process.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450
  1. /*
  2. * Derived from "arch/i386/kernel/process.c"
  3. * Copyright (C) 1995 Linus Torvalds
  4. *
  5. * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
  6. * Paul Mackerras (paulus@cs.anu.edu.au)
  7. *
  8. * PowerPC version
  9. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <linux/errno.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/mm.h>
  20. #include <linux/smp.h>
  21. #include <linux/stddef.h>
  22. #include <linux/unistd.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/slab.h>
  25. #include <linux/user.h>
  26. #include <linux/elf.h>
  27. #include <linux/init.h>
  28. #include <linux/prctl.h>
  29. #include <linux/init_task.h>
  30. #include <linux/export.h>
  31. #include <linux/kallsyms.h>
  32. #include <linux/mqueue.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/utsname.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/kernel_stat.h>
  37. #include <linux/personality.h>
  38. #include <linux/random.h>
  39. #include <linux/hw_breakpoint.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/io.h>
  43. #include <asm/processor.h>
  44. #include <asm/mmu.h>
  45. #include <asm/prom.h>
  46. #include <asm/machdep.h>
  47. #include <asm/time.h>
  48. #include <asm/runlatch.h>
  49. #include <asm/syscalls.h>
  50. #include <asm/switch_to.h>
  51. #include <asm/tm.h>
  52. #include <asm/debug.h>
  53. #ifdef CONFIG_PPC64
  54. #include <asm/firmware.h>
  55. #endif
  56. #include <linux/kprobes.h>
  57. #include <linux/kdebug.h>
  58. /* Transactional Memory debug */
  59. #ifdef TM_DEBUG_SW
  60. #define TM_DEBUG(x...) printk(KERN_INFO x)
  61. #else
  62. #define TM_DEBUG(x...) do { } while(0)
  63. #endif
  64. extern unsigned long _get_SP(void);
  65. #ifndef CONFIG_SMP
  66. struct task_struct *last_task_used_math = NULL;
  67. struct task_struct *last_task_used_altivec = NULL;
  68. struct task_struct *last_task_used_vsx = NULL;
  69. struct task_struct *last_task_used_spe = NULL;
  70. #endif
  71. /*
  72. * Make sure the floating-point register state in the
  73. * the thread_struct is up to date for task tsk.
  74. */
  75. void flush_fp_to_thread(struct task_struct *tsk)
  76. {
  77. if (tsk->thread.regs) {
  78. /*
  79. * We need to disable preemption here because if we didn't,
  80. * another process could get scheduled after the regs->msr
  81. * test but before we have finished saving the FP registers
  82. * to the thread_struct. That process could take over the
  83. * FPU, and then when we get scheduled again we would store
  84. * bogus values for the remaining FP registers.
  85. */
  86. preempt_disable();
  87. if (tsk->thread.regs->msr & MSR_FP) {
  88. #ifdef CONFIG_SMP
  89. /*
  90. * This should only ever be called for current or
  91. * for a stopped child process. Since we save away
  92. * the FP register state on context switch on SMP,
  93. * there is something wrong if a stopped child appears
  94. * to still have its FP state in the CPU registers.
  95. */
  96. BUG_ON(tsk != current);
  97. #endif
  98. giveup_fpu(tsk);
  99. }
  100. preempt_enable();
  101. }
  102. }
  103. EXPORT_SYMBOL_GPL(flush_fp_to_thread);
  104. void enable_kernel_fp(void)
  105. {
  106. WARN_ON(preemptible());
  107. #ifdef CONFIG_SMP
  108. if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
  109. giveup_fpu(current);
  110. else
  111. giveup_fpu(NULL); /* just enables FP for kernel */
  112. #else
  113. giveup_fpu(last_task_used_math);
  114. #endif /* CONFIG_SMP */
  115. }
  116. EXPORT_SYMBOL(enable_kernel_fp);
  117. #ifdef CONFIG_ALTIVEC
  118. void enable_kernel_altivec(void)
  119. {
  120. WARN_ON(preemptible());
  121. #ifdef CONFIG_SMP
  122. if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
  123. giveup_altivec(current);
  124. else
  125. giveup_altivec_notask();
  126. #else
  127. giveup_altivec(last_task_used_altivec);
  128. #endif /* CONFIG_SMP */
  129. }
  130. EXPORT_SYMBOL(enable_kernel_altivec);
  131. /*
  132. * Make sure the VMX/Altivec register state in the
  133. * the thread_struct is up to date for task tsk.
  134. */
  135. void flush_altivec_to_thread(struct task_struct *tsk)
  136. {
  137. if (tsk->thread.regs) {
  138. preempt_disable();
  139. if (tsk->thread.regs->msr & MSR_VEC) {
  140. #ifdef CONFIG_SMP
  141. BUG_ON(tsk != current);
  142. #endif
  143. giveup_altivec(tsk);
  144. }
  145. preempt_enable();
  146. }
  147. }
  148. EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
  149. #endif /* CONFIG_ALTIVEC */
  150. #ifdef CONFIG_VSX
  151. #if 0
  152. /* not currently used, but some crazy RAID module might want to later */
  153. void enable_kernel_vsx(void)
  154. {
  155. WARN_ON(preemptible());
  156. #ifdef CONFIG_SMP
  157. if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
  158. giveup_vsx(current);
  159. else
  160. giveup_vsx(NULL); /* just enable vsx for kernel - force */
  161. #else
  162. giveup_vsx(last_task_used_vsx);
  163. #endif /* CONFIG_SMP */
  164. }
  165. EXPORT_SYMBOL(enable_kernel_vsx);
  166. #endif
  167. void giveup_vsx(struct task_struct *tsk)
  168. {
  169. giveup_fpu(tsk);
  170. giveup_altivec(tsk);
  171. __giveup_vsx(tsk);
  172. }
  173. void flush_vsx_to_thread(struct task_struct *tsk)
  174. {
  175. if (tsk->thread.regs) {
  176. preempt_disable();
  177. if (tsk->thread.regs->msr & MSR_VSX) {
  178. #ifdef CONFIG_SMP
  179. BUG_ON(tsk != current);
  180. #endif
  181. giveup_vsx(tsk);
  182. }
  183. preempt_enable();
  184. }
  185. }
  186. EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
  187. #endif /* CONFIG_VSX */
  188. #ifdef CONFIG_SPE
  189. void enable_kernel_spe(void)
  190. {
  191. WARN_ON(preemptible());
  192. #ifdef CONFIG_SMP
  193. if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
  194. giveup_spe(current);
  195. else
  196. giveup_spe(NULL); /* just enable SPE for kernel - force */
  197. #else
  198. giveup_spe(last_task_used_spe);
  199. #endif /* __SMP __ */
  200. }
  201. EXPORT_SYMBOL(enable_kernel_spe);
  202. void flush_spe_to_thread(struct task_struct *tsk)
  203. {
  204. if (tsk->thread.regs) {
  205. preempt_disable();
  206. if (tsk->thread.regs->msr & MSR_SPE) {
  207. #ifdef CONFIG_SMP
  208. BUG_ON(tsk != current);
  209. #endif
  210. tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
  211. giveup_spe(tsk);
  212. }
  213. preempt_enable();
  214. }
  215. }
  216. #endif /* CONFIG_SPE */
  217. #ifndef CONFIG_SMP
  218. /*
  219. * If we are doing lazy switching of CPU state (FP, altivec or SPE),
  220. * and the current task has some state, discard it.
