mmu.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
  159. {
  160. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  161. trace_mark_mmio_spte(sptep, gfn, access);
  162. mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
  163. }
  164. static bool is_mmio_spte(u64 spte)
  165. {
  166. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  167. }
  168. static gfn_t get_mmio_spte_gfn(u64 spte)
  169. {
  170. return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
  171. }
  172. static unsigned get_mmio_spte_access(u64 spte)
  173. {
  174. return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
  175. }
  176. static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
  177. {
  178. if (unlikely(is_noslot_pfn(pfn))) {
  179. mark_mmio_spte(sptep, gfn, access);
  180. return true;
  181. }
  182. return false;
  183. }
  184. static inline u64 rsvd_bits(int s, int e)
  185. {
  186. return ((1ULL << (e - s + 1)) - 1) << s;
  187. }
  188. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  189. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  190. {
  191. shadow_user_mask = user_mask;
  192. shadow_accessed_mask = accessed_mask;
  193. shadow_dirty_mask = dirty_mask;
  194. shadow_nx_mask = nx_mask;
  195. shadow_x_mask = x_mask;
  196. }
  197. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  198. static int is_cpuid_PSE36(void)
  199. {
  200. return 1;
  201. }
  202. static int is_nx(struct kvm_vcpu *vcpu)
  203. {
  204. return vcpu->arch.efer & EFER_NX;
  205. }
  206. static int is_shadow_present_pte(u64 pte)
  207. {
  208. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  209. }
  210. static int is_large_pte(u64 pte)
  211. {
  212. return pte & PT_PAGE_SIZE_MASK;
  213. }
  214. static int is_dirty_gpte(unsigned long pte)
  215. {
  216. return pte & PT_DIRTY_MASK;
  217. }
  218. static int is_rmap_spte(u64 pte)
  219. {
  220. return is_shadow_present_pte(pte);
  221. }
  222. static int is_last_spte(u64 pte, int level)
  223. {
  224. if (level == PT_PAGE_TABLE_LEVEL)
  225. return 1;
  226. if (is_large_pte(pte))
  227. return 1;
  228. return 0;
  229. }
  230. static pfn_t spte_to_pfn(u64 pte)
  231. {
  232. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  233. }
  234. static gfn_t pse36_gfn_delta(u32 gpte)
  235. {
  236. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  237. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  238. }
  239. #ifdef CONFIG_X86_64
  240. static void __set_spte(u64 *sptep, u64 spte)
  241. {
  242. *sptep = spte;
  243. }
  244. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  245. {
  246. *sptep = spte;
  247. }
  248. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  249. {
  250. return xchg(sptep, spte);
  251. }
  252. static u64 __get_spte_lockless(u64 *sptep)
  253. {
  254. return ACCESS_ONCE(*sptep);
  255. }
  256. static bool __check_direct_spte_mmio_pf(u64 spte)
  257. {
  258. /* It is valid if the spte is zapped. */
  259. return spte == 0ull;
  260. }
  261. #else
  262. union split_spte {
  263. struct {
  264. u32 spte_low;
  265. u32 spte_high;
  266. };
  267. u64 spte;
  268. };
  269. static void count_spte_clear(u64 *sptep, u64 spte)
  270. {
  271. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  272. if (is_shadow_present_pte(spte))
  273. return;
  274. /* Ensure the spte is completely set before we increase the count */
  275. smp_wmb();
  276. sp->clear_spte_count++;
  277. }
  278. static void __set_spte(u64 *sptep, u64 spte)
  279. {
  280. union split_spte *ssptep, sspte;
  281. ssptep = (union split_spte *)sptep;
  282. sspte = (union split_spte)spte;
  283. ssptep->spte_high = sspte.spte_high;
  284. /*
  285. * If we map the spte from nonpresent to present, We should store
  286. * the high bits firstly, then set present bit, so cpu can not
  287. * fetch this spte while we are setting the spte.
  288. */
  289. smp_wmb();
  290. ssptep->spte_low = sspte.spte_low;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. union split_spte *ssptep, sspte;
  295. ssptep = (union split_spte *)sptep;
  296. sspte = (union split_spte)spte;
  297. ssptep->spte_low = sspte.spte_low;
  298. /*
  299. * If we map the spte from present to nonpresent, we should clear
  300. * present bit firstly to avoid vcpu fetch the old high bits.
  301. */
  302. smp_wmb();
  303. ssptep->spte_high = sspte.spte_high;
  304. count_spte_clear(sptep, spte);
  305. }
  306. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  307. {
  308. union split_spte *ssptep, sspte, orig;
  309. ssptep = (union split_spte *)sptep;
  310. sspte = (union split_spte)spte;
  311. /* xchg acts as a barrier before the setting of the high bits */
  312. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  313. orig.spte_high = ssptep->spte_high;
  314. ssptep->spte_high = sspte.spte_high;
  315. count_spte_clear(sptep, spte);
  316. return orig.spte;
  317. }
  318. /*
  319. * The idea using the light way get the spte on x86_32 guest is from
  320. * gup_get_pte(arch/x86/mm/gup.c).
  321. * The difference is we can not catch the spte tlb flush if we leave
  322. * guest mode, so we emulate it by increase clear_spte_count when spte
  323. * is cleared.
  324. */
  325. static u64 __get_spte_lockless(u64 *sptep)
  326. {
  327. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  328. union split_spte spte, *orig = (union split_spte *)sptep;
  329. int count;
  330. retry:
  331. count = sp->clear_spte_count;
  332. smp_rmb();
  333. spte.spte_low = orig->spte_low;
  334. smp_rmb();
  335. spte.spte_high = orig->spte_high;
  336. smp_rmb();
  337. if (unlikely(spte.spte_low != orig->spte_low ||
  338. count != sp->clear_spte_count))
  339. goto retry;
  340. return spte.spte;
  341. }
  342. static bool __check_direct_spte_mmio_pf(u64 spte)
  343. {
  344. union split_spte sspte = (union split_spte)spte;
  345. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  346. /* It is valid if the spte is zapped. */
  347. if (spte == 0ull)
  348. return true;
  349. /* It is valid if the spte is being zapped. */
  350. if (sspte.spte_low == 0ull &&
  351. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  352. return true;
  353. return false;
  354. }
  355. #endif
  356. static bool spte_is_locklessly_modifiable(u64 spte)
  357. {
  358. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  359. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  360. }
  361. static bool spte_has_volatile_bits(u64 spte)
  362. {
  363. /*
  364. * Always atomicly update spte if it can be updated
  365. * out of mmu-lock, it can ensure dirty bit is not lost,
  366. * also, it can help us to get a stable is_writable_pte()
  367. * to ensure tlb flush is not missed.
  368. */
  369. if (spte_is_locklessly_modifiable(spte))
  370. return true;
  371. if (!shadow_accessed_mask)
  372. return false;
  373. if (!is_shadow_present_pte(spte))
  374. return false;
  375. if ((spte & shadow_accessed_mask) &&
  376. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  377. return false;
  378. return true;
  379. }
  380. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  381. {
  382. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  383. }
  384. /* Rules for using mmu_spte_set:
  385. * Set the sptep from nonpresent to present.
  386. * Note: the sptep being assigned *must* be either not present
  387. * or in a state where the hardware will not attempt to update
  388. * the spte.
  389. */
  390. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  391. {
  392. WARN_ON(is_shadow_present_pte(*sptep));
  393. __set_spte(sptep, new_spte);
  394. }
  395. /* Rules for using mmu_spte_update:
  396. * Update the state bits, it means the mapped pfn is not changged.
  397. *
  398. * Whenever we overwrite a writable spte with a read-only one we
  399. * should flush remote TLBs. Otherwise rmap_write_protect
  400. * will find a read-only spte, even though the writable spte
  401. * might be cached on a CPU's TLB, the return value indicates this
  402. * case.
  403. */
  404. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  405. {
  406. u64 old_spte = *sptep;
  407. bool ret = false;
  408. WARN_ON(!is_rmap_spte(new_spte));
  409. if (!is_shadow_present_pte(old_spte)) {
  410. mmu_spte_set(sptep, new_spte);
  411. return ret;
  412. }
  413. if (!spte_has_volatile_bits(old_spte))
  414. __update_clear_spte_fast(sptep, new_spte);
  415. else
  416. old_spte = __update_clear_spte_slow(sptep, new_spte);
  417. /*
  418. * For the spte updated out of mmu-lock is safe, since
  419. * we always atomicly update it, see the comments in
  420. * spte_has_volatile_bits().
  421. */
  422. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  423. ret = true;
  424. if (!shadow_accessed_mask)
  425. return ret;
  426. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  427. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  428. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  429. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  430. return ret;
  431. }
  432. /*
  433. * Rules for using mmu_spte_clear_track_bits:
  434. * It sets the sptep from present to nonpresent, and track the
  435. * state bits, it is used to clear the last level sptep.
  436. */
  437. static int mmu_spte_clear_track_bits(u64 *sptep)
  438. {
  439. pfn_t pfn;
  440. u64 old_spte = *sptep;
  441. if (!spte_has_volatile_bits(old_spte))
  442. __update_clear_spte_fast(sptep, 0ull);
  443. else
  444. old_spte = __update_clear_spte_slow(sptep, 0ull);
  445. if (!is_rmap_spte(old_spte))
  446. return 0;
  447. pfn = spte_to_pfn(old_spte);
  448. /*
  449. * KVM does not hold the refcount of the page used by
  450. * kvm mmu, before reclaiming the page, we should
  451. * unmap it from mmu first.
  452. */
  453. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  454. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  455. kvm_set_pfn_accessed(pfn);
  456. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  457. kvm_set_pfn_dirty(pfn);
  458. return 1;
  459. }
  460. /*
  461. * Rules for using mmu_spte_clear_no_track:
  462. * Directly clear spte without caring the state bits of sptep,
  463. * it is used to set the upper level spte.
  464. */
  465. static void mmu_spte_clear_no_track(u64 *sptep)
  466. {
  467. __update_clear_spte_fast(sptep, 0ull);
  468. }
  469. static u64 mmu_spte_get_lockless(u64 *sptep)
  470. {
  471. return __get_spte_lockless(sptep);
  472. }
  473. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  474. {
  475. /*
  476. * Prevent page table teardown by making any free-er wait during
  477. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  478. */
  479. local_irq_disable();
  480. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  481. /*
  482. * Make sure a following spte read is not reordered ahead of the write
  483. * to vcpu->mode.
  484. */
  485. smp_mb();
  486. }
  487. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  488. {
  489. /*
  490. * Make sure the write to vcpu->mode is not reordered in front of
  491. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  492. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  493. */
  494. smp_mb();
  495. vcpu->mode = OUTSIDE_GUEST_MODE;
  496. local_irq_enable();
  497. }
  498. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  499. struct kmem_cache *base_cache, int min)
  500. {
  501. void *obj;
  502. if (cache->nobjs >= min)
  503. return 0;
  504. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  505. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  506. if (!obj)
  507. return -ENOMEM;
  508. cache->objects[cache->nobjs++] = obj;
  509. }
  510. return 0;
  511. }
  512. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  513. {
  514. return cache->nobjs;
  515. }
  516. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  517. struct kmem_cache *cache)
  518. {
  519. while (mc->nobjs)
  520. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  521. }
  522. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  523. int min)
  524. {
  525. void *page;
  526. if (cache->nobjs >= min)
  527. return 0;
  528. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  529. page = (void *)__get_free_page(GFP_KERNEL);
  530. if (!page)
  531. return -ENOMEM;
  532. cache->objects[cache->nobjs++] = page;
  533. }
  534. return 0;
  535. }
  536. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  537. {
  538. while (mc->nobjs)
  539. free_page((unsigned long)mc->objects[--mc->nobjs]);
  540. }
  541. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  542. {
  543. int r;
  544. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  545. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  546. if (r)
  547. goto out;
  548. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  549. if (r)
  550. goto out;
  551. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  552. mmu_page_header_cache, 4);
  553. out:
  554. return r;
  555. }
  556. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  557. {
  558. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  559. pte_list_desc_cache);
  560. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  561. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  562. mmu_page_header_cache);
  563. }
  564. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  565. {
  566. void *p;
  567. BUG_ON(!mc->nobjs);
  568. p = mc->objects[--mc->nobjs];
  569. return p;
  570. }
  571. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  572. {
  573. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  574. }
  575. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  576. {
  577. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  578. }
  579. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  580. {
  581. if (!sp->role.direct)
  582. return sp->gfns[index];
  583. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  584. }
  585. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  586. {
  587. if (sp->role.direct)
  588. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  589. else
  590. sp->gfns[index] = gfn;
  591. }
  592. /*
  593. * Return the pointer to the large page information for a given gfn,
  594. * handling slots that are not large page aligned.
