i915_gem.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable,
  43. bool nonblocking);
  44. static int i915_gem_phys_pwrite(struct drm_device *dev,
  45. struct drm_i915_gem_object *obj,
  46. struct drm_i915_gem_pwrite *args,
  47. struct drm_file *file);
  48. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  49. struct drm_i915_gem_object *obj);
  50. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  51. struct drm_i915_fence_reg *fence,
  52. bool enable);
  53. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  54. struct shrink_control *sc);
  55. static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
  56. static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
  57. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  58. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  59. {
  60. if (obj->tiling_mode)
  61. i915_gem_release_mmap(obj);
  62. /* As we do not have an associated fence register, we will force
  63. * a tiling change if we ever need to acquire one.
  64. */
  65. obj->fence_dirty = false;
  66. obj->fence_reg = I915_FENCE_REG_NONE;
  67. }
  68. /* some bookkeeping */
  69. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  70. size_t size)
  71. {
  72. dev_priv->mm.object_count++;
  73. dev_priv->mm.object_memory += size;
  74. }
  75. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  76. size_t size)
  77. {
  78. dev_priv->mm.object_count--;
  79. dev_priv->mm.object_memory -= size;
  80. }
  81. static int
  82. i915_gem_wait_for_error(struct drm_device *dev)
  83. {
  84. struct drm_i915_private *dev_priv = dev->dev_private;
  85. struct completion *x = &dev_priv->error_completion;
  86. unsigned long flags;
  87. int ret;
  88. if (!atomic_read(&dev_priv->mm.wedged))
  89. return 0;
  90. /*
  91. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  92. * userspace. If it takes that long something really bad is going on and
  93. * we should simply try to bail out and fail as gracefully as possible.
  94. */
  95. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  96. if (ret == 0) {
  97. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  98. return -EIO;
  99. } else if (ret < 0) {
  100. return ret;
  101. }
  102. if (atomic_read(&dev_priv->mm.wedged)) {
  103. /* GPU is hung, bump the completion count to account for
  104. * the token we just consumed so that we never hit zero and
  105. * end up waiting upon a subsequent completion event that
  106. * will never happen.
  107. */
  108. spin_lock_irqsave(&x->wait.lock, flags);
  109. x->done++;
  110. spin_unlock_irqrestore(&x->wait.lock, flags);
  111. }
  112. return 0;
  113. }
  114. int i915_mutex_lock_interruptible(struct drm_device *dev)
  115. {
  116. int ret;
  117. ret = i915_gem_wait_for_error(dev);
  118. if (ret)
  119. return ret;
  120. ret = mutex_lock_interruptible(&dev->struct_mutex);
  121. if (ret)
  122. return ret;
  123. WARN_ON(i915_verify_lists(dev));
  124. return 0;
  125. }
  126. static inline bool
  127. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  128. {
  129. return obj->gtt_space && !obj->active;
  130. }
  131. int
  132. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  133. struct drm_file *file)
  134. {
  135. struct drm_i915_gem_init *args = data;
  136. if (drm_core_check_feature(dev, DRIVER_MODESET))
  137. return -ENODEV;
  138. if (args->gtt_start >= args->gtt_end ||
  139. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  140. return -EINVAL;
  141. /* GEM with user mode setting was never supported on ilk and later. */
  142. if (INTEL_INFO(dev)->gen >= 5)
  143. return -ENODEV;
  144. mutex_lock(&dev->struct_mutex);
  145. i915_gem_init_global_gtt(dev, args->gtt_start,
  146. args->gtt_end, args->gtt_end);
  147. mutex_unlock(&dev->struct_mutex);
  148. return 0;
  149. }
  150. int
  151. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  152. struct drm_file *file)
  153. {
  154. struct drm_i915_private *dev_priv = dev->dev_private;
  155. struct drm_i915_gem_get_aperture *args = data;
  156. struct drm_i915_gem_object *obj;
  157. size_t pinned;
  158. pinned = 0;
  159. mutex_lock(&dev->struct_mutex);
  160. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  161. if (obj->pin_count)
  162. pinned += obj->gtt_space->size;
  163. mutex_unlock(&dev->struct_mutex);
  164. args->aper_size = dev_priv->mm.gtt_total;
  165. args->aper_available_size = args->aper_size - pinned;
  166. return 0;
  167. }
  168. static int
  169. i915_gem_create(struct drm_file *file,
  170. struct drm_device *dev,
  171. uint64_t size,
  172. uint32_t *handle_p)
  173. {
  174. struct drm_i915_gem_object *obj;
  175. int ret;
  176. u32 handle;
  177. size = roundup(size, PAGE_SIZE);
  178. if (size == 0)
  179. return -EINVAL;
  180. /* Allocate the new object */
  181. obj = i915_gem_alloc_object(dev, size);
  182. if (obj == NULL)
  183. return -ENOMEM;
  184. ret = drm_gem_handle_create(file, &obj->base, &handle);
  185. if (ret) {
  186. drm_gem_object_release(&obj->base);
  187. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  188. kfree(obj);
  189. return ret;
  190. }
  191. /* drop reference from allocate - handle holds it now */
  192. drm_gem_object_unreference(&obj->base);
  193. trace_i915_gem_object_create(obj);
  194. *handle_p = handle;
  195. return 0;
  196. }
  197. int
  198. i915_gem_dumb_create(struct drm_file *file,
  199. struct drm_device *dev,
  200. struct drm_mode_create_dumb *args)
  201. {
  202. /* have to work out size/pitch and return them */
  203. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  204. args->size = args->pitch * args->height;
  205. return i915_gem_create(file, dev,
  206. args->size, &args->handle);
  207. }
  208. int i915_gem_dumb_destroy(struct drm_file *file,
  209. struct drm_device *dev,
  210. uint32_t handle)
  211. {
  212. return drm_gem_handle_delete(file, handle);
  213. }
  214. /**
  215. * Creates a new mm object and returns a handle to it.
  216. */
  217. int
  218. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  219. struct drm_file *file)
  220. {
  221. struct drm_i915_gem_create *args = data;
  222. return i915_gem_create(file, dev,
  223. args->size, &args->handle);
  224. }
  225. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  226. {
  227. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  228. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  229. obj->tiling_mode != I915_TILING_NONE;
  230. }
  231. static inline int
  232. __copy_to_user_swizzled(char __user *cpu_vaddr,
  233. const char *gpu_vaddr, int gpu_offset,
  234. int length)
  235. {
  236. int ret, cpu_offset = 0;
  237. while (length > 0) {
  238. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  239. int this_length = min(cacheline_end - gpu_offset, length);
  240. int swizzled_gpu_offset = gpu_offset ^ 64;
  241. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  242. gpu_vaddr + swizzled_gpu_offset,
  243. this_length);
  244. if (ret)
  245. return ret + length;
  246. cpu_offset += this_length;
  247. gpu_offset += this_length;
  248. length -= this_length;
  249. }
  250. return 0;
  251. }
  252. static inline int
  253. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  254. const char __user *cpu_vaddr,
  255. int length)
  256. {
  257. int ret, cpu_offset = 0;
  258. while (length > 0) {
  259. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  260. int this_length = min(cacheline_end - gpu_offset, length);
  261. int swizzled_gpu_offset = gpu_offset ^ 64;
  262. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  263. cpu_vaddr + cpu_offset,
  264. this_length);
  265. if (ret)
  266. return ret + length;
  267. cpu_offset += this_length;
  268. gpu_offset += this_length;
  269. length -= this_length;
  270. }
  271. return 0;
  272. }
  273. /* Per-page copy function for the shmem pread fastpath.