  221. */
  222. void discard_lazy_cpu_state(void)
  223. {
  224. preempt_disable();
  225. if (last_task_used_math == current)
  226. last_task_used_math = NULL;
  227. #ifdef CONFIG_ALTIVEC
  228. if (last_task_used_altivec == current)
  229. last_task_used_altivec = NULL;
  230. #endif /* CONFIG_ALTIVEC */
  231. #ifdef CONFIG_VSX
  232. if (last_task_used_vsx == current)
  233. last_task_used_vsx = NULL;
  234. #endif /* CONFIG_VSX */
  235. #ifdef CONFIG_SPE
  236. if (last_task_used_spe == current)
  237. last_task_used_spe = NULL;
  238. #endif
  239. preempt_enable();
  240. }
  241. #endif /* CONFIG_SMP */
  242. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  243. void do_send_trap(struct pt_regs *regs, unsigned long address,
  244. unsigned long error_code, int signal_code, int breakpt)
  245. {
  246. siginfo_t info;
  247. current->thread.trap_nr = signal_code;
  248. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  249. 11, SIGSEGV) == NOTIFY_STOP)
  250. return;
  251. /* Deliver the signal to userspace */
  252. info.si_signo = SIGTRAP;
  253. info.si_errno = breakpt; /* breakpoint or watchpoint id */
  254. info.si_code = signal_code;
  255. info.si_addr = (void __user *)address;
  256. force_sig_info(SIGTRAP, &info, current);
  257. }
  258. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  259. void do_break (struct pt_regs *regs, unsigned long address,
  260. unsigned long error_code)
  261. {
  262. siginfo_t info;
  263. current->thread.trap_nr = TRAP_HWBKPT;
  264. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  265. 11, SIGSEGV) == NOTIFY_STOP)
  266. return;
  267. if (debugger_break_match(regs))
  268. return;
  269. /* Clear the breakpoint */
  270. hw_breakpoint_disable();
  271. /* Deliver the signal to userspace */
  272. info.si_signo = SIGTRAP;
  273. info.si_errno = 0;
  274. info.si_code = TRAP_HWBKPT;
  275. info.si_addr = (void __user *)address;
  276. force_sig_info(SIGTRAP, &info, current);
  277. }
  278. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  279. static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
  280. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  281. /*
  282. * Set the debug registers back to their default "safe" values.
  283. */
  284. static void set_debug_reg_defaults(struct thread_struct *thread)
  285. {
  286. thread->iac1 = thread->iac2 = 0;
  287. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  288. thread->iac3 = thread->iac4 = 0;
  289. #endif
  290. thread->dac1 = thread->dac2 = 0;
  291. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  292. thread->dvc1 = thread->dvc2 = 0;
  293. #endif
  294. thread->dbcr0 = 0;
  295. #ifdef CONFIG_BOOKE
  296. /*
  297. * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
  298. */
  299. thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
  300. DBCR1_IAC3US | DBCR1_IAC4US;
  301. /*
  302. * Force Data Address Compare User/Supervisor bits to be User-only
  303. * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
  304. */
  305. thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
  306. #else
  307. thread->dbcr1 = 0;
  308. #endif
  309. }
  310. static void prime_debug_regs(struct thread_struct *thread)
  311. {
  312. mtspr(SPRN_IAC1, thread->iac1);
  313. mtspr(SPRN_IAC2, thread->iac2);
  314. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  315. mtspr(SPRN_IAC3, thread->iac3);
  316. mtspr(SPRN_IAC4, thread->iac4);
  317. #endif
  318. mtspr(SPRN_DAC1, thread->dac1);
  319. mtspr(SPRN_DAC2, thread->dac2);
  320. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  321. mtspr(SPRN_DVC1, thread->dvc1);
  322. mtspr(SPRN_DVC2, thread->dvc2);
  323. #endif
  324. mtspr(SPRN_DBCR0, thread->dbcr0);
  325. mtspr(SPRN_DBCR1, thread->dbcr1);
  326. #ifdef CONFIG_BOOKE
  327. mtspr(SPRN_DBCR2, thread->dbcr2);
  328. #endif
  329. }
  330. /*
  331. * Unless neither the old or new thread are making use of the
  332. * debug registers, set the debug registers from the values
  333. * stored in the new thread.
