elevator.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/blktrace_api.h>
  35. #include <linux/hash.h>
  36. #include <linux/uaccess.h>
  37. #include <trace/events/block.h>
  38. #include "blk.h"
  39. #include "blk-cgroup.h"
  40. static DEFINE_SPINLOCK(elv_list_lock);
  41. static LIST_HEAD(elv_list);
  42. /*
  43. * Merge hash stuff.
  44. */
  45. static const int elv_hash_shift = 6;
  46. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  47. #define ELV_HASH_FN(sec) \
  48. (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  49. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  50. #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
  51. /*
  52. * Query io scheduler to see if the current process issuing bio may be
  53. * merged with rq.
  54. */
  55. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  56. {
  57. struct request_queue *q = rq->q;
  58. struct elevator_queue *e = q->elevator;
  59. if (e->type->ops.elevator_allow_merge_fn)
  60. return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
  61. return 1;
  62. }
  63. /*
  64. * can we safely merge with this request?
  65. */
  66. bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
  67. {
  68. if (!blk_rq_merge_ok(rq, bio))
  69. return 0;
  70. if (!elv_iosched_allow_merge(rq, bio))
  71. return 0;
  72. return 1;
  73. }
  74. EXPORT_SYMBOL(elv_rq_merge_ok);
  75. static struct elevator_type *elevator_find(const char *name)
  76. {
  77. struct elevator_type *e;
  78. list_for_each_entry(e, &elv_list, list) {
  79. if (!strcmp(e->elevator_name, name))
  80. return e;
  81. }
  82. return NULL;
  83. }
  84. static void elevator_put(struct elevator_type *e)
  85. {
  86. module_put(e->elevator_owner);
  87. }
  88. static struct elevator_type *elevator_get(const char *name, bool try_loading)
  89. {
  90. struct elevator_type *e;
  91. spin_lock(&elv_list_lock);
  92. e = elevator_find(name);
  93. if (!e && try_loading) {
  94. spin_unlock(&elv_list_lock);
  95. request_module("%s-iosched", name);
  96. spin_lock(&elv_list_lock);
  97. e = elevator_find(name);
  98. }
  99. if (e && !try_module_get(e->elevator_owner))
  100. e = NULL;
  101. spin_unlock(&elv_list_lock);
  102. return e;
  103. }
  104. static char chosen_elevator[ELV_NAME_MAX];
  105. static int __init elevator_setup(char *str)
  106. {
  107. /*
  108. * Be backwards-compatible with previous kernels, so users
  109. * won't get the wrong elevator.
  110. */
  111. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  112. return 1;
  113. }
  114. __setup("elevator=", elevator_setup);
  115. /* called during boot to load the elevator chosen by the elevator param */
  116. void __init load_default_elevator_module(void)
  117. {
  118. struct elevator_type *e;
  119. if (!chosen_elevator[0])
  120. return;
  121. spin_lock(&elv_list_lock);
  122. e = elevator_find(chosen_elevator);
  123. spin_unlock(&elv_list_lock);
  124. if (!e)
  125. request_module("%s-iosched", chosen_elevator);
  126. }
  127. static struct kobj_type elv_ktype;
  128. static struct elevator_queue *elevator_alloc(struct request_queue *q,
  129. struct elevator_type *e)
  130. {
  131. struct elevator_queue *eq;
  132. int i;
  133. eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
  134. if (unlikely(!eq))
  135. goto err;
  136. eq->type = e;
  137. kobject_init(&eq->kobj, &elv_ktype);
  138. mutex_init(&eq->sysfs_lock);
  139. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  140. GFP_KERNEL, q->node);
  141. if (!eq->hash)
  142. goto err;
  143. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  144. INIT_HLIST_HEAD(&eq->hash[i]);
  145. return eq;
  146. err:
  147. kfree(eq);
  148. elevator_put(e);
  149. return NULL;
  150. }
  151. static void elevator_release(struct kobject *kobj)
  152. {
  153. struct elevator_queue *e;
  154. e = container_of(kobj, struct elevator_queue, kobj);
  155. elevator_put(e->type);
  156. kfree(e->hash);
  157. kfree(e);
  158. }
  159. int elevator_init(struct request_queue *q, char *name)
  160. {
  161. struct elevator_type *e = NULL;
  162. int err;
  163. if (unlikely(q->elevator))
  164. return 0;
  165. INIT_LIST_HEAD(&q->queue_head);
  166. q->last_merge = NULL;
  167. q->end_sector = 0;
  168. q->boundary_rq = NULL;
  169. if (name) {
  170. e = elevator_get(name, true);
  171. if (!e)
  172. return -EINVAL;
  173. }
  174. /*
  175. * Use the default elevator specified by config boot param or
  176. * config option. Don't try to load modules as we could be running
  177. * off async and request_module() isn't allowed from async.
