xfs_log_recover.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_cksum.h"
  45. #include "xfs_trace.h"
  46. #include "xfs_icache.h"
  47. STATIC int
  48. xlog_find_zeroed(
  49. struct xlog *,
  50. xfs_daddr_t *);
  51. STATIC int
  52. xlog_clear_stale_blocks(
  53. struct xlog *,
  54. xfs_lsn_t);
  55. #if defined(DEBUG)
  56. STATIC void
  57. xlog_recover_check_summary(
  58. struct xlog *);
  59. #else
  60. #define xlog_recover_check_summary(log)
  61. #endif
  62. /*
  63. * This structure is used during recovery to record the buf log items which
  64. * have been canceled and should not be replayed.
  65. */
  66. struct xfs_buf_cancel {
  67. xfs_daddr_t bc_blkno;
  68. uint bc_len;
  69. int bc_refcount;
  70. struct list_head bc_list;
  71. };
  72. /*
  73. * Sector aligned buffer routines for buffer create/read/write/access
  74. */
  75. /*
  76. * Verify the given count of basic blocks is valid number of blocks
  77. * to specify for an operation involving the given XFS log buffer.
  78. * Returns nonzero if the count is valid, 0 otherwise.
  79. */
  80. static inline int
  81. xlog_buf_bbcount_valid(
  82. struct xlog *log,
  83. int bbcount)
  84. {
  85. return bbcount > 0 && bbcount <= log->l_logBBsize;
  86. }
  87. /*
  88. * Allocate a buffer to hold log data. The buffer needs to be able
  89. * to map to a range of nbblks basic blocks at any valid (basic
  90. * block) offset within the log.
  91. */
  92. STATIC xfs_buf_t *
  93. xlog_get_bp(
  94. struct xlog *log,
  95. int nbblks)
  96. {
  97. struct xfs_buf *bp;
  98. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  99. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  100. nbblks);
  101. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  102. return NULL;
  103. }
  104. /*
  105. * We do log I/O in units of log sectors (a power-of-2
  106. * multiple of the basic block size), so we round up the
  107. * requested size to accommodate the basic blocks required
  108. * for complete log sectors.
  109. *
  110. * In addition, the buffer may be used for a non-sector-
  111. * aligned block offset, in which case an I/O of the
  112. * requested size could extend beyond the end of the
  113. * buffer. If the requested size is only 1 basic block it
  114. * will never straddle a sector boundary, so this won't be
  115. * an issue. Nor will this be a problem if the log I/O is
  116. * done in basic blocks (sector size 1). But otherwise we
  117. * extend the buffer by one extra log sector to ensure
  118. * there's space to accommodate this possibility.
  119. */
  120. if (nbblks > 1 && log->l_sectBBsize > 1)
  121. nbblks += log->l_sectBBsize;
  122. nbblks = round_up(nbblks, log->l_sectBBsize);
  123. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  124. if (bp)
  125. xfs_buf_unlock(bp);
  126. return bp;
  127. }
  128. STATIC void
  129. xlog_put_bp(
  130. xfs_buf_t *bp)
  131. {
  132. xfs_buf_free(bp);
  133. }
  134. /*
  135. * Return the address of the start of the given block number's data
  136. * in a log buffer. The buffer covers a log sector-aligned region.
  137. */
  138. STATIC xfs_caddr_t
  139. xlog_align(
  140. struct xlog *log,
  141. xfs_daddr_t blk_no,
  142. int nbblks,
  143. struct xfs_buf *bp)
  144. {
  145. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  146. ASSERT(offset + nbblks <= bp->b_length);
  147. return bp->b_addr + BBTOB(offset);
  148. }
  149. /*
  150. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  151. */
  152. STATIC int
  153. xlog_bread_noalign(
  154. struct xlog *log,
  155. xfs_daddr_t blk_no,
  156. int nbblks,
  157. struct xfs_buf *bp)
  158. {
  159. int error;
  160. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  161. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  162. nbblks);
  163. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  164. return EFSCORRUPTED;
  165. }
  166. blk_no = round_down(blk_no, log->l_sectBBsize);
  167. nbblks = round_up(nbblks, log->l_sectBBsize);
  168. ASSERT(nbblks > 0);
  169. ASSERT(nbblks <= bp->b_length);
  170. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  171. XFS_BUF_READ(bp);
  172. bp->b_io_length = nbblks;
  173. bp->b_error = 0;
  174. xfsbdstrat(log->l_mp, bp);
  175. error = xfs_buf_iowait(bp);
  176. if (error)
  177. xfs_buf_ioerror_alert(bp, __func__);
  178. return error;
  179. }
  180. STATIC int
  181. xlog_bread(
  182. struct xlog *log,
  183. xfs_daddr_t blk_no,
  184. int nbblks,
  185. struct xfs_buf *bp,
  186. xfs_caddr_t *offset)
  187. {
  188. int error;
  189. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  190. if (error)
  191. return error;
  192. *offset = xlog_align(log, blk_no, nbblks, bp);
  193. return 0;
  194. }
  195. /*
  196. * Read at an offset into the buffer. Returns with the buffer in it's original
  197. * state regardless of the result of the read.
  198. */
  199. STATIC int
  200. xlog_bread_offset(
  201. struct xlog *log,
  202. xfs_daddr_t blk_no, /* block to read from */
  203. int nbblks, /* blocks to read */
  204. struct xfs_buf *bp,
  205. xfs_caddr_t offset)
  206. {
  207. xfs_caddr_t orig_offset = bp->b_addr;
  208. int orig_len = BBTOB(bp->b_length);
  209. int error, error2;
  210. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  211. if (error)
  212. return error;
  213. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  214. /* must reset buffer pointer even on error */
  215. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  216. if (error)
  217. return error;
  218. return error2;
  219. }
  220. /*
  221. * Write out the buffer at the given block for the given number of blocks.
  222. * The buffer is kept locked across the write and is returned locked.
  223. * This can only be used for synchronous log writes.
  224. */
  225. STATIC int
  226. xlog_bwrite(
  227. struct xlog *log,
  228. xfs_daddr_t blk_no,
  229. int nbblks,
  230. struct xfs_buf *bp)
  231. {
  232. int error;
  233. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  234. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  235. nbblks);
  236. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  237. return EFSCORRUPTED;
  238. }
  239. blk_no = round_down(blk_no, log->l_sectBBsize);
  240. nbblks = round_up(nbblks, log->l_sectBBsize);
  241. ASSERT(nbblks > 0);
  242. ASSERT(nbblks <= bp->b_length);
  243. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  244. XFS_BUF_ZEROFLAGS(bp);
  245. xfs_buf_hold(bp);
  246. xfs_buf_lock(bp);
  247. bp->b_io_length = nbblks;
  248. bp->b_error = 0;
  249. error = xfs_bwrite(bp);
  250. if (error)
  251. xfs_buf_ioerror_alert(bp, __func__);
  252. xfs_buf_relse(bp);
  253. return error;
  254. }
  255. #ifdef DEBUG
  256. /*
  257. * dump debug superblock and log record information
  258. */
  259. STATIC void
  260. xlog_header_check_dump(
  261. xfs_mount_t *mp,
  262. xlog_rec_header_t *head)
  263. {
  264. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  265. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  266. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  267. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  268. }
  269. #else
  270. #define xlog_header_check_dump(mp, head)
  271. #endif
  272. /*
  273. * check log record header for recovery
  274. */
  275. STATIC int
  276. xlog_header_check_recover(
  277. xfs_mount_t *mp,
  278. xlog_rec_header_t *head)
  279. {
  280. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  281. /*
  282. * IRIX doesn't write the h_fmt field and leaves it zeroed
  283. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  284. * a dirty log created in IRIX.
  285. */
  286. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  287. xfs_warn(mp,
  288. "dirty log written in incompatible format - can't recover");
  289. xlog_header_check_dump(mp, head);
  290. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  291. XFS_ERRLEVEL_HIGH, mp);
  292. return XFS_ERROR(EFSCORRUPTED);
  293. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  294. xfs_warn(mp,
  295. "dirty log entry has mismatched uuid - can't recover");
  296. xlog_header_check_dump(mp, head);
  297. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  298. XFS_ERRLEVEL_HIGH, mp);
  299. return XFS_ERROR(EFSCORRUPTED);
  300. }
  301. return 0;
  302. }
  303. /*
  304. * read the head block of the log and check the header
  305. */
  306. STATIC int
  307. xlog_header_check_mount(
  308. xfs_mount_t *mp,
  309. xlog_rec_header_t *head)
  310. {
  311. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  312. if (uuid_is_nil(&head->h_fs_uuid)) {
  313. /*
  314. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  315. * h_fs_uuid is nil, we assume this log was last mounted
  316. * by IRIX and continue.
  317. */
  318. xfs_warn(mp, "nil uuid in log - IRIX style log");
  319. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  320. xfs_warn(mp, "log has mismatched uuid - can't recover");
  321. xlog_header_check_dump(mp, head);
  322. XFS_ERROR_REPORT("xlog_header_check_mount",
  323. XFS_ERRLEVEL_HIGH, mp);
  324. return XFS_ERROR(EFSCORRUPTED);
  325. }
  326. return 0;
  327. }
  328. STATIC void
  329. xlog_recover_iodone(
  330. struct xfs_buf *bp)
  331. {
  332. if (bp->b_error) {
  333. /*
  334. * We're not going to bother about retrying
  335. * this during recovery. One strike!
  336. */
  337. xfs_buf_ioerror_alert(bp, __func__);
  338. xfs_force_shutdown(bp->b_target->bt_mount,
  339. SHUTDOWN_META_IO_ERROR);
  340. }
  341. bp->b_iodone = NULL;
  342. xfs_buf_ioend(bp, 0);
  343. }
  344. /*
  345. * This routine finds (to an approximation) the first block in the physical
  346. * log which contains the given cycle. It uses a binary search algorithm.
  347. * Note that the algorithm can not be perfect because the disk will not
  348. * necessarily be perfect.
  349. */
  350. STATIC int
  351. xlog_find_cycle_start(
  352. struct xlog *log,
  353. struct xfs_buf *bp,
  354. xfs_daddr_t first_blk,
  355. xfs_daddr_t *last_blk,
  356. uint cycle)
  357. {
  358. xfs_caddr_t offset;
  359. xfs_daddr_t mid_blk;
  360. xfs_daddr_t end_blk;
  361. uint mid_cycle;
  362. int error;
  363. end_blk = *last_blk;
  364. mid_blk = BLK_AVG(first_blk, end_blk);
  365. while (mid_blk != first_blk && mid_blk != end_blk) {
  366. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  367. if (error)
  368. return error;
  369. mid_cycle = xlog_get_cycle(offset);
  370. if (mid_cycle == cycle)
  371. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  372. else
  373. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  374. mid_blk = BLK_AVG(first_blk, end_blk);
  375. }
  376. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  377. (mid_blk == end_blk && mid_blk-1 == first_blk));
  378. *last_blk = end_blk;
  379. return 0;
  380. }
  381. /*
  382. * Check that a range of blocks does not contain stop_on_cycle_no.
  383. * Fill in *new_blk with the block offset where such a block is
  384. * found, or with -1 (an invalid block number) if there is no such
  385. * block in the range. The scan needs to occur from front to back
  386. * and the pointer into the region must be updated since a later
  387. * routine will need to perform another test.
  388. */
  389. STATIC int
  390. xlog_find_verify_cycle(
  391. struct xlog *log,
  392. xfs_daddr_t start_blk,
  393. int nbblks,
  394. uint stop_on_cycle_no,
  395. xfs_daddr_t *new_blk)
  396. {
  397. xfs_daddr_t i, j;
  398. uint cycle;
  399. xfs_buf_t *bp;
  400. xfs_daddr_t bufblks;
  401. xfs_caddr_t buf = NULL;
  402. int error = 0;
  403. /*
  404. * Greedily allocate a buffer big enough to handle the full
  405. * range of basic blocks we'll be examining. If that fails,
  406. * try a smaller size. We need to be able to read at least
  407. * a log sector, or we're out of luck.
  408. */
  409. bufblks = 1 << ffs(nbblks);
  410. while (bufblks > log->l_logBBsize)
  411. bufblks >>= 1;
  412. while (!(bp = xlog_get_bp(log, bufblks))) {
  413. bufblks >>= 1;
  414. if (bufblks < log->l_sectBBsize)
  415. return ENOMEM;
  416. }
  417. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  418. int bcount;
  419. bcount = min(bufblks, (start_blk + nbblks - i));
  420. error = xlog_bread(log, i, bcount, bp, &buf);
  421. if (error)
  422. goto out;
  423. for (j = 0; j < bcount; j++) {
  424. cycle = xlog_get_cycle(buf);
  425. if (cycle == stop_on_cycle_no) {
  426. *new_blk = i+j;
  427. goto out;
  428. }
  429. buf += BBSIZE;
  430. }
  431. }
  432. *new_blk = -1;
  433. out:
  434. xlog_put_bp(bp);
  435. return error;
  436. }
  437. /*
  438. * Potentially backup over partial log record write.
  439. *
  440. * In the typical case, last_blk is the number of the block directly after
  441. * a good log record. Therefore, we subtract one to get the block number
  442. * of the last block in the given buffer. extra_bblks contains the number
  443. * of blocks we would have read on a previous read. This happens when the
  444. * last log record is split over the end of the physical log.
  445. *
  446. * extra_bblks is the number of blocks potentially verified on a previous
  447. * call to this routine.
  448. */
  449. STATIC int
  450. xlog_find_verify_log_record(
  451. struct xlog *log,
  452. xfs_daddr_t start_blk,
  453. xfs_daddr_t *last_blk,
  454. int extra_bblks)
  455. {
  456. xfs_daddr_t i;
  457. xfs_buf_t *bp;
  458. xfs_caddr_t offset = NULL;
  459. xlog_rec_header_t *head = NULL;
  460. int error = 0;
  461. int smallmem = 0;
  462. int num_blks = *last_blk - start_blk;
  463. int xhdrs;
  464. ASSERT(start_blk != 0 || *last_blk != start_blk);
  465. if (!(bp = xlog_get_bp(log, num_blks))) {
  466. if (!(bp = xlog_get_bp(log, 1)))
  467. return ENOMEM;
  468. smallmem = 1;
  469. } else {
  470. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  471. if (error)
  472. goto out;
  473. offset += ((num_blks - 1) << BBSHIFT);
  474. }
  475. for (i = (*last_blk) - 1; i >= 0; i--) {
  476. if (i < start_blk) {
  477. /* valid log record not found */
  478. xfs_warn(log->l_mp,
  479. "Log inconsistent (didn't find previous header)");
  480. ASSERT(0);
  481. error = XFS_ERROR(EIO);
  482. goto out;
  483. }
  484. if (smallmem) {
  485. error = xlog_bread(log, i, 1, bp, &offset);
  486. if (error)
  487. goto out;
  488. }
  489. head = (xlog_rec_header_t *)offset;
  490. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  491. break;
  492. if (!smallmem)
  493. offset -= BBSIZE;
  494. }
  495. /*
  496. * We hit the beginning of the physical log & still no header. Return
  497. * to caller. If caller can handle a return of -1, then this routine
  498. * will be called again for the end of the physical log.