  334. */
  335. static void switch_booke_debug_regs(struct thread_struct *new_thread)
  336. {
  337. if ((current->thread.dbcr0 & DBCR0_IDM)
  338. || (new_thread->dbcr0 & DBCR0_IDM))
  339. prime_debug_regs(new_thread);
  340. }
  341. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  342. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  343. static void set_debug_reg_defaults(struct thread_struct *thread)
  344. {
  345. thread->hw_brk.address = 0;
  346. thread->hw_brk.type = 0;
  347. set_breakpoint(&thread->hw_brk);
  348. }
  349. #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
  350. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  351. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  352. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  353. {
  354. mtspr(SPRN_DAC1, dabr);
  355. #ifdef CONFIG_PPC_47x
  356. isync();
  357. #endif
  358. return 0;
  359. }
  360. #elif defined(CONFIG_PPC_BOOK3S)
  361. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  362. {
  363. mtspr(SPRN_DABR, dabr);
  364. mtspr(SPRN_DABRX, dabrx);
  365. return 0;
  366. }
  367. #else
  368. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  369. {
  370. return -EINVAL;
  371. }
  372. #endif
  373. static inline int set_dabr(struct arch_hw_breakpoint *brk)
  374. {
  375. unsigned long dabr, dabrx;
  376. dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
  377. dabrx = ((brk->type >> 3) & 0x7);
  378. if (ppc_md.set_dabr)
  379. return ppc_md.set_dabr(dabr, dabrx);
  380. return __set_dabr(dabr, dabrx);
  381. }
  382. static inline int set_dawr(struct arch_hw_breakpoint *brk)
  383. {
  384. unsigned long dawr, dawrx, mrd;
  385. dawr = brk->address;
  386. dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
  387. << (63 - 58); //* read/write bits */
  388. dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
  389. << (63 - 59); //* translate */
  390. dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
  391. >> 3; //* PRIM bits */
  392. /* dawr length is stored in field MDR bits 48:53. Matches range in
  393. doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
  394. 0b111111=64DW.
  395. brk->len is in bytes.
  396. This aligns up to double word size, shifts and does the bias.
  397. */
  398. mrd = ((brk->len + 7) >> 3) - 1;
  399. dawrx |= (mrd & 0x3f) << (63 - 53);
  400. if (ppc_md.set_dawr)
  401. return ppc_md.set_dawr(dawr, dawrx);
  402. mtspr(SPRN_DAWR, dawr);
  403. mtspr(SPRN_DAWRX, dawrx);
  404. return 0;
  405. }
  406. int set_breakpoint(struct arch_hw_breakpoint *brk)
  407. {
  408. __get_cpu_var(current_brk) = *brk;
  409. if (cpu_has_feature(CPU_FTR_DAWR))
  410. return set_dawr(brk);
  411. return set_dabr(brk);
  412. }
  413. #ifdef CONFIG_PPC64
  414. DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
  415. #endif
  416. static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
  417. struct arch_hw_breakpoint *b)
  418. {
  419. if (a->address != b->address)
  420. return false;
  421. if (a->type != b->type)
  422. return false;
  423. if (a->len != b->len)
  424. return false;
  425. return true;
  426. }
  427. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  428. static inline void tm_reclaim_task(struct task_struct *tsk)
  429. {
  430. /* We have to work out if we're switching from/to a task that's in the
  431. * middle of a transaction.
  432. *
  433. * In switching we need to maintain a 2nd register state as
  434. * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
  435. * checkpointed (tbegin) state in ckpt_regs and saves the transactional
  436. * (current) FPRs into oldtask->thread.transact_fpr[].
  437. *
  438. * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
  439. */
  440. struct thread_struct *thr = &tsk->thread;
  441. if (!thr->regs)
  442. return;
  443. if (!MSR_TM_ACTIVE(thr->regs->msr))
  444. goto out_and_saveregs;
  445. /* Stash the original thread MSR, as giveup_fpu et al will
  446. * modify it. We hold onto it to see whether the task used
  447. * FP & vector regs.
  448. */
  449. thr->tm_orig_msr = thr->regs->msr;
  450. TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
  451. "ccr=%lx, msr=%lx, trap=%lx)\n",
  452. tsk->pid, thr->regs->nip,
  453. thr->regs->ccr, thr->regs->msr,
  454. thr->regs->trap);
  455. tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
  456. TM_DEBUG("--- tm_reclaim on pid %d complete\n",
  457. tsk->pid);
  458. out_and_saveregs:
  459. /* Always save the regs here, even if a transaction's not active.
  460. * This context-switches a thread's TM info SPRs. We do it here to
  461. * be consistent with the restore path (in recheckpoint) which
  462. * cannot happen later in _switch().
  463. */
  464. tm_save_sprs(thr);
  465. }
  466. static inline void tm_recheckpoint_new_task(struct task_struct *new)
  467. {
  468. unsigned long msr;
  469. if (!cpu_has_feature(CPU_FTR_TM))
  470. return;
  471. /* Recheckpoint the registers of the thread we're about to switch to.
  472. *
  473. * If the task was using FP, we non-lazily reload both the original and
  474. * the speculative FP register states. This is because the kernel
  475. * doesn't see if/when a TM rollback occurs, so if we take an FP
  476. * unavoidable later, we are unable to determine which set of FP regs
  477. * need to be restored.
  478. */
  479. if (!new->thread.regs)
  480. return;
  481. /* The TM SPRs are restored here, so that TEXASR.FS can be set
  482. * before the trecheckpoint and no explosion occurs.
