svm.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include "kvm_svm.h"
  17. #include "x86_emulate.h"
  18. #include "irq.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/desc.h>
  26. MODULE_AUTHOR("Qumranet");
  27. MODULE_LICENSE("GPL");
  28. #define IOPM_ALLOC_ORDER 2
  29. #define MSRPM_ALLOC_ORDER 1
  30. #define DB_VECTOR 1
  31. #define UD_VECTOR 6
  32. #define GP_VECTOR 13
  33. #define DR7_GD_MASK (1 << 13)
  34. #define DR6_BD_MASK (1 << 13)
  35. #define SEG_TYPE_LDT 2
  36. #define SEG_TYPE_BUSY_TSS16 3
  37. #define KVM_EFER_LMA (1 << 10)
  38. #define KVM_EFER_LME (1 << 8)
  39. #define SVM_FEATURE_NPT (1 << 0)
  40. #define SVM_FEATURE_LBRV (1 << 1)
  41. #define SVM_DEATURE_SVML (1 << 2)
  42. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  43. {
  44. return container_of(vcpu, struct vcpu_svm, vcpu);
  45. }
  46. unsigned long iopm_base;
  47. unsigned long msrpm_base;
  48. struct kvm_ldttss_desc {
  49. u16 limit0;
  50. u16 base0;
  51. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  52. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  53. u32 base3;
  54. u32 zero1;
  55. } __attribute__((packed));
  56. struct svm_cpu_data {
  57. int cpu;
  58. u64 asid_generation;
  59. u32 max_asid;
  60. u32 next_asid;
  61. struct kvm_ldttss_desc *tss_desc;
  62. struct page *save_area;
  63. };
  64. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  65. static uint32_t svm_features;
  66. struct svm_init_data {
  67. int cpu;
  68. int r;
  69. };
  70. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  71. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  72. #define MSRS_RANGE_SIZE 2048
  73. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  74. #define MAX_INST_SIZE 15
  75. static inline u32 svm_has(u32 feat)
  76. {
  77. return svm_features & feat;
  78. }
  79. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  80. {
  81. int word_index = __ffs(vcpu->irq_summary);
  82. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  83. int irq = word_index * BITS_PER_LONG + bit_index;
  84. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  85. if (!vcpu->irq_pending[word_index])
  86. clear_bit(word_index, &vcpu->irq_summary);
  87. return irq;
  88. }
  89. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  90. {
  91. set_bit(irq, vcpu->irq_pending);
  92. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  93. }
  94. static inline void clgi(void)
  95. {
  96. asm volatile (SVM_CLGI);
  97. }
  98. static inline void stgi(void)
  99. {
  100. asm volatile (SVM_STGI);
  101. }
  102. static inline void invlpga(unsigned long addr, u32 asid)
  103. {
  104. asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
  105. }
  106. static inline unsigned long kvm_read_cr2(void)
  107. {
  108. unsigned long cr2;
  109. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  110. return cr2;
  111. }
  112. static inline void kvm_write_cr2(unsigned long val)
  113. {
  114. asm volatile ("mov %0, %%cr2" :: "r" (val));
  115. }
  116. static inline unsigned long read_dr6(void)
  117. {
  118. unsigned long dr6;
  119. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  120. return dr6;
  121. }
  122. static inline void write_dr6(unsigned long val)
  123. {
  124. asm volatile ("mov %0, %%dr6" :: "r" (val));
  125. }
  126. static inline unsigned long read_dr7(void)
  127. {
  128. unsigned long dr7;
  129. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  130. return dr7;
  131. }
  132. static inline void write_dr7(unsigned long val)
  133. {
  134. asm volatile ("mov %0, %%dr7" :: "r" (val));
  135. }
  136. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  137. {
  138. to_svm(vcpu)->asid_generation--;
  139. }
  140. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  141. {
  142. force_new_asid(vcpu);
  143. }
  144. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  145. {
  146. if (!(efer & KVM_EFER_LMA))
  147. efer &= ~KVM_EFER_LME;
  148. to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  149. vcpu->shadow_efer = efer;
  150. }
  151. static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  152. {
  153. struct vcpu_svm *svm = to_svm(vcpu);
  154. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  155. SVM_EVTINJ_VALID_ERR |
  156. SVM_EVTINJ_TYPE_EXEPT |
  157. GP_VECTOR;
  158. svm->vmcb->control.event_inj_err = error_code;
  159. }
  160. static void inject_ud(struct kvm_vcpu *vcpu)
  161. {
  162. to_svm(vcpu)->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  163. SVM_EVTINJ_TYPE_EXEPT |
  164. UD_VECTOR;
  165. }
  166. static int is_page_fault(uint32_t info)
  167. {
  168. info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  169. return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
  170. }
  171. static int is_external_interrupt(u32 info)
  172. {
  173. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  174. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  175. }
  176. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  177. {
  178. struct vcpu_svm *svm = to_svm(vcpu);
  179. if (!svm->next_rip) {
  180. printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
  181. return;
  182. }
  183. if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE) {
  184. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  185. __FUNCTION__,
  186. svm->vmcb->save.rip,
  187. svm->next_rip);
  188. }
  189. vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
  190. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  191. vcpu->interrupt_window_open = 1;
  192. }
  193. static int has_svm(void)
  194. {
  195. uint32_t eax, ebx, ecx, edx;
  196. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  197. printk(KERN_INFO "has_svm: not amd\n");
  198. return 0;
  199. }
  200. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  201. if (eax < SVM_CPUID_FUNC) {
  202. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  203. return 0;
  204. }
  205. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  206. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  207. printk(KERN_DEBUG "has_svm: svm not available\n");
  208. return 0;
  209. }
  210. return 1;
  211. }
  212. static void svm_hardware_disable(void *garbage)
  213. {
  214. struct svm_cpu_data *svm_data
  215. = per_cpu(svm_data, raw_smp_processor_id());
  216. if (svm_data) {
  217. uint64_t efer;
  218. wrmsrl(MSR_VM_HSAVE_PA, 0);
  219. rdmsrl(MSR_EFER, efer);
  220. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  221. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  222. __free_page(svm_data->save_area);
  223. kfree(svm_data);
  224. }
  225. }
  226. static void svm_hardware_enable(void *garbage)
  227. {
  228. struct svm_cpu_data *svm_data;
  229. uint64_t efer;
  230. #ifdef CONFIG_X86_64
  231. struct desc_ptr gdt_descr;
  232. #else
  233. struct Xgt_desc_struct gdt_descr;
  234. #endif
  235. struct desc_struct *gdt;
  236. int me = raw_smp_processor_id();
