init.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389
  1. /*
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/string.h>
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/slab.h>
  16. #include <linux/initrd.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/poison.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <linux/percpu.h>
  26. #include <linux/lmb.h>
  27. #include <linux/mmzone.h>
  28. #include <asm/head.h>
  29. #include <asm/system.h>
  30. #include <asm/page.h>
  31. #include <asm/pgalloc.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/oplib.h>
  34. #include <asm/iommu.h>
  35. #include <asm/io.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/dma.h>
  40. #include <asm/starfire.h>
  41. #include <asm/tlb.h>
  42. #include <asm/spitfire.h>
  43. #include <asm/sections.h>
  44. #include <asm/tsb.h>
  45. #include <asm/hypervisor.h>
  46. #include <asm/prom.h>
  47. #include <asm/sstate.h>
  48. #include <asm/mdesc.h>
  49. #include <asm/cpudata.h>
  50. #include <asm/irq.h>
  51. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  52. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  53. #define KPTE_BITMAP_BYTES \
  54. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  55. unsigned long kern_linear_pte_xor[2] __read_mostly;
  56. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  57. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  58. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  59. */
  60. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  61. #ifndef CONFIG_DEBUG_PAGEALLOC
  62. /* A special kernel TSB for 4MB and 256MB linear mappings.
  63. * Space is allocated for this right after the trap table
  64. * in arch/sparc64/kernel/head.S
  65. */
  66. extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  67. #endif
  68. #define MAX_BANKS 32
  69. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  70. static int pavail_ents __initdata;
  71. static int cmp_p64(const void *a, const void *b)
  72. {
  73. const struct linux_prom64_registers *x = a, *y = b;
  74. if (x->phys_addr > y->phys_addr)
  75. return 1;
  76. if (x->phys_addr < y->phys_addr)
  77. return -1;
  78. return 0;
  79. }
  80. static void __init read_obp_memory(const char *property,
  81. struct linux_prom64_registers *regs,
  82. int *num_ents)
  83. {
  84. int node = prom_finddevice("/memory");
  85. int prop_size = prom_getproplen(node, property);
  86. int ents, ret, i;
  87. ents = prop_size / sizeof(struct linux_prom64_registers);
  88. if (ents > MAX_BANKS) {
  89. prom_printf("The machine has more %s property entries than "
  90. "this kernel can support (%d).\n",
  91. property, MAX_BANKS);
  92. prom_halt();
  93. }
  94. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  95. if (ret == -1) {
  96. prom_printf("Couldn't get %s property from /memory.\n");
  97. prom_halt();
  98. }
  99. /* Sanitize what we got from the firmware, by page aligning
  100. * everything.
  101. */
  102. for (i = 0; i < ents; i++) {
  103. unsigned long base, size;
  104. base = regs[i].phys_addr;
  105. size = regs[i].reg_size;
  106. size &= PAGE_MASK;
  107. if (base & ~PAGE_MASK) {
  108. unsigned long new_base = PAGE_ALIGN(base);
  109. size -= new_base - base;
  110. if ((long) size < 0L)
  111. size = 0UL;
  112. base = new_base;
  113. }
  114. if (size == 0UL) {
  115. /* If it is empty, simply get rid of it.
  116. * This simplifies the logic of the other
  117. * functions that process these arrays.
  118. */
  119. memmove(&regs[i], &regs[i + 1],
  120. (ents - i - 1) * sizeof(regs[0]));
  121. i--;
  122. ents--;
  123. continue;
  124. }
  125. regs[i].phys_addr = base;
  126. regs[i].reg_size = size;
  127. }
  128. *num_ents = ents;
  129. sort(regs, ents, sizeof(struct linux_prom64_registers),
  130. cmp_p64, NULL);
  131. }
  132. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  133. /* Kernel physical address base and size in bytes. */
  134. unsigned long kern_base __read_mostly;
  135. unsigned long kern_size __read_mostly;
  136. /* Initial ramdisk setup */
  137. extern unsigned long sparc_ramdisk_image64;
  138. extern unsigned int sparc_ramdisk_image;
  139. extern unsigned int sparc_ramdisk_size;
  140. struct page *mem_map_zero __read_mostly;
  141. EXPORT_SYMBOL(mem_map_zero);
  142. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  143. unsigned long sparc64_kern_pri_context __read_mostly;
  144. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  145. unsigned long sparc64_kern_sec_context __read_mostly;
  146. int num_kernel_image_mappings;
  147. #ifdef CONFIG_DEBUG_DCFLUSH
  148. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  149. #ifdef CONFIG_SMP
  150. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  151. #endif
  152. #endif
  153. inline void flush_dcache_page_impl(struct page *page)
  154. {
  155. BUG_ON(tlb_type == hypervisor);
  156. #ifdef CONFIG_DEBUG_DCFLUSH
  157. atomic_inc(&dcpage_flushes);
  158. #endif
  159. #ifdef DCACHE_ALIASING_POSSIBLE
  160. __flush_dcache_page(page_address(page),
  161. ((tlb_type == spitfire) &&
  162. page_mapping(page) != NULL));
  163. #else
  164. if (page_mapping(page) != NULL &&
  165. tlb_type == spitfire)
  166. __flush_icache_page(__pa(page_address(page)));
  167. #endif
  168. }
  169. #define PG_dcache_dirty PG_arch_1
  170. #define PG_dcache_cpu_shift 32UL
  171. #define PG_dcache_cpu_mask \
  172. ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
  173. #define dcache_dirty_cpu(page) \
  174. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  175. static inline void set_dcache_dirty(struct page *page, int this_cpu)
  176. {
  177. unsigned long mask = this_cpu;
  178. unsigned long non_cpu_bits;
  179. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  180. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  181. __asm__ __volatile__("1:\n\t"
  182. "ldx [%2], %%g7\n\t"
  183. "and %%g7, %1, %%g1\n\t"
  184. "or %%g1, %0, %%g1\n\t"
  185. "casx [%2], %%g7, %%g1\n\t"
  186. "cmp %%g7, %%g1\n\t"
  187. "membar #StoreLoad | #StoreStore\n\t"
  188. "bne,pn %%xcc, 1b\n\t"
  189. " nop"
  190. : /* no outputs */
  191. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  192. : "g1", "g7");
  193. }
  194. static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  195. {
  196. unsigned long mask = (1UL << PG_dcache_dirty);
  197. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  198. "1:\n\t"
  199. "ldx [%2], %%g7\n\t"
  200. "srlx %%g7, %4, %%g1\n\t"
  201. "and %%g1, %3, %%g1\n\t"
  202. "cmp %%g1, %0\n\t"
  203. "bne,pn %%icc, 2f\n\t"
  204. " andn %%g7, %1, %%g1\n\t"
  205. "casx [%2], %%g7, %%g1\n\t"
  206. "cmp %%g7, %%g1\n\t"
  207. "membar #StoreLoad | #StoreStore\n\t"
  208. "bne,pn %%xcc, 1b\n\t"
  209. " nop\n"
  210. "2:"
  211. : /* no outputs */
  212. : "r" (cpu), "r" (mask), "r" (&page->flags),
  213. "i" (PG_dcache_cpu_mask),
  214. "i" (PG_dcache_cpu_shift)
  215. : "g1", "g7");
  216. }
  217. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  218. {
  219. unsigned long tsb_addr = (unsigned long) ent;
  220. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  221. tsb_addr = __pa(tsb_addr);
  222. __tsb_insert(tsb_addr, tag, pte);
  223. }
  224. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  225. unsigned long _PAGE_SZBITS __read_mostly;
  226. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  227. {
  228. struct mm_struct *mm;
  229. struct tsb *tsb;
  230. unsigned long tag, flags;
  231. unsigned long tsb_index, tsb_hash_shift;
  232. if (tlb_type != hypervisor) {
  233. unsigned long pfn = pte_pfn(pte);
  234. unsigned long pg_flags;
  235. struct page *page;
  236. if (pfn_valid(pfn) &&
  237. (page = pfn_to_page(pfn), page_mapping(page)) &&
  238. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  239. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  240. PG_dcache_cpu_mask);
  241. int this_cpu = get_cpu();
  242. /* This is just to optimize away some function calls
  243. * in the SMP case.