  483. */
  484. tm_restore_sprs(&new->thread);
  485. if (!MSR_TM_ACTIVE(new->thread.regs->msr))
  486. return;
  487. msr = new->thread.tm_orig_msr;
  488. /* Recheckpoint to restore original checkpointed register state. */
  489. TM_DEBUG("*** tm_recheckpoint of pid %d "
  490. "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
  491. new->pid, new->thread.regs->msr, msr);
  492. /* This loads the checkpointed FP/VEC state, if used */
  493. tm_recheckpoint(&new->thread, msr);
  494. /* This loads the speculative FP/VEC state, if used */
  495. if (msr & MSR_FP) {
  496. do_load_up_transact_fpu(&new->thread);
  497. new->thread.regs->msr |=
  498. (MSR_FP | new->thread.fpexc_mode);
  499. }
  500. if (msr & MSR_VEC) {
  501. do_load_up_transact_altivec(&new->thread);
  502. new->thread.regs->msr |= MSR_VEC;
  503. }
  504. /* We may as well turn on VSX too since all the state is restored now */
  505. if (msr & MSR_VSX)
  506. new->thread.regs->msr |= MSR_VSX;
  507. TM_DEBUG("*** tm_recheckpoint of pid %d complete "
  508. "(kernel msr 0x%lx)\n",
  509. new->pid, mfmsr());
  510. }
  511. static inline void __switch_to_tm(struct task_struct *prev)
  512. {
  513. if (cpu_has_feature(CPU_FTR_TM)) {
  514. tm_enable();
  515. tm_reclaim_task(prev);
  516. }
  517. }
  518. #else
  519. #define tm_recheckpoint_new_task(new)
  520. #define __switch_to_tm(prev)
  521. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  522. struct task_struct *__switch_to(struct task_struct *prev,
  523. struct task_struct *new)
  524. {
  525. struct thread_struct *new_thread, *old_thread;
  526. unsigned long flags;
  527. struct task_struct *last;
  528. #ifdef CONFIG_PPC_BOOK3S_64
  529. struct ppc64_tlb_batch *batch;
  530. #endif
  531. __switch_to_tm(prev);
  532. #ifdef CONFIG_SMP
  533. /* avoid complexity of lazy save/restore of fpu
  534. * by just saving it every time we switch out if
  535. * this task used the fpu during the last quantum.
  536. *
  537. * If it tries to use the fpu again, it'll trap and
  538. * reload its fp regs. So we don't have to do a restore
  539. * every switch, just a save.
  540. * -- Cort
  541. */
  542. if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
  543. giveup_fpu(prev);
  544. #ifdef CONFIG_ALTIVEC
  545. /*
  546. * If the previous thread used altivec in the last quantum
  547. * (thus changing altivec regs) then save them.
  548. * We used to check the VRSAVE register but not all apps
  549. * set it, so we don't rely on it now (and in fact we need
  550. * to save & restore VSCR even if VRSAVE == 0). -- paulus
  551. *
  552. * On SMP we always save/restore altivec regs just to avoid the
  553. * complexity of changing processors.
  554. * -- Cort
  555. */
  556. if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
  557. giveup_altivec(prev);
  558. #endif /* CONFIG_ALTIVEC */
  559. #ifdef CONFIG_VSX
  560. if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
  561. /* VMX and FPU registers are already save here */
  562. __giveup_vsx(prev);
  563. #endif /* CONFIG_VSX */
  564. #ifdef CONFIG_SPE
  565. /*
  566. * If the previous thread used spe in the last quantum
  567. * (thus changing spe regs) then save them.
  568. *
  569. * On SMP we always save/restore spe regs just to avoid the
  570. * complexity of changing processors.
  571. */
  572. if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
  573. giveup_spe(prev);
  574. #endif /* CONFIG_SPE */
  575. #else /* CONFIG_SMP */
  576. #ifdef CONFIG_ALTIVEC
  577. /* Avoid the trap. On smp this this never happens since
  578. * we don't set last_task_used_altivec -- Cort
  579. */
  580. if (new->thread.regs && last_task_used_altivec == new)
  581. new->thread.regs->msr |= MSR_VEC;
  582. #endif /* CONFIG_ALTIVEC */
  583. #ifdef CONFIG_VSX
  584. if (new->thread.regs && last_task_used_vsx == new)
  585. new->thread.regs->msr |= MSR_VSX;
  586. #endif /* CONFIG_VSX */
  587. #ifdef CONFIG_SPE
  588. /* Avoid the trap. On smp this this never happens since
  589. * we don't set last_task_used_spe
  590. */
  591. if (new->thread.regs && last_task_used_spe == new)
  592. new->thread.regs->msr |= MSR_SPE;
  593. #endif /* CONFIG_SPE */
  594. #endif /* CONFIG_SMP */
  595. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  596. switch_booke_debug_regs(&new->thread);
  597. #else
  598. /*
  599. * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
  600. * schedule DABR
  601. */
  602. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  603. if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
  604. set_breakpoint(&new->thread.hw_brk);
  605. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  606. #endif
  607. new_thread = &new->thread;
  608. old_thread = &current->thread;
  609. #ifdef CONFIG_PPC64
  610. /*
  611. * Collect processor utilization data per process
  612. */
  613. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  614. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  615. long unsigned start_tb, current_tb;
  616. start_tb = old_thread->start_tb;
  617. cu->current_tb = current_tb = mfspr(SPRN_PURR);
  618. old_thread->accum_tb += (current_tb - start_tb);
  619. new_thread->start_tb = current_tb;
  620. }
  621. #endif /* CONFIG_PPC64 */
  622. #ifdef CONFIG_PPC_BOOK3S_64
  623. batch = &__get_cpu_var(ppc64_tlb_batch);
  624. if (batch->active) {
  625. current_thread_info()->local_flags |= _TLF_LAZY_MMU;
  626. if (batch->index)
  627. __flush_tlb_pending(batch);
  628. batch->active = 0;
  629. }
  630. #endif /* CONFIG_PPC_BOOK3S_64 */
  631. local_irq_save(flags);
  632. /*
  633. * We can't take a PMU exception inside _switch() since there is a
  634. * window where the kernel stack SLB and the kernel stack are out
  635. * of sync. Hard disable here.
  636. */
  637. hard_irq_disable();
  638. tm_recheckpoint_new_task(new);
  639. last = _switch(old_thread, new_thread);
  640. #ifdef CONFIG_PPC_BOOK3S_64
  641. if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
  642. current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
  643. batch = &__get_cpu_var(ppc64_tlb_batch);
  644. batch->active = 1;
  645. }
  646. #endif /* CONFIG_PPC_BOOK3S_64 */
  647. local_irq_restore(flags);
  648. return last;
  649. }
  650. static int instructions_to_print = 16;
  651. static void show_instructions(struct pt_regs *regs)
  652. {
  653. int i;
  654. unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
  655. sizeof(int));
  656. printk("Instruction dump:");
  657. for (i = 0; i < instructions_to_print; i++) {
  658. int instr;
  659. if (!(i % 8))
  660. printk("\n");
  661. #if !defined(CONFIG_BOOKE)
  662. /* If executing with the IMMU off, adjust pc rather
  663. * than print XXXXXXXX.
