delayed-inode.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  60. }
  61. static inline int btrfs_is_continuous_delayed_item(
  62. struct btrfs_delayed_item *item1,
  63. struct btrfs_delayed_item *item2)
  64. {
  65. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  66. item1->key.objectid == item2->key.objectid &&
  67. item1->key.type == item2->key.type &&
  68. item1->key.offset + 1 == item2->key.offset)
  69. return 1;
  70. return 0;
  71. }
  72. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  73. struct btrfs_root *root)
  74. {
  75. return root->fs_info->delayed_root;
  76. }
  77. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  78. {
  79. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  80. struct btrfs_root *root = btrfs_inode->root;
  81. u64 ino = btrfs_ino(inode);
  82. struct btrfs_delayed_node *node;
  83. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  84. if (node) {
  85. atomic_inc(&node->refs);
  86. return node;
  87. }
  88. spin_lock(&root->inode_lock);
  89. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  90. if (node) {
  91. if (btrfs_inode->delayed_node) {
  92. atomic_inc(&node->refs); /* can be accessed */
  93. BUG_ON(btrfs_inode->delayed_node != node);
  94. spin_unlock(&root->inode_lock);
  95. return node;
  96. }
  97. btrfs_inode->delayed_node = node;
  98. atomic_inc(&node->refs); /* can be accessed */
  99. atomic_inc(&node->refs); /* cached in the inode */
  100. spin_unlock(&root->inode_lock);
  101. return node;
  102. }
  103. spin_unlock(&root->inode_lock);
  104. return NULL;
  105. }
  106. /* Will return either the node or PTR_ERR(-ENOMEM) */
  107. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  108. struct inode *inode)
  109. {
  110. struct btrfs_delayed_node *node;
  111. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  112. struct btrfs_root *root = btrfs_inode->root;
  113. u64 ino = btrfs_ino(inode);
  114. int ret;
  115. again:
  116. node = btrfs_get_delayed_node(inode);
  117. if (node)
  118. return node;
  119. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  120. if (!node)
  121. return ERR_PTR(-ENOMEM);
  122. btrfs_init_delayed_node(node, root, ino);
  123. atomic_inc(&node->refs); /* cached in the btrfs inode */
  124. atomic_inc(&node->refs); /* can be accessed */
  125. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  126. if (ret) {
  127. kmem_cache_free(delayed_node_cache, node);
  128. return ERR_PTR(ret);
  129. }
  130. spin_lock(&root->inode_lock);
  131. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  132. if (ret == -EEXIST) {
  133. kmem_cache_free(delayed_node_cache, node);
  134. spin_unlock(&root->inode_lock);
  135. radix_tree_preload_end();
  136. goto again;
  137. }
  138. btrfs_inode->delayed_node = node;
  139. spin_unlock(&root->inode_lock);
  140. radix_tree_preload_end();
  141. return node;
  142. }
  143. /*
  144. * Call it when holding delayed_node->mutex
  145. *
  146. * If mod = 1, add this node into the prepared list.
  147. */
  148. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  149. struct btrfs_delayed_node *node,
  150. int mod)
  151. {
  152. spin_lock(&root->lock);
  153. if (node->in_list) {
  154. if (!list_empty(&node->p_list))
  155. list_move_tail(&node->p_list, &root->prepare_list);
  156. else if (mod)
  157. list_add_tail(&node->p_list, &root->prepare_list);
  158. } else {
  159. list_add_tail(&node->n_list, &root->node_list);
  160. list_add_tail(&node->p_list, &root->prepare_list);
  161. atomic_inc(&node->refs); /* inserted into list */
  162. root->nodes++;
  163. node->in_list = 1;
  164. }
  165. spin_unlock(&root->lock);
  166. }
  167. /* Call it when holding delayed_node->mutex */
  168. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  169. struct btrfs_delayed_node *node)
  170. {
  171. spin_lock(&root->lock);
  172. if (node->in_list) {
  173. root->nodes--;
  174. atomic_dec(&node->refs); /* not in the list */
  175. list_del_init(&node->n_list);
  176. if (!list_empty(&node->p_list))
  177. list_del_init(&node->p_list);
  178. node->in_list = 0;
  179. }
  180. spin_unlock(&root->lock);
  181. }
  182. struct btrfs_delayed_node *btrfs_first_delayed_node(
  183. struct btrfs_delayed_root *delayed_root)
  184. {
  185. struct list_head *p;
  186. struct btrfs_delayed_node *node = NULL;
  187. spin_lock(&delayed_root->lock);
  188. if (list_empty(&delayed_root->node_list))
  189. goto out;
  190. p = delayed_root->node_list.next;
  191. node = list_entry(p, struct btrfs_delayed_node, n_list);
  192. atomic_inc(&node->refs);
  193. out:
  194. spin_unlock(&delayed_root->lock);
  195. return node;
  196. }
  197. struct btrfs_delayed_node *btrfs_next_delayed_node(
  198. struct btrfs_delayed_node *node)
  199. {
  200. struct btrfs_delayed_root *delayed_root;
  201. struct list_head *p;
  202. struct btrfs_delayed_node *next = NULL;
  203. delayed_root = node->root->fs_info->delayed_root;
  204. spin_lock(&delayed_root->lock);
  205. if (!node->in_list) { /* not in the list */
  206. if (list_empty(&delayed_root->node_list))
  207. goto out;
  208. p = delayed_root->node_list.next;
  209. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  210. goto out;
  211. else
  212. p = node->n_list.next;
  213. next = list_entry(p, struct btrfs_delayed_node, n_list);
  214. atomic_inc(&next->refs);
  215. out:
  216. spin_unlock(&delayed_root->lock);
  217. return next;
  218. }
  219. static void __btrfs_release_delayed_node(
  220. struct btrfs_delayed_node *delayed_node,
  221. int mod)
  222. {
  223. struct btrfs_delayed_root *delayed_root;
  224. if (!delayed_node)
  225. return;
  226. delayed_root = delayed_node->root->fs_info->delayed_root;
  227. mutex_lock(&delayed_node->mutex);
  228. if (delayed_node->count)
  229. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  230. else
  231. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  232. mutex_unlock(&delayed_node->mutex);
  233. if (atomic_dec_and_test(&delayed_node->refs)) {
  234. struct btrfs_root *root = delayed_node->root;
  235. spin_lock(&root->inode_lock);
  236. if (atomic_read(&delayed_node->refs) == 0) {
  237. radix_tree_delete(&root->delayed_nodes_tree,
  238. delayed_node->inode_id);
  239. kmem_cache_free(delayed_node_cache, delayed_node);
  240. }
  241. spin_unlock(&root->inode_lock);
  242. }
  243. }
  244. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  245. {
  246. __btrfs_release_delayed_node(node, 0);
  247. }
  248. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  249. struct btrfs_delayed_root *delayed_root)
  250. {
  251. struct list_head *p;
  252. struct btrfs_delayed_node *node = NULL;
  253. spin_lock(&delayed_root->lock);
  254. if (list_empty(&delayed_root->prepare_list))
  255. goto out;
  256. p = delayed_root->prepare_list.next;
  257. list_del_init(p);
  258. node = list_entry(p, struct btrfs_delayed_node, p_list);
  259. atomic_inc(&node->refs);
  260. out:
  261. spin_unlock(&delayed_root->lock);
  262. return node;
  263. }
  264. static inline void btrfs_release_prepared_delayed_node(
  265. struct btrfs_delayed_node *node)
  266. {
  267. __btrfs_release_delayed_node(node, 1);
  268. }
  269. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  270. {
  271. struct btrfs_delayed_item *item;
  272. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  273. if (item) {
  274. item->data_len = data_len;
  275. item->ins_or_del = 0;
  276. item->bytes_reserved = 0;
  277. item->delayed_node = NULL;
  278. atomic_set(&item->refs, 1);
  279. }
  280. return item;
  281. }
  282. /*
  283. * __btrfs_lookup_delayed_item - look up the delayed item by key
  284. * @delayed_node: pointer to the delayed node
  285. * @key: the key to look up
  286. * @prev: used to store the prev item if the right item isn't found
  287. * @next: used to store the next item if the right item isn't found
  288. *
  289. * Note: if we don't find the right item, we will return the prev item and
  290. * the next item.
