494. clock = crtc->mode.clock;
  3495. pixel_size = crtc->fb->bits_per_pixel / 8;
  3496. /* Use the small buffer method to calculate plane watermark */
  3497. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  3498. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  3499. if (tlb_miss > 0)
  3500. entries += tlb_miss;
  3501. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  3502. *plane_wm = entries + display->guard_size;
  3503. if (*plane_wm > (int)display->max_wm)
  3504. *plane_wm = display->max_wm;
  3505. /* Use the large buffer method to calculate cursor watermark */
  3506. line_time_us = ((htotal * 1000) / clock);
  3507. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  3508. entries = line_count * 64 * pixel_size;
  3509. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  3510. if (tlb_miss > 0)
  3511. entries += tlb_miss;
  3512. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3513. *cursor_wm = entries + cursor->guard_size;
  3514. if (*cursor_wm > (int)cursor->max_wm)
  3515. *cursor_wm = (int)cursor->max_wm;
  3516. return true;
  3517. }
  3518. /*
  3519. * Check the wm result.
  3520. *
  3521. * If any calculated watermark values is larger than the maximum value that
  3522. * can be programmed into the associated watermark register, that watermark
  3523. * must be disabled.
  3524. */
  3525. static bool g4x_check_srwm(struct drm_device *dev,
  3526. int display_wm, int cursor_wm,
  3527. const struct intel_watermark_params *display,
  3528. const struct intel_watermark_params *cursor)
  3529. {
  3530. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  3531. display_wm, cursor_wm);
  3532. if (display_wm > display->max_wm) {
  3533. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  3534. display_wm, display->max_wm);
  3535. return false;
  3536. }
  3537. if (cursor_wm > cursor->max_wm) {
  3538. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  3539. cursor_wm, cursor->max_wm);
  3540. return false;
  3541. }
  3542. if (!(display_wm || cursor_wm)) {
  3543. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  3544. return false;
  3545. }
  3546. return true;
  3547. }
  3548. static bool g4x_compute_srwm(struct drm_device *dev,
  3549. int plane,
  3550. int latency_ns,
  3551. const struct intel_watermark_params *display,
  3552. const struct intel_watermark_params *cursor,
  3553. int *display_wm, int *cursor_wm)
  3554. {
  3555. struct drm_crtc *crtc;
  3556. int hdisplay, htotal, pixel_size, clock;
  3557. unsigned long line_time_us;
  3558. int line_count, line_size;
  3559. int small, large;
  3560. int entries;
  3561. if (!latency_ns) {
  3562. *display_wm = *cursor_wm = 0;
  3563. return false;
  3564. }
  3565. crtc = intel_get_crtc_for_plane(dev, plane);
  3566. hdisplay = crtc->mode.hdisplay;
  3567. htotal = crtc->mode.htotal;
  3568. clock = crtc->mode.clock;
  3569. pixel_size = crtc->fb->bits_per_pixel / 8;
  3570. line_time_us = (htotal * 1000) / clock;
  3571. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3572. line_size = hdisplay * pixel_size;
  3573. /* Use the minimum of the small and large buffer method for primary */
  3574. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3575. large = line_count * line_size;
  3576. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3577. *display_wm = entries + display->guard_size;
  3578. /* calculate the self-refresh watermark for display cursor */
  3579. entries = line_count * pixel_size * 64;
  3580. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3581. *cursor_wm = entries + cursor->guard_size;
  3582. return g4x_check_srwm(dev,
  3583. *display_wm, *cursor_wm,
  3584. display, cursor);
  3585. }
  3586. #define single_plane_enabled(mask) is_power_of_2(mask)
  3587. static void g4x_update_wm(struct drm_device *dev)
  3588. {
  3589. static const int sr_latency_ns = 12000;
  3590. struct drm_i915_private *dev_priv = dev->dev_private;
  3591. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  3592. int plane_sr, cursor_sr;
  3593. unsigned int enabled = 0;
  3594. if (g4x_compute_wm0(dev, 0,
  3595. &g4x_wm_info, latency_ns,
  3596. &g4x_cursor_wm_info, latency_ns,
  3597. &planea_wm, &cursora_wm))
  3598. enabled |= 1;
  3599. if (g4x_compute_wm0(dev, 1,
  3600. &g4x_wm_info, latency_ns,
  3601. &g4x_cursor_wm_info, latency_ns,
  3602. &planeb_wm, &cursorb_wm))
  3603. enabled |= 2;
  3604. plane_sr = cursor_sr = 0;
  3605. if (single_plane_enabled(enabled) &&
  3606. g4x_compute_srwm(dev, ffs(enabled) - 1,
  3607. sr_latency_ns,
  3608. &g4x_wm_info,
  3609. &g4x_cursor_wm_info,
  3610. &plane_sr, &cursor_sr))
  3611. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3612. else
  3613. I915_WRITE(FW_BLC_SELF,
  3614. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  3615. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  3616. planea_wm, cursora_wm,
  3617. planeb_wm, cursorb_wm,
  3618. plane_sr, cursor_sr);
  3619. I915_WRITE(DSPFW1,
  3620. (plane_sr << DSPFW_SR_SHIFT) |
  3621. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  3622. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  3623. planea_wm);
  3624. I915_WRITE(DSPFW2,
  3625. (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  3626. (cursora_wm << DSPFW_CURSORA_SHIFT));
  3627. /* HPLL off in SR has some issues on G4x... disable it */
  3628. I915_WRITE(DSPFW3,
  3629. (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  3630. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3631. }
  3632. static void i965_update_wm(struct drm_device *dev)
  3633. {
  3634. struct drm_i915_private *dev_priv = dev->dev_private;
  3635. struct drm_crtc *crtc;
  3636. int srwm = 1;
  3637. int cursor_sr = 16;
  3638. /* Calc sr entries for one plane configs */
  3639. crtc = single_enabled_crtc(dev);
  3640. if (crtc) {
  3641. /* self-refresh has much higher latency */
  3642. static const int sr_latency_ns = 12000;
  3643. int clock = crtc->mode.clock;
  3644. int htotal = crtc->mode.htotal;
  3645. int hdisplay = crtc->mode.hdisplay;
  3646. int pixel_size = crtc->fb->bits_per_pixel / 8;
  3647. unsigned long line_time_us;
  3648. int entries;
  3649. line_time_us = ((htotal * 1000) / clock);
  3650. /* Use ns/us then divide to preserve precision */
  3651. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3652. pixel_size * hdisplay;
  3653. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  3654. srwm = I965_FIFO_SIZE - entries;
  3655. if (srwm < 0)
  3656. srwm = 1;
  3657. srwm &= 0x1ff;
  3658. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  3659. entries, srwm);
  3660. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3661. pixel_size * 64;
  3662. entries = DIV_ROUND_UP(entries,
  3663. i965_cursor_wm_info.cacheline_size);
  3664. cursor_sr = i965_cursor_wm_info.fifo_size -
  3665. (entries + i965_cursor_wm_info.guard_size);
  3666. if (cursor_sr > i965_cursor_wm_info.max_wm)
  3667. cursor_sr = i965_cursor_wm_info.max_wm;
  3668. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  3669. "cursor %d\n", srwm, cursor_sr);
  3670. if (IS_CRESTLINE(dev))
  3671. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  3672. } else {
  3673. /* Turn off self refresh if both pipes are enabled */
  3674. if (IS_CRESTLINE(dev))
  3675. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  3676. & ~FW_BLC_SELF_EN);
  3677. }
  3678. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  3679. srwm);
  3680. /* 965 has limitations... */
  3681. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  3682. (8 << 16) | (8 << 8) | (8 << 0));
  3683. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  3684. /* update cursor SR watermark */
  3685. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  3686. }
  3687. static void i9xx_update_wm(struct drm_device *dev)
  3688. {
  3689. struct drm_i915_private *dev_priv = dev->dev_private;
  3690. const struct intel_watermark_params *wm_info;
  3691. uint32_t fwater_lo;
  3692. uint32_t fwater_hi;
  3693. int cwm, srwm = 1;
  3694. int fifo_size;
  3695. int planea_wm, planeb_wm;
  3696. struct drm_crtc *crtc, *enabled = NULL;
  3697. if (IS_I945GM(dev))
  3698. wm_info = &i945_wm_info;
  3699. else if (!IS_GEN2(dev))
  3700. wm_info = &i915_wm_info;
  3701. else
  3702. wm_info = &i855_wm_info;
  3703. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  3704. crtc = intel_get_crtc_for_plane(dev, 0);
  3705. if (crtc->enabled && crtc->fb) {
  3706. planea_wm = intel_calculate_wm(crtc->mode.clock,
  3707. wm_info, fifo_size,
  3708. crtc->fb->bits_per_pixel / 8,
  3709. latency_ns);
  3710. enabled = crtc;
  3711. } else
  3712. planea_wm = fifo_size - wm_info->guard_size;
  3713. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  3714. crtc = intel_get_crtc_for_plane(dev, 1);
  3715. if (crtc->enabled && crtc->fb) {
  3716. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  3717. wm_info, fifo_size,
  3718. crtc->fb->bits_per_pixel / 8,
  3719. latency_ns);
  3720. if (enabled == NULL)
  3721. enabled = crtc;
  3722. else
  3723. enabled = NULL;
  3724. } else
  3725. planeb_wm = fifo_size - wm_info->guard_size;
  3726. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  3727. /*
  3728. * Overlay gets an aggressive default since video jitter is bad.
  3729. */
  3730. cwm = 2;
  3731. /* Play safe and disable self-refresh before adjusting watermarks. */
  3732. if (IS_I945G(dev) || IS_I945GM(dev))
  3733. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  3734. else if (IS_I915GM(dev))
  3735. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  3736. /* Calc sr entries for one plane configs */
  3737. if (HAS_FW_BLC(dev) && enabled) {
  3738. /* self-refresh has much higher latency */
  3739. static const int sr_latency_ns = 6000;
  3740. int clock = enabled->mode.clock;
  3741. int htotal = enabled->mode.htotal;
  3742. int hdisplay = enabled->mode.hdisplay;
  3743. int pixel_size = enabled->fb->bits_per_pixel / 8;
  3744. unsigned long line_time_us;
  3745. int entries;
  3746. line_time_us = (htotal * 1000) / clock;
  3747. /* Use ns/us then divide to preserve precision */
  3748. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  3749. pixel_size * hdisplay;
  3750. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  3751. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  3752. srwm = wm_info->fifo_size - entries;
  3753. if (srwm < 0)
  3754. srwm = 1;
  3755. if (IS_I945G(dev) || IS_I945GM(dev))
  3756. I915_WRITE(FW_BLC_SELF,
  3757. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  3758. else if (IS_I915GM(dev))
  3759. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  3760. }
  3761. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  3762. planea_wm, planeb_wm, cwm, srwm);
  3763. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  3764. fwater_hi = (cwm & 0x1f);
  3765. /* Set request length to 8 cachelines per fetch */
  3766. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  3767. fwater_hi = fwater_hi | (1 << 8);
  3768. I915_WRITE(FW_BLC, fwater_lo);
  3769. I915_WRITE(FW_BLC2, fwater_hi);
  3770. if (HAS_FW_BLC(dev)) {
  3771. if (enabled) {
  3772. if (IS_I945G(dev) || IS_I945GM(dev))
  3773. I915_WRITE(FW_BLC_SELF,
  3774. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  3775. else if (IS_I915GM(dev))
  3776. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  3777. DRM_DEBUG_KMS("memory self refresh enabled\n");
  3778. } else
  3779. DRM_DEBUG_KMS("memory self refresh disabled\n");
  3780. }
  3781. }
  3782. static void i830_update_wm(struct drm_device *dev)
  3783. {
  3784. struct drm_i915_private *dev_priv = dev->dev_private;
  3785. struct drm_crtc *crtc;
  3786. uint32_t fwater_lo;
  3787. int planea_wm;
  3788. crtc = single_enabled_crtc(dev);
  3789. if (crtc == NULL)
  3790. return;
  3791. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  3792. dev_priv->display.get_fifo_size(dev, 0),
  3793. crtc->fb->bits_per_pixel / 8,
  3794. latency_ns);
  3795. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  3796. fwater_lo |= (3<<8) | planea_wm;
  3797. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  3798. I915_WRITE(FW_BLC, fwater_lo);
  3799. }
  3800. #define ILK_LP0_PLANE_LATENCY 700
  3801. #define ILK_LP0_CURSOR_LATENCY 1300
  3802. /*
  3803. * Check the wm result.
  3804. *
  3805. * If any calculated watermark values is larger than the maximum value that
  3806. * can be programmed into the associated watermark register, that watermark
  3807. * must be disabled.
  3808. */
  3809. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  3810. int fbc_wm, int display_wm, int cursor_wm,
  3811. const struct intel_watermark_params *display,
  3812. const struct intel_watermark_params *cursor)
  3813. {
  3814. struct drm_i915_private *dev_priv = dev->dev_private;
  3815. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  3816. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  3817. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  3818. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  3819. fbc_wm, SNB_FBC_MAX_SRWM, level);
  3820. /* fbc has it's own way to disable FBC WM */
  3821. I915_WRITE(DISP_ARB_CTL,
  3822. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  3823. return false;
  3824. }
  3825. if (display_wm > display->max_wm) {
  3826. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  3827. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  3828. return false;
  3829. }
  3830. if (cursor_wm > cursor->max_wm) {
  3831. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  3832. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  3833. return false;
  3834. }
  3835. if (!(fbc_wm || display_wm || cursor_wm)) {
  3836. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  3837. return false;
  3838. }
  3839. return true;
  3840. }
  3841. /*
  3842. * Compute watermark values of WM[1-3],
  3843. */
  3844. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  3845. int latency_ns,
  3846. const struct intel_watermark_params *display,
  3847. const struct intel_watermark_params *cursor,
  3848. int *fbc_wm, int *display_wm, int *cursor_wm)
  3849. {
  3850. struct drm_crtc *crtc;
  3851. unsigned long line_time_us;
  3852. int hdisplay, htotal, pixel_size, clock;
  3853. int line_count, line_size;
  3854. int small, large;
  3855. int entries;
  3856. if (!latency_ns) {
  3857. *fbc_wm = *display_wm = *cursor_wm = 0;
  3858. return false;
  3859. }
  3860. crtc = intel_get_crtc_for_plane(dev, plane);
  3861. hdisplay = crtc->mode.hdisplay;
  3862. htotal = crtc->mode.htotal;
  3863. clock = crtc->mode.clock;
  3864. pixel_size = crtc->fb->bits_per_pixel / 8;
  3865. line_time_us = (htotal * 1000) / clock;
  3866. line_count = (latency_ns / line_time_us + 1000) / 1000;
  3867. line_size = hdisplay * pixel_size;
  3868. /* Use the minimum of the small and large buffer method for primary */
  3869. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  3870. large = line_count * line_size;
  3871. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  3872. *display_wm = entries + display->guard_size;
  3873. /*
  3874. * Spec says:
  3875. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  3876. */
  3877. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  3878. /* calculate the self-refresh watermark for display cursor */
  3879. entries = line_count * pixel_size * 64;
  3880. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  3881. *cursor_wm = entries + cursor->guard_size;
  3882. return ironlake_check_srwm(dev, level,
  3883. *fbc_wm, *display_wm, *cursor_wm,
  3884. display, cursor);
  3885. }
  3886. static void ironlake_update_wm(struct drm_device *dev)
  3887. {
  3888. struct drm_i915_private *dev_priv = dev->dev_private;
  3889. int fbc_wm, plane_wm, cursor_wm;
  3890. unsigned int enabled;
  3891. enabled = 0;
  3892. if (g4x_compute_wm0(dev, 0,
  3893. &ironlake_display_wm_info,
  3894. ILK_LP0_PLANE_LATENCY,
  3895. &ironlake_cursor_wm_info,
  3896. ILK_LP0_CURSOR_LATENCY,
  3897. &plane_wm, &cursor_wm)) {
  3898. I915_WRITE(WM0_PIPEA_ILK,
  3899. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3900. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3901. " plane %d, " "cursor: %d\n",
  3902. plane_wm, cursor_wm);
  3903. enabled |= 1;
  3904. }
  3905. if (g4x_compute_wm0(dev, 1,
  3906. &ironlake_display_wm_info,
  3907. ILK_LP0_PLANE_LATENCY,
  3908. &ironlake_cursor_wm_info,
  3909. ILK_LP0_CURSOR_LATENCY,
  3910. &plane_wm, &cursor_wm)) {
  3911. I915_WRITE(WM0_PIPEB_ILK,
  3912. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  3913. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3914. " plane %d, cursor: %d\n",
  3915. plane_wm, cursor_wm);
  3916. enabled |= 2;
  3917. }
  3918. /*
  3919. * Calculate and update the self-refresh watermark only when one
  3920. * display plane is used.
  3921. */
  3922. I915_WRITE(WM3_LP_ILK, 0);
  3923. I915_WRITE(WM2_LP_ILK, 0);
  3924. I915_WRITE(WM1_LP_ILK, 0);
  3925. if (!single_plane_enabled(enabled))
  3926. return;
  3927. enabled = ffs(enabled) - 1;
  3928. /* WM1 */
  3929. if (!ironlake_compute_srwm(dev, 1, enabled,
  3930. ILK_READ_WM1_LATENCY() * 500,
  3931. &ironlake_display_srwm_info,
  3932. &ironlake_cursor_srwm_info,
  3933. &fbc_wm, &plane_wm, &cursor_wm))
  3934. return;
  3935. I915_WRITE(WM1_LP_ILK,
  3936. WM1_LP_SR_EN |
  3937. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3938. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3939. (plane_wm << WM1_LP_SR_SHIFT) |
  3940. cursor_wm);
  3941. /* WM2 */
  3942. if (!ironlake_compute_srwm(dev, 2, enabled,
  3943. ILK_READ_WM2_LATENCY() * 500,
  3944. &ironlake_display_srwm_info,
  3945. &ironlake_cursor_srwm_info,
  3946. &fbc_wm, &plane_wm, &cursor_wm))
  3947. return;
  3948. I915_WRITE(WM2_LP_ILK,
  3949. WM2_LP_EN |
  3950. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  3951. (fbc_wm << WM1_LP_FBC_SHIFT) |
  3952. (plane_wm << WM1_LP_SR_SHIFT) |
  3953. cursor_wm);
  3954. /*
  3955. * WM3 is unsupported on ILK, probably because we don't have latency
  3956. * data for that power state
  3957. */
  3958. }
  3959. void sandybridge_update_wm(struct drm_device *dev)
  3960. {
  3961. struct drm_i915_private *dev_priv = dev->dev_private;
  3962. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  3963. u32 val;
  3964. int fbc_wm, plane_wm, cursor_wm;
  3965. unsigned int enabled;
  3966. enabled = 0;
  3967. if (g4x_compute_wm0(dev, 0,
  3968. &sandybridge_display_wm_info, latency,
  3969. &sandybridge_cursor_wm_info, latency,
  3970. &plane_wm, &cursor_wm)) {
  3971. val = I915_READ(WM0_PIPEA_ILK);
  3972. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3973. I915_WRITE(WM0_PIPEA_ILK, val |
  3974. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3975. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  3976. " plane %d, " "cursor: %d\n",
  3977. plane_wm, cursor_wm);
  3978. enabled |= 1;
  3979. }
  3980. if (g4x_compute_wm0(dev, 1,
  3981. &sandybridge_display_wm_info, latency,
  3982. &sandybridge_cursor_wm_info, latency,
  3983. &plane_wm, &cursor_wm)) {
  3984. val = I915_READ(WM0_PIPEB_ILK);
  3985. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  3986. I915_WRITE(WM0_PIPEB_ILK, val |
  3987. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  3988. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  3989. " plane %d, cursor: %d\n",
  3990. plane_wm, cursor_wm);
  3991. enabled |= 2;
  3992. }
  3993. /* IVB has 3 pipes */
  3994. if (IS_IVYBRIDGE(dev) &&
  3995. g4x_compute_wm0(dev, 2,
  3996. &sandybridge_display_wm_info, latency,
  3997. &sandybridge_cursor_wm_info, latency,
  3998. &plane_wm, &cursor_wm)) {
  3999. val = I915_READ(WM0_PIPEC_IVB);
  4000. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  4001. I915_WRITE(WM0_PIPEC_IVB, val |
  4002. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  4003. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  4004. " plane %d, cursor: %d\n",
  4005. plane_wm, cursor_wm);
  4006. enabled |= 3;
  4007. }
  4008. /*
  4009. * Calculate and update the self-refresh watermark only when one
  4010. * display plane is used.
  4011. *
  4012. * SNB support 3 levels of watermark.