  664. */
  665. if (!(regs->msr & MSR_IR))
  666. pc = (unsigned long)phys_to_virt(pc);
  667. #endif
  668. /* We use __get_user here *only* to avoid an OOPS on a
  669. * bad address because the pc *should* only be a
  670. * kernel address.
  671. */
  672. if (!__kernel_text_address(pc) ||
  673. __get_user(instr, (unsigned int __user *)pc)) {
  674. printk(KERN_CONT "XXXXXXXX ");
  675. } else {
  676. if (regs->nip == pc)
  677. printk(KERN_CONT "<%08x> ", instr);
  678. else
  679. printk(KERN_CONT "%08x ", instr);
  680. }
  681. pc += sizeof(int);
  682. }
  683. printk("\n");
  684. }
  685. static struct regbit {
  686. unsigned long bit;
  687. const char *name;
  688. } msr_bits[] = {
  689. #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
  690. {MSR_SF, "SF"},
  691. {MSR_HV, "HV"},
  692. #endif
  693. {MSR_VEC, "VEC"},
  694. {MSR_VSX, "VSX"},
  695. #ifdef CONFIG_BOOKE
  696. {MSR_CE, "CE"},
  697. #endif
  698. {MSR_EE, "EE"},
  699. {MSR_PR, "PR"},
  700. {MSR_FP, "FP"},
  701. {MSR_ME, "ME"},
  702. #ifdef CONFIG_BOOKE
  703. {MSR_DE, "DE"},
  704. #else
  705. {MSR_SE, "SE"},
  706. {MSR_BE, "BE"},
  707. #endif
  708. {MSR_IR, "IR"},
  709. {MSR_DR, "DR"},
  710. {MSR_PMM, "PMM"},
  711. #ifndef CONFIG_BOOKE
  712. {MSR_RI, "RI"},
  713. {MSR_LE, "LE"},
  714. #endif
  715. {0, NULL}
  716. };
  717. static void printbits(unsigned long val, struct regbit *bits)
  718. {
  719. const char *sep = "";
  720. printk("<");
  721. for (; bits->bit; ++bits)
  722. if (val & bits->bit) {
  723. printk("%s%s", sep, bits->name);
  724. sep = ",";
  725. }
  726. printk(">");
  727. }
  728. #ifdef CONFIG_PPC64
  729. #define REG "%016lx"
  730. #define REGS_PER_LINE 4
  731. #define LAST_VOLATILE 13
  732. #else
  733. #define REG "%08lx"
  734. #define REGS_PER_LINE 8
  735. #define LAST_VOLATILE 12
  736. #endif
  737. void show_regs(struct pt_regs * regs)
  738. {
  739. int i, trap;
  740. printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
  741. regs->nip, regs->link, regs->ctr);
  742. printk("REGS: %p TRAP: %04lx %s (%s)\n",
  743. regs, regs->trap, print_tainted(), init_utsname()->release);
  744. printk("MSR: "REG" ", regs->msr);
  745. printbits(regs->msr, msr_bits);
  746. printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
  747. #ifdef CONFIG_PPC64
  748. printk("SOFTE: %ld\n", regs->softe);
  749. #endif
  750. trap = TRAP(regs);
  751. if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
  752. printk("CFAR: "REG"\n", regs->orig_gpr3);
  753. if (trap == 0x300 || trap == 0x600)
  754. #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
  755. printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
  756. #else
  757. printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
  758. #endif
  759. printk("TASK = %p[%d] '%s' THREAD: %p",
  760. current, task_pid_nr(current), current->comm, task_thread_info(current));
  761. #ifdef CONFIG_SMP
  762. printk(" CPU: %d", raw_smp_processor_id());
  763. #endif /* CONFIG_SMP */
  764. for (i = 0; i < 32; i++) {
  765. if ((i % REGS_PER_LINE) == 0)
  766. printk("\nGPR%02d: ", i);
  767. printk(REG " ", regs->gpr[i]);
  768. if (i == LAST_VOLATILE && !FULL_REGS(regs))
  769. break;
  770. }
  771. printk("\n");
  772. #ifdef CONFIG_KALLSYMS
  773. /*
  774. * Lookup NIP late so we have the best change of getting the
  775. * above info out without failing
  776. */
  777. printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
  778. printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
  779. #endif
  780. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  781. printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
  782. #endif
  783. show_stack(current, (unsigned long *) regs->gpr[1]);
  784. if (!user_mode(regs))
  785. show_instructions(regs);
  786. }
  787. void exit_thread(void)
  788. {
  789. discard_lazy_cpu_state();
  790. }
  791. void flush_thread(void)
  792. {
  793. discard_lazy_cpu_state();
  794. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  795. flush_ptrace_hw_breakpoint(current);
  796. #else /* CONFIG_HAVE_HW_BREAKPOINT */
  797. set_debug_reg_defaults(&current->thread);
  798. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  799. }
  800. void
  801. release_thread(struct task_struct *t)
  802. {
  803. }
  804. /*
  805. * this gets called so that we can store coprocessor state into memory and
  806. * copy the current task into the new thread.
  807. */
  808. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  809. {
  810. flush_fp_to_thread(src);
  811. flush_altivec_to_thread(src);
  812. flush_vsx_to_thread(src);
  813. flush_spe_to_thread(src);
  814. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  815. flush_ptrace_hw_breakpoint(src);
  816. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  817. *dst = *src;
  818. return 0;
  819. }
  820. /*
  821. * Copy a thread..