  291. */
  292. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  293. struct rb_root *root,
  294. struct btrfs_key *key,
  295. struct btrfs_delayed_item **prev,
  296. struct btrfs_delayed_item **next)
  297. {
  298. struct rb_node *node, *prev_node = NULL;
  299. struct btrfs_delayed_item *delayed_item = NULL;
  300. int ret = 0;
  301. node = root->rb_node;
  302. while (node) {
  303. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  304. rb_node);
  305. prev_node = node;
  306. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  307. if (ret < 0)
  308. node = node->rb_right;
  309. else if (ret > 0)
  310. node = node->rb_left;
  311. else
  312. return delayed_item;
  313. }
  314. if (prev) {
  315. if (!prev_node)
  316. *prev = NULL;
  317. else if (ret < 0)
  318. *prev = delayed_item;
  319. else if ((node = rb_prev(prev_node)) != NULL) {
  320. *prev = rb_entry(node, struct btrfs_delayed_item,
  321. rb_node);
  322. } else
  323. *prev = NULL;
  324. }
  325. if (next) {
  326. if (!prev_node)
  327. *next = NULL;
  328. else if (ret > 0)
  329. *next = delayed_item;
  330. else if ((node = rb_next(prev_node)) != NULL) {
  331. *next = rb_entry(node, struct btrfs_delayed_item,
  332. rb_node);
  333. } else
  334. *next = NULL;
  335. }
  336. return NULL;
  337. }
  338. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  339. struct btrfs_delayed_node *delayed_node,
  340. struct btrfs_key *key)
  341. {
  342. struct btrfs_delayed_item *item;
  343. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  344. NULL, NULL);
  345. return item;
  346. }
  347. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  348. struct btrfs_delayed_node *delayed_node,
  349. struct btrfs_key *key)
  350. {
  351. struct btrfs_delayed_item *item;
  352. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  353. NULL, NULL);
  354. return item;
  355. }
  356. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  357. struct btrfs_delayed_node *delayed_node,
  358. struct btrfs_key *key)
  359. {
  360. struct btrfs_delayed_item *item, *next;
  361. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  362. NULL, &next);
  363. if (!item)
  364. item = next;
  365. return item;
  366. }
  367. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  368. struct btrfs_delayed_node *delayed_node,
  369. struct btrfs_key *key)
  370. {
  371. struct btrfs_delayed_item *item, *next;
  372. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  373. NULL, &next);
  374. if (!item)
  375. item = next;
  376. return item;
  377. }
  378. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  379. struct btrfs_delayed_item *ins,
  380. int action)
  381. {
  382. struct rb_node **p, *node;
  383. struct rb_node *parent_node = NULL;
  384. struct rb_root *root;
  385. struct btrfs_delayed_item *item;
  386. int cmp;
  387. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  388. root = &delayed_node->ins_root;
  389. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  390. root = &delayed_node->del_root;
  391. else
  392. BUG();
  393. p = &root->rb_node;
  394. node = &ins->rb_node;
  395. while (*p) {
  396. parent_node = *p;
  397. item = rb_entry(parent_node, struct btrfs_delayed_item,
  398. rb_node);
  399. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  400. if (cmp < 0)
  401. p = &(*p)->rb_right;
  402. else if (cmp > 0)
  403. p = &(*p)->rb_left;
  404. else
  405. return -EEXIST;
  406. }
  407. rb_link_node(node, parent_node, p);
  408. rb_insert_color(node, root);
  409. ins->delayed_node = delayed_node;
  410. ins->ins_or_del = action;
  411. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  412. action == BTRFS_DELAYED_INSERTION_ITEM &&
  413. ins->key.offset >= delayed_node->index_cnt)
  414. delayed_node->index_cnt = ins->key.offset + 1;
  415. delayed_node->count++;
  416. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  417. return 0;
  418. }
  419. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  420. struct btrfs_delayed_item *item)
  421. {
  422. return __btrfs_add_delayed_item(node, item,
  423. BTRFS_DELAYED_INSERTION_ITEM);
  424. }
  425. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  426. struct btrfs_delayed_item *item)
  427. {
  428. return __btrfs_add_delayed_item(node, item,
  429. BTRFS_DELAYED_DELETION_ITEM);
  430. }
  431. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  432. {
  433. struct rb_root *root;
  434. struct btrfs_delayed_root *delayed_root;
  435. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  436. BUG_ON(!delayed_root);
  437. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  438. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  439. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  440. root = &delayed_item->delayed_node->ins_root;
  441. else
  442. root = &delayed_item->delayed_node->del_root;
  443. rb_erase(&delayed_item->rb_node, root);
  444. delayed_item->delayed_node->count--;
  445. if (atomic_dec_return(&delayed_root->items) <
  446. BTRFS_DELAYED_BACKGROUND &&
  447. waitqueue_active(&delayed_root->wait))
  448. wake_up(&delayed_root->wait);
  449. }
  450. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  451. {
  452. if (item) {
  453. __btrfs_remove_delayed_item(item);
  454. if (atomic_dec_and_test(&item->refs))
  455. kfree(item);
  456. }
  457. }
  458. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  459. struct btrfs_delayed_node *delayed_node)
  460. {
  461. struct rb_node *p;
  462. struct btrfs_delayed_item *item = NULL;
  463. p = rb_first(&delayed_node->ins_root);
  464. if (p)
  465. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  466. return item;
  467. }
  468. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  469. struct btrfs_delayed_node *delayed_node)
  470. {
  471. struct rb_node *p;
  472. struct btrfs_delayed_item *item = NULL;
  473. p = rb_first(&delayed_node->del_root);
  474. if (p)
  475. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  476. return item;
  477. }
  478. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  479. struct btrfs_delayed_item *item)
  480. {
  481. struct rb_node *p;
  482. struct btrfs_delayed_item *next = NULL;
  483. p = rb_next(&item->rb_node);
  484. if (p)