  244. */
  245. if (cpu == this_cpu)
  246. flush_dcache_page_impl(page);
  247. else
  248. smp_flush_dcache_page_impl(page, cpu);
  249. clear_dcache_dirty_cpu(page, cpu);
  250. put_cpu();
  251. }
  252. }
  253. mm = vma->vm_mm;
  254. tsb_index = MM_TSB_BASE;
  255. tsb_hash_shift = PAGE_SHIFT;
  256. spin_lock_irqsave(&mm->context.lock, flags);
  257. #ifdef CONFIG_HUGETLB_PAGE
  258. if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
  259. if ((tlb_type == hypervisor &&
  260. (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
  261. (tlb_type != hypervisor &&
  262. (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
  263. tsb_index = MM_TSB_HUGE;
  264. tsb_hash_shift = HPAGE_SHIFT;
  265. }
  266. }
  267. #endif
  268. tsb = mm->context.tsb_block[tsb_index].tsb;
  269. tsb += ((address >> tsb_hash_shift) &
  270. (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
  271. tag = (address >> 22UL);
  272. tsb_insert(tsb, tag, pte_val(pte));
  273. spin_unlock_irqrestore(&mm->context.lock, flags);
  274. }
  275. void flush_dcache_page(struct page *page)
  276. {
  277. struct address_space *mapping;
  278. int this_cpu;
  279. if (tlb_type == hypervisor)
  280. return;
  281. /* Do not bother with the expensive D-cache flush if it
  282. * is merely the zero page. The 'bigcore' testcase in GDB
  283. * causes this case to run millions of times.
  284. */
  285. if (page == ZERO_PAGE(0))
  286. return;
  287. this_cpu = get_cpu();
  288. mapping = page_mapping(page);
  289. if (mapping && !mapping_mapped(mapping)) {
  290. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  291. if (dirty) {
  292. int dirty_cpu = dcache_dirty_cpu(page);
  293. if (dirty_cpu == this_cpu)
  294. goto out;
  295. smp_flush_dcache_page_impl(page, dirty_cpu);
  296. }
  297. set_dcache_dirty(page, this_cpu);
  298. } else {
  299. /* We could delay the flush for the !page_mapping
  300. * case too. But that case is for exec env/arg
  301. * pages and those are %99 certainly going to get
  302. * faulted into the tlb (and thus flushed) anyways.
  303. */
  304. flush_dcache_page_impl(page);
  305. }
  306. out:
  307. put_cpu();
  308. }
  309. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  310. {
  311. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  312. if (tlb_type == spitfire) {
  313. unsigned long kaddr;
  314. /* This code only runs on Spitfire cpus so this is
  315. * why we can assume _PAGE_PADDR_4U.
  316. */
  317. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
  318. unsigned long paddr, mask = _PAGE_PADDR_4U;
  319. if (kaddr >= PAGE_OFFSET)
  320. paddr = kaddr & mask;
  321. else {
  322. pgd_t *pgdp = pgd_offset_k(kaddr);
  323. pud_t *pudp = pud_offset(pgdp, kaddr);
  324. pmd_t *pmdp = pmd_offset(pudp, kaddr);
  325. pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
  326. paddr = pte_val(*ptep) & mask;
  327. }
  328. __flush_icache_page(paddr);
  329. }
  330. }
  331. }
  332. void mmu_info(struct seq_file *m)
  333. {
  334. if (tlb_type == cheetah)
  335. seq_printf(m, "MMU Type\t: Cheetah\n");
  336. else if (tlb_type == cheetah_plus)
  337. seq_printf(m, "MMU Type\t: Cheetah+\n");
  338. else if (tlb_type == spitfire)
  339. seq_printf(m, "MMU Type\t: Spitfire\n");
  340. else if (tlb_type == hypervisor)
  341. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  342. else
  343. seq_printf(m, "MMU Type\t: ???\n");
  344. #ifdef CONFIG_DEBUG_DCFLUSH
  345. seq_printf(m, "DCPageFlushes\t: %d\n",
  346. atomic_read(&dcpage_flushes));
  347. #ifdef CONFIG_SMP
  348. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  349. atomic_read(&dcpage_flushes_xcall));
  350. #endif /* CONFIG_SMP */
  351. #endif /* CONFIG_DEBUG_DCFLUSH */
  352. }
  353. struct linux_prom_translation {
  354. unsigned long virt;
  355. unsigned long size;
  356. unsigned long data;
  357. };
  358. /* Exported for kernel TLB miss handling in ktlb.S */
  359. struct linux_prom_translation prom_trans[512] __read_mostly;
  360. unsigned int prom_trans_ents __read_mostly;
  361. /* Exported for SMP bootup purposes. */
  362. unsigned long kern_locked_tte_data;
  363. /* The obp translations are saved based on 8k pagesize, since obp can
  364. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  365. * HI_OBP_ADDRESS range are handled in ktlb.S.
  366. */
  367. static inline int in_obp_range(unsigned long vaddr)
  368. {
  369. return (vaddr >= LOW_OBP_ADDRESS &&
  370. vaddr < HI_OBP_ADDRESS);
  371. }
  372. static int cmp_ptrans(const void *a, const void *b)
  373. {
  374. const struct linux_prom_translation *x = a, *y = b;
  375. if (x->virt > y->virt)
  376. return 1;
  377. if (x->virt < y->virt)
  378. return -1;
  379. return 0;
  380. }
  381. /* Read OBP translations property into 'prom_trans[]'. */
  382. static void __init read_obp_translations(void)
  383. {
  384. int n, node, ents, first, last, i;
  385. node = prom_finddevice("/virtual-memory");
  386. n = prom_getproplen(node, "translations");
  387. if (unlikely(n == 0 || n == -1)) {
  388. prom_printf("prom_mappings: Couldn't get size.\n");
  389. prom_halt();
  390. }
  391. if (unlikely(n > sizeof(prom_trans))) {
  392. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  393. prom_halt();
  394. }
  395. if ((n = prom_getproperty(node, "translations",
  396. (char *)&prom_trans[0],
  397. sizeof(prom_trans))) == -1) {
  398. prom_printf("prom_mappings: Couldn't get property.\n");
  399. prom_halt();
  400. }
  401. n = n / sizeof(struct linux_prom_translation);
  402. ents = n;
  403. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  404. cmp_ptrans, NULL);
  405. /* Now kick out all the non-OBP entries. */
  406. for (i = 0; i < ents; i++) {
  407. if (in_obp_range(prom_trans[i].virt))
  408. break;
  409. }
  410. first = i;
  411. for (; i < ents; i++) {
  412. if (!in_obp_range(prom_trans[i].virt))
  413. break;
  414. }
  415. last = i;
  416. for (i = 0; i < (last - first); i++) {
  417. struct linux_prom_translation *src = &prom_trans[i + first];
  418. struct linux_prom_translation *dest = &prom_trans[i];
  419. *dest = *src;
  420. }
  421. for (; i < ents; i++) {
  422. struct linux_prom_translation *dest = &prom_trans[i];
  423. dest->virt = dest->size = dest->data = 0x0UL;
  424. }
  425. prom_trans_ents = last - first;
  426. if (tlb_type == spitfire) {
  427. /* Clear diag TTE bits. */
  428. for (i = 0; i < prom_trans_ents; i++)
  429. prom_trans[i].data &= ~0x0003fe0000000000UL;
  430. }
  431. }
  432. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  433. unsigned long pte,
  434. unsigned long mmu)
  435. {
  436. unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
  437. if (ret != 0) {
  438. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  439. "errors with %lx\n", vaddr, 0, pte, mmu, ret);
  440. prom_halt();
  441. }
  442. }
  443. static unsigned long kern_large_tte(unsigned long paddr);
  444. static void __init remap_kernel(void)
  445. {
  446. unsigned long phys_page, tte_vaddr, tte_data;
  447. int i, tlb_ent = sparc64_highest_locked_tlbent();
  448. tte_vaddr = (unsigned long) KERNBASE;
  449. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  450. tte_data = kern_large_tte(phys_page);
  451. kern_locked_tte_data = tte_data;
  452. /* Now lock us into the TLBs via Hypervisor or OBP. */
  453. if (tlb_type == hypervisor) {
  454. for (i = 0; i < num_kernel_image_mappings; i++) {
  455. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  456. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  457. tte_vaddr += 0x400000;
  458. tte_data += 0x400000;
  459. }
  460. } else {
  461. for (i = 0; i < num_kernel_image_mappings; i++) {
  462. prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
  463. prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
  464. tte_vaddr += 0x400000;
  465. tte_data += 0x400000;
  466. }
  467. sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
  468. }
  469. if (tlb_type == cheetah_plus) {
  470. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  471. CTX_CHEETAH_PLUS_NUC);
  472. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  473. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  474. }
  475. }
  476. static void __init inherit_prom_mappings(void)
  477. {
  478. /* Now fixup OBP's idea about where we really are mapped. */
  479. printk("Remapping the kernel... ");
  480. remap_kernel();
  481. printk("done.\n");
  482. }
  483. void prom_world(int enter)
  484. {
  485. if (!enter)
  486. set_fs((mm_segment_t) { get_thread_current_ds() });
  487. __asm__ __volatile__("flushw");
  488. }
  489. void __flush_dcache_range(unsigned long start, unsigned long end)
  490. {
  491. unsigned long va;
  492. if (tlb_type == spitfire) {
  493. int n = 0;
  494. for (va = start; va < end; va += 32) {
  495. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  496. if (++n >= 512)
  497. break;
  498. }
  499. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  500. start = __pa(start);
  501. end = __pa(end);
  502. for (va = start; va < end; va += 32)
  503. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  504. "membar #Sync"
  505. : /* no outputs */
  506. : "r" (va),
  507. "i" (ASI_DCACHE_INVALIDATE));
  508. }
  509. }
  510. /* get_new_mmu_context() uses "cache + 1". */
  511. DEFINE_SPINLOCK(ctx_alloc_lock);
  512. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  513. #define MAX_CTX_NR (1UL << CTX_NR_BITS)
  514. #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
  515. DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
  516. /* Caller does TLB context flushing on local CPU if necessary.