  822. */
  823. extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
  824. int copy_thread(unsigned long clone_flags, unsigned long usp,
  825. unsigned long arg, struct task_struct *p)
  826. {
  827. struct pt_regs *childregs, *kregs;
  828. extern void ret_from_fork(void);
  829. extern void ret_from_kernel_thread(void);
  830. void (*f)(void);
  831. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  832. /* Copy registers */
  833. sp -= sizeof(struct pt_regs);
  834. childregs = (struct pt_regs *) sp;
  835. if (unlikely(p->flags & PF_KTHREAD)) {
  836. struct thread_info *ti = (void *)task_stack_page(p);
  837. memset(childregs, 0, sizeof(struct pt_regs));
  838. childregs->gpr[1] = sp + sizeof(struct pt_regs);
  839. childregs->gpr[14] = usp; /* function */
  840. #ifdef CONFIG_PPC64
  841. clear_tsk_thread_flag(p, TIF_32BIT);
  842. childregs->softe = 1;
  843. #endif
  844. childregs->gpr[15] = arg;
  845. p->thread.regs = NULL; /* no user register state */
  846. ti->flags |= _TIF_RESTOREALL;
  847. f = ret_from_kernel_thread;
  848. } else {
  849. struct pt_regs *regs = current_pt_regs();
  850. CHECK_FULL_REGS(regs);
  851. *childregs = *regs;
  852. if (usp)
  853. childregs->gpr[1] = usp;
  854. p->thread.regs = childregs;
  855. childregs->gpr[3] = 0; /* Result from fork() */
  856. if (clone_flags & CLONE_SETTLS) {
  857. #ifdef CONFIG_PPC64
  858. if (!is_32bit_task())
  859. childregs->gpr[13] = childregs->gpr[6];
  860. else
  861. #endif
  862. childregs->gpr[2] = childregs->gpr[6];
  863. }
  864. f = ret_from_fork;
  865. }
  866. sp -= STACK_FRAME_OVERHEAD;
  867. /*
  868. * The way this works is that at some point in the future
  869. * some task will call _switch to switch to the new task.
  870. * That will pop off the stack frame created below and start
  871. * the new task running at ret_from_fork. The new task will
  872. * do some house keeping and then return from the fork or clone
  873. * system call, using the stack frame created above.
  874. */
  875. sp -= sizeof(struct pt_regs);
  876. kregs = (struct pt_regs *) sp;
  877. sp -= STACK_FRAME_OVERHEAD;
  878. p->thread.ksp = sp;
  879. p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
  880. _ALIGN_UP(sizeof(struct thread_info), 16);
  881. #ifdef CONFIG_PPC_STD_MMU_64
  882. if (mmu_has_feature(MMU_FTR_SLB)) {
  883. unsigned long sp_vsid;
  884. unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
  885. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  886. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
  887. << SLB_VSID_SHIFT_1T;
  888. else
  889. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
  890. << SLB_VSID_SHIFT;
  891. sp_vsid |= SLB_VSID_KERNEL | llp;
  892. p->thread.ksp_vsid = sp_vsid;
  893. }
  894. #endif /* CONFIG_PPC_STD_MMU_64 */
  895. #ifdef CONFIG_PPC64
  896. if (cpu_has_feature(CPU_FTR_DSCR)) {
  897. p->thread.dscr_inherit = current->thread.dscr_inherit;
  898. p->thread.dscr = current->thread.dscr;
  899. }
  900. if (cpu_has_feature(CPU_FTR_HAS_PPR))
  901. p->thread.ppr = INIT_PPR;
  902. #endif
  903. /*
  904. * The PPC64 ABI makes use of a TOC to contain function
  905. * pointers. The function (ret_from_except) is actually a pointer
  906. * to the TOC entry. The first entry is a pointer to the actual
  907. * function.
  908. */
  909. #ifdef CONFIG_PPC64
  910. kregs->nip = *((unsigned long *)f);
  911. #else
  912. kregs->nip = (unsigned long)f;
  913. #endif
  914. return 0;
  915. }
  916. /*
  917. * Set up a thread for executing a new program
  918. */
  919. void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
  920. {
  921. #ifdef CONFIG_PPC64
  922. unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
  923. #endif
  924. /*
  925. * If we exec out of a kernel thread then thread.regs will not be
  926. * set. Do it now.
  927. */
  928. if (!current->thread.regs) {
  929. struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
  930. current->thread.regs = regs - 1;
  931. }
  932. memset(regs->gpr, 0, sizeof(regs->gpr));
  933. regs->ctr = 0;
  934. regs->link = 0;
  935. regs->xer = 0;
  936. regs->ccr = 0;
  937. regs->gpr[1] = sp;
  938. /*
  939. * We have just cleared all the nonvolatile GPRs, so make
  940. * FULL_REGS(regs) return true. This is necessary to allow
  941. * ptrace to examine the thread immediately after exec.
  942. */
  943. regs->trap &= ~1UL;
  944. #ifdef CONFIG_PPC32
  945. regs->mq = 0;
  946. regs->nip = start;
  947. regs->msr = MSR_USER;
  948. #else
  949. if (!is_32bit_task()) {
  950. unsigned long entry, toc;
  951. /* start is a relocated pointer to the function descriptor for
  952. * the elf _start routine. The first entry in the function
  953. * descriptor is the entry address of _start and the second
  954. * entry is the TOC value we need to use.
  955. */
  956. __get_user(entry, (unsigned long __user *)start);
  957. __get_user(toc, (unsigned long __user *)start+1);
  958. /* Check whether the e_entry function descriptor entries
  959. * need to be relocated before we can use them.