  178. */
  179. if (!e && *chosen_elevator) {
  180. e = elevator_get(chosen_elevator, false);
  181. if (!e)
  182. printk(KERN_ERR "I/O scheduler %s not found\n",
  183. chosen_elevator);
  184. }
  185. if (!e) {
  186. e = elevator_get(CONFIG_DEFAULT_IOSCHED, false);
  187. if (!e) {
  188. printk(KERN_ERR
  189. "Default I/O scheduler not found. " \
  190. "Using noop.\n");
  191. e = elevator_get("noop", false);
  192. }
  193. }
  194. q->elevator = elevator_alloc(q, e);
  195. if (!q->elevator)
  196. return -ENOMEM;
  197. err = e->ops.elevator_init_fn(q);
  198. if (err) {
  199. kobject_put(&q->elevator->kobj);
  200. return err;
  201. }
  202. return 0;
  203. }
  204. EXPORT_SYMBOL(elevator_init);
  205. void elevator_exit(struct elevator_queue *e)
  206. {
  207. mutex_lock(&e->sysfs_lock);
  208. if (e->type->ops.elevator_exit_fn)
  209. e->type->ops.elevator_exit_fn(e);
  210. mutex_unlock(&e->sysfs_lock);
  211. kobject_put(&e->kobj);
  212. }
  213. EXPORT_SYMBOL(elevator_exit);
  214. static inline void __elv_rqhash_del(struct request *rq)
  215. {
  216. hlist_del_init(&rq->hash);
  217. }
  218. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  219. {
  220. if (ELV_ON_HASH(rq))
  221. __elv_rqhash_del(rq);
  222. }
  223. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  224. {
  225. struct elevator_queue *e = q->elevator;
  226. BUG_ON(ELV_ON_HASH(rq));
  227. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  228. }
  229. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  230. {
  231. __elv_rqhash_del(rq);
  232. elv_rqhash_add(q, rq);
  233. }
  234. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  235. {
  236. struct elevator_queue *e = q->elevator;
  237. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  238. struct hlist_node *next;
  239. struct request *rq;
  240. hlist_for_each_entry_safe(rq, next, hash_list, hash) {
  241. BUG_ON(!ELV_ON_HASH(rq));
  242. if (unlikely(!rq_mergeable(rq))) {
  243. __elv_rqhash_del(rq);
  244. continue;
  245. }
  246. if (rq_hash_key(rq) == offset)
  247. return rq;
  248. }
  249. return NULL;
  250. }
  251. /*
  252. * RB-tree support functions for inserting/lookup/removal of requests
  253. * in a sorted RB tree.
  254. */
  255. void elv_rb_add(struct rb_root *root, struct request *rq)
  256. {
  257. struct rb_node **p = &root->rb_node;
  258. struct rb_node *parent = NULL;
  259. struct request *__rq;
  260. while (*p) {
  261. parent = *p;
  262. __rq = rb_entry(parent, struct request, rb_node);
  263. if (blk_rq_pos(rq) < blk_rq_pos(__rq))
  264. p = &(*p)->rb_left;
  265. else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
  266. p = &(*p)->rb_right;
  267. }
  268. rb_link_node(&rq->rb_node, parent, p);
  269. rb_insert_color(&rq->rb_node, root);
  270. }
  271. EXPORT_SYMBOL(elv_rb_add);
  272. void elv_rb_del(struct rb_root *root, struct request *rq)
  273. {
  274. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  275. rb_erase(&rq->rb_node, root);
  276. RB_CLEAR_NODE(&rq->rb_node);
  277. }
  278. EXPORT_SYMBOL(elv_rb_del);
  279. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  280. {
  281. struct rb_node *n = root->rb_node;
  282. struct request *rq;
  283. while (n) {
  284. rq = rb_entry(n, struct request, rb_node);
  285. if (sector < blk_rq_pos(rq))
  286. n = n->rb_left;
  287. else if (sector > blk_rq_pos(rq))
  288. n = n->rb_right;
  289. else
  290. return rq;
  291. }
  292. return NULL;
  293. }
  294. EXPORT_SYMBOL(elv_rb_find);
  295. /*
  296. * Insert rq into dispatch queue of q. Queue lock must be held on
  297. * entry. rq is sort instead into the dispatch queue. To be used by
  298. * specific elevators.