  517. * The caller also ensures that CTX_VALID(mm->context) is false.
  518. *
  519. * We must be careful about boundary cases so that we never
  520. * let the user have CTX 0 (nucleus) or we ever use a CTX
  521. * version of zero (and thus NO_CONTEXT would not be caught
  522. * by version mis-match tests in mmu_context.h).
  523. *
  524. * Always invoked with interrupts disabled.
  525. */
  526. void get_new_mmu_context(struct mm_struct *mm)
  527. {
  528. unsigned long ctx, new_ctx;
  529. unsigned long orig_pgsz_bits;
  530. unsigned long flags;
  531. int new_version;
  532. spin_lock_irqsave(&ctx_alloc_lock, flags);
  533. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  534. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  535. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  536. new_version = 0;
  537. if (new_ctx >= (1 << CTX_NR_BITS)) {
  538. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  539. if (new_ctx >= ctx) {
  540. int i;
  541. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  542. CTX_FIRST_VERSION;
  543. if (new_ctx == 1)
  544. new_ctx = CTX_FIRST_VERSION;
  545. /* Don't call memset, for 16 entries that's just
  546. * plain silly...
  547. */
  548. mmu_context_bmap[0] = 3;
  549. mmu_context_bmap[1] = 0;
  550. mmu_context_bmap[2] = 0;
  551. mmu_context_bmap[3] = 0;
  552. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  553. mmu_context_bmap[i + 0] = 0;
  554. mmu_context_bmap[i + 1] = 0;
  555. mmu_context_bmap[i + 2] = 0;
  556. mmu_context_bmap[i + 3] = 0;
  557. }
  558. new_version = 1;
  559. goto out;
  560. }
  561. }
  562. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  563. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  564. out:
  565. tlb_context_cache = new_ctx;
  566. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  567. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  568. if (unlikely(new_version))
  569. smp_new_mmu_context_version();
  570. }
  571. static int numa_enabled = 1;
  572. static int numa_debug;
  573. static int __init early_numa(char *p)
  574. {
  575. if (!p)
  576. return 0;
  577. if (strstr(p, "off"))
  578. numa_enabled = 0;
  579. if (strstr(p, "debug"))
  580. numa_debug = 1;
  581. return 0;
  582. }
  583. early_param("numa", early_numa);
  584. #define numadbg(f, a...) \
  585. do { if (numa_debug) \
  586. printk(KERN_INFO f, ## a); \
  587. } while (0)
  588. static void __init find_ramdisk(unsigned long phys_base)
  589. {
  590. #ifdef CONFIG_BLK_DEV_INITRD
  591. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  592. unsigned long ramdisk_image;
  593. /* Older versions of the bootloader only supported a
  594. * 32-bit physical address for the ramdisk image
  595. * location, stored at sparc_ramdisk_image. Newer
  596. * SILO versions set sparc_ramdisk_image to zero and
  597. * provide a full 64-bit physical address at
  598. * sparc_ramdisk_image64.
  599. */
  600. ramdisk_image = sparc_ramdisk_image;
  601. if (!ramdisk_image)
  602. ramdisk_image = sparc_ramdisk_image64;
  603. /* Another bootloader quirk. The bootloader normalizes
  604. * the physical address to KERNBASE, so we have to
  605. * factor that back out and add in the lowest valid
  606. * physical page address to get the true physical address.
  607. */
  608. ramdisk_image -= KERNBASE;
  609. ramdisk_image += phys_base;
  610. numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
  611. ramdisk_image, sparc_ramdisk_size);
  612. initrd_start = ramdisk_image;
  613. initrd_end = ramdisk_image + sparc_ramdisk_size;
  614. lmb_reserve(initrd_start, sparc_ramdisk_size);
  615. initrd_start += PAGE_OFFSET;
  616. initrd_end += PAGE_OFFSET;
  617. }
  618. #endif
  619. }
  620. struct node_mem_mask {
  621. unsigned long mask;
  622. unsigned long val;
  623. unsigned long bootmem_paddr;
  624. };
  625. static struct node_mem_mask node_masks[MAX_NUMNODES];
  626. static int num_node_masks;
  627. int numa_cpu_lookup_table[NR_CPUS];
  628. cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
  629. #ifdef CONFIG_NEED_MULTIPLE_NODES
  630. struct mdesc_mblock {
  631. u64 base;
  632. u64 size;
  633. u64 offset; /* RA-to-PA */
  634. };
  635. static struct mdesc_mblock *mblocks;
  636. static int num_mblocks;
  637. static unsigned long ra_to_pa(unsigned long addr)
  638. {
  639. int i;
  640. for (i = 0; i < num_mblocks; i++) {
  641. struct mdesc_mblock *m = &mblocks[i];
  642. if (addr >= m->base &&
  643. addr < (m->base + m->size)) {
  644. addr += m->offset;
  645. break;
  646. }
  647. }
  648. return addr;
  649. }
  650. static int find_node(unsigned long addr)
  651. {
  652. int i;
  653. addr = ra_to_pa(addr);
  654. for (i = 0; i < num_node_masks; i++) {
  655. struct node_mem_mask *p = &node_masks[i];
  656. if ((addr & p->mask) == p->val)
  657. return i;
  658. }
  659. return -1;
  660. }
  661. static unsigned long nid_range(unsigned long start, unsigned long end,
  662. int *nid)
  663. {
  664. *nid = find_node(start);
  665. start += PAGE_SIZE;
  666. while (start < end) {
  667. int n = find_node(start);
  668. if (n != *nid)
  669. break;
  670. start += PAGE_SIZE;
  671. }
  672. if (start > end)
  673. start = end;
  674. return start;
  675. }
  676. #else
  677. static unsigned long nid_range(unsigned long start, unsigned long end,
  678. int *nid)
  679. {
  680. *nid = 0;
  681. return end;
  682. }
  683. #endif
  684. /* This must be invoked after performing all of the necessary
  685. * add_active_range() calls for 'nid'. We need to be able to get
  686. * correct data from get_pfn_range_for_nid().
  687. */
  688. static void __init allocate_node_data(int nid)
  689. {
  690. unsigned long paddr, num_pages, start_pfn, end_pfn;
  691. struct pglist_data *p;
  692. #ifdef CONFIG_NEED_MULTIPLE_NODES
  693. paddr = lmb_alloc_nid(sizeof(struct pglist_data),
  694. SMP_CACHE_BYTES, nid, nid_range);
  695. if (!paddr) {
  696. prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
  697. prom_halt();
  698. }
  699. NODE_DATA(nid) = __va(paddr);
  700. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  701. NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
  702. #endif
  703. p = NODE_DATA(nid);
  704. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  705. p->node_start_pfn = start_pfn;
  706. p->node_spanned_pages = end_pfn - start_pfn;
  707. if (p->node_spanned_pages) {
  708. num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
  709. paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
  710. nid_range);
  711. if (!paddr) {
  712. prom_printf("Cannot allocate bootmap for nid[%d]\n",
  713. nid);
  714. prom_halt();
  715. }
  716. node_masks[nid].bootmem_paddr = paddr;
  717. }
  718. }
  719. static void init_node_masks_nonnuma(void)
  720. {
  721. int i;
  722. numadbg("Initializing tables for non-numa.\n");
  723. node_masks[0].mask = node_masks[0].val = 0;
  724. num_node_masks = 1;
  725. for (i = 0; i < NR_CPUS; i++)
  726. numa_cpu_lookup_table[i] = 0;
  727. numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
  728. }
  729. #ifdef CONFIG_NEED_MULTIPLE_NODES
  730. struct pglist_data *node_data[MAX_NUMNODES];
  731. EXPORT_SYMBOL(numa_cpu_lookup_table);
  732. EXPORT_SYMBOL(numa_cpumask_lookup_table);
  733. EXPORT_SYMBOL(node_data);
  734. struct mdesc_mlgroup {
  735. u64 node;
  736. u64 latency;
  737. u64 match;
  738. u64 mask;
  739. };
  740. static struct mdesc_mlgroup *mlgroups;
  741. static int num_mlgroups;
  742. static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
  743. u32 cfg_handle)
  744. {
  745. u64 arc;
  746. mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
  747. u64 target = mdesc_arc_target(md, arc);
  748. const u64 *val;
  749. val = mdesc_get_property(md, target,
  750. "cfg-handle", NULL);
  751. if (val && *val == cfg_handle)
  752. return 0;
  753. }
  754. return -ENODEV;
  755. }
  756. static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
  757. u32 cfg_handle)
  758. {
  759. u64 arc, candidate, best_latency = ~(u64)0;
  760. candidate = MDESC_NODE_NULL;
  761. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  762. u64 target = mdesc_arc_target(md, arc);
  763. const char *name = mdesc_node_name(md, target);
  764. const u64 *val;
  765. if (strcmp(name, "pio-latency-group"))
  766. continue;
  767. val = mdesc_get_property(md, target, "latency", NULL);
  768. if (!val)
  769. continue;
  770. if (*val < best_latency) {
  771. candidate = target;
  772. best_latency = *val;
  773. }
  774. }
  775. if (candidate == MDESC_NODE_NULL)
  776. return -ENODEV;
  777. return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
  778. }
  779. int of_node_to_nid(struct device_node *dp)
  780. {
  781. const struct linux_prom64_registers *regs;
  782. struct mdesc_handle *md;
  783. u32 cfg_handle;
  784. int count, nid;
  785. u64 grp;
  786. /* This is the right thing to do on currently supported
  787. * SUN4U NUMA platforms as well, as the PCI controller does
  788. * not sit behind any particular memory controller.