  237. if (!has_svm()) {
  238. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  239. return;
  240. }
  241. svm_data = per_cpu(svm_data, me);
  242. if (!svm_data) {
  243. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  244. me);
  245. return;
  246. }
  247. svm_data->asid_generation = 1;
  248. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  249. svm_data->next_asid = svm_data->max_asid + 1;
  250. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  251. asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
  252. gdt = (struct desc_struct *)gdt_descr.address;
  253. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  254. rdmsrl(MSR_EFER, efer);
  255. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  256. wrmsrl(MSR_VM_HSAVE_PA,
  257. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  258. }
  259. static int svm_cpu_init(int cpu)
  260. {
  261. struct svm_cpu_data *svm_data;
  262. int r;
  263. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  264. if (!svm_data)
  265. return -ENOMEM;
  266. svm_data->cpu = cpu;
  267. svm_data->save_area = alloc_page(GFP_KERNEL);
  268. r = -ENOMEM;
  269. if (!svm_data->save_area)
  270. goto err_1;
  271. per_cpu(svm_data, cpu) = svm_data;
  272. return 0;
  273. err_1:
  274. kfree(svm_data);
  275. return r;
  276. }
  277. static void set_msr_interception(u32 *msrpm, unsigned msr,
  278. int read, int write)
  279. {
  280. int i;
  281. for (i = 0; i < NUM_MSR_MAPS; i++) {
  282. if (msr >= msrpm_ranges[i] &&
  283. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  284. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  285. msrpm_ranges[i]) * 2;
  286. u32 *base = msrpm + (msr_offset / 32);
  287. u32 msr_shift = msr_offset % 32;
  288. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  289. *base = (*base & ~(0x3 << msr_shift)) |
  290. (mask << msr_shift);
  291. return;
  292. }
  293. }
  294. BUG();
  295. }
  296. static __init int svm_hardware_setup(void)
  297. {
  298. int cpu;
  299. struct page *iopm_pages;
  300. struct page *msrpm_pages;
  301. void *iopm_va, *msrpm_va;
  302. int r;
  303. kvm_emulator_want_group7_invlpg();
  304. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  305. if (!iopm_pages)
  306. return -ENOMEM;
  307. iopm_va = page_address(iopm_pages);
  308. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  309. clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
  310. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  311. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  312. r = -ENOMEM;
  313. if (!msrpm_pages)
  314. goto err_1;
  315. msrpm_va = page_address(msrpm_pages);
  316. memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  317. msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
  318. #ifdef CONFIG_X86_64
  319. set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
  320. set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
  321. set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
  322. set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
  323. set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
  324. set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
  325. #endif
  326. set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
  327. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
  328. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
  329. set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
  330. for_each_online_cpu(cpu) {
  331. r = svm_cpu_init(cpu);
  332. if (r)
  333. goto err_2;
  334. }
  335. return 0;
  336. err_2:
  337. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  338. msrpm_base = 0;
  339. err_1:
  340. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  341. iopm_base = 0;
  342. return r;
  343. }
  344. static __exit void svm_hardware_unsetup(void)
  345. {
  346. __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
  347. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  348. iopm_base = msrpm_base = 0;
  349. }
  350. static void init_seg(struct vmcb_seg *seg)
  351. {
  352. seg->selector = 0;
  353. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  354. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  355. seg->limit = 0xffff;
  356. seg->base = 0;
  357. }
  358. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  359. {
  360. seg->selector = 0;
  361. seg->attrib = SVM_SELECTOR_P_MASK | type;
  362. seg->limit = 0xffff;
  363. seg->base = 0;
  364. }
  365. static void init_vmcb(struct vmcb *vmcb)
  366. {
  367. struct vmcb_control_area *control = &vmcb->control;
  368. struct vmcb_save_area *save = &vmcb->save;
  369. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  370. INTERCEPT_CR3_MASK |
  371. INTERCEPT_CR4_MASK;
  372. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  373. INTERCEPT_CR3_MASK |
  374. INTERCEPT_CR4_MASK;
  375. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  376. INTERCEPT_DR1_MASK |
  377. INTERCEPT_DR2_MASK |
  378. INTERCEPT_DR3_MASK;
  379. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  380. INTERCEPT_DR1_MASK |
  381. INTERCEPT_DR2_MASK |
  382. INTERCEPT_DR3_MASK |
  383. INTERCEPT_DR5_MASK |
  384. INTERCEPT_DR7_MASK;
  385. control->intercept_exceptions = 1 << PF_VECTOR;
  386. control->intercept = (1ULL << INTERCEPT_INTR) |
  387. (1ULL << INTERCEPT_NMI) |
  388. (1ULL << INTERCEPT_SMI) |
  389. /*
  390. * selective cr0 intercept bug?
  391. * 0: 0f 22 d8 mov %eax,%cr3
  392. * 3: 0f 20 c0 mov %cr0,%eax
  393. * 6: 0d 00 00 00 80 or $0x80000000,%eax
  394. * b: 0f 22 c0 mov %eax,%cr0
  395. * set cr3 ->interception
  396. * get cr0 ->interception
  397. * set cr0 -> no interception
  398. */
  399. /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */
  400. (1ULL << INTERCEPT_CPUID) |
  401. (1ULL << INTERCEPT_HLT) |
  402. (1ULL << INTERCEPT_INVLPGA) |
  403. (1ULL << INTERCEPT_IOIO_PROT) |
  404. (1ULL << INTERCEPT_MSR_PROT) |
  405. (1ULL << INTERCEPT_TASK_SWITCH) |
  406. (1ULL << INTERCEPT_SHUTDOWN) |
  407. (1ULL << INTERCEPT_VMRUN) |
  408. (1ULL << INTERCEPT_VMMCALL) |
  409. (1ULL << INTERCEPT_VMLOAD) |
  410. (1ULL << INTERCEPT_VMSAVE) |
  411. (1ULL << INTERCEPT_STGI) |
  412. (1ULL << INTERCEPT_CLGI) |
  413. (1ULL << INTERCEPT_SKINIT) |
  414. (1ULL << INTERCEPT_MONITOR) |
  415. (1ULL << INTERCEPT_MWAIT);
  416. control->iopm_base_pa = iopm_base;
  417. control->msrpm_base_pa = msrpm_base;
  418. control->tsc_offset = 0;
  419. control->int_ctl = V_INTR_MASKING_MASK;
  420. init_seg(&save->es);
  421. init_seg(&save->ss);
  422. init_seg(&save->ds);
  423. init_seg(&save->fs);
  424. init_seg(&save->gs);
  425. save->cs.selector = 0xf000;
  426. /* Executable/Readable Code Segment */
  427. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  428. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  429. save->cs.limit = 0xffff;
  430. /*
  431. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  432. * be consistent with it.