  595. */
  596. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  597. struct kvm_memory_slot *slot,
  598. int level)
  599. {
  600. unsigned long idx;
  601. idx = gfn_to_index(gfn, slot->base_gfn, level);
  602. return &slot->arch.lpage_info[level - 2][idx];
  603. }
  604. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  605. {
  606. struct kvm_memory_slot *slot;
  607. struct kvm_lpage_info *linfo;
  608. int i;
  609. slot = gfn_to_memslot(kvm, gfn);
  610. for (i = PT_DIRECTORY_LEVEL;
  611. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  612. linfo = lpage_info_slot(gfn, slot, i);
  613. linfo->write_count += 1;
  614. }
  615. kvm->arch.indirect_shadow_pages++;
  616. }
  617. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  618. {
  619. struct kvm_memory_slot *slot;
  620. struct kvm_lpage_info *linfo;
  621. int i;
  622. slot = gfn_to_memslot(kvm, gfn);
  623. for (i = PT_DIRECTORY_LEVEL;
  624. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  625. linfo = lpage_info_slot(gfn, slot, i);
  626. linfo->write_count -= 1;
  627. WARN_ON(linfo->write_count < 0);
  628. }
  629. kvm->arch.indirect_shadow_pages--;
  630. }
  631. static int has_wrprotected_page(struct kvm *kvm,
  632. gfn_t gfn,
  633. int level)
  634. {
  635. struct kvm_memory_slot *slot;
  636. struct kvm_lpage_info *linfo;
  637. slot = gfn_to_memslot(kvm, gfn);
  638. if (slot) {
  639. linfo = lpage_info_slot(gfn, slot, level);
  640. return linfo->write_count;
  641. }
  642. return 1;
  643. }
  644. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  645. {
  646. unsigned long page_size;
  647. int i, ret = 0;
  648. page_size = kvm_host_page_size(kvm, gfn);
  649. for (i = PT_PAGE_TABLE_LEVEL;
  650. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  651. if (page_size >= KVM_HPAGE_SIZE(i))
  652. ret = i;
  653. else
  654. break;
  655. }
  656. return ret;
  657. }
  658. static struct kvm_memory_slot *
  659. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  660. bool no_dirty_log)
  661. {
  662. struct kvm_memory_slot *slot;
  663. slot = gfn_to_memslot(vcpu->kvm, gfn);
  664. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  665. (no_dirty_log && slot->dirty_bitmap))
  666. slot = NULL;
  667. return slot;
  668. }
  669. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  670. {
  671. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  672. }
  673. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  674. {
  675. int host_level, level, max_level;
  676. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  677. if (host_level == PT_PAGE_TABLE_LEVEL)
  678. return host_level;
  679. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  680. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  681. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  682. break;
  683. return level - 1;
  684. }
  685. /*
  686. * Pte mapping structures:
  687. *
  688. * If pte_list bit zero is zero, then pte_list point to the spte.
  689. *
  690. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  691. * pte_list_desc containing more mappings.
  692. *
  693. * Returns the number of pte entries before the spte was added or zero if
  694. * the spte was not added.
  695. *
  696. */
  697. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  698. unsigned long *pte_list)
  699. {
  700. struct pte_list_desc *desc;
  701. int i, count = 0;
  702. if (!*pte_list) {
  703. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  704. *pte_list = (unsigned long)spte;
  705. } else if (!(*pte_list & 1)) {
  706. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  707. desc = mmu_alloc_pte_list_desc(vcpu);
  708. desc->sptes[0] = (u64 *)*pte_list;
  709. desc->sptes[1] = spte;
  710. *pte_list = (unsigned long)desc | 1;
  711. ++count;
  712. } else {
  713. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  714. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  715. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  716. desc = desc->more;
  717. count += PTE_LIST_EXT;
  718. }
  719. if (desc->sptes[PTE_LIST_EXT-1]) {
  720. desc->more = mmu_alloc_pte_list_desc(vcpu);
  721. desc = desc->more;
  722. }
  723. for (i = 0; desc->sptes[i]; ++i)
  724. ++count;
  725. desc->sptes[i] = spte;
  726. }
  727. return count;
  728. }
  729. static void
  730. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  731. int i, struct pte_list_desc *prev_desc)
  732. {
  733. int j;
  734. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  735. ;
  736. desc->sptes[i] = desc->sptes[j];
  737. desc->sptes[j] = NULL;
  738. if (j != 0)
  739. return;
  740. if (!prev_desc && !desc->more)
  741. *pte_list = (unsigned long)desc->sptes[0];
  742. else
  743. if (prev_desc)
  744. prev_desc->more = desc->more;
  745. else
  746. *pte_list = (unsigned long)desc->more | 1;
  747. mmu_free_pte_list_desc(desc);
  748. }
  749. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  750. {
  751. struct pte_list_desc *desc;
  752. struct pte_list_desc *prev_desc;
  753. int i;
  754. if (!*pte_list) {
  755. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  756. BUG();
  757. } else if (!(*pte_list & 1)) {
  758. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  759. if ((u64 *)*pte_list != spte) {
  760. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  761. BUG();
  762. }
  763. *pte_list = 0;
  764. } else {
  765. rmap_printk("pte_list_remove: %p many->many\n", spte);
  766. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  767. prev_desc = NULL;
  768. while (desc) {
  769. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  770. if (desc->sptes[i] == spte) {
  771. pte_list_desc_remove_entry(pte_list,
  772. desc, i,
  773. prev_desc);
  774. return;
  775. }
  776. prev_desc = desc;
  777. desc = desc->more;
  778. }
  779. pr_err("pte_list_remove: %p many->many\n", spte);
  780. BUG();
  781. }
  782. }
  783. typedef void (*pte_list_walk_fn) (u64 *spte);
  784. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  785. {
  786. struct pte_list_desc *desc;
  787. int i;
  788. if (!*pte_list)
  789. return;
  790. if (!(*pte_list & 1))
  791. return fn((u64 *)*pte_list);
  792. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  793. while (desc) {
  794. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  795. fn(desc->sptes[i]);
  796. desc = desc->more;
  797. }
  798. }
  799. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  800. struct kvm_memory_slot *slot)
  801. {
  802. unsigned long idx;
  803. idx = gfn_to_index(gfn, slot->base_gfn, level);
  804. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  805. }
  806. /*
  807. * Take gfn and return the reverse mapping to it.
  808. */
  809. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  810. {
  811. struct kvm_memory_slot *slot;
  812. slot = gfn_to_memslot(kvm, gfn);
  813. return __gfn_to_rmap(gfn, level, slot);
  814. }
  815. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  816. {
  817. struct kvm_mmu_memory_cache *cache;
  818. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  819. return mmu_memory_cache_free_objects(cache);
  820. }
  821. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  822. {
  823. struct kvm_mmu_page *sp;
  824. unsigned long *rmapp;
  825. sp = page_header(__pa(spte));
  826. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  827. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  828. return pte_list_add(vcpu, spte, rmapp);
  829. }
  830. static void rmap_remove(struct kvm *kvm, u64 *spte)
  831. {
  832. struct kvm_mmu_page *sp;
  833. gfn_t gfn;
  834. unsigned long *rmapp;
  835. sp = page_header(__pa(spte));
  836. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  837. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  838. pte_list_remove(spte, rmapp);
  839. }
  840. /*
  841. * Used by the following functions to iterate through the sptes linked by a
  842. * rmap. All fields are private and not assumed to be used outside.
  843. */
  844. struct rmap_iterator {
  845. /* private fields */
  846. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  847. int pos; /* index of the sptep */
  848. };
  849. /*
  850. * Iteration must be started by this function. This should also be used after
  851. * removing/dropping sptes from the rmap link because in such cases the
  852. * information in the itererator may not be valid.
  853. *
  854. * Returns sptep if found, NULL otherwise.
  855. */
  856. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  857. {
  858. if (!rmap)
  859. return NULL;
  860. if (!(rmap & 1)) {
  861. iter->desc = NULL;
  862. return (u64 *)rmap;
  863. }
  864. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  865. iter->pos = 0;
  866. return iter->desc->sptes[iter->pos];
  867. }
  868. /*
  869. * Must be used with a valid iterator: e.g. after rmap_get_first().
  870. *
  871. * Returns sptep if found, NULL otherwise.
  872. */
  873. static u64 *rmap_get_next(struct rmap_iterator *iter)
  874. {
  875. if (iter->desc) {
  876. if (iter->pos < PTE_LIST_EXT - 1) {
  877. u64 *sptep;
  878. ++iter->pos;
  879. sptep = iter->desc->sptes[iter->pos];
  880. if (sptep)
  881. return sptep;
  882. }
  883. iter->desc = iter->desc->more;
  884. if (iter->desc) {
  885. iter->pos = 0;
  886. /* desc->sptes[0] cannot be NULL */
  887. return iter->desc->sptes[iter->pos];
  888. }
  889. }
  890. return NULL;
  891. }
  892. static void drop_spte(struct kvm *kvm, u64 *sptep)
  893. {
  894. if (mmu_spte_clear_track_bits(sptep))
  895. rmap_remove(kvm, sptep);
  896. }
  897. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  898. {
  899. if (is_large_pte(*sptep)) {
  900. WARN_ON(page_header(__pa(sptep))->role.level ==
  901. PT_PAGE_TABLE_LEVEL);
  902. drop_spte(kvm, sptep);
  903. --kvm->stat.lpages;
  904. return true;
  905. }
  906. return false;
  907. }
  908. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  909. {
  910. if (__drop_large_spte(vcpu->kvm, sptep))
  911. kvm_flush_remote_tlbs(vcpu->kvm);
  912. }
  913. /*
  914. * Write-protect on the specified @sptep, @pt_protect indicates whether
  915. * spte writ-protection is caused by protecting shadow page table.
  916. * @flush indicates whether tlb need be flushed.
  917. *
  918. * Note: write protection is difference between drity logging and spte
  919. * protection:
  920. * - for dirty logging, the spte can be set to writable at anytime if
  921. * its dirty bitmap is properly set.
  922. * - for spte protection, the spte can be writable only after unsync-ing
  923. * shadow page.
  924. *
  925. * Return true if the spte is dropped.
  926. */
  927. static bool
  928. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  929. {
  930. u64 spte = *sptep;
  931. if (!is_writable_pte(spte) &&
  932. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  933. return false;
  934. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  935. if (__drop_large_spte(kvm, sptep)) {
  936. *flush |= true;
  937. return true;
  938. }
  939. if (pt_protect)
  940. spte &= ~SPTE_MMU_WRITEABLE;
  941. spte = spte & ~PT_WRITABLE_MASK;
  942. *flush |= mmu_spte_update(sptep, spte);
  943. return false;
  944. }
  945. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  946. bool pt_protect)
  947. {
  948. u64 *sptep;
  949. struct rmap_iterator iter;
  950. bool flush = false;
  951. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  952. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  953. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  954. sptep = rmap_get_first(*rmapp, &iter);
  955. continue;
  956. }
  957. sptep = rmap_get_next(&iter);
  958. }
  959. return flush;
  960. }
  961. /**
  962. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  963. * @kvm: kvm instance
  964. * @slot: slot to protect
  965. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  966. * @mask: indicates which pages we should protect
  967. *
  968. * Used when we do not need to care about huge page mappings: e.g. during dirty
  969. * logging we do not have any such mappings.
  970. */
  971. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  972. struct kvm_memory_slot *slot,
  973. gfn_t gfn_offset, unsigned long mask)
  974. {
  975. unsigned long *rmapp;
  976. while (mask) {
  977. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  978. PT_PAGE_TABLE_LEVEL, slot);
  979. __rmap_write_protect(kvm, rmapp, false);
  980. /* clear the first set bit */
  981. mask &= mask - 1;
  982. }
  983. }
  984. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  985. {
  986. struct kvm_memory_slot *slot;
  987. unsigned long *rmapp;
  988. int i;
  989. bool write_protected = false;
  990. slot = gfn_to_memslot(kvm, gfn);
  991. for (i = PT_PAGE_TABLE_LEVEL;
  992. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  993. rmapp = __gfn_to_rmap(gfn, i, slot);
  994. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  995. }
  996. return write_protected;
  997. }
  998. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  999. struct kvm_memory_slot *slot, unsigned long data)
  1000. {
  1001. u64 *sptep;
  1002. struct rmap_iterator iter;
  1003. int need_tlb_flush = 0;
  1004. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1005. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1006. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1007. drop_spte(kvm, sptep);
  1008. need_tlb_flush = 1;
  1009. }
  1010. return need_tlb_flush;
  1011. }
  1012. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1013. struct kvm_memory_slot *slot, unsigned long data)
  1014. {
  1015. u64 *sptep;
  1016. struct rmap_iterator iter;
  1017. int need_flush = 0;
  1018. u64 new_spte;
  1019. pte_t *ptep = (pte_t *)data;
  1020. pfn_t new_pfn;
  1021. WARN_ON(pte_huge(*ptep));
  1022. new_pfn = pte_pfn(*ptep);
  1023. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1024. BUG_ON(!is_shadow_present_pte(*sptep));
  1025. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1026. need_flush = 1;
  1027. if (pte_write(*ptep)) {
  1028. drop_spte(kvm, sptep);
  1029. sptep = rmap_get_first(*rmapp, &iter);
  1030. } else {
  1031. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1032. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1033. new_spte &= ~PT_WRITABLE_MASK;
  1034. new_spte &= ~SPTE_HOST_WRITEABLE;
  1035. new_spte &= ~shadow_accessed_mask;
  1036. mmu_spte_clear_track_bits(sptep);
  1037. mmu_spte_set(sptep, new_spte);
  1038. sptep = rmap_get_next(&iter);
  1039. }
  1040. }
  1041. if (need_flush)
  1042. kvm_flush_remote_tlbs(kvm);
  1043. return 0;
  1044. }
  1045. static int kvm_handle_hva_range(struct kvm *kvm,
  1046. unsigned long start,
  1047. unsigned long end,
  1048. unsigned long data,
  1049. int (*handler)(struct kvm *kvm,
  1050. unsigned long *rmapp,
  1051. struct kvm_memory_slot *slot,
  1052. unsigned long data))
  1053. {
  1054. int j;
  1055. int ret = 0;
  1056. struct kvm_memslots *slots;
  1057. struct kvm_memory_slot *memslot;
  1058. slots = kvm_memslots(kvm);
  1059. kvm_for_each_memslot(memslot, slots) {
  1060. unsigned long hva_start, hva_end;
  1061. gfn_t gfn_start, gfn_end;
  1062. hva_start = max(start, memslot->userspace_addr);
  1063. hva_end = min(end, memslot->userspace_addr +
  1064. (memslot->npages << PAGE_SHIFT));
  1065. if (hva_start >= hva_end)
  1066. continue;
  1067. /*
  1068. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1069. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1070. */
  1071. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1072. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1073. for (j = PT_PAGE_TABLE_LEVEL;
  1074. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1075. unsigned long idx, idx_end;
  1076. unsigned long *rmapp;
  1077. /*
  1078. * {idx(page_j) | page_j intersects with
  1079. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1080. */
  1081. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1082. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1083. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1084. for (; idx <= idx_end; ++idx)
  1085. ret |= handler(kvm, rmapp++, memslot, data);
  1086. }
  1087. }
  1088. return ret;
  1089. }
  1090. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1091. unsigned long data,
  1092. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1093. struct kvm_memory_slot *slot,
  1094. unsigned long data))
  1095. {
  1096. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1097. }
  1098. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1099. {
  1100. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1101. }
  1102. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1103. {
  1104. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1105. }
  1106. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1107. {
  1108. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1109. }
  1110. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1111. struct kvm_memory_slot *slot, unsigned long data)
  1112. {
  1113. u64 *sptep;
  1114. struct rmap_iterator uninitialized_var(iter);
  1115. int young = 0;
  1116. /*
  1117. * In case of absence of EPT Access and Dirty Bits supports,
  1118. * emulate the accessed bit for EPT, by checking if this page has
  1119. * an EPT mapping, and clearing it if it does. On the next access,
  1120. * a new EPT mapping will be established.