  274. * Flushes invalid cachelines before reading the target if
  275. * needs_clflush is set. */
  276. static int
  277. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  278. char __user *user_data,
  279. bool page_do_bit17_swizzling, bool needs_clflush)
  280. {
  281. char *vaddr;
  282. int ret;
  283. if (unlikely(page_do_bit17_swizzling))
  284. return -EINVAL;
  285. vaddr = kmap_atomic(page);
  286. if (needs_clflush)
  287. drm_clflush_virt_range(vaddr + shmem_page_offset,
  288. page_length);
  289. ret = __copy_to_user_inatomic(user_data,
  290. vaddr + shmem_page_offset,
  291. page_length);
  292. kunmap_atomic(vaddr);
  293. return ret;
  294. }
  295. static void
  296. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  297. bool swizzled)
  298. {
  299. if (unlikely(swizzled)) {
  300. unsigned long start = (unsigned long) addr;
  301. unsigned long end = (unsigned long) addr + length;
  302. /* For swizzling simply ensure that we always flush both
  303. * channels. Lame, but simple and it works. Swizzled
  304. * pwrite/pread is far from a hotpath - current userspace
  305. * doesn't use it at all. */
  306. start = round_down(start, 128);
  307. end = round_up(end, 128);
  308. drm_clflush_virt_range((void *)start, end - start);
  309. } else {
  310. drm_clflush_virt_range(addr, length);
  311. }
  312. }
  313. /* Only difference to the fast-path function is that this can handle bit17
  314. * and uses non-atomic copy and kmap functions. */
  315. static int
  316. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  317. char __user *user_data,
  318. bool page_do_bit17_swizzling, bool needs_clflush)
  319. {
  320. char *vaddr;
  321. int ret;
  322. vaddr = kmap(page);
  323. if (needs_clflush)
  324. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  325. page_length,
  326. page_do_bit17_swizzling);
  327. if (page_do_bit17_swizzling)
  328. ret = __copy_to_user_swizzled(user_data,
  329. vaddr, shmem_page_offset,
  330. page_length);
  331. else
  332. ret = __copy_to_user(user_data,
  333. vaddr + shmem_page_offset,
  334. page_length);
  335. kunmap(page);
  336. return ret;
  337. }
  338. static int
  339. i915_gem_shmem_pread(struct drm_device *dev,
  340. struct drm_i915_gem_object *obj,
  341. struct drm_i915_gem_pread *args,
  342. struct drm_file *file)
  343. {
  344. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  345. char __user *user_data;
  346. ssize_t remain;
  347. loff_t offset;
  348. int shmem_page_offset, page_length, ret = 0;
  349. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  350. int hit_slowpath = 0;
  351. int prefaulted = 0;
  352. int needs_clflush = 0;
  353. int release_page;
  354. user_data = (char __user *) (uintptr_t) args->data_ptr;
  355. remain = args->size;
  356. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  357. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  358. /* If we're not in the cpu read domain, set ourself into the gtt
  359. * read domain and manually flush cachelines (if required). This
  360. * optimizes for the case when the gpu will dirty the data
  361. * anyway again before the next pread happens. */
  362. if (obj->cache_level == I915_CACHE_NONE)
  363. needs_clflush = 1;
  364. if (obj->gtt_space) {
  365. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  366. if (ret)
  367. return ret;
  368. }
  369. }
  370. offset = args->offset;
  371. while (remain > 0) {
  372. struct page *page;
  373. /* Operation in this page
  374. *
  375. * shmem_page_offset = offset within page in shmem file
  376. * page_length = bytes to copy for this page
  377. */
  378. shmem_page_offset = offset_in_page(offset);
  379. page_length = remain;
  380. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  381. page_length = PAGE_SIZE - shmem_page_offset;
  382. if (obj->pages) {
  383. page = obj->pages[offset >> PAGE_SHIFT];
  384. release_page = 0;
  385. } else {
  386. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  387. if (IS_ERR(page)) {
  388. ret = PTR_ERR(page);
  389. goto out;
  390. }
  391. release_page = 1;
  392. }
  393. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  394. (page_to_phys(page) & (1 << 17)) != 0;
  395. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  396. user_data, page_do_bit17_swizzling,
  397. needs_clflush);
  398. if (ret == 0)
  399. goto next_page;
  400. hit_slowpath = 1;
  401. page_cache_get(page);
  402. mutex_unlock(&dev->struct_mutex);
  403. if (!prefaulted) {
  404. ret = fault_in_multipages_writeable(user_data, remain);
  405. /* Userspace is tricking us, but we've already clobbered
  406. * its pages with the prefault and promised to write the
  407. * data up to the first fault. Hence ignore any errors
  408. * and just continue. */
  409. (void)ret;
  410. prefaulted = 1;
  411. }
  412. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  413. user_data, page_do_bit17_swizzling,
  414. needs_clflush);
  415. mutex_lock(&dev->struct_mutex);
  416. page_cache_release(page);
  417. next_page:
  418. mark_page_accessed(page);
  419. if (release_page)
  420. page_cache_release(page);
  421. if (ret) {
  422. ret = -EFAULT;
  423. goto out;
  424. }
  425. remain -= page_length;
  426. user_data += page_length;
  427. offset += page_length;
  428. }
  429. out:
  430. if (hit_slowpath) {
  431. /* Fixup: Kill any reinstated backing storage pages */
  432. if (obj->madv == __I915_MADV_PURGED)
  433. i915_gem_object_truncate(obj);
  434. }
  435. return ret;
  436. }
  437. /**
  438. * Reads data from the object referenced by handle.
  439. *
  440. * On error, the contents of *data are undefined.
  441. */
  442. int
  443. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  444. struct drm_file *file)
  445. {
  446. struct drm_i915_gem_pread *args = data;
  447. struct drm_i915_gem_object *obj;
  448. int ret = 0;
  449. if (args->size == 0)
  450. return 0;
  451. if (!access_ok(VERIFY_WRITE,
  452. (char __user *)(uintptr_t)args->data_ptr,
  453. args->size))
  454. return -EFAULT;
  455. ret = i915_mutex_lock_interruptible(dev);
  456. if (ret)
  457. return ret;
  458. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  459. if (&obj->base == NULL) {
  460. ret = -ENOENT;
  461. goto unlock;
  462. }
  463. /* Bounds check source. */
  464. if (args->offset > obj->base.size ||
  465. args->size > obj->base.size - args->offset) {
  466. ret = -EINVAL;
  467. goto out;
  468. }
  469. /* prime objects have no backing filp to GEM pread/pwrite
  470. * pages from.
  471. */
  472. if (!obj->base.filp) {
  473. ret = -EINVAL;
  474. goto out;
  475. }
  476. trace_i915_gem_object_pread(obj, args->offset, args->size);
  477. ret = i915_gem_shmem_pread(dev, obj, args, file);
  478. out:
  479. drm_gem_object_unreference(&obj->base);
  480. unlock:
  481. mutex_unlock(&dev->struct_mutex);
  482. return ret;
  483. }
  484. /* This is the fast write path which cannot handle
  485. * page faults in the source data
  486. */
  487. static inline int
  488. fast_user_write(struct io_mapping *mapping,
  489. loff_t page_base, int page_offset,
  490. char __user *user_data,
  491. int length)
  492. {
  493. void __iomem *vaddr_atomic;
  494. void *vaddr;
  495. unsigned long unwritten;
  496. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  497. /* We can use the cpu mem copy function because this is X86. */
  498. vaddr = (void __force*)vaddr_atomic + page_offset;
  499. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  500. user_data, length);
  501. io_mapping_unmap_atomic(vaddr_atomic);
  502. return unwritten;
  503. }
  504. /**
  505. * This is the fast pwrite path, where we copy the data directly from the
  506. * user into the GTT, uncached.