  433. *
  434. * Replace when we have real mode working for vmx.
  435. */
  436. save->cs.base = 0xf0000;
  437. save->gdtr.limit = 0xffff;
  438. save->idtr.limit = 0xffff;
  439. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  440. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  441. save->efer = MSR_EFER_SVME_MASK;
  442. save->dr6 = 0xffff0ff0;
  443. save->dr7 = 0x400;
  444. save->rflags = 2;
  445. save->rip = 0x0000fff0;
  446. /*
  447. * cr0 val on cpu init should be 0x60000010, we enable cpu
  448. * cache by default. the orderly way is to enable cache in bios.
  449. */
  450. save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
  451. save->cr4 = X86_CR4_PAE;
  452. /* rdx = ?? */
  453. }
  454. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  455. {
  456. struct vcpu_svm *svm;
  457. struct page *page;
  458. int err;
  459. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  460. if (!svm) {
  461. err = -ENOMEM;
  462. goto out;
  463. }
  464. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  465. if (err)
  466. goto free_svm;
  467. if (irqchip_in_kernel(kvm)) {
  468. err = kvm_create_lapic(&svm->vcpu);
  469. if (err < 0)
  470. goto free_svm;
  471. }
  472. page = alloc_page(GFP_KERNEL);
  473. if (!page) {
  474. err = -ENOMEM;
  475. goto uninit;
  476. }
  477. svm->vmcb = page_address(page);
  478. clear_page(svm->vmcb);
  479. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  480. svm->asid_generation = 0;
  481. memset(svm->db_regs, 0, sizeof(svm->db_regs));
  482. init_vmcb(svm->vmcb);
  483. fx_init(&svm->vcpu);
  484. svm->vcpu.fpu_active = 1;
  485. svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  486. if (svm->vcpu.vcpu_id == 0)
  487. svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
  488. return &svm->vcpu;
  489. uninit:
  490. kvm_vcpu_uninit(&svm->vcpu);
  491. free_svm:
  492. kmem_cache_free(kvm_vcpu_cache, svm);
  493. out:
  494. return ERR_PTR(err);
  495. }
  496. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  497. {
  498. struct vcpu_svm *svm = to_svm(vcpu);
  499. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  500. kvm_vcpu_uninit(vcpu);
  501. kmem_cache_free(kvm_vcpu_cache, svm);
  502. }
  503. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  504. {
  505. struct vcpu_svm *svm = to_svm(vcpu);
  506. int i;
  507. if (unlikely(cpu != vcpu->cpu)) {
  508. u64 tsc_this, delta;
  509. /*
  510. * Make sure that the guest sees a monotonically
  511. * increasing TSC.
  512. */
  513. rdtscll(tsc_this);
  514. delta = vcpu->host_tsc - tsc_this;
  515. svm->vmcb->control.tsc_offset += delta;
  516. vcpu->cpu = cpu;
  517. }
  518. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  519. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  520. }
  521. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  522. {
  523. struct vcpu_svm *svm = to_svm(vcpu);
  524. int i;
  525. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  526. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  527. rdtscll(vcpu->host_tsc);
  528. }
  529. static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
  530. {
  531. }
  532. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  533. {
  534. struct vcpu_svm *svm = to_svm(vcpu);
  535. vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  536. vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  537. vcpu->rip = svm->vmcb->save.rip;
  538. }
  539. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  540. {
  541. struct vcpu_svm *svm = to_svm(vcpu);
  542. svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
  543. svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
  544. svm->vmcb->save.rip = vcpu->rip;
  545. }
  546. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  547. {
  548. return to_svm(vcpu)->vmcb->save.rflags;
  549. }
  550. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  551. {
  552. to_svm(vcpu)->vmcb->save.rflags = rflags;
  553. }
  554. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  555. {
  556. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  557. switch (seg) {
  558. case VCPU_SREG_CS: return &save->cs;
  559. case VCPU_SREG_DS: return &save->ds;
  560. case VCPU_SREG_ES: return &save->es;
  561. case VCPU_SREG_FS: return &save->fs;
  562. case VCPU_SREG_GS: return &save->gs;
  563. case VCPU_SREG_SS: return &save->ss;
  564. case VCPU_SREG_TR: return &save->tr;
  565. case VCPU_SREG_LDTR: return &save->ldtr;
  566. }
  567. BUG();
  568. return NULL;
  569. }
  570. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  571. {
  572. struct vmcb_seg *s = svm_seg(vcpu, seg);
  573. return s->base;
  574. }
  575. static void svm_get_segment(struct kvm_vcpu *vcpu,
  576. struct kvm_segment *var, int seg)
  577. {
  578. struct vmcb_seg *s = svm_seg(vcpu, seg);
  579. var->base = s->base;
  580. var->limit = s->limit;
  581. var->selector = s->selector;
  582. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  583. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  584. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  585. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  586. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  587. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  588. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  589. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  590. var->unusable = !var->present;
  591. }
  592. static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  593. {
  594. struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);
  595. *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  596. *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  597. }
  598. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  599. {
  600. struct vcpu_svm *svm = to_svm(vcpu);
  601. dt->limit = svm->vmcb->save.idtr.limit;
  602. dt->base = svm->vmcb->save.idtr.base;
  603. }
  604. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  605. {
  606. struct vcpu_svm *svm = to_svm(vcpu);
  607. svm->vmcb->save.idtr.limit = dt->limit;
  608. svm->vmcb->save.idtr.base = dt->base ;
  609. }
  610. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  611. {
  612. struct vcpu_svm *svm = to_svm(vcpu);
  613. dt->limit = svm->vmcb->save.gdtr.limit;
  614. dt->base = svm->vmcb->save.gdtr.base;
  615. }
  616. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  617. {
  618. struct vcpu_svm *svm = to_svm(vcpu);