  4013. *
  4014. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  4015. * and disabled in the descending order
  4016. *
  4017. */
  4018. I915_WRITE(WM3_LP_ILK, 0);
  4019. I915_WRITE(WM2_LP_ILK, 0);
  4020. I915_WRITE(WM1_LP_ILK, 0);
  4021. if (!single_plane_enabled(enabled) ||
  4022. dev_priv->sprite_scaling_enabled)
  4023. return;
  4024. enabled = ffs(enabled) - 1;
  4025. /* WM1 */
  4026. if (!ironlake_compute_srwm(dev, 1, enabled,
  4027. SNB_READ_WM1_LATENCY() * 500,
  4028. &sandybridge_display_srwm_info,
  4029. &sandybridge_cursor_srwm_info,
  4030. &fbc_wm, &plane_wm, &cursor_wm))
  4031. return;
  4032. I915_WRITE(WM1_LP_ILK,
  4033. WM1_LP_SR_EN |
  4034. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4035. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4036. (plane_wm << WM1_LP_SR_SHIFT) |
  4037. cursor_wm);
  4038. /* WM2 */
  4039. if (!ironlake_compute_srwm(dev, 2, enabled,
  4040. SNB_READ_WM2_LATENCY() * 500,
  4041. &sandybridge_display_srwm_info,
  4042. &sandybridge_cursor_srwm_info,
  4043. &fbc_wm, &plane_wm, &cursor_wm))
  4044. return;
  4045. I915_WRITE(WM2_LP_ILK,
  4046. WM2_LP_EN |
  4047. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4048. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4049. (plane_wm << WM1_LP_SR_SHIFT) |
  4050. cursor_wm);
  4051. /* WM3 */
  4052. if (!ironlake_compute_srwm(dev, 3, enabled,
  4053. SNB_READ_WM3_LATENCY() * 500,
  4054. &sandybridge_display_srwm_info,
  4055. &sandybridge_cursor_srwm_info,
  4056. &fbc_wm, &plane_wm, &cursor_wm))
  4057. return;
  4058. I915_WRITE(WM3_LP_ILK,
  4059. WM3_LP_EN |
  4060. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  4061. (fbc_wm << WM1_LP_FBC_SHIFT) |
  4062. (plane_wm << WM1_LP_SR_SHIFT) |
  4063. cursor_wm);
  4064. }
  4065. static bool
  4066. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  4067. uint32_t sprite_width, int pixel_size,
  4068. const struct intel_watermark_params *display,
  4069. int display_latency_ns, int *sprite_wm)
  4070. {
  4071. struct drm_crtc *crtc;
  4072. int clock;
  4073. int entries, tlb_miss;
  4074. crtc = intel_get_crtc_for_plane(dev, plane);
  4075. if (crtc->fb == NULL || !crtc->enabled) {
  4076. *sprite_wm = display->guard_size;
  4077. return false;
  4078. }
  4079. clock = crtc->mode.clock;
  4080. /* Use the small buffer method to calculate the sprite watermark */
  4081. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  4082. tlb_miss = display->fifo_size*display->cacheline_size -
  4083. sprite_width * 8;
  4084. if (tlb_miss > 0)
  4085. entries += tlb_miss;
  4086. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  4087. *sprite_wm = entries + display->guard_size;
  4088. if (*sprite_wm > (int)display->max_wm)
  4089. *sprite_wm = display->max_wm;
  4090. return true;
  4091. }
  4092. static bool
  4093. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  4094. uint32_t sprite_width, int pixel_size,
  4095. const struct intel_watermark_params *display,
  4096. int latency_ns, int *sprite_wm)
  4097. {
  4098. struct drm_crtc *crtc;
  4099. unsigned long line_time_us;
  4100. int clock;
  4101. int line_count, line_size;
  4102. int small, large;
  4103. int entries;
  4104. if (!latency_ns) {
  4105. *sprite_wm = 0;
  4106. return false;
  4107. }
  4108. crtc = intel_get_crtc_for_plane(dev, plane);
  4109. clock = crtc->mode.clock;
  4110. if (!clock) {
  4111. *sprite_wm = 0;
  4112. return false;
  4113. }
  4114. line_time_us = (sprite_width * 1000) / clock;
  4115. if (!line_time_us) {
  4116. *sprite_wm = 0;
  4117. return false;
  4118. }
  4119. line_count = (latency_ns / line_time_us + 1000) / 1000;
  4120. line_size = sprite_width * pixel_size;
  4121. /* Use the minimum of the small and large buffer method for primary */
  4122. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  4123. large = line_count * line_size;
  4124. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  4125. *sprite_wm = entries + display->guard_size;
  4126. return *sprite_wm > 0x3ff ? false : true;
  4127. }
  4128. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  4129. uint32_t sprite_width, int pixel_size)
  4130. {
  4131. struct drm_i915_private *dev_priv = dev->dev_private;
  4132. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  4133. u32 val;
  4134. int sprite_wm, reg;
  4135. int ret;
  4136. switch (pipe) {
  4137. case 0:
  4138. reg = WM0_PIPEA_ILK;
  4139. break;
  4140. case 1:
  4141. reg = WM0_PIPEB_ILK;
  4142. break;
  4143. case 2:
  4144. reg = WM0_PIPEC_IVB;
  4145. break;
  4146. default:
  4147. return; /* bad pipe */
  4148. }
  4149. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  4150. &sandybridge_display_wm_info,
  4151. latency, &sprite_wm);
  4152. if (!ret) {
  4153. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  4154. pipe);
  4155. return;
  4156. }
  4157. val = I915_READ(reg);
  4158. val &= ~WM0_PIPE_SPRITE_MASK;
  4159. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  4160. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  4161. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4162. pixel_size,
  4163. &sandybridge_display_srwm_info,
  4164. SNB_READ_WM1_LATENCY() * 500,
  4165. &sprite_wm);
  4166. if (!ret) {
  4167. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  4168. pipe);
  4169. return;
  4170. }
  4171. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  4172. /* Only IVB has two more LP watermarks for sprite */
  4173. if (!IS_IVYBRIDGE(dev))
  4174. return;
  4175. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4176. pixel_size,
  4177. &sandybridge_display_srwm_info,
  4178. SNB_READ_WM2_LATENCY() * 500,
  4179. &sprite_wm);
  4180. if (!ret) {
  4181. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  4182. pipe);
  4183. return;
  4184. }
  4185. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  4186. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  4187. pixel_size,
  4188. &sandybridge_display_srwm_info,
  4189. SNB_READ_WM3_LATENCY() * 500,
  4190. &sprite_wm);
  4191. if (!ret) {
  4192. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  4193. pipe);
  4194. return;
  4195. }
  4196. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  4197. }
  4198. /**
  4199. * intel_update_watermarks - update FIFO watermark values based on current modes
  4200. *
  4201. * Calculate watermark values for the various WM regs based on current mode
  4202. * and plane configuration.
  4203. *
  4204. * There are several cases to deal with here:
  4205. * - normal (i.e. non-self-refresh)
  4206. * - self-refresh (SR) mode
  4207. * - lines are large relative to FIFO size (buffer can hold up to 2)
  4208. * - lines are small relative to FIFO size (buffer can hold more than 2
  4209. * lines), so need to account for TLB latency
  4210. *
  4211. * The normal calculation is:
  4212. * watermark = dotclock * bytes per pixel * latency
  4213. * where latency is platform & configuration dependent (we assume pessimal
  4214. * values here).
  4215. *
  4216. * The SR calculation is:
  4217. * watermark = (trunc(latency/line time)+1) * surface width *
  4218. * bytes per pixel
  4219. * where
  4220. * line time = htotal / dotclock
  4221. * surface width = hdisplay for normal plane and 64 for cursor
  4222. * and latency is assumed to be high, as above.
  4223. *
  4224. * The final value programmed to the register should always be rounded up,
  4225. * and include an extra 2 entries to account for clock crossings.
  4226. *
  4227. * We don't use the sprite, so we can ignore that. And on Crestline we have
  4228. * to set the non-SR watermarks to 8.
  4229. */
  4230. static void intel_update_watermarks(struct drm_device *dev)
  4231. {
  4232. struct drm_i915_private *dev_priv = dev->dev_private;
  4233. if (dev_priv->display.update_wm)
  4234. dev_priv->display.update_wm(dev);
  4235. }
  4236. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  4237. uint32_t sprite_width, int pixel_size)
  4238. {
  4239. struct drm_i915_private *dev_priv = dev->dev_private;
  4240. if (dev_priv->display.update_sprite_wm)
  4241. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  4242. pixel_size);
  4243. }
  4244. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  4245. {
  4246. if (i915_panel_use_ssc >= 0)
  4247. return i915_panel_use_ssc != 0;
  4248. return dev_priv->lvds_use_ssc
  4249. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  4250. }
  4251. /**
  4252. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  4253. * @crtc: CRTC structure
  4254. * @mode: requested mode
  4255. *
  4256. * A pipe may be connected to one or more outputs. Based on the depth of the
  4257. * attached framebuffer, choose a good color depth to use on the pipe.
  4258. *
  4259. * If possible, match the pipe depth to the fb depth. In some cases, this
  4260. * isn't ideal, because the connected output supports a lesser or restricted
  4261. * set of depths. Resolve that here:
  4262. * LVDS typically supports only 6bpc, so clamp down in that case
  4263. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  4264. * Displays may support a restricted set as well, check EDID and clamp as
  4265. * appropriate.
  4266. * DP may want to dither down to 6bpc to fit larger modes
  4267. *
  4268. * RETURNS:
  4269. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  4270. * true if they don't match).
  4271. */
  4272. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  4273. unsigned int *pipe_bpp,
  4274. struct drm_display_mode *mode)
  4275. {
  4276. struct drm_device *dev = crtc->dev;
  4277. struct drm_i915_private *dev_priv = dev->dev_private;
  4278. struct drm_encoder *encoder;
  4279. struct drm_connector *connector;
  4280. unsigned int display_bpc = UINT_MAX, bpc;
  4281. /* Walk the encoders & connectors on this crtc, get min bpc */
  4282. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  4283. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  4284. if (encoder->crtc != crtc)
  4285. continue;
  4286. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  4287. unsigned int lvds_bpc;
  4288. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  4289. LVDS_A3_POWER_UP)
  4290. lvds_bpc = 8;
  4291. else
  4292. lvds_bpc = 6;
  4293. if (lvds_bpc < display_bpc) {
  4294. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  4295. display_bpc = lvds_bpc;
  4296. }
  4297. continue;
  4298. }
  4299. if (intel_encoder->type == INTEL_OUTPUT_EDP) {
  4300. /* Use VBT settings if we have an eDP panel */
  4301. unsigned int edp_bpc = dev_priv->edp.bpp / 3;
  4302. if (edp_bpc < display_bpc) {
  4303. DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
  4304. display_bpc = edp_bpc;
  4305. }
  4306. continue;
  4307. }
  4308. /* Not one of the known troublemakers, check the EDID */
  4309. list_for_each_entry(connector, &dev->mode_config.connector_list,
  4310. head) {
  4311. if (connector->encoder != encoder)
  4312. continue;
  4313. /* Don't use an invalid EDID bpc value */
  4314. if (connector->display_info.bpc &&
  4315. connector->display_info.bpc < display_bpc) {
  4316. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  4317. display_bpc = connector->display_info.bpc;
  4318. }
  4319. }
  4320. /*
  4321. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  4322. * through, clamp it down. (Note: >12bpc will be caught below.)
  4323. */
  4324. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  4325. if (display_bpc > 8 && display_bpc < 12) {
  4326. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  4327. display_bpc = 12;
  4328. } else {
  4329. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  4330. display_bpc = 8;
  4331. }
  4332. }
  4333. }
  4334. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4335. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  4336. display_bpc = 6;
  4337. }
  4338. /*
  4339. * We could just drive the pipe at the highest bpc all the time and
  4340. * enable dithering as needed, but that costs bandwidth. So choose
  4341. * the minimum value that expresses the full color range of the fb but
  4342. * also stays within the max display bpc discovered above.
  4343. */
  4344. switch (crtc->fb->depth) {
  4345. case 8:
  4346. bpc = 8; /* since we go through a colormap */
  4347. break;
  4348. case 15:
  4349. case 16:
  4350. bpc = 6; /* min is 18bpp */
  4351. break;
  4352. case 24:
  4353. bpc = 8;
  4354. break;
  4355. case 30:
  4356. bpc = 10;
  4357. break;
  4358. case 48:
  4359. bpc = 12;
  4360. break;
  4361. default:
  4362. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  4363. bpc = min((unsigned int)8, display_bpc);
  4364. break;
  4365. }
  4366. display_bpc = min(display_bpc, bpc);
  4367. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  4368. bpc, display_bpc);
  4369. *pipe_bpp = display_bpc * 3;
  4370. return display_bpc != bpc;
  4371. }
  4372. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  4373. {
  4374. struct drm_device *dev = crtc->dev;
  4375. struct drm_i915_private *dev_priv = dev->dev_private;
  4376. int refclk;
  4377. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4378. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4379. refclk = dev_priv->lvds_ssc_freq * 1000;
  4380. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4381. refclk / 1000);
  4382. } else if (!IS_GEN2(dev)) {
  4383. refclk = 96000;
  4384. } else {
  4385. refclk = 48000;
  4386. }
  4387. return refclk;
  4388. }
  4389. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  4390. intel_clock_t *clock)
  4391. {
  4392. /* SDVO TV has fixed PLL values depend on its clock range,
  4393. this mirrors vbios setting. */
  4394. if (adjusted_mode->clock >= 100000
  4395. && adjusted_mode->clock < 140500) {
  4396. clock->p1 = 2;
  4397. clock->p2 = 10;
  4398. clock->n = 3;
  4399. clock->m1 = 16;
  4400. clock->m2 = 8;
  4401. } else if (adjusted_mode->clock >= 140500
  4402. && adjusted_mode->clock <= 200000) {
  4403. clock->p1 = 1;
  4404. clock->p2 = 10;
  4405. clock->n = 6;
  4406. clock->m1 = 12;
  4407. clock->m2 = 8;
  4408. }
  4409. }
  4410. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  4411. intel_clock_t *clock,
  4412. intel_clock_t *reduced_clock)
  4413. {
  4414. struct drm_device *dev = crtc->dev;
  4415. struct drm_i915_private *dev_priv = dev->dev_private;
  4416. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4417. int pipe = intel_crtc->pipe;
  4418. u32 fp, fp2 = 0;
  4419. if (IS_PINEVIEW(dev)) {
  4420. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  4421. if (reduced_clock)
  4422. fp2 = (1 << reduced_clock->n) << 16 |
  4423. reduced_clock->m1 << 8 | reduced_clock->m2;
  4424. } else {
  4425. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  4426. if (reduced_clock)
  4427. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  4428. reduced_clock->m2;
  4429. }
  4430. I915_WRITE(FP0(pipe), fp);
  4431. intel_crtc->lowfreq_avail = false;
  4432. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  4433. reduced_clock && i915_powersave) {
  4434. I915_WRITE(FP1(pipe), fp2);
  4435. intel_crtc->lowfreq_avail = true;
  4436. } else {
  4437. I915_WRITE(FP1(pipe), fp);
  4438. }
  4439. }
  4440. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4441. struct drm_display_mode *mode,
  4442. struct drm_display_mode *adjusted_mode,
  4443. int x, int y,
  4444. struct drm_framebuffer *old_fb)
  4445. {
  4446. struct drm_device *dev = crtc->dev;
  4447. struct drm_i915_private *dev_priv = dev->dev_private;
  4448. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4449. int pipe = intel_crtc->pipe;
  4450. int plane = intel_crtc->plane;
  4451. int refclk, num_connectors = 0;
  4452. intel_clock_t clock, reduced_clock;
  4453. u32 dpll, dspcntr, pipeconf, vsyncshift;
  4454. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  4455. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4456. struct drm_mode_config *mode_config = &dev->mode_config;
  4457. struct intel_encoder *encoder;
  4458. const intel_limit_t *limit;
  4459. int ret;
  4460. u32 temp;
  4461. u32 lvds_sync = 0;
  4462. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4463. if (encoder->base.crtc != crtc)
  4464. continue;
  4465. switch (encoder->type) {
  4466. case INTEL_OUTPUT_LVDS:
  4467. is_lvds = true;
  4468. break;
  4469. case INTEL_OUTPUT_SDVO:
  4470. case INTEL_OUTPUT_HDMI:
  4471. is_sdvo = true;
  4472. if (encoder->needs_tv_clock)
  4473. is_tv = true;
  4474. break;
  4475. case INTEL_OUTPUT_DVO:
  4476. is_dvo = true;
  4477. break;
  4478. case INTEL_OUTPUT_TVOUT:
  4479. is_tv = true;
  4480. break;
  4481. case INTEL_OUTPUT_ANALOG:
  4482. is_crt = true;
  4483. break;
  4484. case INTEL_OUTPUT_DISPLAYPORT:
  4485. is_dp = true;
  4486. break;
  4487. }
  4488. num_connectors++;
  4489. }
  4490. refclk = i9xx_get_refclk(crtc, num_connectors);
  4491. /*
  4492. * Returns a set of divisors for the desired target clock with the given
  4493. * refclk, or FALSE. The returned values represent the clock equation:
  4494. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4495. */
  4496. limit = intel_limit(crtc, refclk);
  4497. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4498. &clock);
  4499. if (!ok) {
  4500. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4501. return -EINVAL;
  4502. }
  4503. /* Ensure that the cursor is valid for the new mode before changing... */
  4504. intel_crtc_update_cursor(crtc, true);
  4505. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4506. /*
  4507. * Ensure we match the reduced clock's P to the target clock.
  4508. * If the clocks don't match, we can't switch the display clock
  4509. * by using the FP0/FP1. In such case we will disable the LVDS
  4510. * downclock feature.
  4511. */
  4512. has_reduced_clock = limit->find_pll(limit, crtc,
  4513. dev_priv->lvds_downclock,
  4514. refclk,
  4515. &clock,
  4516. &reduced_clock);
  4517. }
  4518. if (is_sdvo && is_tv)
  4519. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4520. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  4521. &reduced_clock : NULL);
  4522. dpll = DPLL_VGA_MODE_DIS;
  4523. if (!IS_GEN2(dev)) {
  4524. if (is_lvds)
  4525. dpll |= DPLLB_MODE_LVDS;
  4526. else
  4527. dpll |= DPLLB_MODE_DAC_SERIAL;
  4528. if (is_sdvo) {
  4529. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4530. if (pixel_multiplier > 1) {
  4531. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4532. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  4533. }
  4534. dpll |= DPLL_DVO_HIGH_SPEED;
  4535. }
  4536. if (is_dp)
  4537. dpll |= DPLL_DVO_HIGH_SPEED;
  4538. /* compute bitmask from p1 value */
  4539. if (IS_PINEVIEW(dev))
  4540. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  4541. else {
  4542. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4543. if (IS_G4X(dev) && has_reduced_clock)
  4544. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4545. }
  4546. switch (clock.p2) {
  4547. case 5:
  4548. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4549. break;
  4550. case 7:
  4551. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4552. break;
  4553. case 10:
  4554. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4555. break;
  4556. case 14:
  4557. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4558. break;
  4559. }
  4560. if (INTEL_INFO(dev)->gen >= 4)
  4561. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  4562. } else {
  4563. if (is_lvds) {
  4564. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4565. } else {
  4566. if (clock.p1 == 2)
  4567. dpll |= PLL_P1_DIVIDE_BY_TWO;
  4568. else
  4569. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4570. if (clock.p2 == 4)
  4571. dpll |= PLL_P2_DIVIDE_BY_4;
  4572. }
  4573. }
  4574. if (is_sdvo && is_tv)
  4575. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4576. else if (is_tv)
  4577. /* XXX: just matching BIOS for now */
  4578. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4579. dpll |= 3;
  4580. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4581. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4582. else
  4583. dpll |= PLL_REF_INPUT_DREFCLK;
  4584. /* setup pipeconf */
  4585. pipeconf = I915_READ(PIPECONF(pipe));
  4586. /* Set up the display plane register */
  4587. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4588. if (pipe == 0)
  4589. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4590. else
  4591. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4592. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4593. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4594. * core speed.
  4595. *
  4596. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4597. * pipe == 0 check?
  4598. */
  4599. if (mode->clock >
  4600. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4601. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4602. else
  4603. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4604. }
  4605. /* default to 8bpc */
  4606. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4607. if (is_dp) {
  4608. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4609. pipeconf |= PIPECONF_BPP_6 |
  4610. PIPECONF_DITHER_EN |
  4611. PIPECONF_DITHER_TYPE_SP;
  4612. }
  4613. }
  4614. dpll |= DPLL_VCO_ENABLE;
  4615. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4616. drm_mode_debug_printmodeline(mode);
  4617. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  4618. POSTING_READ(DPLL(pipe));
  4619. udelay(150);
  4620. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4621. * This is an exception to the general rule that mode_set doesn't turn
  4622. * things on.
  4623. */
  4624. if (is_lvds) {
  4625. temp = I915_READ(LVDS);
  4626. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4627. if (pipe == 1) {
  4628. temp |= LVDS_PIPEB_SELECT;
  4629. } else {
  4630. temp &= ~LVDS_PIPEB_SELECT;
  4631. }
  4632. /* set the corresponsding LVDS_BORDER bit */
  4633. temp |= dev_priv->lvds_border_bits;
  4634. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4635. * set the DPLLs for dual-channel mode or not.
  4636. */
  4637. if (clock.p2 == 7)
  4638. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4639. else
  4640. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4641. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4642. * appropriately here, but we need to look more thoroughly into how
  4643. * panels behave in the two modes.
