sched.c 221 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <asm/tlb.h>
  73. #include <asm/irq_regs.h>
  74. #include "sched_cpupri.h"
  75. /*
  76. * Convert user-nice values [ -20 ... 0 ... 19 ]
  77. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  78. * and back.
  79. */
  80. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  81. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  82. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  83. /*
  84. * 'User priority' is the nice value converted to something we
  85. * can work with better when scaling various scheduler parameters,
  86. * it's a [ 0 ... 39 ] range.
  87. */
  88. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  89. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  90. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  91. /*
  92. * Helpers for converting nanosecond timing to jiffy resolution
  93. */
  94. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  95. #define NICE_0_LOAD SCHED_LOAD_SCALE
  96. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  97. /*
  98. * These are the 'tuning knobs' of the scheduler:
  99. *
  100. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  101. * Timeslices get refilled after they expire.
  102. */
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. /*
  105. * single value that denotes runtime == period, ie unlimited time.
  106. */
  107. #define RUNTIME_INF ((u64)~0ULL)
  108. #ifdef CONFIG_SMP
  109. /*
  110. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  111. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  112. */
  113. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  114. {
  115. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  116. }
  117. /*
  118. * Each time a sched group cpu_power is changed,
  119. * we must compute its reciprocal value
  120. */
  121. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  122. {
  123. sg->__cpu_power += val;
  124. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  125. }
  126. #endif
  127. static inline int rt_policy(int policy)
  128. {
  129. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  130. return 1;
  131. return 0;
  132. }
  133. static inline int task_has_rt_policy(struct task_struct *p)
  134. {
  135. return rt_policy(p->policy);
  136. }
  137. /*
  138. * This is the priority-queue data structure of the RT scheduling class:
  139. */
  140. struct rt_prio_array {
  141. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  142. struct list_head queue[MAX_RT_PRIO];
  143. };
  144. struct rt_bandwidth {
  145. /* nests inside the rq lock: */
  146. spinlock_t rt_runtime_lock;
  147. ktime_t rt_period;
  148. u64 rt_runtime;
  149. struct hrtimer rt_period_timer;
  150. };
  151. static struct rt_bandwidth def_rt_bandwidth;
  152. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  153. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  154. {
  155. struct rt_bandwidth *rt_b =
  156. container_of(timer, struct rt_bandwidth, rt_period_timer);
  157. ktime_t now;
  158. int overrun;
  159. int idle = 0;
  160. for (;;) {
  161. now = hrtimer_cb_get_time(timer);
  162. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  163. if (!overrun)
  164. break;
  165. idle = do_sched_rt_period_timer(rt_b, overrun);
  166. }
  167. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  168. }
  169. static
  170. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  171. {
  172. rt_b->rt_period = ns_to_ktime(period);
  173. rt_b->rt_runtime = runtime;
  174. spin_lock_init(&rt_b->rt_runtime_lock);
  175. hrtimer_init(&rt_b->rt_period_timer,
  176. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  177. rt_b->rt_period_timer.function = sched_rt_period_timer;
  178. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  179. }
  180. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  181. {
  182. ktime_t now;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return;
  185. if (hrtimer_active(&rt_b->rt_period_timer))
  186. return;
  187. spin_lock(&rt_b->rt_runtime_lock);
  188. for (;;) {
  189. if (hrtimer_active(&rt_b->rt_period_timer))
  190. break;
  191. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  192. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  193. hrtimer_start(&rt_b->rt_period_timer,
  194. rt_b->rt_period_timer.expires,
  195. HRTIMER_MODE_ABS);
  196. }
  197. spin_unlock(&rt_b->rt_runtime_lock);
  198. }
  199. #ifdef CONFIG_RT_GROUP_SCHED
  200. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  201. {
  202. hrtimer_cancel(&rt_b->rt_period_timer);
  203. }
  204. #endif
  205. /*
  206. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  207. * detach_destroy_domains and partition_sched_domains.
  208. */
  209. static DEFINE_MUTEX(sched_domains_mutex);
  210. #ifdef CONFIG_GROUP_SCHED
  211. #include <linux/cgroup.h>
  212. struct cfs_rq;
  213. static LIST_HEAD(task_groups);
  214. /* task group related information */
  215. struct task_group {
  216. #ifdef CONFIG_CGROUP_SCHED
  217. struct cgroup_subsys_state css;
  218. #endif
  219. #ifdef CONFIG_FAIR_GROUP_SCHED
  220. /* schedulable entities of this group on each cpu */
  221. struct sched_entity **se;
  222. /* runqueue "owned" by this group on each cpu */
  223. struct cfs_rq **cfs_rq;
  224. unsigned long shares;
  225. #endif
  226. #ifdef CONFIG_RT_GROUP_SCHED
  227. struct sched_rt_entity **rt_se;
  228. struct rt_rq **rt_rq;
  229. struct rt_bandwidth rt_bandwidth;
  230. #endif
  231. struct rcu_head rcu;
  232. struct list_head list;
  233. struct task_group *parent;
  234. struct list_head siblings;
  235. struct list_head children;
  236. };
  237. #ifdef CONFIG_USER_SCHED
  238. /*
  239. * Root task group.
  240. * Every UID task group (including init_task_group aka UID-0) will
  241. * be a child to this group.
  242. */
  243. struct task_group root_task_group;
  244. #ifdef CONFIG_FAIR_GROUP_SCHED
  245. /* Default task group's sched entity on each cpu */
  246. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  247. /* Default task group's cfs_rq on each cpu */
  248. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  249. #endif /* CONFIG_FAIR_GROUP_SCHED */
  250. #ifdef CONFIG_RT_GROUP_SCHED
  251. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  252. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  253. #endif /* CONFIG_RT_GROUP_SCHED */
  254. #else /* !CONFIG_FAIR_GROUP_SCHED */
  255. #define root_task_group init_task_group
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. /* task_group_lock serializes add/remove of task groups and also changes to
  258. * a task group's cpu shares.
  259. */
  260. static DEFINE_SPINLOCK(task_group_lock);
  261. #ifdef CONFIG_FAIR_GROUP_SCHED
  262. #ifdef CONFIG_USER_SCHED
  263. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  264. #else /* !CONFIG_USER_SCHED */
  265. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  266. #endif /* CONFIG_USER_SCHED */
  267. /*
  268. * A weight of 0 or 1 can cause arithmetics problems.
  269. * A weight of a cfs_rq is the sum of weights of which entities
  270. * are queued on this cfs_rq, so a weight of a entity should not be
  271. * too large, so as the shares value of a task group.
  272. * (The default weight is 1024 - so there's no practical
  273. * limitation from this.)
  274. */
  275. #define MIN_SHARES 2
  276. #define MAX_SHARES (1UL << 18)
  277. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  278. #endif
  279. /* Default task group.
  280. * Every task in system belong to this group at bootup.
  281. */
  282. struct task_group init_task_group;
  283. /* return group to which a task belongs */
  284. static inline struct task_group *task_group(struct task_struct *p)
  285. {
  286. struct task_group *tg;
  287. #ifdef CONFIG_USER_SCHED
  288. tg = p->user->tg;
  289. #elif defined(CONFIG_CGROUP_SCHED)
  290. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  291. struct task_group, css);
  292. #else
  293. tg = &init_task_group;
  294. #endif
  295. return tg;
  296. }
  297. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  298. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  299. {
  300. #ifdef CONFIG_FAIR_GROUP_SCHED
  301. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  302. p->se.parent = task_group(p)->se[cpu];
  303. #endif
  304. #ifdef CONFIG_RT_GROUP_SCHED
  305. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  306. p->rt.parent = task_group(p)->rt_se[cpu];
  307. #endif
  308. }
  309. #else
  310. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  311. #endif /* CONFIG_GROUP_SCHED */
  312. /* CFS-related fields in a runqueue */
  313. struct cfs_rq {
  314. struct load_weight load;
  315. unsigned long nr_running;
  316. u64 exec_clock;
  317. u64 min_vruntime;
  318. u64 pair_start;
  319. struct rb_root tasks_timeline;
  320. struct rb_node *rb_leftmost;
  321. struct list_head tasks;
  322. struct list_head *balance_iterator;
  323. /*
  324. * 'curr' points to currently running entity on this cfs_rq.
  325. * It is set to NULL otherwise (i.e when none are currently running).
  326. */
  327. struct sched_entity *curr, *next;
  328. unsigned long nr_spread_over;
  329. #ifdef CONFIG_FAIR_GROUP_SCHED
  330. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  331. /*
  332. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  333. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  334. * (like users, containers etc.)
  335. *
  336. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  337. * list is used during load balance.
  338. */
  339. struct list_head leaf_cfs_rq_list;
  340. struct task_group *tg; /* group that "owns" this runqueue */
  341. #ifdef CONFIG_SMP
  342. unsigned long task_weight;
  343. unsigned long shares;
  344. /*
  345. * We need space to build a sched_domain wide view of the full task
  346. * group tree, in order to avoid depending on dynamic memory allocation
  347. * during the load balancing we place this in the per cpu task group
  348. * hierarchy. This limits the load balancing to one instance per cpu,
  349. * but more should not be needed anyway.
  350. */
  351. struct aggregate_struct {
  352. /*
  353. * load = weight(cpus) * f(tg)
  354. *
  355. * Where f(tg) is the recursive weight fraction assigned to
  356. * this group.
  357. */
  358. unsigned long load;
  359. /*
  360. * part of the group weight distributed to this span.
  361. */
  362. unsigned long shares;
  363. /*
  364. * The sum of all runqueue weights within this span.
  365. */
  366. unsigned long rq_weight;
  367. /*
  368. * Weight contributed by tasks; this is the part we can
  369. * influence by moving tasks around.
  370. */
  371. unsigned long task_weight;
  372. } aggregate;
  373. #endif
  374. #endif
  375. };
  376. /* Real-Time classes' related field in a runqueue: */
  377. struct rt_rq {
  378. struct rt_prio_array active;
  379. unsigned long rt_nr_running;
  380. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  381. int highest_prio; /* highest queued rt task prio */
  382. #endif
  383. #ifdef CONFIG_SMP
  384. unsigned long rt_nr_migratory;
  385. int overloaded;
  386. #endif
  387. int rt_throttled;
  388. u64 rt_time;
  389. u64 rt_runtime;
  390. /* Nests inside the rq lock: */
  391. spinlock_t rt_runtime_lock;
  392. #ifdef CONFIG_RT_GROUP_SCHED
  393. unsigned long rt_nr_boosted;
  394. struct rq *rq;
  395. struct list_head leaf_rt_rq_list;
  396. struct task_group *tg;
  397. struct sched_rt_entity *rt_se;
  398. #endif
  399. };
  400. #ifdef CONFIG_SMP
  401. /*
  402. * We add the notion of a root-domain which will be used to define per-domain
  403. * variables. Each exclusive cpuset essentially defines an island domain by
  404. * fully partitioning the member cpus from any other cpuset. Whenever a new
  405. * exclusive cpuset is created, we also create and attach a new root-domain
  406. * object.
  407. *
  408. */
  409. struct root_domain {
  410. atomic_t refcount;
  411. cpumask_t span;
  412. cpumask_t online;
  413. /*
  414. * The "RT overload" flag: it gets set if a CPU has more than
  415. * one runnable RT task.
  416. */
  417. cpumask_t rto_mask;
  418. atomic_t rto_count;
  419. #ifdef CONFIG_SMP
  420. struct cpupri cpupri;
  421. #endif
  422. };
  423. /*
  424. * By default the system creates a single root-domain with all cpus as
  425. * members (mimicking the global state we have today).
  426. */
  427. static struct root_domain def_root_domain;
  428. #endif
  429. /*
  430. * This is the main, per-CPU runqueue data structure.
  431. *
  432. * Locking rule: those places that want to lock multiple runqueues
  433. * (such as the load balancing or the thread migration code), lock
  434. * acquire operations must be ordered by ascending &runqueue.
  435. */
  436. struct rq {
  437. /* runqueue lock: */
  438. spinlock_t lock;
  439. /*
  440. * nr_running and cpu_load should be in the same cacheline because
  441. * remote CPUs use both these fields when doing load calculation.
  442. */
  443. unsigned long nr_running;
  444. #define CPU_LOAD_IDX_MAX 5
  445. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  446. unsigned char idle_at_tick;
  447. #ifdef CONFIG_NO_HZ
  448. unsigned long last_tick_seen;
  449. unsigned char in_nohz_recently;
  450. #endif
  451. /* capture load from *all* tasks on this cpu: */
  452. struct load_weight load;
  453. unsigned long nr_load_updates;
  454. u64 nr_switches;
  455. struct cfs_rq cfs;
  456. struct rt_rq rt;
  457. #ifdef CONFIG_FAIR_GROUP_SCHED
  458. /* list of leaf cfs_rq on this cpu: */
  459. struct list_head leaf_cfs_rq_list;
  460. #endif
  461. #ifdef CONFIG_RT_GROUP_SCHED
  462. struct list_head leaf_rt_rq_list;
  463. #endif
  464. /*
  465. * This is part of a global counter where only the total sum
  466. * over all CPUs matters. A task can increase this counter on
  467. * one CPU and if it got migrated afterwards it may decrease
  468. * it on another CPU. Always updated under the runqueue lock:
  469. */
  470. unsigned long nr_uninterruptible;
  471. struct task_struct *curr, *idle;
  472. unsigned long next_balance;
  473. struct mm_struct *prev_mm;
  474. u64 clock;
  475. atomic_t nr_iowait;
  476. #ifdef CONFIG_SMP
  477. struct root_domain *rd;
  478. struct sched_domain *sd;
  479. /* For active balancing */
  480. int active_balance;
  481. int push_cpu;
  482. /* cpu of this runqueue: */
  483. int cpu;
  484. int online;
  485. struct task_struct *migration_thread;
  486. struct list_head migration_queue;
  487. #endif
  488. #ifdef CONFIG_SCHED_HRTICK
  489. unsigned long hrtick_flags;
  490. ktime_t hrtick_expire;
  491. struct hrtimer hrtick_timer;
  492. #endif
  493. #ifdef CONFIG_SCHEDSTATS
  494. /* latency stats */
  495. struct sched_info rq_sched_info;
  496. /* sys_sched_yield() stats */
  497. unsigned int yld_exp_empty;
  498. unsigned int yld_act_empty;
  499. unsigned int yld_both_empty;
  500. unsigned int yld_count;
  501. /* schedule() stats */
  502. unsigned int sched_switch;
  503. unsigned int sched_count;
  504. unsigned int sched_goidle;
  505. /* try_to_wake_up() stats */
  506. unsigned int ttwu_count;
  507. unsigned int ttwu_local;
  508. /* BKL stats */
  509. unsigned int bkl_count;
  510. #endif
  511. struct lock_class_key rq_lock_key;
  512. };
  513. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  514. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  515. {
  516. rq->curr->sched_class->check_preempt_curr(rq, p);
  517. }
  518. static inline int cpu_of(struct rq *rq)
  519. {
  520. #ifdef CONFIG_SMP
  521. return rq->cpu;
  522. #else
  523. return 0;
  524. #endif
  525. }
  526. /*
  527. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  528. * See detach_destroy_domains: synchronize_sched for details.
  529. *
  530. * The domain tree of any CPU may only be accessed from within
  531. * preempt-disabled sections.
  532. */
  533. #define for_each_domain(cpu, __sd) \
  534. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  535. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  536. #define this_rq() (&__get_cpu_var(runqueues))
  537. #define task_rq(p) cpu_rq(task_cpu(p))
  538. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  539. static inline void update_rq_clock(struct rq *rq)
  540. {
  541. rq->clock = sched_clock_cpu(cpu_of(rq));
  542. }
  543. /*
  544. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  545. */
  546. #ifdef CONFIG_SCHED_DEBUG
  547. # define const_debug __read_mostly
  548. #else
  549. # define const_debug static const
  550. #endif
  551. /*
  552. * Debugging: various feature bits
  553. */
  554. #define SCHED_FEAT(name, enabled) \
  555. __SCHED_FEAT_##name ,
  556. enum {
  557. #include "sched_features.h"
  558. };
  559. #undef SCHED_FEAT
  560. #define SCHED_FEAT(name, enabled) \
  561. (1UL << __SCHED_FEAT_##name) * enabled |
  562. const_debug unsigned int sysctl_sched_features =
  563. #include "sched_features.h"
  564. 0;
  565. #undef SCHED_FEAT
  566. #ifdef CONFIG_SCHED_DEBUG
  567. #define SCHED_FEAT(name, enabled) \
  568. #name ,
  569. static __read_mostly char *sched_feat_names[] = {
  570. #include "sched_features.h"
  571. NULL
  572. };
  573. #undef SCHED_FEAT
  574. static int sched_feat_open(struct inode *inode, struct file *filp)
  575. {
  576. filp->private_data = inode->i_private;
  577. return 0;
  578. }
  579. static ssize_t
  580. sched_feat_read(struct file *filp, char __user *ubuf,
  581. size_t cnt, loff_t *ppos)
  582. {
  583. char *buf;
  584. int r = 0;
  585. int len = 0;
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. len += strlen(sched_feat_names[i]);
  589. len += 4;
  590. }
  591. buf = kmalloc(len + 2, GFP_KERNEL);
  592. if (!buf)
  593. return -ENOMEM;
  594. for (i = 0; sched_feat_names[i]; i++) {
  595. if (sysctl_sched_features & (1UL << i))
  596. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  597. else
  598. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  599. }
  600. r += sprintf(buf + r, "\n");
  601. WARN_ON(r >= len + 2);
  602. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  603. kfree(buf);
  604. return r;
  605. }
  606. static ssize_t
  607. sched_feat_write(struct file *filp, const char __user *ubuf,
  608. size_t cnt, loff_t *ppos)
  609. {
  610. char buf[64];
  611. char *cmp = buf;
  612. int neg = 0;
  613. int i;
  614. if (cnt > 63)
  615. cnt = 63;
  616. if (copy_from_user(&buf, ubuf, cnt))
  617. return -EFAULT;
  618. buf[cnt] = 0;
  619. if (strncmp(buf, "NO_", 3) == 0) {
  620. neg = 1;
  621. cmp += 3;
  622. }
  623. for (i = 0; sched_feat_names[i]; i++) {
  624. int len = strlen(sched_feat_names[i]);
  625. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  626. if (neg)
  627. sysctl_sched_features &= ~(1UL << i);
  628. else
  629. sysctl_sched_features |= (1UL << i);
  630. break;
  631. }
  632. }
  633. if (!sched_feat_names[i])
  634. return -EINVAL;
  635. filp->f_pos += cnt;
  636. return cnt;
  637. }
  638. static struct file_operations sched_feat_fops = {
  639. .open = sched_feat_open,
  640. .read = sched_feat_read,
  641. .write = sched_feat_write,
  642. };
  643. static __init int sched_init_debug(void)
  644. {
  645. debugfs_create_file("sched_features", 0644, NULL, NULL,
  646. &sched_feat_fops);
  647. return 0;
  648. }
  649. late_initcall(sched_init_debug);
  650. #endif
  651. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  652. /*
  653. * Number of tasks to iterate in a single balance run.
  654. * Limited because this is done with IRQs disabled.
  655. */
  656. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  657. /*
  658. * period over which we measure -rt task cpu usage in us.
  659. * default: 1s
  660. */
  661. unsigned int sysctl_sched_rt_period = 1000000;
  662. static __read_mostly int scheduler_running;
  663. /*
  664. * part of the period that we allow rt tasks to run in us.
  665. * default: 0.95s
  666. */
  667. int sysctl_sched_rt_runtime = 950000;
  668. static inline u64 global_rt_period(void)
  669. {
  670. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  671. }
  672. static inline u64 global_rt_runtime(void)
  673. {
  674. if (sysctl_sched_rt_period < 0)
  675. return RUNTIME_INF;
  676. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  677. }
  678. #ifndef prepare_arch_switch
  679. # define prepare_arch_switch(next) do { } while (0)
  680. #endif
  681. #ifndef finish_arch_switch
  682. # define finish_arch_switch(prev) do { } while (0)
  683. #endif
  684. static inline int task_current(struct rq *rq, struct task_struct *p)
  685. {
  686. return rq->curr == p;
  687. }
  688. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  689. static inline int task_running(struct rq *rq, struct task_struct *p)
  690. {
  691. return task_current(rq, p);
  692. }
  693. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  694. {
  695. }
  696. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  697. {
  698. #ifdef CONFIG_DEBUG_SPINLOCK
  699. /* this is a valid case when another task releases the spinlock */
  700. rq->lock.owner = current;
  701. #endif
  702. /*
  703. * If we are tracking spinlock dependencies then we have to
  704. * fix up the runqueue lock - which gets 'carried over' from
  705. * prev into current:
  706. */
  707. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  708. spin_unlock_irq(&rq->lock);
  709. }
  710. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  711. static inline int task_running(struct rq *rq, struct task_struct *p)
  712. {
  713. #ifdef CONFIG_SMP
  714. return p->oncpu;
  715. #else
  716. return task_current(rq, p);
  717. #endif
  718. }
  719. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  720. {
  721. #ifdef CONFIG_SMP
  722. /*
  723. * We can optimise this out completely for !SMP, because the
  724. * SMP rebalancing from interrupt is the only thing that cares
  725. * here.
  726. */
  727. next->oncpu = 1;
  728. #endif
  729. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  730. spin_unlock_irq(&rq->lock);
  731. #else
  732. spin_unlock(&rq->lock);
  733. #endif
  734. }
  735. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  736. {
  737. #ifdef CONFIG_SMP
  738. /*
  739. * After ->oncpu is cleared, the task can be moved to a different CPU.
  740. * We must ensure this doesn't happen until the switch is completely
  741. * finished.
  742. */
  743. smp_wmb();
  744. prev->oncpu = 0;
  745. #endif
  746. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  747. local_irq_enable();
  748. #endif
  749. }
  750. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  751. /*
  752. * __task_rq_lock - lock the runqueue a given task resides on.
  753. * Must be called interrupts disabled.
  754. */
  755. static inline struct rq *__task_rq_lock(struct task_struct *p)
  756. __acquires(rq->lock)
  757. {
  758. for (;;) {
  759. struct rq *rq = task_rq(p);
  760. spin_lock(&rq->lock);
  761. if (likely(rq == task_rq(p)))
  762. return rq;
  763. spin_unlock(&rq->lock);
  764. }
  765. }
  766. /*
  767. * task_rq_lock - lock the runqueue a given task resides on and disable
  768. * interrupts. Note the ordering: we can safely lookup the task_rq without
  769. * explicitly disabling preemption.
  770. */
  771. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  772. __acquires(rq->lock)
  773. {
  774. struct rq *rq;
  775. for (;;) {
  776. local_irq_save(*flags);
  777. rq = task_rq(p);
  778. spin_lock(&rq->lock);
  779. if (likely(rq == task_rq(p)))
  780. return rq;
  781. spin_unlock_irqrestore(&rq->lock, *flags);
  782. }
  783. }
  784. static void __task_rq_unlock(struct rq *rq)
  785. __releases(rq->lock)
  786. {
  787. spin_unlock(&rq->lock);
  788. }
  789. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  790. __releases(rq->lock)
  791. {
  792. spin_unlock_irqrestore(&rq->lock, *flags);
  793. }
  794. /*
  795. * this_rq_lock - lock this runqueue and disable interrupts.
  796. */
  797. static struct rq *this_rq_lock(void)
  798. __acquires(rq->lock)
  799. {
  800. struct rq *rq;
  801. local_irq_disable();
  802. rq = this_rq();
  803. spin_lock(&rq->lock);
  804. return rq;
  805. }
  806. static void __resched_task(struct task_struct *p, int tif_bit);
  807. static inline void resched_task(struct task_struct *p)
  808. {
  809. __resched_task(p, TIF_NEED_RESCHED);
  810. }
  811. #ifdef CONFIG_SCHED_HRTICK
  812. /*
  813. * Use HR-timers to deliver accurate preemption points.
  814. *
  815. * Its all a bit involved since we cannot program an hrt while holding the
  816. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  817. * reschedule event.
  818. *
  819. * When we get rescheduled we reprogram the hrtick_timer outside of the
  820. * rq->lock.
  821. */
  822. static inline void resched_hrt(struct task_struct *p)
  823. {
  824. __resched_task(p, TIF_HRTICK_RESCHED);
  825. }
  826. static inline void resched_rq(struct rq *rq)
  827. {
  828. unsigned long flags;
  829. spin_lock_irqsave(&rq->lock, flags);
  830. resched_task(rq->curr);
  831. spin_unlock_irqrestore(&rq->lock, flags);
  832. }
  833. enum {
  834. HRTICK_SET, /* re-programm hrtick_timer */
  835. HRTICK_RESET, /* not a new slice */
  836. HRTICK_BLOCK, /* stop hrtick operations */
  837. };
  838. /*
  839. * Use hrtick when:
  840. * - enabled by features
  841. * - hrtimer is actually high res
  842. */
  843. static inline int hrtick_enabled(struct rq *rq)
  844. {
  845. if (!sched_feat(HRTICK))
  846. return 0;
  847. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  848. return 0;
  849. return hrtimer_is_hres_active(&rq->hrtick_timer);
  850. }
  851. /*
  852. * Called to set the hrtick timer state.
  853. *
  854. * called with rq->lock held and irqs disabled
  855. */
  856. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  857. {
  858. assert_spin_locked(&rq->lock);
  859. /*
  860. * preempt at: now + delay
  861. */
  862. rq->hrtick_expire =
  863. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  864. /*
  865. * indicate we need to program the timer
  866. */
  867. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  868. if (reset)
  869. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  870. /*
  871. * New slices are called from the schedule path and don't need a
  872. * forced reschedule.
  873. */
  874. if (reset)
  875. resched_hrt(rq->curr);
  876. }
  877. static void hrtick_clear(struct rq *rq)
  878. {
  879. if (hrtimer_active(&rq->hrtick_timer))
  880. hrtimer_cancel(&rq->hrtick_timer);
  881. }
  882. /*
  883. * Update the timer from the possible pending state.
  884. */
  885. static void hrtick_set(struct rq *rq)
  886. {
  887. ktime_t time;
  888. int set, reset;
  889. unsigned long flags;
  890. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  891. spin_lock_irqsave(&rq->lock, flags);
  892. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  893. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  894. time = rq->hrtick_expire;
  895. clear_thread_flag(TIF_HRTICK_RESCHED);
  896. spin_unlock_irqrestore(&rq->lock, flags);
  897. if (set) {
  898. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  899. if (reset && !hrtimer_active(&rq->hrtick_timer))
  900. resched_rq(rq);
  901. } else
  902. hrtick_clear(rq);
  903. }
  904. /*
  905. * High-resolution timer tick.
  906. * Runs from hardirq context with interrupts disabled.
  907. */
  908. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  909. {
  910. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  911. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  912. spin_lock(&rq->lock);
  913. update_rq_clock(rq);
  914. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  915. spin_unlock(&rq->lock);
  916. return HRTIMER_NORESTART;
  917. }
  918. #ifdef CONFIG_SMP
  919. static void hotplug_hrtick_disable(int cpu)
  920. {
  921. struct rq *rq = cpu_rq(cpu);
  922. unsigned long flags;
  923. spin_lock_irqsave(&rq->lock, flags);
  924. rq->hrtick_flags = 0;
  925. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  926. spin_unlock_irqrestore(&rq->lock, flags);
  927. hrtick_clear(rq);
  928. }
  929. static void hotplug_hrtick_enable(int cpu)
  930. {
  931. struct rq *rq = cpu_rq(cpu);
  932. unsigned long flags;
  933. spin_lock_irqsave(&rq->lock, flags);
  934. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  935. spin_unlock_irqrestore(&rq->lock, flags);
  936. }
  937. static int
  938. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  939. {
  940. int cpu = (int)(long)hcpu;
  941. switch (action) {
  942. case CPU_UP_CANCELED:
  943. case CPU_UP_CANCELED_FROZEN:
  944. case CPU_DOWN_PREPARE:
  945. case CPU_DOWN_PREPARE_FROZEN:
  946. case CPU_DEAD:
  947. case CPU_DEAD_FROZEN:
  948. hotplug_hrtick_disable(cpu);
  949. return NOTIFY_OK;
  950. case CPU_UP_PREPARE:
  951. case CPU_UP_PREPARE_FROZEN:
  952. case CPU_DOWN_FAILED:
  953. case CPU_DOWN_FAILED_FROZEN:
  954. case CPU_ONLINE:
  955. case CPU_ONLINE_FROZEN:
  956. hotplug_hrtick_enable(cpu);
  957. return NOTIFY_OK;
  958. }
  959. return NOTIFY_DONE;
  960. }
  961. static void init_hrtick(void)
  962. {
  963. hotcpu_notifier(hotplug_hrtick, 0);
  964. }
  965. #endif /* CONFIG_SMP */
  966. static void init_rq_hrtick(struct rq *rq)
  967. {
  968. rq->hrtick_flags = 0;
  969. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  970. rq->hrtick_timer.function = hrtick;
  971. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  972. }
  973. void hrtick_resched(void)
  974. {
  975. struct rq *rq;
  976. unsigned long flags;
  977. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  978. return;
  979. local_irq_save(flags);
  980. rq = cpu_rq(smp_processor_id());
  981. hrtick_set(rq);
  982. local_irq_restore(flags);
  983. }
  984. #else
  985. static inline void hrtick_clear(struct rq *rq)
  986. {
  987. }
  988. static inline void hrtick_set(struct rq *rq)
  989. {
  990. }
  991. static inline void init_rq_hrtick(struct rq *rq)
  992. {
  993. }
  994. void hrtick_resched(void)
  995. {
  996. }
  997. static inline void init_hrtick(void)
  998. {
  999. }
  1000. #endif
  1001. /*
  1002. * resched_task - mark a task 'to be rescheduled now'.
  1003. *
  1004. * On UP this means the setting of the need_resched flag, on SMP it
  1005. * might also involve a cross-CPU call to trigger the scheduler on
  1006. * the target CPU.
  1007. */
  1008. #ifdef CONFIG_SMP
  1009. #ifndef tsk_is_polling
  1010. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1011. #endif
  1012. static void __resched_task(struct task_struct *p, int tif_bit)
  1013. {
  1014. int cpu;
  1015. assert_spin_locked(&task_rq(p)->lock);
  1016. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1017. return;
  1018. set_tsk_thread_flag(p, tif_bit);
  1019. cpu = task_cpu(p);
  1020. if (cpu == smp_processor_id())
  1021. return;
  1022. /* NEED_RESCHED must be visible before we test polling */
  1023. smp_mb();
  1024. if (!tsk_is_polling(p))
  1025. smp_send_reschedule(cpu);
  1026. }
  1027. static void resched_cpu(int cpu)
  1028. {
  1029. struct rq *rq = cpu_rq(cpu);
  1030. unsigned long flags;
  1031. if (!spin_trylock_irqsave(&rq->lock, flags))
  1032. return;
  1033. resched_task(cpu_curr(cpu));
  1034. spin_unlock_irqrestore(&rq->lock, flags);
  1035. }
  1036. #ifdef CONFIG_NO_HZ
  1037. /*
  1038. * When add_timer_on() enqueues a timer into the timer wheel of an
  1039. * idle CPU then this timer might expire before the next timer event
  1040. * which is scheduled to wake up that CPU. In case of a completely
  1041. * idle system the next event might even be infinite time into the
  1042. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1043. * leaves the inner idle loop so the newly added timer is taken into
  1044. * account when the CPU goes back to idle and evaluates the timer
  1045. * wheel for the next timer event.
  1046. */
  1047. void wake_up_idle_cpu(int cpu)
  1048. {
  1049. struct rq *rq = cpu_rq(cpu);
  1050. if (cpu == smp_processor_id())
  1051. return;
  1052. /*
  1053. * This is safe, as this function is called with the timer
  1054. * wheel base lock of (cpu) held. When the CPU is on the way
  1055. * to idle and has not yet set rq->curr to idle then it will
  1056. * be serialized on the timer wheel base lock and take the new
  1057. * timer into account automatically.
  1058. */
  1059. if (rq->curr != rq->idle)
  1060. return;
  1061. /*
  1062. * We can set TIF_RESCHED on the idle task of the other CPU
  1063. * lockless. The worst case is that the other CPU runs the
  1064. * idle task through an additional NOOP schedule()
  1065. */
  1066. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1067. /* NEED_RESCHED must be visible before we test polling */
  1068. smp_mb();
  1069. if (!tsk_is_polling(rq->idle))
  1070. smp_send_reschedule(cpu);
  1071. }
  1072. #endif /* CONFIG_NO_HZ */
  1073. #else /* !CONFIG_SMP */
  1074. static void __resched_task(struct task_struct *p, int tif_bit)
  1075. {
  1076. assert_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_thread_flag(p, tif_bit);
  1078. }
  1079. #endif /* CONFIG_SMP */
  1080. #if BITS_PER_LONG == 32
  1081. # define WMULT_CONST (~0UL)
  1082. #else
  1083. # define WMULT_CONST (1UL << 32)
  1084. #endif
  1085. #define WMULT_SHIFT 32
  1086. /*
  1087. * Shift right and round:
  1088. */
  1089. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1090. /*
  1091. * delta *= weight / lw
  1092. */
  1093. static unsigned long
  1094. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1095. struct load_weight *lw)
  1096. {
  1097. u64 tmp;
  1098. if (!lw->inv_weight) {
  1099. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1100. lw->inv_weight = 1;
  1101. else
  1102. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1103. / (lw->weight+1);
  1104. }
  1105. tmp = (u64)delta_exec * weight;
  1106. /*
  1107. * Check whether we'd overflow the 64-bit multiplication:
  1108. */
  1109. if (unlikely(tmp > WMULT_CONST))
  1110. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1111. WMULT_SHIFT/2);
  1112. else
  1113. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1114. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1115. }
  1116. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1117. {
  1118. lw->weight += inc;
  1119. lw->inv_weight = 0;
  1120. }
  1121. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1122. {
  1123. lw->weight -= dec;
  1124. lw->inv_weight = 0;
  1125. }
  1126. /*
  1127. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1128. * of tasks with abnormal "nice" values across CPUs the contribution that
  1129. * each task makes to its run queue's load is weighted according to its
  1130. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1131. * scaled version of the new time slice allocation that they receive on time
  1132. * slice expiry etc.