  619. svm->vmcb->save.gdtr.limit = dt->limit;
  620. svm->vmcb->save.gdtr.base = dt->base ;
  621. }
  622. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  623. {
  624. }
  625. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  626. {
  627. struct vcpu_svm *svm = to_svm(vcpu);
  628. #ifdef CONFIG_X86_64
  629. if (vcpu->shadow_efer & KVM_EFER_LME) {
  630. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  631. vcpu->shadow_efer |= KVM_EFER_LMA;
  632. svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
  633. }
  634. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG) ) {
  635. vcpu->shadow_efer &= ~KVM_EFER_LMA;
  636. svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
  637. }
  638. }
  639. #endif
  640. if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
  641. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  642. vcpu->fpu_active = 1;
  643. }
  644. vcpu->cr0 = cr0;
  645. cr0 |= X86_CR0_PG | X86_CR0_WP;
  646. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  647. svm->vmcb->save.cr0 = cr0;
  648. }
  649. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  650. {
  651. vcpu->cr4 = cr4;
  652. to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
  653. }
  654. static void svm_set_segment(struct kvm_vcpu *vcpu,
  655. struct kvm_segment *var, int seg)
  656. {
  657. struct vcpu_svm *svm = to_svm(vcpu);
  658. struct vmcb_seg *s = svm_seg(vcpu, seg);
  659. s->base = var->base;
  660. s->limit = var->limit;
  661. s->selector = var->selector;
  662. if (var->unusable)
  663. s->attrib = 0;
  664. else {
  665. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  666. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  667. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  668. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  669. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  670. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  671. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  672. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  673. }
  674. if (seg == VCPU_SREG_CS)
  675. svm->vmcb->save.cpl
  676. = (svm->vmcb->save.cs.attrib
  677. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  678. }
  679. /* FIXME:
  680. svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
  681. svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
  682. */
  683. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  684. {
  685. return -EOPNOTSUPP;
  686. }
  687. static void load_host_msrs(struct kvm_vcpu *vcpu)
  688. {
  689. #ifdef CONFIG_X86_64
  690. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  691. #endif
  692. }
  693. static void save_host_msrs(struct kvm_vcpu *vcpu)
  694. {
  695. #ifdef CONFIG_X86_64
  696. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  697. #endif
  698. }
  699. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
  700. {
  701. if (svm_data->next_asid > svm_data->max_asid) {
  702. ++svm_data->asid_generation;
  703. svm_data->next_asid = 1;
  704. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  705. }
  706. svm->vcpu.cpu = svm_data->cpu;
  707. svm->asid_generation = svm_data->asid_generation;
  708. svm->vmcb->control.asid = svm_data->next_asid++;
  709. }
  710. static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  711. {
  712. invlpga(address, to_svm(vcpu)->vmcb->control.asid); // is needed?
  713. }
  714. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  715. {
  716. return to_svm(vcpu)->db_regs[dr];
  717. }
  718. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  719. int *exception)
  720. {
  721. struct vcpu_svm *svm = to_svm(vcpu);
  722. *exception = 0;
  723. if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
  724. svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  725. svm->vmcb->save.dr6 |= DR6_BD_MASK;
  726. *exception = DB_VECTOR;
  727. return;
  728. }
  729. switch (dr) {
  730. case 0 ... 3:
  731. svm->db_regs[dr] = value;
  732. return;
  733. case 4 ... 5:
  734. if (vcpu->cr4 & X86_CR4_DE) {
  735. *exception = UD_VECTOR;
  736. return;
  737. }
  738. case 7: {
  739. if (value & ~((1ULL << 32) - 1)) {
  740. *exception = GP_VECTOR;
  741. return;
  742. }
  743. svm->vmcb->save.dr7 = value;
  744. return;
  745. }
  746. default:
  747. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  748. __FUNCTION__, dr);
  749. *exception = UD_VECTOR;
  750. return;
  751. }
  752. }
  753. static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  754. {
  755. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  756. struct kvm *kvm = svm->vcpu.kvm;
  757. u64 fault_address;
  758. u32 error_code;
  759. enum emulation_result er;
  760. int r;
  761. if (!irqchip_in_kernel(kvm) &&
  762. is_external_interrupt(exit_int_info))
  763. push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  764. mutex_lock(&kvm->lock);
  765. fault_address = svm->vmcb->control.exit_info_2;
  766. error_code = svm->vmcb->control.exit_info_1;
  767. r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  768. if (r < 0) {
  769. mutex_unlock(&kvm->lock);
  770. return r;
  771. }
  772. if (!r) {
  773. mutex_unlock(&kvm->lock);
  774. return 1;
  775. }
  776. er = emulate_instruction(&svm->vcpu, kvm_run, fault_address,
  777. error_code);
  778. mutex_unlock(&kvm->lock);
  779. switch (er) {
  780. case EMULATE_DONE:
  781. return 1;
  782. case EMULATE_DO_MMIO:
  783. ++svm->vcpu.stat.mmio_exits;
  784. return 0;
  785. case EMULATE_FAIL:
  786. vcpu_printf(&svm->vcpu, "%s: emulate fail\n", __FUNCTION__);
  787. break;
  788. default:
  789. BUG();
  790. }
  791. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  792. return 0;
  793. }
  794. static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  795. {
  796. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  797. if (!(svm->vcpu.cr0 & X86_CR0_TS))
  798. svm->vmcb->save.cr0 &= ~X86_CR0_TS;
  799. svm->vcpu.fpu_active = 1;
  800. return 1;
  801. }
  802. static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  803. {
  804. /*
  805. * VMCB is undefined after a SHUTDOWN intercept
  806. * so reinitialize it.
  807. */
  808. clear_page(svm->vmcb);
  809. init_vmcb(svm->vmcb);
  810. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  811. return 0;
  812. }
  813. static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  814. {
  815. u32 io_info = svm->vmcb->control.exit_info_1; //address size bug?