  299. */
  300. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  301. {
  302. sector_t boundary;
  303. struct list_head *entry;
  304. int stop_flags;
  305. if (q->last_merge == rq)
  306. q->last_merge = NULL;
  307. elv_rqhash_del(q, rq);
  308. q->nr_sorted--;
  309. boundary = q->end_sector;
  310. stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
  311. list_for_each_prev(entry, &q->queue_head) {
  312. struct request *pos = list_entry_rq(entry);
  313. if ((rq->cmd_flags & REQ_DISCARD) !=
  314. (pos->cmd_flags & REQ_DISCARD))
  315. break;
  316. if (rq_data_dir(rq) != rq_data_dir(pos))
  317. break;
  318. if (pos->cmd_flags & stop_flags)
  319. break;
  320. if (blk_rq_pos(rq) >= boundary) {
  321. if (blk_rq_pos(pos) < boundary)
  322. continue;
  323. } else {
  324. if (blk_rq_pos(pos) >= boundary)
  325. break;
  326. }
  327. if (blk_rq_pos(rq) >= blk_rq_pos(pos))
  328. break;
  329. }
  330. list_add(&rq->queuelist, entry);
  331. }
  332. EXPORT_SYMBOL(elv_dispatch_sort);
  333. /*
  334. * Insert rq into dispatch queue of q. Queue lock must be held on
  335. * entry. rq is added to the back of the dispatch queue. To be used by
  336. * specific elevators.
  337. */
  338. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  339. {
  340. if (q->last_merge == rq)
  341. q->last_merge = NULL;
  342. elv_rqhash_del(q, rq);
  343. q->nr_sorted--;
  344. q->end_sector = rq_end_sector(rq);
  345. q->boundary_rq = rq;
  346. list_add_tail(&rq->queuelist, &q->queue_head);
  347. }
  348. EXPORT_SYMBOL(elv_dispatch_add_tail);
  349. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  350. {
  351. struct elevator_queue *e = q->elevator;
  352. struct request *__rq;
  353. int ret;
  354. /*
  355. * Levels of merges:
  356. * nomerges: No merges at all attempted
  357. * noxmerges: Only simple one-hit cache try
  358. * merges: All merge tries attempted
  359. */
  360. if (blk_queue_nomerges(q))
  361. return ELEVATOR_NO_MERGE;
  362. /*
  363. * First try one-hit cache.
  364. */
  365. if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
  366. ret = blk_try_merge(q->last_merge, bio);
  367. if (ret != ELEVATOR_NO_MERGE) {
  368. *req = q->last_merge;
  369. return ret;
  370. }
  371. }
  372. if (blk_queue_noxmerges(q))
  373. return ELEVATOR_NO_MERGE;
  374. /*
  375. * See if our hash lookup can find a potential backmerge.
  376. */
  377. __rq = elv_rqhash_find(q, bio->bi_sector);
  378. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  379. *req = __rq;
  380. return ELEVATOR_BACK_MERGE;
  381. }
  382. if (e->type->ops.elevator_merge_fn)
  383. return e->type->ops.elevator_merge_fn(q, req, bio);
  384. return ELEVATOR_NO_MERGE;
  385. }
  386. /*
  387. * Attempt to do an insertion back merge. Only check for the case where
  388. * we can append 'rq' to an existing request, so we can throw 'rq' away
  389. * afterwards.
  390. *
  391. * Returns true if we merged, false otherwise
  392. */
  393. static bool elv_attempt_insert_merge(struct request_queue *q,
  394. struct request *rq)
  395. {
  396. struct request *__rq;
  397. bool ret;
  398. if (blk_queue_nomerges(q))
  399. return false;
  400. /*
  401. * First try one-hit cache.
  402. */
  403. if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
  404. return true;
  405. if (blk_queue_noxmerges(q))
  406. return false;
  407. ret = false;
  408. /*
  409. * See if our hash lookup can find a potential backmerge.