  507. */
  508. static int
  509. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  510. struct drm_i915_gem_object *obj,
  511. struct drm_i915_gem_pwrite *args,
  512. struct drm_file *file)
  513. {
  514. drm_i915_private_t *dev_priv = dev->dev_private;
  515. ssize_t remain;
  516. loff_t offset, page_base;
  517. char __user *user_data;
  518. int page_offset, page_length, ret;
  519. ret = i915_gem_object_pin(obj, 0, true, true);
  520. if (ret)
  521. goto out;
  522. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  523. if (ret)
  524. goto out_unpin;
  525. ret = i915_gem_object_put_fence(obj);
  526. if (ret)
  527. goto out_unpin;
  528. user_data = (char __user *) (uintptr_t) args->data_ptr;
  529. remain = args->size;
  530. offset = obj->gtt_offset + args->offset;
  531. while (remain > 0) {
  532. /* Operation in this page
  533. *
  534. * page_base = page offset within aperture
  535. * page_offset = offset within page
  536. * page_length = bytes to copy for this page
  537. */
  538. page_base = offset & PAGE_MASK;
  539. page_offset = offset_in_page(offset);
  540. page_length = remain;
  541. if ((page_offset + remain) > PAGE_SIZE)
  542. page_length = PAGE_SIZE - page_offset;
  543. /* If we get a fault while copying data, then (presumably) our
  544. * source page isn't available. Return the error and we'll
  545. * retry in the slow path.
  546. */
  547. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  548. page_offset, user_data, page_length)) {
  549. ret = -EFAULT;
  550. goto out_unpin;
  551. }
  552. remain -= page_length;
  553. user_data += page_length;
  554. offset += page_length;
  555. }
  556. out_unpin:
  557. i915_gem_object_unpin(obj);
  558. out:
  559. return ret;
  560. }
  561. /* Per-page copy function for the shmem pwrite fastpath.
  562. * Flushes invalid cachelines before writing to the target if
  563. * needs_clflush_before is set and flushes out any written cachelines after
  564. * writing if needs_clflush is set. */
  565. static int
  566. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  567. char __user *user_data,
  568. bool page_do_bit17_swizzling,
  569. bool needs_clflush_before,
  570. bool needs_clflush_after)
  571. {
  572. char *vaddr;
  573. int ret;
  574. if (unlikely(page_do_bit17_swizzling))
  575. return -EINVAL;
  576. vaddr = kmap_atomic(page);
  577. if (needs_clflush_before)
  578. drm_clflush_virt_range(vaddr + shmem_page_offset,
  579. page_length);
  580. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  581. user_data,
  582. page_length);
  583. if (needs_clflush_after)
  584. drm_clflush_virt_range(vaddr + shmem_page_offset,
  585. page_length);
  586. kunmap_atomic(vaddr);
  587. return ret;
  588. }
  589. /* Only difference to the fast-path function is that this can handle bit17
  590. * and uses non-atomic copy and kmap functions. */
  591. static int
  592. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  593. char __user *user_data,
  594. bool page_do_bit17_swizzling,
  595. bool needs_clflush_before,
  596. bool needs_clflush_after)
  597. {
  598. char *vaddr;
  599. int ret;
  600. vaddr = kmap(page);
  601. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  602. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  603. page_length,
  604. page_do_bit17_swizzling);
  605. if (page_do_bit17_swizzling)
  606. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  607. user_data,
  608. page_length);
  609. else
  610. ret = __copy_from_user(vaddr + shmem_page_offset,
  611. user_data,
  612. page_length);
  613. if (needs_clflush_after)
  614. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  615. page_length,
  616. page_do_bit17_swizzling);
  617. kunmap(page);
  618. return ret;
  619. }
  620. static int
  621. i915_gem_shmem_pwrite(struct drm_device *dev,
  622. struct drm_i915_gem_object *obj,
  623. struct drm_i915_gem_pwrite *args,
  624. struct drm_file *file)
  625. {
  626. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  627. ssize_t remain;
  628. loff_t offset;
  629. char __user *user_data;
  630. int shmem_page_offset, page_length, ret = 0;
  631. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  632. int hit_slowpath = 0;
  633. int needs_clflush_after = 0;
  634. int needs_clflush_before = 0;
  635. int release_page;
  636. user_data = (char __user *) (uintptr_t) args->data_ptr;
  637. remain = args->size;
  638. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  639. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  640. /* If we're not in the cpu write domain, set ourself into the gtt
  641. * write domain and manually flush cachelines (if required). This
  642. * optimizes for the case when the gpu will use the data
  643. * right away and we therefore have to clflush anyway. */
  644. if (obj->cache_level == I915_CACHE_NONE)
  645. needs_clflush_after = 1;
  646. if (obj->gtt_space) {
  647. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  648. if (ret)
  649. return ret;
  650. }
  651. }
  652. /* Same trick applies for invalidate partially written cachelines before
  653. * writing. */
  654. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  655. && obj->cache_level == I915_CACHE_NONE)
  656. needs_clflush_before = 1;
  657. offset = args->offset;
  658. obj->dirty = 1;
  659. while (remain > 0) {
  660. struct page *page;
  661. int partial_cacheline_write;
  662. /* Operation in this page
  663. *
  664. * shmem_page_offset = offset within page in shmem file
  665. * page_length = bytes to copy for this page
  666. */
  667. shmem_page_offset = offset_in_page(offset);
  668. page_length = remain;
  669. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  670. page_length = PAGE_SIZE - shmem_page_offset;
  671. /* If we don't overwrite a cacheline completely we need to be
  672. * careful to have up-to-date data by first clflushing. Don't
  673. * overcomplicate things and flush the entire patch. */
  674. partial_cacheline_write = needs_clflush_before &&
  675. ((shmem_page_offset | page_length)
  676. & (boot_cpu_data.x86_clflush_size - 1));
  677. if (obj->pages) {
  678. page = obj->pages[offset >> PAGE_SHIFT];
  679. release_page = 0;
  680. } else {
  681. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  682. if (IS_ERR(page)) {
  683. ret = PTR_ERR(page);
  684. goto out;
  685. }
  686. release_page = 1;
  687. }
  688. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  689. (page_to_phys(page) & (1 << 17)) != 0;
  690. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  691. user_data, page_do_bit17_swizzling,
  692. partial_cacheline_write,
  693. needs_clflush_after);
  694. if (ret == 0)
  695. goto next_page;
  696. hit_slowpath = 1;
  697. page_cache_get(page);
  698. mutex_unlock(&dev->struct_mutex);
  699. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  700. user_data, page_do_bit17_swizzling,
  701. partial_cacheline_write,
  702. needs_clflush_after);
  703. mutex_lock(&dev->struct_mutex);
  704. page_cache_release(page);
  705. next_page:
  706. set_page_dirty(page);
  707. mark_page_accessed(page);
  708. if (release_page)
  709. page_cache_release(page);
  710. if (ret) {
  711. ret = -EFAULT;
  712. goto out;
  713. }
  714. remain -= page_length;
  715. user_data += page_length;
  716. offset += page_length;
  717. }
  718. out:
  719. if (hit_slowpath) {
  720. /* Fixup: Kill any reinstated backing storage pages */
  721. if (obj->madv == __I915_MADV_PURGED)
  722. i915_gem_object_truncate(obj);
  723. /* and flush dirty cachelines in case the object isn't in the cpu write
  724. * domain anymore. */
  725. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  726. i915_gem_clflush_object(obj);
  727. intel_gtt_chipset_flush();
  728. }
  729. }
  730. if (needs_clflush_after)
  731. intel_gtt_chipset_flush();
  732. return ret;
  733. }
  734. /**
  735. * Writes data to the object referenced by handle.