  816. int size, down, in, string, rep;
  817. unsigned port;
  818. ++svm->vcpu.stat.io_exits;
  819. svm->next_rip = svm->vmcb->control.exit_info_2;
  820. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  821. if (string) {
  822. if (emulate_instruction(&svm->vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
  823. return 0;
  824. return 1;
  825. }
  826. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  827. port = io_info >> 16;
  828. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  829. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  830. down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  831. return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
  832. }
  833. static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  834. {
  835. return 1;
  836. }
  837. static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  838. {
  839. svm->next_rip = svm->vmcb->save.rip + 1;
  840. skip_emulated_instruction(&svm->vcpu);
  841. return kvm_emulate_halt(&svm->vcpu);
  842. }
  843. static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  844. {
  845. svm->next_rip = svm->vmcb->save.rip + 3;
  846. skip_emulated_instruction(&svm->vcpu);
  847. return kvm_hypercall(&svm->vcpu, kvm_run);
  848. }
  849. static int invalid_op_interception(struct vcpu_svm *svm,
  850. struct kvm_run *kvm_run)
  851. {
  852. inject_ud(&svm->vcpu);
  853. return 1;
  854. }
  855. static int task_switch_interception(struct vcpu_svm *svm,
  856. struct kvm_run *kvm_run)
  857. {
  858. pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
  859. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  860. return 0;
  861. }
  862. static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  863. {
  864. svm->next_rip = svm->vmcb->save.rip + 2;
  865. kvm_emulate_cpuid(&svm->vcpu);
  866. return 1;
  867. }
  868. static int emulate_on_interception(struct vcpu_svm *svm,
  869. struct kvm_run *kvm_run)
  870. {
  871. if (emulate_instruction(&svm->vcpu, NULL, 0, 0) != EMULATE_DONE)
  872. pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
  873. return 1;
  874. }
  875. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  876. {
  877. struct vcpu_svm *svm = to_svm(vcpu);
  878. switch (ecx) {
  879. case MSR_IA32_TIME_STAMP_COUNTER: {
  880. u64 tsc;
  881. rdtscll(tsc);
  882. *data = svm->vmcb->control.tsc_offset + tsc;
  883. break;
  884. }
  885. case MSR_K6_STAR:
  886. *data = svm->vmcb->save.star;
  887. break;
  888. #ifdef CONFIG_X86_64
  889. case MSR_LSTAR:
  890. *data = svm->vmcb->save.lstar;
  891. break;
  892. case MSR_CSTAR:
  893. *data = svm->vmcb->save.cstar;
  894. break;
  895. case MSR_KERNEL_GS_BASE:
  896. *data = svm->vmcb->save.kernel_gs_base;
  897. break;
  898. case MSR_SYSCALL_MASK:
  899. *data = svm->vmcb->save.sfmask;
  900. break;
  901. #endif
  902. case MSR_IA32_SYSENTER_CS:
  903. *data = svm->vmcb->save.sysenter_cs;
  904. break;
  905. case MSR_IA32_SYSENTER_EIP:
  906. *data = svm->vmcb->save.sysenter_eip;
  907. break;
  908. case MSR_IA32_SYSENTER_ESP:
  909. *data = svm->vmcb->save.sysenter_esp;
  910. break;
  911. default:
  912. return kvm_get_msr_common(vcpu, ecx, data);
  913. }
  914. return 0;
  915. }
  916. static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  917. {
  918. u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
  919. u64 data;
  920. if (svm_get_msr(&svm->vcpu, ecx, &data))
  921. svm_inject_gp(&svm->vcpu, 0);
  922. else {
  923. svm->vmcb->save.rax = data & 0xffffffff;
  924. svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
  925. svm->next_rip = svm->vmcb->save.rip + 2;
  926. skip_emulated_instruction(&svm->vcpu);
  927. }
  928. return 1;
  929. }
  930. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  931. {
  932. struct vcpu_svm *svm = to_svm(vcpu);
  933. switch (ecx) {
  934. case MSR_IA32_TIME_STAMP_COUNTER: {
  935. u64 tsc;
  936. rdtscll(tsc);
  937. svm->vmcb->control.tsc_offset = data - tsc;
  938. break;
  939. }
  940. case MSR_K6_STAR:
  941. svm->vmcb->save.star = data;
  942. break;
  943. #ifdef CONFIG_X86_64
  944. case MSR_LSTAR:
  945. svm->vmcb->save.lstar = data;
  946. break;
  947. case MSR_CSTAR:
  948. svm->vmcb->save.cstar = data;
  949. break;
  950. case MSR_KERNEL_GS_BASE:
  951. svm->vmcb->save.kernel_gs_base = data;
  952. break;
  953. case MSR_SYSCALL_MASK:
  954. svm->vmcb->save.sfmask = data;
  955. break;
  956. #endif
  957. case MSR_IA32_SYSENTER_CS:
  958. svm->vmcb->save.sysenter_cs = data;
  959. break;
  960. case MSR_IA32_SYSENTER_EIP:
  961. svm->vmcb->save.sysenter_eip = data;
  962. break;
  963. case MSR_IA32_SYSENTER_ESP:
  964. svm->vmcb->save.sysenter_esp = data;
  965. break;
  966. default:
  967. return kvm_set_msr_common(vcpu, ecx, data);
  968. }
  969. return 0;
  970. }
  971. static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  972. {
  973. u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
  974. u64 data = (svm->vmcb->save.rax & -1u)
  975. | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
  976. svm->next_rip = svm->vmcb->save.rip + 2;
  977. if (svm_set_msr(&svm->vcpu, ecx, data))
  978. svm_inject_gp(&svm->vcpu, 0);
  979. else
  980. skip_emulated_instruction(&svm->vcpu);
  981. return 1;
  982. }
  983. static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  984. {
  985. if (svm->vmcb->control.exit_info_1)
  986. return wrmsr_interception(svm, kvm_run);
  987. else
  988. return rdmsr_interception(svm, kvm_run);
  989. }
  990. static int interrupt_window_interception(struct vcpu_svm *svm,
  991. struct kvm_run *kvm_run)
  992. {
  993. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  994. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  995. /*
  996. * If the user space waits to inject interrupts, exit as soon as
  997. * possible
  998. */
  999. if (kvm_run->request_interrupt_window &&
  1000. !svm->vcpu.irq_summary) {
  1001. ++svm->vcpu.stat.irq_window_exits;
  1002. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1003. return 0;
  1004. }
  1005. return 1;
  1006. }
  1007. static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
  1008. struct kvm_run *kvm_run) = {
  1009. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1010. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1011. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1012. /* for now: */
  1013. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1014. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1015. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1016. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1017. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1018. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1019. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1020. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1021. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1022. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1023. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1024. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1025. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1026. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1027. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1028. [SVM_EXIT_INTR] = nop_on_interception,