  1121. * This has some overhead, but not as much as the cost of swapping
  1122. * out actively used pages or breaking up actively used hugepages.
  1123. */
  1124. if (!shadow_accessed_mask) {
  1125. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1126. goto out;
  1127. }
  1128. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1129. sptep = rmap_get_next(&iter)) {
  1130. BUG_ON(!is_shadow_present_pte(*sptep));
  1131. if (*sptep & shadow_accessed_mask) {
  1132. young = 1;
  1133. clear_bit((ffs(shadow_accessed_mask) - 1),
  1134. (unsigned long *)sptep);
  1135. }
  1136. }
  1137. out:
  1138. /* @data has hva passed to kvm_age_hva(). */
  1139. trace_kvm_age_page(data, slot, young);
  1140. return young;
  1141. }
  1142. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1143. struct kvm_memory_slot *slot, unsigned long data)
  1144. {
  1145. u64 *sptep;
  1146. struct rmap_iterator iter;
  1147. int young = 0;
  1148. /*
  1149. * If there's no access bit in the secondary pte set by the
  1150. * hardware it's up to gup-fast/gup to set the access bit in
  1151. * the primary pte or in the page structure.
  1152. */
  1153. if (!shadow_accessed_mask)
  1154. goto out;
  1155. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1156. sptep = rmap_get_next(&iter)) {
  1157. BUG_ON(!is_shadow_present_pte(*sptep));
  1158. if (*sptep & shadow_accessed_mask) {
  1159. young = 1;
  1160. break;
  1161. }
  1162. }
  1163. out:
  1164. return young;
  1165. }
  1166. #define RMAP_RECYCLE_THRESHOLD 1000
  1167. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1168. {
  1169. unsigned long *rmapp;
  1170. struct kvm_mmu_page *sp;
  1171. sp = page_header(__pa(spte));
  1172. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1173. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1174. kvm_flush_remote_tlbs(vcpu->kvm);
  1175. }
  1176. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1177. {
  1178. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1179. }
  1180. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1181. {
  1182. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1183. }
  1184. #ifdef MMU_DEBUG
  1185. static int is_empty_shadow_page(u64 *spt)
  1186. {
  1187. u64 *pos;
  1188. u64 *end;
  1189. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1190. if (is_shadow_present_pte(*pos)) {
  1191. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1192. pos, *pos);
  1193. return 0;
  1194. }
  1195. return 1;
  1196. }
  1197. #endif
  1198. /*
  1199. * This value is the sum of all of the kvm instances's
  1200. * kvm->arch.n_used_mmu_pages values. We need a global,
  1201. * aggregate version in order to make the slab shrinker
  1202. * faster
  1203. */
  1204. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1205. {
  1206. kvm->arch.n_used_mmu_pages += nr;
  1207. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1208. }
  1209. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1210. {
  1211. ASSERT(is_empty_shadow_page(sp->spt));
  1212. hlist_del(&sp->hash_link);
  1213. list_del(&sp->link);
  1214. free_page((unsigned long)sp->spt);
  1215. if (!sp->role.direct)
  1216. free_page((unsigned long)sp->gfns);
  1217. kmem_cache_free(mmu_page_header_cache, sp);
  1218. }
  1219. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1220. {
  1221. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1222. }
  1223. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1224. struct kvm_mmu_page *sp, u64 *parent_pte)
  1225. {
  1226. if (!parent_pte)
  1227. return;
  1228. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1229. }
  1230. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1231. u64 *parent_pte)
  1232. {
  1233. pte_list_remove(parent_pte, &sp->parent_ptes);
  1234. }
  1235. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1236. u64 *parent_pte)
  1237. {
  1238. mmu_page_remove_parent_pte(sp, parent_pte);
  1239. mmu_spte_clear_no_track(parent_pte);
  1240. }
  1241. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1242. u64 *parent_pte, int direct)
  1243. {
  1244. struct kvm_mmu_page *sp;
  1245. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1246. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1247. if (!direct)
  1248. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1249. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1250. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1251. sp->parent_ptes = 0;
  1252. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1253. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1254. return sp;
  1255. }
  1256. static void mark_unsync(u64 *spte);
  1257. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1258. {
  1259. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1260. }
  1261. static void mark_unsync(u64 *spte)
  1262. {
  1263. struct kvm_mmu_page *sp;
  1264. unsigned int index;
  1265. sp = page_header(__pa(spte));
  1266. index = spte - sp->spt;
  1267. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1268. return;
  1269. if (sp->unsync_children++)
  1270. return;
  1271. kvm_mmu_mark_parents_unsync(sp);
  1272. }
  1273. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1274. struct kvm_mmu_page *sp)
  1275. {
  1276. return 1;
  1277. }
  1278. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1279. {
  1280. }
  1281. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1282. struct kvm_mmu_page *sp, u64 *spte,
  1283. const void *pte)
  1284. {
  1285. WARN_ON(1);
  1286. }
  1287. #define KVM_PAGE_ARRAY_NR 16
  1288. struct kvm_mmu_pages {
  1289. struct mmu_page_and_offset {
  1290. struct kvm_mmu_page *sp;
  1291. unsigned int idx;
  1292. } page[KVM_PAGE_ARRAY_NR];
  1293. unsigned int nr;
  1294. };
  1295. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1296. int idx)
  1297. {
  1298. int i;
  1299. if (sp->unsync)
  1300. for (i=0; i < pvec->nr; i++)
  1301. if (pvec->page[i].sp == sp)
  1302. return 0;
  1303. pvec->page[pvec->nr].sp = sp;
  1304. pvec->page[pvec->nr].idx = idx;
  1305. pvec->nr++;
  1306. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1307. }
  1308. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1309. struct kvm_mmu_pages *pvec)
  1310. {
  1311. int i, ret, nr_unsync_leaf = 0;
  1312. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1313. struct kvm_mmu_page *child;
  1314. u64 ent = sp->spt[i];
  1315. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1316. goto clear_child_bitmap;
  1317. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1318. if (child->unsync_children) {
  1319. if (mmu_pages_add(pvec, child, i))
  1320. return -ENOSPC;
  1321. ret = __mmu_unsync_walk(child, pvec);
  1322. if (!ret)
  1323. goto clear_child_bitmap;
  1324. else if (ret > 0)
  1325. nr_unsync_leaf += ret;
  1326. else
  1327. return ret;
  1328. } else if (child->unsync) {
  1329. nr_unsync_leaf++;
  1330. if (mmu_pages_add(pvec, child, i))
  1331. return -ENOSPC;
  1332. } else
  1333. goto clear_child_bitmap;
  1334. continue;
  1335. clear_child_bitmap:
  1336. __clear_bit(i, sp->unsync_child_bitmap);
  1337. sp->unsync_children--;
  1338. WARN_ON((int)sp->unsync_children < 0);
  1339. }
  1340. return nr_unsync_leaf;
  1341. }
  1342. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1343. struct kvm_mmu_pages *pvec)
  1344. {
  1345. if (!sp->unsync_children)
  1346. return 0;
  1347. mmu_pages_add(pvec, sp, 0);
  1348. return __mmu_unsync_walk(sp, pvec);
  1349. }
  1350. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1351. {
  1352. WARN_ON(!sp->unsync);
  1353. trace_kvm_mmu_sync_page(sp);
  1354. sp->unsync = 0;
  1355. --kvm->stat.mmu_unsync;
  1356. }
  1357. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1358. struct list_head *invalid_list);
  1359. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1360. struct list_head *invalid_list);
  1361. #define for_each_gfn_sp(kvm, sp, gfn) \
  1362. hlist_for_each_entry(sp, \
  1363. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1364. if ((sp)->gfn != (gfn)) {} else
  1365. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn) \
  1366. hlist_for_each_entry(sp, \
  1367. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1368. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1369. (sp)->role.invalid) {} else
  1370. /* @sp->gfn should be write-protected at the call site */
  1371. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1372. struct list_head *invalid_list, bool clear_unsync)
  1373. {
  1374. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1375. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1376. return 1;
  1377. }
  1378. if (clear_unsync)
  1379. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1380. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1381. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1382. return 1;
  1383. }
  1384. kvm_mmu_flush_tlb(vcpu);
  1385. return 0;
  1386. }
  1387. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1388. struct kvm_mmu_page *sp)
  1389. {
  1390. LIST_HEAD(invalid_list);
  1391. int ret;
  1392. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1393. if (ret)
  1394. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1395. return ret;
  1396. }
  1397. #ifdef CONFIG_KVM_MMU_AUDIT
  1398. #include "mmu_audit.c"
  1399. #else
  1400. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1401. static void mmu_audit_disable(void) { }
  1402. #endif
  1403. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1404. struct list_head *invalid_list)
  1405. {
  1406. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1407. }
  1408. /* @gfn should be write-protected at the call site */
  1409. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1410. {
  1411. struct kvm_mmu_page *s;
  1412. LIST_HEAD(invalid_list);
  1413. bool flush = false;
  1414. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1415. if (!s->unsync)
  1416. continue;
  1417. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1418. kvm_unlink_unsync_page(vcpu->kvm, s);
  1419. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1420. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1421. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1422. continue;
  1423. }
  1424. flush = true;
  1425. }
  1426. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1427. if (flush)
  1428. kvm_mmu_flush_tlb(vcpu);
  1429. }
  1430. struct mmu_page_path {
  1431. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1432. unsigned int idx[PT64_ROOT_LEVEL-1];
  1433. };
  1434. #define for_each_sp(pvec, sp, parents, i) \
  1435. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1436. sp = pvec.page[i].sp; \
  1437. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1438. i = mmu_pages_next(&pvec, &parents, i))
  1439. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1440. struct mmu_page_path *parents,
  1441. int i)
  1442. {
  1443. int n;
  1444. for (n = i+1; n < pvec->nr; n++) {
  1445. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1446. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1447. parents->idx[0] = pvec->page[n].idx;
  1448. return n;
  1449. }
  1450. parents->parent[sp->role.level-2] = sp;
  1451. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1452. }
  1453. return n;
  1454. }
  1455. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1456. {
  1457. struct kvm_mmu_page *sp;
  1458. unsigned int level = 0;
  1459. do {
  1460. unsigned int idx = parents->idx[level];
  1461. sp = parents->parent[level];
  1462. if (!sp)
  1463. return;
  1464. --sp->unsync_children;
  1465. WARN_ON((int)sp->unsync_children < 0);
  1466. __clear_bit(idx, sp->unsync_child_bitmap);
  1467. level++;
  1468. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1469. }
  1470. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1471. struct mmu_page_path *parents,
  1472. struct kvm_mmu_pages *pvec)
  1473. {
  1474. parents->parent[parent->role.level-1] = NULL;
  1475. pvec->nr = 0;
  1476. }
  1477. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1478. struct kvm_mmu_page *parent)
  1479. {
  1480. int i;
  1481. struct kvm_mmu_page *sp;
  1482. struct mmu_page_path parents;
  1483. struct kvm_mmu_pages pages;
  1484. LIST_HEAD(invalid_list);
  1485. kvm_mmu_pages_init(parent, &parents, &pages);
  1486. while (mmu_unsync_walk(parent, &pages)) {
  1487. bool protected = false;
  1488. for_each_sp(pages, sp, parents, i)
  1489. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1490. if (protected)
  1491. kvm_flush_remote_tlbs(vcpu->kvm);
  1492. for_each_sp(pages, sp, parents, i) {
  1493. kvm_sync_page(vcpu, sp, &invalid_list);
  1494. mmu_pages_clear_parents(&parents);
  1495. }
  1496. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1497. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1498. kvm_mmu_pages_init(parent, &parents, &pages);
  1499. }
  1500. }
  1501. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1502. {
  1503. int i;
  1504. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1505. sp->spt[i] = 0ull;
  1506. }
  1507. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1508. {
  1509. sp->write_flooding_count = 0;
  1510. }
  1511. static void clear_sp_write_flooding_count(u64 *spte)
  1512. {
  1513. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1514. __clear_sp_write_flooding_count(sp);
  1515. }
  1516. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1517. gfn_t gfn,
  1518. gva_t gaddr,
  1519. unsigned level,
  1520. int direct,
  1521. unsigned access,
  1522. u64 *parent_pte)
  1523. {
  1524. union kvm_mmu_page_role role;
  1525. unsigned quadrant;
  1526. struct kvm_mmu_page *sp;
  1527. bool need_sync = false;
  1528. role = vcpu->arch.mmu.base_role;
  1529. role.level = level;
  1530. role.direct = direct;
  1531. if (role.direct)
  1532. role.cr4_pae = 0;
  1533. role.access = access;
  1534. if (!vcpu->arch.mmu.direct_map
  1535. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1536. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1537. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1538. role.quadrant = quadrant;
  1539. }
  1540. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1541. if (!need_sync && sp->unsync)
  1542. need_sync = true;
  1543. if (sp->role.word != role.word)
  1544. continue;
  1545. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1546. break;
  1547. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1548. if (sp->unsync_children) {
  1549. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1550. kvm_mmu_mark_parents_unsync(sp);
  1551. } else if (sp->unsync)
  1552. kvm_mmu_mark_parents_unsync(sp);
  1553. __clear_sp_write_flooding_count(sp);
  1554. trace_kvm_mmu_get_page(sp, false);
  1555. return sp;
  1556. }
  1557. ++vcpu->kvm->stat.mmu_cache_miss;
  1558. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1559. if (!sp)
  1560. return sp;
  1561. sp->gfn = gfn;
  1562. sp->role = role;
  1563. hlist_add_head(&sp->hash_link,
  1564. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1565. if (!direct) {
  1566. if (rmap_write_protect(vcpu->kvm, gfn))
  1567. kvm_flush_remote_tlbs(vcpu->kvm);
  1568. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1569. kvm_sync_pages(vcpu, gfn);
  1570. account_shadowed(vcpu->kvm, gfn);
  1571. }
  1572. init_shadow_page_table(sp);
  1573. trace_kvm_mmu_get_page(sp, true);
  1574. return sp;
  1575. }
  1576. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1577. struct kvm_vcpu *vcpu, u64 addr)
  1578. {
  1579. iterator->addr = addr;
  1580. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1581. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1582. if (iterator->level == PT64_ROOT_LEVEL &&
  1583. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1584. !vcpu->arch.mmu.direct_map)
  1585. --iterator->level;
  1586. if (iterator->level == PT32E_ROOT_LEVEL) {
  1587. iterator->shadow_addr
  1588. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1589. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1590. --iterator->level;
  1591. if (!iterator->shadow_addr)
  1592. iterator->level = 0;
  1593. }
  1594. }
  1595. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1596. {
  1597. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1598. return false;
  1599. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1600. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1601. return true;
  1602. }
  1603. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1604. u64 spte)
  1605. {
  1606. if (is_last_spte(spte, iterator->level)) {
  1607. iterator->level = 0;
  1608. return;
  1609. }
  1610. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1611. --iterator->level;
  1612. }
  1613. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1614. {
  1615. return __shadow_walk_next(iterator, *iterator->sptep);
  1616. }
  1617. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1618. {
  1619. u64 spte;
  1620. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1621. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1622. mmu_spte_set(sptep, spte);
  1623. }
  1624. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1625. unsigned direct_access)
  1626. {
  1627. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1628. struct kvm_mmu_page *child;
  1629. /*
  1630. * For the direct sp, if the guest pte's dirty bit
  1631. * changed form clean to dirty, it will corrupt the
  1632. * sp's access: allow writable in the read-only sp,
  1633. * so we should update the spte at this point to get
  1634. * a new sp with the correct access.