  410. */
  411. while (1) {
  412. __rq = elv_rqhash_find(q, blk_rq_pos(rq));
  413. if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
  414. break;
  415. /* The merged request could be merged with others, try again */
  416. ret = true;
  417. rq = __rq;
  418. }
  419. return ret;
  420. }
  421. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  422. {
  423. struct elevator_queue *e = q->elevator;
  424. if (e->type->ops.elevator_merged_fn)
  425. e->type->ops.elevator_merged_fn(q, rq, type);
  426. if (type == ELEVATOR_BACK_MERGE)
  427. elv_rqhash_reposition(q, rq);
  428. q->last_merge = rq;
  429. }
  430. void elv_merge_requests(struct request_queue *q, struct request *rq,
  431. struct request *next)
  432. {
  433. struct elevator_queue *e = q->elevator;
  434. const int next_sorted = next->cmd_flags & REQ_SORTED;
  435. if (next_sorted && e->type->ops.elevator_merge_req_fn)
  436. e->type->ops.elevator_merge_req_fn(q, rq, next);
  437. elv_rqhash_reposition(q, rq);
  438. if (next_sorted) {
  439. elv_rqhash_del(q, next);
  440. q->nr_sorted--;
  441. }
  442. q->last_merge = rq;
  443. }
  444. void elv_bio_merged(struct request_queue *q, struct request *rq,
  445. struct bio *bio)
  446. {
  447. struct elevator_queue *e = q->elevator;
  448. if (e->type->ops.elevator_bio_merged_fn)
  449. e->type->ops.elevator_bio_merged_fn(q, rq, bio);
  450. }
  451. void elv_requeue_request(struct request_queue *q, struct request *rq)
  452. {
  453. /*
  454. * it already went through dequeue, we need to decrement the
  455. * in_flight count again
  456. */
  457. if (blk_account_rq(rq)) {
  458. q->in_flight[rq_is_sync(rq)]--;
  459. if (rq->cmd_flags & REQ_SORTED)
  460. elv_deactivate_rq(q, rq);
  461. }
  462. rq->cmd_flags &= ~REQ_STARTED;
  463. __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
  464. }
  465. void elv_drain_elevator(struct request_queue *q)
  466. {
  467. static int printed;
  468. lockdep_assert_held(q->queue_lock);
  469. while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
  470. ;
  471. if (q->nr_sorted && printed++ < 10) {
  472. printk(KERN_ERR "%s: forced dispatching is broken "
  473. "(nr_sorted=%u), please report this\n",
  474. q->elevator->type->elevator_name, q->nr_sorted);
  475. }
  476. }
  477. void __elv_add_request(struct request_queue *q, struct request *rq, int where)
  478. {
  479. trace_block_rq_insert(q, rq);
  480. rq->q = q;
  481. if (rq->cmd_flags & REQ_SOFTBARRIER) {
  482. /* barriers are scheduling boundary, update end_sector */
  483. if (rq->cmd_type == REQ_TYPE_FS) {
  484. q->end_sector = rq_end_sector(rq);
  485. q->boundary_rq = rq;
  486. }
  487. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  488. (where == ELEVATOR_INSERT_SORT ||
  489. where == ELEVATOR_INSERT_SORT_MERGE))
  490. where = ELEVATOR_INSERT_BACK;
  491. switch (where) {
  492. case ELEVATOR_INSERT_REQUEUE:
  493. case ELEVATOR_INSERT_FRONT:
  494. rq->cmd_flags |= REQ_SOFTBARRIER;
  495. list_add(&rq->queuelist, &q->queue_head);
  496. break;
  497. case ELEVATOR_INSERT_BACK:
  498. rq->cmd_flags |= REQ_SOFTBARRIER;
  499. elv_drain_elevator(q);
  500. list_add_tail(&rq->queuelist, &q->queue_head);
  501. /*
  502. * We kick the queue here for the following reasons.
  503. * - The elevator might have returned NULL previously
  504. * to delay requests and returned them now. As the
  505. * queue wasn't empty before this request, ll_rw_blk
  506. * won't run the queue on return, resulting in hang.
  507. * - Usually, back inserted requests won't be merged
  508. * with anything. There's no point in delaying queue
  509. * processing.