  789. */
  790. if (!mlgroups)
  791. return -1;
  792. regs = of_get_property(dp, "reg", NULL);
  793. if (!regs)
  794. return -1;
  795. cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  796. md = mdesc_grab();
  797. count = 0;
  798. nid = -1;
  799. mdesc_for_each_node_by_name(md, grp, "group") {
  800. if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
  801. nid = count;
  802. break;
  803. }
  804. count++;
  805. }
  806. mdesc_release(md);
  807. return nid;
  808. }
  809. static void add_node_ranges(void)
  810. {
  811. int i;
  812. for (i = 0; i < lmb.memory.cnt; i++) {
  813. unsigned long size = lmb_size_bytes(&lmb.memory, i);
  814. unsigned long start, end;
  815. start = lmb.memory.region[i].base;
  816. end = start + size;
  817. while (start < end) {
  818. unsigned long this_end;
  819. int nid;
  820. this_end = nid_range(start, end, &nid);
  821. numadbg("Adding active range nid[%d] "
  822. "start[%lx] end[%lx]\n",
  823. nid, start, this_end);
  824. add_active_range(nid,
  825. start >> PAGE_SHIFT,
  826. this_end >> PAGE_SHIFT);
  827. start = this_end;
  828. }
  829. }
  830. }
  831. static int __init grab_mlgroups(struct mdesc_handle *md)
  832. {
  833. unsigned long paddr;
  834. int count = 0;
  835. u64 node;
  836. mdesc_for_each_node_by_name(md, node, "memory-latency-group")
  837. count++;
  838. if (!count)
  839. return -ENOENT;
  840. paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
  841. SMP_CACHE_BYTES);
  842. if (!paddr)
  843. return -ENOMEM;
  844. mlgroups = __va(paddr);
  845. num_mlgroups = count;
  846. count = 0;
  847. mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
  848. struct mdesc_mlgroup *m = &mlgroups[count++];
  849. const u64 *val;
  850. m->node = node;
  851. val = mdesc_get_property(md, node, "latency", NULL);
  852. m->latency = *val;
  853. val = mdesc_get_property(md, node, "address-match", NULL);
  854. m->match = *val;
  855. val = mdesc_get_property(md, node, "address-mask", NULL);
  856. m->mask = *val;
  857. numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
  858. "match[%lx] mask[%lx]\n",
  859. count - 1, m->node, m->latency, m->match, m->mask);
  860. }
  861. return 0;
  862. }
  863. static int __init grab_mblocks(struct mdesc_handle *md)
  864. {
  865. unsigned long paddr;
  866. int count = 0;
  867. u64 node;
  868. mdesc_for_each_node_by_name(md, node, "mblock")
  869. count++;
  870. if (!count)
  871. return -ENOENT;
  872. paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
  873. SMP_CACHE_BYTES);
  874. if (!paddr)
  875. return -ENOMEM;
  876. mblocks = __va(paddr);
  877. num_mblocks = count;
  878. count = 0;
  879. mdesc_for_each_node_by_name(md, node, "mblock") {
  880. struct mdesc_mblock *m = &mblocks[count++];
  881. const u64 *val;
  882. val = mdesc_get_property(md, node, "base", NULL);
  883. m->base = *val;
  884. val = mdesc_get_property(md, node, "size", NULL);
  885. m->size = *val;
  886. val = mdesc_get_property(md, node,
  887. "address-congruence-offset", NULL);
  888. m->offset = *val;
  889. numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
  890. count - 1, m->base, m->size, m->offset);
  891. }
  892. return 0;
  893. }
  894. static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
  895. u64 grp, cpumask_t *mask)
  896. {
  897. u64 arc;
  898. cpus_clear(*mask);
  899. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
  900. u64 target = mdesc_arc_target(md, arc);
  901. const char *name = mdesc_node_name(md, target);
  902. const u64 *id;
  903. if (strcmp(name, "cpu"))
  904. continue;
  905. id = mdesc_get_property(md, target, "id", NULL);
  906. if (*id < NR_CPUS)
  907. cpu_set(*id, *mask);
  908. }
  909. }
  910. static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
  911. {
  912. int i;
  913. for (i = 0; i < num_mlgroups; i++) {
  914. struct mdesc_mlgroup *m = &mlgroups[i];
  915. if (m->node == node)
  916. return m;
  917. }
  918. return NULL;
  919. }
  920. static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
  921. int index)
  922. {
  923. struct mdesc_mlgroup *candidate = NULL;
  924. u64 arc, best_latency = ~(u64)0;
  925. struct node_mem_mask *n;
  926. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  927. u64 target = mdesc_arc_target(md, arc);
  928. struct mdesc_mlgroup *m = find_mlgroup(target);
  929. if (!m)
  930. continue;
  931. if (m->latency < best_latency) {
  932. candidate = m;
  933. best_latency = m->latency;
  934. }
  935. }
  936. if (!candidate)
  937. return -ENOENT;
  938. if (num_node_masks != index) {
  939. printk(KERN_ERR "Inconsistent NUMA state, "
  940. "index[%d] != num_node_masks[%d]\n",
  941. index, num_node_masks);
  942. return -EINVAL;
  943. }
  944. n = &node_masks[num_node_masks++];
  945. n->mask = candidate->mask;
  946. n->val = candidate->match;
  947. numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
  948. index, n->mask, n->val, candidate->latency);
  949. return 0;
  950. }
  951. static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
  952. int index)
  953. {
  954. cpumask_t mask;
  955. int cpu;
  956. numa_parse_mdesc_group_cpus(md, grp, &mask);
  957. for_each_cpu_mask(cpu, mask)
  958. numa_cpu_lookup_table[cpu] = index;
  959. numa_cpumask_lookup_table[index] = mask;
  960. if (numa_debug) {
  961. printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
  962. for_each_cpu_mask(cpu, mask)
  963. printk("%d ", cpu);
  964. printk("]\n");
  965. }
  966. return numa_attach_mlgroup(md, grp, index);
  967. }
  968. static int __init numa_parse_mdesc(void)
  969. {
  970. struct mdesc_handle *md = mdesc_grab();
  971. int i, err, count;
  972. u64 node;
  973. node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
  974. if (node == MDESC_NODE_NULL) {
  975. mdesc_release(md);
  976. return -ENOENT;
  977. }
  978. err = grab_mblocks(md);
  979. if (err < 0)
  980. goto out;
  981. err = grab_mlgroups(md);
  982. if (err < 0)
  983. goto out;
  984. count = 0;
  985. mdesc_for_each_node_by_name(md, node, "group") {
  986. err = numa_parse_mdesc_group(md, node, count);
  987. if (err < 0)
  988. break;
  989. count++;
  990. }
  991. add_node_ranges();
  992. for (i = 0; i < num_node_masks; i++) {
  993. allocate_node_data(i);
  994. node_set_online(i);
  995. }
  996. err = 0;
  997. out:
  998. mdesc_release(md);
  999. return err;
  1000. }
  1001. static int __init numa_parse_jbus(void)
  1002. {
  1003. unsigned long cpu, index;
  1004. /* NUMA node id is encoded in bits 36 and higher, and there is
  1005. * a 1-to-1 mapping from CPU ID to NUMA node ID.