  1635. */
  1636. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1637. if (child->role.access == direct_access)
  1638. return;
  1639. drop_parent_pte(child, sptep);
  1640. kvm_flush_remote_tlbs(vcpu->kvm);
  1641. }
  1642. }
  1643. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1644. u64 *spte)
  1645. {
  1646. u64 pte;
  1647. struct kvm_mmu_page *child;
  1648. pte = *spte;
  1649. if (is_shadow_present_pte(pte)) {
  1650. if (is_last_spte(pte, sp->role.level)) {
  1651. drop_spte(kvm, spte);
  1652. if (is_large_pte(pte))
  1653. --kvm->stat.lpages;
  1654. } else {
  1655. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1656. drop_parent_pte(child, spte);
  1657. }
  1658. return true;
  1659. }
  1660. if (is_mmio_spte(pte))
  1661. mmu_spte_clear_no_track(spte);
  1662. return false;
  1663. }
  1664. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1665. struct kvm_mmu_page *sp)
  1666. {
  1667. unsigned i;
  1668. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1669. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1670. }
  1671. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1672. {
  1673. mmu_page_remove_parent_pte(sp, parent_pte);
  1674. }
  1675. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1676. {
  1677. u64 *sptep;
  1678. struct rmap_iterator iter;
  1679. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1680. drop_parent_pte(sp, sptep);
  1681. }
  1682. static int mmu_zap_unsync_children(struct kvm *kvm,
  1683. struct kvm_mmu_page *parent,
  1684. struct list_head *invalid_list)
  1685. {
  1686. int i, zapped = 0;
  1687. struct mmu_page_path parents;
  1688. struct kvm_mmu_pages pages;
  1689. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1690. return 0;
  1691. kvm_mmu_pages_init(parent, &parents, &pages);
  1692. while (mmu_unsync_walk(parent, &pages)) {
  1693. struct kvm_mmu_page *sp;
  1694. for_each_sp(pages, sp, parents, i) {
  1695. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1696. mmu_pages_clear_parents(&parents);
  1697. zapped++;
  1698. }
  1699. kvm_mmu_pages_init(parent, &parents, &pages);
  1700. }
  1701. return zapped;
  1702. }
  1703. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1704. struct list_head *invalid_list)
  1705. {
  1706. int ret;
  1707. trace_kvm_mmu_prepare_zap_page(sp);
  1708. ++kvm->stat.mmu_shadow_zapped;
  1709. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1710. kvm_mmu_page_unlink_children(kvm, sp);
  1711. kvm_mmu_unlink_parents(kvm, sp);
  1712. if (!sp->role.invalid && !sp->role.direct)
  1713. unaccount_shadowed(kvm, sp->gfn);
  1714. if (sp->unsync)
  1715. kvm_unlink_unsync_page(kvm, sp);
  1716. if (!sp->root_count) {
  1717. /* Count self */
  1718. ret++;
  1719. list_move(&sp->link, invalid_list);
  1720. kvm_mod_used_mmu_pages(kvm, -1);
  1721. } else {
  1722. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1723. kvm_reload_remote_mmus(kvm);
  1724. }
  1725. sp->role.invalid = 1;
  1726. return ret;
  1727. }
  1728. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1729. struct list_head *invalid_list)
  1730. {
  1731. struct kvm_mmu_page *sp;
  1732. if (list_empty(invalid_list))
  1733. return;
  1734. /*
  1735. * wmb: make sure everyone sees our modifications to the page tables
  1736. * rmb: make sure we see changes to vcpu->mode
  1737. */
  1738. smp_mb();
  1739. /*
  1740. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1741. * page table walks.
  1742. */
  1743. kvm_flush_remote_tlbs(kvm);
  1744. do {
  1745. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1746. WARN_ON(!sp->role.invalid || sp->root_count);
  1747. kvm_mmu_free_page(sp);
  1748. } while (!list_empty(invalid_list));
  1749. }
  1750. /*
  1751. * Changing the number of mmu pages allocated to the vm
  1752. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1753. */
  1754. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1755. {
  1756. LIST_HEAD(invalid_list);
  1757. /*
  1758. * If we set the number of mmu pages to be smaller be than the
  1759. * number of actived pages , we must to free some mmu pages before we
  1760. * change the value
  1761. */
  1762. spin_lock(&kvm->mmu_lock);
  1763. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1764. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1765. !list_empty(&kvm->arch.active_mmu_pages)) {
  1766. struct kvm_mmu_page *page;
  1767. page = container_of(kvm->arch.active_mmu_pages.prev,
  1768. struct kvm_mmu_page, link);
  1769. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1770. }
  1771. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1772. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1773. }
  1774. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1775. spin_unlock(&kvm->mmu_lock);
  1776. }
  1777. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1778. {
  1779. struct kvm_mmu_page *sp;
  1780. LIST_HEAD(invalid_list);
  1781. int r;
  1782. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1783. r = 0;
  1784. spin_lock(&kvm->mmu_lock);
  1785. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1786. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1787. sp->role.word);
  1788. r = 1;
  1789. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1790. }
  1791. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1792. spin_unlock(&kvm->mmu_lock);
  1793. return r;
  1794. }
  1795. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1796. /*
  1797. * The function is based on mtrr_type_lookup() in
  1798. * arch/x86/kernel/cpu/mtrr/generic.c
  1799. */
  1800. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1801. u64 start, u64 end)
  1802. {
  1803. int i;
  1804. u64 base, mask;
  1805. u8 prev_match, curr_match;
  1806. int num_var_ranges = KVM_NR_VAR_MTRR;
  1807. if (!mtrr_state->enabled)
  1808. return 0xFF;
  1809. /* Make end inclusive end, instead of exclusive */
  1810. end--;
  1811. /* Look in fixed ranges. Just return the type as per start */
  1812. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1813. int idx;
  1814. if (start < 0x80000) {
  1815. idx = 0;
  1816. idx += (start >> 16);
  1817. return mtrr_state->fixed_ranges[idx];
  1818. } else if (start < 0xC0000) {
  1819. idx = 1 * 8;
  1820. idx += ((start - 0x80000) >> 14);
  1821. return mtrr_state->fixed_ranges[idx];
  1822. } else if (start < 0x1000000) {
  1823. idx = 3 * 8;
  1824. idx += ((start - 0xC0000) >> 12);
  1825. return mtrr_state->fixed_ranges[idx];
  1826. }
  1827. }
  1828. /*
  1829. * Look in variable ranges
  1830. * Look of multiple ranges matching this address and pick type
  1831. * as per MTRR precedence
  1832. */
  1833. if (!(mtrr_state->enabled & 2))
  1834. return mtrr_state->def_type;
  1835. prev_match = 0xFF;
  1836. for (i = 0; i < num_var_ranges; ++i) {
  1837. unsigned short start_state, end_state;
  1838. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1839. continue;
  1840. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1841. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1842. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1843. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1844. start_state = ((start & mask) == (base & mask));
  1845. end_state = ((end & mask) == (base & mask));
  1846. if (start_state != end_state)
  1847. return 0xFE;
  1848. if ((start & mask) != (base & mask))
  1849. continue;
  1850. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1851. if (prev_match == 0xFF) {
  1852. prev_match = curr_match;
  1853. continue;
  1854. }
  1855. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1856. curr_match == MTRR_TYPE_UNCACHABLE)
  1857. return MTRR_TYPE_UNCACHABLE;
  1858. if ((prev_match == MTRR_TYPE_WRBACK &&
  1859. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1860. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1861. curr_match == MTRR_TYPE_WRBACK)) {
  1862. prev_match = MTRR_TYPE_WRTHROUGH;
  1863. curr_match = MTRR_TYPE_WRTHROUGH;
  1864. }
  1865. if (prev_match != curr_match)
  1866. return MTRR_TYPE_UNCACHABLE;
  1867. }
  1868. if (prev_match != 0xFF)
  1869. return prev_match;
  1870. return mtrr_state->def_type;
  1871. }
  1872. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1873. {
  1874. u8 mtrr;
  1875. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1876. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1877. if (mtrr == 0xfe || mtrr == 0xff)
  1878. mtrr = MTRR_TYPE_WRBACK;
  1879. return mtrr;
  1880. }
  1881. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1882. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1883. {
  1884. trace_kvm_mmu_unsync_page(sp);
  1885. ++vcpu->kvm->stat.mmu_unsync;
  1886. sp->unsync = 1;
  1887. kvm_mmu_mark_parents_unsync(sp);
  1888. }
  1889. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1890. {
  1891. struct kvm_mmu_page *s;
  1892. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1893. if (s->unsync)
  1894. continue;
  1895. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1896. __kvm_unsync_page(vcpu, s);
  1897. }
  1898. }
  1899. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1900. bool can_unsync)
  1901. {
  1902. struct kvm_mmu_page *s;
  1903. bool need_unsync = false;
  1904. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1905. if (!can_unsync)
  1906. return 1;
  1907. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1908. return 1;
  1909. if (!s->unsync)
  1910. need_unsync = true;
  1911. }
  1912. if (need_unsync)
  1913. kvm_unsync_pages(vcpu, gfn);
  1914. return 0;
  1915. }
  1916. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1917. unsigned pte_access, int level,
  1918. gfn_t gfn, pfn_t pfn, bool speculative,
  1919. bool can_unsync, bool host_writable)
  1920. {
  1921. u64 spte;
  1922. int ret = 0;
  1923. if (set_mmio_spte(sptep, gfn, pfn, pte_access))
  1924. return 0;
  1925. spte = PT_PRESENT_MASK;
  1926. if (!speculative)
  1927. spte |= shadow_accessed_mask;
  1928. if (pte_access & ACC_EXEC_MASK)
  1929. spte |= shadow_x_mask;
  1930. else
  1931. spte |= shadow_nx_mask;
  1932. if (pte_access & ACC_USER_MASK)
  1933. spte |= shadow_user_mask;
  1934. if (level > PT_PAGE_TABLE_LEVEL)
  1935. spte |= PT_PAGE_SIZE_MASK;
  1936. if (tdp_enabled)
  1937. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1938. kvm_is_mmio_pfn(pfn));
  1939. if (host_writable)
  1940. spte |= SPTE_HOST_WRITEABLE;
  1941. else
  1942. pte_access &= ~ACC_WRITE_MASK;
  1943. spte |= (u64)pfn << PAGE_SHIFT;
  1944. if (pte_access & ACC_WRITE_MASK) {
  1945. /*
  1946. * Other vcpu creates new sp in the window between
  1947. * mapping_level() and acquiring mmu-lock. We can
  1948. * allow guest to retry the access, the mapping can
  1949. * be fixed if guest refault.