  1133. */
  1134. #define WEIGHT_IDLEPRIO 2
  1135. #define WMULT_IDLEPRIO (1 << 31)
  1136. /*
  1137. * Nice levels are multiplicative, with a gentle 10% change for every
  1138. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1139. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1140. * that remained on nice 0.
  1141. *
  1142. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1143. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1144. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1145. * If a task goes up by ~10% and another task goes down by ~10% then
  1146. * the relative distance between them is ~25%.)
  1147. */
  1148. static const int prio_to_weight[40] = {
  1149. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1150. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1151. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1152. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1153. /* 0 */ 1024, 820, 655, 526, 423,
  1154. /* 5 */ 335, 272, 215, 172, 137,
  1155. /* 10 */ 110, 87, 70, 56, 45,
  1156. /* 15 */ 36, 29, 23, 18, 15,
  1157. };
  1158. /*
  1159. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1160. *
  1161. * In cases where the weight does not change often, we can use the
  1162. * precalculated inverse to speed up arithmetics by turning divisions
  1163. * into multiplications:
  1164. */
  1165. static const u32 prio_to_wmult[40] = {
  1166. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1167. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1168. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1169. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1170. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1171. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1172. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1173. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1174. };
  1175. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1176. /*
  1177. * runqueue iterator, to support SMP load-balancing between different
  1178. * scheduling classes, without having to expose their internal data
  1179. * structures to the load-balancing proper:
  1180. */
  1181. struct rq_iterator {
  1182. void *arg;
  1183. struct task_struct *(*start)(void *);
  1184. struct task_struct *(*next)(void *);
  1185. };
  1186. #ifdef CONFIG_SMP
  1187. static unsigned long
  1188. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1189. unsigned long max_load_move, struct sched_domain *sd,
  1190. enum cpu_idle_type idle, int *all_pinned,
  1191. int *this_best_prio, struct rq_iterator *iterator);
  1192. static int
  1193. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1194. struct sched_domain *sd, enum cpu_idle_type idle,
  1195. struct rq_iterator *iterator);
  1196. #endif
  1197. #ifdef CONFIG_CGROUP_CPUACCT
  1198. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1199. #else
  1200. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1201. #endif
  1202. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1203. {
  1204. update_load_add(&rq->load, load);
  1205. }
  1206. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1207. {
  1208. update_load_sub(&rq->load, load);
  1209. }
  1210. #ifdef CONFIG_SMP
  1211. static unsigned long source_load(int cpu, int type);
  1212. static unsigned long target_load(int cpu, int type);
  1213. static unsigned long cpu_avg_load_per_task(int cpu);
  1214. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1215. #ifdef CONFIG_FAIR_GROUP_SCHED
  1216. /*
  1217. * Group load balancing.
  1218. *
  1219. * We calculate a few balance domain wide aggregate numbers; load and weight.
  1220. * Given the pictures below, and assuming each item has equal weight:
  1221. *
  1222. * root 1 - thread
  1223. * / | \ A - group
  1224. * A 1 B
  1225. * /|\ / \
  1226. * C 2 D 3 4
  1227. * | |
  1228. * 5 6
  1229. *
  1230. * load:
  1231. * A and B get 1/3-rd of the total load. C and D get 1/3-rd of A's 1/3-rd,
  1232. * which equals 1/9-th of the total load.
  1233. *
  1234. * shares:
  1235. * The weight of this group on the selected cpus.
  1236. *
  1237. * rq_weight:
  1238. * Direct sum of all the cpu's their rq weight, e.g. A would get 3 while
  1239. * B would get 2.
  1240. *
  1241. * task_weight:
  1242. * Part of the rq_weight contributed by tasks; all groups except B would
  1243. * get 1, B gets 2.
  1244. */
  1245. static inline struct aggregate_struct *
  1246. aggregate(struct task_group *tg, int cpu)
  1247. {
  1248. return &tg->cfs_rq[cpu]->aggregate;
  1249. }
  1250. typedef void (*aggregate_func)(struct task_group *, int, struct sched_domain *);
  1251. /*
  1252. * Iterate the full tree, calling @down when first entering a node and @up when
  1253. * leaving it for the final time.
  1254. */
  1255. static
  1256. void aggregate_walk_tree(aggregate_func down, aggregate_func up,
  1257. int cpu, struct sched_domain *sd)
  1258. {
  1259. struct task_group *parent, *child;
  1260. rcu_read_lock();
  1261. parent = &root_task_group;
  1262. down:
  1263. (*down)(parent, cpu, sd);
  1264. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1265. parent = child;
  1266. goto down;
  1267. up:
  1268. continue;
  1269. }
  1270. (*up)(parent, cpu, sd);
  1271. child = parent;
  1272. parent = parent->parent;
  1273. if (parent)
  1274. goto up;
  1275. rcu_read_unlock();
  1276. }
  1277. /*
  1278. * Calculate the aggregate runqueue weight.
  1279. */
  1280. static void
  1281. aggregate_group_weight(struct task_group *tg, int cpu, struct sched_domain *sd)
  1282. {
  1283. unsigned long rq_weight = 0;
  1284. unsigned long task_weight = 0;
  1285. int i;
  1286. for_each_cpu_mask(i, sd->span) {
  1287. rq_weight += tg->cfs_rq[i]->load.weight;
  1288. task_weight += tg->cfs_rq[i]->task_weight;
  1289. }
  1290. aggregate(tg, cpu)->rq_weight = rq_weight;
  1291. aggregate(tg, cpu)->task_weight = task_weight;
  1292. }
  1293. /*
  1294. * Compute the weight of this group on the given cpus.
  1295. */
  1296. static void
  1297. aggregate_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd)
  1298. {
  1299. unsigned long shares = 0;
  1300. int i;
  1301. for_each_cpu_mask(i, sd->span)
  1302. shares += tg->cfs_rq[i]->shares;
  1303. if ((!shares && aggregate(tg, cpu)->rq_weight) || shares > tg->shares)
  1304. shares = tg->shares;
  1305. aggregate(tg, cpu)->shares = shares;
  1306. }
  1307. /*
  1308. * Compute the load fraction assigned to this group, relies on the aggregate
  1309. * weight and this group's parent's load, i.e. top-down.
  1310. */
  1311. static void
  1312. aggregate_group_load(struct task_group *tg, int cpu, struct sched_domain *sd)
  1313. {
  1314. unsigned long load;
  1315. if (!tg->parent) {
  1316. int i;
  1317. load = 0;
  1318. for_each_cpu_mask(i, sd->span)
  1319. load += cpu_rq(i)->load.weight;
  1320. } else {
  1321. load = aggregate(tg->parent, cpu)->load;
  1322. /*
  1323. * shares is our weight in the parent's rq so
  1324. * shares/parent->rq_weight gives our fraction of the load
  1325. */
  1326. load *= aggregate(tg, cpu)->shares;
  1327. load /= aggregate(tg->parent, cpu)->rq_weight + 1;
  1328. }
  1329. aggregate(tg, cpu)->load = load;
  1330. }
  1331. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1332. /*
  1333. * Calculate and set the cpu's group shares.
  1334. */
  1335. static void
  1336. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1337. struct sched_domain *sd, int tcpu)
  1338. {
  1339. int boost = 0;
  1340. unsigned long shares;
  1341. unsigned long rq_weight;
  1342. if (!tg->se[tcpu])
  1343. return;
  1344. rq_weight = tg->cfs_rq[tcpu]->load.weight;
  1345. /*
  1346. * If there are currently no tasks on the cpu pretend there is one of
  1347. * average load so that when a new task gets to run here it will not
  1348. * get delayed by group starvation.
  1349. */
  1350. if (!rq_weight) {
  1351. boost = 1;
  1352. rq_weight = NICE_0_LOAD;
  1353. }
  1354. /*
  1355. * \Sum shares * rq_weight
  1356. * shares = -----------------------
  1357. * \Sum rq_weight
  1358. *
  1359. */
  1360. shares = aggregate(tg, cpu)->shares * rq_weight;
  1361. shares /= aggregate(tg, cpu)->rq_weight + 1;
  1362. /*
  1363. * record the actual number of shares, not the boosted amount.
  1364. */
  1365. tg->cfs_rq[tcpu]->shares = boost ? 0 : shares;
  1366. if (shares < MIN_SHARES)
  1367. shares = MIN_SHARES;
  1368. else if (shares > MAX_SHARES)
  1369. shares = MAX_SHARES;
  1370. __set_se_shares(tg->se[tcpu], shares);
  1371. }
  1372. /*
  1373. * Re-adjust the weights on the cpu the task came from and on the cpu the
  1374. * task went to.
  1375. */
  1376. static void
  1377. __move_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd,
  1378. int scpu, int dcpu)
  1379. {
  1380. unsigned long shares;
  1381. shares = tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1382. __update_group_shares_cpu(tg, cpu, sd, scpu);
  1383. __update_group_shares_cpu(tg, cpu, sd, dcpu);
  1384. /*
  1385. * ensure we never loose shares due to rounding errors in the
  1386. * above redistribution.
  1387. */
  1388. shares -= tg->cfs_rq[scpu]->shares + tg->cfs_rq[dcpu]->shares;
  1389. if (shares)
  1390. tg->cfs_rq[dcpu]->shares += shares;
  1391. }
  1392. /*
  1393. * Because changing a group's shares changes the weight of the super-group
  1394. * we need to walk up the tree and change all shares until we hit the root.
  1395. */
  1396. static void
  1397. move_group_shares(struct task_group *tg, int cpu, struct sched_domain *sd,
  1398. int scpu, int dcpu)
  1399. {
  1400. while (tg) {
  1401. __move_group_shares(tg, cpu, sd, scpu, dcpu);
  1402. tg = tg->parent;
  1403. }
  1404. }
  1405. static void
  1406. aggregate_group_set_shares(struct task_group *tg, int cpu, struct sched_domain *sd)
  1407. {
  1408. unsigned long shares = aggregate(tg, cpu)->shares;
  1409. int i;
  1410. for_each_cpu_mask(i, sd->span) {
  1411. struct rq *rq = cpu_rq(i);
  1412. unsigned long flags;
  1413. spin_lock_irqsave(&rq->lock, flags);
  1414. __update_group_shares_cpu(tg, cpu, sd, i);
  1415. spin_unlock_irqrestore(&rq->lock, flags);
  1416. }
  1417. aggregate_group_shares(tg, cpu, sd);
  1418. /*
  1419. * ensure we never loose shares due to rounding errors in the
  1420. * above redistribution.
  1421. */
  1422. shares -= aggregate(tg, cpu)->shares;
  1423. if (shares) {
  1424. tg->cfs_rq[cpu]->shares += shares;
  1425. aggregate(tg, cpu)->shares += shares;
  1426. }
  1427. }
  1428. /*
  1429. * Calculate the accumulative weight and recursive load of each task group
  1430. * while walking down the tree.
  1431. */
  1432. static void
  1433. aggregate_get_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1434. {
  1435. aggregate_group_weight(tg, cpu, sd);
  1436. aggregate_group_shares(tg, cpu, sd);
  1437. aggregate_group_load(tg, cpu, sd);
  1438. }
  1439. /*
  1440. * Rebalance the cpu shares while walking back up the tree.
  1441. */
  1442. static void
  1443. aggregate_get_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1444. {
  1445. aggregate_group_set_shares(tg, cpu, sd);
  1446. }
  1447. static DEFINE_PER_CPU(spinlock_t, aggregate_lock);
  1448. static void __init init_aggregate(void)
  1449. {
  1450. int i;
  1451. for_each_possible_cpu(i)
  1452. spin_lock_init(&per_cpu(aggregate_lock, i));
  1453. }
  1454. static int get_aggregate(int cpu, struct sched_domain *sd)
  1455. {
  1456. if (!spin_trylock(&per_cpu(aggregate_lock, cpu)))
  1457. return 0;
  1458. aggregate_walk_tree(aggregate_get_down, aggregate_get_up, cpu, sd);
  1459. return 1;
  1460. }
  1461. static void put_aggregate(int cpu, struct sched_domain *sd)
  1462. {
  1463. spin_unlock(&per_cpu(aggregate_lock, cpu));
  1464. }
  1465. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1466. {
  1467. cfs_rq->shares = shares;
  1468. }
  1469. #else
  1470. static inline void init_aggregate(void)
  1471. {
  1472. }
  1473. static inline int get_aggregate(int cpu, struct sched_domain *sd)
  1474. {
  1475. return 0;
  1476. }
  1477. static inline void put_aggregate(int cpu, struct sched_domain *sd)
  1478. {
  1479. }
  1480. #endif
  1481. #endif
  1482. #include "sched_stats.h"
  1483. #include "sched_idletask.c"
  1484. #include "sched_fair.c"
  1485. #include "sched_rt.c"
  1486. #ifdef CONFIG_SCHED_DEBUG
  1487. # include "sched_debug.c"
  1488. #endif
  1489. #define sched_class_highest (&rt_sched_class)
  1490. #define for_each_class(class) \
  1491. for (class = sched_class_highest; class; class = class->next)
  1492. static void inc_nr_running(struct rq *rq)
  1493. {
  1494. rq->nr_running++;
  1495. }
  1496. static void dec_nr_running(struct rq *rq)
  1497. {
  1498. rq->nr_running--;
  1499. }
  1500. static void set_load_weight(struct task_struct *p)
  1501. {
  1502. if (task_has_rt_policy(p)) {
  1503. p->se.load.weight = prio_to_weight[0] * 2;
  1504. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1505. return;
  1506. }
  1507. /*
  1508. * SCHED_IDLE tasks get minimal weight:
  1509. */
  1510. if (p->policy == SCHED_IDLE) {
  1511. p->se.load.weight = WEIGHT_IDLEPRIO;
  1512. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1513. return;
  1514. }
  1515. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1516. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1517. }
  1518. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1519. {
  1520. sched_info_queued(p);
  1521. p->sched_class->enqueue_task(rq, p, wakeup);
  1522. p->se.on_rq = 1;
  1523. }
  1524. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1525. {
  1526. p->sched_class->dequeue_task(rq, p, sleep);
  1527. p->se.on_rq = 0;
  1528. }
  1529. /*
  1530. * __normal_prio - return the priority that is based on the static prio
  1531. */
  1532. static inline int __normal_prio(struct task_struct *p)
  1533. {
  1534. return p->static_prio;
  1535. }
  1536. /*
  1537. * Calculate the expected normal priority: i.e. priority
  1538. * without taking RT-inheritance into account. Might be
  1539. * boosted by interactivity modifiers. Changes upon fork,
  1540. * setprio syscalls, and whenever the interactivity
  1541. * estimator recalculates.
  1542. */
  1543. static inline int normal_prio(struct task_struct *p)
  1544. {
  1545. int prio;
  1546. if (task_has_rt_policy(p))
  1547. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1548. else
  1549. prio = __normal_prio(p);
  1550. return prio;
  1551. }
  1552. /*
  1553. * Calculate the current priority, i.e. the priority
  1554. * taken into account by the scheduler. This value might
  1555. * be boosted by RT tasks, or might be boosted by
  1556. * interactivity modifiers. Will be RT if the task got
  1557. * RT-boosted. If not then it returns p->normal_prio.
  1558. */
  1559. static int effective_prio(struct task_struct *p)
  1560. {
  1561. p->normal_prio = normal_prio(p);
  1562. /*
  1563. * If we are RT tasks or we were boosted to RT priority,
  1564. * keep the priority unchanged. Otherwise, update priority
  1565. * to the normal priority:
  1566. */
  1567. if (!rt_prio(p->prio))
  1568. return p->normal_prio;
  1569. return p->prio;
  1570. }
  1571. /*
  1572. * activate_task - move a task to the runqueue.
  1573. */
  1574. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1575. {
  1576. if (task_contributes_to_load(p))
  1577. rq->nr_uninterruptible--;
  1578. enqueue_task(rq, p, wakeup);
  1579. inc_nr_running(rq);
  1580. }
  1581. /*
  1582. * deactivate_task - remove a task from the runqueue.
  1583. */
  1584. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1585. {
  1586. if (task_contributes_to_load(p))
  1587. rq->nr_uninterruptible++;
  1588. dequeue_task(rq, p, sleep);
  1589. dec_nr_running(rq);
  1590. }
  1591. /**
  1592. * task_curr - is this task currently executing on a CPU?
  1593. * @p: the task in question.
  1594. */
  1595. inline int task_curr(const struct task_struct *p)
  1596. {
  1597. return cpu_curr(task_cpu(p)) == p;
  1598. }
  1599. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1600. {
  1601. set_task_rq(p, cpu);
  1602. #ifdef CONFIG_SMP
  1603. /*
  1604. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1605. * successfuly executed on another CPU. We must ensure that updates of
  1606. * per-task data have been completed by this moment.
  1607. */
  1608. smp_wmb();
  1609. task_thread_info(p)->cpu = cpu;
  1610. #endif
  1611. }
  1612. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1613. const struct sched_class *prev_class,
  1614. int oldprio, int running)
  1615. {
  1616. if (prev_class != p->sched_class) {
  1617. if (prev_class->switched_from)
  1618. prev_class->switched_from(rq, p, running);
  1619. p->sched_class->switched_to(rq, p, running);
  1620. } else
  1621. p->sched_class->prio_changed(rq, p, oldprio, running);
  1622. }
  1623. #ifdef CONFIG_SMP
  1624. /* Used instead of source_load when we know the type == 0 */
  1625. static unsigned long weighted_cpuload(const int cpu)
  1626. {
  1627. return cpu_rq(cpu)->load.weight;
  1628. }
  1629. /*
  1630. * Is this task likely cache-hot:
  1631. */
  1632. static int
  1633. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1634. {
  1635. s64 delta;
  1636. /*
  1637. * Buddy candidates are cache hot:
  1638. */
  1639. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1640. return 1;
  1641. if (p->sched_class != &fair_sched_class)
  1642. return 0;
  1643. if (sysctl_sched_migration_cost == -1)
  1644. return 1;
  1645. if (sysctl_sched_migration_cost == 0)
  1646. return 0;
  1647. delta = now - p->se.exec_start;
  1648. return delta < (s64)sysctl_sched_migration_cost;
  1649. }
  1650. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1651. {
  1652. int old_cpu = task_cpu(p);
  1653. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1654. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1655. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1656. u64 clock_offset;
  1657. clock_offset = old_rq->clock - new_rq->clock;
  1658. #ifdef CONFIG_SCHEDSTATS
  1659. if (p->se.wait_start)
  1660. p->se.wait_start -= clock_offset;
  1661. if (p->se.sleep_start)
  1662. p->se.sleep_start -= clock_offset;
  1663. if (p->se.block_start)
  1664. p->se.block_start -= clock_offset;
  1665. if (old_cpu != new_cpu) {
  1666. schedstat_inc(p, se.nr_migrations);
  1667. if (task_hot(p, old_rq->clock, NULL))
  1668. schedstat_inc(p, se.nr_forced2_migrations);
  1669. }
  1670. #endif
  1671. p->se.vruntime -= old_cfsrq->min_vruntime -
  1672. new_cfsrq->min_vruntime;
  1673. __set_task_cpu(p, new_cpu);
  1674. }
  1675. struct migration_req {
  1676. struct list_head list;
  1677. struct task_struct *task;
  1678. int dest_cpu;
  1679. struct completion done;
  1680. };
  1681. /*
  1682. * The task's runqueue lock must be held.
  1683. * Returns true if you have to wait for migration thread.
  1684. */
  1685. static int
  1686. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1687. {
  1688. struct rq *rq = task_rq(p);
  1689. /*
  1690. * If the task is not on a runqueue (and not running), then
  1691. * it is sufficient to simply update the task's cpu field.
  1692. */
  1693. if (!p->se.on_rq && !task_running(rq, p)) {
  1694. set_task_cpu(p, dest_cpu);
  1695. return 0;
  1696. }
  1697. init_completion(&req->done);
  1698. req->task = p;
  1699. req->dest_cpu = dest_cpu;
  1700. list_add(&req->list, &rq->migration_queue);
  1701. return 1;
  1702. }
  1703. /*
  1704. * wait_task_inactive - wait for a thread to unschedule.
  1705. *
  1706. * The caller must ensure that the task *will* unschedule sometime soon,
  1707. * else this function might spin for a *long* time. This function can't
  1708. * be called with interrupts off, or it may introduce deadlock with
  1709. * smp_call_function() if an IPI is sent by the same process we are
  1710. * waiting to become inactive.
  1711. */
  1712. void wait_task_inactive(struct task_struct *p)
  1713. {
  1714. unsigned long flags;
  1715. int running, on_rq;
  1716. struct rq *rq;
  1717. for (;;) {
  1718. /*
  1719. * We do the initial early heuristics without holding
  1720. * any task-queue locks at all. We'll only try to get
  1721. * the runqueue lock when things look like they will
  1722. * work out!
  1723. */
  1724. rq = task_rq(p);
  1725. /*
  1726. * If the task is actively running on another CPU
  1727. * still, just relax and busy-wait without holding
  1728. * any locks.
  1729. *
  1730. * NOTE! Since we don't hold any locks, it's not
  1731. * even sure that "rq" stays as the right runqueue!
  1732. * But we don't care, since "task_running()" will
  1733. * return false if the runqueue has changed and p
  1734. * is actually now running somewhere else!
  1735. */
  1736. while (task_running(rq, p))
  1737. cpu_relax();
  1738. /*
  1739. * Ok, time to look more closely! We need the rq
  1740. * lock now, to be *sure*. If we're wrong, we'll
  1741. * just go back and repeat.
  1742. */
  1743. rq = task_rq_lock(p, &flags);
  1744. running = task_running(rq, p);
  1745. on_rq = p->se.on_rq;
  1746. task_rq_unlock(rq, &flags);
  1747. /*
  1748. * Was it really running after all now that we
  1749. * checked with the proper locks actually held?
  1750. *
  1751. * Oops. Go back and try again..
  1752. */
  1753. if (unlikely(running)) {
  1754. cpu_relax();
  1755. continue;
  1756. }
  1757. /*
  1758. * It's not enough that it's not actively running,
  1759. * it must be off the runqueue _entirely_, and not
  1760. * preempted!
  1761. *
  1762. * So if it wa still runnable (but just not actively
  1763. * running right now), it's preempted, and we should
  1764. * yield - it could be a while.
  1765. */
  1766. if (unlikely(on_rq)) {
  1767. schedule_timeout_uninterruptible(1);
  1768. continue;
  1769. }
  1770. /*
  1771. * Ahh, all good. It wasn't running, and it wasn't
  1772. * runnable, which means that it will never become
  1773. * running in the future either. We're all done!
  1774. */
  1775. break;
  1776. }
  1777. }
  1778. /***
  1779. * kick_process - kick a running thread to enter/exit the kernel
  1780. * @p: the to-be-kicked thread
  1781. *
  1782. * Cause a process which is running on another CPU to enter
  1783. * kernel-mode, without any delay. (to get signals handled.)
  1784. *
  1785. * NOTE: this function doesnt have to take the runqueue lock,
  1786. * because all it wants to ensure is that the remote task enters
  1787. * the kernel. If the IPI races and the task has been migrated
  1788. * to another CPU then no harm is done and the purpose has been
  1789. * achieved as well.
  1790. */
  1791. void kick_process(struct task_struct *p)
  1792. {
  1793. int cpu;
  1794. preempt_disable();
  1795. cpu = task_cpu(p);
  1796. if ((cpu != smp_processor_id()) && task_curr(p))
  1797. smp_send_reschedule(cpu);
  1798. preempt_enable();
  1799. }
  1800. /*
  1801. * Return a low guess at the load of a migration-source cpu weighted
  1802. * according to the scheduling class and "nice" value.
  1803. *
  1804. * We want to under-estimate the load of migration sources, to
  1805. * balance conservatively.
  1806. */
  1807. static unsigned long source_load(int cpu, int type)
  1808. {
  1809. struct rq *rq = cpu_rq(cpu);
  1810. unsigned long total = weighted_cpuload(cpu);
  1811. if (type == 0)
  1812. return total;
  1813. return min(rq->cpu_load[type-1], total);
  1814. }
  1815. /*
  1816. * Return a high guess at the load of a migration-target cpu weighted
  1817. * according to the scheduling class and "nice" value.
  1818. */
  1819. static unsigned long target_load(int cpu, int type)
  1820. {
  1821. struct rq *rq = cpu_rq(cpu);
  1822. unsigned long total = weighted_cpuload(cpu);
  1823. if (type == 0)
  1824. return total;
  1825. return max(rq->cpu_load[type-1], total);
  1826. }
  1827. /*
  1828. * Return the average load per task on the cpu's run queue
  1829. */
  1830. static unsigned long cpu_avg_load_per_task(int cpu)
  1831. {
  1832. struct rq *rq = cpu_rq(cpu);
  1833. unsigned long total = weighted_cpuload(cpu);
  1834. unsigned long n = rq->nr_running;
  1835. return n ? total / n : SCHED_LOAD_SCALE;
  1836. }
  1837. /*
  1838. * find_idlest_group finds and returns the least busy CPU group within the
  1839. * domain.
  1840. */
  1841. static struct sched_group *
  1842. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1843. {
  1844. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1845. unsigned long min_load = ULONG_MAX, this_load = 0;
  1846. int load_idx = sd->forkexec_idx;
  1847. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1848. do {
  1849. unsigned long load, avg_load;
  1850. int local_group;
  1851. int i;
  1852. /* Skip over this group if it has no CPUs allowed */
  1853. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1854. continue;
  1855. local_group = cpu_isset(this_cpu, group->cpumask);
  1856. /* Tally up the load of all CPUs in the group */
  1857. avg_load = 0;
  1858. for_each_cpu_mask(i, group->cpumask) {
  1859. /* Bias balancing toward cpus of our domain */
  1860. if (local_group)
  1861. load = source_load(i, load_idx);
  1862. else
  1863. load = target_load(i, load_idx);
  1864. avg_load += load;
  1865. }
  1866. /* Adjust by relative CPU power of the group */
  1867. avg_load = sg_div_cpu_power(group,
  1868. avg_load * SCHED_LOAD_SCALE);
  1869. if (local_group) {
  1870. this_load = avg_load;
  1871. this = group;
  1872. } else if (avg_load < min_load) {
  1873. min_load = avg_load;
  1874. idlest = group;
  1875. }
  1876. } while (group = group->next, group != sd->groups);
  1877. if (!idlest || 100*this_load < imbalance*min_load)
  1878. return NULL;
  1879. return idlest;
  1880. }
  1881. /*
  1882. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1883. */
  1884. static int
  1885. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1886. cpumask_t *tmp)
  1887. {
  1888. unsigned long load, min_load = ULONG_MAX;
  1889. int idlest = -1;
  1890. int i;
  1891. /* Traverse only the allowed CPUs */
  1892. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1893. for_each_cpu_mask(i, *tmp) {
  1894. load = weighted_cpuload(i);
  1895. if (load < min_load || (load == min_load && i == this_cpu)) {
  1896. min_load = load;
  1897. idlest = i;
  1898. }
  1899. }
  1900. return idlest;
  1901. }
  1902. /*
  1903. * sched_balance_self: balance the current task (running on cpu) in domains
  1904. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1905. * SD_BALANCE_EXEC.
  1906. *
  1907. * Balance, ie. select the least loaded group.
  1908. *
  1909. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1910. *
  1911. * preempt must be disabled.
  1912. */
  1913. static int sched_balance_self(int cpu, int flag)
  1914. {
  1915. struct task_struct *t = current;
  1916. struct sched_domain *tmp, *sd = NULL;
  1917. for_each_domain(cpu, tmp) {
  1918. /*
  1919. * If power savings logic is enabled for a domain, stop there.
  1920. */
  1921. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1922. break;
  1923. if (tmp->flags & flag)
  1924. sd = tmp;
  1925. }
  1926. while (sd) {
  1927. cpumask_t span, tmpmask;
  1928. struct sched_group *group;
  1929. int new_cpu, weight;
  1930. if (!(sd->flags & flag)) {
  1931. sd = sd->child;
  1932. continue;
  1933. }
  1934. span = sd->span;
  1935. group = find_idlest_group(sd, t, cpu);
  1936. if (!group) {
  1937. sd = sd->child;
  1938. continue;
  1939. }
  1940. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1941. if (new_cpu == -1 || new_cpu == cpu) {
  1942. /* Now try balancing at a lower domain level of cpu */
  1943. sd = sd->child;
  1944. continue;
  1945. }
  1946. /* Now try balancing at a lower domain level of new_cpu */
  1947. cpu = new_cpu;
  1948. sd = NULL;
  1949. weight = cpus_weight(span);
  1950. for_each_domain(cpu, tmp) {
  1951. if (weight <= cpus_weight(tmp->span))
  1952. break;
  1953. if (tmp->flags & flag)
  1954. sd = tmp;
  1955. }
  1956. /* while loop will break here if sd == NULL */
  1957. }
  1958. return cpu;
  1959. }
  1960. #endif /* CONFIG_SMP */
  1961. /***
  1962. * try_to_wake_up - wake up a thread
  1963. * @p: the to-be-woken-up thread
  1964. * @state: the mask of task states that can be woken
  1965. * @sync: do a synchronous wakeup?
  1966. *
  1967. * Put it on the run-queue if it's not already there. The "current"
  1968. * thread is always on the run-queue (except when the actual
  1969. * re-schedule is in progress), and as such you're allowed to do
  1970. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1971. * runnable without the overhead of this.
  1972. *
  1973. * returns failure only if the task is already active.
  1974. */
  1975. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1976. {
  1977. int cpu, orig_cpu, this_cpu, success = 0;
  1978. unsigned long flags;
  1979. long old_state;
  1980. struct rq *rq;
  1981. if (!sched_feat(SYNC_WAKEUPS))
  1982. sync = 0;
  1983. smp_wmb();
  1984. rq = task_rq_lock(p, &flags);
  1985. old_state = p->state;
  1986. if (!(old_state & state))
  1987. goto out;
  1988. if (p->se.on_rq)
  1989. goto out_running;
  1990. cpu = task_cpu(p);
  1991. orig_cpu = cpu;
  1992. this_cpu = smp_processor_id();
  1993. #ifdef CONFIG_SMP
  1994. if (unlikely(task_running(rq, p)))
  1995. goto out_activate;
  1996. cpu = p->sched_class->select_task_rq(p, sync);
  1997. if (cpu != orig_cpu) {
  1998. set_task_cpu(p, cpu);
  1999. task_rq_unlock(rq, &flags);
  2000. /* might preempt at this point */
  2001. rq = task_rq_lock(p, &flags);
  2002. old_state = p->state;
  2003. if (!(old_state & state))
  2004. goto out;
  2005. if (p->se.on_rq)
  2006. goto out_running;
  2007. this_cpu = smp_processor_id();
  2008. cpu = task_cpu(p);
  2009. }
  2010. #ifdef CONFIG_SCHEDSTATS
  2011. schedstat_inc(rq, ttwu_count);
  2012. if (cpu == this_cpu)
  2013. schedstat_inc(rq, ttwu_local);
  2014. else {
  2015. struct sched_domain *sd;
  2016. for_each_domain(this_cpu, sd) {
  2017. if (cpu_isset(cpu, sd->span)) {
  2018. schedstat_inc(sd, ttwu_wake_remote);
  2019. break;
  2020. }
  2021. }
  2022. }
  2023. #endif /* CONFIG_SCHEDSTATS */
  2024. out_activate:
  2025. #endif /* CONFIG_SMP */
  2026. schedstat_inc(p, se.nr_wakeups);
  2027. if (sync)
  2028. schedstat_inc(p, se.nr_wakeups_sync);
  2029. if (orig_cpu != cpu)
  2030. schedstat_inc(p, se.nr_wakeups_migrate);
  2031. if (cpu == this_cpu)
  2032. schedstat_inc(p, se.nr_wakeups_local);
  2033. else
  2034. schedstat_inc(p, se.nr_wakeups_remote);
  2035. update_rq_clock(rq);
  2036. activate_task(rq, p, 1);
  2037. success = 1;
  2038. out_running:
  2039. check_preempt_curr(rq, p);
  2040. p->state = TASK_RUNNING;
  2041. #ifdef CONFIG_SMP
  2042. if (p->sched_class->task_wake_up)
  2043. p->sched_class->task_wake_up(rq, p);
  2044. #endif
  2045. out:
  2046. task_rq_unlock(rq, &flags);
  2047. return success;
  2048. }
  2049. int wake_up_process(struct task_struct *p)
  2050. {
  2051. return try_to_wake_up(p, TASK_ALL, 0);
  2052. }
  2053. EXPORT_SYMBOL(wake_up_process);
  2054. int wake_up_state(struct task_struct *p, unsigned int state)
  2055. {
  2056. return try_to_wake_up(p, state, 0);
  2057. }
  2058. /*
  2059. * Perform scheduler related setup for a newly forked process p.
  2060. * p is forked by current.
