huge_memory.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is enabled for all mappings
  28. * and khugepaged scans all mappings. Defrag is only invoked by
  29. * khugepaged hugepage allocations and by page faults inside
  30. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  31. * allocations.
  32. */
  33. unsigned long transparent_hugepage_flags __read_mostly =
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  35. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  36. #endif
  37. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  38. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  39. #endif
  40. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  43. /* default scan 8*512 pte (or vmas) every 30 second */
  44. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  45. static unsigned int khugepaged_pages_collapsed;
  46. static unsigned int khugepaged_full_scans;
  47. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  48. /* during fragmentation poll the hugepage allocator once every minute */
  49. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  50. static struct task_struct *khugepaged_thread __read_mostly;
  51. static DEFINE_MUTEX(khugepaged_mutex);
  52. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  53. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  54. /*
  55. * default collapse hugepages if there is at least one pte mapped like
  56. * it would have happened if the vma was large enough during page
  57. * fault.
  58. */
  59. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  60. static int khugepaged(void *none);
  61. static int khugepaged_slab_init(void);
  62. #define MM_SLOTS_HASH_BITS 10
  63. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static unsigned long huge_zero_pfn __read_mostly;
  145. static inline bool is_huge_zero_pfn(unsigned long pfn)
  146. {
  147. unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
  148. return zero_pfn && pfn == zero_pfn;
  149. }
  150. static inline bool is_huge_zero_pmd(pmd_t pmd)
  151. {
  152. return is_huge_zero_pfn(pmd_pfn(pmd));
  153. }
  154. static unsigned long get_huge_zero_page(void)
  155. {
  156. struct page *zero_page;
  157. retry:
  158. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  159. return ACCESS_ONCE(huge_zero_pfn);
  160. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  161. HPAGE_PMD_ORDER);
  162. if (!zero_page) {
  163. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  164. return 0;
  165. }
  166. count_vm_event(THP_ZERO_PAGE_ALLOC);
  167. preempt_disable();
  168. if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
  169. preempt_enable();
  170. __free_page(zero_page);
  171. goto retry;
  172. }
  173. /* We take additional reference here. It will be put back by shrinker */
  174. atomic_set(&huge_zero_refcount, 2);
  175. preempt_enable();
  176. return ACCESS_ONCE(huge_zero_pfn);
  177. }
  178. static void put_huge_zero_page(void)
  179. {
  180. /*
  181. * Counter should never go to zero here. Only shrinker can put
  182. * last reference.
  183. */
  184. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  185. }
  186. static int shrink_huge_zero_page(struct shrinker *shrink,
  187. struct shrink_control *sc)
  188. {
  189. if (!sc->nr_to_scan)
  190. /* we can free zero page only if last reference remains */
  191. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  192. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  193. unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
  194. BUG_ON(zero_pfn == 0);
  195. __free_page(__pfn_to_page(zero_pfn));
  196. }
  197. return 0;
  198. }
  199. static struct shrinker huge_zero_page_shrinker = {
  200. .shrink = shrink_huge_zero_page,
  201. .seeks = DEFAULT_SEEKS,
  202. };
  203. #ifdef CONFIG_SYSFS
  204. static ssize_t double_flag_show(struct kobject *kobj,
  205. struct kobj_attribute *attr, char *buf,
  206. enum transparent_hugepage_flag enabled,
  207. enum transparent_hugepage_flag req_madv)
  208. {
  209. if (test_bit(enabled, &transparent_hugepage_flags)) {
  210. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  211. return sprintf(buf, "[always] madvise never\n");
  212. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  213. return sprintf(buf, "always [madvise] never\n");
  214. else
  215. return sprintf(buf, "always madvise [never]\n");
  216. }
  217. static ssize_t double_flag_store(struct kobject *kobj,
  218. struct kobj_attribute *attr,
  219. const char *buf, size_t count,
  220. enum transparent_hugepage_flag enabled,
  221. enum transparent_hugepage_flag req_madv)
  222. {
  223. if (!memcmp("always", buf,
  224. min(sizeof("always")-1, count))) {
  225. set_bit(enabled, &transparent_hugepage_flags);
  226. clear_bit(req_madv, &transparent_hugepage_flags);
  227. } else if (!memcmp("madvise", buf,
  228. min(sizeof("madvise")-1, count))) {
  229. clear_bit(enabled, &transparent_hugepage_flags);
  230. set_bit(req_madv, &transparent_hugepage_flags);
  231. } else if (!memcmp("never", buf,
  232. min(sizeof("never")-1, count))) {
  233. clear_bit(enabled, &transparent_hugepage_flags);
  234. clear_bit(req_madv, &transparent_hugepage_flags);
  235. } else
  236. return -EINVAL;
  237. return count;
  238. }
  239. static ssize_t enabled_show(struct kobject *kobj,
  240. struct kobj_attribute *attr, char *buf)
  241. {
  242. return double_flag_show(kobj, attr, buf,
  243. TRANSPARENT_HUGEPAGE_FLAG,
  244. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  245. }
  246. static ssize_t enabled_store(struct kobject *kobj,
  247. struct kobj_attribute *attr,
  248. const char *buf, size_t count)
  249. {
  250. ssize_t ret;
  251. ret = double_flag_store(kobj, attr, buf, count,
  252. TRANSPARENT_HUGEPAGE_FLAG,
  253. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  254. if (ret > 0) {
  255. int err;
  256. mutex_lock(&khugepaged_mutex);
  257. err = start_khugepaged();
  258. mutex_unlock(&khugepaged_mutex);
  259. if (err)
  260. ret = err;
  261. }
  262. return ret;
  263. }
  264. static struct kobj_attribute enabled_attr =
  265. __ATTR(enabled, 0644, enabled_show, enabled_store);
  266. static ssize_t single_flag_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf,
  268. enum transparent_hugepage_flag flag)
  269. {
  270. return sprintf(buf, "%d\n",
  271. !!test_bit(flag, &transparent_hugepage_flags));
  272. }
  273. static ssize_t single_flag_store(struct kobject *kobj,
  274. struct kobj_attribute *attr,
  275. const char *buf, size_t count,
  276. enum transparent_hugepage_flag flag)
  277. {
  278. unsigned long value;
  279. int ret;
  280. ret = kstrtoul(buf, 10, &value);
  281. if (ret < 0)
  282. return ret;
  283. if (value > 1)
  284. return -EINVAL;
  285. if (value)
  286. set_bit(flag, &transparent_hugepage_flags);
  287. else
  288. clear_bit(flag, &transparent_hugepage_flags);
  289. return count;
  290. }
  291. /*
  292. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  293. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  294. * memory just to allocate one more hugepage.
  295. */
  296. static ssize_t defrag_show(struct kobject *kobj,
  297. struct kobj_attribute *attr, char *buf)
  298. {
  299. return double_flag_show(kobj, attr, buf,
  300. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  301. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  302. }
  303. static ssize_t defrag_store(struct kobject *kobj,
  304. struct kobj_attribute *attr,
  305. const char *buf, size_t count)
  306. {
  307. return double_flag_store(kobj, attr, buf, count,
  308. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  309. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  310. }
  311. static struct kobj_attribute defrag_attr =
  312. __ATTR(defrag, 0644, defrag_show, defrag_store);
  313. static ssize_t use_zero_page_show(struct kobject *kobj,
  314. struct kobj_attribute *attr, char *buf)
  315. {
  316. return single_flag_show(kobj, attr, buf,
  317. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  318. }
  319. static ssize_t use_zero_page_store(struct kobject *kobj,
  320. struct kobj_attribute *attr, const char *buf, size_t count)
  321. {
  322. return single_flag_store(kobj, attr, buf, count,
  323. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  324. }
  325. static struct kobj_attribute use_zero_page_attr =
  326. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  327. #ifdef CONFIG_DEBUG_VM
  328. static ssize_t debug_cow_show(struct kobject *kobj,
  329. struct kobj_attribute *attr, char *buf)
  330. {
  331. return single_flag_show(kobj, attr, buf,
  332. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  333. }
  334. static ssize_t debug_cow_store(struct kobject *kobj,
  335. struct kobj_attribute *attr,
  336. const char *buf, size_t count)
  337. {
  338. return single_flag_store(kobj, attr, buf, count,
  339. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  340. }
  341. static struct kobj_attribute debug_cow_attr =
  342. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  343. #endif /* CONFIG_DEBUG_VM */
  344. static struct attribute *hugepage_attr[] = {
  345. &enabled_attr.attr,
  346. &defrag_attr.attr,
  347. &use_zero_page_attr.attr,
  348. #ifdef CONFIG_DEBUG_VM
  349. &debug_cow_attr.attr,
  350. #endif
  351. NULL,
  352. };
  353. static struct attribute_group hugepage_attr_group = {
  354. .attrs = hugepage_attr,
  355. };
  356. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  357. struct kobj_attribute *attr,
  358. char *buf)
  359. {
  360. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  361. }
  362. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  363. struct kobj_attribute *attr,
  364. const char *buf, size_t count)
  365. {
  366. unsigned long msecs;
  367. int err;
  368. err = strict_strtoul(buf, 10, &msecs);
  369. if (err || msecs > UINT_MAX)
  370. return -EINVAL;
  371. khugepaged_scan_sleep_millisecs = msecs;
  372. wake_up_interruptible(&khugepaged_wait);
  373. return count;
  374. }
  375. static struct kobj_attribute scan_sleep_millisecs_attr =
  376. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  377. scan_sleep_millisecs_store);
  378. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  379. struct kobj_attribute *attr,
  380. char *buf)
  381. {
  382. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  383. }
  384. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. const char *buf, size_t count)
  387. {
  388. unsigned long msecs;
  389. int err;
  390. err = strict_strtoul(buf, 10, &msecs);
  391. if (err || msecs > UINT_MAX)
  392. return -EINVAL;
  393. khugepaged_alloc_sleep_millisecs = msecs;
  394. wake_up_interruptible(&khugepaged_wait);
  395. return count;
  396. }
  397. static struct kobj_attribute alloc_sleep_millisecs_attr =
  398. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  399. alloc_sleep_millisecs_store);
  400. static ssize_t pages_to_scan_show(struct kobject *kobj,
  401. struct kobj_attribute *attr,
  402. char *buf)
  403. {
  404. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  405. }
  406. static ssize_t pages_to_scan_store(struct kobject *kobj,
  407. struct kobj_attribute *attr,
  408. const char *buf, size_t count)
  409. {
  410. int err;
  411. unsigned long pages;
  412. err = strict_strtoul(buf, 10, &pages);
  413. if (err || !pages || pages > UINT_MAX)
  414. return -EINVAL;
  415. khugepaged_pages_to_scan = pages;
  416. return count;
  417. }
  418. static struct kobj_attribute pages_to_scan_attr =
  419. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  420. pages_to_scan_store);
  421. static ssize_t pages_collapsed_show(struct kobject *kobj,
  422. struct kobj_attribute *attr,
  423. char *buf)
  424. {
  425. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  426. }
  427. static struct kobj_attribute pages_collapsed_attr =
  428. __ATTR_RO(pages_collapsed);
  429. static ssize_t full_scans_show(struct kobject *kobj,
  430. struct kobj_attribute *attr,
  431. char *buf)
  432. {
  433. return sprintf(buf, "%u\n", khugepaged_full_scans);
  434. }
  435. static struct kobj_attribute full_scans_attr =
  436. __ATTR_RO(full_scans);
  437. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  438. struct kobj_attribute *attr, char *buf)
  439. {
  440. return single_flag_show(kobj, attr, buf,
  441. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  442. }
  443. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  444. struct kobj_attribute *attr,
  445. const char *buf, size_t count)
  446. {
  447. return single_flag_store(kobj, attr, buf, count,
  448. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  449. }
  450. static struct kobj_attribute khugepaged_defrag_attr =
  451. __ATTR(defrag, 0644, khugepaged_defrag_show,
  452. khugepaged_defrag_store);
  453. /*
  454. * max_ptes_none controls if khugepaged should collapse hugepages over
  455. * any unmapped ptes in turn potentially increasing the memory
  456. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  457. * reduce the available free memory in the system as it
  458. * runs. Increasing max_ptes_none will instead potentially reduce the
  459. * free memory in the system during the khugepaged scan.