  736. *
  737. * On error, the contents of the buffer that were to be modified are undefined.
  738. */
  739. int
  740. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  741. struct drm_file *file)
  742. {
  743. struct drm_i915_gem_pwrite *args = data;
  744. struct drm_i915_gem_object *obj;
  745. int ret;
  746. if (args->size == 0)
  747. return 0;
  748. if (!access_ok(VERIFY_READ,
  749. (char __user *)(uintptr_t)args->data_ptr,
  750. args->size))
  751. return -EFAULT;
  752. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  753. args->size);
  754. if (ret)
  755. return -EFAULT;
  756. ret = i915_mutex_lock_interruptible(dev);
  757. if (ret)
  758. return ret;
  759. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  760. if (&obj->base == NULL) {
  761. ret = -ENOENT;
  762. goto unlock;
  763. }
  764. /* Bounds check destination. */
  765. if (args->offset > obj->base.size ||
  766. args->size > obj->base.size - args->offset) {
  767. ret = -EINVAL;
  768. goto out;
  769. }
  770. /* prime objects have no backing filp to GEM pread/pwrite
  771. * pages from.
  772. */
  773. if (!obj->base.filp) {
  774. ret = -EINVAL;
  775. goto out;
  776. }
  777. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  778. ret = -EFAULT;
  779. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  780. * it would end up going through the fenced access, and we'll get
  781. * different detiling behavior between reading and writing.
  782. * pread/pwrite currently are reading and writing from the CPU
  783. * perspective, requiring manual detiling by the client.
  784. */
  785. if (obj->phys_obj) {
  786. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  787. goto out;
  788. }
  789. if (obj->cache_level == I915_CACHE_NONE &&
  790. obj->tiling_mode == I915_TILING_NONE &&
  791. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  792. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  793. /* Note that the gtt paths might fail with non-page-backed user
  794. * pointers (e.g. gtt mappings when moving data between
  795. * textures). Fallback to the shmem path in that case. */
  796. }
  797. if (ret == -EFAULT || ret == -ENOSPC)
  798. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  799. out:
  800. drm_gem_object_unreference(&obj->base);
  801. unlock:
  802. mutex_unlock(&dev->struct_mutex);
  803. return ret;
  804. }
  805. int
  806. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  807. bool interruptible)
  808. {
  809. if (atomic_read(&dev_priv->mm.wedged)) {
  810. struct completion *x = &dev_priv->error_completion;
  811. bool recovery_complete;
  812. unsigned long flags;
  813. /* Give the error handler a chance to run. */
  814. spin_lock_irqsave(&x->wait.lock, flags);
  815. recovery_complete = x->done > 0;
  816. spin_unlock_irqrestore(&x->wait.lock, flags);
  817. /* Non-interruptible callers can't handle -EAGAIN, hence return
  818. * -EIO unconditionally for these. */
  819. if (!interruptible)
  820. return -EIO;
  821. /* Recovery complete, but still wedged means reset failure. */
  822. if (recovery_complete)
  823. return -EIO;
  824. return -EAGAIN;
  825. }
  826. return 0;
  827. }
  828. /*
  829. * Compare seqno against outstanding lazy request. Emit a request if they are
  830. * equal.
  831. */
  832. static int
  833. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  834. {
  835. int ret;
  836. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  837. ret = 0;
  838. if (seqno == ring->outstanding_lazy_request)
  839. ret = i915_add_request(ring, NULL, NULL);
  840. return ret;
  841. }
  842. /**
  843. * __wait_seqno - wait until execution of seqno has finished
  844. * @ring: the ring expected to report seqno
  845. * @seqno: duh!
  846. * @interruptible: do an interruptible wait (normally yes)
  847. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  848. *
  849. * Returns 0 if the seqno was found within the alloted time. Else returns the
  850. * errno with remaining time filled in timeout argument.
  851. */
  852. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  853. bool interruptible, struct timespec *timeout)
  854. {
  855. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  856. struct timespec before, now, wait_time={1,0};
  857. unsigned long timeout_jiffies;
  858. long end;
  859. bool wait_forever = true;
  860. int ret;
  861. if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
  862. return 0;
  863. trace_i915_gem_request_wait_begin(ring, seqno);
  864. if (timeout != NULL) {
  865. wait_time = *timeout;
  866. wait_forever = false;
  867. }
  868. timeout_jiffies = timespec_to_jiffies(&wait_time);
  869. if (WARN_ON(!ring->irq_get(ring)))
  870. return -ENODEV;
  871. /* Record current time in case interrupted by signal, or wedged * */
  872. getrawmonotonic(&before);
  873. #define EXIT_COND \
  874. (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
  875. atomic_read(&dev_priv->mm.wedged))
  876. do {
  877. if (interruptible)
  878. end = wait_event_interruptible_timeout(ring->irq_queue,
  879. EXIT_COND,
  880. timeout_jiffies);
  881. else
  882. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  883. timeout_jiffies);
  884. ret = i915_gem_check_wedge(dev_priv, interruptible);
  885. if (ret)
  886. end = ret;
  887. } while (end == 0 && wait_forever);
  888. getrawmonotonic(&now);
  889. ring->irq_put(ring);
  890. trace_i915_gem_request_wait_end(ring, seqno);
  891. #undef EXIT_COND
  892. if (timeout) {
  893. struct timespec sleep_time = timespec_sub(now, before);
  894. *timeout = timespec_sub(*timeout, sleep_time);
  895. }
  896. switch (end) {
  897. case -EIO:
  898. case -EAGAIN: /* Wedged */
  899. case -ERESTARTSYS: /* Signal */
  900. return (int)end;
  901. case 0: /* Timeout */
  902. if (timeout)
  903. set_normalized_timespec(timeout, 0, 0);
  904. return -ETIME;
  905. default: /* Completed */
  906. WARN_ON(end < 0); /* We're not aware of other errors */
  907. return 0;
  908. }
  909. }
  910. /**
  911. * Waits for a sequence number to be signaled, and cleans up the
  912. * request and object lists appropriately for that event.
  913. */
  914. int
  915. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  916. {
  917. struct drm_device *dev = ring->dev;
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. bool interruptible = dev_priv->mm.interruptible;
  920. int ret;
  921. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  922. BUG_ON(seqno == 0);
  923. ret = i915_gem_check_wedge(dev_priv, interruptible);
  924. if (ret)
  925. return ret;
  926. ret = i915_gem_check_olr(ring, seqno);
  927. if (ret)
  928. return ret;
  929. return __wait_seqno(ring, seqno, interruptible, NULL);
  930. }
  931. /**
  932. * Ensures that all rendering to the object has completed and the object is
  933. * safe to unbind from the GTT or access from the CPU.