  1950. */
  1951. if (level > PT_PAGE_TABLE_LEVEL &&
  1952. has_wrprotected_page(vcpu->kvm, gfn, level))
  1953. goto done;
  1954. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  1955. /*
  1956. * Optimization: for pte sync, if spte was writable the hash
  1957. * lookup is unnecessary (and expensive). Write protection
  1958. * is responsibility of mmu_get_page / kvm_sync_page.
  1959. * Same reasoning can be applied to dirty page accounting.
  1960. */
  1961. if (!can_unsync && is_writable_pte(*sptep))
  1962. goto set_pte;
  1963. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1964. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1965. __func__, gfn);
  1966. ret = 1;
  1967. pte_access &= ~ACC_WRITE_MASK;
  1968. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  1969. }
  1970. }
  1971. if (pte_access & ACC_WRITE_MASK)
  1972. mark_page_dirty(vcpu->kvm, gfn);
  1973. set_pte:
  1974. if (mmu_spte_update(sptep, spte))
  1975. kvm_flush_remote_tlbs(vcpu->kvm);
  1976. done:
  1977. return ret;
  1978. }
  1979. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1980. unsigned pte_access, int write_fault, int *emulate,
  1981. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  1982. bool host_writable)
  1983. {
  1984. int was_rmapped = 0;
  1985. int rmap_count;
  1986. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  1987. *sptep, write_fault, gfn);
  1988. if (is_rmap_spte(*sptep)) {
  1989. /*
  1990. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1991. * the parent of the now unreachable PTE.
  1992. */
  1993. if (level > PT_PAGE_TABLE_LEVEL &&
  1994. !is_large_pte(*sptep)) {
  1995. struct kvm_mmu_page *child;
  1996. u64 pte = *sptep;
  1997. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1998. drop_parent_pte(child, sptep);
  1999. kvm_flush_remote_tlbs(vcpu->kvm);
  2000. } else if (pfn != spte_to_pfn(*sptep)) {
  2001. pgprintk("hfn old %llx new %llx\n",
  2002. spte_to_pfn(*sptep), pfn);
  2003. drop_spte(vcpu->kvm, sptep);
  2004. kvm_flush_remote_tlbs(vcpu->kvm);
  2005. } else
  2006. was_rmapped = 1;
  2007. }
  2008. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2009. true, host_writable)) {
  2010. if (write_fault)
  2011. *emulate = 1;
  2012. kvm_mmu_flush_tlb(vcpu);
  2013. }
  2014. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2015. *emulate = 1;
  2016. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2017. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2018. is_large_pte(*sptep)? "2MB" : "4kB",
  2019. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2020. *sptep, sptep);
  2021. if (!was_rmapped && is_large_pte(*sptep))
  2022. ++vcpu->kvm->stat.lpages;
  2023. if (is_shadow_present_pte(*sptep)) {
  2024. if (!was_rmapped) {
  2025. rmap_count = rmap_add(vcpu, sptep, gfn);
  2026. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2027. rmap_recycle(vcpu, sptep, gfn);
  2028. }
  2029. }
  2030. kvm_release_pfn_clean(pfn);
  2031. }
  2032. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2033. {
  2034. mmu_free_roots(vcpu);
  2035. }
  2036. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2037. {
  2038. int bit7;
  2039. bit7 = (gpte >> 7) & 1;
  2040. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2041. }
  2042. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2043. bool no_dirty_log)
  2044. {
  2045. struct kvm_memory_slot *slot;
  2046. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2047. if (!slot)
  2048. return KVM_PFN_ERR_FAULT;
  2049. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2050. }
  2051. static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
  2052. struct kvm_mmu_page *sp, u64 *spte,
  2053. u64 gpte)
  2054. {
  2055. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  2056. goto no_present;
  2057. if (!is_present_gpte(gpte))
  2058. goto no_present;
  2059. if (!(gpte & PT_ACCESSED_MASK))
  2060. goto no_present;
  2061. return false;
  2062. no_present:
  2063. drop_spte(vcpu->kvm, spte);
  2064. return true;
  2065. }
  2066. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2067. struct kvm_mmu_page *sp,
  2068. u64 *start, u64 *end)
  2069. {
  2070. struct page *pages[PTE_PREFETCH_NUM];
  2071. unsigned access = sp->role.access;
  2072. int i, ret;
  2073. gfn_t gfn;
  2074. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2075. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2076. return -1;
  2077. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2078. if (ret <= 0)
  2079. return -1;
  2080. for (i = 0; i < ret; i++, gfn++, start++)
  2081. mmu_set_spte(vcpu, start, access, 0, NULL,
  2082. sp->role.level, gfn, page_to_pfn(pages[i]),
  2083. true, true);
  2084. return 0;
  2085. }
  2086. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2087. struct kvm_mmu_page *sp, u64 *sptep)
  2088. {
  2089. u64 *spte, *start = NULL;
  2090. int i;
  2091. WARN_ON(!sp->role.direct);
  2092. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2093. spte = sp->spt + i;
  2094. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2095. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2096. if (!start)
  2097. continue;
  2098. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2099. break;
  2100. start = NULL;
  2101. } else if (!start)
  2102. start = spte;
  2103. }
  2104. }
  2105. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2106. {
  2107. struct kvm_mmu_page *sp;
  2108. /*
  2109. * Since it's no accessed bit on EPT, it's no way to
  2110. * distinguish between actually accessed translations
  2111. * and prefetched, so disable pte prefetch if EPT is
  2112. * enabled.
  2113. */
  2114. if (!shadow_accessed_mask)
  2115. return;
  2116. sp = page_header(__pa(sptep));
  2117. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2118. return;
  2119. __direct_pte_prefetch(vcpu, sp, sptep);
  2120. }
  2121. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2122. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2123. bool prefault)
  2124. {
  2125. struct kvm_shadow_walk_iterator iterator;
  2126. struct kvm_mmu_page *sp;
  2127. int emulate = 0;
  2128. gfn_t pseudo_gfn;
  2129. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2130. if (iterator.level == level) {
  2131. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2132. write, &emulate, level, gfn, pfn,
  2133. prefault, map_writable);
  2134. direct_pte_prefetch(vcpu, iterator.sptep);
  2135. ++vcpu->stat.pf_fixed;
  2136. break;
  2137. }
  2138. if (!is_shadow_present_pte(*iterator.sptep)) {
  2139. u64 base_addr = iterator.addr;
  2140. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2141. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2142. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2143. iterator.level - 1,
  2144. 1, ACC_ALL, iterator.sptep);
  2145. link_shadow_page(iterator.sptep, sp);
  2146. }
  2147. }
  2148. return emulate;
  2149. }
  2150. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2151. {
  2152. siginfo_t info;
  2153. info.si_signo = SIGBUS;
  2154. info.si_errno = 0;
  2155. info.si_code = BUS_MCEERR_AR;
  2156. info.si_addr = (void __user *)address;
  2157. info.si_addr_lsb = PAGE_SHIFT;
  2158. send_sig_info(SIGBUS, &info, tsk);
  2159. }
  2160. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2161. {
  2162. /*
  2163. * Do not cache the mmio info caused by writing the readonly gfn
  2164. * into the spte otherwise read access on readonly gfn also can
  2165. * caused mmio page fault and treat it as mmio access.
  2166. * Return 1 to tell kvm to emulate it.
  2167. */
  2168. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2169. return 1;
  2170. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2171. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2172. return 0;
  2173. }
  2174. return -EFAULT;
  2175. }
  2176. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2177. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2178. {
  2179. pfn_t pfn = *pfnp;
  2180. gfn_t gfn = *gfnp;
  2181. int level = *levelp;
  2182. /*
  2183. * Check if it's a transparent hugepage. If this would be an
  2184. * hugetlbfs page, level wouldn't be set to
  2185. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2186. * here.
  2187. */
  2188. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2189. level == PT_PAGE_TABLE_LEVEL &&
  2190. PageTransCompound(pfn_to_page(pfn)) &&
  2191. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2192. unsigned long mask;
  2193. /*
  2194. * mmu_notifier_retry was successful and we hold the
  2195. * mmu_lock here, so the pmd can't become splitting
  2196. * from under us, and in turn
  2197. * __split_huge_page_refcount() can't run from under
  2198. * us and we can safely transfer the refcount from
  2199. * PG_tail to PG_head as we switch the pfn to tail to
  2200. * head.
  2201. */
  2202. *levelp = level = PT_DIRECTORY_LEVEL;
  2203. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2204. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2205. if (pfn & mask) {
  2206. gfn &= ~mask;
  2207. *gfnp = gfn;
  2208. kvm_release_pfn_clean(pfn);
  2209. pfn &= ~mask;
  2210. kvm_get_pfn(pfn);
  2211. *pfnp = pfn;
  2212. }
  2213. }
  2214. }
  2215. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2216. pfn_t pfn, unsigned access, int *ret_val)
  2217. {
  2218. bool ret = true;
  2219. /* The pfn is invalid, report the error! */
  2220. if (unlikely(is_error_pfn(pfn))) {
  2221. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2222. goto exit;
  2223. }
  2224. if (unlikely(is_noslot_pfn(pfn)))
  2225. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2226. ret = false;
  2227. exit:
  2228. return ret;
  2229. }
  2230. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2231. {
  2232. /*
  2233. * #PF can be fast only if the shadow page table is present and it
  2234. * is caused by write-protect, that means we just need change the
  2235. * W bit of the spte which can be done out of mmu-lock.
  2236. */
  2237. if (!(error_code & PFERR_PRESENT_MASK) ||
  2238. !(error_code & PFERR_WRITE_MASK))
  2239. return false;
  2240. return true;
  2241. }
  2242. static bool
  2243. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2244. {
  2245. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2246. gfn_t gfn;
  2247. WARN_ON(!sp->role.direct);
  2248. /*
  2249. * The gfn of direct spte is stable since it is calculated
  2250. * by sp->gfn.
  2251. */
  2252. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2253. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2254. mark_page_dirty(vcpu->kvm, gfn);
  2255. return true;
  2256. }
  2257. /*
  2258. * Return value:
  2259. * - true: let the vcpu to access on the same address again.
  2260. * - false: let the real page fault path to fix it.
  2261. */
  2262. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2263. u32 error_code)
  2264. {
  2265. struct kvm_shadow_walk_iterator iterator;
  2266. bool ret = false;
  2267. u64 spte = 0ull;
  2268. if (!page_fault_can_be_fast(vcpu, error_code))
  2269. return false;
  2270. walk_shadow_page_lockless_begin(vcpu);
  2271. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2272. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2273. break;
  2274. /*
  2275. * If the mapping has been changed, let the vcpu fault on the
  2276. * same address again.
  2277. */
  2278. if (!is_rmap_spte(spte)) {
  2279. ret = true;
  2280. goto exit;
  2281. }
  2282. if (!is_last_spte(spte, level))
  2283. goto exit;
  2284. /*
  2285. * Check if it is a spurious fault caused by TLB lazily flushed.
  2286. *
  2287. * Need not check the access of upper level table entries since
  2288. * they are always ACC_ALL.
  2289. */
  2290. if (is_writable_pte(spte)) {
  2291. ret = true;
  2292. goto exit;
  2293. }
  2294. /*
  2295. * Currently, to simplify the code, only the spte write-protected
  2296. * by dirty-log can be fast fixed.
  2297. */
  2298. if (!spte_is_locklessly_modifiable(spte))
  2299. goto exit;
  2300. /*
  2301. * Currently, fast page fault only works for direct mapping since
  2302. * the gfn is not stable for indirect shadow page.
  2303. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2304. */
  2305. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2306. exit:
  2307. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2308. spte, ret);
  2309. walk_shadow_page_lockless_end(vcpu);
  2310. return ret;
  2311. }
  2312. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2313. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2314. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2315. gfn_t gfn, bool prefault)
  2316. {
  2317. int r;
  2318. int level;
  2319. int force_pt_level;
  2320. pfn_t pfn;
  2321. unsigned long mmu_seq;
  2322. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2323. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2324. if (likely(!force_pt_level)) {
  2325. level = mapping_level(vcpu, gfn);
  2326. /*
  2327. * This path builds a PAE pagetable - so we can map
  2328. * 2mb pages at maximum. Therefore check if the level
  2329. * is larger than that.