  460. */
  461. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  462. struct kobj_attribute *attr,
  463. char *buf)
  464. {
  465. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  466. }
  467. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  468. struct kobj_attribute *attr,
  469. const char *buf, size_t count)
  470. {
  471. int err;
  472. unsigned long max_ptes_none;
  473. err = strict_strtoul(buf, 10, &max_ptes_none);
  474. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  475. return -EINVAL;
  476. khugepaged_max_ptes_none = max_ptes_none;
  477. return count;
  478. }
  479. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  480. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  481. khugepaged_max_ptes_none_store);
  482. static struct attribute *khugepaged_attr[] = {
  483. &khugepaged_defrag_attr.attr,
  484. &khugepaged_max_ptes_none_attr.attr,
  485. &pages_to_scan_attr.attr,
  486. &pages_collapsed_attr.attr,
  487. &full_scans_attr.attr,
  488. &scan_sleep_millisecs_attr.attr,
  489. &alloc_sleep_millisecs_attr.attr,
  490. NULL,
  491. };
  492. static struct attribute_group khugepaged_attr_group = {
  493. .attrs = khugepaged_attr,
  494. .name = "khugepaged",
  495. };
  496. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  497. {
  498. int err;
  499. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  500. if (unlikely(!*hugepage_kobj)) {
  501. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  502. return -ENOMEM;
  503. }
  504. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  505. if (err) {
  506. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  507. goto delete_obj;
  508. }
  509. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  510. if (err) {
  511. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  512. goto remove_hp_group;
  513. }
  514. return 0;
  515. remove_hp_group:
  516. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  517. delete_obj:
  518. kobject_put(*hugepage_kobj);
  519. return err;
  520. }
  521. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  522. {
  523. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  524. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  525. kobject_put(hugepage_kobj);
  526. }
  527. #else
  528. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  529. {
  530. return 0;
  531. }
  532. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  533. {
  534. }
  535. #endif /* CONFIG_SYSFS */
  536. static int __init hugepage_init(void)
  537. {
  538. int err;
  539. struct kobject *hugepage_kobj;
  540. if (!has_transparent_hugepage()) {
  541. transparent_hugepage_flags = 0;
  542. return -EINVAL;
  543. }
  544. err = hugepage_init_sysfs(&hugepage_kobj);
  545. if (err)
  546. return err;
  547. err = khugepaged_slab_init();
  548. if (err)
  549. goto out;
  550. register_shrinker(&huge_zero_page_shrinker);
  551. /*
  552. * By default disable transparent hugepages on smaller systems,
  553. * where the extra memory used could hurt more than TLB overhead
  554. * is likely to save. The admin can still enable it through /sys.
  555. */
  556. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  557. transparent_hugepage_flags = 0;
  558. start_khugepaged();
  559. return 0;
  560. out:
  561. hugepage_exit_sysfs(hugepage_kobj);
  562. return err;
  563. }
  564. module_init(hugepage_init)
  565. static int __init setup_transparent_hugepage(char *str)
  566. {
  567. int ret = 0;
  568. if (!str)
  569. goto out;
  570. if (!strcmp(str, "always")) {
  571. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  572. &transparent_hugepage_flags);
  573. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  574. &transparent_hugepage_flags);
  575. ret = 1;
  576. } else if (!strcmp(str, "madvise")) {
  577. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  578. &transparent_hugepage_flags);
  579. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  580. &transparent_hugepage_flags);
  581. ret = 1;
  582. } else if (!strcmp(str, "never")) {
  583. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  584. &transparent_hugepage_flags);
  585. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  586. &transparent_hugepage_flags);
  587. ret = 1;
  588. }
  589. out:
  590. if (!ret)
  591. printk(KERN_WARNING
  592. "transparent_hugepage= cannot parse, ignored\n");
  593. return ret;
  594. }
  595. __setup("transparent_hugepage=", setup_transparent_hugepage);
  596. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  597. {
  598. if (likely(vma->vm_flags & VM_WRITE))
  599. pmd = pmd_mkwrite(pmd);
  600. return pmd;
  601. }
  602. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  603. {
  604. pmd_t entry;
  605. entry = mk_pmd(page, vma->vm_page_prot);
  606. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  607. entry = pmd_mkhuge(entry);
  608. return entry;
  609. }
  610. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  611. struct vm_area_struct *vma,
  612. unsigned long haddr, pmd_t *pmd,
  613. struct page *page)
  614. {
  615. pgtable_t pgtable;
  616. VM_BUG_ON(!PageCompound(page));
  617. pgtable = pte_alloc_one(mm, haddr);
  618. if (unlikely(!pgtable))
  619. return VM_FAULT_OOM;
  620. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  621. __SetPageUptodate(page);
  622. spin_lock(&mm->page_table_lock);
  623. if (unlikely(!pmd_none(*pmd))) {
  624. spin_unlock(&mm->page_table_lock);
  625. mem_cgroup_uncharge_page(page);
  626. put_page(page);
  627. pte_free(mm, pgtable);
  628. } else {
  629. pmd_t entry;
  630. entry = mk_huge_pmd(page, vma);
  631. /*
  632. * The spinlocking to take the lru_lock inside
  633. * page_add_new_anon_rmap() acts as a full memory
  634. * barrier to be sure clear_huge_page writes become
  635. * visible after the set_pmd_at() write.
  636. */
  637. page_add_new_anon_rmap(page, vma, haddr);
  638. set_pmd_at(mm, haddr, pmd, entry);
  639. pgtable_trans_huge_deposit(mm, pgtable);
  640. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  641. mm->nr_ptes++;
  642. spin_unlock(&mm->page_table_lock);
  643. }
  644. return 0;
  645. }
  646. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  647. {
  648. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  649. }
  650. static inline struct page *alloc_hugepage_vma(int defrag,
  651. struct vm_area_struct *vma,
  652. unsigned long haddr, int nd,
  653. gfp_t extra_gfp)
  654. {
  655. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  656. HPAGE_PMD_ORDER, vma, haddr, nd);
  657. }
  658. #ifndef CONFIG_NUMA
  659. static inline struct page *alloc_hugepage(int defrag)
  660. {
  661. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  662. HPAGE_PMD_ORDER);
  663. }
  664. #endif
  665. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  666. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  667. unsigned long zero_pfn)
  668. {
  669. pmd_t entry;
  670. if (!pmd_none(*pmd))
  671. return false;
  672. entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
  673. entry = pmd_wrprotect(entry);
  674. entry = pmd_mkhuge(entry);
  675. set_pmd_at(mm, haddr, pmd, entry);
  676. pgtable_trans_huge_deposit(mm, pgtable);
  677. mm->nr_ptes++;
  678. return true;
  679. }
  680. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  681. unsigned long address, pmd_t *pmd,
  682. unsigned int flags)
  683. {
  684. struct page *page;
  685. unsigned long haddr = address & HPAGE_PMD_MASK;
  686. pte_t *pte;
  687. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  688. if (unlikely(anon_vma_prepare(vma)))
  689. return VM_FAULT_OOM;
  690. if (unlikely(khugepaged_enter(vma)))
  691. return VM_FAULT_OOM;
  692. if (!(flags & FAULT_FLAG_WRITE) &&
  693. transparent_hugepage_use_zero_page()) {
  694. pgtable_t pgtable;
  695. unsigned long zero_pfn;
  696. bool set;
  697. pgtable = pte_alloc_one(mm, haddr);
  698. if (unlikely(!pgtable))
  699. return VM_FAULT_OOM;
  700. zero_pfn = get_huge_zero_page();
  701. if (unlikely(!zero_pfn)) {
  702. pte_free(mm, pgtable);
  703. count_vm_event(THP_FAULT_FALLBACK);
  704. goto out;
  705. }
  706. spin_lock(&mm->page_table_lock);
  707. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  708. zero_pfn);
  709. spin_unlock(&mm->page_table_lock);
  710. if (!set) {
  711. pte_free(mm, pgtable);
  712. put_huge_zero_page();
  713. }
  714. return 0;
  715. }
  716. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  717. vma, haddr, numa_node_id(), 0);
  718. if (unlikely(!page)) {
  719. count_vm_event(THP_FAULT_FALLBACK);
  720. goto out;
  721. }
  722. count_vm_event(THP_FAULT_ALLOC);
  723. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  724. put_page(page);
  725. goto out;
  726. }
  727. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  728. page))) {
  729. mem_cgroup_uncharge_page(page);
  730. put_page(page);
  731. goto out;
  732. }
  733. return 0;
  734. }
  735. out:
  736. /*
  737. * Use __pte_alloc instead of pte_alloc_map, because we can't
  738. * run pte_offset_map on the pmd, if an huge pmd could
  739. * materialize from under us from a different thread.