  2061. *
  2062. * __sched_fork() is basic setup used by init_idle() too:
  2063. */
  2064. static void __sched_fork(struct task_struct *p)
  2065. {
  2066. p->se.exec_start = 0;
  2067. p->se.sum_exec_runtime = 0;
  2068. p->se.prev_sum_exec_runtime = 0;
  2069. p->se.last_wakeup = 0;
  2070. p->se.avg_overlap = 0;
  2071. #ifdef CONFIG_SCHEDSTATS
  2072. p->se.wait_start = 0;
  2073. p->se.sum_sleep_runtime = 0;
  2074. p->se.sleep_start = 0;
  2075. p->se.block_start = 0;
  2076. p->se.sleep_max = 0;
  2077. p->se.block_max = 0;
  2078. p->se.exec_max = 0;
  2079. p->se.slice_max = 0;
  2080. p->se.wait_max = 0;
  2081. #endif
  2082. INIT_LIST_HEAD(&p->rt.run_list);
  2083. p->se.on_rq = 0;
  2084. INIT_LIST_HEAD(&p->se.group_node);
  2085. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2086. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2087. #endif
  2088. /*
  2089. * We mark the process as running here, but have not actually
  2090. * inserted it onto the runqueue yet. This guarantees that
  2091. * nobody will actually run it, and a signal or other external
  2092. * event cannot wake it up and insert it on the runqueue either.
  2093. */
  2094. p->state = TASK_RUNNING;
  2095. }
  2096. /*
  2097. * fork()/clone()-time setup:
  2098. */
  2099. void sched_fork(struct task_struct *p, int clone_flags)
  2100. {
  2101. int cpu = get_cpu();
  2102. __sched_fork(p);
  2103. #ifdef CONFIG_SMP
  2104. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2105. #endif
  2106. set_task_cpu(p, cpu);
  2107. /*
  2108. * Make sure we do not leak PI boosting priority to the child:
  2109. */
  2110. p->prio = current->normal_prio;
  2111. if (!rt_prio(p->prio))
  2112. p->sched_class = &fair_sched_class;
  2113. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2114. if (likely(sched_info_on()))
  2115. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2116. #endif
  2117. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2118. p->oncpu = 0;
  2119. #endif
  2120. #ifdef CONFIG_PREEMPT
  2121. /* Want to start with kernel preemption disabled. */
  2122. task_thread_info(p)->preempt_count = 1;
  2123. #endif
  2124. put_cpu();
  2125. }
  2126. /*
  2127. * wake_up_new_task - wake up a newly created task for the first time.
  2128. *
  2129. * This function will do some initial scheduler statistics housekeeping
  2130. * that must be done for every newly created context, then puts the task
  2131. * on the runqueue and wakes it.
  2132. */
  2133. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2134. {
  2135. unsigned long flags;
  2136. struct rq *rq;
  2137. rq = task_rq_lock(p, &flags);
  2138. BUG_ON(p->state != TASK_RUNNING);
  2139. update_rq_clock(rq);
  2140. p->prio = effective_prio(p);
  2141. if (!p->sched_class->task_new || !current->se.on_rq) {
  2142. activate_task(rq, p, 0);
  2143. } else {
  2144. /*
  2145. * Let the scheduling class do new task startup
  2146. * management (if any):
  2147. */
  2148. p->sched_class->task_new(rq, p);
  2149. inc_nr_running(rq);
  2150. }
  2151. check_preempt_curr(rq, p);
  2152. #ifdef CONFIG_SMP
  2153. if (p->sched_class->task_wake_up)
  2154. p->sched_class->task_wake_up(rq, p);
  2155. #endif
  2156. task_rq_unlock(rq, &flags);
  2157. }
  2158. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2159. /**
  2160. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2161. * @notifier: notifier struct to register
  2162. */
  2163. void preempt_notifier_register(struct preempt_notifier *notifier)
  2164. {
  2165. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2166. }
  2167. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2168. /**
  2169. * preempt_notifier_unregister - no longer interested in preemption notifications
  2170. * @notifier: notifier struct to unregister
  2171. *
  2172. * This is safe to call from within a preemption notifier.
  2173. */
  2174. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2175. {
  2176. hlist_del(&notifier->link);
  2177. }
  2178. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2179. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2180. {
  2181. struct preempt_notifier *notifier;
  2182. struct hlist_node *node;
  2183. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2184. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2185. }
  2186. static void
  2187. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2188. struct task_struct *next)
  2189. {
  2190. struct preempt_notifier *notifier;
  2191. struct hlist_node *node;
  2192. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2193. notifier->ops->sched_out(notifier, next);
  2194. }
  2195. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2196. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2197. {
  2198. }
  2199. static void
  2200. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2201. struct task_struct *next)
  2202. {
  2203. }
  2204. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2205. /**
  2206. * prepare_task_switch - prepare to switch tasks
  2207. * @rq: the runqueue preparing to switch
  2208. * @prev: the current task that is being switched out
  2209. * @next: the task we are going to switch to.
  2210. *
  2211. * This is called with the rq lock held and interrupts off. It must
  2212. * be paired with a subsequent finish_task_switch after the context
  2213. * switch.
  2214. *
  2215. * prepare_task_switch sets up locking and calls architecture specific
  2216. * hooks.
  2217. */
  2218. static inline void
  2219. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2220. struct task_struct *next)
  2221. {
  2222. fire_sched_out_preempt_notifiers(prev, next);
  2223. prepare_lock_switch(rq, next);
  2224. prepare_arch_switch(next);
  2225. }
  2226. /**
  2227. * finish_task_switch - clean up after a task-switch
  2228. * @rq: runqueue associated with task-switch
  2229. * @prev: the thread we just switched away from.
  2230. *
  2231. * finish_task_switch must be called after the context switch, paired
  2232. * with a prepare_task_switch call before the context switch.
  2233. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2234. * and do any other architecture-specific cleanup actions.
  2235. *
  2236. * Note that we may have delayed dropping an mm in context_switch(). If
  2237. * so, we finish that here outside of the runqueue lock. (Doing it
  2238. * with the lock held can cause deadlocks; see schedule() for
  2239. * details.)
  2240. */
  2241. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2242. __releases(rq->lock)
  2243. {
  2244. struct mm_struct *mm = rq->prev_mm;
  2245. long prev_state;
  2246. rq->prev_mm = NULL;
  2247. /*
  2248. * A task struct has one reference for the use as "current".
  2249. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2250. * schedule one last time. The schedule call will never return, and
  2251. * the scheduled task must drop that reference.
  2252. * The test for TASK_DEAD must occur while the runqueue locks are
  2253. * still held, otherwise prev could be scheduled on another cpu, die
  2254. * there before we look at prev->state, and then the reference would
  2255. * be dropped twice.
  2256. * Manfred Spraul <manfred@colorfullife.com>
  2257. */
  2258. prev_state = prev->state;
  2259. finish_arch_switch(prev);
  2260. finish_lock_switch(rq, prev);
  2261. #ifdef CONFIG_SMP
  2262. if (current->sched_class->post_schedule)
  2263. current->sched_class->post_schedule(rq);
  2264. #endif
  2265. fire_sched_in_preempt_notifiers(current);
  2266. if (mm)
  2267. mmdrop(mm);
  2268. if (unlikely(prev_state == TASK_DEAD)) {
  2269. /*
  2270. * Remove function-return probe instances associated with this
  2271. * task and put them back on the free list.
  2272. */
  2273. kprobe_flush_task(prev);
  2274. put_task_struct(prev);
  2275. }
  2276. }
  2277. /**
  2278. * schedule_tail - first thing a freshly forked thread must call.
  2279. * @prev: the thread we just switched away from.
  2280. */
  2281. asmlinkage void schedule_tail(struct task_struct *prev)
  2282. __releases(rq->lock)
  2283. {
  2284. struct rq *rq = this_rq();
  2285. finish_task_switch(rq, prev);
  2286. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2287. /* In this case, finish_task_switch does not reenable preemption */
  2288. preempt_enable();
  2289. #endif
  2290. if (current->set_child_tid)
  2291. put_user(task_pid_vnr(current), current->set_child_tid);
  2292. }
  2293. /*
  2294. * context_switch - switch to the new MM and the new
  2295. * thread's register state.
  2296. */
  2297. static inline void
  2298. context_switch(struct rq *rq, struct task_struct *prev,
  2299. struct task_struct *next)
  2300. {
  2301. struct mm_struct *mm, *oldmm;
  2302. prepare_task_switch(rq, prev, next);
  2303. mm = next->mm;
  2304. oldmm = prev->active_mm;
  2305. /*
  2306. * For paravirt, this is coupled with an exit in switch_to to
  2307. * combine the page table reload and the switch backend into
  2308. * one hypercall.
  2309. */
  2310. arch_enter_lazy_cpu_mode();
  2311. if (unlikely(!mm)) {
  2312. next->active_mm = oldmm;
  2313. atomic_inc(&oldmm->mm_count);
  2314. enter_lazy_tlb(oldmm, next);
  2315. } else
  2316. switch_mm(oldmm, mm, next);
  2317. if (unlikely(!prev->mm)) {
  2318. prev->active_mm = NULL;
  2319. rq->prev_mm = oldmm;
  2320. }
  2321. /*
  2322. * Since the runqueue lock will be released by the next
  2323. * task (which is an invalid locking op but in the case
  2324. * of the scheduler it's an obvious special-case), so we
  2325. * do an early lockdep release here:
  2326. */
  2327. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2328. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2329. #endif
  2330. /* Here we just switch the register state and the stack. */
  2331. switch_to(prev, next, prev);
  2332. barrier();
  2333. /*
  2334. * this_rq must be evaluated again because prev may have moved
  2335. * CPUs since it called schedule(), thus the 'rq' on its stack
  2336. * frame will be invalid.
  2337. */
  2338. finish_task_switch(this_rq(), prev);
  2339. }
  2340. /*
  2341. * nr_running, nr_uninterruptible and nr_context_switches:
  2342. *
  2343. * externally visible scheduler statistics: current number of runnable
  2344. * threads, current number of uninterruptible-sleeping threads, total
  2345. * number of context switches performed since bootup.
  2346. */
  2347. unsigned long nr_running(void)
  2348. {
  2349. unsigned long i, sum = 0;
  2350. for_each_online_cpu(i)
  2351. sum += cpu_rq(i)->nr_running;
  2352. return sum;
  2353. }
  2354. unsigned long nr_uninterruptible(void)
  2355. {
  2356. unsigned long i, sum = 0;
  2357. for_each_possible_cpu(i)
  2358. sum += cpu_rq(i)->nr_uninterruptible;
  2359. /*
  2360. * Since we read the counters lockless, it might be slightly
  2361. * inaccurate. Do not allow it to go below zero though:
  2362. */
  2363. if (unlikely((long)sum < 0))
  2364. sum = 0;
  2365. return sum;
  2366. }
  2367. unsigned long long nr_context_switches(void)
  2368. {
  2369. int i;
  2370. unsigned long long sum = 0;
  2371. for_each_possible_cpu(i)
  2372. sum += cpu_rq(i)->nr_switches;
  2373. return sum;
  2374. }
  2375. unsigned long nr_iowait(void)
  2376. {
  2377. unsigned long i, sum = 0;
  2378. for_each_possible_cpu(i)
  2379. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2380. return sum;
  2381. }
  2382. unsigned long nr_active(void)
  2383. {
  2384. unsigned long i, running = 0, uninterruptible = 0;
  2385. for_each_online_cpu(i) {
  2386. running += cpu_rq(i)->nr_running;
  2387. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2388. }
  2389. if (unlikely((long)uninterruptible < 0))
  2390. uninterruptible = 0;
  2391. return running + uninterruptible;
  2392. }
  2393. /*
  2394. * Update rq->cpu_load[] statistics. This function is usually called every
  2395. * scheduler tick (TICK_NSEC).
  2396. */
  2397. static void update_cpu_load(struct rq *this_rq)
  2398. {
  2399. unsigned long this_load = this_rq->load.weight;
  2400. int i, scale;
  2401. this_rq->nr_load_updates++;
  2402. /* Update our load: */
  2403. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2404. unsigned long old_load, new_load;
  2405. /* scale is effectively 1 << i now, and >> i divides by scale */
  2406. old_load = this_rq->cpu_load[i];
  2407. new_load = this_load;
  2408. /*
  2409. * Round up the averaging division if load is increasing. This
  2410. * prevents us from getting stuck on 9 if the load is 10, for
  2411. * example.
  2412. */
  2413. if (new_load > old_load)
  2414. new_load += scale-1;
  2415. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2416. }
  2417. }
  2418. #ifdef CONFIG_SMP
  2419. /*
  2420. * double_rq_lock - safely lock two runqueues
  2421. *
  2422. * Note this does not disable interrupts like task_rq_lock,
  2423. * you need to do so manually before calling.
  2424. */
  2425. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2426. __acquires(rq1->lock)
  2427. __acquires(rq2->lock)
  2428. {
  2429. BUG_ON(!irqs_disabled());
  2430. if (rq1 == rq2) {
  2431. spin_lock(&rq1->lock);
  2432. __acquire(rq2->lock); /* Fake it out ;) */
  2433. } else {
  2434. if (rq1 < rq2) {
  2435. spin_lock(&rq1->lock);
  2436. spin_lock(&rq2->lock);
  2437. } else {
  2438. spin_lock(&rq2->lock);
  2439. spin_lock(&rq1->lock);
  2440. }
  2441. }
  2442. update_rq_clock(rq1);
  2443. update_rq_clock(rq2);
  2444. }
  2445. /*
  2446. * double_rq_unlock - safely unlock two runqueues
  2447. *
  2448. * Note this does not restore interrupts like task_rq_unlock,
  2449. * you need to do so manually after calling.
  2450. */
  2451. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2452. __releases(rq1->lock)
  2453. __releases(rq2->lock)
  2454. {
  2455. spin_unlock(&rq1->lock);
  2456. if (rq1 != rq2)
  2457. spin_unlock(&rq2->lock);
  2458. else
  2459. __release(rq2->lock);
  2460. }
  2461. /*
  2462. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2463. */
  2464. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2465. __releases(this_rq->lock)
  2466. __acquires(busiest->lock)
  2467. __acquires(this_rq->lock)
  2468. {
  2469. int ret = 0;
  2470. if (unlikely(!irqs_disabled())) {
  2471. /* printk() doesn't work good under rq->lock */
  2472. spin_unlock(&this_rq->lock);
  2473. BUG_ON(1);
  2474. }
  2475. if (unlikely(!spin_trylock(&busiest->lock))) {
  2476. if (busiest < this_rq) {
  2477. spin_unlock(&this_rq->lock);
  2478. spin_lock(&busiest->lock);
  2479. spin_lock(&this_rq->lock);
  2480. ret = 1;
  2481. } else
  2482. spin_lock(&busiest->lock);
  2483. }
  2484. return ret;
  2485. }
  2486. /*
  2487. * If dest_cpu is allowed for this process, migrate the task to it.
  2488. * This is accomplished by forcing the cpu_allowed mask to only
  2489. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2490. * the cpu_allowed mask is restored.
  2491. */
  2492. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2493. {
  2494. struct migration_req req;
  2495. unsigned long flags;
  2496. struct rq *rq;
  2497. rq = task_rq_lock(p, &flags);
  2498. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2499. || unlikely(cpu_is_offline(dest_cpu)))
  2500. goto out;
  2501. /* force the process onto the specified CPU */
  2502. if (migrate_task(p, dest_cpu, &req)) {
  2503. /* Need to wait for migration thread (might exit: take ref). */
  2504. struct task_struct *mt = rq->migration_thread;
  2505. get_task_struct(mt);
  2506. task_rq_unlock(rq, &flags);
  2507. wake_up_process(mt);
  2508. put_task_struct(mt);
  2509. wait_for_completion(&req.done);
  2510. return;
  2511. }
  2512. out:
  2513. task_rq_unlock(rq, &flags);
  2514. }
  2515. /*
  2516. * sched_exec - execve() is a valuable balancing opportunity, because at
  2517. * this point the task has the smallest effective memory and cache footprint.
  2518. */
  2519. void sched_exec(void)
  2520. {
  2521. int new_cpu, this_cpu = get_cpu();
  2522. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2523. put_cpu();
  2524. if (new_cpu != this_cpu)
  2525. sched_migrate_task(current, new_cpu);
  2526. }
  2527. /*
  2528. * pull_task - move a task from a remote runqueue to the local runqueue.
  2529. * Both runqueues must be locked.
  2530. */
  2531. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2532. struct rq *this_rq, int this_cpu)
  2533. {
  2534. deactivate_task(src_rq, p, 0);
  2535. set_task_cpu(p, this_cpu);
  2536. activate_task(this_rq, p, 0);
  2537. /*
  2538. * Note that idle threads have a prio of MAX_PRIO, for this test
  2539. * to be always true for them.
  2540. */
  2541. check_preempt_curr(this_rq, p);
  2542. }
  2543. /*
  2544. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2545. */
  2546. static
  2547. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2548. struct sched_domain *sd, enum cpu_idle_type idle,
  2549. int *all_pinned)
  2550. {
  2551. /*
  2552. * We do not migrate tasks that are:
  2553. * 1) running (obviously), or
  2554. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2555. * 3) are cache-hot on their current CPU.
  2556. */
  2557. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2558. schedstat_inc(p, se.nr_failed_migrations_affine);
  2559. return 0;
  2560. }
  2561. *all_pinned = 0;
  2562. if (task_running(rq, p)) {
  2563. schedstat_inc(p, se.nr_failed_migrations_running);
  2564. return 0;
  2565. }
  2566. /*
  2567. * Aggressive migration if:
  2568. * 1) task is cache cold, or
  2569. * 2) too many balance attempts have failed.
  2570. */
  2571. if (!task_hot(p, rq->clock, sd) ||
  2572. sd->nr_balance_failed > sd->cache_nice_tries) {
  2573. #ifdef CONFIG_SCHEDSTATS
  2574. if (task_hot(p, rq->clock, sd)) {
  2575. schedstat_inc(sd, lb_hot_gained[idle]);
  2576. schedstat_inc(p, se.nr_forced_migrations);
  2577. }
  2578. #endif
  2579. return 1;
  2580. }
  2581. if (task_hot(p, rq->clock, sd)) {
  2582. schedstat_inc(p, se.nr_failed_migrations_hot);
  2583. return 0;
  2584. }
  2585. return 1;
  2586. }
  2587. static unsigned long
  2588. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2589. unsigned long max_load_move, struct sched_domain *sd,
  2590. enum cpu_idle_type idle, int *all_pinned,
  2591. int *this_best_prio, struct rq_iterator *iterator)
  2592. {
  2593. int loops = 0, pulled = 0, pinned = 0, skip_for_load;
  2594. struct task_struct *p;
  2595. long rem_load_move = max_load_move;
  2596. if (max_load_move == 0)
  2597. goto out;
  2598. pinned = 1;
  2599. /*
  2600. * Start the load-balancing iterator:
  2601. */
  2602. p = iterator->start(iterator->arg);
  2603. next:
  2604. if (!p || loops++ > sysctl_sched_nr_migrate)
  2605. goto out;
  2606. /*
  2607. * To help distribute high priority tasks across CPUs we don't
  2608. * skip a task if it will be the highest priority task (i.e. smallest
  2609. * prio value) on its new queue regardless of its load weight
  2610. */
  2611. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  2612. SCHED_LOAD_SCALE_FUZZ;
  2613. if ((skip_for_load && p->prio >= *this_best_prio) ||
  2614. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2615. p = iterator->next(iterator->arg);
  2616. goto next;
  2617. }
  2618. pull_task(busiest, p, this_rq, this_cpu);
  2619. pulled++;
  2620. rem_load_move -= p->se.load.weight;
  2621. /*
  2622. * We only want to steal up to the prescribed amount of weighted load.
  2623. */
  2624. if (rem_load_move > 0) {
  2625. if (p->prio < *this_best_prio)
  2626. *this_best_prio = p->prio;
  2627. p = iterator->next(iterator->arg);
  2628. goto next;
  2629. }
  2630. out:
  2631. /*
  2632. * Right now, this is one of only two places pull_task() is called,
  2633. * so we can safely collect pull_task() stats here rather than
  2634. * inside pull_task().
  2635. */
  2636. schedstat_add(sd, lb_gained[idle], pulled);
  2637. if (all_pinned)
  2638. *all_pinned = pinned;
  2639. return max_load_move - rem_load_move;
  2640. }
  2641. /*
  2642. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2643. * this_rq, as part of a balancing operation within domain "sd".
  2644. * Returns 1 if successful and 0 otherwise.
  2645. *
  2646. * Called with both runqueues locked.
  2647. */
  2648. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2649. unsigned long max_load_move,
  2650. struct sched_domain *sd, enum cpu_idle_type idle,
  2651. int *all_pinned)
  2652. {
  2653. const struct sched_class *class = sched_class_highest;
  2654. unsigned long total_load_moved = 0;
  2655. int this_best_prio = this_rq->curr->prio;
  2656. do {
  2657. total_load_moved +=
  2658. class->load_balance(this_rq, this_cpu, busiest,
  2659. max_load_move - total_load_moved,
  2660. sd, idle, all_pinned, &this_best_prio);
  2661. class = class->next;
  2662. } while (class && max_load_move > total_load_moved);
  2663. return total_load_moved > 0;
  2664. }
  2665. static int
  2666. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2667. struct sched_domain *sd, enum cpu_idle_type idle,
  2668. struct rq_iterator *iterator)
  2669. {
  2670. struct task_struct *p = iterator->start(iterator->arg);
  2671. int pinned = 0;
  2672. while (p) {
  2673. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2674. pull_task(busiest, p, this_rq, this_cpu);
  2675. /*
  2676. * Right now, this is only the second place pull_task()
  2677. * is called, so we can safely collect pull_task()
  2678. * stats here rather than inside pull_task().
  2679. */
  2680. schedstat_inc(sd, lb_gained[idle]);
  2681. return 1;
  2682. }
  2683. p = iterator->next(iterator->arg);
  2684. }
  2685. return 0;
  2686. }
  2687. /*
  2688. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2689. * part of active balancing operations within "domain".
  2690. * Returns 1 if successful and 0 otherwise.
  2691. *
  2692. * Called with both runqueues locked.
  2693. */
  2694. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2695. struct sched_domain *sd, enum cpu_idle_type idle)
  2696. {
  2697. const struct sched_class *class;
  2698. for (class = sched_class_highest; class; class = class->next)
  2699. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2700. return 1;
  2701. return 0;
  2702. }
  2703. /*
  2704. * find_busiest_group finds and returns the busiest CPU group within the
  2705. * domain. It calculates and returns the amount of weighted load which
  2706. * should be moved to restore balance via the imbalance parameter.
  2707. */
  2708. static struct sched_group *
  2709. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2710. unsigned long *imbalance, enum cpu_idle_type idle,
  2711. int *sd_idle, const cpumask_t *cpus, int *balance)
  2712. {
  2713. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2714. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2715. unsigned long max_pull;
  2716. unsigned long busiest_load_per_task, busiest_nr_running;
  2717. unsigned long this_load_per_task, this_nr_running;
  2718. int load_idx, group_imb = 0;
  2719. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2720. int power_savings_balance = 1;
  2721. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2722. unsigned long min_nr_running = ULONG_MAX;
  2723. struct sched_group *group_min = NULL, *group_leader = NULL;
  2724. #endif
  2725. max_load = this_load = total_load = total_pwr = 0;
  2726. busiest_load_per_task = busiest_nr_running = 0;
  2727. this_load_per_task = this_nr_running = 0;
  2728. if (idle == CPU_NOT_IDLE)
  2729. load_idx = sd->busy_idx;
  2730. else if (idle == CPU_NEWLY_IDLE)
  2731. load_idx = sd->newidle_idx;
  2732. else
  2733. load_idx = sd->idle_idx;
  2734. do {
  2735. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2736. int local_group;
  2737. int i;
  2738. int __group_imb = 0;
  2739. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2740. unsigned long sum_nr_running, sum_weighted_load;
  2741. local_group = cpu_isset(this_cpu, group->cpumask);
  2742. if (local_group)
  2743. balance_cpu = first_cpu(group->cpumask);
  2744. /* Tally up the load of all CPUs in the group */
  2745. sum_weighted_load = sum_nr_running = avg_load = 0;
  2746. max_cpu_load = 0;
  2747. min_cpu_load = ~0UL;
  2748. for_each_cpu_mask(i, group->cpumask) {
  2749. struct rq *rq;
  2750. if (!cpu_isset(i, *cpus))
  2751. continue;
  2752. rq = cpu_rq(i);
  2753. if (*sd_idle && rq->nr_running)
  2754. *sd_idle = 0;
  2755. /* Bias balancing toward cpus of our domain */
  2756. if (local_group) {
  2757. if (idle_cpu(i) && !first_idle_cpu) {
  2758. first_idle_cpu = 1;
  2759. balance_cpu = i;
  2760. }
  2761. load = target_load(i, load_idx);
  2762. } else {
  2763. load = source_load(i, load_idx);
  2764. if (load > max_cpu_load)
  2765. max_cpu_load = load;
  2766. if (min_cpu_load > load)
  2767. min_cpu_load = load;
  2768. }
  2769. avg_load += load;
  2770. sum_nr_running += rq->nr_running;
  2771. sum_weighted_load += weighted_cpuload(i);
  2772. }
  2773. /*
  2774. * First idle cpu or the first cpu(busiest) in this sched group
  2775. * is eligible for doing load balancing at this and above
  2776. * domains. In the newly idle case, we will allow all the cpu's
  2777. * to do the newly idle load balance.
  2778. */
  2779. if (idle != CPU_NEWLY_IDLE && local_group &&
  2780. balance_cpu != this_cpu && balance) {
  2781. *balance = 0;
  2782. goto ret;
  2783. }
  2784. total_load += avg_load;
  2785. total_pwr += group->__cpu_power;
  2786. /* Adjust by relative CPU power of the group */
  2787. avg_load = sg_div_cpu_power(group,
  2788. avg_load * SCHED_LOAD_SCALE);
  2789. if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
  2790. __group_imb = 1;
  2791. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2792. if (local_group) {
  2793. this_load = avg_load;
  2794. this = group;
  2795. this_nr_running = sum_nr_running;
  2796. this_load_per_task = sum_weighted_load;
  2797. } else if (avg_load > max_load &&
  2798. (sum_nr_running > group_capacity || __group_imb)) {
  2799. max_load = avg_load;
  2800. busiest = group;
  2801. busiest_nr_running = sum_nr_running;
  2802. busiest_load_per_task = sum_weighted_load;
  2803. group_imb = __group_imb;
  2804. }
  2805. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2806. /*
  2807. * Busy processors will not participate in power savings
  2808. * balance.
  2809. */
  2810. if (idle == CPU_NOT_IDLE ||
  2811. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2812. goto group_next;
  2813. /*
  2814. * If the local group is idle or completely loaded
  2815. * no need to do power savings balance at this domain
  2816. */
  2817. if (local_group && (this_nr_running >= group_capacity ||
  2818. !this_nr_running))
  2819. power_savings_balance = 0;
  2820. /*
  2821. * If a group is already running at full capacity or idle,
  2822. * don't include that group in power savings calculations
  2823. */
  2824. if (!power_savings_balance || sum_nr_running >= group_capacity
  2825. || !sum_nr_running)
  2826. goto group_next;
  2827. /*
  2828. * Calculate the group which has the least non-idle load.
  2829. * This is the group from where we need to pick up the load
  2830. * for saving power
  2831. */
  2832. if ((sum_nr_running < min_nr_running) ||
  2833. (sum_nr_running == min_nr_running &&
  2834. first_cpu(group->cpumask) <
  2835. first_cpu(group_min->cpumask))) {
  2836. group_min = group;
  2837. min_nr_running = sum_nr_running;
  2838. min_load_per_task = sum_weighted_load /
  2839. sum_nr_running;
  2840. }
  2841. /*
  2842. * Calculate the group which is almost near its
  2843. * capacity but still has some space to pick up some load
  2844. * from other group and save more power
  2845. */
  2846. if (sum_nr_running <= group_capacity - 1) {
  2847. if (sum_nr_running > leader_nr_running ||
  2848. (sum_nr_running == leader_nr_running &&
  2849. first_cpu(group->cpumask) >
  2850. first_cpu(group_leader->cpumask))) {
  2851. group_leader = group;
  2852. leader_nr_running = sum_nr_running;
  2853. }
  2854. }
  2855. group_next:
  2856. #endif
  2857. group = group->next;
  2858. } while (group != sd->groups);
  2859. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2860. goto out_balanced;
  2861. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2862. if (this_load >= avg_load ||
  2863. 100*max_load <= sd->imbalance_pct*this_load)
  2864. goto out_balanced;
  2865. busiest_load_per_task /= busiest_nr_running;
  2866. if (group_imb)
  2867. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2868. /*
  2869. * We're trying to get all the cpus to the average_load, so we don't
  2870. * want to push ourselves above the average load, nor do we wish to
  2871. * reduce the max loaded cpu below the average load, as either of these
  2872. * actions would just result in more rebalancing later, and ping-pong
  2873. * tasks around. Thus we look for the minimum possible imbalance.
  2874. * Negative imbalances (*we* are more loaded than anyone else) will
  2875. * be counted as no imbalance for these purposes -- we can't fix that
  2876. * by pulling tasks to us. Be careful of negative numbers as they'll
  2877. * appear as very large values with unsigned longs.
  2878. */
  2879. if (max_load <= busiest_load_per_task)
  2880. goto out_balanced;
  2881. /*
  2882. * In the presence of smp nice balancing, certain scenarios can have
  2883. * max load less than avg load(as we skip the groups at or below
  2884. * its cpu_power, while calculating max_load..)
  2885. */
  2886. if (max_load < avg_load) {
  2887. *imbalance = 0;
  2888. goto small_imbalance;
  2889. }
  2890. /* Don't want to pull so many tasks that a group would go idle */
  2891. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2892. /* How much load to actually move to equalise the imbalance */
  2893. *imbalance = min(max_pull * busiest->__cpu_power,
  2894. (avg_load - this_load) * this->__cpu_power)
  2895. / SCHED_LOAD_SCALE;
  2896. /*
  2897. * if *imbalance is less than the average load per runnable task
  2898. * there is no gaurantee that any tasks will be moved so we'll have
  2899. * a think about bumping its value to force at least one task to be
  2900. * moved
  2901. */
  2902. if (*imbalance < busiest_load_per_task) {
  2903. unsigned long tmp, pwr_now, pwr_move;
  2904. unsigned int imbn;
  2905. small_imbalance:
  2906. pwr_move = pwr_now = 0;
  2907. imbn = 2;
  2908. if (this_nr_running) {
  2909. this_load_per_task /= this_nr_running;
  2910. if (busiest_load_per_task > this_load_per_task)
  2911. imbn = 1;
  2912. } else
  2913. this_load_per_task = SCHED_LOAD_SCALE;
  2914. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2915. busiest_load_per_task * imbn) {
  2916. *imbalance = busiest_load_per_task;
  2917. return busiest;
  2918. }
  2919. /*
  2920. * OK, we don't have enough imbalance to justify moving tasks,
  2921. * however we may be able to increase total CPU power used by
  2922. * moving them.
  2923. */
  2924. pwr_now += busiest->__cpu_power *
  2925. min(busiest_load_per_task, max_load);
  2926. pwr_now += this->__cpu_power *
  2927. min(this_load_per_task, this_load);
  2928. pwr_now /= SCHED_LOAD_SCALE;
  2929. /* Amount of load we'd subtract */
  2930. tmp = sg_div_cpu_power(busiest,
  2931. busiest_load_per_task * SCHED_LOAD_SCALE);
  2932. if (max_load > tmp)
  2933. pwr_move += busiest->__cpu_power *
  2934. min(busiest_load_per_task, max_load - tmp);
  2935. /* Amount of load we'd add */
  2936. if (max_load * busiest->__cpu_power <
  2937. busiest_load_per_task * SCHED_LOAD_SCALE)
  2938. tmp = sg_div_cpu_power(this,
  2939. max_load * busiest->__cpu_power);
  2940. else
  2941. tmp = sg_div_cpu_power(this,
  2942. busiest_load_per_task * SCHED_LOAD_SCALE);
  2943. pwr_move += this->__cpu_power *
  2944. min(this_load_per_task, this_load + tmp);
  2945. pwr_move /= SCHED_LOAD_SCALE;
  2946. /* Move if we gain throughput */
  2947. if (pwr_move > pwr_now)
  2948. *imbalance = busiest_load_per_task;
  2949. }
  2950. return busiest;
  2951. out_balanced:
  2952. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2953. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2954. goto ret;
  2955. if (this == group_leader && group_leader != group_min) {
  2956. *imbalance = min_load_per_task;
  2957. return group_min;
  2958. }
  2959. #endif
  2960. ret:
  2961. *imbalance = 0;
  2962. return NULL;
  2963. }
  2964. /*
  2965. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2966. */
  2967. static struct rq *
  2968. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2969. unsigned long imbalance, const cpumask_t *cpus)
  2970. {
  2971. struct rq *busiest = NULL, *rq;
  2972. unsigned long max_load = 0;
  2973. int i;
  2974. for_each_cpu_mask(i, group->cpumask) {
  2975. unsigned long wl;
  2976. if (!cpu_isset(i, *cpus))
  2977. continue;
  2978. rq = cpu_rq(i);
  2979. wl = weighted_cpuload(i);
  2980. if (rq->nr_running == 1 && wl > imbalance)
  2981. continue;
  2982. if (wl > max_load) {
  2983. max_load = wl;
  2984. busiest = rq;
  2985. }
  2986. }
  2987. return busiest;
  2988. }
  2989. /*
  2990. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2991. * so long as it is large enough.
  2992. */
  2993. #define MAX_PINNED_INTERVAL 512
  2994. /*
  2995. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2996. * tasks if there is an imbalance.
  2997. */
  2998. static int load_balance(int this_cpu, struct rq *this_rq,
  2999. struct sched_domain *sd, enum cpu_idle_type idle,
  3000. int *balance, cpumask_t *cpus)
  3001. {
  3002. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3003. struct sched_group *group;
  3004. unsigned long imbalance;
  3005. struct rq *busiest;
  3006. unsigned long flags;
  3007. int unlock_aggregate;
  3008. cpus_setall(*cpus);
  3009. unlock_aggregate = get_aggregate(this_cpu, sd);
  3010. /*
  3011. * When power savings policy is enabled for the parent domain, idle
  3012. * sibling can pick up load irrespective of busy siblings. In this case,
  3013. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3014. * portraying it as CPU_NOT_IDLE.