  4644. */
  4645. /* set the dithering flag on LVDS as needed */
  4646. if (INTEL_INFO(dev)->gen >= 4) {
  4647. if (dev_priv->lvds_dither)
  4648. temp |= LVDS_ENABLE_DITHER;
  4649. else
  4650. temp &= ~LVDS_ENABLE_DITHER;
  4651. }
  4652. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4653. lvds_sync |= LVDS_HSYNC_POLARITY;
  4654. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4655. lvds_sync |= LVDS_VSYNC_POLARITY;
  4656. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  4657. != lvds_sync) {
  4658. char flags[2] = "-+";
  4659. DRM_INFO("Changing LVDS panel from "
  4660. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  4661. flags[!(temp & LVDS_HSYNC_POLARITY)],
  4662. flags[!(temp & LVDS_VSYNC_POLARITY)],
  4663. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  4664. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  4665. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4666. temp |= lvds_sync;
  4667. }
  4668. I915_WRITE(LVDS, temp);
  4669. }
  4670. if (is_dp) {
  4671. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4672. }
  4673. I915_WRITE(DPLL(pipe), dpll);
  4674. /* Wait for the clocks to stabilize. */
  4675. POSTING_READ(DPLL(pipe));
  4676. udelay(150);
  4677. if (INTEL_INFO(dev)->gen >= 4) {
  4678. temp = 0;
  4679. if (is_sdvo) {
  4680. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  4681. if (temp > 1)
  4682. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  4683. else
  4684. temp = 0;
  4685. }
  4686. I915_WRITE(DPLL_MD(pipe), temp);
  4687. } else {
  4688. /* The pixel multiplier can only be updated once the
  4689. * DPLL is enabled and the clocks are stable.
  4690. *
  4691. * So write it again.
  4692. */
  4693. I915_WRITE(DPLL(pipe), dpll);
  4694. }
  4695. if (HAS_PIPE_CXSR(dev)) {
  4696. if (intel_crtc->lowfreq_avail) {
  4697. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4698. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4699. } else {
  4700. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4701. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4702. }
  4703. }
  4704. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4705. if (!IS_GEN2(dev) &&
  4706. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4707. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4708. /* the chip adds 2 halflines automatically */
  4709. adjusted_mode->crtc_vtotal -= 1;
  4710. adjusted_mode->crtc_vblank_end -= 1;
  4711. vsyncshift = adjusted_mode->crtc_hsync_start
  4712. - adjusted_mode->crtc_htotal/2;
  4713. } else {
  4714. pipeconf |= PIPECONF_PROGRESSIVE;
  4715. vsyncshift = 0;
  4716. }
  4717. if (!IS_GEN3(dev))
  4718. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  4719. I915_WRITE(HTOTAL(pipe),
  4720. (adjusted_mode->crtc_hdisplay - 1) |
  4721. ((adjusted_mode->crtc_htotal - 1) << 16));
  4722. I915_WRITE(HBLANK(pipe),
  4723. (adjusted_mode->crtc_hblank_start - 1) |
  4724. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4725. I915_WRITE(HSYNC(pipe),
  4726. (adjusted_mode->crtc_hsync_start - 1) |
  4727. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4728. I915_WRITE(VTOTAL(pipe),
  4729. (adjusted_mode->crtc_vdisplay - 1) |
  4730. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4731. I915_WRITE(VBLANK(pipe),
  4732. (adjusted_mode->crtc_vblank_start - 1) |
  4733. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4734. I915_WRITE(VSYNC(pipe),
  4735. (adjusted_mode->crtc_vsync_start - 1) |
  4736. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4737. /* pipesrc and dspsize control the size that is scaled from,
  4738. * which should always be the user's requested size.
  4739. */
  4740. I915_WRITE(DSPSIZE(plane),
  4741. ((mode->vdisplay - 1) << 16) |
  4742. (mode->hdisplay - 1));
  4743. I915_WRITE(DSPPOS(plane), 0);
  4744. I915_WRITE(PIPESRC(pipe),
  4745. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4746. I915_WRITE(PIPECONF(pipe), pipeconf);
  4747. POSTING_READ(PIPECONF(pipe));
  4748. intel_enable_pipe(dev_priv, pipe, false);
  4749. intel_wait_for_vblank(dev, pipe);
  4750. I915_WRITE(DSPCNTR(plane), dspcntr);
  4751. POSTING_READ(DSPCNTR(plane));
  4752. intel_enable_plane(dev_priv, plane, pipe);
  4753. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4754. intel_update_watermarks(dev);
  4755. return ret;
  4756. }
  4757. /*
  4758. * Initialize reference clocks when the driver loads
  4759. */
  4760. void ironlake_init_pch_refclk(struct drm_device *dev)
  4761. {
  4762. struct drm_i915_private *dev_priv = dev->dev_private;
  4763. struct drm_mode_config *mode_config = &dev->mode_config;
  4764. struct intel_encoder *encoder;
  4765. u32 temp;
  4766. bool has_lvds = false;
  4767. bool has_cpu_edp = false;
  4768. bool has_pch_edp = false;
  4769. bool has_panel = false;
  4770. bool has_ck505 = false;
  4771. bool can_ssc = false;
  4772. /* We need to take the global config into account */
  4773. list_for_each_entry(encoder, &mode_config->encoder_list,
  4774. base.head) {
  4775. switch (encoder->type) {
  4776. case INTEL_OUTPUT_LVDS:
  4777. has_panel = true;
  4778. has_lvds = true;
  4779. break;
  4780. case INTEL_OUTPUT_EDP:
  4781. has_panel = true;
  4782. if (intel_encoder_is_pch_edp(&encoder->base))
  4783. has_pch_edp = true;
  4784. else
  4785. has_cpu_edp = true;
  4786. break;
  4787. }
  4788. }
  4789. if (HAS_PCH_IBX(dev)) {
  4790. has_ck505 = dev_priv->display_clock_mode;
  4791. can_ssc = has_ck505;
  4792. } else {
  4793. has_ck505 = false;
  4794. can_ssc = true;
  4795. }
  4796. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4797. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4798. has_ck505);
  4799. /* Ironlake: try to setup display ref clock before DPLL
  4800. * enabling. This is only under driver's control after
  4801. * PCH B stepping, previous chipset stepping should be
  4802. * ignoring this setting.
  4803. */
  4804. temp = I915_READ(PCH_DREF_CONTROL);
  4805. /* Always enable nonspread source */
  4806. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4807. if (has_ck505)
  4808. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4809. else
  4810. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4811. if (has_panel) {
  4812. temp &= ~DREF_SSC_SOURCE_MASK;
  4813. temp |= DREF_SSC_SOURCE_ENABLE;
  4814. /* SSC must be turned on before enabling the CPU output */
  4815. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4816. DRM_DEBUG_KMS("Using SSC on panel\n");
  4817. temp |= DREF_SSC1_ENABLE;
  4818. } else
  4819. temp &= ~DREF_SSC1_ENABLE;
  4820. /* Get SSC going before enabling the outputs */
  4821. I915_WRITE(PCH_DREF_CONTROL, temp);
  4822. POSTING_READ(PCH_DREF_CONTROL);
  4823. udelay(200);
  4824. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4825. /* Enable CPU source on CPU attached eDP */
  4826. if (has_cpu_edp) {
  4827. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4828. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4829. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4830. }
  4831. else
  4832. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4833. } else
  4834. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4835. I915_WRITE(PCH_DREF_CONTROL, temp);
  4836. POSTING_READ(PCH_DREF_CONTROL);
  4837. udelay(200);
  4838. } else {
  4839. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4840. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4841. /* Turn off CPU output */
  4842. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4843. I915_WRITE(PCH_DREF_CONTROL, temp);
  4844. POSTING_READ(PCH_DREF_CONTROL);
  4845. udelay(200);
  4846. /* Turn off the SSC source */
  4847. temp &= ~DREF_SSC_SOURCE_MASK;
  4848. temp |= DREF_SSC_SOURCE_DISABLE;
  4849. /* Turn off SSC1 */
  4850. temp &= ~ DREF_SSC1_ENABLE;
  4851. I915_WRITE(PCH_DREF_CONTROL, temp);
  4852. POSTING_READ(PCH_DREF_CONTROL);
  4853. udelay(200);
  4854. }
  4855. }
  4856. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4857. {
  4858. struct drm_device *dev = crtc->dev;
  4859. struct drm_i915_private *dev_priv = dev->dev_private;
  4860. struct intel_encoder *encoder;
  4861. struct drm_mode_config *mode_config = &dev->mode_config;
  4862. struct intel_encoder *edp_encoder = NULL;
  4863. int num_connectors = 0;
  4864. bool is_lvds = false;
  4865. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4866. if (encoder->base.crtc != crtc)
  4867. continue;
  4868. switch (encoder->type) {
  4869. case INTEL_OUTPUT_LVDS:
  4870. is_lvds = true;
  4871. break;
  4872. case INTEL_OUTPUT_EDP:
  4873. edp_encoder = encoder;
  4874. break;
  4875. }
  4876. num_connectors++;
  4877. }
  4878. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4879. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4880. dev_priv->lvds_ssc_freq);
  4881. return dev_priv->lvds_ssc_freq * 1000;
  4882. }
  4883. return 120000;
  4884. }
  4885. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4886. struct drm_display_mode *mode,
  4887. struct drm_display_mode *adjusted_mode,
  4888. int x, int y,
  4889. struct drm_framebuffer *old_fb)
  4890. {
  4891. struct drm_device *dev = crtc->dev;
  4892. struct drm_i915_private *dev_priv = dev->dev_private;
  4893. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4894. int pipe = intel_crtc->pipe;
  4895. int plane = intel_crtc->plane;
  4896. int refclk, num_connectors = 0;
  4897. intel_clock_t clock, reduced_clock;
  4898. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  4899. bool ok, has_reduced_clock = false, is_sdvo = false;
  4900. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  4901. struct intel_encoder *has_edp_encoder = NULL;
  4902. struct drm_mode_config *mode_config = &dev->mode_config;
  4903. struct intel_encoder *encoder;
  4904. const intel_limit_t *limit;
  4905. int ret;
  4906. struct fdi_m_n m_n = {0};
  4907. u32 temp;
  4908. u32 lvds_sync = 0;
  4909. int target_clock, pixel_multiplier, lane, link_bw, factor;
  4910. unsigned int pipe_bpp;
  4911. bool dither;
  4912. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4913. if (encoder->base.crtc != crtc)
  4914. continue;
  4915. switch (encoder->type) {
  4916. case INTEL_OUTPUT_LVDS:
  4917. is_lvds = true;
  4918. break;
  4919. case INTEL_OUTPUT_SDVO:
  4920. case INTEL_OUTPUT_HDMI:
  4921. is_sdvo = true;
  4922. if (encoder->needs_tv_clock)
  4923. is_tv = true;
  4924. break;
  4925. case INTEL_OUTPUT_TVOUT:
  4926. is_tv = true;
  4927. break;
  4928. case INTEL_OUTPUT_ANALOG:
  4929. is_crt = true;
  4930. break;
  4931. case INTEL_OUTPUT_DISPLAYPORT:
  4932. is_dp = true;
  4933. break;
  4934. case INTEL_OUTPUT_EDP:
  4935. has_edp_encoder = encoder;
  4936. break;
  4937. }
  4938. num_connectors++;
  4939. }
  4940. refclk = ironlake_get_refclk(crtc);
  4941. /*
  4942. * Returns a set of divisors for the desired target clock with the given
  4943. * refclk, or FALSE. The returned values represent the clock equation:
  4944. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4945. */
  4946. limit = intel_limit(crtc, refclk);
  4947. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4948. &clock);
  4949. if (!ok) {
  4950. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4951. return -EINVAL;
  4952. }
  4953. /* Ensure that the cursor is valid for the new mode before changing... */
  4954. intel_crtc_update_cursor(crtc, true);
  4955. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4956. /*
  4957. * Ensure we match the reduced clock's P to the target clock.
  4958. * If the clocks don't match, we can't switch the display clock
  4959. * by using the FP0/FP1. In such case we will disable the LVDS
  4960. * downclock feature.
  4961. */
  4962. has_reduced_clock = limit->find_pll(limit, crtc,
  4963. dev_priv->lvds_downclock,
  4964. refclk,
  4965. &clock,
  4966. &reduced_clock);
  4967. }
  4968. /* SDVO TV has fixed PLL values depend on its clock range,
  4969. this mirrors vbios setting. */
  4970. if (is_sdvo && is_tv) {
  4971. if (adjusted_mode->clock >= 100000
  4972. && adjusted_mode->clock < 140500) {
  4973. clock.p1 = 2;
  4974. clock.p2 = 10;
  4975. clock.n = 3;
  4976. clock.m1 = 16;
  4977. clock.m2 = 8;
  4978. } else if (adjusted_mode->clock >= 140500
  4979. && adjusted_mode->clock <= 200000) {
  4980. clock.p1 = 1;
  4981. clock.p2 = 10;
  4982. clock.n = 6;
  4983. clock.m1 = 12;
  4984. clock.m2 = 8;
  4985. }
  4986. }
  4987. /* FDI link */
  4988. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4989. lane = 0;
  4990. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4991. according to current link config */
  4992. if (has_edp_encoder &&
  4993. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  4994. target_clock = mode->clock;
  4995. intel_edp_link_config(has_edp_encoder,
  4996. &lane, &link_bw);
  4997. } else {
  4998. /* [e]DP over FDI requires target mode clock
  4999. instead of link clock */
  5000. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  5001. target_clock = mode->clock;
  5002. else
  5003. target_clock = adjusted_mode->clock;
  5004. /* FDI is a binary signal running at ~2.7GHz, encoding
  5005. * each output octet as 10 bits. The actual frequency
  5006. * is stored as a divider into a 100MHz clock, and the
  5007. * mode pixel clock is stored in units of 1KHz.
  5008. * Hence the bw of each lane in terms of the mode signal
  5009. * is:
  5010. */
  5011. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  5012. }
  5013. /* determine panel color depth */
  5014. temp = I915_READ(PIPECONF(pipe));
  5015. temp &= ~PIPE_BPC_MASK;
  5016. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  5017. switch (pipe_bpp) {
  5018. case 18:
  5019. temp |= PIPE_6BPC;
  5020. break;
  5021. case 24:
  5022. temp |= PIPE_8BPC;
  5023. break;
  5024. case 30:
  5025. temp |= PIPE_10BPC;
  5026. break;
  5027. case 36:
  5028. temp |= PIPE_12BPC;
  5029. break;
  5030. default:
  5031. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  5032. pipe_bpp);
  5033. temp |= PIPE_8BPC;
  5034. pipe_bpp = 24;
  5035. break;
  5036. }
  5037. intel_crtc->bpp = pipe_bpp;
  5038. I915_WRITE(PIPECONF(pipe), temp);
  5039. if (!lane) {
  5040. /*
  5041. * Account for spread spectrum to avoid
  5042. * oversubscribing the link. Max center spread
  5043. * is 2.5%; use 5% for safety's sake.
  5044. */
  5045. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  5046. lane = bps / (link_bw * 8) + 1;
  5047. }
  5048. intel_crtc->fdi_lanes = lane;
  5049. if (pixel_multiplier > 1)
  5050. link_bw *= pixel_multiplier;
  5051. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  5052. &m_n);
  5053. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  5054. if (has_reduced_clock)
  5055. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  5056. reduced_clock.m2;
  5057. /* Enable autotuning of the PLL clock (if permissible) */
  5058. factor = 21;
  5059. if (is_lvds) {
  5060. if ((intel_panel_use_ssc(dev_priv) &&
  5061. dev_priv->lvds_ssc_freq == 100) ||
  5062. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  5063. factor = 25;
  5064. } else if (is_sdvo && is_tv)
  5065. factor = 20;
  5066. if (clock.m < factor * clock.n)
  5067. fp |= FP_CB_TUNE;
  5068. dpll = 0;
  5069. if (is_lvds)
  5070. dpll |= DPLLB_MODE_LVDS;
  5071. else
  5072. dpll |= DPLLB_MODE_DAC_SERIAL;
  5073. if (is_sdvo) {
  5074. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  5075. if (pixel_multiplier > 1) {
  5076. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  5077. }
  5078. dpll |= DPLL_DVO_HIGH_SPEED;
  5079. }
  5080. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
  5081. dpll |= DPLL_DVO_HIGH_SPEED;
  5082. /* compute bitmask from p1 value */
  5083. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  5084. /* also FPA1 */
  5085. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  5086. switch (clock.p2) {
  5087. case 5:
  5088. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  5089. break;
  5090. case 7:
  5091. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  5092. break;
  5093. case 10:
  5094. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  5095. break;
  5096. case 14:
  5097. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  5098. break;
  5099. }
  5100. if (is_sdvo && is_tv)
  5101. dpll |= PLL_REF_INPUT_TVCLKINBC;
  5102. else if (is_tv)
  5103. /* XXX: just matching BIOS for now */
  5104. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  5105. dpll |= 3;
  5106. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  5107. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  5108. else
  5109. dpll |= PLL_REF_INPUT_DREFCLK;
  5110. /* setup pipeconf */
  5111. pipeconf = I915_READ(PIPECONF(pipe));
  5112. /* Set up the display plane register */
  5113. dspcntr = DISPPLANE_GAMMA_ENABLE;
  5114. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  5115. drm_mode_debug_printmodeline(mode);
  5116. /* PCH eDP needs FDI, but CPU eDP does not */
  5117. if (!intel_crtc->no_pll) {
  5118. if (!has_edp_encoder ||
  5119. intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5120. I915_WRITE(PCH_FP0(pipe), fp);
  5121. I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  5122. POSTING_READ(PCH_DPLL(pipe));
  5123. udelay(150);
  5124. }
  5125. } else {
  5126. if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
  5127. fp == I915_READ(PCH_FP0(0))) {
  5128. intel_crtc->use_pll_a = true;
  5129. DRM_DEBUG_KMS("using pipe a dpll\n");
  5130. } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
  5131. fp == I915_READ(PCH_FP0(1))) {
  5132. intel_crtc->use_pll_a = false;
  5133. DRM_DEBUG_KMS("using pipe b dpll\n");
  5134. } else {
  5135. DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
  5136. return -EINVAL;
  5137. }
  5138. }
  5139. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  5140. * This is an exception to the general rule that mode_set doesn't turn
  5141. * things on.
  5142. */
  5143. if (is_lvds) {
  5144. temp = I915_READ(PCH_LVDS);
  5145. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  5146. if (HAS_PCH_CPT(dev)) {
  5147. temp &= ~PORT_TRANS_SEL_MASK;
  5148. temp |= PORT_TRANS_SEL_CPT(pipe);
  5149. } else {
  5150. if (pipe == 1)
  5151. temp |= LVDS_PIPEB_SELECT;
  5152. else
  5153. temp &= ~LVDS_PIPEB_SELECT;
  5154. }
  5155. /* set the corresponsding LVDS_BORDER bit */
  5156. temp |= dev_priv->lvds_border_bits;
  5157. /* Set the B0-B3 data pairs corresponding to whether we're going to
  5158. * set the DPLLs for dual-channel mode or not.
  5159. */
  5160. if (clock.p2 == 7)
  5161. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  5162. else
  5163. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  5164. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  5165. * appropriately here, but we need to look more thoroughly into how
  5166. * panels behave in the two modes.
  5167. */
  5168. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  5169. lvds_sync |= LVDS_HSYNC_POLARITY;
  5170. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  5171. lvds_sync |= LVDS_VSYNC_POLARITY;
  5172. if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
  5173. != lvds_sync) {
  5174. char flags[2] = "-+";
  5175. DRM_INFO("Changing LVDS panel from "
  5176. "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
  5177. flags[!(temp & LVDS_HSYNC_POLARITY)],
  5178. flags[!(temp & LVDS_VSYNC_POLARITY)],
  5179. flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
  5180. flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
  5181. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  5182. temp |= lvds_sync;
  5183. }
  5184. I915_WRITE(PCH_LVDS, temp);
  5185. }
  5186. pipeconf &= ~PIPECONF_DITHER_EN;
  5187. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  5188. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  5189. pipeconf |= PIPECONF_DITHER_EN;
  5190. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  5191. }
  5192. if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5193. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  5194. } else {
  5195. /* For non-DP output, clear any trans DP clock recovery setting.*/
  5196. I915_WRITE(TRANSDATA_M1(pipe), 0);
  5197. I915_WRITE(TRANSDATA_N1(pipe), 0);
  5198. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  5199. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  5200. }
  5201. if (!intel_crtc->no_pll &&
  5202. (!has_edp_encoder ||
  5203. intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
  5204. I915_WRITE(PCH_DPLL(pipe), dpll);
  5205. /* Wait for the clocks to stabilize. */
  5206. POSTING_READ(PCH_DPLL(pipe));
  5207. udelay(150);
  5208. /* The pixel multiplier can only be updated once the
  5209. * DPLL is enabled and the clocks are stable.
  5210. *
  5211. * So write it again.