  740. */
  741. if (unlikely(pmd_none(*pmd)) &&
  742. unlikely(__pte_alloc(mm, vma, pmd, address)))
  743. return VM_FAULT_OOM;
  744. /* if an huge pmd materialized from under us just retry later */
  745. if (unlikely(pmd_trans_huge(*pmd)))
  746. return 0;
  747. /*
  748. * A regular pmd is established and it can't morph into a huge pmd
  749. * from under us anymore at this point because we hold the mmap_sem
  750. * read mode and khugepaged takes it in write mode. So now it's
  751. * safe to run pte_offset_map().
  752. */
  753. pte = pte_offset_map(pmd, address);
  754. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  755. }
  756. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  757. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  758. struct vm_area_struct *vma)
  759. {
  760. struct page *src_page;
  761. pmd_t pmd;
  762. pgtable_t pgtable;
  763. int ret;
  764. ret = -ENOMEM;
  765. pgtable = pte_alloc_one(dst_mm, addr);
  766. if (unlikely(!pgtable))
  767. goto out;
  768. spin_lock(&dst_mm->page_table_lock);
  769. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  770. ret = -EAGAIN;
  771. pmd = *src_pmd;
  772. if (unlikely(!pmd_trans_huge(pmd))) {
  773. pte_free(dst_mm, pgtable);
  774. goto out_unlock;
  775. }
  776. /*
  777. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  778. * under splitting since we don't split the page itself, only pmd to
  779. * a page table.
  780. */
  781. if (is_huge_zero_pmd(pmd)) {
  782. unsigned long zero_pfn;
  783. bool set;
  784. /*
  785. * get_huge_zero_page() will never allocate a new page here,
  786. * since we already have a zero page to copy. It just takes a
  787. * reference.
  788. */
  789. zero_pfn = get_huge_zero_page();
  790. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  791. zero_pfn);
  792. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  793. ret = 0;
  794. goto out_unlock;
  795. }
  796. if (unlikely(pmd_trans_splitting(pmd))) {
  797. /* split huge page running from under us */
  798. spin_unlock(&src_mm->page_table_lock);
  799. spin_unlock(&dst_mm->page_table_lock);
  800. pte_free(dst_mm, pgtable);
  801. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  802. goto out;
  803. }
  804. src_page = pmd_page(pmd);
  805. VM_BUG_ON(!PageHead(src_page));
  806. get_page(src_page);
  807. page_dup_rmap(src_page);
  808. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  809. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  810. pmd = pmd_mkold(pmd_wrprotect(pmd));
  811. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  812. pgtable_trans_huge_deposit(dst_mm, pgtable);
  813. dst_mm->nr_ptes++;
  814. ret = 0;
  815. out_unlock:
  816. spin_unlock(&src_mm->page_table_lock);
  817. spin_unlock(&dst_mm->page_table_lock);
  818. out:
  819. return ret;
  820. }
  821. void huge_pmd_set_accessed(struct mm_struct *mm,
  822. struct vm_area_struct *vma,
  823. unsigned long address,
  824. pmd_t *pmd, pmd_t orig_pmd,
  825. int dirty)
  826. {
  827. pmd_t entry;
  828. unsigned long haddr;
  829. spin_lock(&mm->page_table_lock);
  830. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  831. goto unlock;
  832. entry = pmd_mkyoung(orig_pmd);
  833. haddr = address & HPAGE_PMD_MASK;
  834. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  835. update_mmu_cache_pmd(vma, address, pmd);
  836. unlock:
  837. spin_unlock(&mm->page_table_lock);
  838. }
  839. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  840. struct vm_area_struct *vma, unsigned long address,
  841. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  842. {
  843. pgtable_t pgtable;
  844. pmd_t _pmd;
  845. struct page *page;
  846. int i, ret = 0;
  847. unsigned long mmun_start; /* For mmu_notifiers */
  848. unsigned long mmun_end; /* For mmu_notifiers */
  849. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  850. if (!page) {
  851. ret |= VM_FAULT_OOM;
  852. goto out;
  853. }
  854. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  855. put_page(page);
  856. ret |= VM_FAULT_OOM;
  857. goto out;
  858. }
  859. clear_user_highpage(page, address);
  860. __SetPageUptodate(page);
  861. mmun_start = haddr;
  862. mmun_end = haddr + HPAGE_PMD_SIZE;
  863. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  864. spin_lock(&mm->page_table_lock);
  865. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  866. goto out_free_page;
  867. pmdp_clear_flush(vma, haddr, pmd);
  868. /* leave pmd empty until pte is filled */
  869. pgtable = pgtable_trans_huge_withdraw(mm);
  870. pmd_populate(mm, &_pmd, pgtable);
  871. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  872. pte_t *pte, entry;
  873. if (haddr == (address & PAGE_MASK)) {
  874. entry = mk_pte(page, vma->vm_page_prot);
  875. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  876. page_add_new_anon_rmap(page, vma, haddr);
  877. } else {
  878. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  879. entry = pte_mkspecial(entry);
  880. }
  881. pte = pte_offset_map(&_pmd, haddr);
  882. VM_BUG_ON(!pte_none(*pte));
  883. set_pte_at(mm, haddr, pte, entry);
  884. pte_unmap(pte);
  885. }
  886. smp_wmb(); /* make pte visible before pmd */
  887. pmd_populate(mm, pmd, pgtable);
  888. spin_unlock(&mm->page_table_lock);
  889. put_huge_zero_page();
  890. inc_mm_counter(mm, MM_ANONPAGES);
  891. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  892. ret |= VM_FAULT_WRITE;
  893. out:
  894. return ret;
  895. out_free_page:
  896. spin_unlock(&mm->page_table_lock);
  897. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  898. mem_cgroup_uncharge_page(page);
  899. put_page(page);
  900. goto out;
  901. }
  902. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  903. struct vm_area_struct *vma,
  904. unsigned long address,
  905. pmd_t *pmd, pmd_t orig_pmd,
  906. struct page *page,
  907. unsigned long haddr)
  908. {
  909. pgtable_t pgtable;
  910. pmd_t _pmd;
  911. int ret = 0, i;
  912. struct page **pages;
  913. unsigned long mmun_start; /* For mmu_notifiers */
  914. unsigned long mmun_end; /* For mmu_notifiers */
  915. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  916. GFP_KERNEL);
  917. if (unlikely(!pages)) {
  918. ret |= VM_FAULT_OOM;
  919. goto out;
  920. }
  921. for (i = 0; i < HPAGE_PMD_NR; i++) {
  922. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  923. __GFP_OTHER_NODE,
  924. vma, address, page_to_nid(page));
  925. if (unlikely(!pages[i] ||
  926. mem_cgroup_newpage_charge(pages[i], mm,
  927. GFP_KERNEL))) {
  928. if (pages[i])
  929. put_page(pages[i]);
  930. mem_cgroup_uncharge_start();
  931. while (--i >= 0) {
  932. mem_cgroup_uncharge_page(pages[i]);
  933. put_page(pages[i]);
  934. }
  935. mem_cgroup_uncharge_end();
  936. kfree(pages);
  937. ret |= VM_FAULT_OOM;
  938. goto out;
  939. }
  940. }
  941. for (i = 0; i < HPAGE_PMD_NR; i++) {
  942. copy_user_highpage(pages[i], page + i,
  943. haddr + PAGE_SIZE * i, vma);
  944. __SetPageUptodate(pages[i]);
  945. cond_resched();
  946. }
  947. mmun_start = haddr;
  948. mmun_end = haddr + HPAGE_PMD_SIZE;
  949. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  950. spin_lock(&mm->page_table_lock);
  951. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  952. goto out_free_pages;
  953. VM_BUG_ON(!PageHead(page));
  954. pmdp_clear_flush(vma, haddr, pmd);
  955. /* leave pmd empty until pte is filled */
  956. pgtable = pgtable_trans_huge_withdraw(mm);
  957. pmd_populate(mm, &_pmd, pgtable);
  958. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  959. pte_t *pte, entry;
  960. entry = mk_pte(pages[i], vma->vm_page_prot);
  961. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  962. page_add_new_anon_rmap(pages[i], vma, haddr);
  963. pte = pte_offset_map(&_pmd, haddr);
  964. VM_BUG_ON(!pte_none(*pte));
  965. set_pte_at(mm, haddr, pte, entry);
  966. pte_unmap(pte);
  967. }
  968. kfree(pages);
  969. smp_wmb(); /* make pte visible before pmd */
  970. pmd_populate(mm, pmd, pgtable);
  971. page_remove_rmap(page);
  972. spin_unlock(&mm->page_table_lock);
  973. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  974. ret |= VM_FAULT_WRITE;
  975. put_page(page);
  976. out:
  977. return ret;
  978. out_free_pages:
  979. spin_unlock(&mm->page_table_lock);
  980. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  981. mem_cgroup_uncharge_start();
  982. for (i = 0; i < HPAGE_PMD_NR; i++) {
  983. mem_cgroup_uncharge_page(pages[i]);
  984. put_page(pages[i]);
  985. }
  986. mem_cgroup_uncharge_end();
  987. kfree(pages);
  988. goto out;
  989. }
  990. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  991. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  992. {
  993. int ret = 0;
  994. struct page *page = NULL, *new_page;
  995. unsigned long haddr;
  996. unsigned long mmun_start; /* For mmu_notifiers */
  997. unsigned long mmun_end; /* For mmu_notifiers */
  998. VM_BUG_ON(!vma->anon_vma);
  999. haddr = address & HPAGE_PMD_MASK;
  1000. if (is_huge_zero_pmd(orig_pmd))
  1001. goto alloc;
  1002. spin_lock(&mm->page_table_lock);
  1003. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  1004. goto out_unlock;
  1005. page = pmd_page(orig_pmd);
  1006. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  1007. if (page_mapcount(page) == 1) {
  1008. pmd_t entry;
  1009. entry = pmd_mkyoung(orig_pmd);
  1010. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1011. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  1012. update_mmu_cache_pmd(vma, address, pmd);
  1013. ret |= VM_FAULT_WRITE;
  1014. goto out_unlock;
  1015. }
  1016. get_page(page);
  1017. spin_unlock(&mm->page_table_lock);
  1018. alloc:
  1019. if (transparent_hugepage_enabled(vma) &&
  1020. !transparent_hugepage_debug_cow())
  1021. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1022. vma, haddr, numa_node_id(), 0);
  1023. else
  1024. new_page = NULL;
  1025. if (unlikely(!new_page)) {
  1026. count_vm_event(THP_FAULT_FALLBACK);
  1027. if (is_huge_zero_pmd(orig_pmd)) {
  1028. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1029. address, pmd, orig_pmd, haddr);
  1030. } else {
  1031. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1032. pmd, orig_pmd, page, haddr);
  1033. if (ret & VM_FAULT_OOM)
  1034. split_huge_page(page);
  1035. put_page(page);
  1036. }
  1037. goto out;
  1038. }
  1039. count_vm_event(THP_FAULT_ALLOC);
  1040. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1041. put_page(new_page);
  1042. if (page) {
  1043. split_huge_page(page);
  1044. put_page(page);
  1045. }
  1046. ret |= VM_FAULT_OOM;
  1047. goto out;
  1048. }
  1049. if (is_huge_zero_pmd(orig_pmd))
  1050. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1051. else
  1052. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1053. __SetPageUptodate(new_page);
  1054. mmun_start = haddr;
  1055. mmun_end = haddr + HPAGE_PMD_SIZE;
  1056. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1057. spin_lock(&mm->page_table_lock);
  1058. if (page)
  1059. put_page(page);
  1060. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1061. spin_unlock(&mm->page_table_lock);
  1062. mem_cgroup_uncharge_page(new_page);
  1063. put_page(new_page);
  1064. goto out_mn;
  1065. } else {
  1066. pmd_t entry;
  1067. entry = mk_huge_pmd(new_page, vma);
  1068. pmdp_clear_flush(vma, haddr, pmd);
  1069. page_add_new_anon_rmap(new_page, vma, haddr);
  1070. set_pmd_at(mm, haddr, pmd, entry);
  1071. update_mmu_cache_pmd(vma, address, pmd);
  1072. if (is_huge_zero_pmd(orig_pmd)) {
  1073. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1074. put_huge_zero_page();
  1075. } else {
  1076. VM_BUG_ON(!PageHead(page));
  1077. page_remove_rmap(page);
  1078. put_page(page);
  1079. }
  1080. ret |= VM_FAULT_WRITE;
  1081. }
  1082. spin_unlock(&mm->page_table_lock);
  1083. out_mn:
  1084. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1085. out:
  1086. return ret;
  1087. out_unlock:
  1088. spin_unlock(&mm->page_table_lock);
  1089. return ret;
  1090. }
  1091. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1092. unsigned long addr,
  1093. pmd_t *pmd,
  1094. unsigned int flags)
  1095. {
  1096. struct mm_struct *mm = vma->vm_mm;
  1097. struct page *page = NULL;
  1098. assert_spin_locked(&mm->page_table_lock);
  1099. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1100. goto out;
  1101. /* Avoid dumping huge zero page */
  1102. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1103. return ERR_PTR(-EFAULT);
  1104. page = pmd_page(*pmd);
  1105. VM_BUG_ON(!PageHead(page));
  1106. if (flags & FOLL_TOUCH) {
  1107. pmd_t _pmd;
  1108. /*
  1109. * We should set the dirty bit only for FOLL_WRITE but
  1110. * for now the dirty bit in the pmd is meaningless.