  2330. */
  2331. if (level > PT_DIRECTORY_LEVEL)
  2332. level = PT_DIRECTORY_LEVEL;
  2333. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2334. } else
  2335. level = PT_PAGE_TABLE_LEVEL;
  2336. if (fast_page_fault(vcpu, v, level, error_code))
  2337. return 0;
  2338. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2339. smp_rmb();
  2340. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2341. return 0;
  2342. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2343. return r;
  2344. spin_lock(&vcpu->kvm->mmu_lock);
  2345. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2346. goto out_unlock;
  2347. kvm_mmu_free_some_pages(vcpu);
  2348. if (likely(!force_pt_level))
  2349. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2350. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2351. prefault);
  2352. spin_unlock(&vcpu->kvm->mmu_lock);
  2353. return r;
  2354. out_unlock:
  2355. spin_unlock(&vcpu->kvm->mmu_lock);
  2356. kvm_release_pfn_clean(pfn);
  2357. return 0;
  2358. }
  2359. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2360. {
  2361. int i;
  2362. struct kvm_mmu_page *sp;
  2363. LIST_HEAD(invalid_list);
  2364. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2365. return;
  2366. spin_lock(&vcpu->kvm->mmu_lock);
  2367. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2368. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2369. vcpu->arch.mmu.direct_map)) {
  2370. hpa_t root = vcpu->arch.mmu.root_hpa;
  2371. sp = page_header(root);
  2372. --sp->root_count;
  2373. if (!sp->root_count && sp->role.invalid) {
  2374. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2375. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2376. }
  2377. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2378. spin_unlock(&vcpu->kvm->mmu_lock);
  2379. return;
  2380. }
  2381. for (i = 0; i < 4; ++i) {
  2382. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2383. if (root) {
  2384. root &= PT64_BASE_ADDR_MASK;
  2385. sp = page_header(root);
  2386. --sp->root_count;
  2387. if (!sp->root_count && sp->role.invalid)
  2388. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2389. &invalid_list);
  2390. }
  2391. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2392. }
  2393. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2394. spin_unlock(&vcpu->kvm->mmu_lock);
  2395. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2396. }
  2397. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2398. {
  2399. int ret = 0;
  2400. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2401. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2402. ret = 1;
  2403. }
  2404. return ret;
  2405. }
  2406. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2407. {
  2408. struct kvm_mmu_page *sp;
  2409. unsigned i;
  2410. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2411. spin_lock(&vcpu->kvm->mmu_lock);
  2412. kvm_mmu_free_some_pages(vcpu);
  2413. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2414. 1, ACC_ALL, NULL);
  2415. ++sp->root_count;
  2416. spin_unlock(&vcpu->kvm->mmu_lock);
  2417. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2418. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2419. for (i = 0; i < 4; ++i) {
  2420. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2421. ASSERT(!VALID_PAGE(root));
  2422. spin_lock(&vcpu->kvm->mmu_lock);
  2423. kvm_mmu_free_some_pages(vcpu);
  2424. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2425. i << 30,
  2426. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2427. NULL);
  2428. root = __pa(sp->spt);
  2429. ++sp->root_count;
  2430. spin_unlock(&vcpu->kvm->mmu_lock);
  2431. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2432. }
  2433. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2434. } else
  2435. BUG();
  2436. return 0;
  2437. }
  2438. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2439. {
  2440. struct kvm_mmu_page *sp;
  2441. u64 pdptr, pm_mask;
  2442. gfn_t root_gfn;
  2443. int i;
  2444. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2445. if (mmu_check_root(vcpu, root_gfn))
  2446. return 1;
  2447. /*
  2448. * Do we shadow a long mode page table? If so we need to
  2449. * write-protect the guests page table root.
  2450. */
  2451. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2452. hpa_t root = vcpu->arch.mmu.root_hpa;
  2453. ASSERT(!VALID_PAGE(root));
  2454. spin_lock(&vcpu->kvm->mmu_lock);
  2455. kvm_mmu_free_some_pages(vcpu);
  2456. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2457. 0, ACC_ALL, NULL);
  2458. root = __pa(sp->spt);
  2459. ++sp->root_count;
  2460. spin_unlock(&vcpu->kvm->mmu_lock);
  2461. vcpu->arch.mmu.root_hpa = root;
  2462. return 0;
  2463. }
  2464. /*
  2465. * We shadow a 32 bit page table. This may be a legacy 2-level
  2466. * or a PAE 3-level page table. In either case we need to be aware that
  2467. * the shadow page table may be a PAE or a long mode page table.
  2468. */
  2469. pm_mask = PT_PRESENT_MASK;
  2470. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2471. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2472. for (i = 0; i < 4; ++i) {
  2473. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2474. ASSERT(!VALID_PAGE(root));
  2475. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2476. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2477. if (!is_present_gpte(pdptr)) {
  2478. vcpu->arch.mmu.pae_root[i] = 0;
  2479. continue;
  2480. }
  2481. root_gfn = pdptr >> PAGE_SHIFT;
  2482. if (mmu_check_root(vcpu, root_gfn))
  2483. return 1;
  2484. }
  2485. spin_lock(&vcpu->kvm->mmu_lock);
  2486. kvm_mmu_free_some_pages(vcpu);
  2487. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2488. PT32_ROOT_LEVEL, 0,
  2489. ACC_ALL, NULL);
  2490. root = __pa(sp->spt);
  2491. ++sp->root_count;
  2492. spin_unlock(&vcpu->kvm->mmu_lock);
  2493. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2494. }
  2495. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2496. /*
  2497. * If we shadow a 32 bit page table with a long mode page
  2498. * table we enter this path.
  2499. */
  2500. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2501. if (vcpu->arch.mmu.lm_root == NULL) {
  2502. /*
  2503. * The additional page necessary for this is only
  2504. * allocated on demand.
  2505. */
  2506. u64 *lm_root;
  2507. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2508. if (lm_root == NULL)
  2509. return 1;
  2510. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2511. vcpu->arch.mmu.lm_root = lm_root;
  2512. }
  2513. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2514. }
  2515. return 0;
  2516. }
  2517. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2518. {
  2519. if (vcpu->arch.mmu.direct_map)
  2520. return mmu_alloc_direct_roots(vcpu);
  2521. else
  2522. return mmu_alloc_shadow_roots(vcpu);
  2523. }
  2524. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2525. {
  2526. int i;
  2527. struct kvm_mmu_page *sp;
  2528. if (vcpu->arch.mmu.direct_map)
  2529. return;
  2530. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2531. return;
  2532. vcpu_clear_mmio_info(vcpu, ~0ul);
  2533. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2534. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2535. hpa_t root = vcpu->arch.mmu.root_hpa;
  2536. sp = page_header(root);
  2537. mmu_sync_children(vcpu, sp);
  2538. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2539. return;
  2540. }
  2541. for (i = 0; i < 4; ++i) {
  2542. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2543. if (root && VALID_PAGE(root)) {
  2544. root &= PT64_BASE_ADDR_MASK;
  2545. sp = page_header(root);
  2546. mmu_sync_children(vcpu, sp);
  2547. }
  2548. }
  2549. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2550. }
  2551. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2552. {
  2553. spin_lock(&vcpu->kvm->mmu_lock);
  2554. mmu_sync_roots(vcpu);
  2555. spin_unlock(&vcpu->kvm->mmu_lock);
  2556. }
  2557. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2558. u32 access, struct x86_exception *exception)
  2559. {
  2560. if (exception)
  2561. exception->error_code = 0;
  2562. return vaddr;
  2563. }
  2564. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2565. u32 access,
  2566. struct x86_exception *exception)
  2567. {
  2568. if (exception)
  2569. exception->error_code = 0;
  2570. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2571. }
  2572. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2573. {
  2574. if (direct)
  2575. return vcpu_match_mmio_gpa(vcpu, addr);
  2576. return vcpu_match_mmio_gva(vcpu, addr);
  2577. }
  2578. /*
  2579. * On direct hosts, the last spte is only allows two states
  2580. * for mmio page fault:
  2581. * - It is the mmio spte
  2582. * - It is zapped or it is being zapped.
  2583. *
  2584. * This function completely checks the spte when the last spte
  2585. * is not the mmio spte.
  2586. */
  2587. static bool check_direct_spte_mmio_pf(u64 spte)
  2588. {
  2589. return __check_direct_spte_mmio_pf(spte);
  2590. }
  2591. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2592. {
  2593. struct kvm_shadow_walk_iterator iterator;
  2594. u64 spte = 0ull;
  2595. walk_shadow_page_lockless_begin(vcpu);
  2596. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2597. if (!is_shadow_present_pte(spte))
  2598. break;
  2599. walk_shadow_page_lockless_end(vcpu);
  2600. return spte;
  2601. }
  2602. /*
  2603. * If it is a real mmio page fault, return 1 and emulat the instruction
  2604. * directly, return 0 to let CPU fault again on the address, -1 is
  2605. * returned if bug is detected.
  2606. */
  2607. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2608. {
  2609. u64 spte;
  2610. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2611. return 1;
  2612. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2613. if (is_mmio_spte(spte)) {
  2614. gfn_t gfn = get_mmio_spte_gfn(spte);
  2615. unsigned access = get_mmio_spte_access(spte);
  2616. if (direct)
  2617. addr = 0;
  2618. trace_handle_mmio_page_fault(addr, gfn, access);
  2619. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2620. return 1;
  2621. }
  2622. /*
  2623. * It's ok if the gva is remapped by other cpus on shadow guest,
  2624. * it's a BUG if the gfn is not a mmio page.
  2625. */
  2626. if (direct && !check_direct_spte_mmio_pf(spte))
  2627. return -1;
  2628. /*
  2629. * If the page table is zapped by other cpus, let CPU fault again on
  2630. * the address.
  2631. */
  2632. return 0;
  2633. }
  2634. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2635. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2636. u32 error_code, bool direct)
  2637. {
  2638. int ret;
  2639. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2640. WARN_ON(ret < 0);
  2641. return ret;
  2642. }
  2643. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2644. u32 error_code, bool prefault)
  2645. {
  2646. gfn_t gfn;
  2647. int r;
  2648. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2649. if (unlikely(error_code & PFERR_RSVD_MASK))
  2650. return handle_mmio_page_fault(vcpu, gva, error_code, true);
  2651. r = mmu_topup_memory_caches(vcpu);
  2652. if (r)
  2653. return r;
  2654. ASSERT(vcpu);
  2655. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2656. gfn = gva >> PAGE_SHIFT;
  2657. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2658. error_code, gfn, prefault);
  2659. }
  2660. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2661. {
  2662. struct kvm_arch_async_pf arch;
  2663. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2664. arch.gfn = gfn;
  2665. arch.direct_map = vcpu->arch.mmu.direct_map;
  2666. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2667. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2668. }
  2669. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2670. {
  2671. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2672. kvm_event_needs_reinjection(vcpu)))
  2673. return false;
  2674. return kvm_x86_ops->interrupt_allowed(vcpu);
  2675. }
  2676. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2677. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2678. {
  2679. bool async;
  2680. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2681. if (!async)
  2682. return false; /* *pfn has correct page already */
  2683. if (!prefault && can_do_async_pf(vcpu)) {
  2684. trace_kvm_try_async_get_page(gva, gfn);
  2685. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2686. trace_kvm_async_pf_doublefault(gva, gfn);
  2687. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2688. return true;
  2689. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2690. return true;
  2691. }
  2692. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2693. return false;
  2694. }
  2695. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2696. bool prefault)
  2697. {
  2698. pfn_t pfn;
  2699. int r;
  2700. int level;
  2701. int force_pt_level;
  2702. gfn_t gfn = gpa >> PAGE_SHIFT;
  2703. unsigned long mmu_seq;
  2704. int write = error_code & PFERR_WRITE_MASK;
  2705. bool map_writable;
  2706. ASSERT(vcpu);
  2707. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2708. if (unlikely(error_code & PFERR_RSVD_MASK))
  2709. return handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2710. r = mmu_topup_memory_caches(vcpu);
  2711. if (r)
  2712. return r;
  2713. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2714. if (likely(!force_pt_level)) {
  2715. level = mapping_level(vcpu, gfn);
  2716. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2717. } else
  2718. level = PT_PAGE_TABLE_LEVEL;
  2719. if (fast_page_fault(vcpu, gpa, level, error_code))
  2720. return 0;
  2721. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2722. smp_rmb();
  2723. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2724. return 0;
  2725. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2726. return r;
  2727. spin_lock(&vcpu->kvm->mmu_lock);
  2728. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2729. goto out_unlock;
  2730. kvm_mmu_free_some_pages(vcpu);
  2731. if (likely(!force_pt_level))
  2732. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2733. r = __direct_map(vcpu, gpa, write, map_writable,
  2734. level, gfn, pfn, prefault);
  2735. spin_unlock(&vcpu->kvm->mmu_lock);
  2736. return r;
  2737. out_unlock:
  2738. spin_unlock(&vcpu->kvm->mmu_lock);
  2739. kvm_release_pfn_clean(pfn);
  2740. return 0;
  2741. }
  2742. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2743. {
  2744. mmu_free_roots(vcpu);
  2745. }
  2746. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2747. struct kvm_mmu *context)
  2748. {
  2749. context->new_cr3 = nonpaging_new_cr3;
  2750. context->page_fault = nonpaging_page_fault;
  2751. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2752. context->free = nonpaging_free;
  2753. context->sync_page = nonpaging_sync_page;
  2754. context->invlpg = nonpaging_invlpg;
  2755. context->update_pte = nonpaging_update_pte;
  2756. context->root_level = 0;
  2757. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2758. context->root_hpa = INVALID_PAGE;
  2759. context->direct_map = true;
  2760. context->nx = false;
  2761. return 0;