  499. */
  500. if (i == -1) {
  501. error = -1;
  502. goto out;
  503. }
  504. /*
  505. * We have the final block of the good log (the first block
  506. * of the log record _before_ the head. So we check the uuid.
  507. */
  508. if ((error = xlog_header_check_mount(log->l_mp, head)))
  509. goto out;
  510. /*
  511. * We may have found a log record header before we expected one.
  512. * last_blk will be the 1st block # with a given cycle #. We may end
  513. * up reading an entire log record. In this case, we don't want to
  514. * reset last_blk. Only when last_blk points in the middle of a log
  515. * record do we update last_blk.
  516. */
  517. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  518. uint h_size = be32_to_cpu(head->h_size);
  519. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  520. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  521. xhdrs++;
  522. } else {
  523. xhdrs = 1;
  524. }
  525. if (*last_blk - i + extra_bblks !=
  526. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  527. *last_blk = i;
  528. out:
  529. xlog_put_bp(bp);
  530. return error;
  531. }
  532. /*
  533. * Head is defined to be the point of the log where the next log write
  534. * write could go. This means that incomplete LR writes at the end are
  535. * eliminated when calculating the head. We aren't guaranteed that previous
  536. * LR have complete transactions. We only know that a cycle number of
  537. * current cycle number -1 won't be present in the log if we start writing
  538. * from our current block number.
  539. *
  540. * last_blk contains the block number of the first block with a given
  541. * cycle number.
  542. *
  543. * Return: zero if normal, non-zero if error.
  544. */
  545. STATIC int
  546. xlog_find_head(
  547. struct xlog *log,
  548. xfs_daddr_t *return_head_blk)
  549. {
  550. xfs_buf_t *bp;
  551. xfs_caddr_t offset;
  552. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  553. int num_scan_bblks;
  554. uint first_half_cycle, last_half_cycle;
  555. uint stop_on_cycle;
  556. int error, log_bbnum = log->l_logBBsize;
  557. /* Is the end of the log device zeroed? */
  558. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  559. *return_head_blk = first_blk;
  560. /* Is the whole lot zeroed? */
  561. if (!first_blk) {
  562. /* Linux XFS shouldn't generate totally zeroed logs -
  563. * mkfs etc write a dummy unmount record to a fresh
  564. * log so we can store the uuid in there
  565. */
  566. xfs_warn(log->l_mp, "totally zeroed log");
  567. }
  568. return 0;
  569. } else if (error) {
  570. xfs_warn(log->l_mp, "empty log check failed");
  571. return error;
  572. }
  573. first_blk = 0; /* get cycle # of 1st block */
  574. bp = xlog_get_bp(log, 1);
  575. if (!bp)
  576. return ENOMEM;
  577. error = xlog_bread(log, 0, 1, bp, &offset);
  578. if (error)
  579. goto bp_err;
  580. first_half_cycle = xlog_get_cycle(offset);
  581. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  582. error = xlog_bread(log, last_blk, 1, bp, &offset);
  583. if (error)
  584. goto bp_err;
  585. last_half_cycle = xlog_get_cycle(offset);
  586. ASSERT(last_half_cycle != 0);
  587. /*
  588. * If the 1st half cycle number is equal to the last half cycle number,
  589. * then the entire log is stamped with the same cycle number. In this
  590. * case, head_blk can't be set to zero (which makes sense). The below
  591. * math doesn't work out properly with head_blk equal to zero. Instead,
  592. * we set it to log_bbnum which is an invalid block number, but this
  593. * value makes the math correct. If head_blk doesn't changed through
  594. * all the tests below, *head_blk is set to zero at the very end rather
  595. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  596. * in a circular file.
  597. */
  598. if (first_half_cycle == last_half_cycle) {
  599. /*
  600. * In this case we believe that the entire log should have
  601. * cycle number last_half_cycle. We need to scan backwards
  602. * from the end verifying that there are no holes still
  603. * containing last_half_cycle - 1. If we find such a hole,
  604. * then the start of that hole will be the new head. The
  605. * simple case looks like
  606. * x | x ... | x - 1 | x
  607. * Another case that fits this picture would be
  608. * x | x + 1 | x ... | x
  609. * In this case the head really is somewhere at the end of the
  610. * log, as one of the latest writes at the beginning was
  611. * incomplete.
  612. * One more case is
  613. * x | x + 1 | x ... | x - 1 | x
  614. * This is really the combination of the above two cases, and
  615. * the head has to end up at the start of the x-1 hole at the
  616. * end of the log.
  617. *
  618. * In the 256k log case, we will read from the beginning to the
  619. * end of the log and search for cycle numbers equal to x-1.
  620. * We don't worry about the x+1 blocks that we encounter,
  621. * because we know that they cannot be the head since the log
  622. * started with x.
  623. */
  624. head_blk = log_bbnum;
  625. stop_on_cycle = last_half_cycle - 1;
  626. } else {
  627. /*
  628. * In this case we want to find the first block with cycle
  629. * number matching last_half_cycle. We expect the log to be
  630. * some variation on
  631. * x + 1 ... | x ... | x
  632. * The first block with cycle number x (last_half_cycle) will
  633. * be where the new head belongs. First we do a binary search
  634. * for the first occurrence of last_half_cycle. The binary
  635. * search may not be totally accurate, so then we scan back
  636. * from there looking for occurrences of last_half_cycle before
  637. * us. If that backwards scan wraps around the beginning of
  638. * the log, then we look for occurrences of last_half_cycle - 1
  639. * at the end of the log. The cases we're looking for look
  640. * like
  641. * v binary search stopped here
  642. * x + 1 ... | x | x + 1 | x ... | x
  643. * ^ but we want to locate this spot
  644. * or
  645. * <---------> less than scan distance
  646. * x + 1 ... | x ... | x - 1 | x
  647. * ^ we want to locate this spot
  648. */
  649. stop_on_cycle = last_half_cycle;
  650. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  651. &head_blk, last_half_cycle)))
  652. goto bp_err;
  653. }
  654. /*
  655. * Now validate the answer. Scan back some number of maximum possible
  656. * blocks and make sure each one has the expected cycle number. The
  657. * maximum is determined by the total possible amount of buffering
  658. * in the in-core log. The following number can be made tighter if
  659. * we actually look at the block size of the filesystem.
  660. */
  661. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  662. if (head_blk >= num_scan_bblks) {
  663. /*
  664. * We are guaranteed that the entire check can be performed
  665. * in one buffer.
  666. */
  667. start_blk = head_blk - num_scan_bblks;
  668. if ((error = xlog_find_verify_cycle(log,
  669. start_blk, num_scan_bblks,
  670. stop_on_cycle, &new_blk)))
  671. goto bp_err;
  672. if (new_blk != -1)
  673. head_blk = new_blk;
  674. } else { /* need to read 2 parts of log */
  675. /*
  676. * We are going to scan backwards in the log in two parts.
  677. * First we scan the physical end of the log. In this part
  678. * of the log, we are looking for blocks with cycle number
  679. * last_half_cycle - 1.
  680. * If we find one, then we know that the log starts there, as
  681. * we've found a hole that didn't get written in going around
  682. * the end of the physical log. The simple case for this is
  683. * x + 1 ... | x ... | x - 1 | x
  684. * <---------> less than scan distance
  685. * If all of the blocks at the end of the log have cycle number
  686. * last_half_cycle, then we check the blocks at the start of
  687. * the log looking for occurrences of last_half_cycle. If we
  688. * find one, then our current estimate for the location of the
  689. * first occurrence of last_half_cycle is wrong and we move
  690. * back to the hole we've found. This case looks like
  691. * x + 1 ... | x | x + 1 | x ...
  692. * ^ binary search stopped here
  693. * Another case we need to handle that only occurs in 256k
  694. * logs is
  695. * x + 1 ... | x ... | x+1 | x ...
  696. * ^ binary search stops here
  697. * In a 256k log, the scan at the end of the log will see the
  698. * x + 1 blocks. We need to skip past those since that is
  699. * certainly not the head of the log. By searching for
  700. * last_half_cycle-1 we accomplish that.
  701. */
  702. ASSERT(head_blk <= INT_MAX &&
  703. (xfs_daddr_t) num_scan_bblks >= head_blk);
  704. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  705. if ((error = xlog_find_verify_cycle(log, start_blk,
  706. num_scan_bblks - (int)head_blk,
  707. (stop_on_cycle - 1), &new_blk)))
  708. goto bp_err;
  709. if (new_blk != -1) {
  710. head_blk = new_blk;
  711. goto validate_head;
  712. }
  713. /*
  714. * Scan beginning of log now. The last part of the physical
  715. * log is good. This scan needs to verify that it doesn't find
  716. * the last_half_cycle.
  717. */
  718. start_blk = 0;
  719. ASSERT(head_blk <= INT_MAX);
  720. if ((error = xlog_find_verify_cycle(log,
  721. start_blk, (int)head_blk,
  722. stop_on_cycle, &new_blk)))
  723. goto bp_err;
  724. if (new_blk != -1)
  725. head_blk = new_blk;
  726. }
  727. validate_head:
  728. /*
  729. * Now we need to make sure head_blk is not pointing to a block in
  730. * the middle of a log record.
  731. */
  732. num_scan_bblks = XLOG_REC_SHIFT(log);
  733. if (head_blk >= num_scan_bblks) {
  734. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  735. /* start ptr at last block ptr before head_blk */
  736. if ((error = xlog_find_verify_log_record(log, start_blk,
  737. &head_blk, 0)) == -1) {
  738. error = XFS_ERROR(EIO);
  739. goto bp_err;
  740. } else if (error)
  741. goto bp_err;
  742. } else {
  743. start_blk = 0;
  744. ASSERT(head_blk <= INT_MAX);
  745. if ((error = xlog_find_verify_log_record(log, start_blk,
  746. &head_blk, 0)) == -1) {
  747. /* We hit the beginning of the log during our search */
  748. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  749. new_blk = log_bbnum;
  750. ASSERT(start_blk <= INT_MAX &&
  751. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  752. ASSERT(head_blk <= INT_MAX);
  753. if ((error = xlog_find_verify_log_record(log,
  754. start_blk, &new_blk,
  755. (int)head_blk)) == -1) {
  756. error = XFS_ERROR(EIO);
  757. goto bp_err;
  758. } else if (error)
  759. goto bp_err;
  760. if (new_blk != log_bbnum)
  761. head_blk = new_blk;
  762. } else if (error)
  763. goto bp_err;
  764. }
  765. xlog_put_bp(bp);
  766. if (head_blk == log_bbnum)
  767. *return_head_blk = 0;
  768. else
  769. *return_head_blk = head_blk;
  770. /*
  771. * When returning here, we have a good block number. Bad block
  772. * means that during a previous crash, we didn't have a clean break
  773. * from cycle number N to cycle number N-1. In this case, we need
  774. * to find the first block with cycle number N-1.
  775. */
  776. return 0;
  777. bp_err:
  778. xlog_put_bp(bp);
  779. if (error)
  780. xfs_warn(log->l_mp, "failed to find log head");
  781. return error;
  782. }
  783. /*
  784. * Find the sync block number or the tail of the log.
  785. *
  786. * This will be the block number of the last record to have its
  787. * associated buffers synced to disk. Every log record header has
  788. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  789. * to get a sync block number. The only concern is to figure out which
  790. * log record header to believe.
  791. *
  792. * The following algorithm uses the log record header with the largest
  793. * lsn. The entire log record does not need to be valid. We only care
  794. * that the header is valid.
  795. *
  796. * We could speed up search by using current head_blk buffer, but it is not
  797. * available.
  798. */
  799. STATIC int
  800. xlog_find_tail(
  801. struct xlog *log,
  802. xfs_daddr_t *head_blk,
  803. xfs_daddr_t *tail_blk)
  804. {
  805. xlog_rec_header_t *rhead;
  806. xlog_op_header_t *op_head;
  807. xfs_caddr_t offset = NULL;
  808. xfs_buf_t *bp;
  809. int error, i, found;
  810. xfs_daddr_t umount_data_blk;
  811. xfs_daddr_t after_umount_blk;
  812. xfs_lsn_t tail_lsn;
  813. int hblks;
  814. found = 0;
  815. /*
  816. * Find previous log record
  817. */
  818. if ((error = xlog_find_head(log, head_blk)))
  819. return error;
  820. bp = xlog_get_bp(log, 1);
  821. if (!bp)
  822. return ENOMEM;
  823. if (*head_blk == 0) { /* special case */
  824. error = xlog_bread(log, 0, 1, bp, &offset);
  825. if (error)
  826. goto done;
  827. if (xlog_get_cycle(offset) == 0) {
  828. *tail_blk = 0;
  829. /* leave all other log inited values alone */
  830. goto done;
  831. }
  832. }
  833. /*
  834. * Search backwards looking for log record header block
  835. */
  836. ASSERT(*head_blk < INT_MAX);
  837. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  838. error = xlog_bread(log, i, 1, bp, &offset);
  839. if (error)
  840. goto done;
  841. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  842. found = 1;
  843. break;
  844. }
  845. }
  846. /*
  847. * If we haven't found the log record header block, start looking
  848. * again from the end of the physical log. XXXmiken: There should be
  849. * a check here to make sure we didn't search more than N blocks in
  850. * the previous code.
  851. */
  852. if (!found) {
  853. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  854. error = xlog_bread(log, i, 1, bp, &offset);
  855. if (error)
  856. goto done;
  857. if (*(__be32 *)offset ==
  858. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  859. found = 2;
  860. break;
  861. }
  862. }
  863. }
  864. if (!found) {
  865. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  866. ASSERT(0);
  867. return XFS_ERROR(EIO);
  868. }
  869. /* find blk_no of tail of log */
  870. rhead = (xlog_rec_header_t *)offset;
  871. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  872. /*
  873. * Reset log values according to the state of the log when we
  874. * crashed. In the case where head_blk == 0, we bump curr_cycle
  875. * one because the next write starts a new cycle rather than
  876. * continuing the cycle of the last good log record. At this
  877. * point we have guaranteed that all partial log records have been
  878. * accounted for. Therefore, we know that the last good log record
  879. * written was complete and ended exactly on the end boundary
  880. * of the physical log.
  881. */
  882. log->l_prev_block = i;
  883. log->l_curr_block = (int)*head_blk;
  884. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  885. if (found == 2)
  886. log->l_curr_cycle++;
  887. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  888. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  889. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  890. BBTOB(log->l_curr_block));
  891. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  892. BBTOB(log->l_curr_block));
  893. /*
  894. * Look for unmount record. If we find it, then we know there
  895. * was a clean unmount. Since 'i' could be the last block in
  896. * the physical log, we convert to a log block before comparing
  897. * to the head_blk.
  898. *
  899. * Save the current tail lsn to use to pass to
  900. * xlog_clear_stale_blocks() below. We won't want to clear the
  901. * unmount record if there is one, so we pass the lsn of the
  902. * unmount record rather than the block after it.