  934. */
  935. static __must_check int
  936. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
  937. bool readonly)
  938. {
  939. struct intel_ring_buffer *ring = obj->ring;
  940. u32 seqno;
  941. int ret;
  942. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  943. if (seqno == 0)
  944. return 0;
  945. ret = i915_wait_seqno(ring, seqno);
  946. if (ret)
  947. return ret;
  948. i915_gem_retire_requests_ring(ring);
  949. /* Manually manage the write flush as we may have not yet
  950. * retired the buffer.
  951. */
  952. if (obj->last_write_seqno &&
  953. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  954. obj->last_write_seqno = 0;
  955. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  956. }
  957. return 0;
  958. }
  959. /* A nonblocking variant of the above wait. This is a highly dangerous routine
  960. * as the object state may change during this call.
  961. */
  962. static __must_check int
  963. i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
  964. bool readonly)
  965. {
  966. struct drm_device *dev = obj->base.dev;
  967. struct drm_i915_private *dev_priv = dev->dev_private;
  968. struct intel_ring_buffer *ring = obj->ring;
  969. u32 seqno;
  970. int ret;
  971. BUG_ON(!mutex_is_locked(&dev->struct_mutex));
  972. BUG_ON(!dev_priv->mm.interruptible);
  973. seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
  974. if (seqno == 0)
  975. return 0;
  976. ret = i915_gem_check_wedge(dev_priv, true);
  977. if (ret)
  978. return ret;
  979. ret = i915_gem_check_olr(ring, seqno);
  980. if (ret)
  981. return ret;
  982. mutex_unlock(&dev->struct_mutex);
  983. ret = __wait_seqno(ring, seqno, true, NULL);
  984. mutex_lock(&dev->struct_mutex);
  985. i915_gem_retire_requests_ring(ring);
  986. /* Manually manage the write flush as we may have not yet
  987. * retired the buffer.
  988. */
  989. if (obj->last_write_seqno &&
  990. i915_seqno_passed(seqno, obj->last_write_seqno)) {
  991. obj->last_write_seqno = 0;
  992. obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
  993. }
  994. return ret;
  995. }
  996. /**
  997. * Called when user space prepares to use an object with the CPU, either
  998. * through the mmap ioctl's mapping or a GTT mapping.
  999. */
  1000. int
  1001. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  1002. struct drm_file *file)
  1003. {
  1004. struct drm_i915_gem_set_domain *args = data;
  1005. struct drm_i915_gem_object *obj;
  1006. uint32_t read_domains = args->read_domains;
  1007. uint32_t write_domain = args->write_domain;
  1008. int ret;
  1009. /* Only handle setting domains to types used by the CPU. */
  1010. if (write_domain & I915_GEM_GPU_DOMAINS)
  1011. return -EINVAL;
  1012. if (read_domains & I915_GEM_GPU_DOMAINS)
  1013. return -EINVAL;
  1014. /* Having something in the write domain implies it's in the read
  1015. * domain, and only that read domain. Enforce that in the request.
  1016. */
  1017. if (write_domain != 0 && read_domains != write_domain)
  1018. return -EINVAL;
  1019. ret = i915_mutex_lock_interruptible(dev);
  1020. if (ret)
  1021. return ret;
  1022. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1023. if (&obj->base == NULL) {
  1024. ret = -ENOENT;
  1025. goto unlock;
  1026. }
  1027. /* Try to flush the object off the GPU without holding the lock.
  1028. * We will repeat the flush holding the lock in the normal manner
  1029. * to catch cases where we are gazumped.
  1030. */
  1031. ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
  1032. if (ret)
  1033. goto unref;
  1034. if (read_domains & I915_GEM_DOMAIN_GTT) {
  1035. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  1036. /* Silently promote "you're not bound, there was nothing to do"
  1037. * to success, since the client was just asking us to
  1038. * make sure everything was done.
  1039. */
  1040. if (ret == -EINVAL)
  1041. ret = 0;
  1042. } else {
  1043. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1044. }
  1045. unref:
  1046. drm_gem_object_unreference(&obj->base);
  1047. unlock:
  1048. mutex_unlock(&dev->struct_mutex);
  1049. return ret;
  1050. }
  1051. /**
  1052. * Called when user space has done writes to this buffer
  1053. */
  1054. int
  1055. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1056. struct drm_file *file)
  1057. {
  1058. struct drm_i915_gem_sw_finish *args = data;
  1059. struct drm_i915_gem_object *obj;
  1060. int ret = 0;
  1061. ret = i915_mutex_lock_interruptible(dev);
  1062. if (ret)
  1063. return ret;
  1064. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  1065. if (&obj->base == NULL) {
  1066. ret = -ENOENT;
  1067. goto unlock;
  1068. }
  1069. /* Pinned buffers may be scanout, so flush the cache */
  1070. if (obj->pin_count)
  1071. i915_gem_object_flush_cpu_write_domain(obj);
  1072. drm_gem_object_unreference(&obj->base);
  1073. unlock:
  1074. mutex_unlock(&dev->struct_mutex);
  1075. return ret;
  1076. }
  1077. /**
  1078. * Maps the contents of an object, returning the address it is mapped
  1079. * into.
  1080. *
  1081. * While the mapping holds a reference on the contents of the object, it doesn't
  1082. * imply a ref on the object itself.
  1083. */
  1084. int
  1085. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1086. struct drm_file *file)
  1087. {
  1088. struct drm_i915_gem_mmap *args = data;
  1089. struct drm_gem_object *obj;
  1090. unsigned long addr;
  1091. obj = drm_gem_object_lookup(dev, file, args->handle);
  1092. if (obj == NULL)
  1093. return -ENOENT;
  1094. /* prime objects have no backing filp to GEM mmap
  1095. * pages from.
  1096. */
  1097. if (!obj->filp) {
  1098. drm_gem_object_unreference_unlocked(obj);
  1099. return -EINVAL;
  1100. }
  1101. addr = vm_mmap(obj->filp, 0, args->size,
  1102. PROT_READ | PROT_WRITE, MAP_SHARED,
  1103. args->offset);
  1104. drm_gem_object_unreference_unlocked(obj);
  1105. if (IS_ERR((void *)addr))
  1106. return addr;
  1107. args->addr_ptr = (uint64_t) addr;
  1108. return 0;
  1109. }
  1110. /**
  1111. * i915_gem_fault - fault a page into the GTT
  1112. * vma: VMA in question
  1113. * vmf: fault info
  1114. *
  1115. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1116. * from userspace. The fault handler takes care of binding the object to
  1117. * the GTT (if needed), allocating and programming a fence register (again,
  1118. * only if needed based on whether the old reg is still valid or the object
  1119. * is tiled) and inserting a new PTE into the faulting process.
  1120. *
  1121. * Note that the faulting process may involve evicting existing objects
  1122. * from the GTT and/or fence registers to make room. So performance may
  1123. * suffer if the GTT working set is large or there are few fence registers
  1124. * left.