  5212. */
  5213. I915_WRITE(PCH_DPLL(pipe), dpll);
  5214. }
  5215. intel_crtc->lowfreq_avail = false;
  5216. if (!intel_crtc->no_pll) {
  5217. if (is_lvds && has_reduced_clock && i915_powersave) {
  5218. I915_WRITE(PCH_FP1(pipe), fp2);
  5219. intel_crtc->lowfreq_avail = true;
  5220. if (HAS_PIPE_CXSR(dev)) {
  5221. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  5222. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  5223. }
  5224. } else {
  5225. I915_WRITE(PCH_FP1(pipe), fp);
  5226. if (HAS_PIPE_CXSR(dev)) {
  5227. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  5228. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  5229. }
  5230. }
  5231. }
  5232. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  5233. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  5234. pipeconf |= PIPECONF_INTERLACED_ILK;
  5235. /* the chip adds 2 halflines automatically */
  5236. adjusted_mode->crtc_vtotal -= 1;
  5237. adjusted_mode->crtc_vblank_end -= 1;
  5238. I915_WRITE(VSYNCSHIFT(pipe),
  5239. adjusted_mode->crtc_hsync_start
  5240. - adjusted_mode->crtc_htotal/2);
  5241. } else {
  5242. pipeconf |= PIPECONF_PROGRESSIVE;
  5243. I915_WRITE(VSYNCSHIFT(pipe), 0);
  5244. }
  5245. I915_WRITE(HTOTAL(pipe),
  5246. (adjusted_mode->crtc_hdisplay - 1) |
  5247. ((adjusted_mode->crtc_htotal - 1) << 16));
  5248. I915_WRITE(HBLANK(pipe),
  5249. (adjusted_mode->crtc_hblank_start - 1) |
  5250. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  5251. I915_WRITE(HSYNC(pipe),
  5252. (adjusted_mode->crtc_hsync_start - 1) |
  5253. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  5254. I915_WRITE(VTOTAL(pipe),
  5255. (adjusted_mode->crtc_vdisplay - 1) |
  5256. ((adjusted_mode->crtc_vtotal - 1) << 16));
  5257. I915_WRITE(VBLANK(pipe),
  5258. (adjusted_mode->crtc_vblank_start - 1) |
  5259. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  5260. I915_WRITE(VSYNC(pipe),
  5261. (adjusted_mode->crtc_vsync_start - 1) |
  5262. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  5263. /* pipesrc controls the size that is scaled from, which should
  5264. * always be the user's requested size.
  5265. */
  5266. I915_WRITE(PIPESRC(pipe),
  5267. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  5268. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  5269. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  5270. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  5271. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  5272. if (has_edp_encoder &&
  5273. !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
  5274. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  5275. }
  5276. I915_WRITE(PIPECONF(pipe), pipeconf);
  5277. POSTING_READ(PIPECONF(pipe));
  5278. intel_wait_for_vblank(dev, pipe);
  5279. I915_WRITE(DSPCNTR(plane), dspcntr);
  5280. POSTING_READ(DSPCNTR(plane));
  5281. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  5282. intel_update_watermarks(dev);
  5283. return ret;
  5284. }
  5285. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5286. struct drm_display_mode *mode,
  5287. struct drm_display_mode *adjusted_mode,
  5288. int x, int y,
  5289. struct drm_framebuffer *old_fb)
  5290. {
  5291. struct drm_device *dev = crtc->dev;
  5292. struct drm_i915_private *dev_priv = dev->dev_private;
  5293. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5294. int pipe = intel_crtc->pipe;
  5295. int ret;
  5296. drm_vblank_pre_modeset(dev, pipe);
  5297. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  5298. x, y, old_fb);
  5299. drm_vblank_post_modeset(dev, pipe);
  5300. if (ret)
  5301. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  5302. else
  5303. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  5304. return ret;
  5305. }
  5306. static bool intel_eld_uptodate(struct drm_connector *connector,
  5307. int reg_eldv, uint32_t bits_eldv,
  5308. int reg_elda, uint32_t bits_elda,
  5309. int reg_edid)
  5310. {
  5311. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5312. uint8_t *eld = connector->eld;
  5313. uint32_t i;
  5314. i = I915_READ(reg_eldv);
  5315. i &= bits_eldv;
  5316. if (!eld[0])
  5317. return !i;
  5318. if (!i)
  5319. return false;
  5320. i = I915_READ(reg_elda);
  5321. i &= ~bits_elda;
  5322. I915_WRITE(reg_elda, i);
  5323. for (i = 0; i < eld[2]; i++)
  5324. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5325. return false;
  5326. return true;
  5327. }
  5328. static void g4x_write_eld(struct drm_connector *connector,
  5329. struct drm_crtc *crtc)
  5330. {
  5331. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5332. uint8_t *eld = connector->eld;
  5333. uint32_t eldv;
  5334. uint32_t len;
  5335. uint32_t i;
  5336. i = I915_READ(G4X_AUD_VID_DID);
  5337. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5338. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5339. else
  5340. eldv = G4X_ELDV_DEVCTG;
  5341. if (intel_eld_uptodate(connector,
  5342. G4X_AUD_CNTL_ST, eldv,
  5343. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5344. G4X_HDMIW_HDMIEDID))
  5345. return;
  5346. i = I915_READ(G4X_AUD_CNTL_ST);
  5347. i &= ~(eldv | G4X_ELD_ADDR);
  5348. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5349. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5350. if (!eld[0])
  5351. return;
  5352. len = min_t(uint8_t, eld[2], len);
  5353. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5354. for (i = 0; i < len; i++)
  5355. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5356. i = I915_READ(G4X_AUD_CNTL_ST);
  5357. i |= eldv;
  5358. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5359. }
  5360. static void ironlake_write_eld(struct drm_connector *connector,
  5361. struct drm_crtc *crtc)
  5362. {
  5363. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5364. uint8_t *eld = connector->eld;
  5365. uint32_t eldv;
  5366. uint32_t i;
  5367. int len;
  5368. int hdmiw_hdmiedid;
  5369. int aud_config;
  5370. int aud_cntl_st;
  5371. int aud_cntrl_st2;
  5372. if (HAS_PCH_IBX(connector->dev)) {
  5373. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
  5374. aud_config = IBX_AUD_CONFIG_A;
  5375. aud_cntl_st = IBX_AUD_CNTL_ST_A;
  5376. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5377. } else {
  5378. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
  5379. aud_config = CPT_AUD_CONFIG_A;
  5380. aud_cntl_st = CPT_AUD_CNTL_ST_A;
  5381. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5382. }
  5383. i = to_intel_crtc(crtc)->pipe;
  5384. hdmiw_hdmiedid += i * 0x100;
  5385. aud_cntl_st += i * 0x100;
  5386. aud_config += i * 0x100;
  5387. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
  5388. i = I915_READ(aud_cntl_st);
  5389. i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
  5390. if (!i) {
  5391. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5392. /* operate blindly on all ports */
  5393. eldv = IBX_ELD_VALIDB;
  5394. eldv |= IBX_ELD_VALIDB << 4;
  5395. eldv |= IBX_ELD_VALIDB << 8;
  5396. } else {
  5397. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5398. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5399. }
  5400. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5401. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5402. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5403. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5404. } else
  5405. I915_WRITE(aud_config, 0);
  5406. if (intel_eld_uptodate(connector,
  5407. aud_cntrl_st2, eldv,
  5408. aud_cntl_st, IBX_ELD_ADDRESS,
  5409. hdmiw_hdmiedid))
  5410. return;
  5411. i = I915_READ(aud_cntrl_st2);
  5412. i &= ~eldv;
  5413. I915_WRITE(aud_cntrl_st2, i);
  5414. if (!eld[0])
  5415. return;
  5416. i = I915_READ(aud_cntl_st);
  5417. i &= ~IBX_ELD_ADDRESS;
  5418. I915_WRITE(aud_cntl_st, i);
  5419. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5420. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5421. for (i = 0; i < len; i++)
  5422. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5423. i = I915_READ(aud_cntrl_st2);
  5424. i |= eldv;
  5425. I915_WRITE(aud_cntrl_st2, i);
  5426. }
  5427. void intel_write_eld(struct drm_encoder *encoder,
  5428. struct drm_display_mode *mode)
  5429. {
  5430. struct drm_crtc *crtc = encoder->crtc;
  5431. struct drm_connector *connector;
  5432. struct drm_device *dev = encoder->dev;
  5433. struct drm_i915_private *dev_priv = dev->dev_private;
  5434. connector = drm_select_eld(encoder, mode);
  5435. if (!connector)
  5436. return;
  5437. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5438. connector->base.id,
  5439. drm_get_connector_name(connector),
  5440. connector->encoder->base.id,
  5441. drm_get_encoder_name(connector->encoder));
  5442. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5443. if (dev_priv->display.write_eld)
  5444. dev_priv->display.write_eld(connector, crtc);
  5445. }
  5446. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5447. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5448. {
  5449. struct drm_device *dev = crtc->dev;
  5450. struct drm_i915_private *dev_priv = dev->dev_private;
  5451. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5452. int palreg = PALETTE(intel_crtc->pipe);
  5453. int i;
  5454. /* The clocks have to be on to load the palette. */
  5455. if (!crtc->enabled || !intel_crtc->active)
  5456. return;
  5457. /* use legacy palette for Ironlake */
  5458. if (HAS_PCH_SPLIT(dev))
  5459. palreg = LGC_PALETTE(intel_crtc->pipe);
  5460. for (i = 0; i < 256; i++) {
  5461. I915_WRITE(palreg + 4 * i,
  5462. (intel_crtc->lut_r[i] << 16) |
  5463. (intel_crtc->lut_g[i] << 8) |
  5464. intel_crtc->lut_b[i]);
  5465. }
  5466. }
  5467. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5468. {
  5469. struct drm_device *dev = crtc->dev;
  5470. struct drm_i915_private *dev_priv = dev->dev_private;
  5471. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5472. bool visible = base != 0;
  5473. u32 cntl;
  5474. if (intel_crtc->cursor_visible == visible)
  5475. return;
  5476. cntl = I915_READ(_CURACNTR);
  5477. if (visible) {
  5478. /* On these chipsets we can only modify the base whilst
  5479. * the cursor is disabled.
  5480. */
  5481. I915_WRITE(_CURABASE, base);
  5482. cntl &= ~(CURSOR_FORMAT_MASK);
  5483. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5484. cntl |= CURSOR_ENABLE |
  5485. CURSOR_GAMMA_ENABLE |
  5486. CURSOR_FORMAT_ARGB;
  5487. } else
  5488. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5489. I915_WRITE(_CURACNTR, cntl);
  5490. intel_crtc->cursor_visible = visible;
  5491. }
  5492. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5493. {
  5494. struct drm_device *dev = crtc->dev;
  5495. struct drm_i915_private *dev_priv = dev->dev_private;
  5496. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5497. int pipe = intel_crtc->pipe;
  5498. bool visible = base != 0;
  5499. if (intel_crtc->cursor_visible != visible) {
  5500. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5501. if (base) {
  5502. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5503. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5504. cntl |= pipe << 28; /* Connect to correct pipe */
  5505. } else {
  5506. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5507. cntl |= CURSOR_MODE_DISABLE;
  5508. }
  5509. I915_WRITE(CURCNTR(pipe), cntl);
  5510. intel_crtc->cursor_visible = visible;
  5511. }
  5512. /* and commit changes on next vblank */
  5513. I915_WRITE(CURBASE(pipe), base);
  5514. }
  5515. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5516. {
  5517. struct drm_device *dev = crtc->dev;
  5518. struct drm_i915_private *dev_priv = dev->dev_private;
  5519. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5520. int pipe = intel_crtc->pipe;
  5521. bool visible = base != 0;
  5522. if (intel_crtc->cursor_visible != visible) {
  5523. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5524. if (base) {
  5525. cntl &= ~CURSOR_MODE;
  5526. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5527. } else {
  5528. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5529. cntl |= CURSOR_MODE_DISABLE;
  5530. }
  5531. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5532. intel_crtc->cursor_visible = visible;
  5533. }
  5534. /* and commit changes on next vblank */
  5535. I915_WRITE(CURBASE_IVB(pipe), base);
  5536. }
  5537. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5538. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5539. bool on)
  5540. {
  5541. struct drm_device *dev = crtc->dev;
  5542. struct drm_i915_private *dev_priv = dev->dev_private;
  5543. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5544. int pipe = intel_crtc->pipe;
  5545. int x = intel_crtc->cursor_x;
  5546. int y = intel_crtc->cursor_y;
  5547. u32 base, pos;
  5548. bool visible;
  5549. pos = 0;
  5550. if (on && crtc->enabled && crtc->fb) {
  5551. base = intel_crtc->cursor_addr;
  5552. if (x > (int) crtc->fb->width)
  5553. base = 0;
  5554. if (y > (int) crtc->fb->height)
  5555. base = 0;
  5556. } else
  5557. base = 0;
  5558. if (x < 0) {
  5559. if (x + intel_crtc->cursor_width < 0)
  5560. base = 0;
  5561. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5562. x = -x;
  5563. }
  5564. pos |= x << CURSOR_X_SHIFT;
  5565. if (y < 0) {
  5566. if (y + intel_crtc->cursor_height < 0)
  5567. base = 0;
  5568. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5569. y = -y;
  5570. }
  5571. pos |= y << CURSOR_Y_SHIFT;
  5572. visible = base != 0;
  5573. if (!visible && !intel_crtc->cursor_visible)
  5574. return;
  5575. if (IS_IVYBRIDGE(dev)) {
  5576. I915_WRITE(CURPOS_IVB(pipe), pos);
  5577. ivb_update_cursor(crtc, base);
  5578. } else {
  5579. I915_WRITE(CURPOS(pipe), pos);
  5580. if (IS_845G(dev) || IS_I865G(dev))
  5581. i845_update_cursor(crtc, base);
  5582. else
  5583. i9xx_update_cursor(crtc, base);
  5584. }
  5585. if (visible)
  5586. intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
  5587. }
  5588. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5589. struct drm_file *file,
  5590. uint32_t handle,
  5591. uint32_t width, uint32_t height)
  5592. {
  5593. struct drm_device *dev = crtc->dev;
  5594. struct drm_i915_private *dev_priv = dev->dev_private;
  5595. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5596. struct drm_i915_gem_object *obj;
  5597. uint32_t addr;
  5598. int ret;
  5599. DRM_DEBUG_KMS("\n");
  5600. /* if we want to turn off the cursor ignore width and height */
  5601. if (!handle) {
  5602. DRM_DEBUG_KMS("cursor off\n");
  5603. addr = 0;
  5604. obj = NULL;
  5605. mutex_lock(&dev->struct_mutex);
  5606. goto finish;
  5607. }
  5608. /* Currently we only support 64x64 cursors */
  5609. if (width != 64 || height != 64) {
  5610. DRM_ERROR("we currently only support 64x64 cursors\n");
  5611. return -EINVAL;
  5612. }
  5613. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5614. if (&obj->base == NULL)
  5615. return -ENOENT;
  5616. if (obj->base.size < width * height * 4) {
  5617. DRM_ERROR("buffer is to small\n");
  5618. ret = -ENOMEM;
  5619. goto fail;
  5620. }
  5621. /* we only need to pin inside GTT if cursor is non-phy */
  5622. mutex_lock(&dev->struct_mutex);
  5623. if (!dev_priv->info->cursor_needs_physical) {
  5624. if (obj->tiling_mode) {
  5625. DRM_ERROR("cursor cannot be tiled\n");
  5626. ret = -EINVAL;
  5627. goto fail_locked;
  5628. }
  5629. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5630. if (ret) {
  5631. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5632. goto fail_locked;
  5633. }
  5634. ret = i915_gem_object_put_fence(obj);
  5635. if (ret) {
  5636. DRM_ERROR("failed to release fence for cursor");
  5637. goto fail_unpin;
  5638. }
  5639. addr = obj->gtt_offset;
  5640. } else {
  5641. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5642. ret = i915_gem_attach_phys_object(dev, obj,
  5643. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5644. align);
  5645. if (ret) {
  5646. DRM_ERROR("failed to attach phys object\n");
  5647. goto fail_locked;
  5648. }
  5649. addr = obj->phys_obj->handle->busaddr;
  5650. }
  5651. if (IS_GEN2(dev))
  5652. I915_WRITE(CURSIZE, (height << 12) | width);
  5653. finish:
  5654. if (intel_crtc->cursor_bo) {
  5655. if (dev_priv->info->cursor_needs_physical) {
  5656. if (intel_crtc->cursor_bo != obj)
  5657. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5658. } else
  5659. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5660. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5661. }
  5662. mutex_unlock(&dev->struct_mutex);
  5663. intel_crtc->cursor_addr = addr;
  5664. intel_crtc->cursor_bo = obj;
  5665. intel_crtc->cursor_width = width;
  5666. intel_crtc->cursor_height = height;
  5667. intel_crtc_update_cursor(crtc, true);
  5668. return 0;
  5669. fail_unpin:
  5670. i915_gem_object_unpin(obj);
  5671. fail_locked:
  5672. mutex_unlock(&dev->struct_mutex);
  5673. fail:
  5674. drm_gem_object_unreference_unlocked(&obj->base);
  5675. return ret;
  5676. }
  5677. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5678. {
  5679. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5680. intel_crtc->cursor_x = x;
  5681. intel_crtc->cursor_y = y;
  5682. intel_crtc_update_cursor(crtc, true);
  5683. return 0;
  5684. }
  5685. /** Sets the color ramps on behalf of RandR */
  5686. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5687. u16 blue, int regno)
  5688. {
  5689. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5690. intel_crtc->lut_r[regno] = red >> 8;
  5691. intel_crtc->lut_g[regno] = green >> 8;
  5692. intel_crtc->lut_b[regno] = blue >> 8;
  5693. }
  5694. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5695. u16 *blue, int regno)
  5696. {
  5697. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5698. *red = intel_crtc->lut_r[regno] << 8;
  5699. *green = intel_crtc->lut_g[regno] << 8;
  5700. *blue = intel_crtc->lut_b[regno] << 8;
  5701. }
  5702. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5703. u16 *blue, uint32_t start, uint32_t size)
  5704. {
  5705. int end = (start + size > 256) ? 256 : start + size, i;
  5706. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5707. for (i = start; i < end; i++) {
  5708. intel_crtc->lut_r[i] = red[i] >> 8;
  5709. intel_crtc->lut_g[i] = green[i] >> 8;
  5710. intel_crtc->lut_b[i] = blue[i] >> 8;
  5711. }
  5712. intel_crtc_load_lut(crtc);
  5713. }
  5714. /**
  5715. * Get a pipe with a simple mode set on it for doing load-based monitor
  5716. * detection.
  5717. *
  5718. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5719. * its requirements. The pipe will be connected to no other encoders.
  5720. *
  5721. * Currently this code will only succeed if there is a pipe with no encoders
  5722. * configured for it. In the future, it could choose to temporarily disable
  5723. * some outputs to free up a pipe for its use.
  5724. *
  5725. * \return crtc, or NULL if no pipes are available.
  5726. */
  5727. /* VESA 640x480x72Hz mode to set on the pipe */
  5728. static struct drm_display_mode load_detect_mode = {
  5729. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5730. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5731. };
  5732. static struct drm_framebuffer *
  5733. intel_framebuffer_create(struct drm_device *dev,
  5734. struct drm_mode_fb_cmd2 *mode_cmd,
  5735. struct drm_i915_gem_object *obj)
  5736. {
  5737. struct intel_framebuffer *intel_fb;
  5738. int ret;
  5739. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5740. if (!intel_fb) {
  5741. drm_gem_object_unreference_unlocked(&obj->base);
  5742. return ERR_PTR(-ENOMEM);
  5743. }
  5744. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5745. if (ret) {
  5746. drm_gem_object_unreference_unlocked(&obj->base);
  5747. kfree(intel_fb);
  5748. return ERR_PTR(ret);
  5749. }
  5750. return &intel_fb->base;
  5751. }
  5752. static u32
  5753. intel_framebuffer_pitch_for_width(int width, int bpp)
  5754. {
  5755. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5756. return ALIGN(pitch, 64);
  5757. }
  5758. static u32
  5759. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5760. {
  5761. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5762. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5763. }
  5764. static struct drm_framebuffer *
  5765. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5766. struct drm_display_mode *mode,
  5767. int depth, int bpp)
  5768. {
  5769. struct drm_i915_gem_object *obj;
  5770. struct drm_mode_fb_cmd2 mode_cmd;
  5771. obj = i915_gem_alloc_object(dev,
  5772. intel_framebuffer_size_for_mode(mode, bpp));
  5773. if (obj == NULL)
  5774. return ERR_PTR(-ENOMEM);
  5775. mode_cmd.width = mode->hdisplay;
  5776. mode_cmd.height = mode->vdisplay;
  5777. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5778. bpp);
  5779. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5780. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5781. }
  5782. static struct drm_framebuffer *
  5783. mode_fits_in_fbdev(struct drm_device *dev,
  5784. struct drm_display_mode *mode)
  5785. {
  5786. struct drm_i915_private *dev_priv = dev->dev_private;
  5787. struct drm_i915_gem_object *obj;
  5788. struct drm_framebuffer *fb;
  5789. if (dev_priv->fbdev == NULL)
  5790. return NULL;
  5791. obj = dev_priv->fbdev->ifb.obj;
  5792. if (obj == NULL)
  5793. return NULL;
  5794. fb = &dev_priv->fbdev->ifb.base;
  5795. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5796. fb->bits_per_pixel))
  5797. return NULL;
  5798. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5799. return NULL;
  5800. return fb;
  5801. }
  5802. bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
  5803. struct drm_connector *connector,
  5804. struct drm_display_mode *mode,
  5805. struct intel_load_detect_pipe *old)
  5806. {
  5807. struct intel_crtc *intel_crtc;
  5808. struct drm_crtc *possible_crtc;
  5809. struct drm_encoder *encoder = &intel_encoder->base;
  5810. struct drm_crtc *crtc = NULL;
  5811. struct drm_device *dev = encoder->dev;
  5812. struct drm_framebuffer *old_fb;
  5813. int i = -1;
  5814. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5815. connector->base.id, drm_get_connector_name(connector),
  5816. encoder->base.id, drm_get_encoder_name(encoder));
  5817. /*
  5818. * Algorithm gets a little messy:
  5819. *
  5820. * - if the connector already has an assigned crtc, use it (but make
  5821. * sure it's on first)
  5822. *
  5823. * - try to find the first unused crtc that can drive this connector,
  5824. * and use that if we find one
  5825. */
  5826. /* See if we already have a CRTC for this connector */
  5827. if (encoder->crtc) {
  5828. crtc = encoder->crtc;
  5829. intel_crtc = to_intel_crtc(crtc);
  5830. old->dpms_mode = intel_crtc->dpms_mode;
  5831. old->load_detect_temp = false;
  5832. /* Make sure the crtc and connector are running */
  5833. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  5834. struct drm_encoder_helper_funcs *encoder_funcs;
  5835. struct drm_crtc_helper_funcs *crtc_funcs;
  5836. crtc_funcs = crtc->helper_private;
  5837. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  5838. encoder_funcs = encoder->helper_private;
  5839. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  5840. }
  5841. return true;
  5842. }
  5843. /* Find an unused one (if possible) */
  5844. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5845. i++;
  5846. if (!(encoder->possible_crtcs & (1 << i)))
  5847. continue;
  5848. if (!possible_crtc->enabled) {
  5849. crtc = possible_crtc;
  5850. break;
  5851. }
  5852. }
  5853. /*
  5854. * If we didn't find an unused CRTC, don't use any.