  510. */
  511. __blk_run_queue(q);
  512. break;
  513. case ELEVATOR_INSERT_SORT_MERGE:
  514. /*
  515. * If we succeed in merging this request with one in the
  516. * queue already, we are done - rq has now been freed,
  517. * so no need to do anything further.
  518. */
  519. if (elv_attempt_insert_merge(q, rq))
  520. break;
  521. case ELEVATOR_INSERT_SORT:
  522. BUG_ON(rq->cmd_type != REQ_TYPE_FS);
  523. rq->cmd_flags |= REQ_SORTED;
  524. q->nr_sorted++;
  525. if (rq_mergeable(rq)) {
  526. elv_rqhash_add(q, rq);
  527. if (!q->last_merge)
  528. q->last_merge = rq;
  529. }
  530. /*
  531. * Some ioscheds (cfq) run q->request_fn directly, so
  532. * rq cannot be accessed after calling
  533. * elevator_add_req_fn.
  534. */
  535. q->elevator->type->ops.elevator_add_req_fn(q, rq);
  536. break;
  537. case ELEVATOR_INSERT_FLUSH:
  538. rq->cmd_flags |= REQ_SOFTBARRIER;
  539. blk_insert_flush(rq);
  540. break;
  541. default:
  542. printk(KERN_ERR "%s: bad insertion point %d\n",
  543. __func__, where);
  544. BUG();
  545. }
  546. }
  547. EXPORT_SYMBOL(__elv_add_request);
  548. void elv_add_request(struct request_queue *q, struct request *rq, int where)
  549. {
  550. unsigned long flags;
  551. spin_lock_irqsave(q->queue_lock, flags);
  552. __elv_add_request(q, rq, where);
  553. spin_unlock_irqrestore(q->queue_lock, flags);
  554. }
  555. EXPORT_SYMBOL(elv_add_request);
  556. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  557. {
  558. struct elevator_queue *e = q->elevator;
  559. if (e->type->ops.elevator_latter_req_fn)
  560. return e->type->ops.elevator_latter_req_fn(q, rq);
  561. return NULL;
  562. }
  563. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  564. {
  565. struct elevator_queue *e = q->elevator;
  566. if (e->type->ops.elevator_former_req_fn)
  567. return e->type->ops.elevator_former_req_fn(q, rq);
  568. return NULL;
  569. }
  570. int elv_set_request(struct request_queue *q, struct request *rq,
  571. struct bio *bio, gfp_t gfp_mask)
  572. {
  573. struct elevator_queue *e = q->elevator;
  574. if (e->type->ops.elevator_set_req_fn)
  575. return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask);
  576. return 0;
  577. }
  578. void elv_put_request(struct request_queue *q, struct request *rq)
  579. {
  580. struct elevator_queue *e = q->elevator;
  581. if (e->type->ops.elevator_put_req_fn)
  582. e->type->ops.elevator_put_req_fn(rq);
  583. }
  584. int elv_may_queue(struct request_queue *q, int rw)
  585. {
  586. struct elevator_queue *e = q->elevator;
  587. if (e->type->ops.elevator_may_queue_fn)
  588. return e->type->ops.elevator_may_queue_fn(q, rw);
  589. return ELV_MQUEUE_MAY;
  590. }
  591. void elv_abort_queue(struct request_queue *q)
  592. {
  593. struct request *rq;
  594. blk_abort_flushes(q);
  595. while (!list_empty(&q->queue_head)) {
  596. rq = list_entry_rq(q->queue_head.next);
  597. rq->cmd_flags |= REQ_QUIET;
  598. trace_block_rq_abort(q, rq);
  599. /*
  600. * Mark this request as started so we don't trigger
  601. * any debug logic in the end I/O path.