  1111. * And if the dirty bit will become meaningful and
  1112. * we'll only set it with FOLL_WRITE, an atomic
  1113. * set_bit will be required on the pmd to set the
  1114. * young bit, instead of the current set_pmd_at.
  1115. */
  1116. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1117. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  1118. }
  1119. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1120. if (page->mapping && trylock_page(page)) {
  1121. lru_add_drain();
  1122. if (page->mapping)
  1123. mlock_vma_page(page);
  1124. unlock_page(page);
  1125. }
  1126. }
  1127. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1128. VM_BUG_ON(!PageCompound(page));
  1129. if (flags & FOLL_GET)
  1130. get_page_foll(page);
  1131. out:
  1132. return page;
  1133. }
  1134. /* NUMA hinting page fault entry point for trans huge pmds */
  1135. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1136. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1137. {
  1138. struct page *page;
  1139. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1140. int target_nid;
  1141. int current_nid = -1;
  1142. bool migrated;
  1143. spin_lock(&mm->page_table_lock);
  1144. if (unlikely(!pmd_same(pmd, *pmdp)))
  1145. goto out_unlock;
  1146. page = pmd_page(pmd);
  1147. get_page(page);
  1148. current_nid = page_to_nid(page);
  1149. count_vm_numa_event(NUMA_HINT_FAULTS);
  1150. if (current_nid == numa_node_id())
  1151. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1152. target_nid = mpol_misplaced(page, vma, haddr);
  1153. if (target_nid == -1) {
  1154. put_page(page);
  1155. goto clear_pmdnuma;
  1156. }
  1157. /* Acquire the page lock to serialise THP migrations */
  1158. spin_unlock(&mm->page_table_lock);
  1159. lock_page(page);
  1160. /* Confirm the PTE did not while locked */
  1161. spin_lock(&mm->page_table_lock);
  1162. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1163. unlock_page(page);
  1164. put_page(page);
  1165. goto out_unlock;
  1166. }
  1167. spin_unlock(&mm->page_table_lock);
  1168. /* Migrate the THP to the requested node */
  1169. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1170. pmdp, pmd, addr, page, target_nid);
  1171. if (!migrated)
  1172. goto check_same;
  1173. task_numa_fault(target_nid, HPAGE_PMD_NR, true);
  1174. return 0;
  1175. check_same:
  1176. spin_lock(&mm->page_table_lock);
  1177. if (unlikely(!pmd_same(pmd, *pmdp)))
  1178. goto out_unlock;
  1179. clear_pmdnuma:
  1180. pmd = pmd_mknonnuma(pmd);
  1181. set_pmd_at(mm, haddr, pmdp, pmd);
  1182. VM_BUG_ON(pmd_numa(*pmdp));
  1183. update_mmu_cache_pmd(vma, addr, pmdp);
  1184. out_unlock:
  1185. spin_unlock(&mm->page_table_lock);
  1186. if (current_nid != -1)
  1187. task_numa_fault(current_nid, HPAGE_PMD_NR, false);
  1188. return 0;
  1189. }
  1190. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1191. pmd_t *pmd, unsigned long addr)
  1192. {
  1193. int ret = 0;
  1194. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1195. struct page *page;
  1196. pgtable_t pgtable;
  1197. pmd_t orig_pmd;
  1198. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  1199. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1200. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1201. if (is_huge_zero_pmd(orig_pmd)) {
  1202. tlb->mm->nr_ptes--;
  1203. spin_unlock(&tlb->mm->page_table_lock);
  1204. put_huge_zero_page();
  1205. } else {
  1206. page = pmd_page(orig_pmd);
  1207. page_remove_rmap(page);
  1208. VM_BUG_ON(page_mapcount(page) < 0);
  1209. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1210. VM_BUG_ON(!PageHead(page));
  1211. tlb->mm->nr_ptes--;
  1212. spin_unlock(&tlb->mm->page_table_lock);
  1213. tlb_remove_page(tlb, page);
  1214. }
  1215. pte_free(tlb->mm, pgtable);
  1216. ret = 1;
  1217. }
  1218. return ret;
  1219. }
  1220. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1221. unsigned long addr, unsigned long end,
  1222. unsigned char *vec)
  1223. {
  1224. int ret = 0;
  1225. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1226. /*
  1227. * All logical pages in the range are present
  1228. * if backed by a huge page.
  1229. */
  1230. spin_unlock(&vma->vm_mm->page_table_lock);
  1231. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1232. ret = 1;
  1233. }
  1234. return ret;
  1235. }
  1236. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1237. unsigned long old_addr,
  1238. unsigned long new_addr, unsigned long old_end,
  1239. pmd_t *old_pmd, pmd_t *new_pmd)
  1240. {
  1241. int ret = 0;
  1242. pmd_t pmd;
  1243. struct mm_struct *mm = vma->vm_mm;
  1244. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1245. (new_addr & ~HPAGE_PMD_MASK) ||
  1246. old_end - old_addr < HPAGE_PMD_SIZE ||
  1247. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1248. goto out;
  1249. /*
  1250. * The destination pmd shouldn't be established, free_pgtables()
  1251. * should have release it.
  1252. */
  1253. if (WARN_ON(!pmd_none(*new_pmd))) {
  1254. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1255. goto out;
  1256. }
  1257. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1258. if (ret == 1) {
  1259. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1260. VM_BUG_ON(!pmd_none(*new_pmd));
  1261. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1262. spin_unlock(&mm->page_table_lock);
  1263. }
  1264. out:
  1265. return ret;
  1266. }
  1267. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1268. unsigned long addr, pgprot_t newprot, int prot_numa)
  1269. {
  1270. struct mm_struct *mm = vma->vm_mm;
  1271. int ret = 0;
  1272. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1273. pmd_t entry;
  1274. entry = pmdp_get_and_clear(mm, addr, pmd);
  1275. if (!prot_numa) {
  1276. entry = pmd_modify(entry, newprot);
  1277. BUG_ON(pmd_write(entry));
  1278. } else {
  1279. struct page *page = pmd_page(*pmd);
  1280. /* only check non-shared pages */
  1281. if (page_mapcount(page) == 1 &&
  1282. !pmd_numa(*pmd)) {
  1283. entry = pmd_mknuma(entry);
  1284. }
  1285. }
  1286. set_pmd_at(mm, addr, pmd, entry);
  1287. spin_unlock(&vma->vm_mm->page_table_lock);
  1288. ret = 1;
  1289. }
  1290. return ret;
  1291. }
  1292. /*
  1293. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1294. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1295. *
  1296. * Note that if it returns 1, this routine returns without unlocking page
  1297. * table locks. So callers must unlock them.
  1298. */
  1299. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1300. {
  1301. spin_lock(&vma->vm_mm->page_table_lock);
  1302. if (likely(pmd_trans_huge(*pmd))) {
  1303. if (unlikely(pmd_trans_splitting(*pmd))) {
  1304. spin_unlock(&vma->vm_mm->page_table_lock);
  1305. wait_split_huge_page(vma->anon_vma, pmd);
  1306. return -1;
  1307. } else {
  1308. /* Thp mapped by 'pmd' is stable, so we can
  1309. * handle it as it is. */
  1310. return 1;
  1311. }
  1312. }
  1313. spin_unlock(&vma->vm_mm->page_table_lock);
  1314. return 0;
  1315. }
  1316. pmd_t *page_check_address_pmd(struct page *page,
  1317. struct mm_struct *mm,
  1318. unsigned long address,
  1319. enum page_check_address_pmd_flag flag)
  1320. {
  1321. pmd_t *pmd, *ret = NULL;
  1322. if (address & ~HPAGE_PMD_MASK)
  1323. goto out;
  1324. pmd = mm_find_pmd(mm, address);
  1325. if (!pmd)
  1326. goto out;
  1327. if (pmd_none(*pmd))
  1328. goto out;
  1329. if (pmd_page(*pmd) != page)
  1330. goto out;
  1331. /*
  1332. * split_vma() may create temporary aliased mappings. There is
  1333. * no risk as long as all huge pmd are found and have their
  1334. * splitting bit set before __split_huge_page_refcount
  1335. * runs. Finding the same huge pmd more than once during the
  1336. * same rmap walk is not a problem.