  5855. */
  5856. if (!crtc) {
  5857. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5858. return false;
  5859. }
  5860. encoder->crtc = crtc;
  5861. connector->encoder = encoder;
  5862. intel_crtc = to_intel_crtc(crtc);
  5863. old->dpms_mode = intel_crtc->dpms_mode;
  5864. old->load_detect_temp = true;
  5865. old->release_fb = NULL;
  5866. if (!mode)
  5867. mode = &load_detect_mode;
  5868. old_fb = crtc->fb;
  5869. /* We need a framebuffer large enough to accommodate all accesses
  5870. * that the plane may generate whilst we perform load detection.
  5871. * We can not rely on the fbcon either being present (we get called
  5872. * during its initialisation to detect all boot displays, or it may
  5873. * not even exist) or that it is large enough to satisfy the
  5874. * requested mode.
  5875. */
  5876. crtc->fb = mode_fits_in_fbdev(dev, mode);
  5877. if (crtc->fb == NULL) {
  5878. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5879. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5880. old->release_fb = crtc->fb;
  5881. } else
  5882. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5883. if (IS_ERR(crtc->fb)) {
  5884. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5885. crtc->fb = old_fb;
  5886. return false;
  5887. }
  5888. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  5889. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5890. if (old->release_fb)
  5891. old->release_fb->funcs->destroy(old->release_fb);
  5892. crtc->fb = old_fb;
  5893. return false;
  5894. }
  5895. /* let the connector get through one full cycle before testing */
  5896. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5897. return true;
  5898. }
  5899. void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
  5900. struct drm_connector *connector,
  5901. struct intel_load_detect_pipe *old)
  5902. {
  5903. struct drm_encoder *encoder = &intel_encoder->base;
  5904. struct drm_device *dev = encoder->dev;
  5905. struct drm_crtc *crtc = encoder->crtc;
  5906. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  5907. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  5908. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5909. connector->base.id, drm_get_connector_name(connector),
  5910. encoder->base.id, drm_get_encoder_name(encoder));
  5911. if (old->load_detect_temp) {
  5912. connector->encoder = NULL;
  5913. drm_helper_disable_unused_functions(dev);
  5914. if (old->release_fb)
  5915. old->release_fb->funcs->destroy(old->release_fb);
  5916. return;
  5917. }
  5918. /* Switch crtc and encoder back off if necessary */
  5919. if (old->dpms_mode != DRM_MODE_DPMS_ON) {
  5920. encoder_funcs->dpms(encoder, old->dpms_mode);
  5921. crtc_funcs->dpms(crtc, old->dpms_mode);
  5922. }
  5923. }
  5924. /* Returns the clock of the currently programmed mode of the given pipe. */
  5925. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5926. {
  5927. struct drm_i915_private *dev_priv = dev->dev_private;
  5928. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5929. int pipe = intel_crtc->pipe;
  5930. u32 dpll = I915_READ(DPLL(pipe));
  5931. u32 fp;
  5932. intel_clock_t clock;
  5933. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5934. fp = I915_READ(FP0(pipe));
  5935. else
  5936. fp = I915_READ(FP1(pipe));
  5937. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5938. if (IS_PINEVIEW(dev)) {
  5939. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5940. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5941. } else {
  5942. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5943. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5944. }
  5945. if (!IS_GEN2(dev)) {
  5946. if (IS_PINEVIEW(dev))
  5947. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5948. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5949. else
  5950. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5951. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5952. switch (dpll & DPLL_MODE_MASK) {
  5953. case DPLLB_MODE_DAC_SERIAL:
  5954. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5955. 5 : 10;
  5956. break;
  5957. case DPLLB_MODE_LVDS:
  5958. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5959. 7 : 14;
  5960. break;
  5961. default:
  5962. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5963. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5964. return 0;
  5965. }
  5966. /* XXX: Handle the 100Mhz refclk */
  5967. intel_clock(dev, 96000, &clock);
  5968. } else {
  5969. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5970. if (is_lvds) {
  5971. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5972. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5973. clock.p2 = 14;
  5974. if ((dpll & PLL_REF_INPUT_MASK) ==
  5975. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5976. /* XXX: might not be 66MHz */
  5977. intel_clock(dev, 66000, &clock);
  5978. } else
  5979. intel_clock(dev, 48000, &clock);
  5980. } else {
  5981. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5982. clock.p1 = 2;
  5983. else {
  5984. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5985. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5986. }
  5987. if (dpll & PLL_P2_DIVIDE_BY_4)
  5988. clock.p2 = 4;
  5989. else
  5990. clock.p2 = 2;
  5991. intel_clock(dev, 48000, &clock);
  5992. }
  5993. }
  5994. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5995. * i830PllIsValid() because it relies on the xf86_config connector
  5996. * configuration being accurate, which it isn't necessarily.
  5997. */
  5998. return clock.dot;
  5999. }
  6000. /** Returns the currently programmed mode of the given pipe. */
  6001. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6002. struct drm_crtc *crtc)
  6003. {
  6004. struct drm_i915_private *dev_priv = dev->dev_private;
  6005. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6006. int pipe = intel_crtc->pipe;
  6007. struct drm_display_mode *mode;
  6008. int htot = I915_READ(HTOTAL(pipe));
  6009. int hsync = I915_READ(HSYNC(pipe));
  6010. int vtot = I915_READ(VTOTAL(pipe));
  6011. int vsync = I915_READ(VSYNC(pipe));
  6012. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6013. if (!mode)
  6014. return NULL;
  6015. mode->clock = intel_crtc_clock_get(dev, crtc);
  6016. mode->hdisplay = (htot & 0xffff) + 1;
  6017. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6018. mode->hsync_start = (hsync & 0xffff) + 1;
  6019. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6020. mode->vdisplay = (vtot & 0xffff) + 1;
  6021. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6022. mode->vsync_start = (vsync & 0xffff) + 1;
  6023. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6024. drm_mode_set_name(mode);
  6025. drm_mode_set_crtcinfo(mode, 0);
  6026. return mode;
  6027. }
  6028. #define GPU_IDLE_TIMEOUT 500 /* ms */
  6029. /* When this timer fires, we've been idle for awhile */
  6030. static void intel_gpu_idle_timer(unsigned long arg)
  6031. {
  6032. struct drm_device *dev = (struct drm_device *)arg;
  6033. drm_i915_private_t *dev_priv = dev->dev_private;
  6034. if (!list_empty(&dev_priv->mm.active_list)) {
  6035. /* Still processing requests, so just re-arm the timer. */
  6036. mod_timer(&dev_priv->idle_timer, jiffies +
  6037. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6038. return;
  6039. }
  6040. dev_priv->busy = false;
  6041. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6042. }
  6043. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  6044. static void intel_crtc_idle_timer(unsigned long arg)
  6045. {
  6046. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  6047. struct drm_crtc *crtc = &intel_crtc->base;
  6048. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  6049. struct intel_framebuffer *intel_fb;
  6050. intel_fb = to_intel_framebuffer(crtc->fb);
  6051. if (intel_fb && intel_fb->obj->active) {
  6052. /* The framebuffer is still being accessed by the GPU. */
  6053. mod_timer(&intel_crtc->idle_timer, jiffies +
  6054. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6055. return;
  6056. }
  6057. intel_crtc->busy = false;
  6058. queue_work(dev_priv->wq, &dev_priv->idle_work);
  6059. }
  6060. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6061. {
  6062. struct drm_device *dev = crtc->dev;
  6063. drm_i915_private_t *dev_priv = dev->dev_private;
  6064. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6065. int pipe = intel_crtc->pipe;
  6066. int dpll_reg = DPLL(pipe);
  6067. int dpll;
  6068. if (HAS_PCH_SPLIT(dev))
  6069. return;
  6070. if (!dev_priv->lvds_downclock_avail)
  6071. return;
  6072. dpll = I915_READ(dpll_reg);
  6073. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6074. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6075. assert_panel_unlocked(dev_priv, pipe);
  6076. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6077. I915_WRITE(dpll_reg, dpll);
  6078. intel_wait_for_vblank(dev, pipe);
  6079. dpll = I915_READ(dpll_reg);
  6080. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6081. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6082. }
  6083. /* Schedule downclock */
  6084. mod_timer(&intel_crtc->idle_timer, jiffies +
  6085. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6086. }
  6087. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6088. {
  6089. struct drm_device *dev = crtc->dev;
  6090. drm_i915_private_t *dev_priv = dev->dev_private;
  6091. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6092. if (HAS_PCH_SPLIT(dev))
  6093. return;
  6094. if (!dev_priv->lvds_downclock_avail)
  6095. return;
  6096. /*
  6097. * Since this is called by a timer, we should never get here in
  6098. * the manual case.
  6099. */
  6100. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6101. int pipe = intel_crtc->pipe;
  6102. int dpll_reg = DPLL(pipe);
  6103. u32 dpll;
  6104. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6105. assert_panel_unlocked(dev_priv, pipe);
  6106. dpll = I915_READ(dpll_reg);
  6107. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6108. I915_WRITE(dpll_reg, dpll);
  6109. intel_wait_for_vblank(dev, pipe);
  6110. dpll = I915_READ(dpll_reg);
  6111. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6112. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6113. }
  6114. }
  6115. /**
  6116. * intel_idle_update - adjust clocks for idleness
  6117. * @work: work struct
  6118. *
  6119. * Either the GPU or display (or both) went idle. Check the busy status
  6120. * here and adjust the CRTC and GPU clocks as necessary.
  6121. */
  6122. static void intel_idle_update(struct work_struct *work)
  6123. {
  6124. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  6125. idle_work);
  6126. struct drm_device *dev = dev_priv->dev;
  6127. struct drm_crtc *crtc;
  6128. struct intel_crtc *intel_crtc;
  6129. if (!i915_powersave)
  6130. return;
  6131. mutex_lock(&dev->struct_mutex);
  6132. i915_update_gfx_val(dev_priv);
  6133. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6134. /* Skip inactive CRTCs */
  6135. if (!crtc->fb)
  6136. continue;
  6137. intel_crtc = to_intel_crtc(crtc);
  6138. if (!intel_crtc->busy)
  6139. intel_decrease_pllclock(crtc);
  6140. }
  6141. mutex_unlock(&dev->struct_mutex);
  6142. }
  6143. /**
  6144. * intel_mark_busy - mark the GPU and possibly the display busy
  6145. * @dev: drm device
  6146. * @obj: object we're operating on
  6147. *
  6148. * Callers can use this function to indicate that the GPU is busy processing
  6149. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  6150. * buffer), we'll also mark the display as busy, so we know to increase its
  6151. * clock frequency.
  6152. */
  6153. void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
  6154. {
  6155. drm_i915_private_t *dev_priv = dev->dev_private;
  6156. struct drm_crtc *crtc = NULL;
  6157. struct intel_framebuffer *intel_fb;
  6158. struct intel_crtc *intel_crtc;
  6159. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6160. return;
  6161. if (!dev_priv->busy)
  6162. dev_priv->busy = true;
  6163. else
  6164. mod_timer(&dev_priv->idle_timer, jiffies +
  6165. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  6166. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6167. if (!crtc->fb)
  6168. continue;
  6169. intel_crtc = to_intel_crtc(crtc);
  6170. intel_fb = to_intel_framebuffer(crtc->fb);
  6171. if (intel_fb->obj == obj) {
  6172. if (!intel_crtc->busy) {
  6173. /* Non-busy -> busy, upclock */
  6174. intel_increase_pllclock(crtc);
  6175. intel_crtc->busy = true;
  6176. } else {
  6177. /* Busy -> busy, put off timer */
  6178. mod_timer(&intel_crtc->idle_timer, jiffies +
  6179. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  6180. }
  6181. }
  6182. }
  6183. }
  6184. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6185. {
  6186. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6187. struct drm_device *dev = crtc->dev;
  6188. struct intel_unpin_work *work;
  6189. unsigned long flags;
  6190. spin_lock_irqsave(&dev->event_lock, flags);
  6191. work = intel_crtc->unpin_work;
  6192. intel_crtc->unpin_work = NULL;
  6193. spin_unlock_irqrestore(&dev->event_lock, flags);
  6194. if (work) {
  6195. cancel_work_sync(&work->work);
  6196. kfree(work);
  6197. }
  6198. drm_crtc_cleanup(crtc);
  6199. kfree(intel_crtc);
  6200. }
  6201. static void intel_unpin_work_fn(struct work_struct *__work)
  6202. {
  6203. struct intel_unpin_work *work =
  6204. container_of(__work, struct intel_unpin_work, work);
  6205. mutex_lock(&work->dev->struct_mutex);
  6206. intel_unpin_fb_obj(work->old_fb_obj);
  6207. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6208. drm_gem_object_unreference(&work->old_fb_obj->base);
  6209. intel_update_fbc(work->dev);
  6210. mutex_unlock(&work->dev->struct_mutex);
  6211. kfree(work);
  6212. }
  6213. static void do_intel_finish_page_flip(struct drm_device *dev,
  6214. struct drm_crtc *crtc)
  6215. {
  6216. drm_i915_private_t *dev_priv = dev->dev_private;
  6217. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6218. struct intel_unpin_work *work;
  6219. struct drm_i915_gem_object *obj;
  6220. struct drm_pending_vblank_event *e;
  6221. struct timeval tnow, tvbl;
  6222. unsigned long flags;
  6223. /* Ignore early vblank irqs */
  6224. if (intel_crtc == NULL)
  6225. return;
  6226. do_gettimeofday(&tnow);
  6227. spin_lock_irqsave(&dev->event_lock, flags);
  6228. work = intel_crtc->unpin_work;
  6229. if (work == NULL || !work->pending) {
  6230. spin_unlock_irqrestore(&dev->event_lock, flags);
  6231. return;
  6232. }
  6233. intel_crtc->unpin_work = NULL;
  6234. if (work->event) {
  6235. e = work->event;
  6236. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  6237. /* Called before vblank count and timestamps have
  6238. * been updated for the vblank interval of flip
  6239. * completion? Need to increment vblank count and
  6240. * add one videorefresh duration to returned timestamp
  6241. * to account for this. We assume this happened if we
  6242. * get called over 0.9 frame durations after the last
  6243. * timestamped vblank.
  6244. *
  6245. * This calculation can not be used with vrefresh rates
  6246. * below 5Hz (10Hz to be on the safe side) without
  6247. * promoting to 64 integers.
  6248. */
  6249. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  6250. 9 * crtc->framedur_ns) {
  6251. e->event.sequence++;
  6252. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  6253. crtc->framedur_ns);
  6254. }
  6255. e->event.tv_sec = tvbl.tv_sec;
  6256. e->event.tv_usec = tvbl.tv_usec;
  6257. list_add_tail(&e->base.link,
  6258. &e->base.file_priv->event_list);
  6259. wake_up_interruptible(&e->base.file_priv->event_wait);
  6260. }
  6261. drm_vblank_put(dev, intel_crtc->pipe);
  6262. spin_unlock_irqrestore(&dev->event_lock, flags);
  6263. obj = work->old_fb_obj;
  6264. atomic_clear_mask(1 << intel_crtc->plane,
  6265. &obj->pending_flip.counter);
  6266. if (atomic_read(&obj->pending_flip) == 0)
  6267. wake_up(&dev_priv->pending_flip_queue);
  6268. schedule_work(&work->work);
  6269. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6270. }
  6271. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6272. {
  6273. drm_i915_private_t *dev_priv = dev->dev_private;
  6274. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6275. do_intel_finish_page_flip(dev, crtc);
  6276. }
  6277. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6278. {
  6279. drm_i915_private_t *dev_priv = dev->dev_private;
  6280. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6281. do_intel_finish_page_flip(dev, crtc);
  6282. }
  6283. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6284. {
  6285. drm_i915_private_t *dev_priv = dev->dev_private;
  6286. struct intel_crtc *intel_crtc =
  6287. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6288. unsigned long flags;
  6289. spin_lock_irqsave(&dev->event_lock, flags);
  6290. if (intel_crtc->unpin_work) {
  6291. if ((++intel_crtc->unpin_work->pending) > 1)
  6292. DRM_ERROR("Prepared flip multiple times\n");
  6293. } else {
  6294. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  6295. }
  6296. spin_unlock_irqrestore(&dev->event_lock, flags);
  6297. }
  6298. static int intel_gen2_queue_flip(struct drm_device *dev,
  6299. struct drm_crtc *crtc,
  6300. struct drm_framebuffer *fb,
  6301. struct drm_i915_gem_object *obj)
  6302. {
  6303. struct drm_i915_private *dev_priv = dev->dev_private;
  6304. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6305. unsigned long offset;
  6306. u32 flip_mask;
  6307. int ret;
  6308. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6309. if (ret)
  6310. goto out;
  6311. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6312. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6313. ret = BEGIN_LP_RING(6);
  6314. if (ret)
  6315. goto out;
  6316. /* Can't queue multiple flips, so wait for the previous
  6317. * one to finish before executing the next.
  6318. */
  6319. if (intel_crtc->plane)
  6320. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6321. else
  6322. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6323. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6324. OUT_RING(MI_NOOP);
  6325. OUT_RING(MI_DISPLAY_FLIP |
  6326. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6327. OUT_RING(fb->pitches[0]);
  6328. OUT_RING(obj->gtt_offset + offset);
  6329. OUT_RING(0); /* aux display base address, unused */
  6330. ADVANCE_LP_RING();
  6331. out:
  6332. return ret;
  6333. }
  6334. static int intel_gen3_queue_flip(struct drm_device *dev,
  6335. struct drm_crtc *crtc,
  6336. struct drm_framebuffer *fb,
  6337. struct drm_i915_gem_object *obj)
  6338. {
  6339. struct drm_i915_private *dev_priv = dev->dev_private;
  6340. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6341. unsigned long offset;
  6342. u32 flip_mask;
  6343. int ret;
  6344. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6345. if (ret)
  6346. goto out;
  6347. /* Offset into the new buffer for cases of shared fbs between CRTCs */
  6348. offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
  6349. ret = BEGIN_LP_RING(6);
  6350. if (ret)
  6351. goto out;
  6352. if (intel_crtc->plane)
  6353. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6354. else
  6355. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6356. OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
  6357. OUT_RING(MI_NOOP);
  6358. OUT_RING(MI_DISPLAY_FLIP_I915 |
  6359. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6360. OUT_RING(fb->pitches[0]);
  6361. OUT_RING(obj->gtt_offset + offset);
  6362. OUT_RING(MI_NOOP);
  6363. ADVANCE_LP_RING();
  6364. out:
  6365. return ret;
  6366. }
  6367. static int intel_gen4_queue_flip(struct drm_device *dev,
  6368. struct drm_crtc *crtc,
  6369. struct drm_framebuffer *fb,
  6370. struct drm_i915_gem_object *obj)
  6371. {
  6372. struct drm_i915_private *dev_priv = dev->dev_private;
  6373. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6374. uint32_t pf, pipesrc;
  6375. int ret;
  6376. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6377. if (ret)
  6378. goto out;
  6379. ret = BEGIN_LP_RING(4);
  6380. if (ret)
  6381. goto out;
  6382. /* i965+ uses the linear or tiled offsets from the
  6383. * Display Registers (which do not change across a page-flip)
  6384. * so we need only reprogram the base address.
  6385. */
  6386. OUT_RING(MI_DISPLAY_FLIP |
  6387. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6388. OUT_RING(fb->pitches[0]);
  6389. OUT_RING(obj->gtt_offset | obj->tiling_mode);
  6390. /* XXX Enabling the panel-fitter across page-flip is so far
  6391. * untested on non-native modes, so ignore it for now.
  6392. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6393. */
  6394. pf = 0;
  6395. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6396. OUT_RING(pf | pipesrc);
  6397. ADVANCE_LP_RING();
  6398. out:
  6399. return ret;
  6400. }
  6401. static int intel_gen6_queue_flip(struct drm_device *dev,
  6402. struct drm_crtc *crtc,
  6403. struct drm_framebuffer *fb,
  6404. struct drm_i915_gem_object *obj)
  6405. {
  6406. struct drm_i915_private *dev_priv = dev->dev_private;
  6407. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6408. uint32_t pf, pipesrc;
  6409. int ret;
  6410. ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
  6411. if (ret)
  6412. goto out;
  6413. ret = BEGIN_LP_RING(4);
  6414. if (ret)
  6415. goto out;
  6416. OUT_RING(MI_DISPLAY_FLIP |
  6417. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6418. OUT_RING(fb->pitches[0] | obj->tiling_mode);
  6419. OUT_RING(obj->gtt_offset);
  6420. /* Contrary to the suggestions in the documentation,
  6421. * "Enable Panel Fitter" does not seem to be required when page
  6422. * flipping with a non-native mode, and worse causes a normal
  6423. * modeset to fail.