  1006. */
  1007. index = 0;
  1008. for_each_present_cpu(cpu) {
  1009. numa_cpu_lookup_table[cpu] = index;
  1010. numa_cpumask_lookup_table[index] = cpumask_of_cpu(cpu);
  1011. node_masks[index].mask = ~((1UL << 36UL) - 1UL);
  1012. node_masks[index].val = cpu << 36UL;
  1013. index++;
  1014. }
  1015. num_node_masks = index;
  1016. add_node_ranges();
  1017. for (index = 0; index < num_node_masks; index++) {
  1018. allocate_node_data(index);
  1019. node_set_online(index);
  1020. }
  1021. return 0;
  1022. }
  1023. static int __init numa_parse_sun4u(void)
  1024. {
  1025. if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1026. unsigned long ver;
  1027. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  1028. if ((ver >> 32UL) == __JALAPENO_ID ||
  1029. (ver >> 32UL) == __SERRANO_ID)
  1030. return numa_parse_jbus();
  1031. }
  1032. return -1;
  1033. }
  1034. static int __init bootmem_init_numa(void)
  1035. {
  1036. int err = -1;
  1037. numadbg("bootmem_init_numa()\n");
  1038. if (numa_enabled) {
  1039. if (tlb_type == hypervisor)
  1040. err = numa_parse_mdesc();
  1041. else
  1042. err = numa_parse_sun4u();
  1043. }
  1044. return err;
  1045. }
  1046. #else
  1047. static int bootmem_init_numa(void)
  1048. {
  1049. return -1;
  1050. }
  1051. #endif
  1052. static void __init bootmem_init_nonnuma(void)
  1053. {
  1054. unsigned long top_of_ram = lmb_end_of_DRAM();
  1055. unsigned long total_ram = lmb_phys_mem_size();
  1056. unsigned int i;
  1057. numadbg("bootmem_init_nonnuma()\n");
  1058. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  1059. top_of_ram, total_ram);
  1060. printk(KERN_INFO "Memory hole size: %ldMB\n",
  1061. (top_of_ram - total_ram) >> 20);
  1062. init_node_masks_nonnuma();
  1063. for (i = 0; i < lmb.memory.cnt; i++) {
  1064. unsigned long size = lmb_size_bytes(&lmb.memory, i);
  1065. unsigned long start_pfn, end_pfn;
  1066. if (!size)
  1067. continue;
  1068. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  1069. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  1070. add_active_range(0, start_pfn, end_pfn);
  1071. }
  1072. allocate_node_data(0);
  1073. node_set_online(0);
  1074. }
  1075. static void __init reserve_range_in_node(int nid, unsigned long start,
  1076. unsigned long end)
  1077. {
  1078. numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
  1079. nid, start, end);
  1080. while (start < end) {
  1081. unsigned long this_end;
  1082. int n;
  1083. this_end = nid_range(start, end, &n);
  1084. if (n == nid) {
  1085. numadbg(" MATCH reserving range [%lx:%lx]\n",
  1086. start, this_end);
  1087. reserve_bootmem_node(NODE_DATA(nid), start,
  1088. (this_end - start), BOOTMEM_DEFAULT);
  1089. } else
  1090. numadbg(" NO MATCH, advancing start to %lx\n",
  1091. this_end);
  1092. start = this_end;
  1093. }
  1094. }
  1095. static void __init trim_reserved_in_node(int nid)
  1096. {
  1097. int i;
  1098. numadbg(" trim_reserved_in_node(%d)\n", nid);
  1099. for (i = 0; i < lmb.reserved.cnt; i++) {
  1100. unsigned long start = lmb.reserved.region[i].base;
  1101. unsigned long size = lmb_size_bytes(&lmb.reserved, i);
  1102. unsigned long end = start + size;
  1103. reserve_range_in_node(nid, start, end);
  1104. }
  1105. }
  1106. static void __init bootmem_init_one_node(int nid)
  1107. {
  1108. struct pglist_data *p;
  1109. numadbg("bootmem_init_one_node(%d)\n", nid);
  1110. p = NODE_DATA(nid);
  1111. if (p->node_spanned_pages) {
  1112. unsigned long paddr = node_masks[nid].bootmem_paddr;
  1113. unsigned long end_pfn;
  1114. end_pfn = p->node_start_pfn + p->node_spanned_pages;
  1115. numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
  1116. nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
  1117. init_bootmem_node(p, paddr >> PAGE_SHIFT,
  1118. p->node_start_pfn, end_pfn);
  1119. numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
  1120. nid, end_pfn);
  1121. free_bootmem_with_active_regions(nid, end_pfn);
  1122. trim_reserved_in_node(nid);
  1123. numadbg(" sparse_memory_present_with_active_regions(%d)\n",
  1124. nid);
  1125. sparse_memory_present_with_active_regions(nid);
  1126. }
  1127. }
  1128. static unsigned long __init bootmem_init(unsigned long phys_base)
  1129. {
  1130. unsigned long end_pfn;
  1131. int nid;
  1132. end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
  1133. max_pfn = max_low_pfn = end_pfn;
  1134. min_low_pfn = (phys_base >> PAGE_SHIFT);
  1135. if (bootmem_init_numa() < 0)
  1136. bootmem_init_nonnuma();
  1137. /* XXX cpu notifier XXX */
  1138. for_each_online_node(nid)
  1139. bootmem_init_one_node(nid);
  1140. sparse_init();
  1141. return end_pfn;
  1142. }
  1143. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  1144. static int pall_ents __initdata;
  1145. #ifdef CONFIG_DEBUG_PAGEALLOC
  1146. static unsigned long __ref kernel_map_range(unsigned long pstart,
  1147. unsigned long pend, pgprot_t prot)
  1148. {
  1149. unsigned long vstart = PAGE_OFFSET + pstart;
  1150. unsigned long vend = PAGE_OFFSET + pend;
  1151. unsigned long alloc_bytes = 0UL;
  1152. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  1153. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  1154. vstart, vend);
  1155. prom_halt();
  1156. }
  1157. while (vstart < vend) {
  1158. unsigned long this_end, paddr = __pa(vstart);
  1159. pgd_t *pgd = pgd_offset_k(vstart);
  1160. pud_t *pud;
  1161. pmd_t *pmd;
  1162. pte_t *pte;
  1163. pud = pud_offset(pgd, vstart);
  1164. if (pud_none(*pud)) {
  1165. pmd_t *new;
  1166. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1167. alloc_bytes += PAGE_SIZE;
  1168. pud_populate(&init_mm, pud, new);
  1169. }
  1170. pmd = pmd_offset(pud, vstart);
  1171. if (!pmd_present(*pmd)) {
  1172. pte_t *new;
  1173. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1174. alloc_bytes += PAGE_SIZE;
  1175. pmd_populate_kernel(&init_mm, pmd, new);
  1176. }
  1177. pte = pte_offset_kernel(pmd, vstart);
  1178. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  1179. if (this_end > vend)
  1180. this_end = vend;
  1181. while (vstart < this_end) {
  1182. pte_val(*pte) = (paddr | pgprot_val(prot));
  1183. vstart += PAGE_SIZE;
  1184. paddr += PAGE_SIZE;
  1185. pte++;
  1186. }
  1187. }
  1188. return alloc_bytes;
  1189. }
  1190. extern unsigned int kvmap_linear_patch[1];
  1191. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1192. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  1193. {
  1194. const unsigned long shift_256MB = 28;
  1195. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  1196. const unsigned long size_256MB = (1UL << shift_256MB);
  1197. while (start < end) {
  1198. long remains;
  1199. remains = end - start;
  1200. if (remains < size_256MB)
  1201. break;
  1202. if (start & mask_256MB) {
  1203. start = (start + size_256MB) & ~mask_256MB;
  1204. continue;
  1205. }
  1206. while (remains >= size_256MB) {
  1207. unsigned long index = start >> shift_256MB;
  1208. __set_bit(index, kpte_linear_bitmap);
  1209. start += size_256MB;
  1210. remains -= size_256MB;
  1211. }
  1212. }
  1213. }
  1214. static void __init init_kpte_bitmap(void)
  1215. {
  1216. unsigned long i;
  1217. for (i = 0; i < pall_ents; i++) {
  1218. unsigned long phys_start, phys_end;
  1219. phys_start = pall[i].phys_addr;
  1220. phys_end = phys_start + pall[i].reg_size;
  1221. mark_kpte_bitmap(phys_start, phys_end);
  1222. }
  1223. }
  1224. static void __init kernel_physical_mapping_init(void)
  1225. {
  1226. #ifdef CONFIG_DEBUG_PAGEALLOC
  1227. unsigned long i, mem_alloced = 0UL;
  1228. for (i = 0; i < pall_ents; i++) {
  1229. unsigned long phys_start, phys_end;
  1230. phys_start = pall[i].phys_addr;
  1231. phys_end = phys_start + pall[i].reg_size;
  1232. mem_alloced += kernel_map_range(phys_start, phys_end,
  1233. PAGE_KERNEL);
  1234. }
  1235. printk("Allocated %ld bytes for kernel page tables.\n",
  1236. mem_alloced);
  1237. kvmap_linear_patch[0] = 0x01000000; /* nop */
  1238. flushi(&kvmap_linear_patch[0]);
  1239. __flush_tlb_all();
  1240. #endif
  1241. }
  1242. #ifdef CONFIG_DEBUG_PAGEALLOC
  1243. void kernel_map_pages(struct page *page, int numpages, int enable)
  1244. {
  1245. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  1246. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  1247. kernel_map_range(phys_start, phys_end,
  1248. (enable ? PAGE_KERNEL : __pgprot(0)));
  1249. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  1250. PAGE_OFFSET + phys_end);
  1251. /* we should perform an IPI and flush all tlbs,
  1252. * but that can deadlock->flush only current cpu.