  3015. */
  3016. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3017. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3018. sd_idle = 1;
  3019. schedstat_inc(sd, lb_count[idle]);
  3020. redo:
  3021. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3022. cpus, balance);
  3023. if (*balance == 0)
  3024. goto out_balanced;
  3025. if (!group) {
  3026. schedstat_inc(sd, lb_nobusyg[idle]);
  3027. goto out_balanced;
  3028. }
  3029. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3030. if (!busiest) {
  3031. schedstat_inc(sd, lb_nobusyq[idle]);
  3032. goto out_balanced;
  3033. }
  3034. BUG_ON(busiest == this_rq);
  3035. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3036. ld_moved = 0;
  3037. if (busiest->nr_running > 1) {
  3038. /*
  3039. * Attempt to move tasks. If find_busiest_group has found
  3040. * an imbalance but busiest->nr_running <= 1, the group is
  3041. * still unbalanced. ld_moved simply stays zero, so it is
  3042. * correctly treated as an imbalance.
  3043. */
  3044. local_irq_save(flags);
  3045. double_rq_lock(this_rq, busiest);
  3046. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3047. imbalance, sd, idle, &all_pinned);
  3048. double_rq_unlock(this_rq, busiest);
  3049. local_irq_restore(flags);
  3050. /*
  3051. * some other cpu did the load balance for us.
  3052. */
  3053. if (ld_moved && this_cpu != smp_processor_id())
  3054. resched_cpu(this_cpu);
  3055. /* All tasks on this runqueue were pinned by CPU affinity */
  3056. if (unlikely(all_pinned)) {
  3057. cpu_clear(cpu_of(busiest), *cpus);
  3058. if (!cpus_empty(*cpus))
  3059. goto redo;
  3060. goto out_balanced;
  3061. }
  3062. }
  3063. if (!ld_moved) {
  3064. schedstat_inc(sd, lb_failed[idle]);
  3065. sd->nr_balance_failed++;
  3066. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3067. spin_lock_irqsave(&busiest->lock, flags);
  3068. /* don't kick the migration_thread, if the curr
  3069. * task on busiest cpu can't be moved to this_cpu
  3070. */
  3071. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3072. spin_unlock_irqrestore(&busiest->lock, flags);
  3073. all_pinned = 1;
  3074. goto out_one_pinned;
  3075. }
  3076. if (!busiest->active_balance) {
  3077. busiest->active_balance = 1;
  3078. busiest->push_cpu = this_cpu;
  3079. active_balance = 1;
  3080. }
  3081. spin_unlock_irqrestore(&busiest->lock, flags);
  3082. if (active_balance)
  3083. wake_up_process(busiest->migration_thread);
  3084. /*
  3085. * We've kicked active balancing, reset the failure
  3086. * counter.
  3087. */
  3088. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3089. }
  3090. } else
  3091. sd->nr_balance_failed = 0;
  3092. if (likely(!active_balance)) {
  3093. /* We were unbalanced, so reset the balancing interval */
  3094. sd->balance_interval = sd->min_interval;
  3095. } else {
  3096. /*
  3097. * If we've begun active balancing, start to back off. This
  3098. * case may not be covered by the all_pinned logic if there
  3099. * is only 1 task on the busy runqueue (because we don't call
  3100. * move_tasks).
  3101. */
  3102. if (sd->balance_interval < sd->max_interval)
  3103. sd->balance_interval *= 2;
  3104. }
  3105. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3106. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3107. ld_moved = -1;
  3108. goto out;
  3109. out_balanced:
  3110. schedstat_inc(sd, lb_balanced[idle]);
  3111. sd->nr_balance_failed = 0;
  3112. out_one_pinned:
  3113. /* tune up the balancing interval */
  3114. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3115. (sd->balance_interval < sd->max_interval))
  3116. sd->balance_interval *= 2;
  3117. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3118. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3119. ld_moved = -1;
  3120. else
  3121. ld_moved = 0;
  3122. out:
  3123. if (unlock_aggregate)
  3124. put_aggregate(this_cpu, sd);
  3125. return ld_moved;
  3126. }
  3127. /*
  3128. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3129. * tasks if there is an imbalance.
  3130. *
  3131. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3132. * this_rq is locked.
  3133. */
  3134. static int
  3135. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3136. cpumask_t *cpus)
  3137. {
  3138. struct sched_group *group;
  3139. struct rq *busiest = NULL;
  3140. unsigned long imbalance;
  3141. int ld_moved = 0;
  3142. int sd_idle = 0;
  3143. int all_pinned = 0;
  3144. cpus_setall(*cpus);
  3145. /*
  3146. * When power savings policy is enabled for the parent domain, idle
  3147. * sibling can pick up load irrespective of busy siblings. In this case,
  3148. * let the state of idle sibling percolate up as IDLE, instead of
  3149. * portraying it as CPU_NOT_IDLE.
  3150. */
  3151. if (sd->flags & SD_SHARE_CPUPOWER &&
  3152. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3153. sd_idle = 1;
  3154. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3155. redo:
  3156. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3157. &sd_idle, cpus, NULL);
  3158. if (!group) {
  3159. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3160. goto out_balanced;
  3161. }
  3162. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3163. if (!busiest) {
  3164. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3165. goto out_balanced;
  3166. }
  3167. BUG_ON(busiest == this_rq);
  3168. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3169. ld_moved = 0;
  3170. if (busiest->nr_running > 1) {
  3171. /* Attempt to move tasks */
  3172. double_lock_balance(this_rq, busiest);
  3173. /* this_rq->clock is already updated */
  3174. update_rq_clock(busiest);
  3175. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3176. imbalance, sd, CPU_NEWLY_IDLE,
  3177. &all_pinned);
  3178. spin_unlock(&busiest->lock);
  3179. if (unlikely(all_pinned)) {
  3180. cpu_clear(cpu_of(busiest), *cpus);
  3181. if (!cpus_empty(*cpus))
  3182. goto redo;
  3183. }
  3184. }
  3185. if (!ld_moved) {
  3186. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3187. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3188. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3189. return -1;
  3190. } else
  3191. sd->nr_balance_failed = 0;
  3192. return ld_moved;
  3193. out_balanced:
  3194. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3195. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3196. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3197. return -1;
  3198. sd->nr_balance_failed = 0;
  3199. return 0;
  3200. }
  3201. /*
  3202. * idle_balance is called by schedule() if this_cpu is about to become
  3203. * idle. Attempts to pull tasks from other CPUs.
  3204. */
  3205. static void idle_balance(int this_cpu, struct rq *this_rq)
  3206. {
  3207. struct sched_domain *sd;
  3208. int pulled_task = -1;
  3209. unsigned long next_balance = jiffies + HZ;
  3210. cpumask_t tmpmask;
  3211. for_each_domain(this_cpu, sd) {
  3212. unsigned long interval;
  3213. if (!(sd->flags & SD_LOAD_BALANCE))
  3214. continue;
  3215. if (sd->flags & SD_BALANCE_NEWIDLE)
  3216. /* If we've pulled tasks over stop searching: */
  3217. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3218. sd, &tmpmask);
  3219. interval = msecs_to_jiffies(sd->balance_interval);
  3220. if (time_after(next_balance, sd->last_balance + interval))
  3221. next_balance = sd->last_balance + interval;
  3222. if (pulled_task)
  3223. break;
  3224. }
  3225. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3226. /*
  3227. * We are going idle. next_balance may be set based on
  3228. * a busy processor. So reset next_balance.
  3229. */
  3230. this_rq->next_balance = next_balance;
  3231. }
  3232. }
  3233. /*
  3234. * active_load_balance is run by migration threads. It pushes running tasks
  3235. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3236. * running on each physical CPU where possible, and avoids physical /
  3237. * logical imbalances.
  3238. *
  3239. * Called with busiest_rq locked.
  3240. */
  3241. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3242. {
  3243. int target_cpu = busiest_rq->push_cpu;
  3244. struct sched_domain *sd;
  3245. struct rq *target_rq;
  3246. /* Is there any task to move? */
  3247. if (busiest_rq->nr_running <= 1)
  3248. return;
  3249. target_rq = cpu_rq(target_cpu);
  3250. /*
  3251. * This condition is "impossible", if it occurs
  3252. * we need to fix it. Originally reported by
  3253. * Bjorn Helgaas on a 128-cpu setup.
  3254. */
  3255. BUG_ON(busiest_rq == target_rq);
  3256. /* move a task from busiest_rq to target_rq */
  3257. double_lock_balance(busiest_rq, target_rq);
  3258. update_rq_clock(busiest_rq);
  3259. update_rq_clock(target_rq);
  3260. /* Search for an sd spanning us and the target CPU. */
  3261. for_each_domain(target_cpu, sd) {
  3262. if ((sd->flags & SD_LOAD_BALANCE) &&
  3263. cpu_isset(busiest_cpu, sd->span))
  3264. break;
  3265. }
  3266. if (likely(sd)) {
  3267. schedstat_inc(sd, alb_count);
  3268. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3269. sd, CPU_IDLE))
  3270. schedstat_inc(sd, alb_pushed);
  3271. else
  3272. schedstat_inc(sd, alb_failed);
  3273. }
  3274. spin_unlock(&target_rq->lock);
  3275. }
  3276. #ifdef CONFIG_NO_HZ
  3277. static struct {
  3278. atomic_t load_balancer;
  3279. cpumask_t cpu_mask;
  3280. } nohz ____cacheline_aligned = {
  3281. .load_balancer = ATOMIC_INIT(-1),
  3282. .cpu_mask = CPU_MASK_NONE,
  3283. };
  3284. /*
  3285. * This routine will try to nominate the ilb (idle load balancing)
  3286. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3287. * load balancing on behalf of all those cpus. If all the cpus in the system
  3288. * go into this tickless mode, then there will be no ilb owner (as there is
  3289. * no need for one) and all the cpus will sleep till the next wakeup event
  3290. * arrives...
  3291. *
  3292. * For the ilb owner, tick is not stopped. And this tick will be used
  3293. * for idle load balancing. ilb owner will still be part of
  3294. * nohz.cpu_mask..
  3295. *
  3296. * While stopping the tick, this cpu will become the ilb owner if there
  3297. * is no other owner. And will be the owner till that cpu becomes busy
  3298. * or if all cpus in the system stop their ticks at which point
  3299. * there is no need for ilb owner.
  3300. *
  3301. * When the ilb owner becomes busy, it nominates another owner, during the
  3302. * next busy scheduler_tick()
  3303. */
  3304. int select_nohz_load_balancer(int stop_tick)
  3305. {
  3306. int cpu = smp_processor_id();
  3307. if (stop_tick) {
  3308. cpu_set(cpu, nohz.cpu_mask);
  3309. cpu_rq(cpu)->in_nohz_recently = 1;
  3310. /*
  3311. * If we are going offline and still the leader, give up!
  3312. */
  3313. if (cpu_is_offline(cpu) &&
  3314. atomic_read(&nohz.load_balancer) == cpu) {
  3315. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3316. BUG();
  3317. return 0;
  3318. }
  3319. /* time for ilb owner also to sleep */
  3320. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3321. if (atomic_read(&nohz.load_balancer) == cpu)
  3322. atomic_set(&nohz.load_balancer, -1);
  3323. return 0;
  3324. }
  3325. if (atomic_read(&nohz.load_balancer) == -1) {
  3326. /* make me the ilb owner */
  3327. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3328. return 1;
  3329. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3330. return 1;
  3331. } else {
  3332. if (!cpu_isset(cpu, nohz.cpu_mask))
  3333. return 0;
  3334. cpu_clear(cpu, nohz.cpu_mask);
  3335. if (atomic_read(&nohz.load_balancer) == cpu)
  3336. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3337. BUG();
  3338. }
  3339. return 0;
  3340. }
  3341. #endif
  3342. static DEFINE_SPINLOCK(balancing);
  3343. /*
  3344. * It checks each scheduling domain to see if it is due to be balanced,
  3345. * and initiates a balancing operation if so.
  3346. *
  3347. * Balancing parameters are set up in arch_init_sched_domains.
  3348. */
  3349. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3350. {
  3351. int balance = 1;
  3352. struct rq *rq = cpu_rq(cpu);
  3353. unsigned long interval;
  3354. struct sched_domain *sd;
  3355. /* Earliest time when we have to do rebalance again */
  3356. unsigned long next_balance = jiffies + 60*HZ;
  3357. int update_next_balance = 0;
  3358. int need_serialize;
  3359. cpumask_t tmp;
  3360. for_each_domain(cpu, sd) {
  3361. if (!(sd->flags & SD_LOAD_BALANCE))
  3362. continue;
  3363. interval = sd->balance_interval;
  3364. if (idle != CPU_IDLE)
  3365. interval *= sd->busy_factor;
  3366. /* scale ms to jiffies */
  3367. interval = msecs_to_jiffies(interval);
  3368. if (unlikely(!interval))
  3369. interval = 1;
  3370. if (interval > HZ*NR_CPUS/10)
  3371. interval = HZ*NR_CPUS/10;
  3372. need_serialize = sd->flags & SD_SERIALIZE;
  3373. if (need_serialize) {
  3374. if (!spin_trylock(&balancing))
  3375. goto out;
  3376. }
  3377. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3378. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3379. /*
  3380. * We've pulled tasks over so either we're no
  3381. * longer idle, or one of our SMT siblings is
  3382. * not idle.
  3383. */
  3384. idle = CPU_NOT_IDLE;
  3385. }
  3386. sd->last_balance = jiffies;
  3387. }
  3388. if (need_serialize)
  3389. spin_unlock(&balancing);
  3390. out:
  3391. if (time_after(next_balance, sd->last_balance + interval)) {
  3392. next_balance = sd->last_balance + interval;
  3393. update_next_balance = 1;
  3394. }
  3395. /*
  3396. * Stop the load balance at this level. There is another
  3397. * CPU in our sched group which is doing load balancing more
  3398. * actively.
  3399. */
  3400. if (!balance)
  3401. break;
  3402. }
  3403. /*
  3404. * next_balance will be updated only when there is a need.
  3405. * When the cpu is attached to null domain for ex, it will not be
  3406. * updated.
  3407. */
  3408. if (likely(update_next_balance))
  3409. rq->next_balance = next_balance;
  3410. }
  3411. /*
  3412. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3413. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3414. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3415. */
  3416. static void run_rebalance_domains(struct softirq_action *h)
  3417. {
  3418. int this_cpu = smp_processor_id();
  3419. struct rq *this_rq = cpu_rq(this_cpu);
  3420. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3421. CPU_IDLE : CPU_NOT_IDLE;
  3422. rebalance_domains(this_cpu, idle);
  3423. #ifdef CONFIG_NO_HZ
  3424. /*
  3425. * If this cpu is the owner for idle load balancing, then do the
  3426. * balancing on behalf of the other idle cpus whose ticks are
  3427. * stopped.
  3428. */
  3429. if (this_rq->idle_at_tick &&
  3430. atomic_read(&nohz.load_balancer) == this_cpu) {
  3431. cpumask_t cpus = nohz.cpu_mask;
  3432. struct rq *rq;
  3433. int balance_cpu;
  3434. cpu_clear(this_cpu, cpus);
  3435. for_each_cpu_mask(balance_cpu, cpus) {
  3436. /*
  3437. * If this cpu gets work to do, stop the load balancing
  3438. * work being done for other cpus. Next load
  3439. * balancing owner will pick it up.
  3440. */
  3441. if (need_resched())
  3442. break;
  3443. rebalance_domains(balance_cpu, CPU_IDLE);
  3444. rq = cpu_rq(balance_cpu);
  3445. if (time_after(this_rq->next_balance, rq->next_balance))
  3446. this_rq->next_balance = rq->next_balance;
  3447. }
  3448. }
  3449. #endif
  3450. }
  3451. /*
  3452. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3453. *
  3454. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3455. * idle load balancing owner or decide to stop the periodic load balancing,
  3456. * if the whole system is idle.
  3457. */
  3458. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3459. {
  3460. #ifdef CONFIG_NO_HZ
  3461. /*
  3462. * If we were in the nohz mode recently and busy at the current
  3463. * scheduler tick, then check if we need to nominate new idle
  3464. * load balancer.
  3465. */
  3466. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3467. rq->in_nohz_recently = 0;
  3468. if (atomic_read(&nohz.load_balancer) == cpu) {
  3469. cpu_clear(cpu, nohz.cpu_mask);
  3470. atomic_set(&nohz.load_balancer, -1);
  3471. }
  3472. if (atomic_read(&nohz.load_balancer) == -1) {
  3473. /*
  3474. * simple selection for now: Nominate the
  3475. * first cpu in the nohz list to be the next
  3476. * ilb owner.
  3477. *
  3478. * TBD: Traverse the sched domains and nominate
  3479. * the nearest cpu in the nohz.cpu_mask.
  3480. */
  3481. int ilb = first_cpu(nohz.cpu_mask);
  3482. if (ilb < nr_cpu_ids)
  3483. resched_cpu(ilb);
  3484. }
  3485. }
  3486. /*
  3487. * If this cpu is idle and doing idle load balancing for all the
  3488. * cpus with ticks stopped, is it time for that to stop?
  3489. */
  3490. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3491. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3492. resched_cpu(cpu);
  3493. return;
  3494. }
  3495. /*
  3496. * If this cpu is idle and the idle load balancing is done by
  3497. * someone else, then no need raise the SCHED_SOFTIRQ
  3498. */
  3499. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3500. cpu_isset(cpu, nohz.cpu_mask))
  3501. return;
  3502. #endif
  3503. if (time_after_eq(jiffies, rq->next_balance))
  3504. raise_softirq(SCHED_SOFTIRQ);
  3505. }
  3506. #else /* CONFIG_SMP */
  3507. /*
  3508. * on UP we do not need to balance between CPUs:
  3509. */
  3510. static inline void idle_balance(int cpu, struct rq *rq)
  3511. {
  3512. }
  3513. #endif
  3514. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3515. EXPORT_PER_CPU_SYMBOL(kstat);
  3516. /*
  3517. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3518. * that have not yet been banked in case the task is currently running.
  3519. */
  3520. unsigned long long task_sched_runtime(struct task_struct *p)
  3521. {
  3522. unsigned long flags;
  3523. u64 ns, delta_exec;
  3524. struct rq *rq;
  3525. rq = task_rq_lock(p, &flags);
  3526. ns = p->se.sum_exec_runtime;
  3527. if (task_current(rq, p)) {
  3528. update_rq_clock(rq);
  3529. delta_exec = rq->clock - p->se.exec_start;
  3530. if ((s64)delta_exec > 0)
  3531. ns += delta_exec;
  3532. }
  3533. task_rq_unlock(rq, &flags);
  3534. return ns;
  3535. }
  3536. /*
  3537. * Account user cpu time to a process.
  3538. * @p: the process that the cpu time gets accounted to
  3539. * @cputime: the cpu time spent in user space since the last update
  3540. */
  3541. void account_user_time(struct task_struct *p, cputime_t cputime)
  3542. {
  3543. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3544. cputime64_t tmp;
  3545. p->utime = cputime_add(p->utime, cputime);
  3546. /* Add user time to cpustat. */
  3547. tmp = cputime_to_cputime64(cputime);
  3548. if (TASK_NICE(p) > 0)
  3549. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3550. else
  3551. cpustat->user = cputime64_add(cpustat->user, tmp);
  3552. }
  3553. /*
  3554. * Account guest cpu time to a process.
  3555. * @p: the process that the cpu time gets accounted to
  3556. * @cputime: the cpu time spent in virtual machine since the last update
  3557. */
  3558. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3559. {
  3560. cputime64_t tmp;
  3561. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3562. tmp = cputime_to_cputime64(cputime);
  3563. p->utime = cputime_add(p->utime, cputime);
  3564. p->gtime = cputime_add(p->gtime, cputime);
  3565. cpustat->user = cputime64_add(cpustat->user, tmp);
  3566. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3567. }
  3568. /*
  3569. * Account scaled user cpu time to a process.
  3570. * @p: the process that the cpu time gets accounted to
  3571. * @cputime: the cpu time spent in user space since the last update
  3572. */
  3573. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3574. {
  3575. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3576. }
  3577. /*
  3578. * Account system cpu time to a process.
  3579. * @p: the process that the cpu time gets accounted to
  3580. * @hardirq_offset: the offset to subtract from hardirq_count()
  3581. * @cputime: the cpu time spent in kernel space since the last update
  3582. */
  3583. void account_system_time(struct task_struct *p, int hardirq_offset,
  3584. cputime_t cputime)
  3585. {
  3586. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3587. struct rq *rq = this_rq();
  3588. cputime64_t tmp;
  3589. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3590. account_guest_time(p, cputime);
  3591. return;
  3592. }
  3593. p->stime = cputime_add(p->stime, cputime);
  3594. /* Add system time to cpustat. */
  3595. tmp = cputime_to_cputime64(cputime);
  3596. if (hardirq_count() - hardirq_offset)
  3597. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3598. else if (softirq_count())
  3599. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3600. else if (p != rq->idle)
  3601. cpustat->system = cputime64_add(cpustat->system, tmp);
  3602. else if (atomic_read(&rq->nr_iowait) > 0)
  3603. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3604. else
  3605. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3606. /* Account for system time used */
  3607. acct_update_integrals(p);
  3608. }
  3609. /*
  3610. * Account scaled system cpu time to a process.
  3611. * @p: the process that the cpu time gets accounted to
  3612. * @hardirq_offset: the offset to subtract from hardirq_count()
  3613. * @cputime: the cpu time spent in kernel space since the last update
  3614. */
  3615. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3616. {
  3617. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3618. }
  3619. /*
  3620. * Account for involuntary wait time.
  3621. * @p: the process from which the cpu time has been stolen
  3622. * @steal: the cpu time spent in involuntary wait
  3623. */
  3624. void account_steal_time(struct task_struct *p, cputime_t steal)
  3625. {
  3626. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3627. cputime64_t tmp = cputime_to_cputime64(steal);
  3628. struct rq *rq = this_rq();
  3629. if (p == rq->idle) {
  3630. p->stime = cputime_add(p->stime, steal);
  3631. if (atomic_read(&rq->nr_iowait) > 0)
  3632. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3633. else
  3634. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3635. } else
  3636. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3637. }
  3638. /*
  3639. * This function gets called by the timer code, with HZ frequency.
  3640. * We call it with interrupts disabled.
  3641. *
  3642. * It also gets called by the fork code, when changing the parent's
  3643. * timeslices.
  3644. */
  3645. void scheduler_tick(void)
  3646. {
  3647. int cpu = smp_processor_id();
  3648. struct rq *rq = cpu_rq(cpu);
  3649. struct task_struct *curr = rq->curr;
  3650. sched_clock_tick();
  3651. spin_lock(&rq->lock);
  3652. update_rq_clock(rq);
  3653. update_cpu_load(rq);
  3654. curr->sched_class->task_tick(rq, curr, 0);
  3655. spin_unlock(&rq->lock);
  3656. #ifdef CONFIG_SMP
  3657. rq->idle_at_tick = idle_cpu(cpu);
  3658. trigger_load_balance(rq, cpu);
  3659. #endif
  3660. }
  3661. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  3662. void __kprobes add_preempt_count(int val)
  3663. {
  3664. /*
  3665. * Underflow?
  3666. */
  3667. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3668. return;
  3669. preempt_count() += val;
  3670. /*
  3671. * Spinlock count overflowing soon?
  3672. */
  3673. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3674. PREEMPT_MASK - 10);
  3675. }
  3676. EXPORT_SYMBOL(add_preempt_count);
  3677. void __kprobes sub_preempt_count(int val)
  3678. {
  3679. /*
  3680. * Underflow?
  3681. */
  3682. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3683. return;
  3684. /*
  3685. * Is the spinlock portion underflowing?
  3686. */
  3687. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3688. !(preempt_count() & PREEMPT_MASK)))
  3689. return;
  3690. preempt_count() -= val;
  3691. }
  3692. EXPORT_SYMBOL(sub_preempt_count);
  3693. #endif
  3694. /*
  3695. * Print scheduling while atomic bug:
  3696. */
  3697. static noinline void __schedule_bug(struct task_struct *prev)
  3698. {
  3699. struct pt_regs *regs = get_irq_regs();
  3700. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3701. prev->comm, prev->pid, preempt_count());
  3702. debug_show_held_locks(prev);
  3703. print_modules();
  3704. if (irqs_disabled())
  3705. print_irqtrace_events(prev);
  3706. if (regs)
  3707. show_regs(regs);
  3708. else
  3709. dump_stack();
  3710. }
  3711. /*
  3712. * Various schedule()-time debugging checks and statistics:
  3713. */
  3714. static inline void schedule_debug(struct task_struct *prev)
  3715. {
  3716. /*
  3717. * Test if we are atomic. Since do_exit() needs to call into
  3718. * schedule() atomically, we ignore that path for now.
  3719. * Otherwise, whine if we are scheduling when we should not be.
  3720. */
  3721. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3722. __schedule_bug(prev);
  3723. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3724. schedstat_inc(this_rq(), sched_count);
  3725. #ifdef CONFIG_SCHEDSTATS
  3726. if (unlikely(prev->lock_depth >= 0)) {
  3727. schedstat_inc(this_rq(), bkl_count);
  3728. schedstat_inc(prev, sched_info.bkl_count);
  3729. }
  3730. #endif
  3731. }
  3732. /*
  3733. * Pick up the highest-prio task:
  3734. */
  3735. static inline struct task_struct *
  3736. pick_next_task(struct rq *rq, struct task_struct *prev)
  3737. {
  3738. const struct sched_class *class;
  3739. struct task_struct *p;
  3740. /*
  3741. * Optimization: we know that if all tasks are in
  3742. * the fair class we can call that function directly:
  3743. */
  3744. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3745. p = fair_sched_class.pick_next_task(rq);
  3746. if (likely(p))
  3747. return p;
  3748. }
  3749. class = sched_class_highest;
  3750. for ( ; ; ) {
  3751. p = class->pick_next_task(rq);
  3752. if (p)
  3753. return p;
  3754. /*
  3755. * Will never be NULL as the idle class always
  3756. * returns a non-NULL p:
  3757. */
  3758. class = class->next;
  3759. }
  3760. }
  3761. /*
  3762. * schedule() is the main scheduler function.
  3763. */
  3764. asmlinkage void __sched schedule(void)
  3765. {
  3766. struct task_struct *prev, *next;
  3767. unsigned long *switch_count;
  3768. struct rq *rq;
  3769. int cpu, hrtick = sched_feat(HRTICK);
  3770. need_resched:
  3771. preempt_disable();
  3772. cpu = smp_processor_id();
  3773. rq = cpu_rq(cpu);
  3774. rcu_qsctr_inc(cpu);
  3775. prev = rq->curr;
  3776. switch_count = &prev->nivcsw;
  3777. release_kernel_lock(prev);
  3778. need_resched_nonpreemptible:
  3779. schedule_debug(prev);
  3780. if (hrtick)
  3781. hrtick_clear(rq);
  3782. /*
  3783. * Do the rq-clock update outside the rq lock:
  3784. */
  3785. local_irq_disable();
  3786. update_rq_clock(rq);
  3787. spin_lock(&rq->lock);
  3788. clear_tsk_need_resched(prev);
  3789. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3790. if (unlikely(signal_pending_state(prev->state, prev)))
  3791. prev->state = TASK_RUNNING;
  3792. else
  3793. deactivate_task(rq, prev, 1);
  3794. switch_count = &prev->nvcsw;
  3795. }
  3796. #ifdef CONFIG_SMP
  3797. if (prev->sched_class->pre_schedule)
  3798. prev->sched_class->pre_schedule(rq, prev);
  3799. #endif
  3800. if (unlikely(!rq->nr_running))
  3801. idle_balance(cpu, rq);
  3802. prev->sched_class->put_prev_task(rq, prev);
  3803. next = pick_next_task(rq, prev);
  3804. if (likely(prev != next)) {
  3805. sched_info_switch(prev, next);
  3806. rq->nr_switches++;
  3807. rq->curr = next;
  3808. ++*switch_count;
  3809. context_switch(rq, prev, next); /* unlocks the rq */
  3810. /*
  3811. * the context switch might have flipped the stack from under
  3812. * us, hence refresh the local variables.
  3813. */
  3814. cpu = smp_processor_id();
  3815. rq = cpu_rq(cpu);
  3816. } else
  3817. spin_unlock_irq(&rq->lock);
  3818. if (hrtick)
  3819. hrtick_set(rq);
  3820. if (unlikely(reacquire_kernel_lock(current) < 0))
  3821. goto need_resched_nonpreemptible;
  3822. preempt_enable_no_resched();
  3823. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3824. goto need_resched;
  3825. }
  3826. EXPORT_SYMBOL(schedule);
  3827. #ifdef CONFIG_PREEMPT
  3828. /*
  3829. * this is the entry point to schedule() from in-kernel preemption
  3830. * off of preempt_enable. Kernel preemptions off return from interrupt
  3831. * occur there and call schedule directly.
  3832. */
  3833. asmlinkage void __sched preempt_schedule(void)
  3834. {
  3835. struct thread_info *ti = current_thread_info();
  3836. /*
  3837. * If there is a non-zero preempt_count or interrupts are disabled,
  3838. * we do not want to preempt the current task. Just return..
  3839. */
  3840. if (likely(ti->preempt_count || irqs_disabled()))
  3841. return;
  3842. do {
  3843. add_preempt_count(PREEMPT_ACTIVE);
  3844. schedule();
  3845. sub_preempt_count(PREEMPT_ACTIVE);
  3846. /*
  3847. * Check again in case we missed a preemption opportunity
  3848. * between schedule and now.
  3849. */
  3850. barrier();
  3851. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3852. }
  3853. EXPORT_SYMBOL(preempt_schedule);
  3854. /*
  3855. * this is the entry point to schedule() from kernel preemption
  3856. * off of irq context.
  3857. * Note, that this is called and return with irqs disabled. This will
  3858. * protect us against recursive calling from irq.
  3859. */
  3860. asmlinkage void __sched preempt_schedule_irq(void)
  3861. {
  3862. struct thread_info *ti = current_thread_info();
  3863. /* Catch callers which need to be fixed */
  3864. BUG_ON(ti->preempt_count || !irqs_disabled());
  3865. do {
  3866. add_preempt_count(PREEMPT_ACTIVE);
  3867. local_irq_enable();
  3868. schedule();
  3869. local_irq_disable();
  3870. sub_preempt_count(PREEMPT_ACTIVE);
  3871. /*
  3872. * Check again in case we missed a preemption opportunity
  3873. * between schedule and now.
  3874. */
  3875. barrier();
  3876. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3877. }
  3878. #endif /* CONFIG_PREEMPT */
  3879. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3880. void *key)
  3881. {
  3882. return try_to_wake_up(curr->private, mode, sync);
  3883. }
  3884. EXPORT_SYMBOL(default_wake_function);
  3885. /*
  3886. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3887. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3888. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3889. *
  3890. * There are circumstances in which we can try to wake a task which has already
  3891. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3892. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3893. */
  3894. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3895. int nr_exclusive, int sync, void *key)
  3896. {
  3897. wait_queue_t *curr, *next;
  3898. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3899. unsigned flags = curr->flags;
  3900. if (curr->func(curr, mode, sync, key) &&
  3901. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3902. break;
  3903. }
  3904. }
  3905. /**
  3906. * __wake_up - wake up threads blocked on a waitqueue.
  3907. * @q: the waitqueue
  3908. * @mode: which threads
  3909. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3910. * @key: is directly passed to the wakeup function
  3911. */
  3912. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3913. int nr_exclusive, void *key)
  3914. {
  3915. unsigned long flags;
  3916. spin_lock_irqsave(&q->lock, flags);
  3917. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3918. spin_unlock_irqrestore(&q->lock, flags);
  3919. }
  3920. EXPORT_SYMBOL(__wake_up);
  3921. /*
  3922. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3923. */
  3924. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3925. {
  3926. __wake_up_common(q, mode, 1, 0, NULL);
  3927. }
  3928. /**
  3929. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3930. * @q: the waitqueue
  3931. * @mode: which threads
  3932. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3933. *
  3934. * The sync wakeup differs that the waker knows that it will schedule
  3935. * away soon, so while the target thread will be woken up, it will not
  3936. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3937. * with each other. This can prevent needless bouncing between CPUs.
  3938. *
  3939. * On UP it can prevent extra preemption.