  6424. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6425. */
  6426. pf = 0;
  6427. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6428. OUT_RING(pf | pipesrc);
  6429. ADVANCE_LP_RING();
  6430. out:
  6431. return ret;
  6432. }
  6433. /*
  6434. * On gen7 we currently use the blit ring because (in early silicon at least)
  6435. * the render ring doesn't give us interrpts for page flip completion, which
  6436. * means clients will hang after the first flip is queued. Fortunately the
  6437. * blit ring generates interrupts properly, so use it instead.
  6438. */
  6439. static int intel_gen7_queue_flip(struct drm_device *dev,
  6440. struct drm_crtc *crtc,
  6441. struct drm_framebuffer *fb,
  6442. struct drm_i915_gem_object *obj)
  6443. {
  6444. struct drm_i915_private *dev_priv = dev->dev_private;
  6445. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6446. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6447. int ret;
  6448. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6449. if (ret)
  6450. goto out;
  6451. ret = intel_ring_begin(ring, 4);
  6452. if (ret)
  6453. goto out;
  6454. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
  6455. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6456. intel_ring_emit(ring, (obj->gtt_offset));
  6457. intel_ring_emit(ring, (MI_NOOP));
  6458. intel_ring_advance(ring);
  6459. out:
  6460. return ret;
  6461. }
  6462. static int intel_default_queue_flip(struct drm_device *dev,
  6463. struct drm_crtc *crtc,
  6464. struct drm_framebuffer *fb,
  6465. struct drm_i915_gem_object *obj)
  6466. {
  6467. return -ENODEV;
  6468. }
  6469. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6470. struct drm_framebuffer *fb,
  6471. struct drm_pending_vblank_event *event)
  6472. {
  6473. struct drm_device *dev = crtc->dev;
  6474. struct drm_i915_private *dev_priv = dev->dev_private;
  6475. struct intel_framebuffer *intel_fb;
  6476. struct drm_i915_gem_object *obj;
  6477. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6478. struct intel_unpin_work *work;
  6479. unsigned long flags;
  6480. int ret;
  6481. work = kzalloc(sizeof *work, GFP_KERNEL);
  6482. if (work == NULL)
  6483. return -ENOMEM;
  6484. work->event = event;
  6485. work->dev = crtc->dev;
  6486. intel_fb = to_intel_framebuffer(crtc->fb);
  6487. work->old_fb_obj = intel_fb->obj;
  6488. INIT_WORK(&work->work, intel_unpin_work_fn);
  6489. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6490. if (ret)
  6491. goto free_work;
  6492. /* We borrow the event spin lock for protecting unpin_work */
  6493. spin_lock_irqsave(&dev->event_lock, flags);
  6494. if (intel_crtc->unpin_work) {
  6495. spin_unlock_irqrestore(&dev->event_lock, flags);
  6496. kfree(work);
  6497. drm_vblank_put(dev, intel_crtc->pipe);
  6498. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6499. return -EBUSY;
  6500. }
  6501. intel_crtc->unpin_work = work;
  6502. spin_unlock_irqrestore(&dev->event_lock, flags);
  6503. intel_fb = to_intel_framebuffer(fb);
  6504. obj = intel_fb->obj;
  6505. mutex_lock(&dev->struct_mutex);
  6506. /* Reference the objects for the scheduled work. */
  6507. drm_gem_object_reference(&work->old_fb_obj->base);
  6508. drm_gem_object_reference(&obj->base);
  6509. crtc->fb = fb;
  6510. work->pending_flip_obj = obj;
  6511. work->enable_stall_check = true;
  6512. /* Block clients from rendering to the new back buffer until
  6513. * the flip occurs and the object is no longer visible.
  6514. */
  6515. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6516. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6517. if (ret)
  6518. goto cleanup_pending;
  6519. intel_disable_fbc(dev);
  6520. mutex_unlock(&dev->struct_mutex);
  6521. trace_i915_flip_request(intel_crtc->plane, obj);
  6522. return 0;
  6523. cleanup_pending:
  6524. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6525. drm_gem_object_unreference(&work->old_fb_obj->base);
  6526. drm_gem_object_unreference(&obj->base);
  6527. mutex_unlock(&dev->struct_mutex);
  6528. spin_lock_irqsave(&dev->event_lock, flags);
  6529. intel_crtc->unpin_work = NULL;
  6530. spin_unlock_irqrestore(&dev->event_lock, flags);
  6531. drm_vblank_put(dev, intel_crtc->pipe);
  6532. free_work:
  6533. kfree(work);
  6534. return ret;
  6535. }
  6536. static void intel_sanitize_modesetting(struct drm_device *dev,
  6537. int pipe, int plane)
  6538. {
  6539. struct drm_i915_private *dev_priv = dev->dev_private;
  6540. u32 reg, val;
  6541. /* Clear any frame start delays used for debugging left by the BIOS */
  6542. for_each_pipe(pipe) {
  6543. reg = PIPECONF(pipe);
  6544. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  6545. }
  6546. if (HAS_PCH_SPLIT(dev))
  6547. return;
  6548. /* Who knows what state these registers were left in by the BIOS or
  6549. * grub?
  6550. *
  6551. * If we leave the registers in a conflicting state (e.g. with the
  6552. * display plane reading from the other pipe than the one we intend
  6553. * to use) then when we attempt to teardown the active mode, we will
  6554. * not disable the pipes and planes in the correct order -- leaving
  6555. * a plane reading from a disabled pipe and possibly leading to
  6556. * undefined behaviour.
  6557. */
  6558. reg = DSPCNTR(plane);
  6559. val = I915_READ(reg);
  6560. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  6561. return;
  6562. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  6563. return;
  6564. /* This display plane is active and attached to the other CPU pipe. */
  6565. pipe = !pipe;
  6566. /* Disable the plane and wait for it to stop reading from the pipe. */
  6567. intel_disable_plane(dev_priv, plane, pipe);
  6568. intel_disable_pipe(dev_priv, pipe);
  6569. }
  6570. static void intel_crtc_reset(struct drm_crtc *crtc)
  6571. {
  6572. struct drm_device *dev = crtc->dev;
  6573. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6574. /* Reset flags back to the 'unknown' status so that they
  6575. * will be correctly set on the initial modeset.
  6576. */
  6577. intel_crtc->dpms_mode = -1;
  6578. /* We need to fix up any BIOS configuration that conflicts with
  6579. * our expectations.
  6580. */
  6581. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  6582. }
  6583. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6584. .dpms = intel_crtc_dpms,
  6585. .mode_fixup = intel_crtc_mode_fixup,
  6586. .mode_set = intel_crtc_mode_set,
  6587. .mode_set_base = intel_pipe_set_base,
  6588. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6589. .load_lut = intel_crtc_load_lut,
  6590. .disable = intel_crtc_disable,
  6591. };
  6592. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6593. .reset = intel_crtc_reset,
  6594. .cursor_set = intel_crtc_cursor_set,
  6595. .cursor_move = intel_crtc_cursor_move,
  6596. .gamma_set = intel_crtc_gamma_set,
  6597. .set_config = drm_crtc_helper_set_config,
  6598. .destroy = intel_crtc_destroy,
  6599. .page_flip = intel_crtc_page_flip,
  6600. };
  6601. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6602. {
  6603. drm_i915_private_t *dev_priv = dev->dev_private;
  6604. struct intel_crtc *intel_crtc;
  6605. int i;
  6606. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6607. if (intel_crtc == NULL)
  6608. return;
  6609. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6610. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6611. for (i = 0; i < 256; i++) {
  6612. intel_crtc->lut_r[i] = i;
  6613. intel_crtc->lut_g[i] = i;
  6614. intel_crtc->lut_b[i] = i;
  6615. }
  6616. /* Swap pipes & planes for FBC on pre-965 */
  6617. intel_crtc->pipe = pipe;
  6618. intel_crtc->plane = pipe;
  6619. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6620. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6621. intel_crtc->plane = !pipe;
  6622. }
  6623. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6624. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6625. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6626. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6627. intel_crtc_reset(&intel_crtc->base);
  6628. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  6629. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6630. if (HAS_PCH_SPLIT(dev)) {
  6631. if (pipe == 2 && IS_IVYBRIDGE(dev))
  6632. intel_crtc->no_pll = true;
  6633. intel_helper_funcs.prepare = ironlake_crtc_prepare;
  6634. intel_helper_funcs.commit = ironlake_crtc_commit;
  6635. } else {
  6636. intel_helper_funcs.prepare = i9xx_crtc_prepare;
  6637. intel_helper_funcs.commit = i9xx_crtc_commit;
  6638. }
  6639. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6640. intel_crtc->busy = false;
  6641. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  6642. (unsigned long)intel_crtc);
  6643. }
  6644. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6645. struct drm_file *file)
  6646. {
  6647. drm_i915_private_t *dev_priv = dev->dev_private;
  6648. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6649. struct drm_mode_object *drmmode_obj;
  6650. struct intel_crtc *crtc;
  6651. if (!dev_priv) {
  6652. DRM_ERROR("called with no initialization\n");
  6653. return -EINVAL;
  6654. }
  6655. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6656. DRM_MODE_OBJECT_CRTC);
  6657. if (!drmmode_obj) {
  6658. DRM_ERROR("no such CRTC id\n");
  6659. return -EINVAL;
  6660. }
  6661. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6662. pipe_from_crtc_id->pipe = crtc->pipe;
  6663. return 0;
  6664. }
  6665. static int intel_encoder_clones(struct drm_device *dev, int type_mask)
  6666. {
  6667. struct intel_encoder *encoder;
  6668. int index_mask = 0;
  6669. int entry = 0;
  6670. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6671. if (type_mask & encoder->clone_mask)
  6672. index_mask |= (1 << entry);
  6673. entry++;
  6674. }
  6675. return index_mask;
  6676. }
  6677. static bool has_edp_a(struct drm_device *dev)
  6678. {
  6679. struct drm_i915_private *dev_priv = dev->dev_private;
  6680. if (!IS_MOBILE(dev))
  6681. return false;
  6682. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6683. return false;
  6684. if (IS_GEN5(dev) &&
  6685. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6686. return false;
  6687. return true;
  6688. }
  6689. static void intel_setup_outputs(struct drm_device *dev)
  6690. {
  6691. struct drm_i915_private *dev_priv = dev->dev_private;
  6692. struct intel_encoder *encoder;
  6693. bool dpd_is_edp = false;
  6694. bool has_lvds;
  6695. has_lvds = intel_lvds_init(dev);
  6696. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6697. /* disable the panel fitter on everything but LVDS */
  6698. I915_WRITE(PFIT_CONTROL, 0);
  6699. }
  6700. if (HAS_PCH_SPLIT(dev)) {
  6701. dpd_is_edp = intel_dpd_is_edp(dev);
  6702. if (has_edp_a(dev))
  6703. intel_dp_init(dev, DP_A);
  6704. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6705. intel_dp_init(dev, PCH_DP_D);
  6706. }
  6707. intel_crt_init(dev);
  6708. if (HAS_PCH_SPLIT(dev)) {
  6709. int found;
  6710. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6711. /* PCH SDVOB multiplex with HDMIB */
  6712. found = intel_sdvo_init(dev, PCH_SDVOB);
  6713. if (!found)
  6714. intel_hdmi_init(dev, HDMIB);
  6715. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6716. intel_dp_init(dev, PCH_DP_B);
  6717. }
  6718. if (I915_READ(HDMIC) & PORT_DETECTED)
  6719. intel_hdmi_init(dev, HDMIC);
  6720. if (I915_READ(HDMID) & PORT_DETECTED)
  6721. intel_hdmi_init(dev, HDMID);
  6722. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6723. intel_dp_init(dev, PCH_DP_C);
  6724. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6725. intel_dp_init(dev, PCH_DP_D);
  6726. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6727. bool found = false;
  6728. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6729. DRM_DEBUG_KMS("probing SDVOB\n");
  6730. found = intel_sdvo_init(dev, SDVOB);
  6731. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6732. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6733. intel_hdmi_init(dev, SDVOB);
  6734. }
  6735. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6736. DRM_DEBUG_KMS("probing DP_B\n");
  6737. intel_dp_init(dev, DP_B);
  6738. }
  6739. }
  6740. /* Before G4X SDVOC doesn't have its own detect register */
  6741. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6742. DRM_DEBUG_KMS("probing SDVOC\n");
  6743. found = intel_sdvo_init(dev, SDVOC);
  6744. }
  6745. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6746. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6747. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6748. intel_hdmi_init(dev, SDVOC);
  6749. }
  6750. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6751. DRM_DEBUG_KMS("probing DP_C\n");
  6752. intel_dp_init(dev, DP_C);
  6753. }
  6754. }
  6755. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6756. (I915_READ(DP_D) & DP_DETECTED)) {
  6757. DRM_DEBUG_KMS("probing DP_D\n");
  6758. intel_dp_init(dev, DP_D);
  6759. }
  6760. } else if (IS_GEN2(dev))
  6761. intel_dvo_init(dev);
  6762. if (SUPPORTS_TV(dev))
  6763. intel_tv_init(dev);
  6764. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6765. encoder->base.possible_crtcs = encoder->crtc_mask;
  6766. encoder->base.possible_clones =
  6767. intel_encoder_clones(dev, encoder->clone_mask);
  6768. }
  6769. /* disable all the possible outputs/crtcs before entering KMS mode */
  6770. drm_helper_disable_unused_functions(dev);
  6771. if (HAS_PCH_SPLIT(dev))
  6772. ironlake_init_pch_refclk(dev);
  6773. }
  6774. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6775. {
  6776. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6777. drm_framebuffer_cleanup(fb);
  6778. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6779. kfree(intel_fb);
  6780. }
  6781. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6782. struct drm_file *file,
  6783. unsigned int *handle)
  6784. {
  6785. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6786. struct drm_i915_gem_object *obj = intel_fb->obj;
  6787. return drm_gem_handle_create(file, &obj->base, handle);
  6788. }
  6789. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6790. .destroy = intel_user_framebuffer_destroy,
  6791. .create_handle = intel_user_framebuffer_create_handle,
  6792. };
  6793. int intel_framebuffer_init(struct drm_device *dev,
  6794. struct intel_framebuffer *intel_fb,
  6795. struct drm_mode_fb_cmd2 *mode_cmd,
  6796. struct drm_i915_gem_object *obj)
  6797. {
  6798. int ret;
  6799. if (obj->tiling_mode == I915_TILING_Y)
  6800. return -EINVAL;
  6801. if (mode_cmd->pitches[0] & 63)
  6802. return -EINVAL;
  6803. switch (mode_cmd->pixel_format) {
  6804. case DRM_FORMAT_RGB332:
  6805. case DRM_FORMAT_RGB565:
  6806. case DRM_FORMAT_XRGB8888:
  6807. case DRM_FORMAT_XBGR8888:
  6808. case DRM_FORMAT_ARGB8888:
  6809. case DRM_FORMAT_XRGB2101010:
  6810. case DRM_FORMAT_ARGB2101010:
  6811. /* RGB formats are common across chipsets */
  6812. break;
  6813. case DRM_FORMAT_YUYV:
  6814. case DRM_FORMAT_UYVY:
  6815. case DRM_FORMAT_YVYU:
  6816. case DRM_FORMAT_VYUY:
  6817. break;
  6818. default:
  6819. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6820. mode_cmd->pixel_format);
  6821. return -EINVAL;
  6822. }
  6823. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6824. if (ret) {
  6825. DRM_ERROR("framebuffer init failed %d\n", ret);
  6826. return ret;
  6827. }
  6828. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6829. intel_fb->obj = obj;
  6830. return 0;
  6831. }
  6832. static struct drm_framebuffer *
  6833. intel_user_framebuffer_create(struct drm_device *dev,
  6834. struct drm_file *filp,
  6835. struct drm_mode_fb_cmd2 *mode_cmd)
  6836. {
  6837. struct drm_i915_gem_object *obj;
  6838. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6839. mode_cmd->handles[0]));
  6840. if (&obj->base == NULL)
  6841. return ERR_PTR(-ENOENT);
  6842. return intel_framebuffer_create(dev, mode_cmd, obj);
  6843. }
  6844. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6845. .fb_create = intel_user_framebuffer_create,
  6846. .output_poll_changed = intel_fb_output_poll_changed,
  6847. };
  6848. static struct drm_i915_gem_object *
  6849. intel_alloc_context_page(struct drm_device *dev)
  6850. {
  6851. struct drm_i915_gem_object *ctx;
  6852. int ret;
  6853. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  6854. ctx = i915_gem_alloc_object(dev, 4096);
  6855. if (!ctx) {
  6856. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  6857. return NULL;
  6858. }
  6859. ret = i915_gem_object_pin(ctx, 4096, true);
  6860. if (ret) {
  6861. DRM_ERROR("failed to pin power context: %d\n", ret);
  6862. goto err_unref;
  6863. }
  6864. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  6865. if (ret) {
  6866. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  6867. goto err_unpin;
  6868. }
  6869. return ctx;
  6870. err_unpin:
  6871. i915_gem_object_unpin(ctx);
  6872. err_unref:
  6873. drm_gem_object_unreference(&ctx->base);
  6874. mutex_unlock(&dev->struct_mutex);
  6875. return NULL;
  6876. }
  6877. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  6878. {
  6879. struct drm_i915_private *dev_priv = dev->dev_private;
  6880. u16 rgvswctl;
  6881. rgvswctl = I915_READ16(MEMSWCTL);
  6882. if (rgvswctl & MEMCTL_CMD_STS) {
  6883. DRM_DEBUG("gpu busy, RCS change rejected\n");
  6884. return false; /* still busy with another command */
  6885. }
  6886. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  6887. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  6888. I915_WRITE16(MEMSWCTL, rgvswctl);
  6889. POSTING_READ16(MEMSWCTL);
  6890. rgvswctl |= MEMCTL_CMD_STS;
  6891. I915_WRITE16(MEMSWCTL, rgvswctl);
  6892. return true;
  6893. }
  6894. void ironlake_enable_drps(struct drm_device *dev)
  6895. {
  6896. struct drm_i915_private *dev_priv = dev->dev_private;
  6897. u32 rgvmodectl = I915_READ(MEMMODECTL);
  6898. u8 fmax, fmin, fstart, vstart;
  6899. /* Enable temp reporting */
  6900. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  6901. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  6902. /* 100ms RC evaluation intervals */
  6903. I915_WRITE(RCUPEI, 100000);
  6904. I915_WRITE(RCDNEI, 100000);
  6905. /* Set max/min thresholds to 90ms and 80ms respectively */
  6906. I915_WRITE(RCBMAXAVG, 90000);
  6907. I915_WRITE(RCBMINAVG, 80000);
  6908. I915_WRITE(MEMIHYST, 1);
  6909. /* Set up min, max, and cur for interrupt handling */
  6910. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  6911. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  6912. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  6913. MEMMODE_FSTART_SHIFT;
  6914. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  6915. PXVFREQ_PX_SHIFT;
  6916. dev_priv->fmax = fmax; /* IPS callback will increase this */
  6917. dev_priv->fstart = fstart;
  6918. dev_priv->max_delay = fstart;
  6919. dev_priv->min_delay = fmin;
  6920. dev_priv->cur_delay = fstart;
  6921. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  6922. fmax, fmin, fstart);
  6923. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  6924. /*
  6925. * Interrupts will be enabled in ironlake_irq_postinstall
  6926. */
  6927. I915_WRITE(VIDSTART, vstart);
  6928. POSTING_READ(VIDSTART);
  6929. rgvmodectl |= MEMMODE_SWMODE_EN;
  6930. I915_WRITE(MEMMODECTL, rgvmodectl);
  6931. if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  6932. DRM_ERROR("stuck trying to change perf mode\n");
  6933. msleep(1);
  6934. ironlake_set_drps(dev, fstart);
  6935. dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  6936. I915_READ(0x112e0);
  6937. dev_priv->last_time1 = jiffies_to_msecs(jiffies);
  6938. dev_priv->last_count2 = I915_READ(0x112f4);
  6939. getrawmonotonic(&dev_priv->last_time2);
  6940. }
  6941. void ironlake_disable_drps(struct drm_device *dev)
  6942. {
  6943. struct drm_i915_private *dev_priv = dev->dev_private;
  6944. u16 rgvswctl = I915_READ16(MEMSWCTL);
  6945. /* Ack interrupts, disable EFC interrupt */
  6946. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  6947. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  6948. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  6949. I915_WRITE(DEIIR, DE_PCU_EVENT);
  6950. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  6951. /* Go back to the starting frequency */
  6952. ironlake_set_drps(dev, dev_priv->fstart);
  6953. msleep(1);
  6954. rgvswctl |= MEMCTL_CMD_STS;
  6955. I915_WRITE(MEMSWCTL, rgvswctl);
  6956. msleep(1);
  6957. }
  6958. void gen6_set_rps(struct drm_device *dev, u8 val)
  6959. {
  6960. struct drm_i915_private *dev_priv = dev->dev_private;
  6961. u32 swreq;
  6962. swreq = (val & 0x3ff) << 25;
  6963. I915_WRITE(GEN6_RPNSWREQ, swreq);
  6964. }
  6965. void gen6_disable_rps(struct drm_device *dev)
  6966. {
  6967. struct drm_i915_private *dev_priv = dev->dev_private;
  6968. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  6969. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  6970. I915_WRITE(GEN6_PMIER, 0);
  6971. /* Complete PM interrupt masking here doesn't race with the rps work
  6972. * item again unmasking PM interrupts because that is using a different
  6973. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  6974. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  6975. spin_lock_irq(&dev_priv->rps_lock);
  6976. dev_priv->pm_iir = 0;
  6977. spin_unlock_irq(&dev_priv->rps_lock);
  6978. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  6979. }
  6980. static unsigned long intel_pxfreq(u32 vidfreq)
  6981. {
  6982. unsigned long freq;
  6983. int div = (vidfreq & 0x3f0000) >> 16;
  6984. int post = (vidfreq & 0x3000) >> 12;
  6985. int pre = (vidfreq & 0x7);
  6986. if (!pre)
  6987. return 0;
  6988. freq = ((div * 133333) / ((1<<post) * pre));
  6989. return freq;
  6990. }
  6991. void intel_init_emon(struct drm_device *dev)
  6992. {
  6993. struct drm_i915_private *dev_priv = dev->dev_private;
  6994. u32 lcfuse;
  6995. u8 pxw[16];
  6996. int i;
  6997. /* Disable to program */
  6998. I915_WRITE(ECR, 0);
  6999. POSTING_READ(ECR);
  7000. /* Program energy weights for various events */
  7001. I915_WRITE(SDEW, 0x15040d00);
  7002. I915_WRITE(CSIEW0, 0x007f0000);
  7003. I915_WRITE(CSIEW1, 0x1e220004);
  7004. I915_WRITE(CSIEW2, 0x04000004);
  7005. for (i = 0; i < 5; i++)
  7006. I915_WRITE(PEW + (i * 4), 0);
  7007. for (i = 0; i < 3; i++)
  7008. I915_WRITE(DEW + (i * 4), 0);
  7009. /* Program P-state weights to account for frequency power adjustment */
  7010. for (i = 0; i < 16; i++) {
  7011. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  7012. unsigned long freq = intel_pxfreq(pxvidfreq);
  7013. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  7014. PXVFREQ_PX_SHIFT;
  7015. unsigned long val;
  7016. val = vid * vid;
  7017. val *= (freq / 1000);
  7018. val *= 255;
  7019. val /= (127*127*900);
  7020. if (val > 0xff)
  7021. DRM_ERROR("bad pxval: %ld\n", val);
  7022. pxw[i] = val;
  7023. }
  7024. /* Render standby states get 0 weight */
  7025. pxw[14] = 0;
  7026. pxw[15] = 0;
  7027. for (i = 0; i < 4; i++) {
  7028. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  7029. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  7030. I915_WRITE(PXW + (i * 4), val);
  7031. }
  7032. /* Adjust magic regs to magic values (more experimental results) */
  7033. I915_WRITE(OGW0, 0);
  7034. I915_WRITE(OGW1, 0);
  7035. I915_WRITE(EG0, 0x00007f00);
  7036. I915_WRITE(EG1, 0x0000000e);
  7037. I915_WRITE(EG2, 0x000e0000);
  7038. I915_WRITE(EG3, 0x68000300);
  7039. I915_WRITE(EG4, 0x42000000);
  7040. I915_WRITE(EG5, 0x00140031);
  7041. I915_WRITE(EG6, 0);
  7042. I915_WRITE(EG7, 0);
  7043. for (i = 0; i < 8; i++)
  7044. I915_WRITE(PXWL + (i * 4), 0);
  7045. /* Enable PMON + select events */
  7046. I915_WRITE(ECR, 0x80000019);
  7047. lcfuse = I915_READ(LCFUSE02);
  7048. dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
  7049. }
  7050. static int intel_enable_rc6(struct drm_device *dev)
  7051. {
  7052. /*
  7053. * Respect the kernel parameter if it is set
  7054. */
  7055. if (i915_enable_rc6 >= 0)
  7056. return i915_enable_rc6;
  7057. /*
  7058. * Disable RC6 on Ironlake
  7059. */
  7060. if (INTEL_INFO(dev)->gen == 5)
  7061. return 0;
  7062. /*
  7063. * Disable rc6 on Sandybridge
  7064. */
  7065. if (INTEL_INFO(dev)->gen == 6) {
  7066. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  7067. return INTEL_RC6_ENABLE;
  7068. }
  7069. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  7070. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  7071. }
  7072. void gen6_enable_rps(struct drm_i915_private *dev_priv)
  7073. {
  7074. u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  7075. u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  7076. u32 pcu_mbox, rc6_mask = 0;
  7077. u32 gtfifodbg;
  7078. int cur_freq, min_freq, max_freq;
  7079. int rc6_mode;
  7080. int i;
  7081. /* Here begins a magic sequence of register writes to enable
  7082. * auto-downclocking.