  1029. [SVM_EXIT_NMI] = nop_on_interception,
  1030. [SVM_EXIT_SMI] = nop_on_interception,
  1031. [SVM_EXIT_INIT] = nop_on_interception,
  1032. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1033. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1034. [SVM_EXIT_CPUID] = cpuid_interception,
  1035. [SVM_EXIT_HLT] = halt_interception,
  1036. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1037. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1038. [SVM_EXIT_IOIO] = io_interception,
  1039. [SVM_EXIT_MSR] = msr_interception,
  1040. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1041. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1042. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1043. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1044. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1045. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1046. [SVM_EXIT_STGI] = invalid_op_interception,
  1047. [SVM_EXIT_CLGI] = invalid_op_interception,
  1048. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1049. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1050. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1051. };
  1052. static int handle_exit(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1053. {
  1054. u32 exit_code = svm->vmcb->control.exit_code;
  1055. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  1056. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
  1057. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1058. "exit_code 0x%x\n",
  1059. __FUNCTION__, svm->vmcb->control.exit_int_info,
  1060. exit_code);
  1061. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1062. || svm_exit_handlers[exit_code] == 0) {
  1063. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1064. kvm_run->hw.hardware_exit_reason = exit_code;
  1065. return 0;
  1066. }
  1067. return svm_exit_handlers[exit_code](svm, kvm_run);
  1068. }
  1069. static void reload_tss(struct kvm_vcpu *vcpu)
  1070. {
  1071. int cpu = raw_smp_processor_id();
  1072. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1073. svm_data->tss_desc->type = 9; //available 32/64-bit TSS
  1074. load_TR_desc();
  1075. }
  1076. static void pre_svm_run(struct vcpu_svm *svm)
  1077. {
  1078. int cpu = raw_smp_processor_id();
  1079. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1080. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1081. if (svm->vcpu.cpu != cpu ||
  1082. svm->asid_generation != svm_data->asid_generation)
  1083. new_asid(svm, svm_data);
  1084. }
  1085. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  1086. {
  1087. struct vmcb_control_area *control;
  1088. control = &svm->vmcb->control;
  1089. control->int_vector = irq;
  1090. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1091. control->int_ctl |= V_IRQ_MASK |
  1092. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1093. }
  1094. static void svm_intr_assist(struct vcpu_svm *svm)
  1095. {
  1096. struct vmcb *vmcb = svm->vmcb;
  1097. int intr_vector = -1;
  1098. if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
  1099. ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
  1100. intr_vector = vmcb->control.exit_int_info &
  1101. SVM_EVTINJ_VEC_MASK;
  1102. vmcb->control.exit_int_info = 0;
  1103. svm_inject_irq(svm, intr_vector);
  1104. return;
  1105. }
  1106. if (vmcb->control.int_ctl & V_IRQ_MASK)
  1107. return;
  1108. if (!kvm_cpu_has_interrupt(&svm->vcpu))
  1109. return;
  1110. if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
  1111. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
  1112. (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
  1113. /* unable to deliver irq, set pending irq */
  1114. vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
  1115. svm_inject_irq(svm, 0x0);
  1116. return;
  1117. }
  1118. /* Okay, we can deliver the interrupt: grab it and update PIC state. */
  1119. intr_vector = kvm_cpu_get_interrupt(&svm->vcpu);
  1120. svm_inject_irq(svm, intr_vector);
  1121. }
  1122. static void kvm_reput_irq(struct vcpu_svm *svm)
  1123. {
  1124. struct vmcb_control_area *control = &svm->vmcb->control;
  1125. if ((control->int_ctl & V_IRQ_MASK)
  1126. && !irqchip_in_kernel(svm->vcpu.kvm)) {
  1127. control->int_ctl &= ~V_IRQ_MASK;
  1128. push_irq(&svm->vcpu, control->int_vector);
  1129. }
  1130. svm->vcpu.interrupt_window_open =
  1131. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1132. }
  1133. static void svm_do_inject_vector(struct vcpu_svm *svm)
  1134. {
  1135. struct kvm_vcpu *vcpu = &svm->vcpu;
  1136. int word_index = __ffs(vcpu->irq_summary);
  1137. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1138. int irq = word_index * BITS_PER_LONG + bit_index;
  1139. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1140. if (!vcpu->irq_pending[word_index])
  1141. clear_bit(word_index, &vcpu->irq_summary);
  1142. svm_inject_irq(svm, irq);
  1143. }
  1144. static void do_interrupt_requests(struct vcpu_svm *svm,
  1145. struct kvm_run *kvm_run)
  1146. {
  1147. struct vmcb_control_area *control = &svm->vmcb->control;
  1148. svm->vcpu.interrupt_window_open =
  1149. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1150. (svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1151. if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
  1152. /*
  1153. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1154. */
  1155. svm_do_inject_vector(svm);
  1156. /*
  1157. * Interrupts blocked. Wait for unblock.
  1158. */
  1159. if (!svm->vcpu.interrupt_window_open &&
  1160. (svm->vcpu.irq_summary || kvm_run->request_interrupt_window)) {
  1161. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1162. } else
  1163. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1164. }
  1165. static void post_kvm_run_save(struct vcpu_svm *svm,
  1166. struct kvm_run *kvm_run)
  1167. {
  1168. if (irqchip_in_kernel(svm->vcpu.kvm))
  1169. kvm_run->ready_for_interrupt_injection = 1;
  1170. else
  1171. kvm_run->ready_for_interrupt_injection =
  1172. (svm->vcpu.interrupt_window_open &&
  1173. svm->vcpu.irq_summary == 0);
  1174. kvm_run->if_flag = (svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0;
  1175. kvm_run->cr8 = get_cr8(&svm->vcpu);
  1176. kvm_run->apic_base = kvm_get_apic_base(&svm->vcpu);
  1177. }
  1178. /*
  1179. * Check if userspace requested an interrupt window, and that the
  1180. * interrupt window is open.
  1181. *
  1182. * No need to exit to userspace if we already have an interrupt queued.