  1253. */
  1254. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  1255. PAGE_OFFSET + phys_end);
  1256. }
  1257. #endif
  1258. unsigned long __init find_ecache_flush_span(unsigned long size)
  1259. {
  1260. int i;
  1261. for (i = 0; i < pavail_ents; i++) {
  1262. if (pavail[i].reg_size >= size)
  1263. return pavail[i].phys_addr;
  1264. }
  1265. return ~0UL;
  1266. }
  1267. static void __init tsb_phys_patch(void)
  1268. {
  1269. struct tsb_ldquad_phys_patch_entry *pquad;
  1270. struct tsb_phys_patch_entry *p;
  1271. pquad = &__tsb_ldquad_phys_patch;
  1272. while (pquad < &__tsb_ldquad_phys_patch_end) {
  1273. unsigned long addr = pquad->addr;
  1274. if (tlb_type == hypervisor)
  1275. *(unsigned int *) addr = pquad->sun4v_insn;
  1276. else
  1277. *(unsigned int *) addr = pquad->sun4u_insn;
  1278. wmb();
  1279. __asm__ __volatile__("flush %0"
  1280. : /* no outputs */
  1281. : "r" (addr));
  1282. pquad++;
  1283. }
  1284. p = &__tsb_phys_patch;
  1285. while (p < &__tsb_phys_patch_end) {
  1286. unsigned long addr = p->addr;
  1287. *(unsigned int *) addr = p->insn;
  1288. wmb();
  1289. __asm__ __volatile__("flush %0"
  1290. : /* no outputs */
  1291. : "r" (addr));
  1292. p++;
  1293. }
  1294. }
  1295. /* Don't mark as init, we give this to the Hypervisor. */
  1296. #ifndef CONFIG_DEBUG_PAGEALLOC
  1297. #define NUM_KTSB_DESCR 2
  1298. #else
  1299. #define NUM_KTSB_DESCR 1
  1300. #endif
  1301. static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
  1302. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  1303. static void __init sun4v_ktsb_init(void)
  1304. {
  1305. unsigned long ktsb_pa;
  1306. /* First KTSB for PAGE_SIZE mappings. */
  1307. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  1308. switch (PAGE_SIZE) {
  1309. case 8 * 1024:
  1310. default:
  1311. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  1312. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  1313. break;
  1314. case 64 * 1024:
  1315. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  1316. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  1317. break;
  1318. case 512 * 1024:
  1319. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1320. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1321. break;
  1322. case 4 * 1024 * 1024:
  1323. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1324. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1325. break;
  1326. };
  1327. ktsb_descr[0].assoc = 1;
  1328. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1329. ktsb_descr[0].ctx_idx = 0;
  1330. ktsb_descr[0].tsb_base = ktsb_pa;
  1331. ktsb_descr[0].resv = 0;
  1332. #ifndef CONFIG_DEBUG_PAGEALLOC
  1333. /* Second KTSB for 4MB/256MB mappings. */
  1334. ktsb_pa = (kern_base +
  1335. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1336. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1337. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  1338. HV_PGSZ_MASK_256MB);
  1339. ktsb_descr[1].assoc = 1;
  1340. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1341. ktsb_descr[1].ctx_idx = 0;
  1342. ktsb_descr[1].tsb_base = ktsb_pa;
  1343. ktsb_descr[1].resv = 0;
  1344. #endif
  1345. }
  1346. void __cpuinit sun4v_ktsb_register(void)
  1347. {
  1348. unsigned long pa, ret;
  1349. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1350. ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
  1351. if (ret != 0) {
  1352. prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
  1353. "errors with %lx\n", pa, ret);
  1354. prom_halt();
  1355. }
  1356. }
  1357. /* paging_init() sets up the page tables */
  1358. static unsigned long last_valid_pfn;
  1359. pgd_t swapper_pg_dir[2048];
  1360. static void sun4u_pgprot_init(void);
  1361. static void sun4v_pgprot_init(void);
  1362. /* Dummy function */
  1363. void __init setup_per_cpu_areas(void)
  1364. {
  1365. }
  1366. void __init paging_init(void)
  1367. {
  1368. unsigned long end_pfn, shift, phys_base;
  1369. unsigned long real_end, i;
  1370. /* These build time checkes make sure that the dcache_dirty_cpu()
  1371. * page->flags usage will work.
  1372. *
  1373. * When a page gets marked as dcache-dirty, we store the
  1374. * cpu number starting at bit 32 in the page->flags. Also,
  1375. * functions like clear_dcache_dirty_cpu use the cpu mask
  1376. * in 13-bit signed-immediate instruction fields.
  1377. */
  1378. /*
  1379. * Page flags must not reach into upper 32 bits that are used
  1380. * for the cpu number
  1381. */
  1382. BUILD_BUG_ON(NR_PAGEFLAGS > 32);
  1383. /*
  1384. * The bit fields placed in the high range must not reach below
  1385. * the 32 bit boundary. Otherwise we cannot place the cpu field
  1386. * at the 32 bit boundary.
  1387. */
  1388. BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
  1389. ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
  1390. BUILD_BUG_ON(NR_CPUS > 4096);
  1391. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1392. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1393. sstate_booting();
  1394. /* Invalidate both kernel TSBs. */
  1395. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1396. #ifndef CONFIG_DEBUG_PAGEALLOC
  1397. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1398. #endif
  1399. if (tlb_type == hypervisor)
  1400. sun4v_pgprot_init();
  1401. else
  1402. sun4u_pgprot_init();
  1403. if (tlb_type == cheetah_plus ||
  1404. tlb_type == hypervisor)
  1405. tsb_phys_patch();
  1406. if (tlb_type == hypervisor) {
  1407. sun4v_patch_tlb_handlers();
  1408. sun4v_ktsb_init();
  1409. }
  1410. lmb_init();
  1411. /* Find available physical memory...
  1412. *
  1413. * Read it twice in order to work around a bug in openfirmware.
  1414. * The call to grab this table itself can cause openfirmware to
  1415. * allocate memory, which in turn can take away some space from
  1416. * the list of available memory. Reading it twice makes sure
  1417. * we really do get the final value.
  1418. */
  1419. read_obp_translations();
  1420. read_obp_memory("reg", &pall[0], &pall_ents);
  1421. read_obp_memory("available", &pavail[0], &pavail_ents);
  1422. read_obp_memory("available", &pavail[0], &pavail_ents);
  1423. phys_base = 0xffffffffffffffffUL;
  1424. for (i = 0; i < pavail_ents; i++) {
  1425. phys_base = min(phys_base, pavail[i].phys_addr);
  1426. lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
  1427. }
  1428. lmb_reserve(kern_base, kern_size);
  1429. find_ramdisk(phys_base);
  1430. lmb_enforce_memory_limit(cmdline_memory_size);
  1431. lmb_analyze();
  1432. lmb_dump_all();
  1433. set_bit(0, mmu_context_bmap);
  1434. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1435. real_end = (unsigned long)_end;
  1436. num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
  1437. printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
  1438. num_kernel_image_mappings);
  1439. /* Set kernel pgd to upper alias so physical page computations
  1440. * work.
  1441. */
  1442. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1443. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1444. /* Now can init the kernel/bad page tables. */
  1445. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1446. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1447. inherit_prom_mappings();
  1448. init_kpte_bitmap();
  1449. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1450. setup_tba();
  1451. __flush_tlb_all();
  1452. if (tlb_type == hypervisor)
  1453. sun4v_ktsb_register();
  1454. /* We must setup the per-cpu areas before we pull in the
  1455. * PROM and the MDESC. The code there fills in cpu and
  1456. * other information into per-cpu data structures.