  903. */
  904. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  905. int h_size = be32_to_cpu(rhead->h_size);
  906. int h_version = be32_to_cpu(rhead->h_version);
  907. if ((h_version & XLOG_VERSION_2) &&
  908. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  909. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  910. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  911. hblks++;
  912. } else {
  913. hblks = 1;
  914. }
  915. } else {
  916. hblks = 1;
  917. }
  918. after_umount_blk = (i + hblks + (int)
  919. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  920. tail_lsn = atomic64_read(&log->l_tail_lsn);
  921. if (*head_blk == after_umount_blk &&
  922. be32_to_cpu(rhead->h_num_logops) == 1) {
  923. umount_data_blk = (i + hblks) % log->l_logBBsize;
  924. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  925. if (error)
  926. goto done;
  927. op_head = (xlog_op_header_t *)offset;
  928. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  929. /*
  930. * Set tail and last sync so that newly written
  931. * log records will point recovery to after the
  932. * current unmount record.
  933. */
  934. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  935. log->l_curr_cycle, after_umount_blk);
  936. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  937. log->l_curr_cycle, after_umount_blk);
  938. *tail_blk = after_umount_blk;
  939. /*
  940. * Note that the unmount was clean. If the unmount
  941. * was not clean, we need to know this to rebuild the
  942. * superblock counters from the perag headers if we
  943. * have a filesystem using non-persistent counters.
  944. */
  945. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  946. }
  947. }
  948. /*
  949. * Make sure that there are no blocks in front of the head
  950. * with the same cycle number as the head. This can happen
  951. * because we allow multiple outstanding log writes concurrently,
  952. * and the later writes might make it out before earlier ones.
  953. *
  954. * We use the lsn from before modifying it so that we'll never
  955. * overwrite the unmount record after a clean unmount.
  956. *
  957. * Do this only if we are going to recover the filesystem
  958. *
  959. * NOTE: This used to say "if (!readonly)"
  960. * However on Linux, we can & do recover a read-only filesystem.
  961. * We only skip recovery if NORECOVERY is specified on mount,
  962. * in which case we would not be here.
  963. *
  964. * But... if the -device- itself is readonly, just skip this.
  965. * We can't recover this device anyway, so it won't matter.
  966. */
  967. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  968. error = xlog_clear_stale_blocks(log, tail_lsn);
  969. done:
  970. xlog_put_bp(bp);
  971. if (error)
  972. xfs_warn(log->l_mp, "failed to locate log tail");
  973. return error;
  974. }
  975. /*
  976. * Is the log zeroed at all?
  977. *
  978. * The last binary search should be changed to perform an X block read
  979. * once X becomes small enough. You can then search linearly through
  980. * the X blocks. This will cut down on the number of reads we need to do.
  981. *
  982. * If the log is partially zeroed, this routine will pass back the blkno
  983. * of the first block with cycle number 0. It won't have a complete LR
  984. * preceding it.
  985. *
  986. * Return:
  987. * 0 => the log is completely written to
  988. * -1 => use *blk_no as the first block of the log
  989. * >0 => error has occurred
  990. */
  991. STATIC int
  992. xlog_find_zeroed(
  993. struct xlog *log,
  994. xfs_daddr_t *blk_no)
  995. {
  996. xfs_buf_t *bp;
  997. xfs_caddr_t offset;
  998. uint first_cycle, last_cycle;
  999. xfs_daddr_t new_blk, last_blk, start_blk;
  1000. xfs_daddr_t num_scan_bblks;
  1001. int error, log_bbnum = log->l_logBBsize;
  1002. *blk_no = 0;
  1003. /* check totally zeroed log */
  1004. bp = xlog_get_bp(log, 1);
  1005. if (!bp)
  1006. return ENOMEM;
  1007. error = xlog_bread(log, 0, 1, bp, &offset);
  1008. if (error)
  1009. goto bp_err;
  1010. first_cycle = xlog_get_cycle(offset);
  1011. if (first_cycle == 0) { /* completely zeroed log */
  1012. *blk_no = 0;
  1013. xlog_put_bp(bp);
  1014. return -1;
  1015. }
  1016. /* check partially zeroed log */
  1017. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1018. if (error)
  1019. goto bp_err;
  1020. last_cycle = xlog_get_cycle(offset);
  1021. if (last_cycle != 0) { /* log completely written to */
  1022. xlog_put_bp(bp);
  1023. return 0;
  1024. } else if (first_cycle != 1) {
  1025. /*
  1026. * If the cycle of the last block is zero, the cycle of
  1027. * the first block must be 1. If it's not, maybe we're
  1028. * not looking at a log... Bail out.
  1029. */
  1030. xfs_warn(log->l_mp,
  1031. "Log inconsistent or not a log (last==0, first!=1)");
  1032. return XFS_ERROR(EINVAL);
  1033. }
  1034. /* we have a partially zeroed log */
  1035. last_blk = log_bbnum-1;
  1036. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1037. goto bp_err;
  1038. /*
  1039. * Validate the answer. Because there is no way to guarantee that
  1040. * the entire log is made up of log records which are the same size,
  1041. * we scan over the defined maximum blocks. At this point, the maximum
  1042. * is not chosen to mean anything special. XXXmiken
  1043. */
  1044. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1045. ASSERT(num_scan_bblks <= INT_MAX);
  1046. if (last_blk < num_scan_bblks)
  1047. num_scan_bblks = last_blk;
  1048. start_blk = last_blk - num_scan_bblks;
  1049. /*
  1050. * We search for any instances of cycle number 0 that occur before
  1051. * our current estimate of the head. What we're trying to detect is
  1052. * 1 ... | 0 | 1 | 0...
  1053. * ^ binary search ends here
  1054. */
  1055. if ((error = xlog_find_verify_cycle(log, start_blk,
  1056. (int)num_scan_bblks, 0, &new_blk)))
  1057. goto bp_err;
  1058. if (new_blk != -1)
  1059. last_blk = new_blk;
  1060. /*
  1061. * Potentially backup over partial log record write. We don't need
  1062. * to search the end of the log because we know it is zero.
  1063. */
  1064. if ((error = xlog_find_verify_log_record(log, start_blk,
  1065. &last_blk, 0)) == -1) {
  1066. error = XFS_ERROR(EIO);
  1067. goto bp_err;
  1068. } else if (error)
  1069. goto bp_err;
  1070. *blk_no = last_blk;
  1071. bp_err:
  1072. xlog_put_bp(bp);
  1073. if (error)
  1074. return error;
  1075. return -1;
  1076. }
  1077. /*
  1078. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1079. * to initialize a buffer full of empty log record headers and write
  1080. * them into the log.
  1081. */
  1082. STATIC void
  1083. xlog_add_record(
  1084. struct xlog *log,
  1085. xfs_caddr_t buf,
  1086. int cycle,
  1087. int block,
  1088. int tail_cycle,
  1089. int tail_block)
  1090. {
  1091. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1092. memset(buf, 0, BBSIZE);
  1093. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1094. recp->h_cycle = cpu_to_be32(cycle);
  1095. recp->h_version = cpu_to_be32(
  1096. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1097. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1098. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1099. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1100. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1101. }
  1102. STATIC int
  1103. xlog_write_log_records(
  1104. struct xlog *log,
  1105. int cycle,
  1106. int start_block,
  1107. int blocks,
  1108. int tail_cycle,
  1109. int tail_block)
  1110. {
  1111. xfs_caddr_t offset;
  1112. xfs_buf_t *bp;
  1113. int balign, ealign;
  1114. int sectbb = log->l_sectBBsize;
  1115. int end_block = start_block + blocks;
  1116. int bufblks;
  1117. int error = 0;
  1118. int i, j = 0;
  1119. /*
  1120. * Greedily allocate a buffer big enough to handle the full
  1121. * range of basic blocks to be written. If that fails, try
  1122. * a smaller size. We need to be able to write at least a
  1123. * log sector, or we're out of luck.
  1124. */
  1125. bufblks = 1 << ffs(blocks);
  1126. while (bufblks > log->l_logBBsize)
  1127. bufblks >>= 1;
  1128. while (!(bp = xlog_get_bp(log, bufblks))) {
  1129. bufblks >>= 1;
  1130. if (bufblks < sectbb)
  1131. return ENOMEM;
  1132. }
  1133. /* We may need to do a read at the start to fill in part of
  1134. * the buffer in the starting sector not covered by the first
  1135. * write below.
  1136. */
  1137. balign = round_down(start_block, sectbb);
  1138. if (balign != start_block) {
  1139. error = xlog_bread_noalign(log, start_block, 1, bp);
  1140. if (error)
  1141. goto out_put_bp;
  1142. j = start_block - balign;
  1143. }
  1144. for (i = start_block; i < end_block; i += bufblks) {
  1145. int bcount, endcount;
  1146. bcount = min(bufblks, end_block - start_block);
  1147. endcount = bcount - j;
  1148. /* We may need to do a read at the end to fill in part of
  1149. * the buffer in the final sector not covered by the write.
  1150. * If this is the same sector as the above read, skip it.
  1151. */
  1152. ealign = round_down(end_block, sectbb);
  1153. if (j == 0 && (start_block + endcount > ealign)) {
  1154. offset = bp->b_addr + BBTOB(ealign - start_block);
  1155. error = xlog_bread_offset(log, ealign, sectbb,
  1156. bp, offset);
  1157. if (error)
  1158. break;
  1159. }
  1160. offset = xlog_align(log, start_block, endcount, bp);
  1161. for (; j < endcount; j++) {
  1162. xlog_add_record(log, offset, cycle, i+j,
  1163. tail_cycle, tail_block);
  1164. offset += BBSIZE;
  1165. }
  1166. error = xlog_bwrite(log, start_block, endcount, bp);
  1167. if (error)
  1168. break;
  1169. start_block += endcount;
  1170. j = 0;
  1171. }
  1172. out_put_bp:
  1173. xlog_put_bp(bp);
  1174. return error;
  1175. }
  1176. /*
  1177. * This routine is called to blow away any incomplete log writes out
  1178. * in front of the log head. We do this so that we won't become confused
  1179. * if we come up, write only a little bit more, and then crash again.
  1180. * If we leave the partial log records out there, this situation could
  1181. * cause us to think those partial writes are valid blocks since they
  1182. * have the current cycle number. We get rid of them by overwriting them
  1183. * with empty log records with the old cycle number rather than the
  1184. * current one.
  1185. *
  1186. * The tail lsn is passed in rather than taken from
  1187. * the log so that we will not write over the unmount record after a
  1188. * clean unmount in a 512 block log. Doing so would leave the log without
  1189. * any valid log records in it until a new one was written. If we crashed
  1190. * during that time we would not be able to recover.
  1191. */
  1192. STATIC int
  1193. xlog_clear_stale_blocks(
  1194. struct xlog *log,
  1195. xfs_lsn_t tail_lsn)
  1196. {
  1197. int tail_cycle, head_cycle;
  1198. int tail_block, head_block;
  1199. int tail_distance, max_distance;
  1200. int distance;
  1201. int error;
  1202. tail_cycle = CYCLE_LSN(tail_lsn);
  1203. tail_block = BLOCK_LSN(tail_lsn);
  1204. head_cycle = log->l_curr_cycle;
  1205. head_block = log->l_curr_block;
  1206. /*
  1207. * Figure out the distance between the new head of the log
  1208. * and the tail. We want to write over any blocks beyond the
  1209. * head that we may have written just before the crash, but
  1210. * we don't want to overwrite the tail of the log.
  1211. */
  1212. if (head_cycle == tail_cycle) {
  1213. /*
  1214. * The tail is behind the head in the physical log,
  1215. * so the distance from the head to the tail is the
  1216. * distance from the head to the end of the log plus
  1217. * the distance from the beginning of the log to the
  1218. * tail.
  1219. */
  1220. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1221. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1222. XFS_ERRLEVEL_LOW, log->l_mp);
  1223. return XFS_ERROR(EFSCORRUPTED);
  1224. }
  1225. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1226. } else {
  1227. /*
  1228. * The head is behind the tail in the physical log,
  1229. * so the distance from the head to the tail is just
  1230. * the tail block minus the head block.
  1231. */
  1232. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1233. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1234. XFS_ERRLEVEL_LOW, log->l_mp);
  1235. return XFS_ERROR(EFSCORRUPTED);
  1236. }
  1237. tail_distance = tail_block - head_block;
  1238. }
  1239. /*
  1240. * If the head is right up against the tail, we can't clear
  1241. * anything.
  1242. */
  1243. if (tail_distance <= 0) {
  1244. ASSERT(tail_distance == 0);
  1245. return 0;
  1246. }
  1247. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1248. /*
  1249. * Take the smaller of the maximum amount of outstanding I/O
  1250. * we could have and the distance to the tail to clear out.
  1251. * We take the smaller so that we don't overwrite the tail and
  1252. * we don't waste all day writing from the head to the tail
  1253. * for no reason.
  1254. */
  1255. max_distance = MIN(max_distance, tail_distance);
  1256. if ((head_block + max_distance) <= log->l_logBBsize) {
  1257. /*
  1258. * We can stomp all the blocks we need to without
  1259. * wrapping around the end of the log. Just do it
  1260. * in a single write. Use the cycle number of the
  1261. * current cycle minus one so that the log will look like:
  1262. * n ... | n - 1 ...
  1263. */
  1264. error = xlog_write_log_records(log, (head_cycle - 1),
  1265. head_block, max_distance, tail_cycle,
  1266. tail_block);
  1267. if (error)
  1268. return error;
  1269. } else {
  1270. /*
  1271. * We need to wrap around the end of the physical log in
  1272. * order to clear all the blocks. Do it in two separate
  1273. * I/Os. The first write should be from the head to the
  1274. * end of the physical log, and it should use the current
  1275. * cycle number minus one just like above.
  1276. */
  1277. distance = log->l_logBBsize - head_block;
  1278. error = xlog_write_log_records(log, (head_cycle - 1),
  1279. head_block, distance, tail_cycle,
  1280. tail_block);
  1281. if (error)
  1282. return error;
  1283. /*
  1284. * Now write the blocks at the start of the physical log.
  1285. * This writes the remainder of the blocks we want to clear.
  1286. * It uses the current cycle number since we're now on the
  1287. * same cycle as the head so that we get:
  1288. * n ... n ... | n - 1 ...