  7083. *
  7084. * Perhaps there might be some value in exposing these to
  7085. * userspace...
  7086. */
  7087. I915_WRITE(GEN6_RC_STATE, 0);
  7088. mutex_lock(&dev_priv->dev->struct_mutex);
  7089. /* Clear the DBG now so we don't confuse earlier errors */
  7090. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  7091. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  7092. I915_WRITE(GTFIFODBG, gtfifodbg);
  7093. }
  7094. gen6_gt_force_wake_get(dev_priv);
  7095. /* disable the counters and set deterministic thresholds */
  7096. I915_WRITE(GEN6_RC_CONTROL, 0);
  7097. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  7098. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  7099. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  7100. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  7101. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  7102. for (i = 0; i < I915_NUM_RINGS; i++)
  7103. I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
  7104. I915_WRITE(GEN6_RC_SLEEP, 0);
  7105. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  7106. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  7107. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  7108. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  7109. rc6_mode = intel_enable_rc6(dev_priv->dev);
  7110. if (rc6_mode & INTEL_RC6_ENABLE)
  7111. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  7112. if (rc6_mode & INTEL_RC6p_ENABLE)
  7113. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  7114. if (rc6_mode & INTEL_RC6pp_ENABLE)
  7115. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  7116. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  7117. (rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
  7118. (rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
  7119. (rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
  7120. I915_WRITE(GEN6_RC_CONTROL,
  7121. rc6_mask |
  7122. GEN6_RC_CTL_EI_MODE(1) |
  7123. GEN6_RC_CTL_HW_ENABLE);
  7124. I915_WRITE(GEN6_RPNSWREQ,
  7125. GEN6_FREQUENCY(10) |
  7126. GEN6_OFFSET(0) |
  7127. GEN6_AGGRESSIVE_TURBO);
  7128. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  7129. GEN6_FREQUENCY(12));
  7130. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  7131. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  7132. 18 << 24 |
  7133. 6 << 16);
  7134. I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
  7135. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
  7136. I915_WRITE(GEN6_RP_UP_EI, 100000);
  7137. I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
  7138. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  7139. I915_WRITE(GEN6_RP_CONTROL,
  7140. GEN6_RP_MEDIA_TURBO |
  7141. GEN6_RP_MEDIA_HW_MODE |
  7142. GEN6_RP_MEDIA_IS_GFX |
  7143. GEN6_RP_ENABLE |
  7144. GEN6_RP_UP_BUSY_AVG |
  7145. GEN6_RP_DOWN_IDLE_CONT);
  7146. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7147. 500))
  7148. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7149. I915_WRITE(GEN6_PCODE_DATA, 0);
  7150. I915_WRITE(GEN6_PCODE_MAILBOX,
  7151. GEN6_PCODE_READY |
  7152. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7153. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7154. 500))
  7155. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7156. min_freq = (rp_state_cap & 0xff0000) >> 16;
  7157. max_freq = rp_state_cap & 0xff;
  7158. cur_freq = (gt_perf_status & 0xff00) >> 8;
  7159. /* Check for overclock support */
  7160. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7161. 500))
  7162. DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
  7163. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
  7164. pcu_mbox = I915_READ(GEN6_PCODE_DATA);
  7165. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  7166. 500))
  7167. DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
  7168. if (pcu_mbox & (1<<31)) { /* OC supported */
  7169. max_freq = pcu_mbox & 0xff;
  7170. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  7171. }
  7172. /* In units of 100MHz */
  7173. dev_priv->max_delay = max_freq;
  7174. dev_priv->min_delay = min_freq;
  7175. dev_priv->cur_delay = cur_freq;
  7176. /* requires MSI enabled */
  7177. I915_WRITE(GEN6_PMIER,
  7178. GEN6_PM_MBOX_EVENT |
  7179. GEN6_PM_THERMAL_EVENT |
  7180. GEN6_PM_RP_DOWN_TIMEOUT |
  7181. GEN6_PM_RP_UP_THRESHOLD |
  7182. GEN6_PM_RP_DOWN_THRESHOLD |
  7183. GEN6_PM_RP_UP_EI_EXPIRED |
  7184. GEN6_PM_RP_DOWN_EI_EXPIRED);
  7185. spin_lock_irq(&dev_priv->rps_lock);
  7186. WARN_ON(dev_priv->pm_iir != 0);
  7187. I915_WRITE(GEN6_PMIMR, 0);
  7188. spin_unlock_irq(&dev_priv->rps_lock);
  7189. /* enable all PM interrupts */
  7190. I915_WRITE(GEN6_PMINTRMSK, 0);
  7191. gen6_gt_force_wake_put(dev_priv);
  7192. mutex_unlock(&dev_priv->dev->struct_mutex);
  7193. }
  7194. void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
  7195. {
  7196. int min_freq = 15;
  7197. int gpu_freq, ia_freq, max_ia_freq;
  7198. int scaling_factor = 180;
  7199. max_ia_freq = cpufreq_quick_get_max(0);
  7200. /*
  7201. * Default to measured freq if none found, PCU will ensure we don't go
  7202. * over
  7203. */
  7204. if (!max_ia_freq)
  7205. max_ia_freq = tsc_khz;
  7206. /* Convert from kHz to MHz */
  7207. max_ia_freq /= 1000;
  7208. mutex_lock(&dev_priv->dev->struct_mutex);
  7209. /*
  7210. * For each potential GPU frequency, load a ring frequency we'd like
  7211. * to use for memory access. We do this by specifying the IA frequency
  7212. * the PCU should use as a reference to determine the ring frequency.
  7213. */
  7214. for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
  7215. gpu_freq--) {
  7216. int diff = dev_priv->max_delay - gpu_freq;
  7217. /*
  7218. * For GPU frequencies less than 750MHz, just use the lowest
  7219. * ring freq.
  7220. */
  7221. if (gpu_freq < min_freq)
  7222. ia_freq = 800;
  7223. else
  7224. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  7225. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  7226. I915_WRITE(GEN6_PCODE_DATA,
  7227. (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
  7228. gpu_freq);
  7229. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
  7230. GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
  7231. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
  7232. GEN6_PCODE_READY) == 0, 10)) {
  7233. DRM_ERROR("pcode write of freq table timed out\n");
  7234. continue;
  7235. }
  7236. }
  7237. mutex_unlock(&dev_priv->dev->struct_mutex);
  7238. }
  7239. static void ironlake_init_clock_gating(struct drm_device *dev)
  7240. {
  7241. struct drm_i915_private *dev_priv = dev->dev_private;
  7242. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7243. /* Required for FBC */
  7244. dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
  7245. DPFCRUNIT_CLOCK_GATE_DISABLE |
  7246. DPFDUNIT_CLOCK_GATE_DISABLE;
  7247. /* Required for CxSR */
  7248. dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
  7249. I915_WRITE(PCH_3DCGDIS0,
  7250. MARIUNIT_CLOCK_GATE_DISABLE |
  7251. SVSMUNIT_CLOCK_GATE_DISABLE);
  7252. I915_WRITE(PCH_3DCGDIS1,
  7253. VFMUNIT_CLOCK_GATE_DISABLE);
  7254. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7255. /*
  7256. * According to the spec the following bits should be set in
  7257. * order to enable memory self-refresh
  7258. * The bit 22/21 of 0x42004
  7259. * The bit 5 of 0x42020
  7260. * The bit 15 of 0x45000
  7261. */
  7262. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7263. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  7264. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  7265. I915_WRITE(ILK_DSPCLK_GATE,
  7266. (I915_READ(ILK_DSPCLK_GATE) |
  7267. ILK_DPARB_CLK_GATE));
  7268. I915_WRITE(DISP_ARB_CTL,
  7269. (I915_READ(DISP_ARB_CTL) |
  7270. DISP_FBC_WM_DIS));
  7271. I915_WRITE(WM3_LP_ILK, 0);
  7272. I915_WRITE(WM2_LP_ILK, 0);
  7273. I915_WRITE(WM1_LP_ILK, 0);
  7274. /*
  7275. * Based on the document from hardware guys the following bits
  7276. * should be set unconditionally in order to enable FBC.
  7277. * The bit 22 of 0x42000
  7278. * The bit 22 of 0x42004
  7279. * The bit 7,8,9 of 0x42020.
  7280. */
  7281. if (IS_IRONLAKE_M(dev)) {
  7282. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7283. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7284. ILK_FBCQ_DIS);
  7285. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7286. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7287. ILK_DPARB_GATE);
  7288. I915_WRITE(ILK_DSPCLK_GATE,
  7289. I915_READ(ILK_DSPCLK_GATE) |
  7290. ILK_DPFC_DIS1 |
  7291. ILK_DPFC_DIS2 |
  7292. ILK_CLK_FBC);
  7293. }
  7294. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7295. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7296. ILK_ELPIN_409_SELECT);
  7297. I915_WRITE(_3D_CHICKEN2,
  7298. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  7299. _3D_CHICKEN2_WM_READ_PIPELINED);
  7300. }
  7301. static void gen6_init_clock_gating(struct drm_device *dev)
  7302. {
  7303. struct drm_i915_private *dev_priv = dev->dev_private;
  7304. int pipe;
  7305. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7306. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7307. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7308. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7309. ILK_ELPIN_409_SELECT);
  7310. I915_WRITE(WM3_LP_ILK, 0);
  7311. I915_WRITE(WM2_LP_ILK, 0);
  7312. I915_WRITE(WM1_LP_ILK, 0);
  7313. I915_WRITE(GEN6_UCGCTL1,
  7314. I915_READ(GEN6_UCGCTL1) |
  7315. GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
  7316. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  7317. * gating disable must be set. Failure to set it results in
  7318. * flickering pixels due to Z write ordering failures after
  7319. * some amount of runtime in the Mesa "fire" demo, and Unigine
  7320. * Sanctuary and Tropics, and apparently anything else with
  7321. * alpha test or pixel discard.
  7322. *
  7323. * According to the spec, bit 11 (RCCUNIT) must also be set,
  7324. * but we didn't debug actual testcases to find it out.
  7325. */
  7326. I915_WRITE(GEN6_UCGCTL2,
  7327. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  7328. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  7329. /*
  7330. * According to the spec the following bits should be
  7331. * set in order to enable memory self-refresh and fbc:
  7332. * The bit21 and bit22 of 0x42000
  7333. * The bit21 and bit22 of 0x42004
  7334. * The bit5 and bit7 of 0x42020
  7335. * The bit14 of 0x70180
  7336. * The bit14 of 0x71180
  7337. */
  7338. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  7339. I915_READ(ILK_DISPLAY_CHICKEN1) |
  7340. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  7341. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  7342. I915_READ(ILK_DISPLAY_CHICKEN2) |
  7343. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  7344. I915_WRITE(ILK_DSPCLK_GATE,
  7345. I915_READ(ILK_DSPCLK_GATE) |
  7346. ILK_DPARB_CLK_GATE |
  7347. ILK_DPFD_CLK_GATE);
  7348. for_each_pipe(pipe) {
  7349. I915_WRITE(DSPCNTR(pipe),
  7350. I915_READ(DSPCNTR(pipe)) |
  7351. DISPPLANE_TRICKLE_FEED_DISABLE);
  7352. intel_flush_display_plane(dev_priv, pipe);
  7353. }
  7354. }
  7355. static void ivybridge_init_clock_gating(struct drm_device *dev)
  7356. {
  7357. struct drm_i915_private *dev_priv = dev->dev_private;
  7358. int pipe;
  7359. uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
  7360. I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
  7361. I915_WRITE(WM3_LP_ILK, 0);
  7362. I915_WRITE(WM2_LP_ILK, 0);
  7363. I915_WRITE(WM1_LP_ILK, 0);
  7364. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  7365. * This implements the WaDisableRCZUnitClockGating workaround.
  7366. */
  7367. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  7368. I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
  7369. I915_WRITE(IVB_CHICKEN3,
  7370. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  7371. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  7372. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  7373. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  7374. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  7375. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  7376. I915_WRITE(GEN7_L3CNTLREG1,
  7377. GEN7_WA_FOR_GEN7_L3_CONTROL);
  7378. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  7379. GEN7_WA_L3_CHICKEN_MODE);
  7380. /* This is required by WaCatErrorRejectionIssue */
  7381. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  7382. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  7383. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  7384. for_each_pipe(pipe) {
  7385. I915_WRITE(DSPCNTR(pipe),
  7386. I915_READ(DSPCNTR(pipe)) |
  7387. DISPPLANE_TRICKLE_FEED_DISABLE);
  7388. intel_flush_display_plane(dev_priv, pipe);
  7389. }
  7390. }
  7391. static void g4x_init_clock_gating(struct drm_device *dev)
  7392. {
  7393. struct drm_i915_private *dev_priv = dev->dev_private;
  7394. uint32_t dspclk_gate;
  7395. I915_WRITE(RENCLK_GATE_D1, 0);
  7396. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  7397. GS_UNIT_CLOCK_GATE_DISABLE |
  7398. CL_UNIT_CLOCK_GATE_DISABLE);
  7399. I915_WRITE(RAMCLK_GATE_D, 0);
  7400. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  7401. OVRUNIT_CLOCK_GATE_DISABLE |
  7402. OVCUNIT_CLOCK_GATE_DISABLE;
  7403. if (IS_GM45(dev))
  7404. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  7405. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  7406. }
  7407. static void crestline_init_clock_gating(struct drm_device *dev)
  7408. {
  7409. struct drm_i915_private *dev_priv = dev->dev_private;
  7410. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  7411. I915_WRITE(RENCLK_GATE_D2, 0);
  7412. I915_WRITE(DSPCLK_GATE_D, 0);
  7413. I915_WRITE(RAMCLK_GATE_D, 0);
  7414. I915_WRITE16(DEUC, 0);
  7415. }
  7416. static void broadwater_init_clock_gating(struct drm_device *dev)
  7417. {
  7418. struct drm_i915_private *dev_priv = dev->dev_private;
  7419. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  7420. I965_RCC_CLOCK_GATE_DISABLE |
  7421. I965_RCPB_CLOCK_GATE_DISABLE |
  7422. I965_ISC_CLOCK_GATE_DISABLE |
  7423. I965_FBC_CLOCK_GATE_DISABLE);
  7424. I915_WRITE(RENCLK_GATE_D2, 0);
  7425. }
  7426. static void gen3_init_clock_gating(struct drm_device *dev)
  7427. {
  7428. struct drm_i915_private *dev_priv = dev->dev_private;
  7429. u32 dstate = I915_READ(D_STATE);
  7430. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  7431. DSTATE_DOT_CLOCK_GATING;
  7432. I915_WRITE(D_STATE, dstate);
  7433. }
  7434. static void i85x_init_clock_gating(struct drm_device *dev)
  7435. {
  7436. struct drm_i915_private *dev_priv = dev->dev_private;
  7437. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  7438. }
  7439. static void i830_init_clock_gating(struct drm_device *dev)
  7440. {
  7441. struct drm_i915_private *dev_priv = dev->dev_private;
  7442. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  7443. }
  7444. static void ibx_init_clock_gating(struct drm_device *dev)
  7445. {
  7446. struct drm_i915_private *dev_priv = dev->dev_private;
  7447. /*
  7448. * On Ibex Peak and Cougar Point, we need to disable clock
  7449. * gating for the panel power sequencer or it will fail to
  7450. * start up when no ports are active.
  7451. */
  7452. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7453. }
  7454. static void cpt_init_clock_gating(struct drm_device *dev)
  7455. {
  7456. struct drm_i915_private *dev_priv = dev->dev_private;
  7457. int pipe;
  7458. /*
  7459. * On Ibex Peak and Cougar Point, we need to disable clock
  7460. * gating for the panel power sequencer or it will fail to
  7461. * start up when no ports are active.