  3940. */
  3941. void
  3942. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3943. {
  3944. unsigned long flags;
  3945. int sync = 1;
  3946. if (unlikely(!q))
  3947. return;
  3948. if (unlikely(!nr_exclusive))
  3949. sync = 0;
  3950. spin_lock_irqsave(&q->lock, flags);
  3951. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3952. spin_unlock_irqrestore(&q->lock, flags);
  3953. }
  3954. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3955. void complete(struct completion *x)
  3956. {
  3957. unsigned long flags;
  3958. spin_lock_irqsave(&x->wait.lock, flags);
  3959. x->done++;
  3960. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3961. spin_unlock_irqrestore(&x->wait.lock, flags);
  3962. }
  3963. EXPORT_SYMBOL(complete);
  3964. void complete_all(struct completion *x)
  3965. {
  3966. unsigned long flags;
  3967. spin_lock_irqsave(&x->wait.lock, flags);
  3968. x->done += UINT_MAX/2;
  3969. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3970. spin_unlock_irqrestore(&x->wait.lock, flags);
  3971. }
  3972. EXPORT_SYMBOL(complete_all);
  3973. static inline long __sched
  3974. do_wait_for_common(struct completion *x, long timeout, int state)
  3975. {
  3976. if (!x->done) {
  3977. DECLARE_WAITQUEUE(wait, current);
  3978. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3979. __add_wait_queue_tail(&x->wait, &wait);
  3980. do {
  3981. if ((state == TASK_INTERRUPTIBLE &&
  3982. signal_pending(current)) ||
  3983. (state == TASK_KILLABLE &&
  3984. fatal_signal_pending(current))) {
  3985. timeout = -ERESTARTSYS;
  3986. break;
  3987. }
  3988. __set_current_state(state);
  3989. spin_unlock_irq(&x->wait.lock);
  3990. timeout = schedule_timeout(timeout);
  3991. spin_lock_irq(&x->wait.lock);
  3992. } while (!x->done && timeout);
  3993. __remove_wait_queue(&x->wait, &wait);
  3994. if (!x->done)
  3995. return timeout;
  3996. }
  3997. x->done--;
  3998. return timeout ?: 1;
  3999. }
  4000. static long __sched
  4001. wait_for_common(struct completion *x, long timeout, int state)
  4002. {
  4003. might_sleep();
  4004. spin_lock_irq(&x->wait.lock);
  4005. timeout = do_wait_for_common(x, timeout, state);
  4006. spin_unlock_irq(&x->wait.lock);
  4007. return timeout;
  4008. }
  4009. void __sched wait_for_completion(struct completion *x)
  4010. {
  4011. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4012. }
  4013. EXPORT_SYMBOL(wait_for_completion);
  4014. unsigned long __sched
  4015. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4016. {
  4017. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4018. }
  4019. EXPORT_SYMBOL(wait_for_completion_timeout);
  4020. int __sched wait_for_completion_interruptible(struct completion *x)
  4021. {
  4022. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4023. if (t == -ERESTARTSYS)
  4024. return t;
  4025. return 0;
  4026. }
  4027. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4028. unsigned long __sched
  4029. wait_for_completion_interruptible_timeout(struct completion *x,
  4030. unsigned long timeout)
  4031. {
  4032. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4033. }
  4034. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4035. int __sched wait_for_completion_killable(struct completion *x)
  4036. {
  4037. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4038. if (t == -ERESTARTSYS)
  4039. return t;
  4040. return 0;
  4041. }
  4042. EXPORT_SYMBOL(wait_for_completion_killable);
  4043. static long __sched
  4044. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4045. {
  4046. unsigned long flags;
  4047. wait_queue_t wait;
  4048. init_waitqueue_entry(&wait, current);
  4049. __set_current_state(state);
  4050. spin_lock_irqsave(&q->lock, flags);
  4051. __add_wait_queue(q, &wait);
  4052. spin_unlock(&q->lock);
  4053. timeout = schedule_timeout(timeout);
  4054. spin_lock_irq(&q->lock);
  4055. __remove_wait_queue(q, &wait);
  4056. spin_unlock_irqrestore(&q->lock, flags);
  4057. return timeout;
  4058. }
  4059. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4060. {
  4061. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4062. }
  4063. EXPORT_SYMBOL(interruptible_sleep_on);
  4064. long __sched
  4065. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4066. {
  4067. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4068. }
  4069. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4070. void __sched sleep_on(wait_queue_head_t *q)
  4071. {
  4072. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4073. }
  4074. EXPORT_SYMBOL(sleep_on);
  4075. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4076. {
  4077. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4078. }
  4079. EXPORT_SYMBOL(sleep_on_timeout);
  4080. #ifdef CONFIG_RT_MUTEXES
  4081. /*
  4082. * rt_mutex_setprio - set the current priority of a task
  4083. * @p: task
  4084. * @prio: prio value (kernel-internal form)
  4085. *
  4086. * This function changes the 'effective' priority of a task. It does
  4087. * not touch ->normal_prio like __setscheduler().
  4088. *
  4089. * Used by the rt_mutex code to implement priority inheritance logic.
  4090. */
  4091. void rt_mutex_setprio(struct task_struct *p, int prio)
  4092. {
  4093. unsigned long flags;
  4094. int oldprio, on_rq, running;
  4095. struct rq *rq;
  4096. const struct sched_class *prev_class = p->sched_class;
  4097. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4098. rq = task_rq_lock(p, &flags);
  4099. update_rq_clock(rq);
  4100. oldprio = p->prio;
  4101. on_rq = p->se.on_rq;
  4102. running = task_current(rq, p);
  4103. if (on_rq)
  4104. dequeue_task(rq, p, 0);
  4105. if (running)
  4106. p->sched_class->put_prev_task(rq, p);
  4107. if (rt_prio(prio))
  4108. p->sched_class = &rt_sched_class;
  4109. else
  4110. p->sched_class = &fair_sched_class;
  4111. p->prio = prio;
  4112. if (running)
  4113. p->sched_class->set_curr_task(rq);
  4114. if (on_rq) {
  4115. enqueue_task(rq, p, 0);
  4116. check_class_changed(rq, p, prev_class, oldprio, running);
  4117. }
  4118. task_rq_unlock(rq, &flags);
  4119. }
  4120. #endif
  4121. void set_user_nice(struct task_struct *p, long nice)
  4122. {
  4123. int old_prio, delta, on_rq;
  4124. unsigned long flags;
  4125. struct rq *rq;
  4126. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4127. return;
  4128. /*
  4129. * We have to be careful, if called from sys_setpriority(),
  4130. * the task might be in the middle of scheduling on another CPU.
  4131. */
  4132. rq = task_rq_lock(p, &flags);
  4133. update_rq_clock(rq);
  4134. /*
  4135. * The RT priorities are set via sched_setscheduler(), but we still
  4136. * allow the 'normal' nice value to be set - but as expected
  4137. * it wont have any effect on scheduling until the task is
  4138. * SCHED_FIFO/SCHED_RR:
  4139. */
  4140. if (task_has_rt_policy(p)) {
  4141. p->static_prio = NICE_TO_PRIO(nice);
  4142. goto out_unlock;
  4143. }
  4144. on_rq = p->se.on_rq;
  4145. if (on_rq)
  4146. dequeue_task(rq, p, 0);
  4147. p->static_prio = NICE_TO_PRIO(nice);
  4148. set_load_weight(p);
  4149. old_prio = p->prio;
  4150. p->prio = effective_prio(p);
  4151. delta = p->prio - old_prio;
  4152. if (on_rq) {
  4153. enqueue_task(rq, p, 0);
  4154. /*
  4155. * If the task increased its priority or is running and
  4156. * lowered its priority, then reschedule its CPU:
  4157. */
  4158. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4159. resched_task(rq->curr);
  4160. }
  4161. out_unlock:
  4162. task_rq_unlock(rq, &flags);
  4163. }
  4164. EXPORT_SYMBOL(set_user_nice);
  4165. /*
  4166. * can_nice - check if a task can reduce its nice value
  4167. * @p: task
  4168. * @nice: nice value
  4169. */
  4170. int can_nice(const struct task_struct *p, const int nice)
  4171. {
  4172. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4173. int nice_rlim = 20 - nice;
  4174. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4175. capable(CAP_SYS_NICE));
  4176. }
  4177. #ifdef __ARCH_WANT_SYS_NICE
  4178. /*
  4179. * sys_nice - change the priority of the current process.
  4180. * @increment: priority increment
  4181. *
  4182. * sys_setpriority is a more generic, but much slower function that
  4183. * does similar things.
  4184. */
  4185. asmlinkage long sys_nice(int increment)
  4186. {
  4187. long nice, retval;
  4188. /*
  4189. * Setpriority might change our priority at the same moment.
  4190. * We don't have to worry. Conceptually one call occurs first
  4191. * and we have a single winner.
  4192. */
  4193. if (increment < -40)
  4194. increment = -40;
  4195. if (increment > 40)
  4196. increment = 40;
  4197. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4198. if (nice < -20)
  4199. nice = -20;
  4200. if (nice > 19)
  4201. nice = 19;
  4202. if (increment < 0 && !can_nice(current, nice))
  4203. return -EPERM;
  4204. retval = security_task_setnice(current, nice);
  4205. if (retval)
  4206. return retval;
  4207. set_user_nice(current, nice);
  4208. return 0;
  4209. }
  4210. #endif
  4211. /**
  4212. * task_prio - return the priority value of a given task.
  4213. * @p: the task in question.
  4214. *
  4215. * This is the priority value as seen by users in /proc.
  4216. * RT tasks are offset by -200. Normal tasks are centered
  4217. * around 0, value goes from -16 to +15.
  4218. */
  4219. int task_prio(const struct task_struct *p)
  4220. {
  4221. return p->prio - MAX_RT_PRIO;
  4222. }
  4223. /**
  4224. * task_nice - return the nice value of a given task.
  4225. * @p: the task in question.
  4226. */
  4227. int task_nice(const struct task_struct *p)
  4228. {
  4229. return TASK_NICE(p);
  4230. }
  4231. EXPORT_SYMBOL(task_nice);
  4232. /**
  4233. * idle_cpu - is a given cpu idle currently?
  4234. * @cpu: the processor in question.
  4235. */
  4236. int idle_cpu(int cpu)
  4237. {
  4238. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4239. }
  4240. /**
  4241. * idle_task - return the idle task for a given cpu.
  4242. * @cpu: the processor in question.
  4243. */
  4244. struct task_struct *idle_task(int cpu)
  4245. {
  4246. return cpu_rq(cpu)->idle;
  4247. }
  4248. /**
  4249. * find_process_by_pid - find a process with a matching PID value.
  4250. * @pid: the pid in question.
  4251. */
  4252. static struct task_struct *find_process_by_pid(pid_t pid)
  4253. {
  4254. return pid ? find_task_by_vpid(pid) : current;
  4255. }
  4256. /* Actually do priority change: must hold rq lock. */
  4257. static void
  4258. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4259. {
  4260. BUG_ON(p->se.on_rq);
  4261. p->policy = policy;
  4262. switch (p->policy) {
  4263. case SCHED_NORMAL:
  4264. case SCHED_BATCH:
  4265. case SCHED_IDLE:
  4266. p->sched_class = &fair_sched_class;
  4267. break;
  4268. case SCHED_FIFO:
  4269. case SCHED_RR:
  4270. p->sched_class = &rt_sched_class;
  4271. break;
  4272. }
  4273. p->rt_priority = prio;
  4274. p->normal_prio = normal_prio(p);
  4275. /* we are holding p->pi_lock already */
  4276. p->prio = rt_mutex_getprio(p);
  4277. set_load_weight(p);
  4278. }
  4279. /**
  4280. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4281. * @p: the task in question.
  4282. * @policy: new policy.
  4283. * @param: structure containing the new RT priority.
  4284. *
  4285. * NOTE that the task may be already dead.
  4286. */
  4287. int sched_setscheduler(struct task_struct *p, int policy,
  4288. struct sched_param *param)
  4289. {
  4290. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4291. unsigned long flags;
  4292. const struct sched_class *prev_class = p->sched_class;
  4293. struct rq *rq;
  4294. /* may grab non-irq protected spin_locks */
  4295. BUG_ON(in_interrupt());
  4296. recheck:
  4297. /* double check policy once rq lock held */
  4298. if (policy < 0)
  4299. policy = oldpolicy = p->policy;
  4300. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4301. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4302. policy != SCHED_IDLE)
  4303. return -EINVAL;
  4304. /*
  4305. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4306. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4307. * SCHED_BATCH and SCHED_IDLE is 0.
  4308. */
  4309. if (param->sched_priority < 0 ||
  4310. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4311. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4312. return -EINVAL;
  4313. if (rt_policy(policy) != (param->sched_priority != 0))
  4314. return -EINVAL;
  4315. /*
  4316. * Allow unprivileged RT tasks to decrease priority:
  4317. */
  4318. if (!capable(CAP_SYS_NICE)) {
  4319. if (rt_policy(policy)) {
  4320. unsigned long rlim_rtprio;
  4321. if (!lock_task_sighand(p, &flags))
  4322. return -ESRCH;
  4323. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4324. unlock_task_sighand(p, &flags);
  4325. /* can't set/change the rt policy */
  4326. if (policy != p->policy && !rlim_rtprio)
  4327. return -EPERM;
  4328. /* can't increase priority */
  4329. if (param->sched_priority > p->rt_priority &&
  4330. param->sched_priority > rlim_rtprio)
  4331. return -EPERM;
  4332. }
  4333. /*
  4334. * Like positive nice levels, dont allow tasks to
  4335. * move out of SCHED_IDLE either:
  4336. */
  4337. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4338. return -EPERM;
  4339. /* can't change other user's priorities */
  4340. if ((current->euid != p->euid) &&
  4341. (current->euid != p->uid))
  4342. return -EPERM;
  4343. }
  4344. #ifdef CONFIG_RT_GROUP_SCHED
  4345. /*
  4346. * Do not allow realtime tasks into groups that have no runtime
  4347. * assigned.
  4348. */
  4349. if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4350. return -EPERM;
  4351. #endif
  4352. retval = security_task_setscheduler(p, policy, param);
  4353. if (retval)
  4354. return retval;
  4355. /*
  4356. * make sure no PI-waiters arrive (or leave) while we are
  4357. * changing the priority of the task:
  4358. */
  4359. spin_lock_irqsave(&p->pi_lock, flags);
  4360. /*
  4361. * To be able to change p->policy safely, the apropriate
  4362. * runqueue lock must be held.
  4363. */
  4364. rq = __task_rq_lock(p);
  4365. /* recheck policy now with rq lock held */
  4366. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4367. policy = oldpolicy = -1;
  4368. __task_rq_unlock(rq);
  4369. spin_unlock_irqrestore(&p->pi_lock, flags);
  4370. goto recheck;
  4371. }
  4372. update_rq_clock(rq);
  4373. on_rq = p->se.on_rq;
  4374. running = task_current(rq, p);
  4375. if (on_rq)
  4376. deactivate_task(rq, p, 0);
  4377. if (running)
  4378. p->sched_class->put_prev_task(rq, p);
  4379. oldprio = p->prio;
  4380. __setscheduler(rq, p, policy, param->sched_priority);
  4381. if (running)
  4382. p->sched_class->set_curr_task(rq);
  4383. if (on_rq) {
  4384. activate_task(rq, p, 0);
  4385. check_class_changed(rq, p, prev_class, oldprio, running);
  4386. }
  4387. __task_rq_unlock(rq);
  4388. spin_unlock_irqrestore(&p->pi_lock, flags);
  4389. rt_mutex_adjust_pi(p);
  4390. return 0;
  4391. }
  4392. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4393. static int
  4394. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4395. {
  4396. struct sched_param lparam;
  4397. struct task_struct *p;
  4398. int retval;
  4399. if (!param || pid < 0)
  4400. return -EINVAL;
  4401. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4402. return -EFAULT;
  4403. rcu_read_lock();
  4404. retval = -ESRCH;
  4405. p = find_process_by_pid(pid);
  4406. if (p != NULL)
  4407. retval = sched_setscheduler(p, policy, &lparam);
  4408. rcu_read_unlock();
  4409. return retval;
  4410. }
  4411. /**
  4412. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4413. * @pid: the pid in question.
  4414. * @policy: new policy.
  4415. * @param: structure containing the new RT priority.
  4416. */
  4417. asmlinkage long
  4418. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4419. {
  4420. /* negative values for policy are not valid */
  4421. if (policy < 0)
  4422. return -EINVAL;
  4423. return do_sched_setscheduler(pid, policy, param);
  4424. }
  4425. /**
  4426. * sys_sched_setparam - set/change the RT priority of a thread
  4427. * @pid: the pid in question.
  4428. * @param: structure containing the new RT priority.
  4429. */
  4430. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4431. {
  4432. return do_sched_setscheduler(pid, -1, param);
  4433. }
  4434. /**
  4435. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4436. * @pid: the pid in question.
  4437. */
  4438. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4439. {
  4440. struct task_struct *p;
  4441. int retval;
  4442. if (pid < 0)
  4443. return -EINVAL;
  4444. retval = -ESRCH;
  4445. read_lock(&tasklist_lock);
  4446. p = find_process_by_pid(pid);
  4447. if (p) {
  4448. retval = security_task_getscheduler(p);
  4449. if (!retval)
  4450. retval = p->policy;
  4451. }
  4452. read_unlock(&tasklist_lock);
  4453. return retval;
  4454. }
  4455. /**
  4456. * sys_sched_getscheduler - get the RT priority of a thread
  4457. * @pid: the pid in question.
  4458. * @param: structure containing the RT priority.
  4459. */
  4460. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4461. {
  4462. struct sched_param lp;
  4463. struct task_struct *p;
  4464. int retval;
  4465. if (!param || pid < 0)
  4466. return -EINVAL;
  4467. read_lock(&tasklist_lock);
  4468. p = find_process_by_pid(pid);
  4469. retval = -ESRCH;
  4470. if (!p)
  4471. goto out_unlock;
  4472. retval = security_task_getscheduler(p);
  4473. if (retval)
  4474. goto out_unlock;
  4475. lp.sched_priority = p->rt_priority;
  4476. read_unlock(&tasklist_lock);
  4477. /*
  4478. * This one might sleep, we cannot do it with a spinlock held ...
  4479. */
  4480. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4481. return retval;
  4482. out_unlock:
  4483. read_unlock(&tasklist_lock);
  4484. return retval;
  4485. }
  4486. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4487. {
  4488. cpumask_t cpus_allowed;
  4489. cpumask_t new_mask = *in_mask;
  4490. struct task_struct *p;
  4491. int retval;
  4492. get_online_cpus();
  4493. read_lock(&tasklist_lock);
  4494. p = find_process_by_pid(pid);
  4495. if (!p) {
  4496. read_unlock(&tasklist_lock);
  4497. put_online_cpus();
  4498. return -ESRCH;
  4499. }
  4500. /*
  4501. * It is not safe to call set_cpus_allowed with the
  4502. * tasklist_lock held. We will bump the task_struct's
  4503. * usage count and then drop tasklist_lock.
  4504. */
  4505. get_task_struct(p);
  4506. read_unlock(&tasklist_lock);
  4507. retval = -EPERM;
  4508. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4509. !capable(CAP_SYS_NICE))
  4510. goto out_unlock;
  4511. retval = security_task_setscheduler(p, 0, NULL);
  4512. if (retval)
  4513. goto out_unlock;
  4514. cpuset_cpus_allowed(p, &cpus_allowed);
  4515. cpus_and(new_mask, new_mask, cpus_allowed);
  4516. again:
  4517. retval = set_cpus_allowed_ptr(p, &new_mask);
  4518. if (!retval) {
  4519. cpuset_cpus_allowed(p, &cpus_allowed);
  4520. if (!cpus_subset(new_mask, cpus_allowed)) {
  4521. /*
  4522. * We must have raced with a concurrent cpuset
  4523. * update. Just reset the cpus_allowed to the
  4524. * cpuset's cpus_allowed
  4525. */
  4526. new_mask = cpus_allowed;
  4527. goto again;
  4528. }
  4529. }
  4530. out_unlock:
  4531. put_task_struct(p);
  4532. put_online_cpus();
  4533. return retval;
  4534. }
  4535. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4536. cpumask_t *new_mask)
  4537. {
  4538. if (len < sizeof(cpumask_t)) {
  4539. memset(new_mask, 0, sizeof(cpumask_t));
  4540. } else if (len > sizeof(cpumask_t)) {
  4541. len = sizeof(cpumask_t);
  4542. }
  4543. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4544. }
  4545. /**
  4546. * sys_sched_setaffinity - set the cpu affinity of a process
  4547. * @pid: pid of the process
  4548. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4549. * @user_mask_ptr: user-space pointer to the new cpu mask
  4550. */
  4551. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4552. unsigned long __user *user_mask_ptr)
  4553. {
  4554. cpumask_t new_mask;
  4555. int retval;
  4556. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4557. if (retval)
  4558. return retval;
  4559. return sched_setaffinity(pid, &new_mask);
  4560. }
  4561. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4562. {
  4563. struct task_struct *p;
  4564. int retval;
  4565. get_online_cpus();
  4566. read_lock(&tasklist_lock);
  4567. retval = -ESRCH;
  4568. p = find_process_by_pid(pid);
  4569. if (!p)
  4570. goto out_unlock;
  4571. retval = security_task_getscheduler(p);
  4572. if (retval)
  4573. goto out_unlock;
  4574. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4575. out_unlock:
  4576. read_unlock(&tasklist_lock);
  4577. put_online_cpus();
  4578. return retval;
  4579. }
  4580. /**
  4581. * sys_sched_getaffinity - get the cpu affinity of a process
  4582. * @pid: pid of the process
  4583. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4584. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4585. */
  4586. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4587. unsigned long __user *user_mask_ptr)
  4588. {
  4589. int ret;
  4590. cpumask_t mask;
  4591. if (len < sizeof(cpumask_t))
  4592. return -EINVAL;
  4593. ret = sched_getaffinity(pid, &mask);
  4594. if (ret < 0)
  4595. return ret;
  4596. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4597. return -EFAULT;
  4598. return sizeof(cpumask_t);
  4599. }
  4600. /**
  4601. * sys_sched_yield - yield the current processor to other threads.
  4602. *
  4603. * This function yields the current CPU to other tasks. If there are no
  4604. * other threads running on this CPU then this function will return.
  4605. */
  4606. asmlinkage long sys_sched_yield(void)
  4607. {
  4608. struct rq *rq = this_rq_lock();
  4609. schedstat_inc(rq, yld_count);
  4610. current->sched_class->yield_task(rq);
  4611. /*
  4612. * Since we are going to call schedule() anyway, there's
  4613. * no need to preempt or enable interrupts:
  4614. */
  4615. __release(rq->lock);
  4616. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4617. _raw_spin_unlock(&rq->lock);
  4618. preempt_enable_no_resched();
  4619. schedule();
  4620. return 0;
  4621. }
  4622. static void __cond_resched(void)
  4623. {
  4624. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4625. __might_sleep(__FILE__, __LINE__);
  4626. #endif
  4627. /*
  4628. * The BKS might be reacquired before we have dropped
  4629. * PREEMPT_ACTIVE, which could trigger a second
  4630. * cond_resched() call.
  4631. */
  4632. do {
  4633. add_preempt_count(PREEMPT_ACTIVE);
  4634. schedule();
  4635. sub_preempt_count(PREEMPT_ACTIVE);
  4636. } while (need_resched());
  4637. }
  4638. int __sched _cond_resched(void)
  4639. {
  4640. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4641. system_state == SYSTEM_RUNNING) {
  4642. __cond_resched();
  4643. return 1;
  4644. }
  4645. return 0;
  4646. }
  4647. EXPORT_SYMBOL(_cond_resched);
  4648. /*
  4649. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4650. * call schedule, and on return reacquire the lock.
  4651. *
  4652. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4653. * operations here to prevent schedule() from being called twice (once via
  4654. * spin_unlock(), once by hand).
  4655. */
  4656. int cond_resched_lock(spinlock_t *lock)
  4657. {
  4658. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4659. int ret = 0;
  4660. if (spin_needbreak(lock) || resched) {
  4661. spin_unlock(lock);
  4662. if (resched && need_resched())
  4663. __cond_resched();
  4664. else
  4665. cpu_relax();
  4666. ret = 1;
  4667. spin_lock(lock);
  4668. }
  4669. return ret;
  4670. }
  4671. EXPORT_SYMBOL(cond_resched_lock);
  4672. int __sched cond_resched_softirq(void)
  4673. {
  4674. BUG_ON(!in_softirq());
  4675. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4676. local_bh_enable();
  4677. __cond_resched();
  4678. local_bh_disable();
  4679. return 1;
  4680. }
  4681. return 0;
  4682. }
  4683. EXPORT_SYMBOL(cond_resched_softirq);
  4684. /**
  4685. * yield - yield the current processor to other threads.
  4686. *
  4687. * This is a shortcut for kernel-space yielding - it marks the
  4688. * thread runnable and calls sys_sched_yield().
  4689. */
  4690. void __sched yield(void)
  4691. {
  4692. set_current_state(TASK_RUNNING);
  4693. sys_sched_yield();
  4694. }
  4695. EXPORT_SYMBOL(yield);
  4696. /*
  4697. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4698. * that process accounting knows that this is a task in IO wait state.
  4699. *
  4700. * But don't do that if it is a deliberate, throttling IO wait (this task
  4701. * has set its backing_dev_info: the queue against which it should throttle)
  4702. */
  4703. void __sched io_schedule(void)
  4704. {
  4705. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4706. delayacct_blkio_start();
  4707. atomic_inc(&rq->nr_iowait);
  4708. schedule();
  4709. atomic_dec(&rq->nr_iowait);
  4710. delayacct_blkio_end();
  4711. }
  4712. EXPORT_SYMBOL(io_schedule);
  4713. long __sched io_schedule_timeout(long timeout)
  4714. {
  4715. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4716. long ret;
  4717. delayacct_blkio_start();
  4718. atomic_inc(&rq->nr_iowait);
  4719. ret = schedule_timeout(timeout);
  4720. atomic_dec(&rq->nr_iowait);
  4721. delayacct_blkio_end();
  4722. return ret;
  4723. }
  4724. /**
  4725. * sys_sched_get_priority_max - return maximum RT priority.
  4726. * @policy: scheduling class.
  4727. *
  4728. * this syscall returns the maximum rt_priority that can be used
  4729. * by a given scheduling class.
  4730. */
  4731. asmlinkage long sys_sched_get_priority_max(int policy)
  4732. {
  4733. int ret = -EINVAL;
  4734. switch (policy) {
  4735. case SCHED_FIFO:
  4736. case SCHED_RR:
  4737. ret = MAX_USER_RT_PRIO-1;
  4738. break;
  4739. case SCHED_NORMAL:
  4740. case SCHED_BATCH:
  4741. case SCHED_IDLE:
  4742. ret = 0;
  4743. break;
  4744. }
  4745. return ret;
  4746. }
  4747. /**
  4748. * sys_sched_get_priority_min - return minimum RT priority.
  4749. * @policy: scheduling class.
  4750. *
  4751. * this syscall returns the minimum rt_priority that can be used
  4752. * by a given scheduling class.
  4753. */
  4754. asmlinkage long sys_sched_get_priority_min(int policy)
  4755. {
  4756. int ret = -EINVAL;
  4757. switch (policy) {
  4758. case SCHED_FIFO:
  4759. case SCHED_RR:
  4760. ret = 1;
  4761. break;
  4762. case SCHED_NORMAL:
  4763. case SCHED_BATCH:
  4764. case SCHED_IDLE:
  4765. ret = 0;
  4766. }
  4767. return ret;
  4768. }
  4769. /**
  4770. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4771. * @pid: pid of the process.
  4772. * @interval: userspace pointer to the timeslice value.
  4773. *
  4774. * this syscall writes the default timeslice value of a given process
  4775. * into the user-space timespec buffer. A value of '0' means infinity.
  4776. */
  4777. asmlinkage
  4778. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4779. {
  4780. struct task_struct *p;
  4781. unsigned int time_slice;
  4782. int retval;
  4783. struct timespec t;
  4784. if (pid < 0)
  4785. return -EINVAL;
  4786. retval = -ESRCH;
  4787. read_lock(&tasklist_lock);
  4788. p = find_process_by_pid(pid);
  4789. if (!p)
  4790. goto out_unlock;
  4791. retval = security_task_getscheduler(p);
  4792. if (retval)
  4793. goto out_unlock;
  4794. /*
  4795. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4796. * tasks that are on an otherwise idle runqueue:
  4797. */
  4798. time_slice = 0;
  4799. if (p->policy == SCHED_RR) {
  4800. time_slice = DEF_TIMESLICE;
  4801. } else if (p->policy != SCHED_FIFO) {
  4802. struct sched_entity *se = &p->se;
  4803. unsigned long flags;
  4804. struct rq *rq;
  4805. rq = task_rq_lock(p, &flags);
  4806. if (rq->cfs.load.weight)
  4807. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4808. task_rq_unlock(rq, &flags);
  4809. }
  4810. read_unlock(&tasklist_lock);
  4811. jiffies_to_timespec(time_slice, &t);
  4812. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4813. return retval;
  4814. out_unlock:
  4815. read_unlock(&tasklist_lock);
  4816. return retval;
  4817. }
  4818. static const char stat_nam[] = "RSDTtZX";
  4819. void sched_show_task(struct task_struct *p)
  4820. {
  4821. unsigned long free = 0;
  4822. unsigned state;
  4823. state = p->state ? __ffs(p->state) + 1 : 0;
  4824. printk(KERN_INFO "%-13.13s %c", p->comm,
  4825. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4826. #if BITS_PER_LONG == 32
  4827. if (state == TASK_RUNNING)
  4828. printk(KERN_CONT " running ");
  4829. else
  4830. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4831. #else
  4832. if (state == TASK_RUNNING)
  4833. printk(KERN_CONT " running task ");
  4834. else
  4835. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4836. #endif
  4837. #ifdef CONFIG_DEBUG_STACK_USAGE
  4838. {
  4839. unsigned long *n = end_of_stack(p);
  4840. while (!*n)
  4841. n++;
  4842. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4843. }
  4844. #endif
  4845. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4846. task_pid_nr(p), task_pid_nr(p->real_parent));
  4847. show_stack(p, NULL);
  4848. }
  4849. void show_state_filter(unsigned long state_filter)
  4850. {
  4851. struct task_struct *g, *p;
  4852. #if BITS_PER_LONG == 32
  4853. printk(KERN_INFO
  4854. " task PC stack pid father\n");
  4855. #else
  4856. printk(KERN_INFO
  4857. " task PC stack pid father\n");
  4858. #endif
  4859. read_lock(&tasklist_lock);
  4860. do_each_thread(g, p) {
  4861. /*
  4862. * reset the NMI-timeout, listing all files on a slow
  4863. * console might take alot of time:
  4864. */
  4865. touch_nmi_watchdog();
  4866. if (!state_filter || (p->state & state_filter))
  4867. sched_show_task(p);
  4868. } while_each_thread(g, p);
  4869. touch_all_softlockup_watchdogs();
  4870. #ifdef CONFIG_SCHED_DEBUG
  4871. sysrq_sched_debug_show();
  4872. #endif
  4873. read_unlock(&tasklist_lock);
  4874. /*
  4875. * Only show locks if all tasks are dumped:
  4876. */
  4877. if (state_filter == -1)
  4878. debug_show_all_locks();
  4879. }
  4880. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4881. {
  4882. idle->sched_class = &idle_sched_class;
  4883. }
  4884. /**
  4885. * init_idle - set up an idle thread for a given CPU
  4886. * @idle: task in question
  4887. * @cpu: cpu the idle task belongs to
  4888. *
  4889. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4890. * flag, to make booting more robust.
  4891. */
  4892. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4893. {
  4894. struct rq *rq = cpu_rq(cpu);
  4895. unsigned long flags;
  4896. __sched_fork(idle);
  4897. idle->se.exec_start = sched_clock();
  4898. idle->prio = idle->normal_prio = MAX_PRIO;
  4899. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4900. __set_task_cpu(idle, cpu);
  4901. spin_lock_irqsave(&rq->lock, flags);
  4902. rq->curr = rq->idle = idle;
  4903. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4904. idle->oncpu = 1;
  4905. #endif
  4906. spin_unlock_irqrestore(&rq->lock, flags);
  4907. /* Set the preempt count _outside_ the spinlocks! */
  4908. #if defined(CONFIG_PREEMPT)
  4909. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4910. #else
  4911. task_thread_info(idle)->preempt_count = 0;
  4912. #endif
  4913. /*
  4914. * The idle tasks have their own, simple scheduling class:
  4915. */
  4916. idle->sched_class = &idle_sched_class;
  4917. }
  4918. /*
  4919. * In a system that switches off the HZ timer nohz_cpu_mask
  4920. * indicates which cpus entered this state. This is used
  4921. * in the rcu update to wait only for active cpus. For system
  4922. * which do not switch off the HZ timer nohz_cpu_mask should
  4923. * always be CPU_MASK_NONE.
  4924. */
  4925. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4926. /*
  4927. * Increase the granularity value when there are more CPUs,
  4928. * because with more CPUs the 'effective latency' as visible
  4929. * to users decreases. But the relationship is not linear,
  4930. * so pick a second-best guess by going with the log2 of the
  4931. * number of CPUs.
  4932. *
  4933. * This idea comes from the SD scheduler of Con Kolivas:
  4934. */
  4935. static inline void sched_init_granularity(void)
  4936. {
  4937. unsigned int factor = 1 + ilog2(num_online_cpus());
  4938. const unsigned long limit = 200000000;
  4939. sysctl_sched_min_granularity *= factor;
  4940. if (sysctl_sched_min_granularity > limit)
  4941. sysctl_sched_min_granularity = limit;
  4942. sysctl_sched_latency *= factor;
  4943. if (sysctl_sched_latency > limit)
  4944. sysctl_sched_latency = limit;
  4945. sysctl_sched_wakeup_granularity *= factor;
  4946. }
  4947. #ifdef CONFIG_SMP
  4948. /*
  4949. * This is how migration works:
  4950. *
  4951. * 1) we queue a struct migration_req structure in the source CPU's
  4952. * runqueue and wake up that CPU's migration thread.
  4953. * 2) we down() the locked semaphore => thread blocks.
  4954. * 3) migration thread wakes up (implicitly it forces the migrated
  4955. * thread off the CPU)
  4956. * 4) it gets the migration request and checks whether the migrated
  4957. * task is still in the wrong runqueue.
  4958. * 5) if it's in the wrong runqueue then the migration thread removes
  4959. * it and puts it into the right queue.
  4960. * 6) migration thread up()s the semaphore.
  4961. * 7) we wake up and the migration is done.
  4962. */
  4963. /*
  4964. * Change a given task's CPU affinity. Migrate the thread to a
  4965. * proper CPU and schedule it away if the CPU it's executing on
  4966. * is removed from the allowed bitmask.
  4967. *
  4968. * NOTE: the caller must have a valid reference to the task, the
  4969. * task must not exit() & deallocate itself prematurely. The
  4970. * call is not atomic; no spinlocks may be held.