  2762. }
  2763. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2764. {
  2765. ++vcpu->stat.tlb_flush;
  2766. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2767. }
  2768. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2769. {
  2770. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2771. mmu_free_roots(vcpu);
  2772. }
  2773. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2774. {
  2775. return kvm_read_cr3(vcpu);
  2776. }
  2777. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2778. struct x86_exception *fault)
  2779. {
  2780. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2781. }
  2782. static void paging_free(struct kvm_vcpu *vcpu)
  2783. {
  2784. nonpaging_free(vcpu);
  2785. }
  2786. static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
  2787. {
  2788. unsigned mask;
  2789. BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
  2790. mask = (unsigned)~ACC_WRITE_MASK;
  2791. /* Allow write access to dirty gptes */
  2792. mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
  2793. *access &= mask;
  2794. }
  2795. static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
  2796. int *nr_present)
  2797. {
  2798. if (unlikely(is_mmio_spte(*sptep))) {
  2799. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2800. mmu_spte_clear_no_track(sptep);
  2801. return true;
  2802. }
  2803. (*nr_present)++;
  2804. mark_mmio_spte(sptep, gfn, access);
  2805. return true;
  2806. }
  2807. return false;
  2808. }
  2809. static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
  2810. {
  2811. unsigned access;
  2812. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  2813. access &= ~(gpte >> PT64_NX_SHIFT);
  2814. return access;
  2815. }
  2816. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2817. {
  2818. unsigned index;
  2819. index = level - 1;
  2820. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2821. return mmu->last_pte_bitmap & (1 << index);
  2822. }
  2823. #define PTTYPE 64
  2824. #include "paging_tmpl.h"
  2825. #undef PTTYPE
  2826. #define PTTYPE 32
  2827. #include "paging_tmpl.h"
  2828. #undef PTTYPE
  2829. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2830. struct kvm_mmu *context)
  2831. {
  2832. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2833. u64 exb_bit_rsvd = 0;
  2834. if (!context->nx)
  2835. exb_bit_rsvd = rsvd_bits(63, 63);
  2836. switch (context->root_level) {
  2837. case PT32_ROOT_LEVEL:
  2838. /* no rsvd bits for 2 level 4K page table entries */
  2839. context->rsvd_bits_mask[0][1] = 0;
  2840. context->rsvd_bits_mask[0][0] = 0;
  2841. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2842. if (!is_pse(vcpu)) {
  2843. context->rsvd_bits_mask[1][1] = 0;
  2844. break;
  2845. }
  2846. if (is_cpuid_PSE36())
  2847. /* 36bits PSE 4MB page */
  2848. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2849. else
  2850. /* 32 bits PSE 4MB page */
  2851. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2852. break;
  2853. case PT32E_ROOT_LEVEL:
  2854. context->rsvd_bits_mask[0][2] =
  2855. rsvd_bits(maxphyaddr, 63) |
  2856. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2857. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2858. rsvd_bits(maxphyaddr, 62); /* PDE */
  2859. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2860. rsvd_bits(maxphyaddr, 62); /* PTE */
  2861. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2862. rsvd_bits(maxphyaddr, 62) |
  2863. rsvd_bits(13, 20); /* large page */
  2864. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2865. break;
  2866. case PT64_ROOT_LEVEL:
  2867. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2868. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2869. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2870. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2871. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2872. rsvd_bits(maxphyaddr, 51);
  2873. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2874. rsvd_bits(maxphyaddr, 51);
  2875. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2876. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2877. rsvd_bits(maxphyaddr, 51) |
  2878. rsvd_bits(13, 29);
  2879. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2880. rsvd_bits(maxphyaddr, 51) |
  2881. rsvd_bits(13, 20); /* large page */
  2882. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2883. break;
  2884. }
  2885. }
  2886. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2887. {
  2888. unsigned bit, byte, pfec;
  2889. u8 map;
  2890. bool fault, x, w, u, wf, uf, ff, smep;
  2891. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2892. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2893. pfec = byte << 1;
  2894. map = 0;
  2895. wf = pfec & PFERR_WRITE_MASK;
  2896. uf = pfec & PFERR_USER_MASK;
  2897. ff = pfec & PFERR_FETCH_MASK;
  2898. for (bit = 0; bit < 8; ++bit) {
  2899. x = bit & ACC_EXEC_MASK;
  2900. w = bit & ACC_WRITE_MASK;
  2901. u = bit & ACC_USER_MASK;
  2902. /* Not really needed: !nx will cause pte.nx to fault */
  2903. x |= !mmu->nx;
  2904. /* Allow supervisor writes if !cr0.wp */
  2905. w |= !is_write_protection(vcpu) && !uf;
  2906. /* Disallow supervisor fetches of user code if cr4.smep */
  2907. x &= !(smep && u && !uf);
  2908. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2909. map |= fault << bit;
  2910. }
  2911. mmu->permissions[byte] = map;
  2912. }
  2913. }
  2914. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2915. {
  2916. u8 map;
  2917. unsigned level, root_level = mmu->root_level;
  2918. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2919. if (root_level == PT32E_ROOT_LEVEL)
  2920. --root_level;
  2921. /* PT_PAGE_TABLE_LEVEL always terminates */
  2922. map = 1 | (1 << ps_set_index);
  2923. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2924. if (level <= PT_PDPE_LEVEL
  2925. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2926. map |= 1 << (ps_set_index | (level - 1));
  2927. }
  2928. mmu->last_pte_bitmap = map;
  2929. }
  2930. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2931. struct kvm_mmu *context,
  2932. int level)
  2933. {
  2934. context->nx = is_nx(vcpu);
  2935. context->root_level = level;
  2936. reset_rsvds_bits_mask(vcpu, context);
  2937. update_permission_bitmask(vcpu, context);
  2938. update_last_pte_bitmap(vcpu, context);
  2939. ASSERT(is_pae(vcpu));
  2940. context->new_cr3 = paging_new_cr3;
  2941. context->page_fault = paging64_page_fault;
  2942. context->gva_to_gpa = paging64_gva_to_gpa;
  2943. context->sync_page = paging64_sync_page;
  2944. context->invlpg = paging64_invlpg;
  2945. context->update_pte = paging64_update_pte;
  2946. context->free = paging_free;
  2947. context->shadow_root_level = level;
  2948. context->root_hpa = INVALID_PAGE;
  2949. context->direct_map = false;
  2950. return 0;
  2951. }
  2952. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2953. struct kvm_mmu *context)
  2954. {
  2955. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2956. }
  2957. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2958. struct kvm_mmu *context)
  2959. {
  2960. context->nx = false;
  2961. context->root_level = PT32_ROOT_LEVEL;
  2962. reset_rsvds_bits_mask(vcpu, context);
  2963. update_permission_bitmask(vcpu, context);
  2964. update_last_pte_bitmap(vcpu, context);
  2965. context->new_cr3 = paging_new_cr3;
  2966. context->page_fault = paging32_page_fault;
  2967. context->gva_to_gpa = paging32_gva_to_gpa;
  2968. context->free = paging_free;
  2969. context->sync_page = paging32_sync_page;
  2970. context->invlpg = paging32_invlpg;
  2971. context->update_pte = paging32_update_pte;
  2972. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2973. context->root_hpa = INVALID_PAGE;
  2974. context->direct_map = false;
  2975. return 0;
  2976. }
  2977. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2978. struct kvm_mmu *context)
  2979. {
  2980. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2981. }
  2982. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2983. {
  2984. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2985. context->base_role.word = 0;
  2986. context->new_cr3 = nonpaging_new_cr3;
  2987. context->page_fault = tdp_page_fault;
  2988. context->free = nonpaging_free;
  2989. context->sync_page = nonpaging_sync_page;
  2990. context->invlpg = nonpaging_invlpg;
  2991. context->update_pte = nonpaging_update_pte;
  2992. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2993. context->root_hpa = INVALID_PAGE;
  2994. context->direct_map = true;
  2995. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2996. context->get_cr3 = get_cr3;
  2997. context->get_pdptr = kvm_pdptr_read;
  2998. context->inject_page_fault = kvm_inject_page_fault;
  2999. if (!is_paging(vcpu)) {
  3000. context->nx = false;
  3001. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3002. context->root_level = 0;
  3003. } else if (is_long_mode(vcpu)) {
  3004. context->nx = is_nx(vcpu);
  3005. context->root_level = PT64_ROOT_LEVEL;
  3006. reset_rsvds_bits_mask(vcpu, context);
  3007. context->gva_to_gpa = paging64_gva_to_gpa;
  3008. } else if (is_pae(vcpu)) {
  3009. context->nx = is_nx(vcpu);
  3010. context->root_level = PT32E_ROOT_LEVEL;
  3011. reset_rsvds_bits_mask(vcpu, context);
  3012. context->gva_to_gpa = paging64_gva_to_gpa;
  3013. } else {
  3014. context->nx = false;
  3015. context->root_level = PT32_ROOT_LEVEL;
  3016. reset_rsvds_bits_mask(vcpu, context);
  3017. context->gva_to_gpa = paging32_gva_to_gpa;
  3018. }
  3019. update_permission_bitmask(vcpu, context);
  3020. update_last_pte_bitmap(vcpu, context);
  3021. return 0;
  3022. }
  3023. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3024. {
  3025. int r;
  3026. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3027. ASSERT(vcpu);
  3028. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3029. if (!is_paging(vcpu))
  3030. r = nonpaging_init_context(vcpu, context);
  3031. else if (is_long_mode(vcpu))
  3032. r = paging64_init_context(vcpu, context);
  3033. else if (is_pae(vcpu))
  3034. r = paging32E_init_context(vcpu, context);
  3035. else
  3036. r = paging32_init_context(vcpu, context);
  3037. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3038. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3039. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3040. vcpu->arch.mmu.base_role.smep_andnot_wp
  3041. = smep && !is_write_protection(vcpu);
  3042. return r;
  3043. }
  3044. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3045. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3046. {
  3047. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3048. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3049. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3050. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3051. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3052. return r;
  3053. }
  3054. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3055. {
  3056. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3057. g_context->get_cr3 = get_cr3;
  3058. g_context->get_pdptr = kvm_pdptr_read;
  3059. g_context->inject_page_fault = kvm_inject_page_fault;
  3060. /*
  3061. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3062. * translation of l2_gpa to l1_gpa addresses is done using the
  3063. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3064. * functions between mmu and nested_mmu are swapped.
  3065. */
  3066. if (!is_paging(vcpu)) {
  3067. g_context->nx = false;
  3068. g_context->root_level = 0;
  3069. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3070. } else if (is_long_mode(vcpu)) {
  3071. g_context->nx = is_nx(vcpu);
  3072. g_context->root_level = PT64_ROOT_LEVEL;
  3073. reset_rsvds_bits_mask(vcpu, g_context);
  3074. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3075. } else if (is_pae(vcpu)) {
  3076. g_context->nx = is_nx(vcpu);
  3077. g_context->root_level = PT32E_ROOT_LEVEL;
  3078. reset_rsvds_bits_mask(vcpu, g_context);
  3079. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3080. } else {
  3081. g_context->nx = false;
  3082. g_context->root_level = PT32_ROOT_LEVEL;
  3083. reset_rsvds_bits_mask(vcpu, g_context);
  3084. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3085. }
  3086. update_permission_bitmask(vcpu, g_context);
  3087. update_last_pte_bitmap(vcpu, g_context);
  3088. return 0;
  3089. }
  3090. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3091. {
  3092. if (mmu_is_nested(vcpu))
  3093. return init_kvm_nested_mmu(vcpu);
  3094. else if (tdp_enabled)
  3095. return init_kvm_tdp_mmu(vcpu);
  3096. else
  3097. return init_kvm_softmmu(vcpu);
  3098. }
  3099. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3100. {
  3101. ASSERT(vcpu);
  3102. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3103. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3104. vcpu->arch.mmu.free(vcpu);
  3105. }
  3106. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3107. {
  3108. destroy_kvm_mmu(vcpu);
  3109. return init_kvm_mmu(vcpu);
  3110. }
  3111. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3112. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3113. {
  3114. int r;
  3115. r = mmu_topup_memory_caches(vcpu);
  3116. if (r)
  3117. goto out;
  3118. r = mmu_alloc_roots(vcpu);
  3119. spin_lock(&vcpu->kvm->mmu_lock);
  3120. mmu_sync_roots(vcpu);
  3121. spin_unlock(&vcpu->kvm->mmu_lock);
  3122. if (r)
  3123. goto out;
  3124. /* set_cr3() should ensure TLB has been flushed */
  3125. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3126. out:
  3127. return r;
  3128. }
  3129. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3130. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3131. {
  3132. mmu_free_roots(vcpu);
  3133. }
  3134. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3135. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3136. struct kvm_mmu_page *sp, u64 *spte,
  3137. const void *new)
  3138. {
  3139. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3140. ++vcpu->kvm->stat.mmu_pde_zapped;
  3141. return;
  3142. }
  3143. ++vcpu->kvm->stat.mmu_pte_updated;
  3144. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3145. }
  3146. static bool need_remote_flush(u64 old, u64 new)
  3147. {
  3148. if (!is_shadow_present_pte(old))
  3149. return false;
  3150. if (!is_shadow_present_pte(new))
  3151. return true;
  3152. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3153. return true;
  3154. old ^= PT64_NX_MASK;
  3155. new ^= PT64_NX_MASK;
  3156. return (old & ~new & PT64_PERM_MASK) != 0;
  3157. }
  3158. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3159. bool remote_flush, bool local_flush)
  3160. {
  3161. if (zap_page)
  3162. return;
  3163. if (remote_flush)
  3164. kvm_flush_remote_tlbs(vcpu->kvm);
  3165. else if (local_flush)
  3166. kvm_mmu_flush_tlb(vcpu);
  3167. }
  3168. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3169. const u8 *new, int *bytes)
  3170. {
  3171. u64 gentry;
  3172. int r;
  3173. /*
  3174. * Assume that the pte write on a page table of the same type
  3175. * as the current vcpu paging mode since we update the sptes only
  3176. * when they have the same mode.