  1289. * ^^^^^ blocks we're writing
  1290. */
  1291. distance = max_distance - (log->l_logBBsize - head_block);
  1292. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1293. tail_cycle, tail_block);
  1294. if (error)
  1295. return error;
  1296. }
  1297. return 0;
  1298. }
  1299. /******************************************************************************
  1300. *
  1301. * Log recover routines
  1302. *
  1303. ******************************************************************************
  1304. */
  1305. STATIC xlog_recover_t *
  1306. xlog_recover_find_tid(
  1307. struct hlist_head *head,
  1308. xlog_tid_t tid)
  1309. {
  1310. xlog_recover_t *trans;
  1311. hlist_for_each_entry(trans, head, r_list) {
  1312. if (trans->r_log_tid == tid)
  1313. return trans;
  1314. }
  1315. return NULL;
  1316. }
  1317. STATIC void
  1318. xlog_recover_new_tid(
  1319. struct hlist_head *head,
  1320. xlog_tid_t tid,
  1321. xfs_lsn_t lsn)
  1322. {
  1323. xlog_recover_t *trans;
  1324. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1325. trans->r_log_tid = tid;
  1326. trans->r_lsn = lsn;
  1327. INIT_LIST_HEAD(&trans->r_itemq);
  1328. INIT_HLIST_NODE(&trans->r_list);
  1329. hlist_add_head(&trans->r_list, head);
  1330. }
  1331. STATIC void
  1332. xlog_recover_add_item(
  1333. struct list_head *head)
  1334. {
  1335. xlog_recover_item_t *item;
  1336. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1337. INIT_LIST_HEAD(&item->ri_list);
  1338. list_add_tail(&item->ri_list, head);
  1339. }
  1340. STATIC int
  1341. xlog_recover_add_to_cont_trans(
  1342. struct xlog *log,
  1343. struct xlog_recover *trans,
  1344. xfs_caddr_t dp,
  1345. int len)
  1346. {
  1347. xlog_recover_item_t *item;
  1348. xfs_caddr_t ptr, old_ptr;
  1349. int old_len;
  1350. if (list_empty(&trans->r_itemq)) {
  1351. /* finish copying rest of trans header */
  1352. xlog_recover_add_item(&trans->r_itemq);
  1353. ptr = (xfs_caddr_t) &trans->r_theader +
  1354. sizeof(xfs_trans_header_t) - len;
  1355. memcpy(ptr, dp, len); /* d, s, l */
  1356. return 0;
  1357. }
  1358. /* take the tail entry */
  1359. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1360. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1361. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1362. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  1363. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1364. item->ri_buf[item->ri_cnt-1].i_len += len;
  1365. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1366. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1367. return 0;
  1368. }
  1369. /*
  1370. * The next region to add is the start of a new region. It could be
  1371. * a whole region or it could be the first part of a new region. Because
  1372. * of this, the assumption here is that the type and size fields of all
  1373. * format structures fit into the first 32 bits of the structure.
  1374. *
  1375. * This works because all regions must be 32 bit aligned. Therefore, we
  1376. * either have both fields or we have neither field. In the case we have
  1377. * neither field, the data part of the region is zero length. We only have
  1378. * a log_op_header and can throw away the header since a new one will appear
  1379. * later. If we have at least 4 bytes, then we can determine how many regions
  1380. * will appear in the current log item.
  1381. */
  1382. STATIC int
  1383. xlog_recover_add_to_trans(
  1384. struct xlog *log,
  1385. struct xlog_recover *trans,
  1386. xfs_caddr_t dp,
  1387. int len)
  1388. {
  1389. xfs_inode_log_format_t *in_f; /* any will do */
  1390. xlog_recover_item_t *item;
  1391. xfs_caddr_t ptr;
  1392. if (!len)
  1393. return 0;
  1394. if (list_empty(&trans->r_itemq)) {
  1395. /* we need to catch log corruptions here */
  1396. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1397. xfs_warn(log->l_mp, "%s: bad header magic number",
  1398. __func__);
  1399. ASSERT(0);
  1400. return XFS_ERROR(EIO);
  1401. }
  1402. if (len == sizeof(xfs_trans_header_t))
  1403. xlog_recover_add_item(&trans->r_itemq);
  1404. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1405. return 0;
  1406. }
  1407. ptr = kmem_alloc(len, KM_SLEEP);
  1408. memcpy(ptr, dp, len);
  1409. in_f = (xfs_inode_log_format_t *)ptr;
  1410. /* take the tail entry */
  1411. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1412. if (item->ri_total != 0 &&
  1413. item->ri_total == item->ri_cnt) {
  1414. /* tail item is in use, get a new one */
  1415. xlog_recover_add_item(&trans->r_itemq);
  1416. item = list_entry(trans->r_itemq.prev,
  1417. xlog_recover_item_t, ri_list);
  1418. }
  1419. if (item->ri_total == 0) { /* first region to be added */
  1420. if (in_f->ilf_size == 0 ||
  1421. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1422. xfs_warn(log->l_mp,
  1423. "bad number of regions (%d) in inode log format",
  1424. in_f->ilf_size);
  1425. ASSERT(0);
  1426. return XFS_ERROR(EIO);
  1427. }
  1428. item->ri_total = in_f->ilf_size;
  1429. item->ri_buf =
  1430. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1431. KM_SLEEP);
  1432. }
  1433. ASSERT(item->ri_total > item->ri_cnt);
  1434. /* Description region is ri_buf[0] */
  1435. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1436. item->ri_buf[item->ri_cnt].i_len = len;
  1437. item->ri_cnt++;
  1438. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1439. return 0;
  1440. }
  1441. /*
  1442. * Sort the log items in the transaction. Cancelled buffers need
  1443. * to be put first so they are processed before any items that might
  1444. * modify the buffers. If they are cancelled, then the modifications
  1445. * don't need to be replayed.
  1446. */
  1447. STATIC int
  1448. xlog_recover_reorder_trans(
  1449. struct xlog *log,
  1450. struct xlog_recover *trans,
  1451. int pass)
  1452. {
  1453. xlog_recover_item_t *item, *n;
  1454. LIST_HEAD(sort_list);
  1455. list_splice_init(&trans->r_itemq, &sort_list);
  1456. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1457. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1458. switch (ITEM_TYPE(item)) {
  1459. case XFS_LI_BUF:
  1460. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1461. trace_xfs_log_recover_item_reorder_head(log,
  1462. trans, item, pass);
  1463. list_move(&item->ri_list, &trans->r_itemq);
  1464. break;
  1465. }
  1466. case XFS_LI_INODE:
  1467. case XFS_LI_DQUOT:
  1468. case XFS_LI_QUOTAOFF:
  1469. case XFS_LI_EFD:
  1470. case XFS_LI_EFI:
  1471. trace_xfs_log_recover_item_reorder_tail(log,
  1472. trans, item, pass);
  1473. list_move_tail(&item->ri_list, &trans->r_itemq);
  1474. break;
  1475. default:
  1476. xfs_warn(log->l_mp,
  1477. "%s: unrecognized type of log operation",
  1478. __func__);
  1479. ASSERT(0);
  1480. return XFS_ERROR(EIO);
  1481. }
  1482. }
  1483. ASSERT(list_empty(&sort_list));
  1484. return 0;
  1485. }
  1486. /*
  1487. * Build up the table of buf cancel records so that we don't replay
  1488. * cancelled data in the second pass. For buffer records that are
  1489. * not cancel records, there is nothing to do here so we just return.
  1490. *
  1491. * If we get a cancel record which is already in the table, this indicates
  1492. * that the buffer was cancelled multiple times. In order to ensure
  1493. * that during pass 2 we keep the record in the table until we reach its
  1494. * last occurrence in the log, we keep a reference count in the cancel
  1495. * record in the table to tell us how many times we expect to see this
  1496. * record during the second pass.
  1497. */
  1498. STATIC int
  1499. xlog_recover_buffer_pass1(
  1500. struct xlog *log,
  1501. struct xlog_recover_item *item)
  1502. {
  1503. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1504. struct list_head *bucket;
  1505. struct xfs_buf_cancel *bcp;
  1506. /*
  1507. * If this isn't a cancel buffer item, then just return.
  1508. */
  1509. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1510. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1511. return 0;
  1512. }
  1513. /*
  1514. * Insert an xfs_buf_cancel record into the hash table of them.
  1515. * If there is already an identical record, bump its reference count.
  1516. */
  1517. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1518. list_for_each_entry(bcp, bucket, bc_list) {
  1519. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1520. bcp->bc_len == buf_f->blf_len) {
  1521. bcp->bc_refcount++;
  1522. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1523. return 0;
  1524. }
  1525. }
  1526. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1527. bcp->bc_blkno = buf_f->blf_blkno;
  1528. bcp->bc_len = buf_f->blf_len;
  1529. bcp->bc_refcount = 1;
  1530. list_add_tail(&bcp->bc_list, bucket);
  1531. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1532. return 0;
  1533. }
  1534. /*
  1535. * Check to see whether the buffer being recovered has a corresponding
  1536. * entry in the buffer cancel record table. If it does then return 1
  1537. * so that it will be cancelled, otherwise return 0. If the buffer is
  1538. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1539. * the refcount on the entry in the table and remove it from the table
  1540. * if this is the last reference.
  1541. *
  1542. * We remove the cancel record from the table when we encounter its
  1543. * last occurrence in the log so that if the same buffer is re-used
  1544. * again after its last cancellation we actually replay the changes
  1545. * made at that point.
  1546. */
  1547. STATIC int
  1548. xlog_check_buffer_cancelled(
  1549. struct xlog *log,
  1550. xfs_daddr_t blkno,
  1551. uint len,
  1552. ushort flags)
  1553. {
  1554. struct list_head *bucket;
  1555. struct xfs_buf_cancel *bcp;
  1556. if (log->l_buf_cancel_table == NULL) {
  1557. /*
  1558. * There is nothing in the table built in pass one,
  1559. * so this buffer must not be cancelled.
  1560. */
  1561. ASSERT(!(flags & XFS_BLF_CANCEL));
  1562. return 0;
  1563. }
  1564. /*
  1565. * Search for an entry in the cancel table that matches our buffer.
  1566. */
  1567. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1568. list_for_each_entry(bcp, bucket, bc_list) {
  1569. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1570. goto found;
  1571. }
  1572. /*
  1573. * We didn't find a corresponding entry in the table, so return 0 so
  1574. * that the buffer is NOT cancelled.
  1575. */
  1576. ASSERT(!(flags & XFS_BLF_CANCEL));
  1577. return 0;
  1578. found:
  1579. /*
  1580. * We've go a match, so return 1 so that the recovery of this buffer
  1581. * is cancelled. If this buffer is actually a buffer cancel log
  1582. * item, then decrement the refcount on the one in the table and
  1583. * remove it if this is the last reference.
  1584. */
  1585. if (flags & XFS_BLF_CANCEL) {
  1586. if (--bcp->bc_refcount == 0) {
  1587. list_del(&bcp->bc_list);
  1588. kmem_free(bcp);
  1589. }
  1590. }
  1591. return 1;
  1592. }
  1593. /*
  1594. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1595. * data which should be recovered is that which corresponds to the
  1596. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1597. * data for the inodes is always logged through the inodes themselves rather
  1598. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1599. *
  1600. * The only time when buffers full of inodes are fully recovered is when the
  1601. * buffer is full of newly allocated inodes. In this case the buffer will
  1602. * not be marked as an inode buffer and so will be sent to
  1603. * xlog_recover_do_reg_buffer() below during recovery.
  1604. */
  1605. STATIC int
  1606. xlog_recover_do_inode_buffer(
  1607. struct xfs_mount *mp,
  1608. xlog_recover_item_t *item,
  1609. struct xfs_buf *bp,
  1610. xfs_buf_log_format_t *buf_f)
  1611. {
  1612. int i;
  1613. int item_index = 0;
  1614. int bit = 0;
  1615. int nbits = 0;
  1616. int reg_buf_offset = 0;
  1617. int reg_buf_bytes = 0;
  1618. int next_unlinked_offset;
  1619. int inodes_per_buf;
  1620. xfs_agino_t *logged_nextp;
  1621. xfs_agino_t *buffer_nextp;
  1622. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1623. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1624. for (i = 0; i < inodes_per_buf; i++) {
  1625. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1626. offsetof(xfs_dinode_t, di_next_unlinked);
  1627. while (next_unlinked_offset >=
  1628. (reg_buf_offset + reg_buf_bytes)) {
  1629. /*
  1630. * The next di_next_unlinked field is beyond
  1631. * the current logged region. Find the next
  1632. * logged region that contains or is beyond
  1633. * the current di_next_unlinked field.
  1634. */
  1635. bit += nbits;
  1636. bit = xfs_next_bit(buf_f->blf_data_map,
  1637. buf_f->blf_map_size, bit);
  1638. /*
  1639. * If there are no more logged regions in the
  1640. * buffer, then we're done.
  1641. */
  1642. if (bit == -1)
  1643. return 0;
  1644. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1645. buf_f->blf_map_size, bit);
  1646. ASSERT(nbits > 0);
  1647. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1648. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1649. item_index++;
  1650. }
  1651. /*
  1652. * If the current logged region starts after the current
  1653. * di_next_unlinked field, then move on to the next
  1654. * di_next_unlinked field.
  1655. */
  1656. if (next_unlinked_offset < reg_buf_offset)
  1657. continue;
  1658. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1659. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1660. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1661. BBTOB(bp->b_io_length));
  1662. /*
  1663. * The current logged region contains a copy of the
  1664. * current di_next_unlinked field. Extract its value
  1665. * and copy it to the buffer copy.
  1666. */
  1667. logged_nextp = item->ri_buf[item_index].i_addr +
  1668. next_unlinked_offset - reg_buf_offset;
  1669. if (unlikely(*logged_nextp == 0)) {
  1670. xfs_alert(mp,
  1671. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1672. "Trying to replay bad (0) inode di_next_unlinked field.",
  1673. item, bp);
  1674. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1675. XFS_ERRLEVEL_LOW, mp);
  1676. return XFS_ERROR(EFSCORRUPTED);
  1677. }
  1678. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1679. next_unlinked_offset);
  1680. *buffer_nextp = *logged_nextp;
  1681. }
  1682. return 0;
  1683. }
  1684. /*
  1685. * Perform a 'normal' buffer recovery. Each logged region of the
  1686. * buffer should be copied over the corresponding region in the
  1687. * given buffer. The bitmap in the buf log format structure indicates
  1688. * where to place the logged data.
  1689. */
  1690. STATIC void
  1691. xlog_recover_do_reg_buffer(
  1692. struct xfs_mount *mp,
  1693. xlog_recover_item_t *item,
  1694. struct xfs_buf *bp,
  1695. xfs_buf_log_format_t *buf_f)
  1696. {
  1697. int i;
  1698. int bit;
  1699. int nbits;
  1700. int error;
  1701. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1702. bit = 0;
  1703. i = 1; /* 0 is the buf format structure */
  1704. while (1) {
  1705. bit = xfs_next_bit(buf_f->blf_data_map,
  1706. buf_f->blf_map_size, bit);
  1707. if (bit == -1)
  1708. break;
  1709. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1710. buf_f->blf_map_size, bit);
  1711. ASSERT(nbits > 0);
  1712. ASSERT(item->ri_buf[i].i_addr != NULL);
  1713. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1714. ASSERT(BBTOB(bp->b_io_length) >=
  1715. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  1716. /*
  1717. * Do a sanity check if this is a dquot buffer. Just checking
  1718. * the first dquot in the buffer should do. XXXThis is
  1719. * probably a good thing to do for other buf types also.