  485. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  486. return next;
  487. }
  488. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  489. u64 root_id)
  490. {
  491. struct btrfs_key root_key;
  492. if (root->objectid == root_id)
  493. return root;
  494. root_key.objectid = root_id;
  495. root_key.type = BTRFS_ROOT_ITEM_KEY;
  496. root_key.offset = (u64)-1;
  497. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  498. }
  499. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  500. struct btrfs_root *root,
  501. struct btrfs_delayed_item *item)
  502. {
  503. struct btrfs_block_rsv *src_rsv;
  504. struct btrfs_block_rsv *dst_rsv;
  505. u64 num_bytes;
  506. int ret;
  507. if (!trans->bytes_reserved)
  508. return 0;
  509. src_rsv = trans->block_rsv;
  510. dst_rsv = &root->fs_info->delayed_block_rsv;
  511. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  512. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  513. if (!ret) {
  514. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  515. item->key.objectid,
  516. num_bytes, 1);
  517. item->bytes_reserved = num_bytes;
  518. }
  519. return ret;
  520. }
  521. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  522. struct btrfs_delayed_item *item)
  523. {
  524. struct btrfs_block_rsv *rsv;
  525. if (!item->bytes_reserved)
  526. return;
  527. rsv = &root->fs_info->delayed_block_rsv;
  528. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  529. item->key.objectid, item->bytes_reserved,
  530. 0);
  531. btrfs_block_rsv_release(root, rsv,
  532. item->bytes_reserved);
  533. }
  534. static int btrfs_delayed_inode_reserve_metadata(
  535. struct btrfs_trans_handle *trans,
  536. struct btrfs_root *root,
  537. struct inode *inode,
  538. struct btrfs_delayed_node *node)
  539. {
  540. struct btrfs_block_rsv *src_rsv;
  541. struct btrfs_block_rsv *dst_rsv;
  542. u64 num_bytes;
  543. int ret;
  544. bool release = false;
  545. src_rsv = trans->block_rsv;
  546. dst_rsv = &root->fs_info->delayed_block_rsv;
  547. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  548. /*
  549. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  550. * which doesn't reserve space for speed. This is a problem since we
  551. * still need to reserve space for this update, so try to reserve the
  552. * space.
  553. *
  554. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  555. * we're accounted for.
  556. */
  557. if (!src_rsv || (!trans->bytes_reserved &&
  558. src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
  559. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  560. BTRFS_RESERVE_NO_FLUSH);
  561. /*
  562. * Since we're under a transaction reserve_metadata_bytes could
  563. * try to commit the transaction which will make it return
  564. * EAGAIN to make us stop the transaction we have, so return
  565. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  566. */
  567. if (ret == -EAGAIN)
  568. ret = -ENOSPC;
  569. if (!ret) {
  570. node->bytes_reserved = num_bytes;
  571. trace_btrfs_space_reservation(root->fs_info,
  572. "delayed_inode",
  573. btrfs_ino(inode),
  574. num_bytes, 1);
  575. }
  576. return ret;
  577. } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
  578. spin_lock(&BTRFS_I(inode)->lock);
  579. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  580. &BTRFS_I(inode)->runtime_flags)) {
  581. spin_unlock(&BTRFS_I(inode)->lock);
  582. release = true;
  583. goto migrate;
  584. }
  585. spin_unlock(&BTRFS_I(inode)->lock);
  586. /* Ok we didn't have space pre-reserved. This shouldn't happen
  587. * too often but it can happen if we do delalloc to an existing
  588. * inode which gets dirtied because of the time update, and then
  589. * isn't touched again until after the transaction commits and
  590. * then we try to write out the data. First try to be nice and
  591. * reserve something strictly for us. If not be a pain and try
  592. * to steal from the delalloc block rsv.
  593. */
  594. ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
  595. BTRFS_RESERVE_NO_FLUSH);
  596. if (!ret)
  597. goto out;
  598. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  599. if (!ret)
  600. goto out;
  601. /*
  602. * Ok this is a problem, let's just steal from the global rsv
  603. * since this really shouldn't happen that often.
  604. */
  605. WARN_ON(1);
  606. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  607. dst_rsv, num_bytes);
  608. goto out;
  609. }
  610. migrate:
  611. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  612. out:
  613. /*
  614. * Migrate only takes a reservation, it doesn't touch the size of the
  615. * block_rsv. This is to simplify people who don't normally have things
  616. * migrated from their block rsv. If they go to release their
  617. * reservation, that will decrease the size as well, so if migrate
  618. * reduced size we'd end up with a negative size. But for the
  619. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  620. * but we could in fact do this reserve/migrate dance several times
  621. * between the time we did the original reservation and we'd clean it
  622. * up. So to take care of this, release the space for the meta
  623. * reservation here. I think it may be time for a documentation page on
  624. * how block rsvs. work.
  625. */
  626. if (!ret) {
  627. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  628. btrfs_ino(inode), num_bytes, 1);
  629. node->bytes_reserved = num_bytes;
  630. }
  631. if (release) {
  632. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  633. btrfs_ino(inode), num_bytes, 0);
  634. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  635. }
  636. return ret;
  637. }
  638. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  639. struct btrfs_delayed_node *node)
  640. {
  641. struct btrfs_block_rsv *rsv;
  642. if (!node->bytes_reserved)
  643. return;
  644. rsv = &root->fs_info->delayed_block_rsv;
  645. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  646. node->inode_id, node->bytes_reserved, 0);
  647. btrfs_block_rsv_release(root, rsv,
  648. node->bytes_reserved);
  649. node->bytes_reserved = 0;
  650. }
  651. /*
  652. * This helper will insert some continuous items into the same leaf according
  653. * to the free space of the leaf.