  960. */
  961. if (load_addr != 0) {
  962. entry += load_addr;
  963. toc += load_addr;
  964. }
  965. regs->nip = entry;
  966. regs->gpr[2] = toc;
  967. regs->msr = MSR_USER64;
  968. } else {
  969. regs->nip = start;
  970. regs->gpr[2] = 0;
  971. regs->msr = MSR_USER32;
  972. }
  973. #endif
  974. discard_lazy_cpu_state();
  975. #ifdef CONFIG_VSX
  976. current->thread.used_vsr = 0;
  977. #endif
  978. memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
  979. current->thread.fpscr.val = 0;
  980. #ifdef CONFIG_ALTIVEC
  981. memset(current->thread.vr, 0, sizeof(current->thread.vr));
  982. memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
  983. current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
  984. current->thread.vrsave = 0;
  985. current->thread.used_vr = 0;
  986. #endif /* CONFIG_ALTIVEC */
  987. #ifdef CONFIG_SPE
  988. memset(current->thread.evr, 0, sizeof(current->thread.evr));
  989. current->thread.acc = 0;
  990. current->thread.spefscr = 0;
  991. current->thread.used_spe = 0;
  992. #endif /* CONFIG_SPE */
  993. #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  994. if (cpu_has_feature(CPU_FTR_TM))
  995. regs->msr |= MSR_TM;
  996. current->thread.tm_tfhar = 0;
  997. current->thread.tm_texasr = 0;
  998. current->thread.tm_tfiar = 0;
  999. #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  1000. }
  1001. #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
  1002. | PR_FP_EXC_RES | PR_FP_EXC_INV)
  1003. int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
  1004. {
  1005. struct pt_regs *regs = tsk->thread.regs;
  1006. /* This is a bit hairy. If we are an SPE enabled processor
  1007. * (have embedded fp) we store the IEEE exception enable flags in
  1008. * fpexc_mode. fpexc_mode is also used for setting FP exception
  1009. * mode (asyn, precise, disabled) for 'Classic' FP. */
  1010. if (val & PR_FP_EXC_SW_ENABLE) {
  1011. #ifdef CONFIG_SPE
  1012. if (cpu_has_feature(CPU_FTR_SPE)) {
  1013. tsk->thread.fpexc_mode = val &
  1014. (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
  1015. return 0;
  1016. } else {
  1017. return -EINVAL;
  1018. }
  1019. #else
  1020. return -EINVAL;
  1021. #endif
  1022. }
  1023. /* on a CONFIG_SPE this does not hurt us. The bits that
  1024. * __pack_fe01 use do not overlap with bits used for
  1025. * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
  1026. * on CONFIG_SPE implementations are reserved so writing to
  1027. * them does not change anything */
  1028. if (val > PR_FP_EXC_PRECISE)
  1029. return -EINVAL;
  1030. tsk->thread.fpexc_mode = __pack_fe01(val);
  1031. if (regs != NULL && (regs->msr & MSR_FP) != 0)
  1032. regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
  1033. | tsk->thread.fpexc_mode;
  1034. return 0;
  1035. }
  1036. int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
  1037. {
  1038. unsigned int val;
  1039. if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
  1040. #ifdef CONFIG_SPE
  1041. if (cpu_has_feature(CPU_FTR_SPE))
  1042. val = tsk->thread.fpexc_mode;
  1043. else
  1044. return -EINVAL;
  1045. #else
  1046. return -EINVAL;
  1047. #endif
  1048. else
  1049. val = __unpack_fe01(tsk->thread.fpexc_mode);
  1050. return put_user(val, (unsigned int __user *) adr);
  1051. }
  1052. int set_endian(struct task_struct *tsk, unsigned int val)
  1053. {
  1054. struct pt_regs *regs = tsk->thread.regs;
  1055. if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
  1056. (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
  1057. return -EINVAL;
  1058. if (regs == NULL)
  1059. return -EINVAL;
  1060. if (val == PR_ENDIAN_BIG)
  1061. regs->msr &= ~MSR_LE;
  1062. else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
  1063. regs->msr |= MSR_LE;
  1064. else
  1065. return -EINVAL;
  1066. return 0;
  1067. }
  1068. int get_endian(struct task_struct *tsk, unsigned long adr)
  1069. {
  1070. struct pt_regs *regs = tsk->thread.regs;
  1071. unsigned int val;
  1072. if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
  1073. !cpu_has_feature(CPU_FTR_REAL_LE))
  1074. return -EINVAL;
  1075. if (regs == NULL)
  1076. return -EINVAL;
  1077. if (regs->msr & MSR_LE) {
  1078. if (cpu_has_feature(CPU_FTR_REAL_LE))
  1079. val = PR_ENDIAN_LITTLE;
  1080. else
  1081. val = PR_ENDIAN_PPC_LITTLE;
  1082. } else
  1083. val = PR_ENDIAN_BIG;
  1084. return put_user(val, (unsigned int __user *)adr);
  1085. }
  1086. int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
  1087. {
  1088. tsk->thread.align_ctl = val;
  1089. return 0;
  1090. }
  1091. int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
  1092. {
  1093. return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
  1094. }
  1095. static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
  1096. unsigned long nbytes)
  1097. {
  1098. unsigned long stack_page;
  1099. unsigned long cpu = task_cpu(p);
  1100. /*
  1101. * Avoid crashing if the stack has overflowed and corrupted
  1102. * task_cpu(p), which is in the thread_info struct.