  1720. */
  1721. error = 0;
  1722. if (buf_f->blf_flags &
  1723. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1724. if (item->ri_buf[i].i_addr == NULL) {
  1725. xfs_alert(mp,
  1726. "XFS: NULL dquot in %s.", __func__);
  1727. goto next;
  1728. }
  1729. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1730. xfs_alert(mp,
  1731. "XFS: dquot too small (%d) in %s.",
  1732. item->ri_buf[i].i_len, __func__);
  1733. goto next;
  1734. }
  1735. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1736. -1, 0, XFS_QMOPT_DOWARN,
  1737. "dquot_buf_recover");
  1738. if (error)
  1739. goto next;
  1740. }
  1741. memcpy(xfs_buf_offset(bp,
  1742. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1743. item->ri_buf[i].i_addr, /* source */
  1744. nbits<<XFS_BLF_SHIFT); /* length */
  1745. next:
  1746. i++;
  1747. bit += nbits;
  1748. }
  1749. /* Shouldn't be any more regions */
  1750. ASSERT(i == item->ri_total);
  1751. }
  1752. /*
  1753. * Do some primitive error checking on ondisk dquot data structures.
  1754. */
  1755. int
  1756. xfs_qm_dqcheck(
  1757. struct xfs_mount *mp,
  1758. xfs_disk_dquot_t *ddq,
  1759. xfs_dqid_t id,
  1760. uint type, /* used only when IO_dorepair is true */
  1761. uint flags,
  1762. char *str)
  1763. {
  1764. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1765. int errs = 0;
  1766. /*
  1767. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1768. * 1. If we crash while deleting the quotainode(s), and those blks got
  1769. * used for user data. This is because we take the path of regular
  1770. * file deletion; however, the size field of quotainodes is never
  1771. * updated, so all the tricks that we play in itruncate_finish
  1772. * don't quite matter.
  1773. *
  1774. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1775. * But the allocation will be replayed so we'll end up with an
  1776. * uninitialized quota block.
  1777. *
  1778. * This is all fine; things are still consistent, and we haven't lost
  1779. * any quota information. Just don't complain about bad dquot blks.
  1780. */
  1781. if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1782. if (flags & XFS_QMOPT_DOWARN)
  1783. xfs_alert(mp,
  1784. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1785. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1786. errs++;
  1787. }
  1788. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1789. if (flags & XFS_QMOPT_DOWARN)
  1790. xfs_alert(mp,
  1791. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1792. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1793. errs++;
  1794. }
  1795. if (ddq->d_flags != XFS_DQ_USER &&
  1796. ddq->d_flags != XFS_DQ_PROJ &&
  1797. ddq->d_flags != XFS_DQ_GROUP) {
  1798. if (flags & XFS_QMOPT_DOWARN)
  1799. xfs_alert(mp,
  1800. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1801. str, id, ddq->d_flags);
  1802. errs++;
  1803. }
  1804. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1805. if (flags & XFS_QMOPT_DOWARN)
  1806. xfs_alert(mp,
  1807. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1808. "0x%x expected, found id 0x%x",
  1809. str, ddq, id, be32_to_cpu(ddq->d_id));
  1810. errs++;
  1811. }
  1812. if (!errs && ddq->d_id) {
  1813. if (ddq->d_blk_softlimit &&
  1814. be64_to_cpu(ddq->d_bcount) >
  1815. be64_to_cpu(ddq->d_blk_softlimit)) {
  1816. if (!ddq->d_btimer) {
  1817. if (flags & XFS_QMOPT_DOWARN)
  1818. xfs_alert(mp,
  1819. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1820. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1821. errs++;
  1822. }
  1823. }
  1824. if (ddq->d_ino_softlimit &&
  1825. be64_to_cpu(ddq->d_icount) >
  1826. be64_to_cpu(ddq->d_ino_softlimit)) {
  1827. if (!ddq->d_itimer) {
  1828. if (flags & XFS_QMOPT_DOWARN)
  1829. xfs_alert(mp,
  1830. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1831. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1832. errs++;
  1833. }
  1834. }
  1835. if (ddq->d_rtb_softlimit &&
  1836. be64_to_cpu(ddq->d_rtbcount) >
  1837. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1838. if (!ddq->d_rtbtimer) {
  1839. if (flags & XFS_QMOPT_DOWARN)
  1840. xfs_alert(mp,
  1841. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1842. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1843. errs++;
  1844. }
  1845. }
  1846. }
  1847. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1848. return errs;
  1849. if (flags & XFS_QMOPT_DOWARN)
  1850. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1851. /*
  1852. * Typically, a repair is only requested by quotacheck.
  1853. */
  1854. ASSERT(id != -1);
  1855. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1856. memset(d, 0, sizeof(xfs_dqblk_t));
  1857. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1858. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1859. d->dd_diskdq.d_flags = type;
  1860. d->dd_diskdq.d_id = cpu_to_be32(id);
  1861. return errs;
  1862. }
  1863. /*
  1864. * Perform a dquot buffer recovery.
  1865. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1866. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1867. * Else, treat it as a regular buffer and do recovery.
  1868. */
  1869. STATIC void
  1870. xlog_recover_do_dquot_buffer(
  1871. struct xfs_mount *mp,
  1872. struct xlog *log,
  1873. struct xlog_recover_item *item,
  1874. struct xfs_buf *bp,
  1875. struct xfs_buf_log_format *buf_f)
  1876. {
  1877. uint type;
  1878. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1879. /*
  1880. * Filesystems are required to send in quota flags at mount time.
  1881. */
  1882. if (mp->m_qflags == 0) {
  1883. return;
  1884. }
  1885. type = 0;
  1886. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1887. type |= XFS_DQ_USER;
  1888. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1889. type |= XFS_DQ_PROJ;
  1890. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1891. type |= XFS_DQ_GROUP;
  1892. /*
  1893. * This type of quotas was turned off, so ignore this buffer
  1894. */
  1895. if (log->l_quotaoffs_flag & type)
  1896. return;
  1897. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1898. }
  1899. /*
  1900. * This routine replays a modification made to a buffer at runtime.
  1901. * There are actually two types of buffer, regular and inode, which
  1902. * are handled differently. Inode buffers are handled differently
  1903. * in that we only recover a specific set of data from them, namely
  1904. * the inode di_next_unlinked fields. This is because all other inode
  1905. * data is actually logged via inode records and any data we replay
  1906. * here which overlaps that may be stale.
  1907. *
  1908. * When meta-data buffers are freed at run time we log a buffer item
  1909. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1910. * of the buffer in the log should not be replayed at recovery time.
  1911. * This is so that if the blocks covered by the buffer are reused for
  1912. * file data before we crash we don't end up replaying old, freed
  1913. * meta-data into a user's file.
  1914. *
  1915. * To handle the cancellation of buffer log items, we make two passes
  1916. * over the log during recovery. During the first we build a table of
  1917. * those buffers which have been cancelled, and during the second we
  1918. * only replay those buffers which do not have corresponding cancel
  1919. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1920. * for more details on the implementation of the table of cancel records.
  1921. */
  1922. STATIC int
  1923. xlog_recover_buffer_pass2(
  1924. struct xlog *log,
  1925. struct list_head *buffer_list,
  1926. struct xlog_recover_item *item)
  1927. {
  1928. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1929. xfs_mount_t *mp = log->l_mp;
  1930. xfs_buf_t *bp;
  1931. int error;
  1932. uint buf_flags;
  1933. /*
  1934. * In this pass we only want to recover all the buffers which have
  1935. * not been cancelled and are not cancellation buffers themselves.
  1936. */
  1937. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1938. buf_f->blf_len, buf_f->blf_flags)) {
  1939. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1940. return 0;
  1941. }
  1942. trace_xfs_log_recover_buf_recover(log, buf_f);
  1943. buf_flags = 0;
  1944. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  1945. buf_flags |= XBF_UNMAPPED;
  1946. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1947. buf_flags, NULL);
  1948. if (!bp)
  1949. return XFS_ERROR(ENOMEM);
  1950. error = bp->b_error;
  1951. if (error) {
  1952. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  1953. xfs_buf_relse(bp);
  1954. return error;
  1955. }
  1956. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1957. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1958. } else if (buf_f->blf_flags &
  1959. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1960. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1961. } else {
  1962. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1963. }
  1964. if (error)
  1965. return XFS_ERROR(error);
  1966. /*
  1967. * Perform delayed write on the buffer. Asynchronous writes will be
  1968. * slower when taking into account all the buffers to be flushed.
  1969. *
  1970. * Also make sure that only inode buffers with good sizes stay in
  1971. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1972. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1973. * buffers in the log can be a different size if the log was generated
  1974. * by an older kernel using unclustered inode buffers or a newer kernel
  1975. * running with a different inode cluster size. Regardless, if the
  1976. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1977. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1978. * the buffer out of the buffer cache so that the buffer won't
  1979. * overlap with future reads of those inodes.
  1980. */
  1981. if (XFS_DINODE_MAGIC ==
  1982. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1983. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  1984. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1985. xfs_buf_stale(bp);
  1986. error = xfs_bwrite(bp);
  1987. } else {
  1988. ASSERT(bp->b_target->bt_mount == mp);
  1989. bp->b_iodone = xlog_recover_iodone;
  1990. xfs_buf_delwri_queue(bp, buffer_list);
  1991. }
  1992. xfs_buf_relse(bp);
  1993. return error;
  1994. }
  1995. STATIC int
  1996. xlog_recover_inode_pass2(
  1997. struct xlog *log,
  1998. struct list_head *buffer_list,
  1999. struct xlog_recover_item *item)
  2000. {
  2001. xfs_inode_log_format_t *in_f;
  2002. xfs_mount_t *mp = log->l_mp;
  2003. xfs_buf_t *bp;
  2004. xfs_dinode_t *dip;
  2005. int len;
  2006. xfs_caddr_t src;
  2007. xfs_caddr_t dest;
  2008. int error;
  2009. int attr_index;
  2010. uint fields;
  2011. xfs_icdinode_t *dicp;
  2012. int need_free = 0;
  2013. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2014. in_f = item->ri_buf[0].i_addr;
  2015. } else {
  2016. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2017. need_free = 1;
  2018. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2019. if (error)
  2020. goto error;
  2021. }
  2022. /*
  2023. * Inode buffers can be freed, look out for it,
  2024. * and do not replay the inode.
  2025. */
  2026. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2027. in_f->ilf_len, 0)) {
  2028. error = 0;
  2029. trace_xfs_log_recover_inode_cancel(log, in_f);
  2030. goto error;
  2031. }
  2032. trace_xfs_log_recover_inode_recover(log, in_f);
  2033. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
  2034. NULL);
  2035. if (!bp) {
  2036. error = ENOMEM;
  2037. goto error;
  2038. }
  2039. error = bp->b_error;
  2040. if (error) {
  2041. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2042. xfs_buf_relse(bp);
  2043. goto error;
  2044. }
  2045. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2046. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2047. /*
  2048. * Make sure the place we're flushing out to really looks
  2049. * like an inode!
  2050. */
  2051. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2052. xfs_buf_relse(bp);
  2053. xfs_alert(mp,
  2054. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2055. __func__, dip, bp, in_f->ilf_ino);
  2056. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2057. XFS_ERRLEVEL_LOW, mp);
  2058. error = EFSCORRUPTED;
  2059. goto error;
  2060. }
  2061. dicp = item->ri_buf[1].i_addr;
  2062. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2063. xfs_buf_relse(bp);
  2064. xfs_alert(mp,
  2065. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2066. __func__, item, in_f->ilf_ino);
  2067. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2068. XFS_ERRLEVEL_LOW, mp);
  2069. error = EFSCORRUPTED;
  2070. goto error;
  2071. }
  2072. /* Skip replay when the on disk inode is newer than the log one */
  2073. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2074. /*
  2075. * Deal with the wrap case, DI_MAX_FLUSH is less
  2076. * than smaller numbers
  2077. */
  2078. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2079. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2080. /* do nothing */
  2081. } else {
  2082. xfs_buf_relse(bp);
  2083. trace_xfs_log_recover_inode_skip(log, in_f);
  2084. error = 0;
  2085. goto error;
  2086. }
  2087. }
  2088. /* Take the opportunity to reset the flush iteration count */
  2089. dicp->di_flushiter = 0;
  2090. if (unlikely(S_ISREG(dicp->di_mode))) {
  2091. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2092. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2093. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2094. XFS_ERRLEVEL_LOW, mp, dicp);
  2095. xfs_buf_relse(bp);
  2096. xfs_alert(mp,
  2097. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2098. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2099. __func__, item, dip, bp, in_f->ilf_ino);
  2100. error = EFSCORRUPTED;
  2101. goto error;
  2102. }
  2103. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2104. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2105. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2106. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2107. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2108. XFS_ERRLEVEL_LOW, mp, dicp);
  2109. xfs_buf_relse(bp);
  2110. xfs_alert(mp,
  2111. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2112. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2113. __func__, item, dip, bp, in_f->ilf_ino);
  2114. error = EFSCORRUPTED;
  2115. goto error;
  2116. }
  2117. }
  2118. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2119. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2120. XFS_ERRLEVEL_LOW, mp, dicp);
  2121. xfs_buf_relse(bp);
  2122. xfs_alert(mp,
  2123. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2124. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2125. __func__, item, dip, bp, in_f->ilf_ino,
  2126. dicp->di_nextents + dicp->di_anextents,
  2127. dicp->di_nblocks);
  2128. error = EFSCORRUPTED;
  2129. goto error;
  2130. }
  2131. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2132. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2133. XFS_ERRLEVEL_LOW, mp, dicp);
  2134. xfs_buf_relse(bp);
  2135. xfs_alert(mp,
  2136. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2137. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2138. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2139. error = EFSCORRUPTED;
  2140. goto error;
  2141. }
  2142. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2143. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2144. XFS_ERRLEVEL_LOW, mp, dicp);
  2145. xfs_buf_relse(bp);
  2146. xfs_alert(mp,
  2147. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2148. __func__, item->ri_buf[1].i_len, item);
  2149. error = EFSCORRUPTED;
  2150. goto error;
  2151. }
  2152. /* The core is in in-core format */
  2153. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2154. /* the rest is in on-disk format */
  2155. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2156. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2157. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2158. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2159. }
  2160. fields = in_f->ilf_fields;
  2161. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2162. case XFS_ILOG_DEV:
  2163. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2164. break;
  2165. case XFS_ILOG_UUID:
  2166. memcpy(XFS_DFORK_DPTR(dip),
  2167. &in_f->ilf_u.ilfu_uuid,
  2168. sizeof(uuid_t));
  2169. break;
  2170. }
  2171. if (in_f->ilf_size == 2)
  2172. goto write_inode_buffer;
  2173. len = item->ri_buf[2].i_len;
  2174. src = item->ri_buf[2].i_addr;
  2175. ASSERT(in_f->ilf_size <= 4);
  2176. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2177. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2178. (len == in_f->ilf_dsize));
  2179. switch (fields & XFS_ILOG_DFORK) {
  2180. case XFS_ILOG_DDATA:
  2181. case XFS_ILOG_DEXT:
  2182. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2183. break;
  2184. case XFS_ILOG_DBROOT:
  2185. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2186. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2187. XFS_DFORK_DSIZE(dip, mp));
  2188. break;
  2189. default:
  2190. /*
  2191. * There are no data fork flags set.