  1337. */
  1338. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1339. pmd_trans_splitting(*pmd))
  1340. goto out;
  1341. if (pmd_trans_huge(*pmd)) {
  1342. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1343. !pmd_trans_splitting(*pmd));
  1344. ret = pmd;
  1345. }
  1346. out:
  1347. return ret;
  1348. }
  1349. static int __split_huge_page_splitting(struct page *page,
  1350. struct vm_area_struct *vma,
  1351. unsigned long address)
  1352. {
  1353. struct mm_struct *mm = vma->vm_mm;
  1354. pmd_t *pmd;
  1355. int ret = 0;
  1356. /* For mmu_notifiers */
  1357. const unsigned long mmun_start = address;
  1358. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1359. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1360. spin_lock(&mm->page_table_lock);
  1361. pmd = page_check_address_pmd(page, mm, address,
  1362. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1363. if (pmd) {
  1364. /*
  1365. * We can't temporarily set the pmd to null in order
  1366. * to split it, the pmd must remain marked huge at all
  1367. * times or the VM won't take the pmd_trans_huge paths
  1368. * and it won't wait on the anon_vma->root->rwsem to
  1369. * serialize against split_huge_page*.
  1370. */
  1371. pmdp_splitting_flush(vma, address, pmd);
  1372. ret = 1;
  1373. }
  1374. spin_unlock(&mm->page_table_lock);
  1375. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1376. return ret;
  1377. }
  1378. static void __split_huge_page_refcount(struct page *page)
  1379. {
  1380. int i;
  1381. struct zone *zone = page_zone(page);
  1382. struct lruvec *lruvec;
  1383. int tail_count = 0;
  1384. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1385. spin_lock_irq(&zone->lru_lock);
  1386. lruvec = mem_cgroup_page_lruvec(page, zone);
  1387. compound_lock(page);
  1388. /* complete memcg works before add pages to LRU */
  1389. mem_cgroup_split_huge_fixup(page);
  1390. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1391. struct page *page_tail = page + i;
  1392. /* tail_page->_mapcount cannot change */
  1393. BUG_ON(page_mapcount(page_tail) < 0);
  1394. tail_count += page_mapcount(page_tail);
  1395. /* check for overflow */
  1396. BUG_ON(tail_count < 0);
  1397. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1398. /*
  1399. * tail_page->_count is zero and not changing from
  1400. * under us. But get_page_unless_zero() may be running
  1401. * from under us on the tail_page. If we used
  1402. * atomic_set() below instead of atomic_add(), we
  1403. * would then run atomic_set() concurrently with
  1404. * get_page_unless_zero(), and atomic_set() is
  1405. * implemented in C not using locked ops. spin_unlock
  1406. * on x86 sometime uses locked ops because of PPro
  1407. * errata 66, 92, so unless somebody can guarantee
  1408. * atomic_set() here would be safe on all archs (and
  1409. * not only on x86), it's safer to use atomic_add().
  1410. */
  1411. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1412. &page_tail->_count);
  1413. /* after clearing PageTail the gup refcount can be released */
  1414. smp_mb();
  1415. /*
  1416. * retain hwpoison flag of the poisoned tail page:
  1417. * fix for the unsuitable process killed on Guest Machine(KVM)
  1418. * by the memory-failure.
  1419. */
  1420. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1421. page_tail->flags |= (page->flags &
  1422. ((1L << PG_referenced) |
  1423. (1L << PG_swapbacked) |
  1424. (1L << PG_mlocked) |
  1425. (1L << PG_uptodate)));
  1426. page_tail->flags |= (1L << PG_dirty);
  1427. /* clear PageTail before overwriting first_page */
  1428. smp_wmb();
  1429. /*
  1430. * __split_huge_page_splitting() already set the
  1431. * splitting bit in all pmd that could map this
  1432. * hugepage, that will ensure no CPU can alter the
  1433. * mapcount on the head page. The mapcount is only
  1434. * accounted in the head page and it has to be
  1435. * transferred to all tail pages in the below code. So
  1436. * for this code to be safe, the split the mapcount
  1437. * can't change. But that doesn't mean userland can't
  1438. * keep changing and reading the page contents while
  1439. * we transfer the mapcount, so the pmd splitting
  1440. * status is achieved setting a reserved bit in the
  1441. * pmd, not by clearing the present bit.
  1442. */
  1443. page_tail->_mapcount = page->_mapcount;
  1444. BUG_ON(page_tail->mapping);
  1445. page_tail->mapping = page->mapping;
  1446. page_tail->index = page->index + i;
  1447. page_nid_xchg_last(page_tail, page_nid_last(page));
  1448. BUG_ON(!PageAnon(page_tail));
  1449. BUG_ON(!PageUptodate(page_tail));
  1450. BUG_ON(!PageDirty(page_tail));
  1451. BUG_ON(!PageSwapBacked(page_tail));
  1452. lru_add_page_tail(page, page_tail, lruvec);
  1453. }
  1454. atomic_sub(tail_count, &page->_count);
  1455. BUG_ON(atomic_read(&page->_count) <= 0);
  1456. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1457. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1458. ClearPageCompound(page);
  1459. compound_unlock(page);
  1460. spin_unlock_irq(&zone->lru_lock);
  1461. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1462. struct page *page_tail = page + i;
  1463. BUG_ON(page_count(page_tail) <= 0);
  1464. /*
  1465. * Tail pages may be freed if there wasn't any mapping
  1466. * like if add_to_swap() is running on a lru page that
  1467. * had its mapping zapped. And freeing these pages
  1468. * requires taking the lru_lock so we do the put_page
  1469. * of the tail pages after the split is complete.
  1470. */
  1471. put_page(page_tail);
  1472. }
  1473. /*
  1474. * Only the head page (now become a regular page) is required
  1475. * to be pinned by the caller.
  1476. */
  1477. BUG_ON(page_count(page) <= 0);
  1478. }
  1479. static int __split_huge_page_map(struct page *page,
  1480. struct vm_area_struct *vma,
  1481. unsigned long address)
  1482. {
  1483. struct mm_struct *mm = vma->vm_mm;
  1484. pmd_t *pmd, _pmd;
  1485. int ret = 0, i;
  1486. pgtable_t pgtable;
  1487. unsigned long haddr;
  1488. spin_lock(&mm->page_table_lock);
  1489. pmd = page_check_address_pmd(page, mm, address,
  1490. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1491. if (pmd) {
  1492. pgtable = pgtable_trans_huge_withdraw(mm);
  1493. pmd_populate(mm, &_pmd, pgtable);
  1494. haddr = address;
  1495. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1496. pte_t *pte, entry;
  1497. BUG_ON(PageCompound(page+i));
  1498. entry = mk_pte(page + i, vma->vm_page_prot);
  1499. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1500. if (!pmd_write(*pmd))
  1501. entry = pte_wrprotect(entry);
  1502. else
  1503. BUG_ON(page_mapcount(page) != 1);
  1504. if (!pmd_young(*pmd))
  1505. entry = pte_mkold(entry);
  1506. if (pmd_numa(*pmd))
  1507. entry = pte_mknuma(entry);
  1508. pte = pte_offset_map(&_pmd, haddr);
  1509. BUG_ON(!pte_none(*pte));
  1510. set_pte_at(mm, haddr, pte, entry);
  1511. pte_unmap(pte);
  1512. }
  1513. smp_wmb(); /* make pte visible before pmd */
  1514. /*
  1515. * Up to this point the pmd is present and huge and
  1516. * userland has the whole access to the hugepage
  1517. * during the split (which happens in place). If we
  1518. * overwrite the pmd with the not-huge version
  1519. * pointing to the pte here (which of course we could
  1520. * if all CPUs were bug free), userland could trigger
  1521. * a small page size TLB miss on the small sized TLB
  1522. * while the hugepage TLB entry is still established
  1523. * in the huge TLB. Some CPU doesn't like that. See
  1524. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1525. * Erratum 383 on page 93. Intel should be safe but is
  1526. * also warns that it's only safe if the permission
  1527. * and cache attributes of the two entries loaded in
  1528. * the two TLB is identical (which should be the case
  1529. * here). But it is generally safer to never allow
  1530. * small and huge TLB entries for the same virtual
  1531. * address to be loaded simultaneously. So instead of
  1532. * doing "pmd_populate(); flush_tlb_range();" we first
  1533. * mark the current pmd notpresent (atomically because
  1534. * here the pmd_trans_huge and pmd_trans_splitting
  1535. * must remain set at all times on the pmd until the
  1536. * split is complete for this pmd), then we flush the
  1537. * SMP TLB and finally we write the non-huge version
  1538. * of the pmd entry with pmd_populate.
  1539. */
  1540. pmdp_invalidate(vma, address, pmd);
  1541. pmd_populate(mm, pmd, pgtable);
  1542. ret = 1;
  1543. }
  1544. spin_unlock(&mm->page_table_lock);
  1545. return ret;
  1546. }
  1547. /* must be called with anon_vma->root->rwsem held */
  1548. static void __split_huge_page(struct page *page,
  1549. struct anon_vma *anon_vma)
  1550. {
  1551. int mapcount, mapcount2;
  1552. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1553. struct anon_vma_chain *avc;
  1554. BUG_ON(!PageHead(page));
  1555. BUG_ON(PageTail(page));
  1556. mapcount = 0;
  1557. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1558. struct vm_area_struct *vma = avc->vma;
  1559. unsigned long addr = vma_address(page, vma);
  1560. BUG_ON(is_vma_temporary_stack(vma));
  1561. mapcount += __split_huge_page_splitting(page, vma, addr);
  1562. }
  1563. /*
  1564. * It is critical that new vmas are added to the tail of the
  1565. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1566. * and establishes a child pmd before
  1567. * __split_huge_page_splitting() freezes the parent pmd (so if
  1568. * we fail to prevent copy_huge_pmd() from running until the
  1569. * whole __split_huge_page() is complete), we will still see
  1570. * the newly established pmd of the child later during the
  1571. * walk, to be able to set it as pmd_trans_splitting too.