  4971. */
  4972. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4973. {
  4974. struct migration_req req;
  4975. unsigned long flags;
  4976. struct rq *rq;
  4977. int ret = 0;
  4978. rq = task_rq_lock(p, &flags);
  4979. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4980. ret = -EINVAL;
  4981. goto out;
  4982. }
  4983. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4984. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4985. ret = -EINVAL;
  4986. goto out;
  4987. }
  4988. if (p->sched_class->set_cpus_allowed)
  4989. p->sched_class->set_cpus_allowed(p, new_mask);
  4990. else {
  4991. p->cpus_allowed = *new_mask;
  4992. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4993. }
  4994. /* Can the task run on the task's current CPU? If so, we're done */
  4995. if (cpu_isset(task_cpu(p), *new_mask))
  4996. goto out;
  4997. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4998. /* Need help from migration thread: drop lock and wait. */
  4999. task_rq_unlock(rq, &flags);
  5000. wake_up_process(rq->migration_thread);
  5001. wait_for_completion(&req.done);
  5002. tlb_migrate_finish(p->mm);
  5003. return 0;
  5004. }
  5005. out:
  5006. task_rq_unlock(rq, &flags);
  5007. return ret;
  5008. }
  5009. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5010. /*
  5011. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5012. * this because either it can't run here any more (set_cpus_allowed()
  5013. * away from this CPU, or CPU going down), or because we're
  5014. * attempting to rebalance this task on exec (sched_exec).
  5015. *
  5016. * So we race with normal scheduler movements, but that's OK, as long
  5017. * as the task is no longer on this CPU.
  5018. *
  5019. * Returns non-zero if task was successfully migrated.
  5020. */
  5021. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5022. {
  5023. struct rq *rq_dest, *rq_src;
  5024. int ret = 0, on_rq;
  5025. if (unlikely(cpu_is_offline(dest_cpu)))
  5026. return ret;
  5027. rq_src = cpu_rq(src_cpu);
  5028. rq_dest = cpu_rq(dest_cpu);
  5029. double_rq_lock(rq_src, rq_dest);
  5030. /* Already moved. */
  5031. if (task_cpu(p) != src_cpu)
  5032. goto out;
  5033. /* Affinity changed (again). */
  5034. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5035. goto out;
  5036. on_rq = p->se.on_rq;
  5037. if (on_rq)
  5038. deactivate_task(rq_src, p, 0);
  5039. set_task_cpu(p, dest_cpu);
  5040. if (on_rq) {
  5041. activate_task(rq_dest, p, 0);
  5042. check_preempt_curr(rq_dest, p);
  5043. }
  5044. ret = 1;
  5045. out:
  5046. double_rq_unlock(rq_src, rq_dest);
  5047. return ret;
  5048. }
  5049. /*
  5050. * migration_thread - this is a highprio system thread that performs
  5051. * thread migration by bumping thread off CPU then 'pushing' onto
  5052. * another runqueue.
  5053. */
  5054. static int migration_thread(void *data)
  5055. {
  5056. int cpu = (long)data;
  5057. struct rq *rq;
  5058. rq = cpu_rq(cpu);
  5059. BUG_ON(rq->migration_thread != current);
  5060. set_current_state(TASK_INTERRUPTIBLE);
  5061. while (!kthread_should_stop()) {
  5062. struct migration_req *req;
  5063. struct list_head *head;
  5064. spin_lock_irq(&rq->lock);
  5065. if (cpu_is_offline(cpu)) {
  5066. spin_unlock_irq(&rq->lock);
  5067. goto wait_to_die;
  5068. }
  5069. if (rq->active_balance) {
  5070. active_load_balance(rq, cpu);
  5071. rq->active_balance = 0;
  5072. }
  5073. head = &rq->migration_queue;
  5074. if (list_empty(head)) {
  5075. spin_unlock_irq(&rq->lock);
  5076. schedule();
  5077. set_current_state(TASK_INTERRUPTIBLE);
  5078. continue;
  5079. }
  5080. req = list_entry(head->next, struct migration_req, list);
  5081. list_del_init(head->next);
  5082. spin_unlock(&rq->lock);
  5083. __migrate_task(req->task, cpu, req->dest_cpu);
  5084. local_irq_enable();
  5085. complete(&req->done);
  5086. }
  5087. __set_current_state(TASK_RUNNING);
  5088. return 0;
  5089. wait_to_die:
  5090. /* Wait for kthread_stop */
  5091. set_current_state(TASK_INTERRUPTIBLE);
  5092. while (!kthread_should_stop()) {
  5093. schedule();
  5094. set_current_state(TASK_INTERRUPTIBLE);
  5095. }
  5096. __set_current_state(TASK_RUNNING);
  5097. return 0;
  5098. }
  5099. #ifdef CONFIG_HOTPLUG_CPU
  5100. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5101. {
  5102. int ret;
  5103. local_irq_disable();
  5104. ret = __migrate_task(p, src_cpu, dest_cpu);
  5105. local_irq_enable();
  5106. return ret;
  5107. }
  5108. /*
  5109. * Figure out where task on dead CPU should go, use force if necessary.
  5110. * NOTE: interrupts should be disabled by the caller
  5111. */
  5112. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5113. {
  5114. unsigned long flags;
  5115. cpumask_t mask;
  5116. struct rq *rq;
  5117. int dest_cpu;
  5118. do {
  5119. /* On same node? */
  5120. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5121. cpus_and(mask, mask, p->cpus_allowed);
  5122. dest_cpu = any_online_cpu(mask);
  5123. /* On any allowed CPU? */
  5124. if (dest_cpu >= nr_cpu_ids)
  5125. dest_cpu = any_online_cpu(p->cpus_allowed);
  5126. /* No more Mr. Nice Guy. */
  5127. if (dest_cpu >= nr_cpu_ids) {
  5128. cpumask_t cpus_allowed;
  5129. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5130. /*
  5131. * Try to stay on the same cpuset, where the
  5132. * current cpuset may be a subset of all cpus.
  5133. * The cpuset_cpus_allowed_locked() variant of
  5134. * cpuset_cpus_allowed() will not block. It must be
  5135. * called within calls to cpuset_lock/cpuset_unlock.
  5136. */
  5137. rq = task_rq_lock(p, &flags);
  5138. p->cpus_allowed = cpus_allowed;
  5139. dest_cpu = any_online_cpu(p->cpus_allowed);
  5140. task_rq_unlock(rq, &flags);
  5141. /*
  5142. * Don't tell them about moving exiting tasks or
  5143. * kernel threads (both mm NULL), since they never
  5144. * leave kernel.
  5145. */
  5146. if (p->mm && printk_ratelimit()) {
  5147. printk(KERN_INFO "process %d (%s) no "
  5148. "longer affine to cpu%d\n",
  5149. task_pid_nr(p), p->comm, dead_cpu);
  5150. }
  5151. }
  5152. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5153. }
  5154. /*
  5155. * While a dead CPU has no uninterruptible tasks queued at this point,
  5156. * it might still have a nonzero ->nr_uninterruptible counter, because
  5157. * for performance reasons the counter is not stricly tracking tasks to
  5158. * their home CPUs. So we just add the counter to another CPU's counter,
  5159. * to keep the global sum constant after CPU-down:
  5160. */
  5161. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5162. {
  5163. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5164. unsigned long flags;
  5165. local_irq_save(flags);
  5166. double_rq_lock(rq_src, rq_dest);
  5167. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5168. rq_src->nr_uninterruptible = 0;
  5169. double_rq_unlock(rq_src, rq_dest);
  5170. local_irq_restore(flags);
  5171. }
  5172. /* Run through task list and migrate tasks from the dead cpu. */
  5173. static void migrate_live_tasks(int src_cpu)
  5174. {
  5175. struct task_struct *p, *t;
  5176. read_lock(&tasklist_lock);
  5177. do_each_thread(t, p) {
  5178. if (p == current)
  5179. continue;
  5180. if (task_cpu(p) == src_cpu)
  5181. move_task_off_dead_cpu(src_cpu, p);
  5182. } while_each_thread(t, p);
  5183. read_unlock(&tasklist_lock);
  5184. }
  5185. /*
  5186. * Schedules idle task to be the next runnable task on current CPU.
  5187. * It does so by boosting its priority to highest possible.
  5188. * Used by CPU offline code.
  5189. */
  5190. void sched_idle_next(void)
  5191. {
  5192. int this_cpu = smp_processor_id();
  5193. struct rq *rq = cpu_rq(this_cpu);
  5194. struct task_struct *p = rq->idle;
  5195. unsigned long flags;
  5196. /* cpu has to be offline */
  5197. BUG_ON(cpu_online(this_cpu));
  5198. /*
  5199. * Strictly not necessary since rest of the CPUs are stopped by now
  5200. * and interrupts disabled on the current cpu.
  5201. */
  5202. spin_lock_irqsave(&rq->lock, flags);
  5203. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5204. update_rq_clock(rq);
  5205. activate_task(rq, p, 0);
  5206. spin_unlock_irqrestore(&rq->lock, flags);
  5207. }
  5208. /*
  5209. * Ensures that the idle task is using init_mm right before its cpu goes
  5210. * offline.
  5211. */
  5212. void idle_task_exit(void)
  5213. {
  5214. struct mm_struct *mm = current->active_mm;
  5215. BUG_ON(cpu_online(smp_processor_id()));
  5216. if (mm != &init_mm)
  5217. switch_mm(mm, &init_mm, current);
  5218. mmdrop(mm);
  5219. }
  5220. /* called under rq->lock with disabled interrupts */
  5221. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5222. {
  5223. struct rq *rq = cpu_rq(dead_cpu);
  5224. /* Must be exiting, otherwise would be on tasklist. */
  5225. BUG_ON(!p->exit_state);
  5226. /* Cannot have done final schedule yet: would have vanished. */
  5227. BUG_ON(p->state == TASK_DEAD);
  5228. get_task_struct(p);
  5229. /*
  5230. * Drop lock around migration; if someone else moves it,
  5231. * that's OK. No task can be added to this CPU, so iteration is
  5232. * fine.
  5233. */
  5234. spin_unlock_irq(&rq->lock);
  5235. move_task_off_dead_cpu(dead_cpu, p);
  5236. spin_lock_irq(&rq->lock);
  5237. put_task_struct(p);
  5238. }
  5239. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5240. static void migrate_dead_tasks(unsigned int dead_cpu)
  5241. {
  5242. struct rq *rq = cpu_rq(dead_cpu);
  5243. struct task_struct *next;
  5244. for ( ; ; ) {
  5245. if (!rq->nr_running)
  5246. break;
  5247. update_rq_clock(rq);
  5248. next = pick_next_task(rq, rq->curr);
  5249. if (!next)
  5250. break;
  5251. migrate_dead(dead_cpu, next);
  5252. }
  5253. }
  5254. #endif /* CONFIG_HOTPLUG_CPU */
  5255. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5256. static struct ctl_table sd_ctl_dir[] = {
  5257. {
  5258. .procname = "sched_domain",
  5259. .mode = 0555,
  5260. },
  5261. {0, },
  5262. };
  5263. static struct ctl_table sd_ctl_root[] = {
  5264. {
  5265. .ctl_name = CTL_KERN,
  5266. .procname = "kernel",
  5267. .mode = 0555,
  5268. .child = sd_ctl_dir,
  5269. },
  5270. {0, },
  5271. };
  5272. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5273. {
  5274. struct ctl_table *entry =
  5275. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5276. return entry;
  5277. }
  5278. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5279. {
  5280. struct ctl_table *entry;
  5281. /*
  5282. * In the intermediate directories, both the child directory and
  5283. * procname are dynamically allocated and could fail but the mode
  5284. * will always be set. In the lowest directory the names are
  5285. * static strings and all have proc handlers.
  5286. */
  5287. for (entry = *tablep; entry->mode; entry++) {
  5288. if (entry->child)
  5289. sd_free_ctl_entry(&entry->child);
  5290. if (entry->proc_handler == NULL)
  5291. kfree(entry->procname);
  5292. }
  5293. kfree(*tablep);
  5294. *tablep = NULL;
  5295. }
  5296. static void
  5297. set_table_entry(struct ctl_table *entry,
  5298. const char *procname, void *data, int maxlen,
  5299. mode_t mode, proc_handler *proc_handler)
  5300. {
  5301. entry->procname = procname;
  5302. entry->data = data;
  5303. entry->maxlen = maxlen;
  5304. entry->mode = mode;
  5305. entry->proc_handler = proc_handler;
  5306. }
  5307. static struct ctl_table *
  5308. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5309. {
  5310. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5311. if (table == NULL)
  5312. return NULL;
  5313. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5314. sizeof(long), 0644, proc_doulongvec_minmax);
  5315. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5316. sizeof(long), 0644, proc_doulongvec_minmax);
  5317. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5318. sizeof(int), 0644, proc_dointvec_minmax);
  5319. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5320. sizeof(int), 0644, proc_dointvec_minmax);
  5321. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5322. sizeof(int), 0644, proc_dointvec_minmax);
  5323. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5324. sizeof(int), 0644, proc_dointvec_minmax);
  5325. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5326. sizeof(int), 0644, proc_dointvec_minmax);
  5327. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5328. sizeof(int), 0644, proc_dointvec_minmax);
  5329. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5330. sizeof(int), 0644, proc_dointvec_minmax);
  5331. set_table_entry(&table[9], "cache_nice_tries",
  5332. &sd->cache_nice_tries,
  5333. sizeof(int), 0644, proc_dointvec_minmax);
  5334. set_table_entry(&table[10], "flags", &sd->flags,
  5335. sizeof(int), 0644, proc_dointvec_minmax);
  5336. /* &table[11] is terminator */
  5337. return table;
  5338. }
  5339. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5340. {
  5341. struct ctl_table *entry, *table;
  5342. struct sched_domain *sd;
  5343. int domain_num = 0, i;
  5344. char buf[32];
  5345. for_each_domain(cpu, sd)
  5346. domain_num++;
  5347. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5348. if (table == NULL)
  5349. return NULL;
  5350. i = 0;
  5351. for_each_domain(cpu, sd) {
  5352. snprintf(buf, 32, "domain%d", i);
  5353. entry->procname = kstrdup(buf, GFP_KERNEL);
  5354. entry->mode = 0555;
  5355. entry->child = sd_alloc_ctl_domain_table(sd);
  5356. entry++;
  5357. i++;
  5358. }
  5359. return table;
  5360. }
  5361. static struct ctl_table_header *sd_sysctl_header;
  5362. static void register_sched_domain_sysctl(void)
  5363. {
  5364. int i, cpu_num = num_online_cpus();
  5365. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5366. char buf[32];
  5367. WARN_ON(sd_ctl_dir[0].child);
  5368. sd_ctl_dir[0].child = entry;
  5369. if (entry == NULL)
  5370. return;
  5371. for_each_online_cpu(i) {
  5372. snprintf(buf, 32, "cpu%d", i);
  5373. entry->procname = kstrdup(buf, GFP_KERNEL);
  5374. entry->mode = 0555;
  5375. entry->child = sd_alloc_ctl_cpu_table(i);
  5376. entry++;
  5377. }
  5378. WARN_ON(sd_sysctl_header);
  5379. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5380. }
  5381. /* may be called multiple times per register */
  5382. static void unregister_sched_domain_sysctl(void)
  5383. {
  5384. if (sd_sysctl_header)
  5385. unregister_sysctl_table(sd_sysctl_header);
  5386. sd_sysctl_header = NULL;
  5387. if (sd_ctl_dir[0].child)
  5388. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5389. }
  5390. #else
  5391. static void register_sched_domain_sysctl(void)
  5392. {
  5393. }
  5394. static void unregister_sched_domain_sysctl(void)
  5395. {
  5396. }
  5397. #endif
  5398. static void set_rq_online(struct rq *rq)
  5399. {
  5400. if (!rq->online) {
  5401. const struct sched_class *class;
  5402. cpu_set(rq->cpu, rq->rd->online);
  5403. rq->online = 1;
  5404. for_each_class(class) {
  5405. if (class->rq_online)
  5406. class->rq_online(rq);
  5407. }
  5408. }
  5409. }
  5410. static void set_rq_offline(struct rq *rq)
  5411. {
  5412. if (rq->online) {
  5413. const struct sched_class *class;
  5414. for_each_class(class) {
  5415. if (class->rq_offline)
  5416. class->rq_offline(rq);
  5417. }
  5418. cpu_clear(rq->cpu, rq->rd->online);
  5419. rq->online = 0;
  5420. }
  5421. }
  5422. /*
  5423. * migration_call - callback that gets triggered when a CPU is added.
  5424. * Here we can start up the necessary migration thread for the new CPU.
  5425. */
  5426. static int __cpuinit
  5427. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5428. {
  5429. struct task_struct *p;
  5430. int cpu = (long)hcpu;
  5431. unsigned long flags;
  5432. struct rq *rq;
  5433. switch (action) {
  5434. case CPU_UP_PREPARE:
  5435. case CPU_UP_PREPARE_FROZEN:
  5436. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5437. if (IS_ERR(p))
  5438. return NOTIFY_BAD;
  5439. kthread_bind(p, cpu);
  5440. /* Must be high prio: stop_machine expects to yield to it. */
  5441. rq = task_rq_lock(p, &flags);
  5442. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5443. task_rq_unlock(rq, &flags);
  5444. cpu_rq(cpu)->migration_thread = p;
  5445. break;
  5446. case CPU_ONLINE:
  5447. case CPU_ONLINE_FROZEN:
  5448. /* Strictly unnecessary, as first user will wake it. */
  5449. wake_up_process(cpu_rq(cpu)->migration_thread);
  5450. /* Update our root-domain */
  5451. rq = cpu_rq(cpu);
  5452. spin_lock_irqsave(&rq->lock, flags);
  5453. if (rq->rd) {
  5454. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5455. set_rq_online(rq);
  5456. }
  5457. spin_unlock_irqrestore(&rq->lock, flags);
  5458. break;
  5459. #ifdef CONFIG_HOTPLUG_CPU
  5460. case CPU_UP_CANCELED:
  5461. case CPU_UP_CANCELED_FROZEN:
  5462. if (!cpu_rq(cpu)->migration_thread)
  5463. break;
  5464. /* Unbind it from offline cpu so it can run. Fall thru. */
  5465. kthread_bind(cpu_rq(cpu)->migration_thread,
  5466. any_online_cpu(cpu_online_map));
  5467. kthread_stop(cpu_rq(cpu)->migration_thread);
  5468. cpu_rq(cpu)->migration_thread = NULL;
  5469. break;
  5470. case CPU_DEAD:
  5471. case CPU_DEAD_FROZEN:
  5472. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5473. migrate_live_tasks(cpu);
  5474. rq = cpu_rq(cpu);
  5475. kthread_stop(rq->migration_thread);
  5476. rq->migration_thread = NULL;
  5477. /* Idle task back to normal (off runqueue, low prio) */
  5478. spin_lock_irq(&rq->lock);
  5479. update_rq_clock(rq);
  5480. deactivate_task(rq, rq->idle, 0);
  5481. rq->idle->static_prio = MAX_PRIO;
  5482. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5483. rq->idle->sched_class = &idle_sched_class;
  5484. migrate_dead_tasks(cpu);
  5485. spin_unlock_irq(&rq->lock);
  5486. cpuset_unlock();
  5487. migrate_nr_uninterruptible(rq);
  5488. BUG_ON(rq->nr_running != 0);
  5489. /*
  5490. * No need to migrate the tasks: it was best-effort if
  5491. * they didn't take sched_hotcpu_mutex. Just wake up
  5492. * the requestors.
  5493. */
  5494. spin_lock_irq(&rq->lock);
  5495. while (!list_empty(&rq->migration_queue)) {
  5496. struct migration_req *req;
  5497. req = list_entry(rq->migration_queue.next,
  5498. struct migration_req, list);
  5499. list_del_init(&req->list);
  5500. complete(&req->done);
  5501. }
  5502. spin_unlock_irq(&rq->lock);
  5503. break;
  5504. case CPU_DYING:
  5505. case CPU_DYING_FROZEN:
  5506. /* Update our root-domain */
  5507. rq = cpu_rq(cpu);
  5508. spin_lock_irqsave(&rq->lock, flags);
  5509. if (rq->rd) {
  5510. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5511. set_rq_offline(rq);
  5512. }
  5513. spin_unlock_irqrestore(&rq->lock, flags);
  5514. break;
  5515. #endif
  5516. }
  5517. return NOTIFY_OK;
  5518. }
  5519. /* Register at highest priority so that task migration (migrate_all_tasks)
  5520. * happens before everything else.
  5521. */
  5522. static struct notifier_block __cpuinitdata migration_notifier = {
  5523. .notifier_call = migration_call,
  5524. .priority = 10
  5525. };
  5526. void __init migration_init(void)
  5527. {
  5528. void *cpu = (void *)(long)smp_processor_id();
  5529. int err;
  5530. /* Start one for the boot CPU: */
  5531. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5532. BUG_ON(err == NOTIFY_BAD);
  5533. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5534. register_cpu_notifier(&migration_notifier);
  5535. }
  5536. #endif
  5537. #ifdef CONFIG_SMP
  5538. #ifdef CONFIG_SCHED_DEBUG
  5539. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5540. {
  5541. switch (lvl) {
  5542. case SD_LV_NONE:
  5543. return "NONE";
  5544. case SD_LV_SIBLING:
  5545. return "SIBLING";
  5546. case SD_LV_MC:
  5547. return "MC";
  5548. case SD_LV_CPU:
  5549. return "CPU";
  5550. case SD_LV_NODE:
  5551. return "NODE";
  5552. case SD_LV_ALLNODES:
  5553. return "ALLNODES";
  5554. case SD_LV_MAX:
  5555. return "MAX";
  5556. }
  5557. return "MAX";
  5558. }
  5559. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5560. cpumask_t *groupmask)
  5561. {
  5562. struct sched_group *group = sd->groups;
  5563. char str[256];
  5564. cpulist_scnprintf(str, sizeof(str), sd->span);
  5565. cpus_clear(*groupmask);
  5566. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5567. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5568. printk("does not load-balance\n");
  5569. if (sd->parent)
  5570. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5571. " has parent");
  5572. return -1;
  5573. }
  5574. printk(KERN_CONT "span %s level %s\n",
  5575. str, sd_level_to_string(sd->level));
  5576. if (!cpu_isset(cpu, sd->span)) {
  5577. printk(KERN_ERR "ERROR: domain->span does not contain "
  5578. "CPU%d\n", cpu);
  5579. }
  5580. if (!cpu_isset(cpu, group->cpumask)) {
  5581. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5582. " CPU%d\n", cpu);
  5583. }
  5584. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5585. do {
  5586. if (!group) {
  5587. printk("\n");
  5588. printk(KERN_ERR "ERROR: group is NULL\n");
  5589. break;
  5590. }
  5591. if (!group->__cpu_power) {
  5592. printk(KERN_CONT "\n");
  5593. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5594. "set\n");
  5595. break;
  5596. }
  5597. if (!cpus_weight(group->cpumask)) {
  5598. printk(KERN_CONT "\n");
  5599. printk(KERN_ERR "ERROR: empty group\n");
  5600. break;
  5601. }
  5602. if (cpus_intersects(*groupmask, group->cpumask)) {
  5603. printk(KERN_CONT "\n");
  5604. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5605. break;
  5606. }
  5607. cpus_or(*groupmask, *groupmask, group->cpumask);
  5608. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5609. printk(KERN_CONT " %s", str);
  5610. group = group->next;
  5611. } while (group != sd->groups);
  5612. printk(KERN_CONT "\n");
  5613. if (!cpus_equal(sd->span, *groupmask))
  5614. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5615. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5616. printk(KERN_ERR "ERROR: parent span is not a superset "
  5617. "of domain->span\n");
  5618. return 0;
  5619. }
  5620. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5621. {
  5622. cpumask_t *groupmask;
  5623. int level = 0;
  5624. if (!sd) {
  5625. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5626. return;
  5627. }
  5628. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5629. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5630. if (!groupmask) {
  5631. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5632. return;
  5633. }
  5634. for (;;) {
  5635. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5636. break;
  5637. level++;
  5638. sd = sd->parent;
  5639. if (!sd)
  5640. break;
  5641. }
  5642. kfree(groupmask);
  5643. }
  5644. #else /* !CONFIG_SCHED_DEBUG */
  5645. # define sched_domain_debug(sd, cpu) do { } while (0)
  5646. #endif /* CONFIG_SCHED_DEBUG */
  5647. static int sd_degenerate(struct sched_domain *sd)
  5648. {
  5649. if (cpus_weight(sd->span) == 1)
  5650. return 1;
  5651. /* Following flags need at least 2 groups */
  5652. if (sd->flags & (SD_LOAD_BALANCE |
  5653. SD_BALANCE_NEWIDLE |
  5654. SD_BALANCE_FORK |
  5655. SD_BALANCE_EXEC |
  5656. SD_SHARE_CPUPOWER |
  5657. SD_SHARE_PKG_RESOURCES)) {
  5658. if (sd->groups != sd->groups->next)
  5659. return 0;
  5660. }
  5661. /* Following flags don't use groups */
  5662. if (sd->flags & (SD_WAKE_IDLE |
  5663. SD_WAKE_AFFINE |
  5664. SD_WAKE_BALANCE))
  5665. return 0;
  5666. return 1;
  5667. }
  5668. static int
  5669. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5670. {
  5671. unsigned long cflags = sd->flags, pflags = parent->flags;
  5672. if (sd_degenerate(parent))
  5673. return 1;
  5674. if (!cpus_equal(sd->span, parent->span))
  5675. return 0;
  5676. /* Does parent contain flags not in child? */
  5677. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5678. if (cflags & SD_WAKE_AFFINE)
  5679. pflags &= ~SD_WAKE_BALANCE;
  5680. /* Flags needing groups don't count if only 1 group in parent */
  5681. if (parent->groups == parent->groups->next) {
  5682. pflags &= ~(SD_LOAD_BALANCE |
  5683. SD_BALANCE_NEWIDLE |
  5684. SD_BALANCE_FORK |
  5685. SD_BALANCE_EXEC |
  5686. SD_SHARE_CPUPOWER |
  5687. SD_SHARE_PKG_RESOURCES);
  5688. }
  5689. if (~cflags & pflags)
  5690. return 0;
  5691. return 1;
  5692. }
  5693. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5694. {
  5695. unsigned long flags;
  5696. spin_lock_irqsave(&rq->lock, flags);
  5697. if (rq->rd) {
  5698. struct root_domain *old_rd = rq->rd;
  5699. if (cpu_isset(rq->cpu, old_rd->online))
  5700. set_rq_offline(rq);
  5701. cpu_clear(rq->cpu, old_rd->span);
  5702. if (atomic_dec_and_test(&old_rd->refcount))
  5703. kfree(old_rd);
  5704. }
  5705. atomic_inc(&rd->refcount);
  5706. rq->rd = rd;
  5707. cpu_set(rq->cpu, rd->span);
  5708. if (cpu_isset(rq->cpu, cpu_online_map))
  5709. set_rq_online(rq);
  5710. spin_unlock_irqrestore(&rq->lock, flags);
  5711. }
  5712. static void init_rootdomain(struct root_domain *rd)
  5713. {
  5714. memset(rd, 0, sizeof(*rd));
  5715. cpus_clear(rd->span);
  5716. cpus_clear(rd->online);
  5717. cpupri_init(&rd->cpupri);
  5718. }
  5719. static void init_defrootdomain(void)
  5720. {
  5721. init_rootdomain(&def_root_domain);
  5722. atomic_set(&def_root_domain.refcount, 1);
  5723. }
  5724. static struct root_domain *alloc_rootdomain(void)
  5725. {
  5726. struct root_domain *rd;
  5727. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5728. if (!rd)
  5729. return NULL;
  5730. init_rootdomain(rd);
  5731. return rd;
  5732. }
  5733. /*
  5734. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5735. * hold the hotplug lock.
  5736. */
  5737. static void
  5738. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5739. {
  5740. struct rq *rq = cpu_rq(cpu);
  5741. struct sched_domain *tmp;
  5742. /* Remove the sched domains which do not contribute to scheduling. */
  5743. for (tmp = sd; tmp; tmp = tmp->parent) {
  5744. struct sched_domain *parent = tmp->parent;
  5745. if (!parent)
  5746. break;
  5747. if (sd_parent_degenerate(tmp, parent)) {
  5748. tmp->parent = parent->parent;
  5749. if (parent->parent)
  5750. parent->parent->child = tmp;
  5751. }
  5752. }
  5753. if (sd && sd_degenerate(sd)) {
  5754. sd = sd->parent;
  5755. if (sd)
  5756. sd->child = NULL;
  5757. }
  5758. sched_domain_debug(sd, cpu);
  5759. rq_attach_root(rq, rd);
  5760. rcu_assign_pointer(rq->sd, sd);
  5761. }
  5762. /* cpus with isolated domains */
  5763. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5764. /* Setup the mask of cpus configured for isolated domains */
  5765. static int __init isolated_cpu_setup(char *str)
  5766. {
  5767. int ints[NR_CPUS], i;
  5768. str = get_options(str, ARRAY_SIZE(ints), ints);
  5769. cpus_clear(cpu_isolated_map);
  5770. for (i = 1; i <= ints[0]; i++)
  5771. if (ints[i] < NR_CPUS)
  5772. cpu_set(ints[i], cpu_isolated_map);
  5773. return 1;
  5774. }
  5775. __setup("isolcpus=", isolated_cpu_setup);
  5776. /*
  5777. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5778. * to a function which identifies what group(along with sched group) a CPU
  5779. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5780. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5781. *
  5782. * init_sched_build_groups will build a circular linked list of the groups
  5783. * covered by the given span, and will set each group's ->cpumask correctly,
  5784. * and ->cpu_power to 0.
  5785. */
  5786. static void
  5787. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5788. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5789. struct sched_group **sg,
  5790. cpumask_t *tmpmask),
  5791. cpumask_t *covered, cpumask_t *tmpmask)
  5792. {
  5793. struct sched_group *first = NULL, *last = NULL;
  5794. int i;
  5795. cpus_clear(*covered);
  5796. for_each_cpu_mask(i, *span) {
  5797. struct sched_group *sg;
  5798. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5799. int j;
  5800. if (cpu_isset(i, *covered))
  5801. continue;
  5802. cpus_clear(sg->cpumask);
  5803. sg->__cpu_power = 0;
  5804. for_each_cpu_mask(j, *span) {
  5805. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5806. continue;
  5807. cpu_set(j, *covered);
  5808. cpu_set(j, sg->cpumask);
  5809. }
  5810. if (!first)
  5811. first = sg;
  5812. if (last)
  5813. last->next = sg;
  5814. last = sg;
  5815. }
  5816. last->next = first;
  5817. }
  5818. #define SD_NODES_PER_DOMAIN 16
  5819. #ifdef CONFIG_NUMA
  5820. /**
  5821. * find_next_best_node - find the next node to include in a sched_domain
  5822. * @node: node whose sched_domain we're building
  5823. * @used_nodes: nodes already in the sched_domain
  5824. *
  5825. * Find the next node to include in a given scheduling domain. Simply
  5826. * finds the closest node not already in the @used_nodes map.
  5827. *
  5828. * Should use nodemask_t.
  5829. */
  5830. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5831. {
  5832. int i, n, val, min_val, best_node = 0;
  5833. min_val = INT_MAX;
  5834. for (i = 0; i < MAX_NUMNODES; i++) {
  5835. /* Start at @node */
  5836. n = (node + i) % MAX_NUMNODES;
  5837. if (!nr_cpus_node(n))
  5838. continue;
  5839. /* Skip already used nodes */
  5840. if (node_isset(n, *used_nodes))
  5841. continue;
  5842. /* Simple min distance search */
  5843. val = node_distance(node, n);
  5844. if (val < min_val) {
  5845. min_val = val;
  5846. best_node = n;
  5847. }
  5848. }
  5849. node_set(best_node, *used_nodes);
  5850. return best_node;
  5851. }
  5852. /**
  5853. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5854. * @node: node whose cpumask we're constructing
  5855. * @span: resulting cpumask
  5856. *
  5857. * Given a node, construct a good cpumask for its sched_domain to span. It
  5858. * should be one that prevents unnecessary balancing, but also spreads tasks
  5859. * out optimally.
  5860. */
  5861. static void sched_domain_node_span(int node, cpumask_t *span)
  5862. {
  5863. nodemask_t used_nodes;
  5864. node_to_cpumask_ptr(nodemask, node);
  5865. int i;
  5866. cpus_clear(*span);
  5867. nodes_clear(used_nodes);
  5868. cpus_or(*span, *span, *nodemask);
  5869. node_set(node, used_nodes);
  5870. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5871. int next_node = find_next_best_node(node, &used_nodes);
  5872. node_to_cpumask_ptr_next(nodemask, next_node);
  5873. cpus_or(*span, *span, *nodemask);
  5874. }
  5875. }
  5876. #endif /* CONFIG_NUMA */
  5877. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5878. /*
  5879. * SMT sched-domains:
  5880. */
  5881. #ifdef CONFIG_SCHED_SMT
  5882. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5883. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5884. static int
  5885. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5886. cpumask_t *unused)
  5887. {
  5888. if (sg)
  5889. *sg = &per_cpu(sched_group_cpus, cpu);
  5890. return cpu;
  5891. }
  5892. #endif /* CONFIG_SCHED_SMT */
  5893. /*
  5894. * multi-core sched-domains:
  5895. */
  5896. #ifdef CONFIG_SCHED_MC
  5897. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5898. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5899. #endif /* CONFIG_SCHED_MC */
  5900. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5901. static int
  5902. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5903. cpumask_t *mask)
  5904. {
  5905. int group;
  5906. *mask = per_cpu(cpu_sibling_map, cpu);
  5907. cpus_and(*mask, *mask, *cpu_map);
  5908. group = first_cpu(*mask);
  5909. if (sg)
  5910. *sg = &per_cpu(sched_group_core, group);
  5911. return group;
  5912. }
  5913. #elif defined(CONFIG_SCHED_MC)
  5914. static int
  5915. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5916. cpumask_t *unused)
  5917. {
  5918. if (sg)
  5919. *sg = &per_cpu(sched_group_core, cpu);
  5920. return cpu;
  5921. }
  5922. #endif
  5923. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5924. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5925. static int
  5926. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5927. cpumask_t *mask)
  5928. {
  5929. int group;
  5930. #ifdef CONFIG_SCHED_MC
  5931. *mask = cpu_coregroup_map(cpu);
  5932. cpus_and(*mask, *mask, *cpu_map);
  5933. group = first_cpu(*mask);
  5934. #elif defined(CONFIG_SCHED_SMT)
  5935. *mask = per_cpu(cpu_sibling_map, cpu);
  5936. cpus_and(*mask, *mask, *cpu_map);
  5937. group = first_cpu(*mask);
  5938. #else
  5939. group = cpu;
  5940. #endif
  5941. if (sg)
  5942. *sg = &per_cpu(sched_group_phys, group);
  5943. return group;
  5944. }
  5945. #ifdef CONFIG_NUMA
  5946. /*
  5947. * The init_sched_build_groups can't handle what we want to do with node
  5948. * groups, so roll our own. Now each node has its own list of groups which
  5949. * gets dynamically allocated.