  2192. */
  2193. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2194. break;
  2195. }
  2196. /*
  2197. * If we logged any attribute data, recover it. There may or
  2198. * may not have been any other non-core data logged in this
  2199. * transaction.
  2200. */
  2201. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2202. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2203. attr_index = 3;
  2204. } else {
  2205. attr_index = 2;
  2206. }
  2207. len = item->ri_buf[attr_index].i_len;
  2208. src = item->ri_buf[attr_index].i_addr;
  2209. ASSERT(len == in_f->ilf_asize);
  2210. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2211. case XFS_ILOG_ADATA:
  2212. case XFS_ILOG_AEXT:
  2213. dest = XFS_DFORK_APTR(dip);
  2214. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2215. memcpy(dest, src, len);
  2216. break;
  2217. case XFS_ILOG_ABROOT:
  2218. dest = XFS_DFORK_APTR(dip);
  2219. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2220. len, (xfs_bmdr_block_t*)dest,
  2221. XFS_DFORK_ASIZE(dip, mp));
  2222. break;
  2223. default:
  2224. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2225. ASSERT(0);
  2226. xfs_buf_relse(bp);
  2227. error = EIO;
  2228. goto error;
  2229. }
  2230. }
  2231. write_inode_buffer:
  2232. ASSERT(bp->b_target->bt_mount == mp);
  2233. bp->b_iodone = xlog_recover_iodone;
  2234. xfs_buf_delwri_queue(bp, buffer_list);
  2235. xfs_buf_relse(bp);
  2236. error:
  2237. if (need_free)
  2238. kmem_free(in_f);
  2239. return XFS_ERROR(error);
  2240. }
  2241. /*
  2242. * Recover QUOTAOFF records. We simply make a note of it in the xlog
  2243. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2244. * of that type.
  2245. */
  2246. STATIC int
  2247. xlog_recover_quotaoff_pass1(
  2248. struct xlog *log,
  2249. struct xlog_recover_item *item)
  2250. {
  2251. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2252. ASSERT(qoff_f);
  2253. /*
  2254. * The logitem format's flag tells us if this was user quotaoff,
  2255. * group/project quotaoff or both.
  2256. */
  2257. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2258. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2259. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2260. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2261. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2262. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2263. return (0);
  2264. }
  2265. /*
  2266. * Recover a dquot record
  2267. */
  2268. STATIC int
  2269. xlog_recover_dquot_pass2(
  2270. struct xlog *log,
  2271. struct list_head *buffer_list,
  2272. struct xlog_recover_item *item)
  2273. {
  2274. xfs_mount_t *mp = log->l_mp;
  2275. xfs_buf_t *bp;
  2276. struct xfs_disk_dquot *ddq, *recddq;
  2277. int error;
  2278. xfs_dq_logformat_t *dq_f;
  2279. uint type;
  2280. /*
  2281. * Filesystems are required to send in quota flags at mount time.
  2282. */
  2283. if (mp->m_qflags == 0)
  2284. return (0);
  2285. recddq = item->ri_buf[1].i_addr;
  2286. if (recddq == NULL) {
  2287. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2288. return XFS_ERROR(EIO);
  2289. }
  2290. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2291. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2292. item->ri_buf[1].i_len, __func__);
  2293. return XFS_ERROR(EIO);
  2294. }
  2295. /*
  2296. * This type of quotas was turned off, so ignore this record.
  2297. */
  2298. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2299. ASSERT(type);
  2300. if (log->l_quotaoffs_flag & type)
  2301. return (0);
  2302. /*
  2303. * At this point we know that quota was _not_ turned off.
  2304. * Since the mount flags are not indicating to us otherwise, this
  2305. * must mean that quota is on, and the dquot needs to be replayed.
  2306. * Remember that we may not have fully recovered the superblock yet,
  2307. * so we can't do the usual trick of looking at the SB quota bits.
  2308. *
  2309. * The other possibility, of course, is that the quota subsystem was
  2310. * removed since the last mount - ENOSYS.
  2311. */
  2312. dq_f = item->ri_buf[0].i_addr;
  2313. ASSERT(dq_f);
  2314. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2315. "xlog_recover_dquot_pass2 (log copy)");
  2316. if (error)
  2317. return XFS_ERROR(EIO);
  2318. ASSERT(dq_f->qlf_len == 1);
  2319. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2320. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
  2321. NULL);
  2322. if (error)
  2323. return error;
  2324. ASSERT(bp);
  2325. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2326. /*
  2327. * At least the magic num portion should be on disk because this
  2328. * was among a chunk of dquots created earlier, and we did some
  2329. * minimal initialization then.
  2330. */
  2331. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2332. "xlog_recover_dquot_pass2");
  2333. if (error) {
  2334. xfs_buf_relse(bp);
  2335. return XFS_ERROR(EIO);
  2336. }
  2337. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2338. ASSERT(dq_f->qlf_size == 2);
  2339. ASSERT(bp->b_target->bt_mount == mp);
  2340. bp->b_iodone = xlog_recover_iodone;
  2341. xfs_buf_delwri_queue(bp, buffer_list);
  2342. xfs_buf_relse(bp);
  2343. return (0);
  2344. }
  2345. /*
  2346. * This routine is called to create an in-core extent free intent
  2347. * item from the efi format structure which was logged on disk.
  2348. * It allocates an in-core efi, copies the extents from the format
  2349. * structure into it, and adds the efi to the AIL with the given
  2350. * LSN.
  2351. */
  2352. STATIC int
  2353. xlog_recover_efi_pass2(
  2354. struct xlog *log,
  2355. struct xlog_recover_item *item,
  2356. xfs_lsn_t lsn)
  2357. {
  2358. int error;
  2359. xfs_mount_t *mp = log->l_mp;
  2360. xfs_efi_log_item_t *efip;
  2361. xfs_efi_log_format_t *efi_formatp;
  2362. efi_formatp = item->ri_buf[0].i_addr;
  2363. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2364. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2365. &(efip->efi_format)))) {
  2366. xfs_efi_item_free(efip);
  2367. return error;
  2368. }
  2369. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2370. spin_lock(&log->l_ailp->xa_lock);
  2371. /*
  2372. * xfs_trans_ail_update() drops the AIL lock.
  2373. */
  2374. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2375. return 0;
  2376. }
  2377. /*
  2378. * This routine is called when an efd format structure is found in
  2379. * a committed transaction in the log. It's purpose is to cancel
  2380. * the corresponding efi if it was still in the log. To do this
  2381. * it searches the AIL for the efi with an id equal to that in the
  2382. * efd format structure. If we find it, we remove the efi from the
  2383. * AIL and free it.
  2384. */
  2385. STATIC int
  2386. xlog_recover_efd_pass2(
  2387. struct xlog *log,
  2388. struct xlog_recover_item *item)
  2389. {
  2390. xfs_efd_log_format_t *efd_formatp;
  2391. xfs_efi_log_item_t *efip = NULL;
  2392. xfs_log_item_t *lip;
  2393. __uint64_t efi_id;
  2394. struct xfs_ail_cursor cur;
  2395. struct xfs_ail *ailp = log->l_ailp;
  2396. efd_formatp = item->ri_buf[0].i_addr;
  2397. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2398. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2399. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2400. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2401. efi_id = efd_formatp->efd_efi_id;
  2402. /*
  2403. * Search for the efi with the id in the efd format structure
  2404. * in the AIL.
  2405. */
  2406. spin_lock(&ailp->xa_lock);
  2407. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2408. while (lip != NULL) {
  2409. if (lip->li_type == XFS_LI_EFI) {
  2410. efip = (xfs_efi_log_item_t *)lip;
  2411. if (efip->efi_format.efi_id == efi_id) {
  2412. /*
  2413. * xfs_trans_ail_delete() drops the
  2414. * AIL lock.
  2415. */
  2416. xfs_trans_ail_delete(ailp, lip,
  2417. SHUTDOWN_CORRUPT_INCORE);
  2418. xfs_efi_item_free(efip);
  2419. spin_lock(&ailp->xa_lock);
  2420. break;
  2421. }
  2422. }
  2423. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2424. }
  2425. xfs_trans_ail_cursor_done(ailp, &cur);
  2426. spin_unlock(&ailp->xa_lock);
  2427. return 0;
  2428. }
  2429. /*
  2430. * Free up any resources allocated by the transaction
  2431. *
  2432. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2433. */
  2434. STATIC void
  2435. xlog_recover_free_trans(
  2436. struct xlog_recover *trans)
  2437. {
  2438. xlog_recover_item_t *item, *n;
  2439. int i;
  2440. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2441. /* Free the regions in the item. */
  2442. list_del(&item->ri_list);
  2443. for (i = 0; i < item->ri_cnt; i++)
  2444. kmem_free(item->ri_buf[i].i_addr);
  2445. /* Free the item itself */
  2446. kmem_free(item->ri_buf);
  2447. kmem_free(item);
  2448. }
  2449. /* Free the transaction recover structure */
  2450. kmem_free(trans);
  2451. }
  2452. STATIC int
  2453. xlog_recover_commit_pass1(
  2454. struct xlog *log,
  2455. struct xlog_recover *trans,
  2456. struct xlog_recover_item *item)
  2457. {
  2458. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2459. switch (ITEM_TYPE(item)) {
  2460. case XFS_LI_BUF:
  2461. return xlog_recover_buffer_pass1(log, item);
  2462. case XFS_LI_QUOTAOFF:
  2463. return xlog_recover_quotaoff_pass1(log, item);
  2464. case XFS_LI_INODE:
  2465. case XFS_LI_EFI:
  2466. case XFS_LI_EFD:
  2467. case XFS_LI_DQUOT:
  2468. /* nothing to do in pass 1 */
  2469. return 0;
  2470. default:
  2471. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2472. __func__, ITEM_TYPE(item));
  2473. ASSERT(0);
  2474. return XFS_ERROR(EIO);
  2475. }
  2476. }
  2477. STATIC int
  2478. xlog_recover_commit_pass2(
  2479. struct xlog *log,
  2480. struct xlog_recover *trans,
  2481. struct list_head *buffer_list,
  2482. struct xlog_recover_item *item)
  2483. {
  2484. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2485. switch (ITEM_TYPE(item)) {
  2486. case XFS_LI_BUF:
  2487. return xlog_recover_buffer_pass2(log, buffer_list, item);
  2488. case XFS_LI_INODE:
  2489. return xlog_recover_inode_pass2(log, buffer_list, item);
  2490. case XFS_LI_EFI:
  2491. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2492. case XFS_LI_EFD:
  2493. return xlog_recover_efd_pass2(log, item);
  2494. case XFS_LI_DQUOT:
  2495. return xlog_recover_dquot_pass2(log, buffer_list, item);
  2496. case XFS_LI_QUOTAOFF:
  2497. /* nothing to do in pass2 */
  2498. return 0;
  2499. default:
  2500. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2501. __func__, ITEM_TYPE(item));
  2502. ASSERT(0);
  2503. return XFS_ERROR(EIO);
  2504. }
  2505. }
  2506. /*
  2507. * Perform the transaction.
  2508. *
  2509. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2510. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2511. */
  2512. STATIC int
  2513. xlog_recover_commit_trans(
  2514. struct xlog *log,
  2515. struct xlog_recover *trans,
  2516. int pass)
  2517. {
  2518. int error = 0, error2;
  2519. xlog_recover_item_t *item;
  2520. LIST_HEAD (buffer_list);
  2521. hlist_del(&trans->r_list);
  2522. error = xlog_recover_reorder_trans(log, trans, pass);
  2523. if (error)
  2524. return error;
  2525. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2526. switch (pass) {
  2527. case XLOG_RECOVER_PASS1:
  2528. error = xlog_recover_commit_pass1(log, trans, item);
  2529. break;
  2530. case XLOG_RECOVER_PASS2:
  2531. error = xlog_recover_commit_pass2(log, trans,
  2532. &buffer_list, item);
  2533. break;
  2534. default:
  2535. ASSERT(0);
  2536. }
  2537. if (error)
  2538. goto out;
  2539. }
  2540. xlog_recover_free_trans(trans);
  2541. out:
  2542. error2 = xfs_buf_delwri_submit(&buffer_list);
  2543. return error ? error : error2;
  2544. }
  2545. STATIC int
  2546. xlog_recover_unmount_trans(
  2547. struct xlog *log,
  2548. struct xlog_recover *trans)
  2549. {
  2550. /* Do nothing now */
  2551. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2552. return 0;
  2553. }
  2554. /*
  2555. * There are two valid states of the r_state field. 0 indicates that the
  2556. * transaction structure is in a normal state. We have either seen the
  2557. * start of the transaction or the last operation we added was not a partial
  2558. * operation. If the last operation we added to the transaction was a
  2559. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2560. *
  2561. * NOTE: skip LRs with 0 data length.
  2562. */
  2563. STATIC int
  2564. xlog_recover_process_data(
  2565. struct xlog *log,
  2566. struct hlist_head rhash[],
  2567. struct xlog_rec_header *rhead,
  2568. xfs_caddr_t dp,
  2569. int pass)
  2570. {
  2571. xfs_caddr_t lp;
  2572. int num_logops;
  2573. xlog_op_header_t *ohead;
  2574. xlog_recover_t *trans;
  2575. xlog_tid_t tid;
  2576. int error;
  2577. unsigned long hash;
  2578. uint flags;
  2579. lp = dp + be32_to_cpu(rhead->h_len);
  2580. num_logops = be32_to_cpu(rhead->h_num_logops);
  2581. /* check the log format matches our own - else we can't recover */
  2582. if (xlog_header_check_recover(log->l_mp, rhead))
  2583. return (XFS_ERROR(EIO));
  2584. while ((dp < lp) && num_logops) {
  2585. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2586. ohead = (xlog_op_header_t *)dp;
  2587. dp += sizeof(xlog_op_header_t);
  2588. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2589. ohead->oh_clientid != XFS_LOG) {
  2590. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2591. __func__, ohead->oh_clientid);
  2592. ASSERT(0);
  2593. return (XFS_ERROR(EIO));
  2594. }
  2595. tid = be32_to_cpu(ohead->oh_tid);
  2596. hash = XLOG_RHASH(tid);
  2597. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2598. if (trans == NULL) { /* not found; add new tid */
  2599. if (ohead->oh_flags & XLOG_START_TRANS)
  2600. xlog_recover_new_tid(&rhash[hash], tid,
  2601. be64_to_cpu(rhead->h_lsn));
  2602. } else {
  2603. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2604. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2605. __func__, be32_to_cpu(ohead->oh_len));
  2606. WARN_ON(1);
  2607. return (XFS_ERROR(EIO));
  2608. }
  2609. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2610. if (flags & XLOG_WAS_CONT_TRANS)
  2611. flags &= ~XLOG_CONTINUE_TRANS;
  2612. switch (flags) {
  2613. case XLOG_COMMIT_TRANS:
  2614. error = xlog_recover_commit_trans(log,
  2615. trans, pass);
  2616. break;
  2617. case XLOG_UNMOUNT_TRANS:
  2618. error = xlog_recover_unmount_trans(log, trans);
  2619. break;
  2620. case XLOG_WAS_CONT_TRANS:
  2621. error = xlog_recover_add_to_cont_trans(log,
  2622. trans, dp,
  2623. be32_to_cpu(ohead->oh_len));
  2624. break;
  2625. case XLOG_START_TRANS:
  2626. xfs_warn(log->l_mp, "%s: bad transaction",
  2627. __func__);
  2628. ASSERT(0);
  2629. error = XFS_ERROR(EIO);
  2630. break;
  2631. case 0:
  2632. case XLOG_CONTINUE_TRANS:
  2633. error = xlog_recover_add_to_trans(log, trans,
  2634. dp, be32_to_cpu(ohead->oh_len));
  2635. break;
  2636. default:
  2637. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2638. __func__, flags);
  2639. ASSERT(0);
  2640. error = XFS_ERROR(EIO);
  2641. break;
  2642. }
  2643. if (error)
  2644. return error;
  2645. }
  2646. dp += be32_to_cpu(ohead->oh_len);
  2647. num_logops--;
  2648. }
  2649. return 0;
  2650. }
  2651. /*
  2652. * Process an extent free intent item that was recovered from
  2653. * the log. We need to free the extents that it describes.