  1125. */
  1126. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1127. {
  1128. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  1129. struct drm_device *dev = obj->base.dev;
  1130. drm_i915_private_t *dev_priv = dev->dev_private;
  1131. pgoff_t page_offset;
  1132. unsigned long pfn;
  1133. int ret = 0;
  1134. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1135. /* We don't use vmf->pgoff since that has the fake offset */
  1136. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1137. PAGE_SHIFT;
  1138. ret = i915_mutex_lock_interruptible(dev);
  1139. if (ret)
  1140. goto out;
  1141. trace_i915_gem_object_fault(obj, page_offset, true, write);
  1142. /* Now bind it into the GTT if needed */
  1143. if (!obj->map_and_fenceable) {
  1144. ret = i915_gem_object_unbind(obj);
  1145. if (ret)
  1146. goto unlock;
  1147. }
  1148. if (!obj->gtt_space) {
  1149. ret = i915_gem_object_bind_to_gtt(obj, 0, true, false);
  1150. if (ret)
  1151. goto unlock;
  1152. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1153. if (ret)
  1154. goto unlock;
  1155. }
  1156. if (!obj->has_global_gtt_mapping)
  1157. i915_gem_gtt_bind_object(obj, obj->cache_level);
  1158. ret = i915_gem_object_get_fence(obj);
  1159. if (ret)
  1160. goto unlock;
  1161. if (i915_gem_object_is_inactive(obj))
  1162. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1163. obj->fault_mappable = true;
  1164. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  1165. page_offset;
  1166. /* Finally, remap it using the new GTT offset */
  1167. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1168. unlock:
  1169. mutex_unlock(&dev->struct_mutex);
  1170. out:
  1171. switch (ret) {
  1172. case -EIO:
  1173. /* If this -EIO is due to a gpu hang, give the reset code a
  1174. * chance to clean up the mess. Otherwise return the proper
  1175. * SIGBUS. */
  1176. if (!atomic_read(&dev_priv->mm.wedged))
  1177. return VM_FAULT_SIGBUS;
  1178. case -EAGAIN:
  1179. /* Give the error handler a chance to run and move the
  1180. * objects off the GPU active list. Next time we service the
  1181. * fault, we should be able to transition the page into the
  1182. * GTT without touching the GPU (and so avoid further
  1183. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  1184. * with coherency, just lost writes.
  1185. */
  1186. set_need_resched();
  1187. case 0:
  1188. case -ERESTARTSYS:
  1189. case -EINTR:
  1190. return VM_FAULT_NOPAGE;
  1191. case -ENOMEM:
  1192. return VM_FAULT_OOM;
  1193. default:
  1194. return VM_FAULT_SIGBUS;
  1195. }
  1196. }
  1197. /**
  1198. * i915_gem_release_mmap - remove physical page mappings
  1199. * @obj: obj in question
  1200. *
  1201. * Preserve the reservation of the mmapping with the DRM core code, but
  1202. * relinquish ownership of the pages back to the system.
  1203. *
  1204. * It is vital that we remove the page mapping if we have mapped a tiled
  1205. * object through the GTT and then lose the fence register due to
  1206. * resource pressure. Similarly if the object has been moved out of the
  1207. * aperture, than pages mapped into userspace must be revoked. Removing the
  1208. * mapping will then trigger a page fault on the next user access, allowing
  1209. * fixup by i915_gem_fault().
  1210. */
  1211. void
  1212. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1213. {
  1214. if (!obj->fault_mappable)
  1215. return;
  1216. if (obj->base.dev->dev_mapping)
  1217. unmap_mapping_range(obj->base.dev->dev_mapping,
  1218. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1219. obj->base.size, 1);
  1220. obj->fault_mappable = false;
  1221. }
  1222. static uint32_t
  1223. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1224. {
  1225. uint32_t gtt_size;
  1226. if (INTEL_INFO(dev)->gen >= 4 ||
  1227. tiling_mode == I915_TILING_NONE)
  1228. return size;
  1229. /* Previous chips need a power-of-two fence region when tiling */
  1230. if (INTEL_INFO(dev)->gen == 3)
  1231. gtt_size = 1024*1024;
  1232. else
  1233. gtt_size = 512*1024;
  1234. while (gtt_size < size)
  1235. gtt_size <<= 1;
  1236. return gtt_size;
  1237. }
  1238. /**
  1239. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1240. * @obj: object to check
  1241. *
  1242. * Return the required GTT alignment for an object, taking into account
  1243. * potential fence register mapping.
  1244. */
  1245. static uint32_t
  1246. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1247. uint32_t size,
  1248. int tiling_mode)
  1249. {
  1250. /*
  1251. * Minimum alignment is 4k (GTT page size), but might be greater
  1252. * if a fence register is needed for the object.
  1253. */
  1254. if (INTEL_INFO(dev)->gen >= 4 ||
  1255. tiling_mode == I915_TILING_NONE)
  1256. return 4096;
  1257. /*
  1258. * Previous chips need to be aligned to the size of the smallest
  1259. * fence register that can contain the object.
  1260. */
  1261. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1262. }
  1263. /**
  1264. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1265. * unfenced object
  1266. * @dev: the device
  1267. * @size: size of the object
  1268. * @tiling_mode: tiling mode of the object
  1269. *
  1270. * Return the required GTT alignment for an object, only taking into account
  1271. * unfenced tiled surface requirements.
  1272. */
  1273. uint32_t
  1274. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1275. uint32_t size,
  1276. int tiling_mode)
  1277. {
  1278. /*
  1279. * Minimum alignment is 4k (GTT page size) for sane hw.
  1280. */
  1281. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1282. tiling_mode == I915_TILING_NONE)
  1283. return 4096;
  1284. /* Previous hardware however needs to be aligned to a power-of-two
  1285. * tile height. The simplest method for determining this is to reuse
  1286. * the power-of-tile object size.
  1287. */
  1288. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1289. }
  1290. static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
  1291. {
  1292. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1293. int ret;
  1294. if (obj->base.map_list.map)
  1295. return 0;
  1296. ret = drm_gem_create_mmap_offset(&obj->base);
  1297. if (ret != -ENOSPC)
  1298. return ret;
  1299. /* Badly fragmented mmap space? The only way we can recover
  1300. * space is by destroying unwanted objects. We can't randomly release
  1301. * mmap_offsets as userspace expects them to be persistent for the
  1302. * lifetime of the objects. The closest we can is to release the
  1303. * offsets on purgeable objects by truncating it and marking it purged,
  1304. * which prevents userspace from ever using that object again.
  1305. */
  1306. i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
  1307. ret = drm_gem_create_mmap_offset(&obj->base);
  1308. if (ret != -ENOSPC)
  1309. return ret;
  1310. i915_gem_shrink_all(dev_priv);
  1311. return drm_gem_create_mmap_offset(&obj->base);
  1312. }
  1313. static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
  1314. {
  1315. if (!obj->base.map_list.map)
  1316. return;
  1317. drm_gem_free_mmap_offset(&obj->base);
  1318. }
  1319. int
  1320. i915_gem_mmap_gtt(struct drm_file *file,
  1321. struct drm_device *dev,
  1322. uint32_t handle,
  1323. uint64_t *offset)
  1324. {
  1325. struct drm_i915_private *dev_priv = dev->dev_private;
  1326. struct drm_i915_gem_object *obj;
  1327. int ret;
  1328. ret = i915_mutex_lock_interruptible(dev);
  1329. if (ret)
  1330. return ret;
  1331. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1332. if (&obj->base == NULL) {
  1333. ret = -ENOENT;
  1334. goto unlock;
  1335. }
  1336. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1337. ret = -E2BIG;
  1338. goto out;
  1339. }
  1340. if (obj->madv != I915_MADV_WILLNEED) {
  1341. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1342. ret = -EINVAL;
  1343. goto out;
  1344. }
  1345. ret = i915_gem_object_create_mmap_offset(obj);
  1346. if (ret)
  1347. goto out;
  1348. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1349. out:
  1350. drm_gem_object_unreference(&obj->base);
  1351. unlock:
  1352. mutex_unlock(&dev->struct_mutex);
  1353. return ret;
  1354. }
  1355. /**
  1356. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1357. * @dev: DRM device
  1358. * @data: GTT mapping ioctl data
  1359. * @file: GEM object info
  1360. *
  1361. * Simply returns the fake offset to userspace so it can mmap it.