  654. */
  655. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  656. struct btrfs_root *root,
  657. struct btrfs_path *path,
  658. struct btrfs_delayed_item *item)
  659. {
  660. struct btrfs_delayed_item *curr, *next;
  661. int free_space;
  662. int total_data_size = 0, total_size = 0;
  663. struct extent_buffer *leaf;
  664. char *data_ptr;
  665. struct btrfs_key *keys;
  666. u32 *data_size;
  667. struct list_head head;
  668. int slot;
  669. int nitems;
  670. int i;
  671. int ret = 0;
  672. BUG_ON(!path->nodes[0]);
  673. leaf = path->nodes[0];
  674. free_space = btrfs_leaf_free_space(root, leaf);
  675. INIT_LIST_HEAD(&head);
  676. next = item;
  677. nitems = 0;
  678. /*
  679. * count the number of the continuous items that we can insert in batch
  680. */
  681. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  682. free_space) {
  683. total_data_size += next->data_len;
  684. total_size += next->data_len + sizeof(struct btrfs_item);
  685. list_add_tail(&next->tree_list, &head);
  686. nitems++;
  687. curr = next;
  688. next = __btrfs_next_delayed_item(curr);
  689. if (!next)
  690. break;
  691. if (!btrfs_is_continuous_delayed_item(curr, next))
  692. break;
  693. }
  694. if (!nitems) {
  695. ret = 0;
  696. goto out;
  697. }
  698. /*
  699. * we need allocate some memory space, but it might cause the task
  700. * to sleep, so we set all locked nodes in the path to blocking locks
  701. * first.
  702. */
  703. btrfs_set_path_blocking(path);
  704. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  705. if (!keys) {
  706. ret = -ENOMEM;
  707. goto out;
  708. }
  709. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  710. if (!data_size) {
  711. ret = -ENOMEM;
  712. goto error;
  713. }
  714. /* get keys of all the delayed items */
  715. i = 0;
  716. list_for_each_entry(next, &head, tree_list) {
  717. keys[i] = next->key;
  718. data_size[i] = next->data_len;
  719. i++;
  720. }
  721. /* reset all the locked nodes in the patch to spinning locks. */
  722. btrfs_clear_path_blocking(path, NULL, 0);
  723. /* insert the keys of the items */
  724. setup_items_for_insert(trans, root, path, keys, data_size,
  725. total_data_size, total_size, nitems);
  726. /* insert the dir index items */
  727. slot = path->slots[0];
  728. list_for_each_entry_safe(curr, next, &head, tree_list) {
  729. data_ptr = btrfs_item_ptr(leaf, slot, char);
  730. write_extent_buffer(leaf, &curr->data,
  731. (unsigned long)data_ptr,
  732. curr->data_len);
  733. slot++;
  734. btrfs_delayed_item_release_metadata(root, curr);
  735. list_del(&curr->tree_list);
  736. btrfs_release_delayed_item(curr);
  737. }
  738. error:
  739. kfree(data_size);
  740. kfree(keys);
  741. out:
  742. return ret;
  743. }
  744. /*
  745. * This helper can just do simple insertion that needn't extend item for new
  746. * data, such as directory name index insertion, inode insertion.
  747. */
  748. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  749. struct btrfs_root *root,
  750. struct btrfs_path *path,
  751. struct btrfs_delayed_item *delayed_item)
  752. {
  753. struct extent_buffer *leaf;
  754. char *ptr;
  755. int ret;
  756. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  757. delayed_item->data_len);
  758. if (ret < 0 && ret != -EEXIST)
  759. return ret;
  760. leaf = path->nodes[0];
  761. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  762. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  763. delayed_item->data_len);
  764. btrfs_mark_buffer_dirty(leaf);
  765. btrfs_delayed_item_release_metadata(root, delayed_item);
  766. return 0;
  767. }
  768. /*
  769. * we insert an item first, then if there are some continuous items, we try
  770. * to insert those items into the same leaf.
  771. */
  772. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  773. struct btrfs_path *path,
  774. struct btrfs_root *root,
  775. struct btrfs_delayed_node *node)
  776. {
  777. struct btrfs_delayed_item *curr, *prev;
  778. int ret = 0;
  779. do_again:
  780. mutex_lock(&node->mutex);
  781. curr = __btrfs_first_delayed_insertion_item(node);
  782. if (!curr)
  783. goto insert_end;
  784. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  785. if (ret < 0) {
  786. btrfs_release_path(path);
  787. goto insert_end;
  788. }
  789. prev = curr;
  790. curr = __btrfs_next_delayed_item(prev);
  791. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  792. /* insert the continuous items into the same leaf */
  793. path->slots[0]++;
  794. btrfs_batch_insert_items(trans, root, path, curr);
  795. }
  796. btrfs_release_delayed_item(prev);
  797. btrfs_mark_buffer_dirty(path->nodes[0]);
  798. btrfs_release_path(path);
  799. mutex_unlock(&node->mutex);
  800. goto do_again;
  801. insert_end:
  802. mutex_unlock(&node->mutex);
  803. return ret;
  804. }
  805. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  806. struct btrfs_root *root,
  807. struct btrfs_path *path,
  808. struct btrfs_delayed_item *item)
  809. {
  810. struct btrfs_delayed_item *curr, *next;
  811. struct extent_buffer *leaf;
  812. struct btrfs_key key;
  813. struct list_head head;
  814. int nitems, i, last_item;
  815. int ret = 0;
  816. BUG_ON(!path->nodes[0]);
  817. leaf = path->nodes[0];
  818. i = path->slots[0];
  819. last_item = btrfs_header_nritems(leaf) - 1;
  820. if (i > last_item)
  821. return -ENOENT; /* FIXME: Is errno suitable? */
  822. next = item;
  823. INIT_LIST_HEAD(&head);
  824. btrfs_item_key_to_cpu(leaf, &key, i);
  825. nitems = 0;
  826. /*
  827. * count the number of the dir index items that we can delete in batch
  828. */
  829. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  830. list_add_tail(&next->tree_list, &head);
  831. nitems++;
  832. curr = next;
  833. next = __btrfs_next_delayed_item(curr);
  834. if (!next)
  835. break;
  836. if (!btrfs_is_continuous_delayed_item(curr, next))
  837. break;
  838. i++;
  839. if (i > last_item)
  840. break;
  841. btrfs_item_key_to_cpu(leaf, &key, i);
  842. }
  843. if (!nitems)
  844. return 0;
  845. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  846. if (ret)
  847. goto out;
  848. list_for_each_entry_safe(curr, next, &head, tree_list) {
  849. btrfs_delayed_item_release_metadata(root, curr);
  850. list_del(&curr->tree_list);
  851. btrfs_release_delayed_item(curr);
  852. }
  853. out:
  854. return ret;
  855. }
  856. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  857. struct btrfs_path *path,
  858. struct btrfs_root *root,
  859. struct btrfs_delayed_node *node)
  860. {
  861. struct btrfs_delayed_item *curr, *prev;
  862. int ret = 0;
  863. do_again:
  864. mutex_lock(&node->mutex);
  865. curr = __btrfs_first_delayed_deletion_item(node);
  866. if (!curr)
  867. goto delete_fail;
  868. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  869. if (ret < 0)
  870. goto delete_fail;
  871. else if (ret > 0) {
  872. /*
  873. * can't find the item which the node points to, so this node
  874. * is invalid, just drop it.