  1183. */
  1184. static int dm_request_for_irq_injection(struct vcpu_svm *svm,
  1185. struct kvm_run *kvm_run)
  1186. {
  1187. return (!svm->vcpu.irq_summary &&
  1188. kvm_run->request_interrupt_window &&
  1189. svm->vcpu.interrupt_window_open &&
  1190. (svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1191. }
  1192. static void save_db_regs(unsigned long *db_regs)
  1193. {
  1194. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1195. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1196. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1197. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1198. }
  1199. static void load_db_regs(unsigned long *db_regs)
  1200. {
  1201. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1202. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1203. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1204. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1205. }
  1206. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1207. {
  1208. force_new_asid(vcpu);
  1209. }
  1210. static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1211. {
  1212. struct vcpu_svm *svm = to_svm(vcpu);
  1213. u16 fs_selector;
  1214. u16 gs_selector;
  1215. u16 ldt_selector;
  1216. int r;
  1217. again:
  1218. r = kvm_mmu_reload(vcpu);
  1219. if (unlikely(r))
  1220. return r;
  1221. clgi();
  1222. if (signal_pending(current)) {
  1223. stgi();
  1224. ++vcpu->stat.signal_exits;
  1225. post_kvm_run_save(svm, kvm_run);
  1226. kvm_run->exit_reason = KVM_EXIT_INTR;
  1227. return -EINTR;
  1228. }
  1229. if (irqchip_in_kernel(vcpu->kvm))
  1230. svm_intr_assist(svm);
  1231. else if (!vcpu->mmio_read_completed)
  1232. do_interrupt_requests(svm, kvm_run);
  1233. vcpu->guest_mode = 1;
  1234. if (vcpu->requests)
  1235. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1236. svm_flush_tlb(vcpu);
  1237. pre_svm_run(svm);
  1238. save_host_msrs(vcpu);
  1239. fs_selector = read_fs();
  1240. gs_selector = read_gs();
  1241. ldt_selector = read_ldt();
  1242. svm->host_cr2 = kvm_read_cr2();
  1243. svm->host_dr6 = read_dr6();
  1244. svm->host_dr7 = read_dr7();
  1245. svm->vmcb->save.cr2 = vcpu->cr2;
  1246. if (svm->vmcb->save.dr7 & 0xff) {
  1247. write_dr7(0);
  1248. save_db_regs(svm->host_db_regs);
  1249. load_db_regs(svm->db_regs);
  1250. }
  1251. if (vcpu->fpu_active) {
  1252. fx_save(&vcpu->host_fx_image);
  1253. fx_restore(&vcpu->guest_fx_image);
  1254. }
  1255. asm volatile (
  1256. #ifdef CONFIG_X86_64
  1257. "push %%rbx; push %%rcx; push %%rdx;"
  1258. "push %%rsi; push %%rdi; push %%rbp;"
  1259. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1260. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1261. #else
  1262. "push %%ebx; push %%ecx; push %%edx;"
  1263. "push %%esi; push %%edi; push %%ebp;"
  1264. #endif
  1265. #ifdef CONFIG_X86_64
  1266. "mov %c[rbx](%[svm]), %%rbx \n\t"
  1267. "mov %c[rcx](%[svm]), %%rcx \n\t"
  1268. "mov %c[rdx](%[svm]), %%rdx \n\t"
  1269. "mov %c[rsi](%[svm]), %%rsi \n\t"
  1270. "mov %c[rdi](%[svm]), %%rdi \n\t"
  1271. "mov %c[rbp](%[svm]), %%rbp \n\t"
  1272. "mov %c[r8](%[svm]), %%r8 \n\t"
  1273. "mov %c[r9](%[svm]), %%r9 \n\t"
  1274. "mov %c[r10](%[svm]), %%r10 \n\t"
  1275. "mov %c[r11](%[svm]), %%r11 \n\t"
  1276. "mov %c[r12](%[svm]), %%r12 \n\t"
  1277. "mov %c[r13](%[svm]), %%r13 \n\t"
  1278. "mov %c[r14](%[svm]), %%r14 \n\t"
  1279. "mov %c[r15](%[svm]), %%r15 \n\t"
  1280. #else
  1281. "mov %c[rbx](%[svm]), %%ebx \n\t"
  1282. "mov %c[rcx](%[svm]), %%ecx \n\t"
  1283. "mov %c[rdx](%[svm]), %%edx \n\t"
  1284. "mov %c[rsi](%[svm]), %%esi \n\t"
  1285. "mov %c[rdi](%[svm]), %%edi \n\t"
  1286. "mov %c[rbp](%[svm]), %%ebp \n\t"
  1287. #endif
  1288. #ifdef CONFIG_X86_64
  1289. /* Enter guest mode */
  1290. "push %%rax \n\t"
  1291. "mov %c[vmcb](%[svm]), %%rax \n\t"
  1292. SVM_VMLOAD "\n\t"
  1293. SVM_VMRUN "\n\t"
  1294. SVM_VMSAVE "\n\t"
  1295. "pop %%rax \n\t"
  1296. #else
  1297. /* Enter guest mode */
  1298. "push %%eax \n\t"
  1299. "mov %c[vmcb](%[svm]), %%eax \n\t"
  1300. SVM_VMLOAD "\n\t"
  1301. SVM_VMRUN "\n\t"
  1302. SVM_VMSAVE "\n\t"
  1303. "pop %%eax \n\t"
  1304. #endif
  1305. /* Save guest registers, load host registers */
  1306. #ifdef CONFIG_X86_64
  1307. "mov %%rbx, %c[rbx](%[svm]) \n\t"
  1308. "mov %%rcx, %c[rcx](%[svm]) \n\t"
  1309. "mov %%rdx, %c[rdx](%[svm]) \n\t"
  1310. "mov %%rsi, %c[rsi](%[svm]) \n\t"
  1311. "mov %%rdi, %c[rdi](%[svm]) \n\t"
  1312. "mov %%rbp, %c[rbp](%[svm]) \n\t"
  1313. "mov %%r8, %c[r8](%[svm]) \n\t"
  1314. "mov %%r9, %c[r9](%[svm]) \n\t"
  1315. "mov %%r10, %c[r10](%[svm]) \n\t"
  1316. "mov %%r11, %c[r11](%[svm]) \n\t"
  1317. "mov %%r12, %c[r12](%[svm]) \n\t"
  1318. "mov %%r13, %c[r13](%[svm]) \n\t"
  1319. "mov %%r14, %c[r14](%[svm]) \n\t"
  1320. "mov %%r15, %c[r15](%[svm]) \n\t"
  1321. "pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1322. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1323. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1324. "pop %%rdx; pop %%rcx; pop %%rbx; \n\t"
  1325. #else
  1326. "mov %%ebx, %c[rbx](%[svm]) \n\t"
  1327. "mov %%ecx, %c[rcx](%[svm]) \n\t"
  1328. "mov %%edx, %c[rdx](%[svm]) \n\t"
  1329. "mov %%esi, %c[rsi](%[svm]) \n\t"
  1330. "mov %%edi, %c[rdi](%[svm]) \n\t"
  1331. "mov %%ebp, %c[rbp](%[svm]) \n\t"
  1332. "pop %%ebp; pop %%edi; pop %%esi;"
  1333. "pop %%edx; pop %%ecx; pop %%ebx; \n\t"
  1334. #endif
  1335. :
  1336. : [svm]"a"(svm),
  1337. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1338. [rbx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBX])),
  1339. [rcx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RCX])),
  1340. [rdx]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDX])),
  1341. [rsi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RSI])),
  1342. [rdi]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RDI])),