  1457. */
  1458. real_setup_per_cpu_areas();
  1459. prom_build_devicetree();
  1460. if (tlb_type == hypervisor)
  1461. sun4v_mdesc_init();
  1462. /* Once the OF device tree and MDESC have been setup, we know
  1463. * the list of possible cpus. Therefore we can allocate the
  1464. * IRQ stacks.
  1465. */
  1466. for_each_possible_cpu(i) {
  1467. /* XXX Use node local allocations... XXX */
  1468. softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
  1469. hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
  1470. }
  1471. /* Setup bootmem... */
  1472. last_valid_pfn = end_pfn = bootmem_init(phys_base);
  1473. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1474. max_mapnr = last_valid_pfn;
  1475. #endif
  1476. kernel_physical_mapping_init();
  1477. {
  1478. unsigned long max_zone_pfns[MAX_NR_ZONES];
  1479. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  1480. max_zone_pfns[ZONE_NORMAL] = end_pfn;
  1481. free_area_init_nodes(max_zone_pfns);
  1482. }
  1483. printk("Booting Linux...\n");
  1484. cpu_probe();
  1485. }
  1486. int __init page_in_phys_avail(unsigned long paddr)
  1487. {
  1488. int i;
  1489. paddr &= PAGE_MASK;
  1490. for (i = 0; i < pavail_ents; i++) {
  1491. unsigned long start, end;
  1492. start = pavail[i].phys_addr;
  1493. end = start + pavail[i].reg_size;
  1494. if (paddr >= start && paddr < end)
  1495. return 1;
  1496. }
  1497. if (paddr >= kern_base && paddr < (kern_base + kern_size))
  1498. return 1;
  1499. #ifdef CONFIG_BLK_DEV_INITRD
  1500. if (paddr >= __pa(initrd_start) &&
  1501. paddr < __pa(PAGE_ALIGN(initrd_end)))
  1502. return 1;
  1503. #endif
  1504. return 0;
  1505. }
  1506. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  1507. static int pavail_rescan_ents __initdata;
  1508. /* Certain OBP calls, such as fetching "available" properties, can
  1509. * claim physical memory. So, along with initializing the valid
  1510. * address bitmap, what we do here is refetch the physical available
  1511. * memory list again, and make sure it provides at least as much
  1512. * memory as 'pavail' does.
  1513. */
  1514. static void setup_valid_addr_bitmap_from_pavail(void)
  1515. {
  1516. int i;
  1517. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1518. for (i = 0; i < pavail_ents; i++) {
  1519. unsigned long old_start, old_end;
  1520. old_start = pavail[i].phys_addr;
  1521. old_end = old_start + pavail[i].reg_size;
  1522. while (old_start < old_end) {
  1523. int n;
  1524. for (n = 0; n < pavail_rescan_ents; n++) {
  1525. unsigned long new_start, new_end;
  1526. new_start = pavail_rescan[n].phys_addr;
  1527. new_end = new_start +
  1528. pavail_rescan[n].reg_size;
  1529. if (new_start <= old_start &&
  1530. new_end >= (old_start + PAGE_SIZE)) {
  1531. set_bit(old_start >> 22,
  1532. sparc64_valid_addr_bitmap);
  1533. goto do_next_page;
  1534. }
  1535. }
  1536. prom_printf("mem_init: Lost memory in pavail\n");
  1537. prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
  1538. pavail[i].phys_addr,
  1539. pavail[i].reg_size);
  1540. prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
  1541. pavail_rescan[i].phys_addr,
  1542. pavail_rescan[i].reg_size);
  1543. prom_printf("mem_init: Cannot continue, aborting.\n");
  1544. prom_halt();
  1545. do_next_page:
  1546. old_start += PAGE_SIZE;
  1547. }
  1548. }
  1549. }
  1550. void __init mem_init(void)
  1551. {
  1552. unsigned long codepages, datapages, initpages;
  1553. unsigned long addr, last;
  1554. int i;
  1555. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1556. i += 1;
  1557. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1558. if (sparc64_valid_addr_bitmap == NULL) {
  1559. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1560. prom_halt();
  1561. }
  1562. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1563. addr = PAGE_OFFSET + kern_base;
  1564. last = PAGE_ALIGN(kern_size) + addr;
  1565. while (addr < last) {
  1566. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1567. addr += PAGE_SIZE;
  1568. }
  1569. setup_valid_addr_bitmap_from_pavail();
  1570. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1571. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1572. for_each_online_node(i) {
  1573. if (NODE_DATA(i)->node_spanned_pages != 0) {
  1574. totalram_pages +=
  1575. free_all_bootmem_node(NODE_DATA(i));
  1576. }
  1577. }
  1578. #else
  1579. totalram_pages = free_all_bootmem();
  1580. #endif
  1581. /* We subtract one to account for the mem_map_zero page
  1582. * allocated below.
  1583. */
  1584. totalram_pages -= 1;
  1585. num_physpages = totalram_pages;
  1586. /*
  1587. * Set up the zero page, mark it reserved, so that page count
  1588. * is not manipulated when freeing the page from user ptes.
  1589. */
  1590. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1591. if (mem_map_zero == NULL) {
  1592. prom_printf("paging_init: Cannot alloc zero page.\n");
  1593. prom_halt();
  1594. }
  1595. SetPageReserved(mem_map_zero);
  1596. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1597. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1598. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1599. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1600. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1601. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1602. printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1603. nr_free_pages() << (PAGE_SHIFT-10),
  1604. codepages << (PAGE_SHIFT-10),
  1605. datapages << (PAGE_SHIFT-10),
  1606. initpages << (PAGE_SHIFT-10),
  1607. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1608. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1609. cheetah_ecache_flush_init();
  1610. }
  1611. void free_initmem(void)
  1612. {
  1613. unsigned long addr, initend;
  1614. int do_free = 1;
  1615. /* If the physical memory maps were trimmed by kernel command
  1616. * line options, don't even try freeing this initmem stuff up.
  1617. * The kernel image could have been in the trimmed out region
  1618. * and if so the freeing below will free invalid page structs.