  875. */
  876. prev = curr;
  877. curr = __btrfs_next_delayed_item(prev);
  878. btrfs_release_delayed_item(prev);
  879. ret = 0;
  880. btrfs_release_path(path);
  881. if (curr) {
  882. mutex_unlock(&node->mutex);
  883. goto do_again;
  884. } else
  885. goto delete_fail;
  886. }
  887. btrfs_batch_delete_items(trans, root, path, curr);
  888. btrfs_release_path(path);
  889. mutex_unlock(&node->mutex);
  890. goto do_again;
  891. delete_fail:
  892. btrfs_release_path(path);
  893. mutex_unlock(&node->mutex);
  894. return ret;
  895. }
  896. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  897. {
  898. struct btrfs_delayed_root *delayed_root;
  899. if (delayed_node && delayed_node->inode_dirty) {
  900. BUG_ON(!delayed_node->root);
  901. delayed_node->inode_dirty = 0;
  902. delayed_node->count--;
  903. delayed_root = delayed_node->root->fs_info->delayed_root;
  904. if (atomic_dec_return(&delayed_root->items) <
  905. BTRFS_DELAYED_BACKGROUND &&
  906. waitqueue_active(&delayed_root->wait))
  907. wake_up(&delayed_root->wait);
  908. }
  909. }
  910. static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  911. struct btrfs_root *root,
  912. struct btrfs_path *path,
  913. struct btrfs_delayed_node *node)
  914. {
  915. struct btrfs_key key;
  916. struct btrfs_inode_item *inode_item;
  917. struct extent_buffer *leaf;
  918. int ret;
  919. key.objectid = node->inode_id;
  920. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  921. key.offset = 0;
  922. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  923. if (ret > 0) {
  924. btrfs_release_path(path);
  925. return -ENOENT;
  926. } else if (ret < 0) {
  927. return ret;
  928. }
  929. btrfs_unlock_up_safe(path, 1);
  930. leaf = path->nodes[0];
  931. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  932. struct btrfs_inode_item);
  933. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  934. sizeof(struct btrfs_inode_item));
  935. btrfs_mark_buffer_dirty(leaf);
  936. btrfs_release_path(path);
  937. btrfs_delayed_inode_release_metadata(root, node);
  938. btrfs_release_delayed_inode(node);
  939. return 0;
  940. }
  941. static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  942. struct btrfs_root *root,
  943. struct btrfs_path *path,
  944. struct btrfs_delayed_node *node)
  945. {
  946. int ret;
  947. mutex_lock(&node->mutex);
  948. if (!node->inode_dirty) {
  949. mutex_unlock(&node->mutex);
  950. return 0;
  951. }
  952. ret = __btrfs_update_delayed_inode(trans, root, path, node);
  953. mutex_unlock(&node->mutex);
  954. return ret;
  955. }
  956. static inline int
  957. __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  958. struct btrfs_path *path,
  959. struct btrfs_delayed_node *node)
  960. {
  961. int ret;
  962. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  963. if (ret)
  964. return ret;
  965. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  966. if (ret)
  967. return ret;
  968. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  969. return ret;
  970. }
  971. /*
  972. * Called when committing the transaction.
  973. * Returns 0 on success.
  974. * Returns < 0 on error and returns with an aborted transaction with any
  975. * outstanding delayed items cleaned up.
  976. */
  977. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  978. struct btrfs_root *root, int nr)
  979. {
  980. struct btrfs_delayed_root *delayed_root;
  981. struct btrfs_delayed_node *curr_node, *prev_node;
  982. struct btrfs_path *path;
  983. struct btrfs_block_rsv *block_rsv;
  984. int ret = 0;
  985. bool count = (nr > 0);
  986. if (trans->aborted)
  987. return -EIO;
  988. path = btrfs_alloc_path();
  989. if (!path)
  990. return -ENOMEM;
  991. path->leave_spinning = 1;
  992. block_rsv = trans->block_rsv;
  993. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  994. delayed_root = btrfs_get_delayed_root(root);
  995. curr_node = btrfs_first_delayed_node(delayed_root);
  996. while (curr_node && (!count || (count && nr--))) {
  997. ret = __btrfs_commit_inode_delayed_items(trans, path,
  998. curr_node);
  999. if (ret) {
  1000. btrfs_release_delayed_node(curr_node);
  1001. curr_node = NULL;
  1002. btrfs_abort_transaction(trans, root, ret);
  1003. break;
  1004. }
  1005. prev_node = curr_node;
  1006. curr_node = btrfs_next_delayed_node(curr_node);
  1007. btrfs_release_delayed_node(prev_node);
  1008. }
  1009. if (curr_node)
  1010. btrfs_release_delayed_node(curr_node);
  1011. btrfs_free_path(path);
  1012. trans->block_rsv = block_rsv;
  1013. return ret;
  1014. }
  1015. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1016. struct btrfs_root *root)
  1017. {
  1018. return __btrfs_run_delayed_items(trans, root, -1);
  1019. }
  1020. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1021. struct btrfs_root *root, int nr)
  1022. {
  1023. return __btrfs_run_delayed_items(trans, root, nr);
  1024. }
  1025. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1026. struct inode *inode)
  1027. {
  1028. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1029. struct btrfs_path *path;
  1030. struct btrfs_block_rsv *block_rsv;
  1031. int ret;
  1032. if (!delayed_node)
  1033. return 0;
  1034. mutex_lock(&delayed_node->mutex);
  1035. if (!delayed_node->count) {
  1036. mutex_unlock(&delayed_node->mutex);
  1037. btrfs_release_delayed_node(delayed_node);
  1038. return 0;
  1039. }
  1040. mutex_unlock(&delayed_node->mutex);
  1041. path = btrfs_alloc_path();
  1042. if (!path)
  1043. return -ENOMEM;
  1044. path->leave_spinning = 1;
  1045. block_rsv = trans->block_rsv;
  1046. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1047. ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1048. btrfs_release_delayed_node(delayed_node);
  1049. btrfs_free_path(path);
  1050. trans->block_rsv = block_rsv;
  1051. return ret;
  1052. }
  1053. int btrfs_commit_inode_delayed_inode(struct inode *inode)
  1054. {
  1055. struct btrfs_trans_handle *trans;
  1056. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1057. struct btrfs_path *path;
  1058. struct btrfs_block_rsv *block_rsv;
  1059. int ret;
  1060. if (!delayed_node)
  1061. return 0;
  1062. mutex_lock(&delayed_node->mutex);
  1063. if (!delayed_node->inode_dirty) {
  1064. mutex_unlock(&delayed_node->mutex);
  1065. btrfs_release_delayed_node(delayed_node);
  1066. return 0;
  1067. }
  1068. mutex_unlock(&delayed_node->mutex);
  1069. trans = btrfs_join_transaction(delayed_node->root);
  1070. if (IS_ERR(trans)) {
  1071. ret = PTR_ERR(trans);
  1072. goto out;