  5950. */
  5951. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5952. static struct sched_group ***sched_group_nodes_bycpu;
  5953. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5954. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5955. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5956. struct sched_group **sg, cpumask_t *nodemask)
  5957. {
  5958. int group;
  5959. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5960. cpus_and(*nodemask, *nodemask, *cpu_map);
  5961. group = first_cpu(*nodemask);
  5962. if (sg)
  5963. *sg = &per_cpu(sched_group_allnodes, group);
  5964. return group;
  5965. }
  5966. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5967. {
  5968. struct sched_group *sg = group_head;
  5969. int j;
  5970. if (!sg)
  5971. return;
  5972. do {
  5973. for_each_cpu_mask(j, sg->cpumask) {
  5974. struct sched_domain *sd;
  5975. sd = &per_cpu(phys_domains, j);
  5976. if (j != first_cpu(sd->groups->cpumask)) {
  5977. /*
  5978. * Only add "power" once for each
  5979. * physical package.
  5980. */
  5981. continue;
  5982. }
  5983. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5984. }
  5985. sg = sg->next;
  5986. } while (sg != group_head);
  5987. }
  5988. #endif /* CONFIG_NUMA */
  5989. #ifdef CONFIG_NUMA
  5990. /* Free memory allocated for various sched_group structures */
  5991. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5992. {
  5993. int cpu, i;
  5994. for_each_cpu_mask(cpu, *cpu_map) {
  5995. struct sched_group **sched_group_nodes
  5996. = sched_group_nodes_bycpu[cpu];
  5997. if (!sched_group_nodes)
  5998. continue;
  5999. for (i = 0; i < MAX_NUMNODES; i++) {
  6000. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6001. *nodemask = node_to_cpumask(i);
  6002. cpus_and(*nodemask, *nodemask, *cpu_map);
  6003. if (cpus_empty(*nodemask))
  6004. continue;
  6005. if (sg == NULL)
  6006. continue;
  6007. sg = sg->next;
  6008. next_sg:
  6009. oldsg = sg;
  6010. sg = sg->next;
  6011. kfree(oldsg);
  6012. if (oldsg != sched_group_nodes[i])
  6013. goto next_sg;
  6014. }
  6015. kfree(sched_group_nodes);
  6016. sched_group_nodes_bycpu[cpu] = NULL;
  6017. }
  6018. }
  6019. #else /* !CONFIG_NUMA */
  6020. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6021. {
  6022. }
  6023. #endif /* CONFIG_NUMA */
  6024. /*
  6025. * Initialize sched groups cpu_power.
  6026. *
  6027. * cpu_power indicates the capacity of sched group, which is used while
  6028. * distributing the load between different sched groups in a sched domain.
  6029. * Typically cpu_power for all the groups in a sched domain will be same unless
  6030. * there are asymmetries in the topology. If there are asymmetries, group
  6031. * having more cpu_power will pickup more load compared to the group having
  6032. * less cpu_power.
  6033. *
  6034. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6035. * the maximum number of tasks a group can handle in the presence of other idle
  6036. * or lightly loaded groups in the same sched domain.
  6037. */
  6038. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6039. {
  6040. struct sched_domain *child;
  6041. struct sched_group *group;
  6042. WARN_ON(!sd || !sd->groups);
  6043. if (cpu != first_cpu(sd->groups->cpumask))
  6044. return;
  6045. child = sd->child;
  6046. sd->groups->__cpu_power = 0;
  6047. /*
  6048. * For perf policy, if the groups in child domain share resources
  6049. * (for example cores sharing some portions of the cache hierarchy
  6050. * or SMT), then set this domain groups cpu_power such that each group
  6051. * can handle only one task, when there are other idle groups in the
  6052. * same sched domain.
  6053. */
  6054. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6055. (child->flags &
  6056. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6057. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6058. return;
  6059. }
  6060. /*
  6061. * add cpu_power of each child group to this groups cpu_power
  6062. */
  6063. group = child->groups;
  6064. do {
  6065. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6066. group = group->next;
  6067. } while (group != child->groups);
  6068. }
  6069. /*
  6070. * Initializers for schedule domains
  6071. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6072. */
  6073. #define SD_INIT(sd, type) sd_init_##type(sd)
  6074. #define SD_INIT_FUNC(type) \
  6075. static noinline void sd_init_##type(struct sched_domain *sd) \
  6076. { \
  6077. memset(sd, 0, sizeof(*sd)); \
  6078. *sd = SD_##type##_INIT; \
  6079. sd->level = SD_LV_##type; \
  6080. }
  6081. SD_INIT_FUNC(CPU)
  6082. #ifdef CONFIG_NUMA
  6083. SD_INIT_FUNC(ALLNODES)
  6084. SD_INIT_FUNC(NODE)
  6085. #endif
  6086. #ifdef CONFIG_SCHED_SMT
  6087. SD_INIT_FUNC(SIBLING)
  6088. #endif
  6089. #ifdef CONFIG_SCHED_MC
  6090. SD_INIT_FUNC(MC)
  6091. #endif
  6092. /*
  6093. * To minimize stack usage kmalloc room for cpumasks and share the
  6094. * space as the usage in build_sched_domains() dictates. Used only
  6095. * if the amount of space is significant.
  6096. */
  6097. struct allmasks {
  6098. cpumask_t tmpmask; /* make this one first */
  6099. union {
  6100. cpumask_t nodemask;
  6101. cpumask_t this_sibling_map;
  6102. cpumask_t this_core_map;
  6103. };
  6104. cpumask_t send_covered;
  6105. #ifdef CONFIG_NUMA
  6106. cpumask_t domainspan;
  6107. cpumask_t covered;
  6108. cpumask_t notcovered;
  6109. #endif
  6110. };
  6111. #if NR_CPUS > 128
  6112. #define SCHED_CPUMASK_ALLOC 1
  6113. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6114. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6115. #else
  6116. #define SCHED_CPUMASK_ALLOC 0
  6117. #define SCHED_CPUMASK_FREE(v)
  6118. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6119. #endif
  6120. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6121. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6122. static int default_relax_domain_level = -1;
  6123. static int __init setup_relax_domain_level(char *str)
  6124. {
  6125. unsigned long val;
  6126. val = simple_strtoul(str, NULL, 0);
  6127. if (val < SD_LV_MAX)
  6128. default_relax_domain_level = val;
  6129. return 1;
  6130. }
  6131. __setup("relax_domain_level=", setup_relax_domain_level);
  6132. static void set_domain_attribute(struct sched_domain *sd,
  6133. struct sched_domain_attr *attr)
  6134. {
  6135. int request;
  6136. if (!attr || attr->relax_domain_level < 0) {
  6137. if (default_relax_domain_level < 0)
  6138. return;
  6139. else
  6140. request = default_relax_domain_level;
  6141. } else
  6142. request = attr->relax_domain_level;
  6143. if (request < sd->level) {
  6144. /* turn off idle balance on this domain */
  6145. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6146. } else {
  6147. /* turn on idle balance on this domain */
  6148. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6149. }
  6150. }
  6151. /*
  6152. * Build sched domains for a given set of cpus and attach the sched domains
  6153. * to the individual cpus
  6154. */
  6155. static int __build_sched_domains(const cpumask_t *cpu_map,
  6156. struct sched_domain_attr *attr)
  6157. {
  6158. int i;
  6159. struct root_domain *rd;
  6160. SCHED_CPUMASK_DECLARE(allmasks);
  6161. cpumask_t *tmpmask;
  6162. #ifdef CONFIG_NUMA
  6163. struct sched_group **sched_group_nodes = NULL;
  6164. int sd_allnodes = 0;
  6165. /*
  6166. * Allocate the per-node list of sched groups
  6167. */
  6168. sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
  6169. GFP_KERNEL);
  6170. if (!sched_group_nodes) {
  6171. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6172. return -ENOMEM;
  6173. }
  6174. #endif
  6175. rd = alloc_rootdomain();
  6176. if (!rd) {
  6177. printk(KERN_WARNING "Cannot alloc root domain\n");
  6178. #ifdef CONFIG_NUMA
  6179. kfree(sched_group_nodes);
  6180. #endif
  6181. return -ENOMEM;
  6182. }
  6183. #if SCHED_CPUMASK_ALLOC
  6184. /* get space for all scratch cpumask variables */
  6185. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6186. if (!allmasks) {
  6187. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6188. kfree(rd);
  6189. #ifdef CONFIG_NUMA
  6190. kfree(sched_group_nodes);
  6191. #endif
  6192. return -ENOMEM;
  6193. }
  6194. #endif
  6195. tmpmask = (cpumask_t *)allmasks;
  6196. #ifdef CONFIG_NUMA
  6197. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6198. #endif
  6199. /*
  6200. * Set up domains for cpus specified by the cpu_map.
  6201. */
  6202. for_each_cpu_mask(i, *cpu_map) {
  6203. struct sched_domain *sd = NULL, *p;
  6204. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6205. *nodemask = node_to_cpumask(cpu_to_node(i));
  6206. cpus_and(*nodemask, *nodemask, *cpu_map);
  6207. #ifdef CONFIG_NUMA
  6208. if (cpus_weight(*cpu_map) >
  6209. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6210. sd = &per_cpu(allnodes_domains, i);
  6211. SD_INIT(sd, ALLNODES);
  6212. set_domain_attribute(sd, attr);
  6213. sd->span = *cpu_map;
  6214. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6215. p = sd;
  6216. sd_allnodes = 1;
  6217. } else
  6218. p = NULL;
  6219. sd = &per_cpu(node_domains, i);
  6220. SD_INIT(sd, NODE);
  6221. set_domain_attribute(sd, attr);
  6222. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6223. sd->parent = p;
  6224. if (p)
  6225. p->child = sd;
  6226. cpus_and(sd->span, sd->span, *cpu_map);
  6227. #endif
  6228. p = sd;
  6229. sd = &per_cpu(phys_domains, i);
  6230. SD_INIT(sd, CPU);
  6231. set_domain_attribute(sd, attr);
  6232. sd->span = *nodemask;
  6233. sd->parent = p;
  6234. if (p)
  6235. p->child = sd;
  6236. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6237. #ifdef CONFIG_SCHED_MC
  6238. p = sd;
  6239. sd = &per_cpu(core_domains, i);
  6240. SD_INIT(sd, MC);
  6241. set_domain_attribute(sd, attr);
  6242. sd->span = cpu_coregroup_map(i);
  6243. cpus_and(sd->span, sd->span, *cpu_map);
  6244. sd->parent = p;
  6245. p->child = sd;
  6246. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6247. #endif
  6248. #ifdef CONFIG_SCHED_SMT
  6249. p = sd;
  6250. sd = &per_cpu(cpu_domains, i);
  6251. SD_INIT(sd, SIBLING);
  6252. set_domain_attribute(sd, attr);
  6253. sd->span = per_cpu(cpu_sibling_map, i);
  6254. cpus_and(sd->span, sd->span, *cpu_map);
  6255. sd->parent = p;
  6256. p->child = sd;
  6257. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6258. #endif
  6259. }
  6260. #ifdef CONFIG_SCHED_SMT
  6261. /* Set up CPU (sibling) groups */
  6262. for_each_cpu_mask(i, *cpu_map) {
  6263. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6264. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6265. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6266. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6267. if (i != first_cpu(*this_sibling_map))
  6268. continue;
  6269. init_sched_build_groups(this_sibling_map, cpu_map,
  6270. &cpu_to_cpu_group,
  6271. send_covered, tmpmask);
  6272. }
  6273. #endif
  6274. #ifdef CONFIG_SCHED_MC
  6275. /* Set up multi-core groups */
  6276. for_each_cpu_mask(i, *cpu_map) {
  6277. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6278. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6279. *this_core_map = cpu_coregroup_map(i);
  6280. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6281. if (i != first_cpu(*this_core_map))
  6282. continue;
  6283. init_sched_build_groups(this_core_map, cpu_map,
  6284. &cpu_to_core_group,
  6285. send_covered, tmpmask);
  6286. }
  6287. #endif
  6288. /* Set up physical groups */
  6289. for (i = 0; i < MAX_NUMNODES; i++) {
  6290. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6291. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6292. *nodemask = node_to_cpumask(i);
  6293. cpus_and(*nodemask, *nodemask, *cpu_map);
  6294. if (cpus_empty(*nodemask))
  6295. continue;
  6296. init_sched_build_groups(nodemask, cpu_map,
  6297. &cpu_to_phys_group,
  6298. send_covered, tmpmask);
  6299. }
  6300. #ifdef CONFIG_NUMA
  6301. /* Set up node groups */
  6302. if (sd_allnodes) {
  6303. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6304. init_sched_build_groups(cpu_map, cpu_map,
  6305. &cpu_to_allnodes_group,
  6306. send_covered, tmpmask);
  6307. }
  6308. for (i = 0; i < MAX_NUMNODES; i++) {
  6309. /* Set up node groups */
  6310. struct sched_group *sg, *prev;
  6311. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6312. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6313. SCHED_CPUMASK_VAR(covered, allmasks);
  6314. int j;
  6315. *nodemask = node_to_cpumask(i);
  6316. cpus_clear(*covered);
  6317. cpus_and(*nodemask, *nodemask, *cpu_map);
  6318. if (cpus_empty(*nodemask)) {
  6319. sched_group_nodes[i] = NULL;
  6320. continue;
  6321. }
  6322. sched_domain_node_span(i, domainspan);
  6323. cpus_and(*domainspan, *domainspan, *cpu_map);
  6324. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6325. if (!sg) {
  6326. printk(KERN_WARNING "Can not alloc domain group for "
  6327. "node %d\n", i);
  6328. goto error;
  6329. }
  6330. sched_group_nodes[i] = sg;
  6331. for_each_cpu_mask(j, *nodemask) {
  6332. struct sched_domain *sd;
  6333. sd = &per_cpu(node_domains, j);
  6334. sd->groups = sg;
  6335. }
  6336. sg->__cpu_power = 0;
  6337. sg->cpumask = *nodemask;
  6338. sg->next = sg;
  6339. cpus_or(*covered, *covered, *nodemask);
  6340. prev = sg;
  6341. for (j = 0; j < MAX_NUMNODES; j++) {
  6342. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6343. int n = (i + j) % MAX_NUMNODES;
  6344. node_to_cpumask_ptr(pnodemask, n);
  6345. cpus_complement(*notcovered, *covered);
  6346. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6347. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6348. if (cpus_empty(*tmpmask))
  6349. break;
  6350. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6351. if (cpus_empty(*tmpmask))
  6352. continue;
  6353. sg = kmalloc_node(sizeof(struct sched_group),
  6354. GFP_KERNEL, i);
  6355. if (!sg) {
  6356. printk(KERN_WARNING
  6357. "Can not alloc domain group for node %d\n", j);
  6358. goto error;
  6359. }
  6360. sg->__cpu_power = 0;
  6361. sg->cpumask = *tmpmask;
  6362. sg->next = prev->next;
  6363. cpus_or(*covered, *covered, *tmpmask);
  6364. prev->next = sg;
  6365. prev = sg;
  6366. }
  6367. }
  6368. #endif
  6369. /* Calculate CPU power for physical packages and nodes */
  6370. #ifdef CONFIG_SCHED_SMT
  6371. for_each_cpu_mask(i, *cpu_map) {
  6372. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6373. init_sched_groups_power(i, sd);
  6374. }
  6375. #endif
  6376. #ifdef CONFIG_SCHED_MC
  6377. for_each_cpu_mask(i, *cpu_map) {
  6378. struct sched_domain *sd = &per_cpu(core_domains, i);
  6379. init_sched_groups_power(i, sd);
  6380. }
  6381. #endif
  6382. for_each_cpu_mask(i, *cpu_map) {
  6383. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6384. init_sched_groups_power(i, sd);
  6385. }
  6386. #ifdef CONFIG_NUMA
  6387. for (i = 0; i < MAX_NUMNODES; i++)
  6388. init_numa_sched_groups_power(sched_group_nodes[i]);
  6389. if (sd_allnodes) {
  6390. struct sched_group *sg;
  6391. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6392. tmpmask);
  6393. init_numa_sched_groups_power(sg);
  6394. }
  6395. #endif
  6396. /* Attach the domains */
  6397. for_each_cpu_mask(i, *cpu_map) {
  6398. struct sched_domain *sd;
  6399. #ifdef CONFIG_SCHED_SMT
  6400. sd = &per_cpu(cpu_domains, i);
  6401. #elif defined(CONFIG_SCHED_MC)
  6402. sd = &per_cpu(core_domains, i);
  6403. #else
  6404. sd = &per_cpu(phys_domains, i);
  6405. #endif
  6406. cpu_attach_domain(sd, rd, i);
  6407. }
  6408. SCHED_CPUMASK_FREE((void *)allmasks);
  6409. return 0;
  6410. #ifdef CONFIG_NUMA
  6411. error:
  6412. free_sched_groups(cpu_map, tmpmask);
  6413. SCHED_CPUMASK_FREE((void *)allmasks);
  6414. return -ENOMEM;
  6415. #endif
  6416. }
  6417. static int build_sched_domains(const cpumask_t *cpu_map)
  6418. {
  6419. return __build_sched_domains(cpu_map, NULL);
  6420. }
  6421. static cpumask_t *doms_cur; /* current sched domains */
  6422. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6423. static struct sched_domain_attr *dattr_cur;
  6424. /* attribues of custom domains in 'doms_cur' */
  6425. /*
  6426. * Special case: If a kmalloc of a doms_cur partition (array of
  6427. * cpumask_t) fails, then fallback to a single sched domain,
  6428. * as determined by the single cpumask_t fallback_doms.
  6429. */
  6430. static cpumask_t fallback_doms;
  6431. void __attribute__((weak)) arch_update_cpu_topology(void)
  6432. {
  6433. }
  6434. /*
  6435. * Free current domain masks.
  6436. * Called after all cpus are attached to NULL domain.
  6437. */
  6438. static void free_sched_domains(void)
  6439. {
  6440. ndoms_cur = 0;
  6441. if (doms_cur != &fallback_doms)
  6442. kfree(doms_cur);
  6443. doms_cur = &fallback_doms;
  6444. }
  6445. /*
  6446. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6447. * For now this just excludes isolated cpus, but could be used to
  6448. * exclude other special cases in the future.
  6449. */
  6450. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6451. {
  6452. int err;
  6453. arch_update_cpu_topology();
  6454. ndoms_cur = 1;
  6455. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6456. if (!doms_cur)
  6457. doms_cur = &fallback_doms;
  6458. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6459. dattr_cur = NULL;
  6460. err = build_sched_domains(doms_cur);
  6461. register_sched_domain_sysctl();
  6462. return err;
  6463. }
  6464. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6465. cpumask_t *tmpmask)
  6466. {
  6467. free_sched_groups(cpu_map, tmpmask);
  6468. }
  6469. /*
  6470. * Detach sched domains from a group of cpus specified in cpu_map
  6471. * These cpus will now be attached to the NULL domain
  6472. */
  6473. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6474. {
  6475. cpumask_t tmpmask;
  6476. int i;
  6477. unregister_sched_domain_sysctl();
  6478. for_each_cpu_mask(i, *cpu_map)
  6479. cpu_attach_domain(NULL, &def_root_domain, i);
  6480. synchronize_sched();
  6481. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6482. }
  6483. /* handle null as "default" */
  6484. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6485. struct sched_domain_attr *new, int idx_new)
  6486. {
  6487. struct sched_domain_attr tmp;
  6488. /* fast path */
  6489. if (!new && !cur)
  6490. return 1;
  6491. tmp = SD_ATTR_INIT;
  6492. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6493. new ? (new + idx_new) : &tmp,
  6494. sizeof(struct sched_domain_attr));
  6495. }
  6496. /*
  6497. * Partition sched domains as specified by the 'ndoms_new'
  6498. * cpumasks in the array doms_new[] of cpumasks. This compares
  6499. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6500. * It destroys each deleted domain and builds each new domain.
  6501. *
  6502. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6503. * The masks don't intersect (don't overlap.) We should setup one
  6504. * sched domain for each mask. CPUs not in any of the cpumasks will
  6505. * not be load balanced. If the same cpumask appears both in the
  6506. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6507. * it as it is.
  6508. *
  6509. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6510. * ownership of it and will kfree it when done with it. If the caller
  6511. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6512. * and partition_sched_domains() will fallback to the single partition
  6513. * 'fallback_doms'.
  6514. *
  6515. * Call with hotplug lock held
  6516. */
  6517. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6518. struct sched_domain_attr *dattr_new)
  6519. {
  6520. int i, j;
  6521. mutex_lock(&sched_domains_mutex);
  6522. /* always unregister in case we don't destroy any domains */
  6523. unregister_sched_domain_sysctl();
  6524. if (doms_new == NULL) {
  6525. ndoms_new = 1;
  6526. doms_new = &fallback_doms;
  6527. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6528. dattr_new = NULL;
  6529. }
  6530. /* Destroy deleted domains */
  6531. for (i = 0; i < ndoms_cur; i++) {
  6532. for (j = 0; j < ndoms_new; j++) {
  6533. if (cpus_equal(doms_cur[i], doms_new[j])
  6534. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6535. goto match1;
  6536. }
  6537. /* no match - a current sched domain not in new doms_new[] */
  6538. detach_destroy_domains(doms_cur + i);
  6539. match1:
  6540. ;
  6541. }
  6542. /* Build new domains */
  6543. for (i = 0; i < ndoms_new; i++) {
  6544. for (j = 0; j < ndoms_cur; j++) {
  6545. if (cpus_equal(doms_new[i], doms_cur[j])
  6546. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6547. goto match2;
  6548. }
  6549. /* no match - add a new doms_new */
  6550. __build_sched_domains(doms_new + i,
  6551. dattr_new ? dattr_new + i : NULL);
  6552. match2:
  6553. ;
  6554. }
  6555. /* Remember the new sched domains */
  6556. if (doms_cur != &fallback_doms)
  6557. kfree(doms_cur);
  6558. kfree(dattr_cur); /* kfree(NULL) is safe */
  6559. doms_cur = doms_new;
  6560. dattr_cur = dattr_new;
  6561. ndoms_cur = ndoms_new;
  6562. register_sched_domain_sysctl();
  6563. mutex_unlock(&sched_domains_mutex);
  6564. }
  6565. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6566. int arch_reinit_sched_domains(void)
  6567. {
  6568. int err;
  6569. get_online_cpus();
  6570. mutex_lock(&sched_domains_mutex);
  6571. detach_destroy_domains(&cpu_online_map);
  6572. free_sched_domains();
  6573. err = arch_init_sched_domains(&cpu_online_map);
  6574. mutex_unlock(&sched_domains_mutex);
  6575. put_online_cpus();
  6576. return err;
  6577. }
  6578. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6579. {
  6580. int ret;
  6581. if (buf[0] != '0' && buf[0] != '1')
  6582. return -EINVAL;
  6583. if (smt)
  6584. sched_smt_power_savings = (buf[0] == '1');
  6585. else
  6586. sched_mc_power_savings = (buf[0] == '1');
  6587. ret = arch_reinit_sched_domains();
  6588. return ret ? ret : count;
  6589. }
  6590. #ifdef CONFIG_SCHED_MC
  6591. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  6592. {
  6593. return sprintf(page, "%u\n", sched_mc_power_savings);
  6594. }
  6595. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6596. const char *buf, size_t count)
  6597. {
  6598. return sched_power_savings_store(buf, count, 0);
  6599. }
  6600. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6601. sched_mc_power_savings_store);
  6602. #endif
  6603. #ifdef CONFIG_SCHED_SMT
  6604. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  6605. {
  6606. return sprintf(page, "%u\n", sched_smt_power_savings);
  6607. }
  6608. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6609. const char *buf, size_t count)
  6610. {
  6611. return sched_power_savings_store(buf, count, 1);
  6612. }
  6613. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6614. sched_smt_power_savings_store);
  6615. #endif
  6616. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6617. {
  6618. int err = 0;
  6619. #ifdef CONFIG_SCHED_SMT
  6620. if (smt_capable())
  6621. err = sysfs_create_file(&cls->kset.kobj,
  6622. &attr_sched_smt_power_savings.attr);
  6623. #endif
  6624. #ifdef CONFIG_SCHED_MC
  6625. if (!err && mc_capable())
  6626. err = sysfs_create_file(&cls->kset.kobj,
  6627. &attr_sched_mc_power_savings.attr);
  6628. #endif
  6629. return err;
  6630. }
  6631. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6632. /*
  6633. * Force a reinitialization of the sched domains hierarchy. The domains
  6634. * and groups cannot be updated in place without racing with the balancing
  6635. * code, so we temporarily attach all running cpus to the NULL domain
  6636. * which will prevent rebalancing while the sched domains are recalculated.
  6637. */
  6638. static int update_sched_domains(struct notifier_block *nfb,
  6639. unsigned long action, void *hcpu)
  6640. {
  6641. int cpu = (int)(long)hcpu;
  6642. switch (action) {
  6643. case CPU_DOWN_PREPARE:
  6644. case CPU_DOWN_PREPARE_FROZEN:
  6645. disable_runtime(cpu_rq(cpu));
  6646. /* fall-through */
  6647. case CPU_UP_PREPARE:
  6648. case CPU_UP_PREPARE_FROZEN:
  6649. detach_destroy_domains(&cpu_online_map);
  6650. free_sched_domains();
  6651. return NOTIFY_OK;
  6652. case CPU_DOWN_FAILED:
  6653. case CPU_DOWN_FAILED_FROZEN:
  6654. case CPU_ONLINE:
  6655. case CPU_ONLINE_FROZEN:
  6656. enable_runtime(cpu_rq(cpu));
  6657. /* fall-through */
  6658. case CPU_UP_CANCELED:
  6659. case CPU_UP_CANCELED_FROZEN:
  6660. case CPU_DEAD:
  6661. case CPU_DEAD_FROZEN:
  6662. /*
  6663. * Fall through and re-initialise the domains.
  6664. */
  6665. break;
  6666. default:
  6667. return NOTIFY_DONE;
  6668. }
  6669. #ifndef CONFIG_CPUSETS
  6670. /*
  6671. * Create default domain partitioning if cpusets are disabled.
  6672. * Otherwise we let cpusets rebuild the domains based on the
  6673. * current setup.
  6674. */
  6675. /* The hotplug lock is already held by cpu_up/cpu_down */
  6676. arch_init_sched_domains(&cpu_online_map);
  6677. #endif
  6678. return NOTIFY_OK;
  6679. }
  6680. void __init sched_init_smp(void)
  6681. {
  6682. cpumask_t non_isolated_cpus;
  6683. #if defined(CONFIG_NUMA)
  6684. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6685. GFP_KERNEL);
  6686. BUG_ON(sched_group_nodes_bycpu == NULL);
  6687. #endif
  6688. get_online_cpus();
  6689. mutex_lock(&sched_domains_mutex);
  6690. arch_init_sched_domains(&cpu_online_map);
  6691. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6692. if (cpus_empty(non_isolated_cpus))
  6693. cpu_set(smp_processor_id(), non_isolated_cpus);
  6694. mutex_unlock(&sched_domains_mutex);
  6695. put_online_cpus();
  6696. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6697. hotcpu_notifier(update_sched_domains, 0);
  6698. init_hrtick();
  6699. /* Move init over to a non-isolated CPU */
  6700. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6701. BUG();
  6702. sched_init_granularity();
  6703. }
  6704. #else
  6705. void __init sched_init_smp(void)
  6706. {
  6707. sched_init_granularity();
  6708. }
  6709. #endif /* CONFIG_SMP */
  6710. int in_sched_functions(unsigned long addr)
  6711. {
  6712. return in_lock_functions(addr) ||
  6713. (addr >= (unsigned long)__sched_text_start
  6714. && addr < (unsigned long)__sched_text_end);
  6715. }
  6716. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6717. {
  6718. cfs_rq->tasks_timeline = RB_ROOT;
  6719. INIT_LIST_HEAD(&cfs_rq->tasks);
  6720. #ifdef CONFIG_FAIR_GROUP_SCHED
  6721. cfs_rq->rq = rq;
  6722. #endif
  6723. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6724. }
  6725. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6726. {
  6727. struct rt_prio_array *array;
  6728. int i;
  6729. array = &rt_rq->active;
  6730. for (i = 0; i < MAX_RT_PRIO; i++) {
  6731. INIT_LIST_HEAD(array->queue + i);
  6732. __clear_bit(i, array->bitmap);
  6733. }
  6734. /* delimiter for bitsearch: */
  6735. __set_bit(MAX_RT_PRIO, array->bitmap);
  6736. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6737. rt_rq->highest_prio = MAX_RT_PRIO;
  6738. #endif
  6739. #ifdef CONFIG_SMP
  6740. rt_rq->rt_nr_migratory = 0;
  6741. rt_rq->overloaded = 0;
  6742. #endif
  6743. rt_rq->rt_time = 0;
  6744. rt_rq->rt_throttled = 0;
  6745. rt_rq->rt_runtime = 0;
  6746. spin_lock_init(&rt_rq->rt_runtime_lock);
  6747. #ifdef CONFIG_RT_GROUP_SCHED
  6748. rt_rq->rt_nr_boosted = 0;
  6749. rt_rq->rq = rq;
  6750. #endif
  6751. }
  6752. #ifdef CONFIG_FAIR_GROUP_SCHED
  6753. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6754. struct sched_entity *se, int cpu, int add,
  6755. struct sched_entity *parent)
  6756. {
  6757. struct rq *rq = cpu_rq(cpu);
  6758. tg->cfs_rq[cpu] = cfs_rq;
  6759. init_cfs_rq(cfs_rq, rq);
  6760. cfs_rq->tg = tg;
  6761. if (add)
  6762. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6763. tg->se[cpu] = se;
  6764. /* se could be NULL for init_task_group */
  6765. if (!se)
  6766. return;
  6767. if (!parent)
  6768. se->cfs_rq = &rq->cfs;
  6769. else
  6770. se->cfs_rq = parent->my_q;
  6771. se->my_q = cfs_rq;
  6772. se->load.weight = tg->shares;
  6773. se->load.inv_weight = 0;
  6774. se->parent = parent;
  6775. }
  6776. #endif
  6777. #ifdef CONFIG_RT_GROUP_SCHED
  6778. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6779. struct sched_rt_entity *rt_se, int cpu, int add,
  6780. struct sched_rt_entity *parent)
  6781. {
  6782. struct rq *rq = cpu_rq(cpu);
  6783. tg->rt_rq[cpu] = rt_rq;
  6784. init_rt_rq(rt_rq, rq);
  6785. rt_rq->tg = tg;
  6786. rt_rq->rt_se = rt_se;
  6787. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6788. if (add)
  6789. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6790. tg->rt_se[cpu] = rt_se;
  6791. if (!rt_se)
  6792. return;
  6793. if (!parent)
  6794. rt_se->rt_rq = &rq->rt;
  6795. else
  6796. rt_se->rt_rq = parent->my_q;
  6797. rt_se->my_q = rt_rq;
  6798. rt_se->parent = parent;
  6799. INIT_LIST_HEAD(&rt_se->run_list);
  6800. }
  6801. #endif
  6802. void __init sched_init(void)
  6803. {
  6804. int i, j;
  6805. unsigned long alloc_size = 0, ptr;
  6806. #ifdef CONFIG_FAIR_GROUP_SCHED
  6807. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6808. #endif
  6809. #ifdef CONFIG_RT_GROUP_SCHED
  6810. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6811. #endif
  6812. #ifdef CONFIG_USER_SCHED
  6813. alloc_size *= 2;
  6814. #endif
  6815. /*
  6816. * As sched_init() is called before page_alloc is setup,
  6817. * we use alloc_bootmem().