  1362. * The mmap call will end up in drm_gem_mmap(), which will set things
  1363. * up so we can get faults in the handler above.
  1364. *
  1365. * The fault handler will take care of binding the object into the GTT
  1366. * (since it may have been evicted to make room for something), allocating
  1367. * a fence register, and mapping the appropriate aperture address into
  1368. * userspace.
  1369. */
  1370. int
  1371. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1372. struct drm_file *file)
  1373. {
  1374. struct drm_i915_gem_mmap_gtt *args = data;
  1375. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1376. }
  1377. /* Immediately discard the backing storage */
  1378. static void
  1379. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1380. {
  1381. struct inode *inode;
  1382. i915_gem_object_free_mmap_offset(obj);
  1383. if (obj->base.filp == NULL)
  1384. return;
  1385. /* Our goal here is to return as much of the memory as
  1386. * is possible back to the system as we are called from OOM.
  1387. * To do this we must instruct the shmfs to drop all of its
  1388. * backing pages, *now*.
  1389. */
  1390. inode = obj->base.filp->f_path.dentry->d_inode;
  1391. shmem_truncate_range(inode, 0, (loff_t)-1);
  1392. obj->madv = __I915_MADV_PURGED;
  1393. }
  1394. static inline int
  1395. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1396. {
  1397. return obj->madv == I915_MADV_DONTNEED;
  1398. }
  1399. static int
  1400. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1401. {
  1402. int page_count = obj->base.size / PAGE_SIZE;
  1403. int ret, i;
  1404. BUG_ON(obj->gtt_space);
  1405. if (obj->pages == NULL)
  1406. return 0;
  1407. BUG_ON(obj->gtt_space);
  1408. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1409. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1410. if (ret) {
  1411. /* In the event of a disaster, abandon all caches and
  1412. * hope for the best.
  1413. */
  1414. WARN_ON(ret != -EIO);
  1415. i915_gem_clflush_object(obj);
  1416. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1417. }
  1418. if (i915_gem_object_needs_bit17_swizzle(obj))
  1419. i915_gem_object_save_bit_17_swizzle(obj);
  1420. if (obj->madv == I915_MADV_DONTNEED)
  1421. obj->dirty = 0;
  1422. for (i = 0; i < page_count; i++) {
  1423. if (obj->dirty)
  1424. set_page_dirty(obj->pages[i]);
  1425. if (obj->madv == I915_MADV_WILLNEED)
  1426. mark_page_accessed(obj->pages[i]);
  1427. page_cache_release(obj->pages[i]);
  1428. }
  1429. obj->dirty = 0;
  1430. drm_free_large(obj->pages);
  1431. obj->pages = NULL;
  1432. list_del(&obj->gtt_list);
  1433. if (i915_gem_object_is_purgeable(obj))
  1434. i915_gem_object_truncate(obj);
  1435. return 0;
  1436. }
  1437. static long
  1438. i915_gem_purge(struct drm_i915_private *dev_priv, long target)
  1439. {
  1440. struct drm_i915_gem_object *obj, *next;
  1441. long count = 0;
  1442. list_for_each_entry_safe(obj, next,
  1443. &dev_priv->mm.unbound_list,
  1444. gtt_list) {
  1445. if (i915_gem_object_is_purgeable(obj) &&
  1446. i915_gem_object_put_pages_gtt(obj) == 0) {
  1447. count += obj->base.size >> PAGE_SHIFT;
  1448. if (count >= target)
  1449. return count;
  1450. }
  1451. }
  1452. list_for_each_entry_safe(obj, next,
  1453. &dev_priv->mm.inactive_list,
  1454. mm_list) {
  1455. if (i915_gem_object_is_purgeable(obj) &&
  1456. i915_gem_object_unbind(obj) == 0 &&
  1457. i915_gem_object_put_pages_gtt(obj) == 0) {
  1458. count += obj->base.size >> PAGE_SHIFT;
  1459. if (count >= target)
  1460. return count;
  1461. }
  1462. }
  1463. return count;
  1464. }
  1465. static void
  1466. i915_gem_shrink_all(struct drm_i915_private *dev_priv)
  1467. {
  1468. struct drm_i915_gem_object *obj, *next;
  1469. i915_gem_evict_everything(dev_priv->dev);
  1470. list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
  1471. i915_gem_object_put_pages_gtt(obj);
  1472. }
  1473. int
  1474. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
  1475. {
  1476. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1477. int page_count, i;
  1478. struct address_space *mapping;
  1479. struct page *page;
  1480. gfp_t gfp;
  1481. if (obj->pages || obj->sg_table)
  1482. return 0;
  1483. /* Assert that the object is not currently in any GPU domain. As it
  1484. * wasn't in the GTT, there shouldn't be any way it could have been in
  1485. * a GPU cache
  1486. */
  1487. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  1488. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  1489. /* Get the list of pages out of our struct file. They'll be pinned
  1490. * at this point until we release them.
  1491. */
  1492. page_count = obj->base.size / PAGE_SIZE;
  1493. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1494. if (obj->pages == NULL)
  1495. return -ENOMEM;
  1496. /* Fail silently without starting the shrinker */
  1497. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  1498. gfp = mapping_gfp_mask(mapping);
  1499. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1500. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1501. for (i = 0; i < page_count; i++) {
  1502. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1503. if (IS_ERR(page)) {
  1504. i915_gem_purge(dev_priv, page_count);
  1505. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1506. }
  1507. if (IS_ERR(page)) {
  1508. /* We've tried hard to allocate the memory by reaping
  1509. * our own buffer, now let the real VM do its job and
  1510. * go down in flames if truly OOM.