  1073. }
  1074. path = btrfs_alloc_path();
  1075. if (!path) {
  1076. ret = -ENOMEM;
  1077. goto trans_out;
  1078. }
  1079. path->leave_spinning = 1;
  1080. block_rsv = trans->block_rsv;
  1081. trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
  1082. mutex_lock(&delayed_node->mutex);
  1083. if (delayed_node->inode_dirty)
  1084. ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
  1085. path, delayed_node);
  1086. else
  1087. ret = 0;
  1088. mutex_unlock(&delayed_node->mutex);
  1089. btrfs_free_path(path);
  1090. trans->block_rsv = block_rsv;
  1091. trans_out:
  1092. btrfs_end_transaction(trans, delayed_node->root);
  1093. btrfs_btree_balance_dirty(delayed_node->root);
  1094. out:
  1095. btrfs_release_delayed_node(delayed_node);
  1096. return ret;
  1097. }
  1098. void btrfs_remove_delayed_node(struct inode *inode)
  1099. {
  1100. struct btrfs_delayed_node *delayed_node;
  1101. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1102. if (!delayed_node)
  1103. return;
  1104. BTRFS_I(inode)->delayed_node = NULL;
  1105. btrfs_release_delayed_node(delayed_node);
  1106. }
  1107. struct btrfs_async_delayed_node {
  1108. struct btrfs_root *root;
  1109. struct btrfs_delayed_node *delayed_node;
  1110. struct btrfs_work work;
  1111. };
  1112. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  1113. {
  1114. struct btrfs_async_delayed_node *async_node;
  1115. struct btrfs_trans_handle *trans;
  1116. struct btrfs_path *path;
  1117. struct btrfs_delayed_node *delayed_node = NULL;
  1118. struct btrfs_root *root;
  1119. struct btrfs_block_rsv *block_rsv;
  1120. int need_requeue = 0;
  1121. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  1122. path = btrfs_alloc_path();
  1123. if (!path)
  1124. goto out;
  1125. path->leave_spinning = 1;
  1126. delayed_node = async_node->delayed_node;
  1127. root = delayed_node->root;
  1128. trans = btrfs_join_transaction(root);
  1129. if (IS_ERR(trans))
  1130. goto free_path;
  1131. block_rsv = trans->block_rsv;
  1132. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1133. __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
  1134. /*
  1135. * Maybe new delayed items have been inserted, so we need requeue
  1136. * the work. Besides that, we must dequeue the empty delayed nodes
  1137. * to avoid the race between delayed items balance and the worker.
  1138. * The race like this:
  1139. * Task1 Worker thread
  1140. * count == 0, needn't requeue
  1141. * also needn't insert the
  1142. * delayed node into prepare
  1143. * list again.
  1144. * add lots of delayed items
  1145. * queue the delayed node
  1146. * already in the list,
  1147. * and not in the prepare
  1148. * list, it means the delayed
  1149. * node is being dealt with
  1150. * by the worker.
  1151. * do delayed items balance
  1152. * the delayed node is being
  1153. * dealt with by the worker
  1154. * now, just wait.
  1155. * the worker goto idle.
  1156. * Task1 will sleep until the transaction is commited.
  1157. */
  1158. mutex_lock(&delayed_node->mutex);
  1159. if (delayed_node->count)
  1160. need_requeue = 1;
  1161. else
  1162. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1163. delayed_node);
  1164. mutex_unlock(&delayed_node->mutex);
  1165. trans->block_rsv = block_rsv;
  1166. btrfs_end_transaction_dmeta(trans, root);
  1167. btrfs_btree_balance_dirty_nodelay(root);
  1168. free_path:
  1169. btrfs_free_path(path);
  1170. out:
  1171. if (need_requeue)
  1172. btrfs_requeue_work(&async_node->work);
  1173. else {
  1174. btrfs_release_prepared_delayed_node(delayed_node);
  1175. kfree(async_node);
  1176. }
  1177. }
  1178. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1179. struct btrfs_root *root, int all)
  1180. {
  1181. struct btrfs_async_delayed_node *async_node;
  1182. struct btrfs_delayed_node *curr;
  1183. int count = 0;
  1184. again:
  1185. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1186. if (!curr)
  1187. return 0;
  1188. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1189. if (!async_node) {
  1190. btrfs_release_prepared_delayed_node(curr);
  1191. return -ENOMEM;
  1192. }
  1193. async_node->root = root;
  1194. async_node->delayed_node = curr;
  1195. async_node->work.func = btrfs_async_run_delayed_node_done;
  1196. async_node->work.flags = 0;
  1197. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1198. count++;
  1199. if (all || count < 4)
  1200. goto again;
  1201. return 0;
  1202. }
  1203. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1204. {
  1205. struct btrfs_delayed_root *delayed_root;
  1206. delayed_root = btrfs_get_delayed_root(root);
  1207. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1208. }
  1209. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1210. {
  1211. struct btrfs_delayed_root *delayed_root;
  1212. delayed_root = btrfs_get_delayed_root(root);
  1213. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1214. return;
  1215. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1216. int ret;
  1217. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1218. if (ret)
  1219. return;
  1220. wait_event_interruptible_timeout(
  1221. delayed_root->wait,
  1222. (atomic_read(&delayed_root->items) <
  1223. BTRFS_DELAYED_BACKGROUND),
  1224. HZ);
  1225. return;
  1226. }
  1227. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1228. }
  1229. /* Will return 0 or -ENOMEM */
  1230. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1231. struct btrfs_root *root, const char *name,
  1232. int name_len, struct inode *dir,
  1233. struct btrfs_disk_key *disk_key, u8 type,
  1234. u64 index)
  1235. {
  1236. struct btrfs_delayed_node *delayed_node;
  1237. struct btrfs_delayed_item *delayed_item;
  1238. struct btrfs_dir_item *dir_item;
  1239. int ret;
  1240. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1241. if (IS_ERR(delayed_node))
  1242. return PTR_ERR(delayed_node);
  1243. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1244. if (!delayed_item) {
  1245. ret = -ENOMEM;
  1246. goto release_node;
  1247. }
  1248. delayed_item->key.objectid = btrfs_ino(dir);
  1249. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1250. delayed_item->key.offset = index;
  1251. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1252. dir_item->location = *disk_key;
  1253. dir_item->transid = cpu_to_le64(trans->transid);
  1254. dir_item->data_len = 0;
  1255. dir_item->name_len = cpu_to_le16(name_len);
  1256. dir_item->type = type;
  1257. memcpy((char *)(dir_item + 1), name, name_len);