  1572. */
  1573. if (mapcount != page_mapcount(page))
  1574. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1575. mapcount, page_mapcount(page));
  1576. BUG_ON(mapcount != page_mapcount(page));
  1577. __split_huge_page_refcount(page);
  1578. mapcount2 = 0;
  1579. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1580. struct vm_area_struct *vma = avc->vma;
  1581. unsigned long addr = vma_address(page, vma);
  1582. BUG_ON(is_vma_temporary_stack(vma));
  1583. mapcount2 += __split_huge_page_map(page, vma, addr);
  1584. }
  1585. if (mapcount != mapcount2)
  1586. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1587. mapcount, mapcount2, page_mapcount(page));
  1588. BUG_ON(mapcount != mapcount2);
  1589. }
  1590. int split_huge_page(struct page *page)
  1591. {
  1592. struct anon_vma *anon_vma;
  1593. int ret = 1;
  1594. BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
  1595. BUG_ON(!PageAnon(page));
  1596. /*
  1597. * The caller does not necessarily hold an mmap_sem that would prevent
  1598. * the anon_vma disappearing so we first we take a reference to it
  1599. * and then lock the anon_vma for write. This is similar to
  1600. * page_lock_anon_vma_read except the write lock is taken to serialise
  1601. * against parallel split or collapse operations.
  1602. */
  1603. anon_vma = page_get_anon_vma(page);
  1604. if (!anon_vma)
  1605. goto out;
  1606. anon_vma_lock_write(anon_vma);
  1607. ret = 0;
  1608. if (!PageCompound(page))
  1609. goto out_unlock;
  1610. BUG_ON(!PageSwapBacked(page));
  1611. __split_huge_page(page, anon_vma);
  1612. count_vm_event(THP_SPLIT);
  1613. BUG_ON(PageCompound(page));
  1614. out_unlock:
  1615. anon_vma_unlock_write(anon_vma);
  1616. put_anon_vma(anon_vma);
  1617. out:
  1618. return ret;
  1619. }
  1620. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1621. int hugepage_madvise(struct vm_area_struct *vma,
  1622. unsigned long *vm_flags, int advice)
  1623. {
  1624. struct mm_struct *mm = vma->vm_mm;
  1625. switch (advice) {
  1626. case MADV_HUGEPAGE:
  1627. /*
  1628. * Be somewhat over-protective like KSM for now!
  1629. */
  1630. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1631. return -EINVAL;
  1632. if (mm->def_flags & VM_NOHUGEPAGE)
  1633. return -EINVAL;
  1634. *vm_flags &= ~VM_NOHUGEPAGE;
  1635. *vm_flags |= VM_HUGEPAGE;
  1636. /*
  1637. * If the vma become good for khugepaged to scan,
  1638. * register it here without waiting a page fault that
  1639. * may not happen any time soon.
  1640. */
  1641. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1642. return -ENOMEM;
  1643. break;
  1644. case MADV_NOHUGEPAGE:
  1645. /*
  1646. * Be somewhat over-protective like KSM for now!
  1647. */
  1648. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1649. return -EINVAL;
  1650. *vm_flags &= ~VM_HUGEPAGE;
  1651. *vm_flags |= VM_NOHUGEPAGE;
  1652. /*
  1653. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1654. * this vma even if we leave the mm registered in khugepaged if
  1655. * it got registered before VM_NOHUGEPAGE was set.
  1656. */
  1657. break;
  1658. }
  1659. return 0;
  1660. }
  1661. static int __init khugepaged_slab_init(void)
  1662. {
  1663. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1664. sizeof(struct mm_slot),
  1665. __alignof__(struct mm_slot), 0, NULL);
  1666. if (!mm_slot_cache)
  1667. return -ENOMEM;
  1668. return 0;
  1669. }
  1670. static inline struct mm_slot *alloc_mm_slot(void)
  1671. {
  1672. if (!mm_slot_cache) /* initialization failed */
  1673. return NULL;
  1674. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1675. }
  1676. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1677. {
  1678. kmem_cache_free(mm_slot_cache, mm_slot);
  1679. }
  1680. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1681. {
  1682. struct mm_slot *mm_slot;
  1683. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1684. if (mm == mm_slot->mm)
  1685. return mm_slot;
  1686. return NULL;
  1687. }
  1688. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1689. struct mm_slot *mm_slot)
  1690. {
  1691. mm_slot->mm = mm;
  1692. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1693. }
  1694. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1695. {
  1696. return atomic_read(&mm->mm_users) == 0;
  1697. }
  1698. int __khugepaged_enter(struct mm_struct *mm)
  1699. {
  1700. struct mm_slot *mm_slot;
  1701. int wakeup;
  1702. mm_slot = alloc_mm_slot();
  1703. if (!mm_slot)
  1704. return -ENOMEM;
  1705. /* __khugepaged_exit() must not run from under us */
  1706. VM_BUG_ON(khugepaged_test_exit(mm));
  1707. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1708. free_mm_slot(mm_slot);
  1709. return 0;
  1710. }
  1711. spin_lock(&khugepaged_mm_lock);
  1712. insert_to_mm_slots_hash(mm, mm_slot);
  1713. /*
  1714. * Insert just behind the scanning cursor, to let the area settle
  1715. * down a little.
  1716. */
  1717. wakeup = list_empty(&khugepaged_scan.mm_head);
  1718. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1719. spin_unlock(&khugepaged_mm_lock);
  1720. atomic_inc(&mm->mm_count);
  1721. if (wakeup)
  1722. wake_up_interruptible(&khugepaged_wait);
  1723. return 0;
  1724. }
  1725. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1726. {
  1727. unsigned long hstart, hend;
  1728. if (!vma->anon_vma)
  1729. /*
  1730. * Not yet faulted in so we will register later in the
  1731. * page fault if needed.
  1732. */
  1733. return 0;
  1734. if (vma->vm_ops)
  1735. /* khugepaged not yet working on file or special mappings */
  1736. return 0;
  1737. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1738. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1739. hend = vma->vm_end & HPAGE_PMD_MASK;
  1740. if (hstart < hend)
  1741. return khugepaged_enter(vma);
  1742. return 0;
  1743. }
  1744. void __khugepaged_exit(struct mm_struct *mm)
  1745. {
  1746. struct mm_slot *mm_slot;
  1747. int free = 0;
  1748. spin_lock(&khugepaged_mm_lock);
  1749. mm_slot = get_mm_slot(mm);
  1750. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1751. hash_del(&mm_slot->hash);
  1752. list_del(&mm_slot->mm_node);
  1753. free = 1;
  1754. }
  1755. spin_unlock(&khugepaged_mm_lock);
  1756. if (free) {
  1757. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1758. free_mm_slot(mm_slot);
  1759. mmdrop(mm);
  1760. } else if (mm_slot) {
  1761. /*
  1762. * This is required to serialize against
  1763. * khugepaged_test_exit() (which is guaranteed to run
  1764. * under mmap sem read mode). Stop here (after we
  1765. * return all pagetables will be destroyed) until
  1766. * khugepaged has finished working on the pagetables
  1767. * under the mmap_sem.
  1768. */
  1769. down_write(&mm->mmap_sem);
  1770. up_write(&mm->mmap_sem);
  1771. }
  1772. }
  1773. static void release_pte_page(struct page *page)
  1774. {
  1775. /* 0 stands for page_is_file_cache(page) == false */
  1776. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1777. unlock_page(page);
  1778. putback_lru_page(page);
  1779. }
  1780. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1781. {
  1782. while (--_pte >= pte) {
  1783. pte_t pteval = *_pte;
  1784. if (!pte_none(pteval))
  1785. release_pte_page(pte_page(pteval));
  1786. }
  1787. }
  1788. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1789. unsigned long address,
  1790. pte_t *pte)
  1791. {
  1792. struct page *page;
  1793. pte_t *_pte;
  1794. int referenced = 0, none = 0;
  1795. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1796. _pte++, address += PAGE_SIZE) {
  1797. pte_t pteval = *_pte;
  1798. if (pte_none(pteval)) {
  1799. if (++none <= khugepaged_max_ptes_none)
  1800. continue;
  1801. else
  1802. goto out;
  1803. }
  1804. if (!pte_present(pteval) || !pte_write(pteval))
  1805. goto out;
  1806. page = vm_normal_page(vma, address, pteval);
  1807. if (unlikely(!page))
  1808. goto out;
  1809. VM_BUG_ON(PageCompound(page));
  1810. BUG_ON(!PageAnon(page));
  1811. VM_BUG_ON(!PageSwapBacked(page));
  1812. /* cannot use mapcount: can't collapse if there's a gup pin */
  1813. if (page_count(page) != 1)
  1814. goto out;
  1815. /*
  1816. * We can do it before isolate_lru_page because the
  1817. * page can't be freed from under us. NOTE: PG_lock
  1818. * is needed to serialize against split_huge_page
  1819. * when invoked from the VM.
  1820. */
  1821. if (!trylock_page(page))
  1822. goto out;
  1823. /*
  1824. * Isolate the page to avoid collapsing an hugepage
  1825. * currently in use by the VM.
  1826. */
  1827. if (isolate_lru_page(page)) {
  1828. unlock_page(page);
  1829. goto out;
  1830. }
  1831. /* 0 stands for page_is_file_cache(page) == false */
  1832. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1833. VM_BUG_ON(!PageLocked(page));
  1834. VM_BUG_ON(PageLRU(page));
  1835. /* If there is no mapped pte young don't collapse the page */
  1836. if (pte_young(pteval) || PageReferenced(page) ||
  1837. mmu_notifier_test_young(vma->vm_mm, address))
  1838. referenced = 1;
  1839. }
  1840. if (likely(referenced))
  1841. return 1;
  1842. out:
  1843. release_pte_pages(pte, _pte);
  1844. return 0;
  1845. }
  1846. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1847. struct vm_area_struct *vma,
  1848. unsigned long address,
  1849. spinlock_t *ptl)
  1850. {
  1851. pte_t *_pte;
  1852. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1853. pte_t pteval = *_pte;
  1854. struct page *src_page;
  1855. if (pte_none(pteval)) {
  1856. clear_user_highpage(page, address);
  1857. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1858. } else {
  1859. src_page = pte_page(pteval);
  1860. copy_user_highpage(page, src_page, address, vma);
  1861. VM_BUG_ON(page_mapcount(src_page) != 1);
  1862. release_pte_page(src_page);
  1863. /*
  1864. * ptl mostly unnecessary, but preempt has to
  1865. * be disabled to update the per-cpu stats
  1866. * inside page_remove_rmap().