  602. */
  603. blk_start_request(rq);
  604. __blk_end_request_all(rq, -EIO);
  605. }
  606. }
  607. EXPORT_SYMBOL(elv_abort_queue);
  608. void elv_completed_request(struct request_queue *q, struct request *rq)
  609. {
  610. struct elevator_queue *e = q->elevator;
  611. /*
  612. * request is released from the driver, io must be done
  613. */
  614. if (blk_account_rq(rq)) {
  615. q->in_flight[rq_is_sync(rq)]--;
  616. if ((rq->cmd_flags & REQ_SORTED) &&
  617. e->type->ops.elevator_completed_req_fn)
  618. e->type->ops.elevator_completed_req_fn(q, rq);
  619. }
  620. }
  621. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  622. static ssize_t
  623. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  624. {
  625. struct elv_fs_entry *entry = to_elv(attr);
  626. struct elevator_queue *e;
  627. ssize_t error;
  628. if (!entry->show)
  629. return -EIO;
  630. e = container_of(kobj, struct elevator_queue, kobj);
  631. mutex_lock(&e->sysfs_lock);
  632. error = e->type ? entry->show(e, page) : -ENOENT;
  633. mutex_unlock(&e->sysfs_lock);
  634. return error;
  635. }
  636. static ssize_t
  637. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  638. const char *page, size_t length)
  639. {
  640. struct elv_fs_entry *entry = to_elv(attr);
  641. struct elevator_queue *e;
  642. ssize_t error;
  643. if (!entry->store)
  644. return -EIO;
  645. e = container_of(kobj, struct elevator_queue, kobj);
  646. mutex_lock(&e->sysfs_lock);
  647. error = e->type ? entry->store(e, page, length) : -ENOENT;
  648. mutex_unlock(&e->sysfs_lock);
  649. return error;
  650. }
  651. static const struct sysfs_ops elv_sysfs_ops = {
  652. .show = elv_attr_show,
  653. .store = elv_attr_store,
  654. };
  655. static struct kobj_type elv_ktype = {
  656. .sysfs_ops = &elv_sysfs_ops,
  657. .release = elevator_release,
  658. };
  659. int elv_register_queue(struct request_queue *q)
  660. {
  661. struct elevator_queue *e = q->elevator;
  662. int error;
  663. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  664. if (!error) {
  665. struct elv_fs_entry *attr = e->type->elevator_attrs;
  666. if (attr) {
  667. while (attr->attr.name) {
  668. if (sysfs_create_file(&e->kobj, &attr->attr))
  669. break;
  670. attr++;
  671. }
  672. }
  673. kobject_uevent(&e->kobj, KOBJ_ADD);
  674. e->registered = 1;
  675. }
  676. return error;
  677. }
  678. EXPORT_SYMBOL(elv_register_queue);
  679. void elv_unregister_queue(struct request_queue *q)
  680. {
  681. if (q) {
  682. struct elevator_queue *e = q->elevator;
  683. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  684. kobject_del(&e->kobj);
  685. e->registered = 0;
  686. }
  687. }
  688. EXPORT_SYMBOL(elv_unregister_queue);
  689. int elv_register(struct elevator_type *e)
  690. {
  691. char *def = "";
  692. /* create icq_cache if requested */
  693. if (e->icq_size) {
  694. if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
  695. WARN_ON(e->icq_align < __alignof__(struct io_cq)))
  696. return -EINVAL;
  697. snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
  698. "%s_io_cq", e->elevator_name);
  699. e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
  700. e->icq_align, 0, NULL);
  701. if (!e->icq_cache)
  702. return -ENOMEM;
  703. }
  704. /* register, don't allow duplicate names */
  705. spin_lock(&elv_list_lock);
  706. if (elevator_find(e->elevator_name)) {
  707. spin_unlock(&elv_list_lock);
  708. if (e->icq_cache)
  709. kmem_cache_destroy(e->icq_cache);
  710. return -EBUSY;
  711. }
  712. list_add_tail(&e->list, &elv_list);
  713. spin_unlock(&elv_list_lock);
  714. /* print pretty message */
  715. if (!strcmp(e->elevator_name, chosen_elevator) ||
  716. (!*chosen_elevator &&
  717. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  718. def = " (default)";
  719. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  720. def);
  721. return 0;
  722. }
  723. EXPORT_SYMBOL_GPL(elv_register);
  724. void elv_unregister(struct elevator_type *e)
  725. {
  726. /* unregister */
  727. spin_lock(&elv_list_lock);
  728. list_del_init(&e->list);
  729. spin_unlock(&elv_list_lock);
  730. /*
  731. * Destroy icq_cache if it exists. icq's are RCU managed. Make
  732. * sure all RCU operations are complete before proceeding.
  733. */
  734. if (e->icq_cache) {
  735. rcu_barrier();
  736. kmem_cache_destroy(e->icq_cache);
  737. e->icq_cache = NULL;
  738. }
  739. }
  740. EXPORT_SYMBOL_GPL(elv_unregister);
  741. /*
  742. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  743. * we don't free the old io scheduler, before we have allocated what we
  744. * need for the new one. this way we have a chance of going back to the old
  745. * one, if the new one fails init for some reason.