  6818. */
  6819. if (alloc_size) {
  6820. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6821. #ifdef CONFIG_FAIR_GROUP_SCHED
  6822. init_task_group.se = (struct sched_entity **)ptr;
  6823. ptr += nr_cpu_ids * sizeof(void **);
  6824. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6825. ptr += nr_cpu_ids * sizeof(void **);
  6826. #ifdef CONFIG_USER_SCHED
  6827. root_task_group.se = (struct sched_entity **)ptr;
  6828. ptr += nr_cpu_ids * sizeof(void **);
  6829. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6830. ptr += nr_cpu_ids * sizeof(void **);
  6831. #endif /* CONFIG_USER_SCHED */
  6832. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6833. #ifdef CONFIG_RT_GROUP_SCHED
  6834. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6835. ptr += nr_cpu_ids * sizeof(void **);
  6836. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6837. ptr += nr_cpu_ids * sizeof(void **);
  6838. #ifdef CONFIG_USER_SCHED
  6839. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6840. ptr += nr_cpu_ids * sizeof(void **);
  6841. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6842. ptr += nr_cpu_ids * sizeof(void **);
  6843. #endif /* CONFIG_USER_SCHED */
  6844. #endif /* CONFIG_RT_GROUP_SCHED */
  6845. }
  6846. #ifdef CONFIG_SMP
  6847. init_aggregate();
  6848. init_defrootdomain();
  6849. #endif
  6850. init_rt_bandwidth(&def_rt_bandwidth,
  6851. global_rt_period(), global_rt_runtime());
  6852. #ifdef CONFIG_RT_GROUP_SCHED
  6853. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6854. global_rt_period(), global_rt_runtime());
  6855. #ifdef CONFIG_USER_SCHED
  6856. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6857. global_rt_period(), RUNTIME_INF);
  6858. #endif /* CONFIG_USER_SCHED */
  6859. #endif /* CONFIG_RT_GROUP_SCHED */
  6860. #ifdef CONFIG_GROUP_SCHED
  6861. list_add(&init_task_group.list, &task_groups);
  6862. INIT_LIST_HEAD(&init_task_group.children);
  6863. #ifdef CONFIG_USER_SCHED
  6864. INIT_LIST_HEAD(&root_task_group.children);
  6865. init_task_group.parent = &root_task_group;
  6866. list_add(&init_task_group.siblings, &root_task_group.children);
  6867. #endif /* CONFIG_USER_SCHED */
  6868. #endif /* CONFIG_GROUP_SCHED */
  6869. for_each_possible_cpu(i) {
  6870. struct rq *rq;
  6871. rq = cpu_rq(i);
  6872. spin_lock_init(&rq->lock);
  6873. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6874. rq->nr_running = 0;
  6875. init_cfs_rq(&rq->cfs, rq);
  6876. init_rt_rq(&rq->rt, rq);
  6877. #ifdef CONFIG_FAIR_GROUP_SCHED
  6878. init_task_group.shares = init_task_group_load;
  6879. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6880. #ifdef CONFIG_CGROUP_SCHED
  6881. /*
  6882. * How much cpu bandwidth does init_task_group get?
  6883. *
  6884. * In case of task-groups formed thr' the cgroup filesystem, it
  6885. * gets 100% of the cpu resources in the system. This overall
  6886. * system cpu resource is divided among the tasks of
  6887. * init_task_group and its child task-groups in a fair manner,
  6888. * based on each entity's (task or task-group's) weight
  6889. * (se->load.weight).
  6890. *
  6891. * In other words, if init_task_group has 10 tasks of weight
  6892. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6893. * then A0's share of the cpu resource is:
  6894. *
  6895. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6896. *
  6897. * We achieve this by letting init_task_group's tasks sit
  6898. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6899. */
  6900. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6901. #elif defined CONFIG_USER_SCHED
  6902. root_task_group.shares = NICE_0_LOAD;
  6903. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6904. /*
  6905. * In case of task-groups formed thr' the user id of tasks,
  6906. * init_task_group represents tasks belonging to root user.
  6907. * Hence it forms a sibling of all subsequent groups formed.
  6908. * In this case, init_task_group gets only a fraction of overall
  6909. * system cpu resource, based on the weight assigned to root
  6910. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6911. * by letting tasks of init_task_group sit in a separate cfs_rq
  6912. * (init_cfs_rq) and having one entity represent this group of
  6913. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6914. */
  6915. init_tg_cfs_entry(&init_task_group,
  6916. &per_cpu(init_cfs_rq, i),
  6917. &per_cpu(init_sched_entity, i), i, 1,
  6918. root_task_group.se[i]);
  6919. #endif
  6920. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6921. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6922. #ifdef CONFIG_RT_GROUP_SCHED
  6923. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6924. #ifdef CONFIG_CGROUP_SCHED
  6925. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6926. #elif defined CONFIG_USER_SCHED
  6927. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6928. init_tg_rt_entry(&init_task_group,
  6929. &per_cpu(init_rt_rq, i),
  6930. &per_cpu(init_sched_rt_entity, i), i, 1,
  6931. root_task_group.rt_se[i]);
  6932. #endif
  6933. #endif
  6934. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6935. rq->cpu_load[j] = 0;
  6936. #ifdef CONFIG_SMP
  6937. rq->sd = NULL;
  6938. rq->rd = NULL;
  6939. rq->active_balance = 0;
  6940. rq->next_balance = jiffies;
  6941. rq->push_cpu = 0;
  6942. rq->cpu = i;
  6943. rq->online = 0;
  6944. rq->migration_thread = NULL;
  6945. INIT_LIST_HEAD(&rq->migration_queue);
  6946. rq_attach_root(rq, &def_root_domain);
  6947. #endif
  6948. init_rq_hrtick(rq);
  6949. atomic_set(&rq->nr_iowait, 0);
  6950. }
  6951. set_load_weight(&init_task);
  6952. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6953. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6954. #endif
  6955. #ifdef CONFIG_SMP
  6956. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  6957. #endif
  6958. #ifdef CONFIG_RT_MUTEXES
  6959. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6960. #endif
  6961. /*
  6962. * The boot idle thread does lazy MMU switching as well:
  6963. */
  6964. atomic_inc(&init_mm.mm_count);
  6965. enter_lazy_tlb(&init_mm, current);
  6966. /*
  6967. * Make us the idle thread. Technically, schedule() should not be
  6968. * called from this thread, however somewhere below it might be,
  6969. * but because we are the idle thread, we just pick up running again
  6970. * when this runqueue becomes "idle".
  6971. */
  6972. init_idle(current, smp_processor_id());
  6973. /*
  6974. * During early bootup we pretend to be a normal task:
  6975. */
  6976. current->sched_class = &fair_sched_class;
  6977. scheduler_running = 1;
  6978. }
  6979. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6980. void __might_sleep(char *file, int line)
  6981. {
  6982. #ifdef in_atomic
  6983. static unsigned long prev_jiffy; /* ratelimiting */
  6984. if ((in_atomic() || irqs_disabled()) &&
  6985. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6986. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6987. return;
  6988. prev_jiffy = jiffies;
  6989. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6990. " context at %s:%d\n", file, line);
  6991. printk("in_atomic():%d, irqs_disabled():%d\n",
  6992. in_atomic(), irqs_disabled());
  6993. debug_show_held_locks(current);
  6994. if (irqs_disabled())
  6995. print_irqtrace_events(current);
  6996. dump_stack();
  6997. }
  6998. #endif
  6999. }
  7000. EXPORT_SYMBOL(__might_sleep);
  7001. #endif
  7002. #ifdef CONFIG_MAGIC_SYSRQ
  7003. static void normalize_task(struct rq *rq, struct task_struct *p)
  7004. {
  7005. int on_rq;
  7006. update_rq_clock(rq);
  7007. on_rq = p->se.on_rq;
  7008. if (on_rq)
  7009. deactivate_task(rq, p, 0);
  7010. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7011. if (on_rq) {
  7012. activate_task(rq, p, 0);
  7013. resched_task(rq->curr);
  7014. }
  7015. }
  7016. void normalize_rt_tasks(void)
  7017. {
  7018. struct task_struct *g, *p;
  7019. unsigned long flags;
  7020. struct rq *rq;
  7021. read_lock_irqsave(&tasklist_lock, flags);
  7022. do_each_thread(g, p) {
  7023. /*
  7024. * Only normalize user tasks:
  7025. */
  7026. if (!p->mm)
  7027. continue;
  7028. p->se.exec_start = 0;
  7029. #ifdef CONFIG_SCHEDSTATS
  7030. p->se.wait_start = 0;
  7031. p->se.sleep_start = 0;
  7032. p->se.block_start = 0;
  7033. #endif
  7034. if (!rt_task(p)) {
  7035. /*
  7036. * Renice negative nice level userspace
  7037. * tasks back to 0:
  7038. */
  7039. if (TASK_NICE(p) < 0 && p->mm)
  7040. set_user_nice(p, 0);
  7041. continue;
  7042. }
  7043. spin_lock(&p->pi_lock);
  7044. rq = __task_rq_lock(p);
  7045. normalize_task(rq, p);
  7046. __task_rq_unlock(rq);
  7047. spin_unlock(&p->pi_lock);
  7048. } while_each_thread(g, p);
  7049. read_unlock_irqrestore(&tasklist_lock, flags);
  7050. }
  7051. #endif /* CONFIG_MAGIC_SYSRQ */
  7052. #ifdef CONFIG_IA64
  7053. /*
  7054. * These functions are only useful for the IA64 MCA handling.
  7055. *
  7056. * They can only be called when the whole system has been
  7057. * stopped - every CPU needs to be quiescent, and no scheduling
  7058. * activity can take place. Using them for anything else would
  7059. * be a serious bug, and as a result, they aren't even visible
  7060. * under any other configuration.
  7061. */
  7062. /**
  7063. * curr_task - return the current task for a given cpu.
  7064. * @cpu: the processor in question.
  7065. *
  7066. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7067. */
  7068. struct task_struct *curr_task(int cpu)
  7069. {
  7070. return cpu_curr(cpu);
  7071. }
  7072. /**
  7073. * set_curr_task - set the current task for a given cpu.
  7074. * @cpu: the processor in question.
  7075. * @p: the task pointer to set.
  7076. *
  7077. * Description: This function must only be used when non-maskable interrupts
  7078. * are serviced on a separate stack. It allows the architecture to switch the
  7079. * notion of the current task on a cpu in a non-blocking manner. This function
  7080. * must be called with all CPU's synchronized, and interrupts disabled, the
  7081. * and caller must save the original value of the current task (see
  7082. * curr_task() above) and restore that value before reenabling interrupts and
  7083. * re-starting the system.
  7084. *
  7085. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7086. */
  7087. void set_curr_task(int cpu, struct task_struct *p)
  7088. {
  7089. cpu_curr(cpu) = p;
  7090. }
  7091. #endif
  7092. #ifdef CONFIG_FAIR_GROUP_SCHED
  7093. static void free_fair_sched_group(struct task_group *tg)
  7094. {
  7095. int i;
  7096. for_each_possible_cpu(i) {
  7097. if (tg->cfs_rq)
  7098. kfree(tg->cfs_rq[i]);
  7099. if (tg->se)
  7100. kfree(tg->se[i]);
  7101. }
  7102. kfree(tg->cfs_rq);
  7103. kfree(tg->se);
  7104. }
  7105. static
  7106. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7107. {
  7108. struct cfs_rq *cfs_rq;
  7109. struct sched_entity *se, *parent_se;
  7110. struct rq *rq;
  7111. int i;
  7112. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7113. if (!tg->cfs_rq)
  7114. goto err;
  7115. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7116. if (!tg->se)
  7117. goto err;
  7118. tg->shares = NICE_0_LOAD;
  7119. for_each_possible_cpu(i) {
  7120. rq = cpu_rq(i);
  7121. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7122. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7123. if (!cfs_rq)
  7124. goto err;
  7125. se = kmalloc_node(sizeof(struct sched_entity),
  7126. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7127. if (!se)
  7128. goto err;
  7129. parent_se = parent ? parent->se[i] : NULL;
  7130. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7131. }
  7132. return 1;
  7133. err:
  7134. return 0;
  7135. }
  7136. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7137. {
  7138. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7139. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7140. }
  7141. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7142. {
  7143. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7144. }
  7145. #else /* !CONFG_FAIR_GROUP_SCHED */
  7146. static inline void free_fair_sched_group(struct task_group *tg)
  7147. {
  7148. }
  7149. static inline
  7150. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7151. {
  7152. return 1;
  7153. }
  7154. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7155. {
  7156. }
  7157. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7158. {
  7159. }
  7160. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7161. #ifdef CONFIG_RT_GROUP_SCHED
  7162. static void free_rt_sched_group(struct task_group *tg)
  7163. {
  7164. int i;
  7165. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7166. for_each_possible_cpu(i) {
  7167. if (tg->rt_rq)
  7168. kfree(tg->rt_rq[i]);
  7169. if (tg->rt_se)
  7170. kfree(tg->rt_se[i]);
  7171. }
  7172. kfree(tg->rt_rq);
  7173. kfree(tg->rt_se);
  7174. }
  7175. static
  7176. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7177. {
  7178. struct rt_rq *rt_rq;
  7179. struct sched_rt_entity *rt_se, *parent_se;
  7180. struct rq *rq;
  7181. int i;
  7182. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7183. if (!tg->rt_rq)
  7184. goto err;
  7185. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7186. if (!tg->rt_se)
  7187. goto err;
  7188. init_rt_bandwidth(&tg->rt_bandwidth,
  7189. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7190. for_each_possible_cpu(i) {
  7191. rq = cpu_rq(i);
  7192. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7193. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7194. if (!rt_rq)
  7195. goto err;
  7196. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7197. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7198. if (!rt_se)
  7199. goto err;
  7200. parent_se = parent ? parent->rt_se[i] : NULL;
  7201. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7202. }
  7203. return 1;
  7204. err:
  7205. return 0;
  7206. }
  7207. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7208. {
  7209. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7210. &cpu_rq(cpu)->leaf_rt_rq_list);
  7211. }
  7212. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7213. {
  7214. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7215. }
  7216. #else /* !CONFIG_RT_GROUP_SCHED */
  7217. static inline void free_rt_sched_group(struct task_group *tg)
  7218. {
  7219. }
  7220. static inline
  7221. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7222. {
  7223. return 1;
  7224. }
  7225. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7226. {
  7227. }
  7228. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7229. {
  7230. }
  7231. #endif /* CONFIG_RT_GROUP_SCHED */
  7232. #ifdef CONFIG_GROUP_SCHED
  7233. static void free_sched_group(struct task_group *tg)
  7234. {
  7235. free_fair_sched_group(tg);
  7236. free_rt_sched_group(tg);
  7237. kfree(tg);
  7238. }
  7239. /* allocate runqueue etc for a new task group */
  7240. struct task_group *sched_create_group(struct task_group *parent)
  7241. {
  7242. struct task_group *tg;
  7243. unsigned long flags;
  7244. int i;
  7245. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7246. if (!tg)
  7247. return ERR_PTR(-ENOMEM);
  7248. if (!alloc_fair_sched_group(tg, parent))
  7249. goto err;
  7250. if (!alloc_rt_sched_group(tg, parent))
  7251. goto err;
  7252. spin_lock_irqsave(&task_group_lock, flags);
  7253. for_each_possible_cpu(i) {
  7254. register_fair_sched_group(tg, i);
  7255. register_rt_sched_group(tg, i);
  7256. }
  7257. list_add_rcu(&tg->list, &task_groups);
  7258. WARN_ON(!parent); /* root should already exist */
  7259. tg->parent = parent;
  7260. list_add_rcu(&tg->siblings, &parent->children);
  7261. INIT_LIST_HEAD(&tg->children);
  7262. spin_unlock_irqrestore(&task_group_lock, flags);
  7263. return tg;
  7264. err:
  7265. free_sched_group(tg);
  7266. return ERR_PTR(-ENOMEM);
  7267. }
  7268. /* rcu callback to free various structures associated with a task group */
  7269. static void free_sched_group_rcu(struct rcu_head *rhp)
  7270. {
  7271. /* now it should be safe to free those cfs_rqs */
  7272. free_sched_group(container_of(rhp, struct task_group, rcu));
  7273. }
  7274. /* Destroy runqueue etc associated with a task group */
  7275. void sched_destroy_group(struct task_group *tg)
  7276. {
  7277. unsigned long flags;
  7278. int i;
  7279. spin_lock_irqsave(&task_group_lock, flags);
  7280. for_each_possible_cpu(i) {
  7281. unregister_fair_sched_group(tg, i);
  7282. unregister_rt_sched_group(tg, i);
  7283. }
  7284. list_del_rcu(&tg->list);
  7285. list_del_rcu(&tg->siblings);
  7286. spin_unlock_irqrestore(&task_group_lock, flags);
  7287. /* wait for possible concurrent references to cfs_rqs complete */
  7288. call_rcu(&tg->rcu, free_sched_group_rcu);
  7289. }
  7290. /* change task's runqueue when it moves between groups.
  7291. * The caller of this function should have put the task in its new group
  7292. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7293. * reflect its new group.
  7294. */
  7295. void sched_move_task(struct task_struct *tsk)
  7296. {
  7297. int on_rq, running;
  7298. unsigned long flags;
  7299. struct rq *rq;
  7300. rq = task_rq_lock(tsk, &flags);
  7301. update_rq_clock(rq);
  7302. running = task_current(rq, tsk);
  7303. on_rq = tsk->se.on_rq;
  7304. if (on_rq)
  7305. dequeue_task(rq, tsk, 0);
  7306. if (unlikely(running))
  7307. tsk->sched_class->put_prev_task(rq, tsk);
  7308. set_task_rq(tsk, task_cpu(tsk));
  7309. #ifdef CONFIG_FAIR_GROUP_SCHED
  7310. if (tsk->sched_class->moved_group)
  7311. tsk->sched_class->moved_group(tsk);
  7312. #endif
  7313. if (unlikely(running))
  7314. tsk->sched_class->set_curr_task(rq);
  7315. if (on_rq)
  7316. enqueue_task(rq, tsk, 0);
  7317. task_rq_unlock(rq, &flags);
  7318. }
  7319. #endif /* CONFIG_GROUP_SCHED */
  7320. #ifdef CONFIG_FAIR_GROUP_SCHED
  7321. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7322. {
  7323. struct cfs_rq *cfs_rq = se->cfs_rq;
  7324. int on_rq;
  7325. on_rq = se->on_rq;
  7326. if (on_rq)
  7327. dequeue_entity(cfs_rq, se, 0);
  7328. se->load.weight = shares;
  7329. se->load.inv_weight = 0;
  7330. if (on_rq)
  7331. enqueue_entity(cfs_rq, se, 0);
  7332. }
  7333. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7334. {
  7335. struct cfs_rq *cfs_rq = se->cfs_rq;
  7336. struct rq *rq = cfs_rq->rq;
  7337. unsigned long flags;
  7338. spin_lock_irqsave(&rq->lock, flags);
  7339. __set_se_shares(se, shares);
  7340. spin_unlock_irqrestore(&rq->lock, flags);
  7341. }
  7342. static DEFINE_MUTEX(shares_mutex);
  7343. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7344. {
  7345. int i;
  7346. unsigned long flags;
  7347. /*
  7348. * We can't change the weight of the root cgroup.
  7349. */
  7350. if (!tg->se[0])
  7351. return -EINVAL;
  7352. if (shares < MIN_SHARES)
  7353. shares = MIN_SHARES;
  7354. else if (shares > MAX_SHARES)
  7355. shares = MAX_SHARES;
  7356. mutex_lock(&shares_mutex);
  7357. if (tg->shares == shares)
  7358. goto done;
  7359. spin_lock_irqsave(&task_group_lock, flags);
  7360. for_each_possible_cpu(i)
  7361. unregister_fair_sched_group(tg, i);
  7362. list_del_rcu(&tg->siblings);
  7363. spin_unlock_irqrestore(&task_group_lock, flags);
  7364. /* wait for any ongoing reference to this group to finish */
  7365. synchronize_sched();
  7366. /*
  7367. * Now we are free to modify the group's share on each cpu
  7368. * w/o tripping rebalance_share or load_balance_fair.
  7369. */
  7370. tg->shares = shares;
  7371. for_each_possible_cpu(i) {
  7372. /*
  7373. * force a rebalance
  7374. */
  7375. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7376. set_se_shares(tg->se[i], shares);
  7377. }
  7378. /*
  7379. * Enable load balance activity on this group, by inserting it back on
  7380. * each cpu's rq->leaf_cfs_rq_list.
  7381. */
  7382. spin_lock_irqsave(&task_group_lock, flags);
  7383. for_each_possible_cpu(i)
  7384. register_fair_sched_group(tg, i);
  7385. list_add_rcu(&tg->siblings, &tg->parent->children);
  7386. spin_unlock_irqrestore(&task_group_lock, flags);
  7387. done:
  7388. mutex_unlock(&shares_mutex);
  7389. return 0;
  7390. }
  7391. unsigned long sched_group_shares(struct task_group *tg)
  7392. {
  7393. return tg->shares;
  7394. }
  7395. #endif
  7396. #ifdef CONFIG_RT_GROUP_SCHED
  7397. /*
  7398. * Ensure that the real time constraints are schedulable.
  7399. */
  7400. static DEFINE_MUTEX(rt_constraints_mutex);
  7401. static unsigned long to_ratio(u64 period, u64 runtime)
  7402. {
  7403. if (runtime == RUNTIME_INF)
  7404. return 1ULL << 16;
  7405. return div64_u64(runtime << 16, period);
  7406. }
  7407. #ifdef CONFIG_CGROUP_SCHED
  7408. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7409. {
  7410. struct task_group *tgi, *parent = tg->parent;
  7411. unsigned long total = 0;
  7412. if (!parent) {
  7413. if (global_rt_period() < period)
  7414. return 0;
  7415. return to_ratio(period, runtime) <
  7416. to_ratio(global_rt_period(), global_rt_runtime());
  7417. }
  7418. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7419. return 0;
  7420. rcu_read_lock();
  7421. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7422. if (tgi == tg)
  7423. continue;
  7424. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7425. tgi->rt_bandwidth.rt_runtime);
  7426. }
  7427. rcu_read_unlock();
  7428. return total + to_ratio(period, runtime) <=
  7429. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7430. parent->rt_bandwidth.rt_runtime);
  7431. }
  7432. #elif defined CONFIG_USER_SCHED
  7433. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7434. {
  7435. struct task_group *tgi;
  7436. unsigned long total = 0;
  7437. unsigned long global_ratio =
  7438. to_ratio(global_rt_period(), global_rt_runtime());
  7439. rcu_read_lock();
  7440. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7441. if (tgi == tg)
  7442. continue;
  7443. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7444. tgi->rt_bandwidth.rt_runtime);
  7445. }
  7446. rcu_read_unlock();
  7447. return total + to_ratio(period, runtime) < global_ratio;
  7448. }
  7449. #endif
  7450. /* Must be called with tasklist_lock held */
  7451. static inline int tg_has_rt_tasks(struct task_group *tg)
  7452. {
  7453. struct task_struct *g, *p;
  7454. do_each_thread(g, p) {
  7455. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7456. return 1;
  7457. } while_each_thread(g, p);
  7458. return 0;
  7459. }
  7460. static int tg_set_bandwidth(struct task_group *tg,
  7461. u64 rt_period, u64 rt_runtime)
  7462. {
  7463. int i, err = 0;
  7464. mutex_lock(&rt_constraints_mutex);
  7465. read_lock(&tasklist_lock);
  7466. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7467. err = -EBUSY;
  7468. goto unlock;
  7469. }
  7470. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7471. err = -EINVAL;
  7472. goto unlock;
  7473. }
  7474. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7475. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7476. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7477. for_each_possible_cpu(i) {
  7478. struct rt_rq *rt_rq = tg->rt_rq[i];
  7479. spin_lock(&rt_rq->rt_runtime_lock);
  7480. rt_rq->rt_runtime = rt_runtime;
  7481. spin_unlock(&rt_rq->rt_runtime_lock);
  7482. }
  7483. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7484. unlock:
  7485. read_unlock(&tasklist_lock);
  7486. mutex_unlock(&rt_constraints_mutex);
  7487. return err;
  7488. }
  7489. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7490. {
  7491. u64 rt_runtime, rt_period;
  7492. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7493. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7494. if (rt_runtime_us < 0)
  7495. rt_runtime = RUNTIME_INF;
  7496. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7497. }
  7498. long sched_group_rt_runtime(struct task_group *tg)
  7499. {
  7500. u64 rt_runtime_us;
  7501. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7502. return -1;
  7503. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7504. do_div(rt_runtime_us, NSEC_PER_USEC);
  7505. return rt_runtime_us;
  7506. }
  7507. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7508. {
  7509. u64 rt_runtime, rt_period;
  7510. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7511. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7512. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7513. }
  7514. long sched_group_rt_period(struct task_group *tg)
  7515. {
  7516. u64 rt_period_us;
  7517. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7518. do_div(rt_period_us, NSEC_PER_USEC);
  7519. return rt_period_us;
  7520. }
  7521. static int sched_rt_global_constraints(void)
  7522. {
  7523. struct task_group *tg = &root_task_group;
  7524. u64 rt_runtime, rt_period;
  7525. int ret = 0;
  7526. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7527. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7528. mutex_lock(&rt_constraints_mutex);
  7529. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7530. ret = -EINVAL;
  7531. mutex_unlock(&rt_constraints_mutex);
  7532. return ret;
  7533. }
  7534. #else /* !CONFIG_RT_GROUP_SCHED */
  7535. static int sched_rt_global_constraints(void)
  7536. {
  7537. unsigned long flags;
  7538. int i;
  7539. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7540. for_each_possible_cpu(i) {
  7541. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7542. spin_lock(&rt_rq->rt_runtime_lock);
  7543. rt_rq->rt_runtime = global_rt_runtime();
  7544. spin_unlock(&rt_rq->rt_runtime_lock);
  7545. }
  7546. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7547. return 0;
  7548. }
  7549. #endif /* CONFIG_RT_GROUP_SCHED */
  7550. int sched_rt_handler(struct ctl_table *table, int write,
  7551. struct file *filp, void __user *buffer, size_t *lenp,
  7552. loff_t *ppos)
  7553. {
  7554. int ret;
  7555. int old_period, old_runtime;
  7556. static DEFINE_MUTEX(mutex);
  7557. mutex_lock(&mutex);
  7558. old_period = sysctl_sched_rt_period;
  7559. old_runtime = sysctl_sched_rt_runtime;
  7560. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7561. if (!ret && write) {
  7562. ret = sched_rt_global_constraints();
  7563. if (ret) {
  7564. sysctl_sched_rt_period = old_period;
  7565. sysctl_sched_rt_runtime = old_runtime;
  7566. } else {
  7567. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7568. def_rt_bandwidth.rt_period =
  7569. ns_to_ktime(global_rt_period());
  7570. }
  7571. }
  7572. mutex_unlock(&mutex);
  7573. return ret;
  7574. }
  7575. #ifdef CONFIG_CGROUP_SCHED
  7576. /* return corresponding task_group object of a cgroup */
  7577. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7578. {
  7579. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7580. struct task_group, css);
  7581. }
  7582. static struct cgroup_subsys_state *
  7583. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7584. {
  7585. struct task_group *tg, *parent;
  7586. if (!cgrp->parent) {
  7587. /* This is early initialization for the top cgroup */
  7588. init_task_group.css.cgroup = cgrp;
  7589. return &init_task_group.css;
  7590. }
  7591. parent = cgroup_tg(cgrp->parent);
  7592. tg = sched_create_group(parent);
  7593. if (IS_ERR(tg))
  7594. return ERR_PTR(-ENOMEM);
  7595. /* Bind the cgroup to task_group object we just created */
  7596. tg->css.cgroup = cgrp;
  7597. return &tg->css;
  7598. }
  7599. static void
  7600. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7601. {
  7602. struct task_group *tg = cgroup_tg(cgrp);
  7603. sched_destroy_group(tg);
  7604. }
  7605. static int
  7606. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7607. struct task_struct *tsk)
  7608. {
  7609. #ifdef CONFIG_RT_GROUP_SCHED
  7610. /* Don't accept realtime tasks when there is no way for them to run */
  7611. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7612. return -EINVAL;
  7613. #else
  7614. /* We don't support RT-tasks being in separate groups */
  7615. if (tsk->sched_class != &fair_sched_class)
  7616. return -EINVAL;
  7617. #endif
  7618. return 0;
  7619. }
  7620. static void
  7621. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7622. struct cgroup *old_cont, struct task_struct *tsk)
  7623. {
  7624. sched_move_task(tsk);
  7625. }
  7626. #ifdef CONFIG_FAIR_GROUP_SCHED
  7627. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7628. u64 shareval)
  7629. {
  7630. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7631. }
  7632. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7633. {
  7634. struct task_group *tg = cgroup_tg(cgrp);
  7635. return (u64) tg->shares;
  7636. }
  7637. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7638. #ifdef CONFIG_RT_GROUP_SCHED
  7639. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7640. s64 val)
  7641. {
  7642. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7643. }
  7644. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7645. {
  7646. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7647. }
  7648. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7649. u64 rt_period_us)
  7650. {
  7651. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7652. }
  7653. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7654. {
  7655. return sched_group_rt_period(cgroup_tg(cgrp));
  7656. }
  7657. #endif /* CONFIG_RT_GROUP_SCHED */
  7658. static struct cftype cpu_files[] = {
  7659. #ifdef CONFIG_FAIR_GROUP_SCHED
  7660. {
  7661. .name = "shares",
  7662. .read_u64 = cpu_shares_read_u64,
  7663. .write_u64 = cpu_shares_write_u64,
  7664. },
  7665. #endif
  7666. #ifdef CONFIG_RT_GROUP_SCHED
  7667. {
  7668. .name = "rt_runtime_us",
  7669. .read_s64 = cpu_rt_runtime_read,
  7670. .write_s64 = cpu_rt_runtime_write,
  7671. },
  7672. {
  7673. .name = "rt_period_us",
  7674. .read_u64 = cpu_rt_period_read_uint,
  7675. .write_u64 = cpu_rt_period_write_uint,
  7676. },
  7677. #endif
  7678. };
  7679. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7680. {
  7681. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7682. }
  7683. struct cgroup_subsys cpu_cgroup_subsys = {
  7684. .name = "cpu",
  7685. .create = cpu_cgroup_create,
  7686. .destroy = cpu_cgroup_destroy,
  7687. .can_attach = cpu_cgroup_can_attach,
  7688. .attach = cpu_cgroup_attach,
  7689. .populate = cpu_cgroup_populate,
  7690. .subsys_id = cpu_cgroup_subsys_id,
  7691. .early_init = 1,
  7692. };
  7693. #endif /* CONFIG_CGROUP_SCHED */
  7694. #ifdef CONFIG_CGROUP_CPUACCT
  7695. /*
  7696. * CPU accounting code for task groups.
  7697. *
  7698. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7699. * (balbir@in.ibm.com).
  7700. */
  7701. /* track cpu usage of a group of tasks */
  7702. struct cpuacct {
  7703. struct cgroup_subsys_state css;
  7704. /* cpuusage holds pointer to a u64-type object on every cpu */
  7705. u64 *cpuusage;
  7706. };
  7707. struct cgroup_subsys cpuacct_subsys;
  7708. /* return cpu accounting group corresponding to this container */
  7709. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7710. {
  7711. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7712. struct cpuacct, css);
  7713. }
  7714. /* return cpu accounting group to which this task belongs */
  7715. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7716. {
  7717. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7718. struct cpuacct, css);
  7719. }
  7720. /* create a new cpu accounting group */
  7721. static struct cgroup_subsys_state *cpuacct_create(
  7722. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7723. {
  7724. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7725. if (!ca)
  7726. return ERR_PTR(-ENOMEM);
  7727. ca->cpuusage = alloc_percpu(u64);
  7728. if (!ca->cpuusage) {
  7729. kfree(ca);
  7730. return ERR_PTR(-ENOMEM);
  7731. }
  7732. return &ca->css;
  7733. }
  7734. /* destroy an existing cpu accounting group */
  7735. static void
  7736. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7737. {
  7738. struct cpuacct *ca = cgroup_ca(cgrp);
  7739. free_percpu(ca->cpuusage);
  7740. kfree(ca);
  7741. }
  7742. /* return total cpu usage (in nanoseconds) of a group */
  7743. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7744. {
  7745. struct cpuacct *ca = cgroup_ca(cgrp);
  7746. u64 totalcpuusage = 0;
  7747. int i;
  7748. for_each_possible_cpu(i) {
  7749. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7750. /*
  7751. * Take rq->lock to make 64-bit addition safe on 32-bit
  7752. * platforms.
  7753. */
  7754. spin_lock_irq(&cpu_rq(i)->lock);
  7755. totalcpuusage += *cpuusage;
  7756. spin_unlock_irq(&cpu_rq(i)->lock);
  7757. }
  7758. return totalcpuusage;
  7759. }
  7760. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7761. u64 reset)
  7762. {
  7763. struct cpuacct *ca = cgroup_ca(cgrp);
  7764. int err = 0;
  7765. int i;
  7766. if (reset) {
  7767. err = -EINVAL;
  7768. goto out;
  7769. }
  7770. for_each_possible_cpu(i) {
  7771. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7772. spin_lock_irq(&cpu_rq(i)->lock);
  7773. *cpuusage = 0;
  7774. spin_unlock_irq(&cpu_rq(i)->lock);
  7775. }
  7776. out:
  7777. return err;
  7778. }
  7779. static struct cftype files[] = {
  7780. {
  7781. .name = "usage",
  7782. .read_u64 = cpuusage_read,
  7783. .write_u64 = cpuusage_write,
  7784. },
  7785. };
  7786. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7787. {
  7788. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7789. }
  7790. /*
  7791. * charge this task's execution time to its accounting group.
  7792. *
  7793. * called with rq->lock held.
  7794. */
  7795. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7796. {
  7797. struct cpuacct *ca;
  7798. if (!cpuacct_subsys.active)
  7799. return;
  7800. ca = task_ca(tsk);
  7801. if (ca) {
  7802. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7803. *cpuusage += cputime;
  7804. }
  7805. }
  7806. struct cgroup_subsys cpuacct_subsys = {
  7807. .name = "cpuacct",
  7808. .create = cpuacct_create,
  7809. .destroy = cpuacct_destroy,
  7810. .populate = cpuacct_populate,
  7811. .subsys_id = cpuacct_subsys_id,
  7812. };
  7813. #endif /* CONFIG_CGROUP_CPUACCT */