  3177. */
  3178. if (is_pae(vcpu) && *bytes == 4) {
  3179. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3180. *gpa &= ~(gpa_t)7;
  3181. *bytes = 8;
  3182. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3183. if (r)
  3184. gentry = 0;
  3185. new = (const u8 *)&gentry;
  3186. }
  3187. switch (*bytes) {
  3188. case 4:
  3189. gentry = *(const u32 *)new;
  3190. break;
  3191. case 8:
  3192. gentry = *(const u64 *)new;
  3193. break;
  3194. default:
  3195. gentry = 0;
  3196. break;
  3197. }
  3198. return gentry;
  3199. }
  3200. /*
  3201. * If we're seeing too many writes to a page, it may no longer be a page table,
  3202. * or we may be forking, in which case it is better to unmap the page.
  3203. */
  3204. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3205. {
  3206. /*
  3207. * Skip write-flooding detected for the sp whose level is 1, because
  3208. * it can become unsync, then the guest page is not write-protected.
  3209. */
  3210. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3211. return false;
  3212. return ++sp->write_flooding_count >= 3;
  3213. }
  3214. /*
  3215. * Misaligned accesses are too much trouble to fix up; also, they usually
  3216. * indicate a page is not used as a page table.
  3217. */
  3218. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3219. int bytes)
  3220. {
  3221. unsigned offset, pte_size, misaligned;
  3222. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3223. gpa, bytes, sp->role.word);
  3224. offset = offset_in_page(gpa);
  3225. pte_size = sp->role.cr4_pae ? 8 : 4;
  3226. /*
  3227. * Sometimes, the OS only writes the last one bytes to update status
  3228. * bits, for example, in linux, andb instruction is used in clear_bit().
  3229. */
  3230. if (!(offset & (pte_size - 1)) && bytes == 1)
  3231. return false;
  3232. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3233. misaligned |= bytes < 4;
  3234. return misaligned;
  3235. }
  3236. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3237. {
  3238. unsigned page_offset, quadrant;
  3239. u64 *spte;
  3240. int level;
  3241. page_offset = offset_in_page(gpa);
  3242. level = sp->role.level;
  3243. *nspte = 1;
  3244. if (!sp->role.cr4_pae) {
  3245. page_offset <<= 1; /* 32->64 */
  3246. /*
  3247. * A 32-bit pde maps 4MB while the shadow pdes map
  3248. * only 2MB. So we need to double the offset again
  3249. * and zap two pdes instead of one.
  3250. */
  3251. if (level == PT32_ROOT_LEVEL) {
  3252. page_offset &= ~7; /* kill rounding error */
  3253. page_offset <<= 1;
  3254. *nspte = 2;
  3255. }
  3256. quadrant = page_offset >> PAGE_SHIFT;
  3257. page_offset &= ~PAGE_MASK;
  3258. if (quadrant != sp->role.quadrant)
  3259. return NULL;
  3260. }
  3261. spte = &sp->spt[page_offset / sizeof(*spte)];
  3262. return spte;
  3263. }
  3264. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3265. const u8 *new, int bytes)
  3266. {
  3267. gfn_t gfn = gpa >> PAGE_SHIFT;
  3268. union kvm_mmu_page_role mask = { .word = 0 };
  3269. struct kvm_mmu_page *sp;
  3270. LIST_HEAD(invalid_list);
  3271. u64 entry, gentry, *spte;
  3272. int npte;
  3273. bool remote_flush, local_flush, zap_page;
  3274. /*
  3275. * If we don't have indirect shadow pages, it means no page is
  3276. * write-protected, so we can exit simply.
  3277. */
  3278. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3279. return;
  3280. zap_page = remote_flush = local_flush = false;
  3281. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3282. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3283. /*
  3284. * No need to care whether allocation memory is successful
  3285. * or not since pte prefetch is skiped if it does not have
  3286. * enough objects in the cache.
  3287. */
  3288. mmu_topup_memory_caches(vcpu);
  3289. spin_lock(&vcpu->kvm->mmu_lock);
  3290. ++vcpu->kvm->stat.mmu_pte_write;
  3291. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3292. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3293. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3294. if (detect_write_misaligned(sp, gpa, bytes) ||
  3295. detect_write_flooding(sp)) {
  3296. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3297. &invalid_list);
  3298. ++vcpu->kvm->stat.mmu_flooded;
  3299. continue;
  3300. }
  3301. spte = get_written_sptes(sp, gpa, &npte);
  3302. if (!spte)
  3303. continue;
  3304. local_flush = true;
  3305. while (npte--) {
  3306. entry = *spte;
  3307. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3308. if (gentry &&
  3309. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3310. & mask.word) && rmap_can_add(vcpu))
  3311. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3312. if (need_remote_flush(entry, *spte))
  3313. remote_flush = true;
  3314. ++spte;
  3315. }
  3316. }
  3317. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3318. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3319. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3320. spin_unlock(&vcpu->kvm->mmu_lock);
  3321. }
  3322. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3323. {
  3324. gpa_t gpa;
  3325. int r;
  3326. if (vcpu->arch.mmu.direct_map)
  3327. return 0;
  3328. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3329. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3330. return r;
  3331. }
  3332. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3333. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  3334. {
  3335. LIST_HEAD(invalid_list);
  3336. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  3337. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  3338. struct kvm_mmu_page *sp;
  3339. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  3340. struct kvm_mmu_page, link);
  3341. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  3342. ++vcpu->kvm->stat.mmu_recycled;
  3343. }
  3344. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3345. }
  3346. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3347. {
  3348. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3349. return vcpu_match_mmio_gpa(vcpu, addr);
  3350. return vcpu_match_mmio_gva(vcpu, addr);
  3351. }
  3352. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3353. void *insn, int insn_len)
  3354. {
  3355. int r, emulation_type = EMULTYPE_RETRY;
  3356. enum emulation_result er;
  3357. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3358. if (r < 0)
  3359. goto out;
  3360. if (!r) {
  3361. r = 1;
  3362. goto out;
  3363. }
  3364. if (is_mmio_page_fault(vcpu, cr2))
  3365. emulation_type = 0;
  3366. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3367. switch (er) {
  3368. case EMULATE_DONE:
  3369. return 1;
  3370. case EMULATE_DO_MMIO:
  3371. ++vcpu->stat.mmio_exits;
  3372. /* fall through */
  3373. case EMULATE_FAIL:
  3374. return 0;
  3375. default:
  3376. BUG();
  3377. }
  3378. out:
  3379. return r;
  3380. }
  3381. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3382. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3383. {
  3384. vcpu->arch.mmu.invlpg(vcpu, gva);
  3385. kvm_mmu_flush_tlb(vcpu);
  3386. ++vcpu->stat.invlpg;
  3387. }
  3388. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3389. void kvm_enable_tdp(void)
  3390. {
  3391. tdp_enabled = true;
  3392. }
  3393. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3394. void kvm_disable_tdp(void)
  3395. {
  3396. tdp_enabled = false;
  3397. }
  3398. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3399. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3400. {
  3401. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3402. if (vcpu->arch.mmu.lm_root != NULL)
  3403. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3404. }
  3405. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3406. {
  3407. struct page *page;
  3408. int i;
  3409. ASSERT(vcpu);
  3410. /*
  3411. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3412. * Therefore we need to allocate shadow page tables in the first
  3413. * 4GB of memory, which happens to fit the DMA32 zone.
  3414. */
  3415. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3416. if (!page)
  3417. return -ENOMEM;
  3418. vcpu->arch.mmu.pae_root = page_address(page);
  3419. for (i = 0; i < 4; ++i)
  3420. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3421. return 0;
  3422. }
  3423. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3424. {
  3425. ASSERT(vcpu);
  3426. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3427. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3428. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3429. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3430. return alloc_mmu_pages(vcpu);
  3431. }
  3432. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3433. {
  3434. ASSERT(vcpu);
  3435. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3436. return init_kvm_mmu(vcpu);
  3437. }
  3438. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3439. {
  3440. struct kvm_memory_slot *memslot;
  3441. gfn_t last_gfn;
  3442. int i;
  3443. memslot = id_to_memslot(kvm->memslots, slot);
  3444. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3445. spin_lock(&kvm->mmu_lock);
  3446. for (i = PT_PAGE_TABLE_LEVEL;
  3447. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3448. unsigned long *rmapp;
  3449. unsigned long last_index, index;
  3450. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3451. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3452. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3453. if (*rmapp)
  3454. __rmap_write_protect(kvm, rmapp, false);
  3455. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3456. kvm_flush_remote_tlbs(kvm);
  3457. cond_resched_lock(&kvm->mmu_lock);
  3458. }
  3459. }
  3460. }
  3461. kvm_flush_remote_tlbs(kvm);
  3462. spin_unlock(&kvm->mmu_lock);
  3463. }
  3464. void kvm_mmu_zap_all(struct kvm *kvm)
  3465. {
  3466. struct kvm_mmu_page *sp, *node;
  3467. LIST_HEAD(invalid_list);
  3468. spin_lock(&kvm->mmu_lock);
  3469. restart:
  3470. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  3471. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  3472. goto restart;
  3473. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3474. spin_unlock(&kvm->mmu_lock);
  3475. }
  3476. static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  3477. struct list_head *invalid_list)
  3478. {
  3479. struct kvm_mmu_page *page;
  3480. if (list_empty(&kvm->arch.active_mmu_pages))
  3481. return;
  3482. page = container_of(kvm->arch.active_mmu_pages.prev,
  3483. struct kvm_mmu_page, link);
  3484. kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  3485. }
  3486. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3487. {
  3488. struct kvm *kvm;
  3489. int nr_to_scan = sc->nr_to_scan;
  3490. if (nr_to_scan == 0)
  3491. goto out;
  3492. raw_spin_lock(&kvm_lock);
  3493. list_for_each_entry(kvm, &vm_list, vm_list) {
  3494. int idx;
  3495. LIST_HEAD(invalid_list);
  3496. /*
  3497. * Never scan more than sc->nr_to_scan VM instances.
  3498. * Will not hit this condition practically since we do not try
  3499. * to shrink more than one VM and it is very unlikely to see
  3500. * !n_used_mmu_pages so many times.
  3501. */
  3502. if (!nr_to_scan--)
  3503. break;
  3504. /*
  3505. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3506. * here. We may skip a VM instance errorneosly, but we do not
  3507. * want to shrink a VM that only started to populate its MMU
  3508. * anyway.
  3509. */
  3510. if (!kvm->arch.n_used_mmu_pages)
  3511. continue;
  3512. idx = srcu_read_lock(&kvm->srcu);
  3513. spin_lock(&kvm->mmu_lock);
  3514. kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
  3515. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3516. spin_unlock(&kvm->mmu_lock);
  3517. srcu_read_unlock(&kvm->srcu, idx);
  3518. list_move_tail(&kvm->vm_list, &vm_list);
  3519. break;
  3520. }
  3521. raw_spin_unlock(&kvm_lock);
  3522. out:
  3523. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3524. }
  3525. static struct shrinker mmu_shrinker = {
  3526. .shrink = mmu_shrink,
  3527. .seeks = DEFAULT_SEEKS * 10,
  3528. };
  3529. static void mmu_destroy_caches(void)
  3530. {
  3531. if (pte_list_desc_cache)
  3532. kmem_cache_destroy(pte_list_desc_cache);
  3533. if (mmu_page_header_cache)
  3534. kmem_cache_destroy(mmu_page_header_cache);
  3535. }
  3536. int kvm_mmu_module_init(void)
  3537. {
  3538. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3539. sizeof(struct pte_list_desc),
  3540. 0, 0, NULL);
  3541. if (!pte_list_desc_cache)
  3542. goto nomem;
  3543. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3544. sizeof(struct kvm_mmu_page),
  3545. 0, 0, NULL);
  3546. if (!mmu_page_header_cache)
  3547. goto nomem;
  3548. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3549. goto nomem;
  3550. register_shrinker(&mmu_shrinker);
  3551. return 0;
  3552. nomem:
  3553. mmu_destroy_caches();
  3554. return -ENOMEM;
  3555. }
  3556. /*
  3557. * Caculate mmu pages needed for kvm.
  3558. */
  3559. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3560. {
  3561. unsigned int nr_mmu_pages;
  3562. unsigned int nr_pages = 0;
  3563. struct kvm_memslots *slots;
  3564. struct kvm_memory_slot *memslot;
  3565. slots = kvm_memslots(kvm);
  3566. kvm_for_each_memslot(memslot, slots)
  3567. nr_pages += memslot->npages;
  3568. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3569. nr_mmu_pages = max(nr_mmu_pages,
  3570. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3571. return nr_mmu_pages;
  3572. }
  3573. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3574. {
  3575. struct kvm_shadow_walk_iterator iterator;
  3576. u64 spte;
  3577. int nr_sptes = 0;
  3578. walk_shadow_page_lockless_begin(vcpu);
  3579. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3580. sptes[iterator.level-1] = spte;
  3581. nr_sptes++;
  3582. if (!is_shadow_present_pte(spte))
  3583. break;
  3584. }
  3585. walk_shadow_page_lockless_end(vcpu);
  3586. return nr_sptes;
  3587. }
  3588. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3589. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3590. {
  3591. ASSERT(vcpu);
  3592. destroy_kvm_mmu(vcpu);
  3593. free_mmu_pages(vcpu);
  3594. mmu_free_memory_caches(vcpu);
  3595. }
  3596. void kvm_mmu_module_exit(void)
  3597. {
  3598. mmu_destroy_caches();
  3599. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3600. unregister_shrinker(&mmu_shrinker);
  3601. mmu_audit_disable();
  3602. }