  746. */
  747. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  748. {
  749. struct elevator_queue *old = q->elevator;
  750. bool registered = old->registered;
  751. int err;
  752. /*
  753. * Turn on BYPASS and drain all requests w/ elevator private data.
  754. * Block layer doesn't call into a quiesced elevator - all requests
  755. * are directly put on the dispatch list without elevator data
  756. * using INSERT_BACK. All requests have SOFTBARRIER set and no
  757. * merge happens either.
  758. */
  759. blk_queue_bypass_start(q);
  760. /* unregister and clear all auxiliary data of the old elevator */
  761. if (registered)
  762. elv_unregister_queue(q);
  763. spin_lock_irq(q->queue_lock);
  764. ioc_clear_queue(q);
  765. spin_unlock_irq(q->queue_lock);
  766. /* allocate, init and register new elevator */
  767. err = -ENOMEM;
  768. q->elevator = elevator_alloc(q, new_e);
  769. if (!q->elevator)
  770. goto fail_init;
  771. err = new_e->ops.elevator_init_fn(q);
  772. if (err) {
  773. kobject_put(&q->elevator->kobj);
  774. goto fail_init;
  775. }
  776. if (registered) {
  777. err = elv_register_queue(q);
  778. if (err)
  779. goto fail_register;
  780. }
  781. /* done, kill the old one and finish */
  782. elevator_exit(old);
  783. blk_queue_bypass_end(q);
  784. blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
  785. return 0;
  786. fail_register:
  787. elevator_exit(q->elevator);
  788. fail_init:
  789. /* switch failed, restore and re-register old elevator */
  790. q->elevator = old;
  791. elv_register_queue(q);
  792. blk_queue_bypass_end(q);
  793. return err;
  794. }
  795. /*
  796. * Switch this queue to the given IO scheduler.
  797. */
  798. int elevator_change(struct request_queue *q, const char *name)
  799. {
  800. char elevator_name[ELV_NAME_MAX];
  801. struct elevator_type *e;
  802. if (!q->elevator)
  803. return -ENXIO;
  804. strlcpy(elevator_name, name, sizeof(elevator_name));
  805. e = elevator_get(strstrip(elevator_name), true);
  806. if (!e) {
  807. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  808. return -EINVAL;
  809. }
  810. if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
  811. elevator_put(e);
  812. return 0;
  813. }
  814. return elevator_switch(q, e);
  815. }
  816. EXPORT_SYMBOL(elevator_change);
  817. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  818. size_t count)
  819. {
  820. int ret;
  821. if (!q->elevator)
  822. return count;
  823. ret = elevator_change(q, name);
  824. if (!ret)
  825. return count;
  826. printk(KERN_ERR "elevator: switch to %s failed\n", name);
  827. return ret;
  828. }
  829. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  830. {
  831. struct elevator_queue *e = q->elevator;
  832. struct elevator_type *elv;
  833. struct elevator_type *__e;
  834. int len = 0;
  835. if (!q->elevator || !blk_queue_stackable(q))
  836. return sprintf(name, "none\n");
  837. elv = e->type;
  838. spin_lock(&elv_list_lock);
  839. list_for_each_entry(__e, &elv_list, list) {
  840. if (!strcmp(elv->elevator_name, __e->elevator_name))
  841. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  842. else
  843. len += sprintf(name+len, "%s ", __e->elevator_name);
  844. }
  845. spin_unlock(&elv_list_lock);
  846. len += sprintf(len+name, "\n");
  847. return len;
  848. }
  849. struct request *elv_rb_former_request(struct request_queue *q,
  850. struct request *rq)
  851. {
  852. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  853. if (rbprev)
  854. return rb_entry_rq(rbprev);
  855. return NULL;
  856. }
  857. EXPORT_SYMBOL(elv_rb_former_request);
  858. struct request *elv_rb_latter_request(struct request_queue *q,
  859. struct request *rq)
  860. {
  861. struct rb_node *rbnext = rb_next(&rq->rb_node);
  862. if (rbnext)
  863. return rb_entry_rq(rbnext);
  864. return NULL;
  865. }
  866. EXPORT_SYMBOL(elv_rb_latter_request);