  7462. */
  7463. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  7464. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  7465. DPLS_EDP_PPS_FIX_DIS);
  7466. /* Without this, mode sets may fail silently on FDI */
  7467. for_each_pipe(pipe)
  7468. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
  7469. }
  7470. static void ironlake_teardown_rc6(struct drm_device *dev)
  7471. {
  7472. struct drm_i915_private *dev_priv = dev->dev_private;
  7473. if (dev_priv->renderctx) {
  7474. i915_gem_object_unpin(dev_priv->renderctx);
  7475. drm_gem_object_unreference(&dev_priv->renderctx->base);
  7476. dev_priv->renderctx = NULL;
  7477. }
  7478. if (dev_priv->pwrctx) {
  7479. i915_gem_object_unpin(dev_priv->pwrctx);
  7480. drm_gem_object_unreference(&dev_priv->pwrctx->base);
  7481. dev_priv->pwrctx = NULL;
  7482. }
  7483. }
  7484. static void ironlake_disable_rc6(struct drm_device *dev)
  7485. {
  7486. struct drm_i915_private *dev_priv = dev->dev_private;
  7487. if (I915_READ(PWRCTXA)) {
  7488. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  7489. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  7490. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  7491. 50);
  7492. I915_WRITE(PWRCTXA, 0);
  7493. POSTING_READ(PWRCTXA);
  7494. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7495. POSTING_READ(RSTDBYCTL);
  7496. }
  7497. ironlake_teardown_rc6(dev);
  7498. }
  7499. static int ironlake_setup_rc6(struct drm_device *dev)
  7500. {
  7501. struct drm_i915_private *dev_priv = dev->dev_private;
  7502. if (dev_priv->renderctx == NULL)
  7503. dev_priv->renderctx = intel_alloc_context_page(dev);
  7504. if (!dev_priv->renderctx)
  7505. return -ENOMEM;
  7506. if (dev_priv->pwrctx == NULL)
  7507. dev_priv->pwrctx = intel_alloc_context_page(dev);
  7508. if (!dev_priv->pwrctx) {
  7509. ironlake_teardown_rc6(dev);
  7510. return -ENOMEM;
  7511. }
  7512. return 0;
  7513. }
  7514. void ironlake_enable_rc6(struct drm_device *dev)
  7515. {
  7516. struct drm_i915_private *dev_priv = dev->dev_private;
  7517. int ret;
  7518. /* rc6 disabled by default due to repeated reports of hanging during
  7519. * boot and resume.
  7520. */
  7521. if (!intel_enable_rc6(dev))
  7522. return;
  7523. mutex_lock(&dev->struct_mutex);
  7524. ret = ironlake_setup_rc6(dev);
  7525. if (ret) {
  7526. mutex_unlock(&dev->struct_mutex);
  7527. return;
  7528. }
  7529. /*
  7530. * GPU can automatically power down the render unit if given a page
  7531. * to save state.
  7532. */
  7533. ret = BEGIN_LP_RING(6);
  7534. if (ret) {
  7535. ironlake_teardown_rc6(dev);
  7536. mutex_unlock(&dev->struct_mutex);
  7537. return;
  7538. }
  7539. OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  7540. OUT_RING(MI_SET_CONTEXT);
  7541. OUT_RING(dev_priv->renderctx->gtt_offset |
  7542. MI_MM_SPACE_GTT |
  7543. MI_SAVE_EXT_STATE_EN |
  7544. MI_RESTORE_EXT_STATE_EN |
  7545. MI_RESTORE_INHIBIT);
  7546. OUT_RING(MI_SUSPEND_FLUSH);
  7547. OUT_RING(MI_NOOP);
  7548. OUT_RING(MI_FLUSH);
  7549. ADVANCE_LP_RING();
  7550. /*
  7551. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  7552. * does an implicit flush, combined with MI_FLUSH above, it should be
  7553. * safe to assume that renderctx is valid
  7554. */
  7555. ret = intel_wait_ring_idle(LP_RING(dev_priv));
  7556. if (ret) {
  7557. DRM_ERROR("failed to enable ironlake power power savings\n");
  7558. ironlake_teardown_rc6(dev);
  7559. mutex_unlock(&dev->struct_mutex);
  7560. return;
  7561. }
  7562. I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
  7563. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  7564. mutex_unlock(&dev->struct_mutex);
  7565. }
  7566. void intel_init_clock_gating(struct drm_device *dev)
  7567. {
  7568. struct drm_i915_private *dev_priv = dev->dev_private;
  7569. dev_priv->display.init_clock_gating(dev);
  7570. if (dev_priv->display.init_pch_clock_gating)
  7571. dev_priv->display.init_pch_clock_gating(dev);
  7572. }
  7573. /* Set up chip specific display functions */
  7574. static void intel_init_display(struct drm_device *dev)
  7575. {
  7576. struct drm_i915_private *dev_priv = dev->dev_private;
  7577. /* We always want a DPMS function */
  7578. if (HAS_PCH_SPLIT(dev)) {
  7579. dev_priv->display.dpms = ironlake_crtc_dpms;
  7580. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7581. dev_priv->display.update_plane = ironlake_update_plane;
  7582. } else {
  7583. dev_priv->display.dpms = i9xx_crtc_dpms;
  7584. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7585. dev_priv->display.update_plane = i9xx_update_plane;
  7586. }
  7587. if (I915_HAS_FBC(dev)) {
  7588. if (HAS_PCH_SPLIT(dev)) {
  7589. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  7590. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  7591. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  7592. } else if (IS_GM45(dev)) {
  7593. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  7594. dev_priv->display.enable_fbc = g4x_enable_fbc;
  7595. dev_priv->display.disable_fbc = g4x_disable_fbc;
  7596. } else if (IS_CRESTLINE(dev)) {
  7597. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  7598. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  7599. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  7600. }
  7601. /* 855GM needs testing */
  7602. }
  7603. /* Returns the core display clock speed */
  7604. if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7605. dev_priv->display.get_display_clock_speed =
  7606. i945_get_display_clock_speed;
  7607. else if (IS_I915G(dev))
  7608. dev_priv->display.get_display_clock_speed =
  7609. i915_get_display_clock_speed;
  7610. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7611. dev_priv->display.get_display_clock_speed =
  7612. i9xx_misc_get_display_clock_speed;
  7613. else if (IS_I915GM(dev))
  7614. dev_priv->display.get_display_clock_speed =
  7615. i915gm_get_display_clock_speed;
  7616. else if (IS_I865G(dev))
  7617. dev_priv->display.get_display_clock_speed =
  7618. i865_get_display_clock_speed;
  7619. else if (IS_I85X(dev))
  7620. dev_priv->display.get_display_clock_speed =
  7621. i855_get_display_clock_speed;
  7622. else /* 852, 830 */
  7623. dev_priv->display.get_display_clock_speed =
  7624. i830_get_display_clock_speed;
  7625. /* For FIFO watermark updates */
  7626. if (HAS_PCH_SPLIT(dev)) {
  7627. dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
  7628. dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
  7629. /* IVB configs may use multi-threaded forcewake */
  7630. if (IS_IVYBRIDGE(dev)) {
  7631. u32 ecobus;
  7632. /* A small trick here - if the bios hasn't configured MT forcewake,
  7633. * and if the device is in RC6, then force_wake_mt_get will not wake
  7634. * the device and the ECOBUS read will return zero. Which will be
  7635. * (correctly) interpreted by the test below as MT forcewake being
  7636. * disabled.
  7637. */
  7638. mutex_lock(&dev->struct_mutex);
  7639. __gen6_gt_force_wake_mt_get(dev_priv);
  7640. ecobus = I915_READ_NOTRACE(ECOBUS);
  7641. __gen6_gt_force_wake_mt_put(dev_priv);
  7642. mutex_unlock(&dev->struct_mutex);
  7643. if (ecobus & FORCEWAKE_MT_ENABLE) {
  7644. DRM_DEBUG_KMS("Using MT version of forcewake\n");
  7645. dev_priv->display.force_wake_get =
  7646. __gen6_gt_force_wake_mt_get;
  7647. dev_priv->display.force_wake_put =
  7648. __gen6_gt_force_wake_mt_put;
  7649. }
  7650. }
  7651. if (HAS_PCH_IBX(dev))
  7652. dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
  7653. else if (HAS_PCH_CPT(dev))
  7654. dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
  7655. if (IS_GEN5(dev)) {
  7656. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  7657. dev_priv->display.update_wm = ironlake_update_wm;
  7658. else {
  7659. DRM_DEBUG_KMS("Failed to get proper latency. "
  7660. "Disable CxSR\n");
  7661. dev_priv->display.update_wm = NULL;
  7662. }
  7663. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7664. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  7665. dev_priv->display.write_eld = ironlake_write_eld;
  7666. } else if (IS_GEN6(dev)) {
  7667. if (SNB_READ_WM0_LATENCY()) {
  7668. dev_priv->display.update_wm = sandybridge_update_wm;
  7669. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7670. } else {
  7671. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7672. "Disable CxSR\n");
  7673. dev_priv->display.update_wm = NULL;
  7674. }
  7675. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7676. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  7677. dev_priv->display.write_eld = ironlake_write_eld;
  7678. } else if (IS_IVYBRIDGE(dev)) {
  7679. /* FIXME: detect B0+ stepping and use auto training */
  7680. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7681. if (SNB_READ_WM0_LATENCY()) {
  7682. dev_priv->display.update_wm = sandybridge_update_wm;
  7683. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  7684. } else {
  7685. DRM_DEBUG_KMS("Failed to read display plane latency. "
  7686. "Disable CxSR\n");
  7687. dev_priv->display.update_wm = NULL;
  7688. }
  7689. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  7690. dev_priv->display.write_eld = ironlake_write_eld;
  7691. } else
  7692. dev_priv->display.update_wm = NULL;
  7693. } else if (IS_PINEVIEW(dev)) {
  7694. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  7695. dev_priv->is_ddr3,
  7696. dev_priv->fsb_freq,
  7697. dev_priv->mem_freq)) {
  7698. DRM_INFO("failed to find known CxSR latency "
  7699. "(found ddr%s fsb freq %d, mem freq %d), "
  7700. "disabling CxSR\n",
  7701. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  7702. dev_priv->fsb_freq, dev_priv->mem_freq);
  7703. /* Disable CxSR and never update its watermark again */
  7704. pineview_disable_cxsr(dev);
  7705. dev_priv->display.update_wm = NULL;
  7706. } else
  7707. dev_priv->display.update_wm = pineview_update_wm;
  7708. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7709. } else if (IS_G4X(dev)) {
  7710. dev_priv->display.write_eld = g4x_write_eld;
  7711. dev_priv->display.update_wm = g4x_update_wm;
  7712. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  7713. } else if (IS_GEN4(dev)) {
  7714. dev_priv->display.update_wm = i965_update_wm;
  7715. if (IS_CRESTLINE(dev))
  7716. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  7717. else if (IS_BROADWATER(dev))
  7718. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  7719. } else if (IS_GEN3(dev)) {
  7720. dev_priv->display.update_wm = i9xx_update_wm;
  7721. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  7722. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  7723. } else if (IS_I865G(dev)) {
  7724. dev_priv->display.update_wm = i830_update_wm;
  7725. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7726. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7727. } else if (IS_I85X(dev)) {
  7728. dev_priv->display.update_wm = i9xx_update_wm;
  7729. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  7730. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  7731. } else {
  7732. dev_priv->display.update_wm = i830_update_wm;
  7733. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  7734. if (IS_845G(dev))
  7735. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  7736. else
  7737. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  7738. }
  7739. /* Default just returns -ENODEV to indicate unsupported */
  7740. dev_priv->display.queue_flip = intel_default_queue_flip;
  7741. switch (INTEL_INFO(dev)->gen) {
  7742. case 2:
  7743. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7744. break;
  7745. case 3:
  7746. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7747. break;
  7748. case 4:
  7749. case 5:
  7750. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7751. break;
  7752. case 6:
  7753. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7754. break;
  7755. case 7:
  7756. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7757. break;
  7758. }
  7759. }
  7760. /*
  7761. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7762. * resume, or other times. This quirk makes sure that's the case for
  7763. * affected systems.
  7764. */
  7765. static void quirk_pipea_force(struct drm_device *dev)
  7766. {
  7767. struct drm_i915_private *dev_priv = dev->dev_private;
  7768. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7769. DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
  7770. }
  7771. /*
  7772. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7773. */
  7774. static void quirk_ssc_force_disable(struct drm_device *dev)
  7775. {
  7776. struct drm_i915_private *dev_priv = dev->dev_private;
  7777. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7778. }
  7779. struct intel_quirk {
  7780. int device;
  7781. int subsystem_vendor;
  7782. int subsystem_device;
  7783. void (*hook)(struct drm_device *dev);
  7784. };
  7785. struct intel_quirk intel_quirks[] = {
  7786. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7787. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7788. /* Thinkpad R31 needs pipe A force quirk */
  7789. { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
  7790. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7791. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7792. /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
  7793. { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
  7794. /* ThinkPad X40 needs pipe A force quirk */
  7795. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7796. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7797. /* 855 & before need to leave pipe A & dpll A up */
  7798. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7799. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7800. /* Lenovo U160 cannot use SSC on LVDS */
  7801. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7802. /* Sony Vaio Y cannot use SSC on LVDS */
  7803. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7804. };
  7805. static void intel_init_quirks(struct drm_device *dev)
  7806. {
  7807. struct pci_dev *d = dev->pdev;
  7808. int i;
  7809. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7810. struct intel_quirk *q = &intel_quirks[i];
  7811. if (d->device == q->device &&
  7812. (d->subsystem_vendor == q->subsystem_vendor ||
  7813. q->subsystem_vendor == PCI_ANY_ID) &&
  7814. (d->subsystem_device == q->subsystem_device ||
  7815. q->subsystem_device == PCI_ANY_ID))
  7816. q->hook(dev);
  7817. }
  7818. }
  7819. /* Disable the VGA plane that we never use */
  7820. static void i915_disable_vga(struct drm_device *dev)
  7821. {
  7822. struct drm_i915_private *dev_priv = dev->dev_private;
  7823. u8 sr1;
  7824. u32 vga_reg;
  7825. if (HAS_PCH_SPLIT(dev))
  7826. vga_reg = CPU_VGACNTRL;
  7827. else
  7828. vga_reg = VGACNTRL;
  7829. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7830. outb(1, VGA_SR_INDEX);
  7831. sr1 = inb(VGA_SR_DATA);
  7832. outb(sr1 | 1<<5, VGA_SR_DATA);
  7833. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7834. udelay(300);
  7835. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7836. POSTING_READ(vga_reg);
  7837. }
  7838. void intel_modeset_init(struct drm_device *dev)
  7839. {
  7840. struct drm_i915_private *dev_priv = dev->dev_private;
  7841. int i, ret;
  7842. drm_mode_config_init(dev);
  7843. dev->mode_config.min_width = 0;
  7844. dev->mode_config.min_height = 0;
  7845. dev->mode_config.preferred_depth = 24;
  7846. dev->mode_config.prefer_shadow = 1;
  7847. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  7848. intel_init_quirks(dev);
  7849. intel_init_display(dev);
  7850. if (IS_GEN2(dev)) {
  7851. dev->mode_config.max_width = 2048;
  7852. dev->mode_config.max_height = 2048;
  7853. } else if (IS_GEN3(dev)) {
  7854. dev->mode_config.max_width = 4096;
  7855. dev->mode_config.max_height = 4096;
  7856. } else {
  7857. dev->mode_config.max_width = 8192;
  7858. dev->mode_config.max_height = 8192;
  7859. }
  7860. dev->mode_config.fb_base = dev->agp->base;
  7861. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7862. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7863. for (i = 0; i < dev_priv->num_pipe; i++) {
  7864. intel_crtc_init(dev, i);
  7865. ret = intel_plane_init(dev, i);
  7866. if (ret)
  7867. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7868. }
  7869. /* Just disable it once at startup */
  7870. i915_disable_vga(dev);
  7871. intel_setup_outputs(dev);
  7872. intel_init_clock_gating(dev);
  7873. if (IS_IRONLAKE_M(dev)) {
  7874. ironlake_enable_drps(dev);
  7875. intel_init_emon(dev);
  7876. }
  7877. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  7878. gen6_enable_rps(dev_priv);
  7879. gen6_update_ring_freq(dev_priv);
  7880. }
  7881. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  7882. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  7883. (unsigned long)dev);
  7884. }
  7885. void intel_modeset_gem_init(struct drm_device *dev)
  7886. {
  7887. if (IS_IRONLAKE_M(dev))
  7888. ironlake_enable_rc6(dev);
  7889. intel_setup_overlay(dev);
  7890. }
  7891. void intel_modeset_cleanup(struct drm_device *dev)
  7892. {
  7893. struct drm_i915_private *dev_priv = dev->dev_private;
  7894. struct drm_crtc *crtc;
  7895. struct intel_crtc *intel_crtc;
  7896. drm_kms_helper_poll_fini(dev);
  7897. mutex_lock(&dev->struct_mutex);
  7898. intel_unregister_dsm_handler();
  7899. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7900. /* Skip inactive CRTCs */
  7901. if (!crtc->fb)
  7902. continue;
  7903. intel_crtc = to_intel_crtc(crtc);
  7904. intel_increase_pllclock(crtc);
  7905. }
  7906. intel_disable_fbc(dev);
  7907. if (IS_IRONLAKE_M(dev))
  7908. ironlake_disable_drps(dev);
  7909. if (IS_GEN6(dev) || IS_GEN7(dev))
  7910. gen6_disable_rps(dev);
  7911. if (IS_IRONLAKE_M(dev))
  7912. ironlake_disable_rc6(dev);
  7913. mutex_unlock(&dev->struct_mutex);
  7914. /* Disable the irq before mode object teardown, for the irq might
  7915. * enqueue unpin/hotplug work. */
  7916. drm_irq_uninstall(dev);
  7917. cancel_work_sync(&dev_priv->hotplug_work);
  7918. cancel_work_sync(&dev_priv->rps_work);
  7919. /* flush any delayed tasks or pending work */
  7920. flush_scheduled_work();
  7921. /* Shut off idle work before the crtcs get freed. */
  7922. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7923. intel_crtc = to_intel_crtc(crtc);
  7924. del_timer_sync(&intel_crtc->idle_timer);
  7925. }
  7926. del_timer_sync(&dev_priv->idle_timer);
  7927. cancel_work_sync(&dev_priv->idle_work);
  7928. drm_mode_config_cleanup(dev);
  7929. }
  7930. /*
  7931. * Return which encoder is currently attached for connector.
  7932. */
  7933. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7934. {
  7935. return &intel_attached_encoder(connector)->base;
  7936. }
  7937. void intel_connector_attach_encoder(struct intel_connector *connector,
  7938. struct intel_encoder *encoder)
  7939. {
  7940. connector->encoder = encoder;
  7941. drm_mode_connector_attach_encoder(&connector->base,
  7942. &encoder->base);
  7943. }
  7944. /*
  7945. * set vga decode state - true == enable VGA decode
  7946. */
  7947. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7948. {
  7949. struct drm_i915_private *dev_priv = dev->dev_private;
  7950. u16 gmch_ctrl;
  7951. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7952. if (state)
  7953. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7954. else
  7955. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7956. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7957. return 0;
  7958. }
  7959. #ifdef CONFIG_DEBUG_FS
  7960. #include <linux/seq_file.h>
  7961. struct intel_display_error_state {
  7962. struct intel_cursor_error_state {
  7963. u32 control;
  7964. u32 position;
  7965. u32 base;
  7966. u32 size;
  7967. } cursor[2];
  7968. struct intel_pipe_error_state {
  7969. u32 conf;
  7970. u32 source;
  7971. u32 htotal;
  7972. u32 hblank;
  7973. u32 hsync;
  7974. u32 vtotal;
  7975. u32 vblank;
  7976. u32 vsync;
  7977. } pipe[2];
  7978. struct intel_plane_error_state {
  7979. u32 control;
  7980. u32 stride;
  7981. u32 size;
  7982. u32 pos;
  7983. u32 addr;
  7984. u32 surface;
  7985. u32 tile_offset;
  7986. } plane[2];
  7987. };
  7988. struct intel_display_error_state *
  7989. intel_display_capture_error_state(struct drm_device *dev)
  7990. {
  7991. drm_i915_private_t *dev_priv = dev->dev_private;
  7992. struct intel_display_error_state *error;
  7993. int i;
  7994. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7995. if (error == NULL)
  7996. return NULL;
  7997. for (i = 0; i < 2; i++) {
  7998. error->cursor[i].control = I915_READ(CURCNTR(i));
  7999. error->cursor[i].position = I915_READ(CURPOS(i));
  8000. error->cursor[i].base = I915_READ(CURBASE(i));
  8001. error->plane[i].control = I915_READ(DSPCNTR(i));
  8002. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8003. error->plane[i].size = I915_READ(DSPSIZE(i));
  8004. error->plane[i].pos = I915_READ(DSPPOS(i));
  8005. error->plane[i].addr = I915_READ(DSPADDR(i));
  8006. if (INTEL_INFO(dev)->gen >= 4) {
  8007. error->plane[i].surface = I915_READ(DSPSURF(i));
  8008. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8009. }
  8010. error->pipe[i].conf = I915_READ(PIPECONF(i));
  8011. error->pipe[i].source = I915_READ(PIPESRC(i));
  8012. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  8013. error->pipe[i].hblank = I915_READ(HBLANK(i));
  8014. error->pipe[i].hsync = I915_READ(HSYNC(i));
  8015. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  8016. error->pipe[i].vblank = I915_READ(VBLANK(i));
  8017. error->pipe[i].vsync = I915_READ(VSYNC(i));
  8018. }
  8019. return error;
  8020. }
  8021. void
  8022. intel_display_print_error_state(struct seq_file *m,
  8023. struct drm_device *dev,
  8024. struct intel_display_error_state *error)
  8025. {
  8026. int i;
  8027. for (i = 0; i < 2; i++) {
  8028. seq_printf(m, "Pipe [%d]:\n", i);
  8029. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8030. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8031. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8032. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8033. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8034. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8035. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8036. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8037. seq_printf(m, "Plane [%d]:\n", i);
  8038. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8039. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8040. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8041. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  8042. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8043. if (INTEL_INFO(dev)->gen >= 4) {
  8044. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8045. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8046. }
  8047. seq_printf(m, "Cursor [%d]:\n", i);
  8048. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8049. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  8050. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8051. }
  8052. }
  8053. #endif