  2654. */
  2655. STATIC int
  2656. xlog_recover_process_efi(
  2657. xfs_mount_t *mp,
  2658. xfs_efi_log_item_t *efip)
  2659. {
  2660. xfs_efd_log_item_t *efdp;
  2661. xfs_trans_t *tp;
  2662. int i;
  2663. int error = 0;
  2664. xfs_extent_t *extp;
  2665. xfs_fsblock_t startblock_fsb;
  2666. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2667. /*
  2668. * First check the validity of the extents described by the
  2669. * EFI. If any are bad, then assume that all are bad and
  2670. * just toss the EFI.
  2671. */
  2672. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2673. extp = &(efip->efi_format.efi_extents[i]);
  2674. startblock_fsb = XFS_BB_TO_FSB(mp,
  2675. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2676. if ((startblock_fsb == 0) ||
  2677. (extp->ext_len == 0) ||
  2678. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2679. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2680. /*
  2681. * This will pull the EFI from the AIL and
  2682. * free the memory associated with it.
  2683. */
  2684. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2685. return XFS_ERROR(EIO);
  2686. }
  2687. }
  2688. tp = xfs_trans_alloc(mp, 0);
  2689. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2690. if (error)
  2691. goto abort_error;
  2692. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2693. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2694. extp = &(efip->efi_format.efi_extents[i]);
  2695. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2696. if (error)
  2697. goto abort_error;
  2698. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2699. extp->ext_len);
  2700. }
  2701. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2702. error = xfs_trans_commit(tp, 0);
  2703. return error;
  2704. abort_error:
  2705. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2706. return error;
  2707. }
  2708. /*
  2709. * When this is called, all of the EFIs which did not have
  2710. * corresponding EFDs should be in the AIL. What we do now
  2711. * is free the extents associated with each one.
  2712. *
  2713. * Since we process the EFIs in normal transactions, they
  2714. * will be removed at some point after the commit. This prevents
  2715. * us from just walking down the list processing each one.
  2716. * We'll use a flag in the EFI to skip those that we've already
  2717. * processed and use the AIL iteration mechanism's generation
  2718. * count to try to speed this up at least a bit.
  2719. *
  2720. * When we start, we know that the EFIs are the only things in
  2721. * the AIL. As we process them, however, other items are added
  2722. * to the AIL. Since everything added to the AIL must come after
  2723. * everything already in the AIL, we stop processing as soon as
  2724. * we see something other than an EFI in the AIL.
  2725. */
  2726. STATIC int
  2727. xlog_recover_process_efis(
  2728. struct xlog *log)
  2729. {
  2730. xfs_log_item_t *lip;
  2731. xfs_efi_log_item_t *efip;
  2732. int error = 0;
  2733. struct xfs_ail_cursor cur;
  2734. struct xfs_ail *ailp;
  2735. ailp = log->l_ailp;
  2736. spin_lock(&ailp->xa_lock);
  2737. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2738. while (lip != NULL) {
  2739. /*
  2740. * We're done when we see something other than an EFI.
  2741. * There should be no EFIs left in the AIL now.
  2742. */
  2743. if (lip->li_type != XFS_LI_EFI) {
  2744. #ifdef DEBUG
  2745. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2746. ASSERT(lip->li_type != XFS_LI_EFI);
  2747. #endif
  2748. break;
  2749. }
  2750. /*
  2751. * Skip EFIs that we've already processed.
  2752. */
  2753. efip = (xfs_efi_log_item_t *)lip;
  2754. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2755. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2756. continue;
  2757. }
  2758. spin_unlock(&ailp->xa_lock);
  2759. error = xlog_recover_process_efi(log->l_mp, efip);
  2760. spin_lock(&ailp->xa_lock);
  2761. if (error)
  2762. goto out;
  2763. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2764. }
  2765. out:
  2766. xfs_trans_ail_cursor_done(ailp, &cur);
  2767. spin_unlock(&ailp->xa_lock);
  2768. return error;
  2769. }
  2770. /*
  2771. * This routine performs a transaction to null out a bad inode pointer
  2772. * in an agi unlinked inode hash bucket.
  2773. */
  2774. STATIC void
  2775. xlog_recover_clear_agi_bucket(
  2776. xfs_mount_t *mp,
  2777. xfs_agnumber_t agno,
  2778. int bucket)
  2779. {
  2780. xfs_trans_t *tp;
  2781. xfs_agi_t *agi;
  2782. xfs_buf_t *agibp;
  2783. int offset;
  2784. int error;
  2785. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2786. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2787. 0, 0, 0);
  2788. if (error)
  2789. goto out_abort;
  2790. error = xfs_read_agi(mp, tp, agno, &agibp);
  2791. if (error)
  2792. goto out_abort;
  2793. agi = XFS_BUF_TO_AGI(agibp);
  2794. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2795. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2796. (sizeof(xfs_agino_t) * bucket);
  2797. xfs_trans_log_buf(tp, agibp, offset,
  2798. (offset + sizeof(xfs_agino_t) - 1));
  2799. error = xfs_trans_commit(tp, 0);
  2800. if (error)
  2801. goto out_error;
  2802. return;
  2803. out_abort:
  2804. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2805. out_error:
  2806. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2807. return;
  2808. }
  2809. STATIC xfs_agino_t
  2810. xlog_recover_process_one_iunlink(
  2811. struct xfs_mount *mp,
  2812. xfs_agnumber_t agno,
  2813. xfs_agino_t agino,
  2814. int bucket)
  2815. {
  2816. struct xfs_buf *ibp;
  2817. struct xfs_dinode *dip;
  2818. struct xfs_inode *ip;
  2819. xfs_ino_t ino;
  2820. int error;
  2821. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2822. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2823. if (error)
  2824. goto fail;
  2825. /*
  2826. * Get the on disk inode to find the next inode in the bucket.
  2827. */
  2828. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
  2829. if (error)
  2830. goto fail_iput;
  2831. ASSERT(ip->i_d.di_nlink == 0);
  2832. ASSERT(ip->i_d.di_mode != 0);
  2833. /* setup for the next pass */
  2834. agino = be32_to_cpu(dip->di_next_unlinked);
  2835. xfs_buf_relse(ibp);
  2836. /*
  2837. * Prevent any DMAPI event from being sent when the reference on
  2838. * the inode is dropped.
  2839. */
  2840. ip->i_d.di_dmevmask = 0;
  2841. IRELE(ip);
  2842. return agino;
  2843. fail_iput:
  2844. IRELE(ip);
  2845. fail:
  2846. /*
  2847. * We can't read in the inode this bucket points to, or this inode
  2848. * is messed up. Just ditch this bucket of inodes. We will lose
  2849. * some inodes and space, but at least we won't hang.
  2850. *
  2851. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2852. * clear the inode pointer in the bucket.
  2853. */
  2854. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2855. return NULLAGINO;
  2856. }
  2857. /*
  2858. * xlog_iunlink_recover
  2859. *
  2860. * This is called during recovery to process any inodes which
  2861. * we unlinked but not freed when the system crashed. These
  2862. * inodes will be on the lists in the AGI blocks. What we do
  2863. * here is scan all the AGIs and fully truncate and free any
  2864. * inodes found on the lists. Each inode is removed from the
  2865. * lists when it has been fully truncated and is freed. The
  2866. * freeing of the inode and its removal from the list must be
  2867. * atomic.
  2868. */
  2869. STATIC void
  2870. xlog_recover_process_iunlinks(
  2871. struct xlog *log)
  2872. {
  2873. xfs_mount_t *mp;
  2874. xfs_agnumber_t agno;
  2875. xfs_agi_t *agi;
  2876. xfs_buf_t *agibp;
  2877. xfs_agino_t agino;
  2878. int bucket;
  2879. int error;
  2880. uint mp_dmevmask;
  2881. mp = log->l_mp;
  2882. /*
  2883. * Prevent any DMAPI event from being sent while in this function.
  2884. */
  2885. mp_dmevmask = mp->m_dmevmask;
  2886. mp->m_dmevmask = 0;
  2887. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2888. /*
  2889. * Find the agi for this ag.
  2890. */
  2891. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2892. if (error) {
  2893. /*
  2894. * AGI is b0rked. Don't process it.
  2895. *
  2896. * We should probably mark the filesystem as corrupt
  2897. * after we've recovered all the ag's we can....
  2898. */
  2899. continue;
  2900. }
  2901. /*
  2902. * Unlock the buffer so that it can be acquired in the normal
  2903. * course of the transaction to truncate and free each inode.
  2904. * Because we are not racing with anyone else here for the AGI
  2905. * buffer, we don't even need to hold it locked to read the
  2906. * initial unlinked bucket entries out of the buffer. We keep
  2907. * buffer reference though, so that it stays pinned in memory
  2908. * while we need the buffer.
  2909. */
  2910. agi = XFS_BUF_TO_AGI(agibp);
  2911. xfs_buf_unlock(agibp);
  2912. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2913. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2914. while (agino != NULLAGINO) {
  2915. agino = xlog_recover_process_one_iunlink(mp,
  2916. agno, agino, bucket);
  2917. }
  2918. }
  2919. xfs_buf_rele(agibp);
  2920. }
  2921. mp->m_dmevmask = mp_dmevmask;
  2922. }
  2923. /*
  2924. * Upack the log buffer data and crc check it. If the check fails, issue a
  2925. * warning if and only if the CRC in the header is non-zero. This makes the
  2926. * check an advisory warning, and the zero CRC check will prevent failure
  2927. * warnings from being emitted when upgrading the kernel from one that does not
  2928. * add CRCs by default.
  2929. *
  2930. * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
  2931. * corruption failure
  2932. */
  2933. STATIC int
  2934. xlog_unpack_data_crc(
  2935. struct xlog_rec_header *rhead,
  2936. xfs_caddr_t dp,
  2937. struct xlog *log)
  2938. {
  2939. __le32 crc;
  2940. crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
  2941. if (crc != rhead->h_crc) {
  2942. if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
  2943. xfs_alert(log->l_mp,
  2944. "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
  2945. le32_to_cpu(rhead->h_crc),
  2946. le32_to_cpu(crc));
  2947. xfs_hex_dump(dp, 32);
  2948. }
  2949. /*
  2950. * If we've detected a log record corruption, then we can't
  2951. * recover past this point. Abort recovery if we are enforcing
  2952. * CRC protection by punting an error back up the stack.
  2953. */
  2954. if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
  2955. return EFSCORRUPTED;
  2956. }
  2957. return 0;
  2958. }
  2959. STATIC int
  2960. xlog_unpack_data(
  2961. struct xlog_rec_header *rhead,
  2962. xfs_caddr_t dp,
  2963. struct xlog *log)
  2964. {
  2965. int i, j, k;
  2966. int error;
  2967. error = xlog_unpack_data_crc(rhead, dp, log);
  2968. if (error)
  2969. return error;
  2970. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2971. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2972. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2973. dp += BBSIZE;
  2974. }
  2975. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2976. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2977. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2978. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2979. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2980. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2981. dp += BBSIZE;
  2982. }
  2983. }
  2984. return 0;
  2985. }
  2986. STATIC int
  2987. xlog_valid_rec_header(
  2988. struct xlog *log,
  2989. struct xlog_rec_header *rhead,
  2990. xfs_daddr_t blkno)
  2991. {
  2992. int hlen;
  2993. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  2994. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  2995. XFS_ERRLEVEL_LOW, log->l_mp);
  2996. return XFS_ERROR(EFSCORRUPTED);
  2997. }
  2998. if (unlikely(
  2999. (!rhead->h_version ||
  3000. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3001. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3002. __func__, be32_to_cpu(rhead->h_version));
  3003. return XFS_ERROR(EIO);
  3004. }
  3005. /* LR body must have data or it wouldn't have been written */
  3006. hlen = be32_to_cpu(rhead->h_len);
  3007. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3008. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3009. XFS_ERRLEVEL_LOW, log->l_mp);
  3010. return XFS_ERROR(EFSCORRUPTED);
  3011. }
  3012. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3013. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3014. XFS_ERRLEVEL_LOW, log->l_mp);
  3015. return XFS_ERROR(EFSCORRUPTED);
  3016. }
  3017. return 0;
  3018. }
  3019. /*
  3020. * Read the log from tail to head and process the log records found.
  3021. * Handle the two cases where the tail and head are in the same cycle
  3022. * and where the active portion of the log wraps around the end of
  3023. * the physical log separately. The pass parameter is passed through
  3024. * to the routines called to process the data and is not looked at
  3025. * here.
  3026. */
  3027. STATIC int
  3028. xlog_do_recovery_pass(
  3029. struct xlog *log,
  3030. xfs_daddr_t head_blk,
  3031. xfs_daddr_t tail_blk,
  3032. int pass)
  3033. {
  3034. xlog_rec_header_t *rhead;
  3035. xfs_daddr_t blk_no;
  3036. xfs_caddr_t offset;
  3037. xfs_buf_t *hbp, *dbp;
  3038. int error = 0, h_size;
  3039. int bblks, split_bblks;
  3040. int hblks, split_hblks, wrapped_hblks;
  3041. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3042. ASSERT(head_blk != tail_blk);
  3043. /*
  3044. * Read the header of the tail block and get the iclog buffer size from
  3045. * h_size. Use this to tell how many sectors make up the log header.
  3046. */
  3047. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3048. /*
  3049. * When using variable length iclogs, read first sector of
  3050. * iclog header and extract the header size from it. Get a
  3051. * new hbp that is the correct size.