  1258. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1259. /*
  1260. * we have reserved enough space when we start a new transaction,
  1261. * so reserving metadata failure is impossible
  1262. */
  1263. BUG_ON(ret);
  1264. mutex_lock(&delayed_node->mutex);
  1265. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1266. if (unlikely(ret)) {
  1267. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1268. "the insertion tree of the delayed node"
  1269. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1270. name,
  1271. (unsigned long long)delayed_node->root->objectid,
  1272. (unsigned long long)delayed_node->inode_id,
  1273. ret);
  1274. BUG();
  1275. }
  1276. mutex_unlock(&delayed_node->mutex);
  1277. release_node:
  1278. btrfs_release_delayed_node(delayed_node);
  1279. return ret;
  1280. }
  1281. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1282. struct btrfs_delayed_node *node,
  1283. struct btrfs_key *key)
  1284. {
  1285. struct btrfs_delayed_item *item;
  1286. mutex_lock(&node->mutex);
  1287. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1288. if (!item) {
  1289. mutex_unlock(&node->mutex);
  1290. return 1;
  1291. }
  1292. btrfs_delayed_item_release_metadata(root, item);
  1293. btrfs_release_delayed_item(item);
  1294. mutex_unlock(&node->mutex);
  1295. return 0;
  1296. }
  1297. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1298. struct btrfs_root *root, struct inode *dir,
  1299. u64 index)
  1300. {
  1301. struct btrfs_delayed_node *node;
  1302. struct btrfs_delayed_item *item;
  1303. struct btrfs_key item_key;
  1304. int ret;
  1305. node = btrfs_get_or_create_delayed_node(dir);
  1306. if (IS_ERR(node))
  1307. return PTR_ERR(node);
  1308. item_key.objectid = btrfs_ino(dir);
  1309. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1310. item_key.offset = index;
  1311. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1312. if (!ret)
  1313. goto end;
  1314. item = btrfs_alloc_delayed_item(0);
  1315. if (!item) {
  1316. ret = -ENOMEM;
  1317. goto end;
  1318. }
  1319. item->key = item_key;
  1320. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1321. /*
  1322. * we have reserved enough space when we start a new transaction,
  1323. * so reserving metadata failure is impossible.
  1324. */
  1325. BUG_ON(ret);
  1326. mutex_lock(&node->mutex);
  1327. ret = __btrfs_add_delayed_deletion_item(node, item);
  1328. if (unlikely(ret)) {
  1329. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1330. "into the deletion tree of the delayed node"
  1331. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1332. (unsigned long long)index,
  1333. (unsigned long long)node->root->objectid,
  1334. (unsigned long long)node->inode_id,
  1335. ret);
  1336. BUG();
  1337. }
  1338. mutex_unlock(&node->mutex);
  1339. end:
  1340. btrfs_release_delayed_node(node);
  1341. return ret;
  1342. }
  1343. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1344. {
  1345. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1346. if (!delayed_node)
  1347. return -ENOENT;
  1348. /*
  1349. * Since we have held i_mutex of this directory, it is impossible that
  1350. * a new directory index is added into the delayed node and index_cnt
  1351. * is updated now. So we needn't lock the delayed node.
  1352. */
  1353. if (!delayed_node->index_cnt) {
  1354. btrfs_release_delayed_node(delayed_node);
  1355. return -EINVAL;
  1356. }
  1357. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1358. btrfs_release_delayed_node(delayed_node);
  1359. return 0;
  1360. }
  1361. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1362. struct list_head *del_list)
  1363. {
  1364. struct btrfs_delayed_node *delayed_node;
  1365. struct btrfs_delayed_item *item;
  1366. delayed_node = btrfs_get_delayed_node(inode);
  1367. if (!delayed_node)
  1368. return;
  1369. mutex_lock(&delayed_node->mutex);
  1370. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1371. while (item) {
  1372. atomic_inc(&item->refs);
  1373. list_add_tail(&item->readdir_list, ins_list);
  1374. item = __btrfs_next_delayed_item(item);
  1375. }
  1376. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1377. while (item) {
  1378. atomic_inc(&item->refs);
  1379. list_add_tail(&item->readdir_list, del_list);
  1380. item = __btrfs_next_delayed_item(item);
  1381. }
  1382. mutex_unlock(&delayed_node->mutex);
  1383. /*
  1384. * This delayed node is still cached in the btrfs inode, so refs
  1385. * must be > 1 now, and we needn't check it is going to be freed
  1386. * or not.
  1387. *
  1388. * Besides that, this function is used to read dir, we do not
  1389. * insert/delete delayed items in this period. So we also needn't
  1390. * requeue or dequeue this delayed node.
  1391. */
  1392. atomic_dec(&delayed_node->refs);
  1393. }
  1394. void btrfs_put_delayed_items(struct list_head *ins_list,
  1395. struct list_head *del_list)
  1396. {
  1397. struct btrfs_delayed_item *curr, *next;
  1398. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1399. list_del(&curr->readdir_list);
  1400. if (atomic_dec_and_test(&curr->refs))
  1401. kfree(curr);
  1402. }
  1403. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1404. list_del(&curr->readdir_list);
  1405. if (atomic_dec_and_test(&curr->refs))
  1406. kfree(curr);
  1407. }
  1408. }
  1409. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1410. u64 index)
  1411. {
  1412. struct btrfs_delayed_item *curr, *next;
  1413. int ret;
  1414. if (list_empty(del_list))
  1415. return 0;
  1416. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1417. if (curr->key.offset > index)
  1418. break;
  1419. list_del(&curr->readdir_list);
  1420. ret = (curr->key.offset == index);
  1421. if (atomic_dec_and_test(&curr->refs))
  1422. kfree(curr);
  1423. if (ret)
  1424. return 1;
  1425. else
  1426. continue;
  1427. }
  1428. return 0;
  1429. }
  1430. /*
  1431. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1432. *
  1433. */
  1434. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1435. filldir_t filldir,
  1436. struct list_head *ins_list)
  1437. {
  1438. struct btrfs_dir_item *di;
  1439. struct btrfs_delayed_item *curr, *next;
  1440. struct btrfs_key location;
  1441. char *name;
  1442. int name_len;
  1443. int over = 0;
  1444. unsigned char d_type;
  1445. if (list_empty(ins_list))
  1446. return 0;
  1447. /*
  1448. * Changing the data of the delayed item is impossible. So
  1449. * we needn't lock them. And we have held i_mutex of the
  1450. * directory, nobody can delete any directory indexes now.