  1343. [rbp]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_RBP]))
  1344. #ifdef CONFIG_X86_64
  1345. ,[r8 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R8])),
  1346. [r9 ]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R9 ])),
  1347. [r10]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R10])),
  1348. [r11]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R11])),
  1349. [r12]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R12])),
  1350. [r13]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R13])),
  1351. [r14]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R14])),
  1352. [r15]"i"(offsetof(struct vcpu_svm,vcpu.regs[VCPU_REGS_R15]))
  1353. #endif
  1354. : "cc", "memory" );
  1355. vcpu->guest_mode = 0;
  1356. if (vcpu->fpu_active) {
  1357. fx_save(&vcpu->guest_fx_image);
  1358. fx_restore(&vcpu->host_fx_image);
  1359. }
  1360. if ((svm->vmcb->save.dr7 & 0xff))
  1361. load_db_regs(svm->host_db_regs);
  1362. vcpu->cr2 = svm->vmcb->save.cr2;
  1363. write_dr6(svm->host_dr6);
  1364. write_dr7(svm->host_dr7);
  1365. kvm_write_cr2(svm->host_cr2);
  1366. load_fs(fs_selector);
  1367. load_gs(gs_selector);
  1368. load_ldt(ldt_selector);
  1369. load_host_msrs(vcpu);
  1370. reload_tss(vcpu);
  1371. /*
  1372. * Profile KVM exit RIPs:
  1373. */
  1374. if (unlikely(prof_on == KVM_PROFILING))
  1375. profile_hit(KVM_PROFILING,
  1376. (void *)(unsigned long)svm->vmcb->save.rip);
  1377. stgi();
  1378. kvm_reput_irq(svm);
  1379. svm->next_rip = 0;
  1380. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1381. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1382. kvm_run->fail_entry.hardware_entry_failure_reason
  1383. = svm->vmcb->control.exit_code;
  1384. post_kvm_run_save(svm, kvm_run);
  1385. return 0;
  1386. }
  1387. r = handle_exit(svm, kvm_run);
  1388. if (r > 0) {
  1389. if (dm_request_for_irq_injection(svm, kvm_run)) {
  1390. ++vcpu->stat.request_irq_exits;
  1391. post_kvm_run_save(svm, kvm_run);
  1392. kvm_run->exit_reason = KVM_EXIT_INTR;
  1393. return -EINTR;
  1394. }
  1395. kvm_resched(vcpu);
  1396. goto again;
  1397. }
  1398. post_kvm_run_save(svm, kvm_run);
  1399. return r;
  1400. }
  1401. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1402. {
  1403. struct vcpu_svm *svm = to_svm(vcpu);
  1404. svm->vmcb->save.cr3 = root;
  1405. force_new_asid(vcpu);
  1406. if (vcpu->fpu_active) {
  1407. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1408. svm->vmcb->save.cr0 |= X86_CR0_TS;
  1409. vcpu->fpu_active = 0;
  1410. }
  1411. }
  1412. static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
  1413. unsigned long addr,
  1414. uint32_t err_code)
  1415. {
  1416. struct vcpu_svm *svm = to_svm(vcpu);
  1417. uint32_t exit_int_info = svm->vmcb->control.exit_int_info;
  1418. ++vcpu->stat.pf_guest;
  1419. if (is_page_fault(exit_int_info)) {
  1420. svm->vmcb->control.event_inj_err = 0;
  1421. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1422. SVM_EVTINJ_VALID_ERR |
  1423. SVM_EVTINJ_TYPE_EXEPT |
  1424. DF_VECTOR;
  1425. return;
  1426. }
  1427. vcpu->cr2 = addr;
  1428. svm->vmcb->save.cr2 = addr;
  1429. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID |
  1430. SVM_EVTINJ_VALID_ERR |
  1431. SVM_EVTINJ_TYPE_EXEPT |
  1432. PF_VECTOR;
  1433. svm->vmcb->control.event_inj_err = err_code;
  1434. }
  1435. static int is_disabled(void)
  1436. {
  1437. u64 vm_cr;
  1438. rdmsrl(MSR_VM_CR, vm_cr);
  1439. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  1440. return 1;
  1441. return 0;
  1442. }
  1443. static void
  1444. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1445. {
  1446. /*
  1447. * Patch in the VMMCALL instruction:
  1448. */
  1449. hypercall[0] = 0x0f;
  1450. hypercall[1] = 0x01;
  1451. hypercall[2] = 0xd9;
  1452. hypercall[3] = 0xc3;
  1453. }
  1454. static void svm_check_processor_compat(void *rtn)
  1455. {
  1456. *(int *)rtn = 0;
  1457. }
  1458. static struct kvm_arch_ops svm_arch_ops = {
  1459. .cpu_has_kvm_support = has_svm,
  1460. .disabled_by_bios = is_disabled,
  1461. .hardware_setup = svm_hardware_setup,
  1462. .hardware_unsetup = svm_hardware_unsetup,
  1463. .check_processor_compatibility = svm_check_processor_compat,
  1464. .hardware_enable = svm_hardware_enable,
  1465. .hardware_disable = svm_hardware_disable,
  1466. .vcpu_create = svm_create_vcpu,
  1467. .vcpu_free = svm_free_vcpu,
  1468. .vcpu_load = svm_vcpu_load,
  1469. .vcpu_put = svm_vcpu_put,
  1470. .vcpu_decache = svm_vcpu_decache,
  1471. .set_guest_debug = svm_guest_debug,
  1472. .get_msr = svm_get_msr,
  1473. .set_msr = svm_set_msr,
  1474. .get_segment_base = svm_get_segment_base,
  1475. .get_segment = svm_get_segment,
  1476. .set_segment = svm_set_segment,
  1477. .get_cs_db_l_bits = svm_get_cs_db_l_bits,
  1478. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  1479. .set_cr0 = svm_set_cr0,
  1480. .set_cr3 = svm_set_cr3,
  1481. .set_cr4 = svm_set_cr4,
  1482. .set_efer = svm_set_efer,
  1483. .get_idt = svm_get_idt,
  1484. .set_idt = svm_set_idt,
  1485. .get_gdt = svm_get_gdt,
  1486. .set_gdt = svm_set_gdt,
  1487. .get_dr = svm_get_dr,
  1488. .set_dr = svm_set_dr,
  1489. .cache_regs = svm_cache_regs,
  1490. .decache_regs = svm_decache_regs,
  1491. .get_rflags = svm_get_rflags,
  1492. .set_rflags = svm_set_rflags,
  1493. .invlpg = svm_invlpg,
  1494. .tlb_flush = svm_flush_tlb,
  1495. .inject_page_fault = svm_inject_page_fault,
  1496. .inject_gp = svm_inject_gp,
  1497. .run = svm_vcpu_run,
  1498. .skip_emulated_instruction = skip_emulated_instruction,
  1499. .patch_hypercall = svm_patch_hypercall,
  1500. };
  1501. static int __init svm_init(void)
  1502. {
  1503. return kvm_init_arch(&svm_arch_ops, sizeof(struct vcpu_svm),
  1504. THIS_MODULE);
  1505. }
  1506. static void __exit svm_exit(void)
  1507. {
  1508. kvm_exit_arch();
  1509. }
  1510. module_init(svm_init)
  1511. module_exit(svm_exit)