  3052. */
  3053. hbp = xlog_get_bp(log, 1);
  3054. if (!hbp)
  3055. return ENOMEM;
  3056. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3057. if (error)
  3058. goto bread_err1;
  3059. rhead = (xlog_rec_header_t *)offset;
  3060. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3061. if (error)
  3062. goto bread_err1;
  3063. h_size = be32_to_cpu(rhead->h_size);
  3064. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3065. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3066. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3067. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3068. hblks++;
  3069. xlog_put_bp(hbp);
  3070. hbp = xlog_get_bp(log, hblks);
  3071. } else {
  3072. hblks = 1;
  3073. }
  3074. } else {
  3075. ASSERT(log->l_sectBBsize == 1);
  3076. hblks = 1;
  3077. hbp = xlog_get_bp(log, 1);
  3078. h_size = XLOG_BIG_RECORD_BSIZE;
  3079. }
  3080. if (!hbp)
  3081. return ENOMEM;
  3082. dbp = xlog_get_bp(log, BTOBB(h_size));
  3083. if (!dbp) {
  3084. xlog_put_bp(hbp);
  3085. return ENOMEM;
  3086. }
  3087. memset(rhash, 0, sizeof(rhash));
  3088. if (tail_blk <= head_blk) {
  3089. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3090. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3091. if (error)
  3092. goto bread_err2;
  3093. rhead = (xlog_rec_header_t *)offset;
  3094. error = xlog_valid_rec_header(log, rhead, blk_no);
  3095. if (error)
  3096. goto bread_err2;
  3097. /* blocks in data section */
  3098. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3099. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3100. &offset);
  3101. if (error)
  3102. goto bread_err2;
  3103. error = xlog_unpack_data(rhead, offset, log);
  3104. if (error)
  3105. goto bread_err2;
  3106. error = xlog_recover_process_data(log,
  3107. rhash, rhead, offset, pass);
  3108. if (error)
  3109. goto bread_err2;
  3110. blk_no += bblks + hblks;
  3111. }
  3112. } else {
  3113. /*
  3114. * Perform recovery around the end of the physical log.
  3115. * When the head is not on the same cycle number as the tail,
  3116. * we can't do a sequential recovery as above.
  3117. */
  3118. blk_no = tail_blk;
  3119. while (blk_no < log->l_logBBsize) {
  3120. /*
  3121. * Check for header wrapping around physical end-of-log
  3122. */
  3123. offset = hbp->b_addr;
  3124. split_hblks = 0;
  3125. wrapped_hblks = 0;
  3126. if (blk_no + hblks <= log->l_logBBsize) {
  3127. /* Read header in one read */
  3128. error = xlog_bread(log, blk_no, hblks, hbp,
  3129. &offset);
  3130. if (error)
  3131. goto bread_err2;
  3132. } else {
  3133. /* This LR is split across physical log end */
  3134. if (blk_no != log->l_logBBsize) {
  3135. /* some data before physical log end */
  3136. ASSERT(blk_no <= INT_MAX);
  3137. split_hblks = log->l_logBBsize - (int)blk_no;
  3138. ASSERT(split_hblks > 0);
  3139. error = xlog_bread(log, blk_no,
  3140. split_hblks, hbp,
  3141. &offset);
  3142. if (error)
  3143. goto bread_err2;
  3144. }
  3145. /*
  3146. * Note: this black magic still works with
  3147. * large sector sizes (non-512) only because:
  3148. * - we increased the buffer size originally
  3149. * by 1 sector giving us enough extra space
  3150. * for the second read;
  3151. * - the log start is guaranteed to be sector
  3152. * aligned;
  3153. * - we read the log end (LR header start)
  3154. * _first_, then the log start (LR header end)
  3155. * - order is important.
  3156. */
  3157. wrapped_hblks = hblks - split_hblks;
  3158. error = xlog_bread_offset(log, 0,
  3159. wrapped_hblks, hbp,
  3160. offset + BBTOB(split_hblks));
  3161. if (error)
  3162. goto bread_err2;
  3163. }
  3164. rhead = (xlog_rec_header_t *)offset;
  3165. error = xlog_valid_rec_header(log, rhead,
  3166. split_hblks ? blk_no : 0);
  3167. if (error)
  3168. goto bread_err2;
  3169. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3170. blk_no += hblks;
  3171. /* Read in data for log record */
  3172. if (blk_no + bblks <= log->l_logBBsize) {
  3173. error = xlog_bread(log, blk_no, bblks, dbp,
  3174. &offset);
  3175. if (error)
  3176. goto bread_err2;
  3177. } else {
  3178. /* This log record is split across the
  3179. * physical end of log */
  3180. offset = dbp->b_addr;
  3181. split_bblks = 0;
  3182. if (blk_no != log->l_logBBsize) {
  3183. /* some data is before the physical
  3184. * end of log */
  3185. ASSERT(!wrapped_hblks);
  3186. ASSERT(blk_no <= INT_MAX);
  3187. split_bblks =
  3188. log->l_logBBsize - (int)blk_no;
  3189. ASSERT(split_bblks > 0);
  3190. error = xlog_bread(log, blk_no,
  3191. split_bblks, dbp,
  3192. &offset);
  3193. if (error)
  3194. goto bread_err2;
  3195. }
  3196. /*
  3197. * Note: this black magic still works with
  3198. * large sector sizes (non-512) only because:
  3199. * - we increased the buffer size originally
  3200. * by 1 sector giving us enough extra space
  3201. * for the second read;
  3202. * - the log start is guaranteed to be sector
  3203. * aligned;
  3204. * - we read the log end (LR header start)
  3205. * _first_, then the log start (LR header end)
  3206. * - order is important.
  3207. */
  3208. error = xlog_bread_offset(log, 0,
  3209. bblks - split_bblks, dbp,
  3210. offset + BBTOB(split_bblks));
  3211. if (error)
  3212. goto bread_err2;
  3213. }
  3214. error = xlog_unpack_data(rhead, offset, log);
  3215. if (error)
  3216. goto bread_err2;
  3217. error = xlog_recover_process_data(log, rhash,
  3218. rhead, offset, pass);
  3219. if (error)
  3220. goto bread_err2;
  3221. blk_no += bblks;
  3222. }
  3223. ASSERT(blk_no >= log->l_logBBsize);
  3224. blk_no -= log->l_logBBsize;
  3225. /* read first part of physical log */
  3226. while (blk_no < head_blk) {
  3227. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3228. if (error)
  3229. goto bread_err2;
  3230. rhead = (xlog_rec_header_t *)offset;
  3231. error = xlog_valid_rec_header(log, rhead, blk_no);
  3232. if (error)
  3233. goto bread_err2;
  3234. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3235. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3236. &offset);
  3237. if (error)
  3238. goto bread_err2;
  3239. error = xlog_unpack_data(rhead, offset, log);
  3240. if (error)
  3241. goto bread_err2;
  3242. error = xlog_recover_process_data(log, rhash,
  3243. rhead, offset, pass);
  3244. if (error)
  3245. goto bread_err2;
  3246. blk_no += bblks + hblks;
  3247. }
  3248. }
  3249. bread_err2:
  3250. xlog_put_bp(dbp);
  3251. bread_err1:
  3252. xlog_put_bp(hbp);
  3253. return error;
  3254. }
  3255. /*
  3256. * Do the recovery of the log. We actually do this in two phases.
  3257. * The two passes are necessary in order to implement the function
  3258. * of cancelling a record written into the log. The first pass
  3259. * determines those things which have been cancelled, and the
  3260. * second pass replays log items normally except for those which
  3261. * have been cancelled. The handling of the replay and cancellations
  3262. * takes place in the log item type specific routines.
  3263. *
  3264. * The table of items which have cancel records in the log is allocated
  3265. * and freed at this level, since only here do we know when all of
  3266. * the log recovery has been completed.
  3267. */
  3268. STATIC int
  3269. xlog_do_log_recovery(
  3270. struct xlog *log,
  3271. xfs_daddr_t head_blk,
  3272. xfs_daddr_t tail_blk)
  3273. {
  3274. int error, i;
  3275. ASSERT(head_blk != tail_blk);
  3276. /*
  3277. * First do a pass to find all of the cancelled buf log items.
  3278. * Store them in the buf_cancel_table for use in the second pass.
  3279. */
  3280. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3281. sizeof(struct list_head),
  3282. KM_SLEEP);
  3283. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3284. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3285. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3286. XLOG_RECOVER_PASS1);
  3287. if (error != 0) {
  3288. kmem_free(log->l_buf_cancel_table);
  3289. log->l_buf_cancel_table = NULL;
  3290. return error;
  3291. }
  3292. /*
  3293. * Then do a second pass to actually recover the items in the log.
  3294. * When it is complete free the table of buf cancel items.
  3295. */
  3296. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3297. XLOG_RECOVER_PASS2);
  3298. #ifdef DEBUG
  3299. if (!error) {
  3300. int i;
  3301. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3302. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3303. }
  3304. #endif /* DEBUG */
  3305. kmem_free(log->l_buf_cancel_table);
  3306. log->l_buf_cancel_table = NULL;
  3307. return error;
  3308. }
  3309. /*
  3310. * Do the actual recovery
  3311. */
  3312. STATIC int
  3313. xlog_do_recover(
  3314. struct xlog *log,
  3315. xfs_daddr_t head_blk,
  3316. xfs_daddr_t tail_blk)
  3317. {
  3318. int error;
  3319. xfs_buf_t *bp;
  3320. xfs_sb_t *sbp;
  3321. /*
  3322. * First replay the images in the log.
  3323. */
  3324. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3325. if (error)
  3326. return error;
  3327. /*
  3328. * If IO errors happened during recovery, bail out.
  3329. */
  3330. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3331. return (EIO);
  3332. }
  3333. /*
  3334. * We now update the tail_lsn since much of the recovery has completed
  3335. * and there may be space available to use. If there were no extent
  3336. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3337. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3338. * lsn of the last known good LR on disk. If there are extent frees
  3339. * or iunlinks they will have some entries in the AIL; so we look at
  3340. * the AIL to determine how to set the tail_lsn.
  3341. */
  3342. xlog_assign_tail_lsn(log->l_mp);
  3343. /*
  3344. * Now that we've finished replaying all buffer and inode
  3345. * updates, re-read in the superblock and reverify it.
  3346. */
  3347. bp = xfs_getsb(log->l_mp, 0);
  3348. XFS_BUF_UNDONE(bp);
  3349. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3350. XFS_BUF_READ(bp);
  3351. XFS_BUF_UNASYNC(bp);
  3352. bp->b_ops = &xfs_sb_buf_ops;
  3353. xfsbdstrat(log->l_mp, bp);
  3354. error = xfs_buf_iowait(bp);
  3355. if (error) {
  3356. xfs_buf_ioerror_alert(bp, __func__);
  3357. ASSERT(0);
  3358. xfs_buf_relse(bp);
  3359. return error;
  3360. }
  3361. /* Convert superblock from on-disk format */
  3362. sbp = &log->l_mp->m_sb;
  3363. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3364. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3365. ASSERT(xfs_sb_good_version(sbp));
  3366. xfs_buf_relse(bp);
  3367. /* We've re-read the superblock so re-initialize per-cpu counters */
  3368. xfs_icsb_reinit_counters(log->l_mp);
  3369. xlog_recover_check_summary(log);
  3370. /* Normal transactions can now occur */
  3371. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3372. return 0;
  3373. }
  3374. /*
  3375. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3376. *
  3377. * Return error or zero.
  3378. */
  3379. int
  3380. xlog_recover(
  3381. struct xlog *log)
  3382. {
  3383. xfs_daddr_t head_blk, tail_blk;
  3384. int error;
  3385. /* find the tail of the log */
  3386. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3387. return error;
  3388. if (tail_blk != head_blk) {
  3389. /* There used to be a comment here:
  3390. *
  3391. * disallow recovery on read-only mounts. note -- mount
  3392. * checks for ENOSPC and turns it into an intelligent
  3393. * error message.
  3394. * ...but this is no longer true. Now, unless you specify
  3395. * NORECOVERY (in which case this function would never be
  3396. * called), we just go ahead and recover. We do this all
  3397. * under the vfs layer, so we can get away with it unless
  3398. * the device itself is read-only, in which case we fail.
  3399. */
  3400. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3401. return error;
  3402. }
  3403. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3404. log->l_mp->m_logname ? log->l_mp->m_logname
  3405. : "internal");
  3406. error = xlog_do_recover(log, head_blk, tail_blk);
  3407. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3408. }
  3409. return error;
  3410. }
  3411. /*
  3412. * In the first part of recovery we replay inodes and buffers and build
  3413. * up the list of extent free items which need to be processed. Here
  3414. * we process the extent free items and clean up the on disk unlinked
  3415. * inode lists. This is separated from the first part of recovery so
  3416. * that the root and real-time bitmap inodes can be read in from disk in
  3417. * between the two stages. This is necessary so that we can free space
  3418. * in the real-time portion of the file system.
  3419. */
  3420. int
  3421. xlog_recover_finish(
  3422. struct xlog *log)
  3423. {
  3424. /*
  3425. * Now we're ready to do the transactions needed for the
  3426. * rest of recovery. Start with completing all the extent
  3427. * free intent records and then process the unlinked inode
  3428. * lists. At this point, we essentially run in normal mode
  3429. * except that we're still performing recovery actions
  3430. * rather than accepting new requests.
  3431. */
  3432. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3433. int error;
  3434. error = xlog_recover_process_efis(log);
  3435. if (error) {
  3436. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3437. return error;
  3438. }
  3439. /*
  3440. * Sync the log to get all the EFIs out of the AIL.
  3441. * This isn't absolutely necessary, but it helps in
  3442. * case the unlink transactions would have problems
  3443. * pushing the EFIs out of the way.
  3444. */
  3445. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3446. xlog_recover_process_iunlinks(log);
  3447. xlog_recover_check_summary(log);
  3448. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3449. log->l_mp->m_logname ? log->l_mp->m_logname
  3450. : "internal");
  3451. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3452. } else {
  3453. xfs_info(log->l_mp, "Ending clean mount");
  3454. }
  3455. return 0;
  3456. }
  3457. #if defined(DEBUG)
  3458. /*
  3459. * Read all of the agf and agi counters and check that they
  3460. * are consistent with the superblock counters.
  3461. */
  3462. void
  3463. xlog_recover_check_summary(
  3464. struct xlog *log)
  3465. {
  3466. xfs_mount_t *mp;
  3467. xfs_agf_t *agfp;
  3468. xfs_buf_t *agfbp;
  3469. xfs_buf_t *agibp;
  3470. xfs_agnumber_t agno;
  3471. __uint64_t freeblks;
  3472. __uint64_t itotal;
  3473. __uint64_t ifree;
  3474. int error;
  3475. mp = log->l_mp;
  3476. freeblks = 0LL;
  3477. itotal = 0LL;
  3478. ifree = 0LL;
  3479. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3480. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3481. if (error) {
  3482. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3483. __func__, agno, error);
  3484. } else {
  3485. agfp = XFS_BUF_TO_AGF(agfbp);
  3486. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3487. be32_to_cpu(agfp->agf_flcount);
  3488. xfs_buf_relse(agfbp);
  3489. }
  3490. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3491. if (error) {
  3492. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3493. __func__, agno, error);
  3494. } else {
  3495. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3496. itotal += be32_to_cpu(agi->agi_count);
  3497. ifree += be32_to_cpu(agi->agi_freecount);
  3498. xfs_buf_relse(agibp);
  3499. }
  3500. }
  3501. }
  3502. #endif /* DEBUG */