  1867. */
  1868. spin_lock(ptl);
  1869. /*
  1870. * paravirt calls inside pte_clear here are
  1871. * superfluous.
  1872. */
  1873. pte_clear(vma->vm_mm, address, _pte);
  1874. page_remove_rmap(src_page);
  1875. spin_unlock(ptl);
  1876. free_page_and_swap_cache(src_page);
  1877. }
  1878. address += PAGE_SIZE;
  1879. page++;
  1880. }
  1881. }
  1882. static void khugepaged_alloc_sleep(void)
  1883. {
  1884. wait_event_freezable_timeout(khugepaged_wait, false,
  1885. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1886. }
  1887. #ifdef CONFIG_NUMA
  1888. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1889. {
  1890. if (IS_ERR(*hpage)) {
  1891. if (!*wait)
  1892. return false;
  1893. *wait = false;
  1894. *hpage = NULL;
  1895. khugepaged_alloc_sleep();
  1896. } else if (*hpage) {
  1897. put_page(*hpage);
  1898. *hpage = NULL;
  1899. }
  1900. return true;
  1901. }
  1902. static struct page
  1903. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1904. struct vm_area_struct *vma, unsigned long address,
  1905. int node)
  1906. {
  1907. VM_BUG_ON(*hpage);
  1908. /*
  1909. * Allocate the page while the vma is still valid and under
  1910. * the mmap_sem read mode so there is no memory allocation
  1911. * later when we take the mmap_sem in write mode. This is more
  1912. * friendly behavior (OTOH it may actually hide bugs) to
  1913. * filesystems in userland with daemons allocating memory in
  1914. * the userland I/O paths. Allocating memory with the
  1915. * mmap_sem in read mode is good idea also to allow greater
  1916. * scalability.
  1917. */
  1918. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1919. node, __GFP_OTHER_NODE);
  1920. /*
  1921. * After allocating the hugepage, release the mmap_sem read lock in
  1922. * preparation for taking it in write mode.
  1923. */
  1924. up_read(&mm->mmap_sem);
  1925. if (unlikely(!*hpage)) {
  1926. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1927. *hpage = ERR_PTR(-ENOMEM);
  1928. return NULL;
  1929. }
  1930. count_vm_event(THP_COLLAPSE_ALLOC);
  1931. return *hpage;
  1932. }
  1933. #else
  1934. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1935. {
  1936. struct page *hpage;
  1937. do {
  1938. hpage = alloc_hugepage(khugepaged_defrag());
  1939. if (!hpage) {
  1940. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1941. if (!*wait)
  1942. return NULL;
  1943. *wait = false;
  1944. khugepaged_alloc_sleep();
  1945. } else
  1946. count_vm_event(THP_COLLAPSE_ALLOC);
  1947. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1948. return hpage;
  1949. }
  1950. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1951. {
  1952. if (!*hpage)
  1953. *hpage = khugepaged_alloc_hugepage(wait);
  1954. if (unlikely(!*hpage))
  1955. return false;
  1956. return true;
  1957. }
  1958. static struct page
  1959. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1960. struct vm_area_struct *vma, unsigned long address,
  1961. int node)
  1962. {
  1963. up_read(&mm->mmap_sem);
  1964. VM_BUG_ON(!*hpage);
  1965. return *hpage;
  1966. }
  1967. #endif
  1968. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1969. {
  1970. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1971. (vma->vm_flags & VM_NOHUGEPAGE))
  1972. return false;
  1973. if (!vma->anon_vma || vma->vm_ops)
  1974. return false;
  1975. if (is_vma_temporary_stack(vma))
  1976. return false;
  1977. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1978. return true;
  1979. }
  1980. static void collapse_huge_page(struct mm_struct *mm,
  1981. unsigned long address,
  1982. struct page **hpage,
  1983. struct vm_area_struct *vma,
  1984. int node)
  1985. {
  1986. pmd_t *pmd, _pmd;
  1987. pte_t *pte;
  1988. pgtable_t pgtable;
  1989. struct page *new_page;
  1990. spinlock_t *ptl;
  1991. int isolated;
  1992. unsigned long hstart, hend;
  1993. unsigned long mmun_start; /* For mmu_notifiers */
  1994. unsigned long mmun_end; /* For mmu_notifiers */
  1995. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1996. /* release the mmap_sem read lock. */
  1997. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1998. if (!new_page)
  1999. return;
  2000. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2001. return;
  2002. /*
  2003. * Prevent all access to pagetables with the exception of
  2004. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2005. * handled by the anon_vma lock + PG_lock.
  2006. */
  2007. down_write(&mm->mmap_sem);
  2008. if (unlikely(khugepaged_test_exit(mm)))
  2009. goto out;
  2010. vma = find_vma(mm, address);
  2011. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2012. hend = vma->vm_end & HPAGE_PMD_MASK;
  2013. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2014. goto out;
  2015. if (!hugepage_vma_check(vma))
  2016. goto out;
  2017. pmd = mm_find_pmd(mm, address);
  2018. if (!pmd)
  2019. goto out;
  2020. if (pmd_trans_huge(*pmd))
  2021. goto out;
  2022. anon_vma_lock_write(vma->anon_vma);
  2023. pte = pte_offset_map(pmd, address);
  2024. ptl = pte_lockptr(mm, pmd);
  2025. mmun_start = address;
  2026. mmun_end = address + HPAGE_PMD_SIZE;
  2027. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2028. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2029. /*
  2030. * After this gup_fast can't run anymore. This also removes
  2031. * any huge TLB entry from the CPU so we won't allow
  2032. * huge and small TLB entries for the same virtual address
  2033. * to avoid the risk of CPU bugs in that area.
  2034. */
  2035. _pmd = pmdp_clear_flush(vma, address, pmd);
  2036. spin_unlock(&mm->page_table_lock);
  2037. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2038. spin_lock(ptl);
  2039. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2040. spin_unlock(ptl);
  2041. if (unlikely(!isolated)) {
  2042. pte_unmap(pte);
  2043. spin_lock(&mm->page_table_lock);
  2044. BUG_ON(!pmd_none(*pmd));
  2045. set_pmd_at(mm, address, pmd, _pmd);
  2046. spin_unlock(&mm->page_table_lock);
  2047. anon_vma_unlock_write(vma->anon_vma);
  2048. goto out;
  2049. }
  2050. /*
  2051. * All pages are isolated and locked so anon_vma rmap
  2052. * can't run anymore.
  2053. */
  2054. anon_vma_unlock_write(vma->anon_vma);
  2055. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2056. pte_unmap(pte);
  2057. __SetPageUptodate(new_page);
  2058. pgtable = pmd_pgtable(_pmd);
  2059. _pmd = mk_huge_pmd(new_page, vma);
  2060. /*
  2061. * spin_lock() below is not the equivalent of smp_wmb(), so
  2062. * this is needed to avoid the copy_huge_page writes to become
  2063. * visible after the set_pmd_at() write.
  2064. */
  2065. smp_wmb();
  2066. spin_lock(&mm->page_table_lock);
  2067. BUG_ON(!pmd_none(*pmd));
  2068. page_add_new_anon_rmap(new_page, vma, address);
  2069. set_pmd_at(mm, address, pmd, _pmd);
  2070. update_mmu_cache_pmd(vma, address, pmd);
  2071. pgtable_trans_huge_deposit(mm, pgtable);
  2072. spin_unlock(&mm->page_table_lock);
  2073. *hpage = NULL;
  2074. khugepaged_pages_collapsed++;
  2075. out_up_write:
  2076. up_write(&mm->mmap_sem);
  2077. return;
  2078. out:
  2079. mem_cgroup_uncharge_page(new_page);
  2080. goto out_up_write;
  2081. }
  2082. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2083. struct vm_area_struct *vma,
  2084. unsigned long address,
  2085. struct page **hpage)
  2086. {
  2087. pmd_t *pmd;
  2088. pte_t *pte, *_pte;
  2089. int ret = 0, referenced = 0, none = 0;
  2090. struct page *page;
  2091. unsigned long _address;
  2092. spinlock_t *ptl;
  2093. int node = NUMA_NO_NODE;
  2094. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2095. pmd = mm_find_pmd(mm, address);
  2096. if (!pmd)
  2097. goto out;
  2098. if (pmd_trans_huge(*pmd))
  2099. goto out;
  2100. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2101. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2102. _pte++, _address += PAGE_SIZE) {
  2103. pte_t pteval = *_pte;
  2104. if (pte_none(pteval)) {
  2105. if (++none <= khugepaged_max_ptes_none)
  2106. continue;
  2107. else
  2108. goto out_unmap;
  2109. }
  2110. if (!pte_present(pteval) || !pte_write(pteval))
  2111. goto out_unmap;
  2112. page = vm_normal_page(vma, _address, pteval);
  2113. if (unlikely(!page))
  2114. goto out_unmap;
  2115. /*
  2116. * Chose the node of the first page. This could
  2117. * be more sophisticated and look at more pages,
  2118. * but isn't for now.
  2119. */
  2120. if (node == NUMA_NO_NODE)
  2121. node = page_to_nid(page);
  2122. VM_BUG_ON(PageCompound(page));
  2123. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2124. goto out_unmap;
  2125. /* cannot use mapcount: can't collapse if there's a gup pin */
  2126. if (page_count(page) != 1)
  2127. goto out_unmap;
  2128. if (pte_young(pteval) || PageReferenced(page) ||
  2129. mmu_notifier_test_young(vma->vm_mm, address))
  2130. referenced = 1;
  2131. }
  2132. if (referenced)
  2133. ret = 1;
  2134. out_unmap:
  2135. pte_unmap_unlock(pte, ptl);
  2136. if (ret)
  2137. /* collapse_huge_page will return with the mmap_sem released */
  2138. collapse_huge_page(mm, address, hpage, vma, node);
  2139. out:
  2140. return ret;
  2141. }
  2142. static void collect_mm_slot(struct mm_slot *mm_slot)
  2143. {
  2144. struct mm_struct *mm = mm_slot->mm;
  2145. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2146. if (khugepaged_test_exit(mm)) {
  2147. /* free mm_slot */
  2148. hash_del(&mm_slot->hash);
  2149. list_del(&mm_slot->mm_node);
  2150. /*
  2151. * Not strictly needed because the mm exited already.