  1619. */
  1620. if (cmdline_memory_size)
  1621. do_free = 0;
  1622. /*
  1623. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1624. */
  1625. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1626. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1627. for (; addr < initend; addr += PAGE_SIZE) {
  1628. unsigned long page;
  1629. struct page *p;
  1630. page = (addr +
  1631. ((unsigned long) __va(kern_base)) -
  1632. ((unsigned long) KERNBASE));
  1633. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  1634. if (do_free) {
  1635. p = virt_to_page(page);
  1636. ClearPageReserved(p);
  1637. init_page_count(p);
  1638. __free_page(p);
  1639. num_physpages++;
  1640. totalram_pages++;
  1641. }
  1642. }
  1643. }
  1644. #ifdef CONFIG_BLK_DEV_INITRD
  1645. void free_initrd_mem(unsigned long start, unsigned long end)
  1646. {
  1647. if (start < end)
  1648. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1649. for (; start < end; start += PAGE_SIZE) {
  1650. struct page *p = virt_to_page(start);
  1651. ClearPageReserved(p);
  1652. init_page_count(p);
  1653. __free_page(p);
  1654. num_physpages++;
  1655. totalram_pages++;
  1656. }
  1657. }
  1658. #endif
  1659. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1660. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1661. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1662. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1663. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1664. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1665. pgprot_t PAGE_KERNEL __read_mostly;
  1666. EXPORT_SYMBOL(PAGE_KERNEL);
  1667. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1668. pgprot_t PAGE_COPY __read_mostly;
  1669. pgprot_t PAGE_SHARED __read_mostly;
  1670. EXPORT_SYMBOL(PAGE_SHARED);
  1671. pgprot_t PAGE_EXEC __read_mostly;
  1672. unsigned long pg_iobits __read_mostly;
  1673. unsigned long _PAGE_IE __read_mostly;
  1674. EXPORT_SYMBOL(_PAGE_IE);
  1675. unsigned long _PAGE_E __read_mostly;
  1676. EXPORT_SYMBOL(_PAGE_E);
  1677. unsigned long _PAGE_CACHE __read_mostly;
  1678. EXPORT_SYMBOL(_PAGE_CACHE);
  1679. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1680. #define VMEMMAP_CHUNK_SHIFT 22
  1681. #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
  1682. #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
  1683. #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
  1684. #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
  1685. sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
  1686. unsigned long vmemmap_table[VMEMMAP_SIZE];
  1687. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  1688. {
  1689. unsigned long vstart = (unsigned long) start;
  1690. unsigned long vend = (unsigned long) (start + nr);
  1691. unsigned long phys_start = (vstart - VMEMMAP_BASE);
  1692. unsigned long phys_end = (vend - VMEMMAP_BASE);
  1693. unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
  1694. unsigned long end = VMEMMAP_ALIGN(phys_end);
  1695. unsigned long pte_base;
  1696. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1697. _PAGE_CP_4U | _PAGE_CV_4U |
  1698. _PAGE_P_4U | _PAGE_W_4U);
  1699. if (tlb_type == hypervisor)
  1700. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1701. _PAGE_CP_4V | _PAGE_CV_4V |
  1702. _PAGE_P_4V | _PAGE_W_4V);
  1703. for (; addr < end; addr += VMEMMAP_CHUNK) {
  1704. unsigned long *vmem_pp =
  1705. vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
  1706. void *block;
  1707. if (!(*vmem_pp & _PAGE_VALID)) {
  1708. block = vmemmap_alloc_block(1UL << 22, node);
  1709. if (!block)
  1710. return -ENOMEM;
  1711. *vmem_pp = pte_base | __pa(block);
  1712. printk(KERN_INFO "[%p-%p] page_structs=%lu "
  1713. "node=%d entry=%lu/%lu\n", start, block, nr,
  1714. node,
  1715. addr >> VMEMMAP_CHUNK_SHIFT,
  1716. VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
  1717. }
  1718. }
  1719. return 0;
  1720. }
  1721. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  1722. static void prot_init_common(unsigned long page_none,
  1723. unsigned long page_shared,
  1724. unsigned long page_copy,
  1725. unsigned long page_readonly,
  1726. unsigned long page_exec_bit)
  1727. {
  1728. PAGE_COPY = __pgprot(page_copy);
  1729. PAGE_SHARED = __pgprot(page_shared);
  1730. protection_map[0x0] = __pgprot(page_none);
  1731. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1732. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1733. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1734. protection_map[0x4] = __pgprot(page_readonly);
  1735. protection_map[0x5] = __pgprot(page_readonly);
  1736. protection_map[0x6] = __pgprot(page_copy);
  1737. protection_map[0x7] = __pgprot(page_copy);
  1738. protection_map[0x8] = __pgprot(page_none);
  1739. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1740. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1741. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1742. protection_map[0xc] = __pgprot(page_readonly);
  1743. protection_map[0xd] = __pgprot(page_readonly);
  1744. protection_map[0xe] = __pgprot(page_shared);
  1745. protection_map[0xf] = __pgprot(page_shared);
  1746. }
  1747. static void __init sun4u_pgprot_init(void)
  1748. {
  1749. unsigned long page_none, page_shared, page_copy, page_readonly;
  1750. unsigned long page_exec_bit;
  1751. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1752. _PAGE_CACHE_4U | _PAGE_P_4U |
  1753. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1754. _PAGE_EXEC_4U);
  1755. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1756. _PAGE_CACHE_4U | _PAGE_P_4U |
  1757. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1758. _PAGE_EXEC_4U | _PAGE_L_4U);
  1759. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1760. _PAGE_IE = _PAGE_IE_4U;
  1761. _PAGE_E = _PAGE_E_4U;
  1762. _PAGE_CACHE = _PAGE_CACHE_4U;
  1763. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1764. __ACCESS_BITS_4U | _PAGE_E_4U);
  1765. #ifdef CONFIG_DEBUG_PAGEALLOC
  1766. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
  1767. 0xfffff80000000000;
  1768. #else
  1769. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1770. 0xfffff80000000000;
  1771. #endif
  1772. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1773. _PAGE_P_4U | _PAGE_W_4U);
  1774. /* XXX Should use 256MB on Panther. XXX */
  1775. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1776. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1777. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1778. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1779. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1780. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1781. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1782. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1783. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1784. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1785. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1786. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1787. page_exec_bit = _PAGE_EXEC_4U;
  1788. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1789. page_exec_bit);
  1790. }
  1791. static void __init sun4v_pgprot_init(void)
  1792. {
  1793. unsigned long page_none, page_shared, page_copy, page_readonly;
  1794. unsigned long page_exec_bit;
  1795. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1796. _PAGE_CACHE_4V | _PAGE_P_4V |
  1797. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1798. _PAGE_EXEC_4V);
  1799. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1800. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1801. _PAGE_IE = _PAGE_IE_4V;
  1802. _PAGE_E = _PAGE_E_4V;
  1803. _PAGE_CACHE = _PAGE_CACHE_4V;
  1804. #ifdef CONFIG_DEBUG_PAGEALLOC
  1805. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
  1806. 0xfffff80000000000;
  1807. #else
  1808. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1809. 0xfffff80000000000;
  1810. #endif
  1811. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1812. _PAGE_P_4V | _PAGE_W_4V);
  1813. #ifdef CONFIG_DEBUG_PAGEALLOC
  1814. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
  1815. 0xfffff80000000000;
  1816. #else
  1817. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1818. 0xfffff80000000000;
  1819. #endif
  1820. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1821. _PAGE_P_4V | _PAGE_W_4V);
  1822. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1823. __ACCESS_BITS_4V | _PAGE_E_4V);
  1824. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1825. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1826. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1827. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1828. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1829. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1830. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1831. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1832. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1833. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1834. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1835. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1836. page_exec_bit = _PAGE_EXEC_4V;
  1837. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1838. page_exec_bit);
  1839. }
  1840. unsigned long pte_sz_bits(unsigned long sz)
  1841. {
  1842. if (tlb_type == hypervisor) {
  1843. switch (sz) {
  1844. case 8 * 1024:
  1845. default:
  1846. return _PAGE_SZ8K_4V;
  1847. case 64 * 1024:
  1848. return _PAGE_SZ64K_4V;
  1849. case 512 * 1024:
  1850. return _PAGE_SZ512K_4V;
  1851. case 4 * 1024 * 1024:
  1852. return _PAGE_SZ4MB_4V;
  1853. };
  1854. } else {
  1855. switch (sz) {
  1856. case 8 * 1024:
  1857. default:
  1858. return _PAGE_SZ8K_4U;
  1859. case 64 * 1024:
  1860. return _PAGE_SZ64K_4U;
  1861. case 512 * 1024:
  1862. return _PAGE_SZ512K_4U;
  1863. case 4 * 1024 * 1024:
  1864. return _PAGE_SZ4MB_4U;
  1865. };
  1866. }
  1867. }
  1868. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1869. {
  1870. pte_t pte;
  1871. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1872. pte_val(pte) |= (((unsigned long)space) << 32);
  1873. pte_val(pte) |= pte_sz_bits(page_size);
  1874. return pte;
  1875. }
  1876. static unsigned long kern_large_tte(unsigned long paddr)
  1877. {
  1878. unsigned long val;
  1879. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1880. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1881. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1882. if (tlb_type == hypervisor)
  1883. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1884. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1885. _PAGE_EXEC_4V | _PAGE_W_4V);
  1886. return val | paddr;
  1887. }
  1888. /* If not locked, zap it. */
  1889. void __flush_tlb_all(void)
  1890. {
  1891. unsigned long pstate;
  1892. int i;
  1893. __asm__ __volatile__("flushw\n\t"
  1894. "rdpr %%pstate, %0\n\t"
  1895. "wrpr %0, %1, %%pstate"
  1896. : "=r" (pstate)
  1897. : "i" (PSTATE_IE));
  1898. if (tlb_type == hypervisor) {
  1899. sun4v_mmu_demap_all();
  1900. } else if (tlb_type == spitfire) {
  1901. for (i = 0; i < 64; i++) {
  1902. /* Spitfire Errata #32 workaround */
  1903. /* NOTE: Always runs on spitfire, so no
  1904. * cheetah+ page size encodings.
  1905. */
  1906. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1907. "flush %%g6"
  1908. : /* No outputs */
  1909. : "r" (0),
  1910. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1911. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1912. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1913. "membar #Sync"
  1914. : /* no outputs */
  1915. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1916. spitfire_put_dtlb_data(i, 0x0UL);
  1917. }
  1918. /* Spitfire Errata #32 workaround */
  1919. /* NOTE: Always runs on spitfire, so no
  1920. * cheetah+ page size encodings.
  1921. */
  1922. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1923. "flush %%g6"
  1924. : /* No outputs */
  1925. : "r" (0),
  1926. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1927. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1928. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1929. "membar #Sync"
  1930. : /* no outputs */
  1931. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1932. spitfire_put_itlb_data(i, 0x0UL);
  1933. }
  1934. }
  1935. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1936. cheetah_flush_dtlb_all();
  1937. cheetah_flush_itlb_all();
  1938. }
  1939. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1940. : : "r" (pstate));
  1941. }