  1451. */
  1452. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1453. list_del(&curr->readdir_list);
  1454. if (curr->key.offset < filp->f_pos) {
  1455. if (atomic_dec_and_test(&curr->refs))
  1456. kfree(curr);
  1457. continue;
  1458. }
  1459. filp->f_pos = curr->key.offset;
  1460. di = (struct btrfs_dir_item *)curr->data;
  1461. name = (char *)(di + 1);
  1462. name_len = le16_to_cpu(di->name_len);
  1463. d_type = btrfs_filetype_table[di->type];
  1464. btrfs_disk_key_to_cpu(&location, &di->location);
  1465. over = filldir(dirent, name, name_len, curr->key.offset,
  1466. location.objectid, d_type);
  1467. if (atomic_dec_and_test(&curr->refs))
  1468. kfree(curr);
  1469. if (over)
  1470. return 1;
  1471. }
  1472. return 0;
  1473. }
  1474. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1475. generation, 64);
  1476. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1477. sequence, 64);
  1478. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1479. transid, 64);
  1480. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1481. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1482. nbytes, 64);
  1483. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1484. block_group, 64);
  1485. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1486. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1487. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1488. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1489. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1490. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1491. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1492. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1493. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1494. struct btrfs_inode_item *inode_item,
  1495. struct inode *inode)
  1496. {
  1497. btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
  1498. btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
  1499. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1500. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1501. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1502. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1503. btrfs_set_stack_inode_generation(inode_item,
  1504. BTRFS_I(inode)->generation);
  1505. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1506. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1507. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1508. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1509. btrfs_set_stack_inode_block_group(inode_item, 0);
  1510. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1511. inode->i_atime.tv_sec);
  1512. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1513. inode->i_atime.tv_nsec);
  1514. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1515. inode->i_mtime.tv_sec);
  1516. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1517. inode->i_mtime.tv_nsec);
  1518. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1519. inode->i_ctime.tv_sec);
  1520. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1521. inode->i_ctime.tv_nsec);
  1522. }
  1523. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1524. {
  1525. struct btrfs_delayed_node *delayed_node;
  1526. struct btrfs_inode_item *inode_item;
  1527. struct btrfs_timespec *tspec;
  1528. delayed_node = btrfs_get_delayed_node(inode);
  1529. if (!delayed_node)
  1530. return -ENOENT;
  1531. mutex_lock(&delayed_node->mutex);
  1532. if (!delayed_node->inode_dirty) {
  1533. mutex_unlock(&delayed_node->mutex);
  1534. btrfs_release_delayed_node(delayed_node);
  1535. return -ENOENT;
  1536. }
  1537. inode_item = &delayed_node->inode_item;
  1538. i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
  1539. i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
  1540. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1541. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1542. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1543. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1544. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1545. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1546. inode->i_rdev = 0;
  1547. *rdev = btrfs_stack_inode_rdev(inode_item);
  1548. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1549. tspec = btrfs_inode_atime(inode_item);
  1550. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1551. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1552. tspec = btrfs_inode_mtime(inode_item);
  1553. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1554. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1555. tspec = btrfs_inode_ctime(inode_item);
  1556. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1557. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1558. inode->i_generation = BTRFS_I(inode)->generation;
  1559. BTRFS_I(inode)->index_cnt = (u64)-1;
  1560. mutex_unlock(&delayed_node->mutex);
  1561. btrfs_release_delayed_node(delayed_node);
  1562. return 0;
  1563. }
  1564. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1565. struct btrfs_root *root, struct inode *inode)
  1566. {
  1567. struct btrfs_delayed_node *delayed_node;
  1568. int ret = 0;
  1569. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1570. if (IS_ERR(delayed_node))
  1571. return PTR_ERR(delayed_node);
  1572. mutex_lock(&delayed_node->mutex);
  1573. if (delayed_node->inode_dirty) {
  1574. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1575. goto release_node;
  1576. }
  1577. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1578. delayed_node);
  1579. if (ret)
  1580. goto release_node;
  1581. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1582. delayed_node->inode_dirty = 1;
  1583. delayed_node->count++;
  1584. atomic_inc(&root->fs_info->delayed_root->items);
  1585. release_node:
  1586. mutex_unlock(&delayed_node->mutex);
  1587. btrfs_release_delayed_node(delayed_node);
  1588. return ret;
  1589. }
  1590. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1591. {
  1592. struct btrfs_root *root = delayed_node->root;
  1593. struct btrfs_delayed_item *curr_item, *prev_item;
  1594. mutex_lock(&delayed_node->mutex);
  1595. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1596. while (curr_item) {
  1597. btrfs_delayed_item_release_metadata(root, curr_item);
  1598. prev_item = curr_item;
  1599. curr_item = __btrfs_next_delayed_item(prev_item);
  1600. btrfs_release_delayed_item(prev_item);
  1601. }
  1602. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1603. while (curr_item) {
  1604. btrfs_delayed_item_release_metadata(root, curr_item);
  1605. prev_item = curr_item;
  1606. curr_item = __btrfs_next_delayed_item(prev_item);
  1607. btrfs_release_delayed_item(prev_item);
  1608. }
  1609. if (delayed_node->inode_dirty) {
  1610. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1611. btrfs_release_delayed_inode(delayed_node);
  1612. }
  1613. mutex_unlock(&delayed_node->mutex);
  1614. }
  1615. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1616. {
  1617. struct btrfs_delayed_node *delayed_node;
  1618. delayed_node = btrfs_get_delayed_node(inode);
  1619. if (!delayed_node)
  1620. return;
  1621. __btrfs_kill_delayed_node(delayed_node);
  1622. btrfs_release_delayed_node(delayed_node);
  1623. }
  1624. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1625. {
  1626. u64 inode_id = 0;
  1627. struct btrfs_delayed_node *delayed_nodes[8];
  1628. int i, n;
  1629. while (1) {
  1630. spin_lock(&root->inode_lock);
  1631. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1632. (void **)delayed_nodes, inode_id,
  1633. ARRAY_SIZE(delayed_nodes));
  1634. if (!n) {
  1635. spin_unlock(&root->inode_lock);
  1636. break;
  1637. }
  1638. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1639. for (i = 0; i < n; i++)
  1640. atomic_inc(&delayed_nodes[i]->refs);
  1641. spin_unlock(&root->inode_lock);
  1642. for (i = 0; i < n; i++) {
  1643. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1644. btrfs_release_delayed_node(delayed_nodes[i]);
  1645. }
  1646. }
  1647. }
  1648. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1649. {
  1650. struct btrfs_delayed_root *delayed_root;
  1651. struct btrfs_delayed_node *curr_node, *prev_node;
  1652. delayed_root = btrfs_get_delayed_root(root);
  1653. curr_node = btrfs_first_delayed_node(delayed_root);
  1654. while (curr_node) {
  1655. __btrfs_kill_delayed_node(curr_node);
  1656. prev_node = curr_node;
  1657. curr_node = btrfs_next_delayed_node(curr_node);
  1658. btrfs_release_delayed_node(prev_node);
  1659. }
  1660. }