  2152. *
  2153. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2154. */
  2155. /* khugepaged_mm_lock actually not necessary for the below */
  2156. free_mm_slot(mm_slot);
  2157. mmdrop(mm);
  2158. }
  2159. }
  2160. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2161. struct page **hpage)
  2162. __releases(&khugepaged_mm_lock)
  2163. __acquires(&khugepaged_mm_lock)
  2164. {
  2165. struct mm_slot *mm_slot;
  2166. struct mm_struct *mm;
  2167. struct vm_area_struct *vma;
  2168. int progress = 0;
  2169. VM_BUG_ON(!pages);
  2170. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2171. if (khugepaged_scan.mm_slot)
  2172. mm_slot = khugepaged_scan.mm_slot;
  2173. else {
  2174. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2175. struct mm_slot, mm_node);
  2176. khugepaged_scan.address = 0;
  2177. khugepaged_scan.mm_slot = mm_slot;
  2178. }
  2179. spin_unlock(&khugepaged_mm_lock);
  2180. mm = mm_slot->mm;
  2181. down_read(&mm->mmap_sem);
  2182. if (unlikely(khugepaged_test_exit(mm)))
  2183. vma = NULL;
  2184. else
  2185. vma = find_vma(mm, khugepaged_scan.address);
  2186. progress++;
  2187. for (; vma; vma = vma->vm_next) {
  2188. unsigned long hstart, hend;
  2189. cond_resched();
  2190. if (unlikely(khugepaged_test_exit(mm))) {
  2191. progress++;
  2192. break;
  2193. }
  2194. if (!hugepage_vma_check(vma)) {
  2195. skip:
  2196. progress++;
  2197. continue;
  2198. }
  2199. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2200. hend = vma->vm_end & HPAGE_PMD_MASK;
  2201. if (hstart >= hend)
  2202. goto skip;
  2203. if (khugepaged_scan.address > hend)
  2204. goto skip;
  2205. if (khugepaged_scan.address < hstart)
  2206. khugepaged_scan.address = hstart;
  2207. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2208. while (khugepaged_scan.address < hend) {
  2209. int ret;
  2210. cond_resched();
  2211. if (unlikely(khugepaged_test_exit(mm)))
  2212. goto breakouterloop;
  2213. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2214. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2215. hend);
  2216. ret = khugepaged_scan_pmd(mm, vma,
  2217. khugepaged_scan.address,
  2218. hpage);
  2219. /* move to next address */
  2220. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2221. progress += HPAGE_PMD_NR;
  2222. if (ret)
  2223. /* we released mmap_sem so break loop */
  2224. goto breakouterloop_mmap_sem;
  2225. if (progress >= pages)
  2226. goto breakouterloop;
  2227. }
  2228. }
  2229. breakouterloop:
  2230. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2231. breakouterloop_mmap_sem:
  2232. spin_lock(&khugepaged_mm_lock);
  2233. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2234. /*
  2235. * Release the current mm_slot if this mm is about to die, or
  2236. * if we scanned all vmas of this mm.
  2237. */
  2238. if (khugepaged_test_exit(mm) || !vma) {
  2239. /*
  2240. * Make sure that if mm_users is reaching zero while
  2241. * khugepaged runs here, khugepaged_exit will find
  2242. * mm_slot not pointing to the exiting mm.
  2243. */
  2244. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2245. khugepaged_scan.mm_slot = list_entry(
  2246. mm_slot->mm_node.next,
  2247. struct mm_slot, mm_node);
  2248. khugepaged_scan.address = 0;
  2249. } else {
  2250. khugepaged_scan.mm_slot = NULL;
  2251. khugepaged_full_scans++;
  2252. }
  2253. collect_mm_slot(mm_slot);
  2254. }
  2255. return progress;
  2256. }
  2257. static int khugepaged_has_work(void)
  2258. {
  2259. return !list_empty(&khugepaged_scan.mm_head) &&
  2260. khugepaged_enabled();
  2261. }
  2262. static int khugepaged_wait_event(void)
  2263. {
  2264. return !list_empty(&khugepaged_scan.mm_head) ||
  2265. kthread_should_stop();
  2266. }
  2267. static void khugepaged_do_scan(void)
  2268. {
  2269. struct page *hpage = NULL;
  2270. unsigned int progress = 0, pass_through_head = 0;
  2271. unsigned int pages = khugepaged_pages_to_scan;
  2272. bool wait = true;
  2273. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2274. while (progress < pages) {
  2275. if (!khugepaged_prealloc_page(&hpage, &wait))
  2276. break;
  2277. cond_resched();
  2278. if (unlikely(kthread_should_stop() || freezing(current)))
  2279. break;
  2280. spin_lock(&khugepaged_mm_lock);
  2281. if (!khugepaged_scan.mm_slot)
  2282. pass_through_head++;
  2283. if (khugepaged_has_work() &&
  2284. pass_through_head < 2)
  2285. progress += khugepaged_scan_mm_slot(pages - progress,
  2286. &hpage);
  2287. else
  2288. progress = pages;
  2289. spin_unlock(&khugepaged_mm_lock);
  2290. }
  2291. if (!IS_ERR_OR_NULL(hpage))
  2292. put_page(hpage);
  2293. }
  2294. static void khugepaged_wait_work(void)
  2295. {
  2296. try_to_freeze();
  2297. if (khugepaged_has_work()) {
  2298. if (!khugepaged_scan_sleep_millisecs)
  2299. return;
  2300. wait_event_freezable_timeout(khugepaged_wait,
  2301. kthread_should_stop(),
  2302. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2303. return;
  2304. }
  2305. if (khugepaged_enabled())
  2306. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2307. }
  2308. static int khugepaged(void *none)
  2309. {
  2310. struct mm_slot *mm_slot;
  2311. set_freezable();
  2312. set_user_nice(current, 19);
  2313. while (!kthread_should_stop()) {
  2314. khugepaged_do_scan();
  2315. khugepaged_wait_work();
  2316. }
  2317. spin_lock(&khugepaged_mm_lock);
  2318. mm_slot = khugepaged_scan.mm_slot;
  2319. khugepaged_scan.mm_slot = NULL;
  2320. if (mm_slot)
  2321. collect_mm_slot(mm_slot);
  2322. spin_unlock(&khugepaged_mm_lock);
  2323. return 0;
  2324. }
  2325. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2326. unsigned long haddr, pmd_t *pmd)
  2327. {
  2328. struct mm_struct *mm = vma->vm_mm;
  2329. pgtable_t pgtable;
  2330. pmd_t _pmd;
  2331. int i;
  2332. pmdp_clear_flush(vma, haddr, pmd);
  2333. /* leave pmd empty until pte is filled */
  2334. pgtable = pgtable_trans_huge_withdraw(mm);
  2335. pmd_populate(mm, &_pmd, pgtable);
  2336. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2337. pte_t *pte, entry;
  2338. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2339. entry = pte_mkspecial(entry);
  2340. pte = pte_offset_map(&_pmd, haddr);
  2341. VM_BUG_ON(!pte_none(*pte));
  2342. set_pte_at(mm, haddr, pte, entry);
  2343. pte_unmap(pte);
  2344. }
  2345. smp_wmb(); /* make pte visible before pmd */
  2346. pmd_populate(mm, pmd, pgtable);
  2347. put_huge_zero_page();
  2348. }
  2349. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2350. pmd_t *pmd)
  2351. {
  2352. struct page *page;
  2353. struct mm_struct *mm = vma->vm_mm;
  2354. unsigned long haddr = address & HPAGE_PMD_MASK;
  2355. unsigned long mmun_start; /* For mmu_notifiers */
  2356. unsigned long mmun_end; /* For mmu_notifiers */
  2357. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2358. mmun_start = haddr;
  2359. mmun_end = haddr + HPAGE_PMD_SIZE;
  2360. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2361. spin_lock(&mm->page_table_lock);
  2362. if (unlikely(!pmd_trans_huge(*pmd))) {
  2363. spin_unlock(&mm->page_table_lock);
  2364. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2365. return;
  2366. }
  2367. if (is_huge_zero_pmd(*pmd)) {
  2368. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2369. spin_unlock(&mm->page_table_lock);
  2370. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2371. return;
  2372. }
  2373. page = pmd_page(*pmd);
  2374. VM_BUG_ON(!page_count(page));
  2375. get_page(page);
  2376. spin_unlock(&mm->page_table_lock);
  2377. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2378. split_huge_page(page);
  2379. put_page(page);
  2380. BUG_ON(pmd_trans_huge(*pmd));
  2381. }
  2382. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2383. pmd_t *pmd)
  2384. {
  2385. struct vm_area_struct *vma;
  2386. vma = find_vma(mm, address);
  2387. BUG_ON(vma == NULL);
  2388. split_huge_page_pmd(vma, address, pmd);
  2389. }
  2390. static void split_huge_page_address(struct mm_struct *mm,
  2391. unsigned long address)
  2392. {
  2393. pmd_t *pmd;
  2394. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2395. pmd = mm_find_pmd(mm, address);
  2396. if (!pmd)
  2397. return;
  2398. /*
  2399. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2400. * materialize from under us.
  2401. */
  2402. split_huge_page_pmd_mm(mm, address, pmd);
  2403. }
  2404. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2405. unsigned long start,
  2406. unsigned long end,
  2407. long adjust_next)
  2408. {
  2409. /*
  2410. * If the new start address isn't hpage aligned and it could
  2411. * previously contain an hugepage: check if we need to split
  2412. * an huge pmd.
  2413. */
  2414. if (start & ~HPAGE_PMD_MASK &&
  2415. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2416. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2417. split_huge_page_address(vma->vm_mm, start);
  2418. /*
  2419. * If the new end address isn't hpage aligned and it could
  2420. * previously contain an hugepage: check if we need to split
  2421. * an huge pmd.
  2422. */
  2423. if (end & ~HPAGE_PMD_MASK &&
  2424. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2425. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2426. split_huge_page_address(vma->vm_mm, end);
  2427. /*
  2428. * If we're also updating the vma->vm_next->vm_start, if the new
  2429. * vm_next->vm_start isn't page aligned and it could previously
  2430. * contain an hugepage: check if we need to split an huge pmd.
  2431. */
  2432. if (adjust_next > 0) {
  2433. struct vm_area_struct *next = vma->vm_next;
  2434. unsigned long nstart = next->vm_start;
  2435. nstart += adjust_next << PAGE_SHIFT;
  2436. if (nstart & ~HPAGE_PMD_MASK &&
  2437. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2438. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2439. split_huge_page_address(next->vm_mm, nstart);
  2440. }
  2441. }