  1103. */
  1104. if (cpu < NR_CPUS && cpu_possible(cpu)) {
  1105. stack_page = (unsigned long) hardirq_ctx[cpu];
  1106. if (sp >= stack_page + sizeof(struct thread_struct)
  1107. && sp <= stack_page + THREAD_SIZE - nbytes)
  1108. return 1;
  1109. stack_page = (unsigned long) softirq_ctx[cpu];
  1110. if (sp >= stack_page + sizeof(struct thread_struct)
  1111. && sp <= stack_page + THREAD_SIZE - nbytes)
  1112. return 1;
  1113. }
  1114. return 0;
  1115. }
  1116. int validate_sp(unsigned long sp, struct task_struct *p,
  1117. unsigned long nbytes)
  1118. {
  1119. unsigned long stack_page = (unsigned long)task_stack_page(p);
  1120. if (sp >= stack_page + sizeof(struct thread_struct)
  1121. && sp <= stack_page + THREAD_SIZE - nbytes)
  1122. return 1;
  1123. return valid_irq_stack(sp, p, nbytes);
  1124. }
  1125. EXPORT_SYMBOL(validate_sp);
  1126. unsigned long get_wchan(struct task_struct *p)
  1127. {
  1128. unsigned long ip, sp;
  1129. int count = 0;
  1130. if (!p || p == current || p->state == TASK_RUNNING)
  1131. return 0;
  1132. sp = p->thread.ksp;
  1133. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1134. return 0;
  1135. do {
  1136. sp = *(unsigned long *)sp;
  1137. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1138. return 0;
  1139. if (count > 0) {
  1140. ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
  1141. if (!in_sched_functions(ip))
  1142. return ip;
  1143. }
  1144. } while (count++ < 16);
  1145. return 0;
  1146. }
  1147. static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
  1148. void show_stack(struct task_struct *tsk, unsigned long *stack)
  1149. {
  1150. unsigned long sp, ip, lr, newsp;
  1151. int count = 0;
  1152. int firstframe = 1;
  1153. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1154. int curr_frame = current->curr_ret_stack;
  1155. extern void return_to_handler(void);
  1156. unsigned long rth = (unsigned long)return_to_handler;
  1157. unsigned long mrth = -1;
  1158. #ifdef CONFIG_PPC64
  1159. extern void mod_return_to_handler(void);
  1160. rth = *(unsigned long *)rth;
  1161. mrth = (unsigned long)mod_return_to_handler;
  1162. mrth = *(unsigned long *)mrth;
  1163. #endif
  1164. #endif
  1165. sp = (unsigned long) stack;
  1166. if (tsk == NULL)
  1167. tsk = current;
  1168. if (sp == 0) {
  1169. if (tsk == current)
  1170. asm("mr %0,1" : "=r" (sp));
  1171. else
  1172. sp = tsk->thread.ksp;
  1173. }
  1174. lr = 0;
  1175. printk("Call Trace:\n");
  1176. do {
  1177. if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
  1178. return;
  1179. stack = (unsigned long *) sp;
  1180. newsp = stack[0];
  1181. ip = stack[STACK_FRAME_LR_SAVE];
  1182. if (!firstframe || ip != lr) {
  1183. printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
  1184. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1185. if ((ip == rth || ip == mrth) && curr_frame >= 0) {
  1186. printk(" (%pS)",
  1187. (void *)current->ret_stack[curr_frame].ret);
  1188. curr_frame--;
  1189. }
  1190. #endif
  1191. if (firstframe)
  1192. printk(" (unreliable)");
  1193. printk("\n");
  1194. }
  1195. firstframe = 0;
  1196. /*
  1197. * See if this is an exception frame.
  1198. * We look for the "regshere" marker in the current frame.
  1199. */
  1200. if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
  1201. && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  1202. struct pt_regs *regs = (struct pt_regs *)
  1203. (sp + STACK_FRAME_OVERHEAD);
  1204. lr = regs->link;
  1205. printk("--- Exception: %lx at %pS\n LR = %pS\n",
  1206. regs->trap, (void *)regs->nip, (void *)lr);
  1207. firstframe = 1;
  1208. }
  1209. sp = newsp;
  1210. } while (count++ < kstack_depth_to_print);
  1211. }
  1212. void dump_stack(void)
  1213. {
  1214. show_stack(current, NULL);
  1215. }
  1216. EXPORT_SYMBOL(dump_stack);
  1217. #ifdef CONFIG_PPC64
  1218. /* Called with hard IRQs off */
  1219. void __ppc64_runlatch_on(void)
  1220. {
  1221. struct thread_info *ti = current_thread_info();
  1222. unsigned long ctrl;
  1223. ctrl = mfspr(SPRN_CTRLF);
  1224. ctrl |= CTRL_RUNLATCH;
  1225. mtspr(SPRN_CTRLT, ctrl);
  1226. ti->local_flags |= _TLF_RUNLATCH;
  1227. }
  1228. /* Called with hard IRQs off */
  1229. void __ppc64_runlatch_off(void)
  1230. {
  1231. struct thread_info *ti = current_thread_info();
  1232. unsigned long ctrl;
  1233. ti->local_flags &= ~_TLF_RUNLATCH;
  1234. ctrl = mfspr(SPRN_CTRLF);
  1235. ctrl &= ~CTRL_RUNLATCH;
  1236. mtspr(SPRN_CTRLT, ctrl);
  1237. }
  1238. #endif /* CONFIG_PPC64 */
  1239. unsigned long arch_align_stack(unsigned long sp)
  1240. {
  1241. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  1242. sp -= get_random_int() & ~PAGE_MASK;
  1243. return sp & ~0xf;
  1244. }
  1245. static inline unsigned long brk_rnd(void)
  1246. {
  1247. unsigned long rnd = 0;
  1248. /* 8MB for 32bit, 1GB for 64bit */
  1249. if (is_32bit_task())
  1250. rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
  1251. else
  1252. rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
  1253. return rnd << PAGE_SHIFT;
  1254. }
  1255. unsigned long arch_randomize_brk(struct mm_struct *mm)
  1256. {
  1257. unsigned long base = mm->brk;
  1258. unsigned long ret;
  1259. #ifdef CONFIG_PPC_STD_MMU_64
  1260. /*
  1261. * If we are using 1TB segments and we are allowed to randomise
  1262. * the heap, we can put it above 1TB so it is backed by a 1TB
  1263. * segment. Otherwise the heap will be in the bottom 1TB
  1264. * which always uses 256MB segments and this may result in a
  1265. * performance penalty.
  1266. */
  1267. if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
  1268. base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
  1269. #endif
  1270. ret = PAGE_ALIGN(base + brk_rnd());
  1271. if (ret < mm->brk)
  1272. return mm->brk;
  1273. return ret;
  1274. }
  1275. unsigned long randomize_et_dyn(unsigned long base)
  1276. {
  1277. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  1278. if (ret < base)
  1279. return base;
  1280. return ret;
  1281. }