  1511. */
  1512. gfp &= ~(__GFP_NORETRY | __GFP_NOWARN);
  1513. gfp |= __GFP_IO | __GFP_WAIT;
  1514. i915_gem_shrink_all(dev_priv);
  1515. page = shmem_read_mapping_page_gfp(mapping, i, gfp);
  1516. if (IS_ERR(page))
  1517. goto err_pages;
  1518. gfp |= __GFP_NORETRY | __GFP_NOWARN;
  1519. gfp &= ~(__GFP_IO | __GFP_WAIT);
  1520. }
  1521. obj->pages[i] = page;
  1522. }
  1523. if (i915_gem_object_needs_bit17_swizzle(obj))
  1524. i915_gem_object_do_bit_17_swizzle(obj);
  1525. list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  1526. return 0;
  1527. err_pages:
  1528. while (i--)
  1529. page_cache_release(obj->pages[i]);
  1530. drm_free_large(obj->pages);
  1531. obj->pages = NULL;
  1532. return PTR_ERR(page);
  1533. }
  1534. void
  1535. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1536. struct intel_ring_buffer *ring,
  1537. u32 seqno)
  1538. {
  1539. struct drm_device *dev = obj->base.dev;
  1540. struct drm_i915_private *dev_priv = dev->dev_private;
  1541. BUG_ON(ring == NULL);
  1542. obj->ring = ring;
  1543. /* Add a reference if we're newly entering the active list. */
  1544. if (!obj->active) {
  1545. drm_gem_object_reference(&obj->base);
  1546. obj->active = 1;
  1547. }
  1548. /* Move from whatever list we were on to the tail of execution. */
  1549. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1550. list_move_tail(&obj->ring_list, &ring->active_list);
  1551. obj->last_read_seqno = seqno;
  1552. if (obj->fenced_gpu_access) {
  1553. obj->last_fenced_seqno = seqno;
  1554. /* Bump MRU to take account of the delayed flush */
  1555. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1556. struct drm_i915_fence_reg *reg;
  1557. reg = &dev_priv->fence_regs[obj->fence_reg];
  1558. list_move_tail(&reg->lru_list,
  1559. &dev_priv->mm.fence_list);
  1560. }
  1561. }
  1562. }
  1563. static void
  1564. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1565. {
  1566. struct drm_device *dev = obj->base.dev;
  1567. struct drm_i915_private *dev_priv = dev->dev_private;
  1568. BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
  1569. BUG_ON(!obj->active);
  1570. if (obj->pin_count) /* are we a framebuffer? */
  1571. intel_mark_fb_idle(obj);
  1572. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1573. list_del_init(&obj->ring_list);
  1574. obj->ring = NULL;
  1575. obj->last_read_seqno = 0;
  1576. obj->last_write_seqno = 0;
  1577. obj->base.write_domain = 0;
  1578. obj->last_fenced_seqno = 0;
  1579. obj->fenced_gpu_access = false;
  1580. obj->active = 0;
  1581. drm_gem_object_unreference(&obj->base);
  1582. WARN_ON(i915_verify_lists(dev));
  1583. }
  1584. static u32
  1585. i915_gem_get_seqno(struct drm_device *dev)
  1586. {
  1587. drm_i915_private_t *dev_priv = dev->dev_private;
  1588. u32 seqno = dev_priv->next_seqno;
  1589. /* reserve 0 for non-seqno */
  1590. if (++dev_priv->next_seqno == 0)
  1591. dev_priv->next_seqno = 1;
  1592. return seqno;
  1593. }
  1594. u32
  1595. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1596. {
  1597. if (ring->outstanding_lazy_request == 0)
  1598. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1599. return ring->outstanding_lazy_request;
  1600. }
  1601. int
  1602. i915_add_request(struct intel_ring_buffer *ring,
  1603. struct drm_file *file,
  1604. struct drm_i915_gem_request *request)
  1605. {
  1606. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1607. uint32_t seqno;
  1608. u32 request_ring_position;
  1609. int was_empty;
  1610. int ret;
  1611. /*
  1612. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1613. * after having emitted the batchbuffer command. Hence we need to fix
  1614. * things up similar to emitting the lazy request. The difference here
  1615. * is that the flush _must_ happen before the next request, no matter
  1616. * what.
  1617. */
  1618. ret = intel_ring_flush_all_caches(ring);
  1619. if (ret)
  1620. return ret;
  1621. if (request == NULL) {
  1622. request = kmalloc(sizeof(*request), GFP_KERNEL);
  1623. if (request == NULL)
  1624. return -ENOMEM;
  1625. }
  1626. seqno = i915_gem_next_request_seqno(ring);
  1627. /* Record the position of the start of the request so that
  1628. * should we detect the updated seqno part-way through the
  1629. * GPU processing the request, we never over-estimate the
  1630. * position of the head.
  1631. */
  1632. request_ring_position = intel_ring_get_tail(ring);
  1633. ret = ring->add_request(ring, &seqno);
  1634. if (ret) {
  1635. kfree(request);
  1636. return ret;
  1637. }
  1638. trace_i915_gem_request_add(ring, seqno);
  1639. request->seqno = seqno;
  1640. request->ring = ring;
  1641. request->tail = request_ring_position;
  1642. request->emitted_jiffies = jiffies;
  1643. was_empty = list_empty(&ring->request_list);
  1644. list_add_tail(&request->list, &ring->request_list);
  1645. request->file_priv = NULL;
  1646. if (file) {
  1647. struct drm_i915_file_private *file_priv = file->driver_priv;
  1648. spin_lock(&file_priv->mm.lock);
  1649. request->file_priv = file_priv;
  1650. list_add_tail(&request->client_list,
  1651. &file_priv->mm.request_list);
  1652. spin_unlock(&file_priv->mm.lock);
  1653. }
  1654. ring->outstanding_lazy_request = 0;
  1655. if (!dev_priv->mm.suspended) {
  1656. if (i915_enable_hangcheck) {
  1657. mod_timer(&dev_priv->hangcheck_timer,
  1658. jiffies +
  1659. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1660. }
  1661. if (was_empty) {
  1662. queue_delayed_work(dev_priv->wq,
  1663. &dev_priv->mm.retire_work, HZ);
  1664. intel_mark_busy(dev_priv->dev);
  1665. }
  1666. }
  1667. return 0;
  1668. }
  1669. static inline void
  1670. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1671. {
  1672. struct drm_i915_file_private *file_priv = request->file_priv;
  1673. if (!file_priv)
  1674. return;
  1675. spin_lock(&file_priv->mm.lock);
  1676. if (request->file_priv) {
  1677. list_del(&request->client_list);
  1678. request->file_priv = NULL;
  1679. }
  1680. spin_unlock(&file_priv->mm.lock);
  1681. }
  1682. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1683. struct intel_ring_buffer *ring)
  1684. {
  1685. while (!list_empty(&ring->request_list)) {
  1686. struct drm_i915_gem_request *request;
  1687. request = list_first_entry(&ring->request_list,
  1688. struct drm_i915_gem_request,
  1689. list);
  1690. list_del(&request->list);
  1691. i915_gem_request_remove_from_client(request);
  1692. kfree(request);
  1693. }
  1694. while (!list_empty(&ring->active_list)) {
  1695. struct drm_i915_gem_object *obj;
  1696. obj = list_first_entry(&ring->active_list,
  1697. struct drm_i915_gem_object,
  1698. ring_list);
  1699. i915_gem_object_move_to_inactive(obj);
  1700. }
  1701. }
  1702. static void i915_gem_reset_fences(struct drm_device *dev)
  1703. {
  1704. struct drm_i915_private *dev_priv = dev->dev_private;
  1705. int i;
  1706. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1707. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1708. i915_gem_write_fence(dev, i, NULL);
  1709. if (reg->obj)
  1710. i915_gem_object_fence_lost(reg->obj);
  1711. reg->pin_count = 0;
  1712. reg->obj = NULL;
  1713. INIT_LIST_HEAD(&reg->lru_list);
  1714. }
  1715. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1716. }
  1717. void i915_gem_reset(struct drm_device *dev)
  1718. {
  1719. struct drm_i915_private *dev_priv = dev->dev_private;
  1720. struct drm_i915_gem_object *obj;
  1721. struct intel_ring_buffer *ring;
  1722. int i;
  1723. for_each_ring(ring, dev_priv, i)
  1724. i915_gem_reset_ring_lists(dev_priv, ring);
  1725. /* Move everything out of the GPU domains to ensure we do any
  1726. * necessary invalidation upon reuse.
  1727. */
  1728. list_for_each_entry(obj,
  1729. &dev_priv->mm.inactive_list,
  1730. mm_list)
  1731. {
  1732. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1733. }
  1734. /* The fence registers are invalidated so clear them out */
  1735. i915_gem_reset_fences(dev);
  1736. }
  1737. /**
  1738. * This function clears the request list as sequence numbers are passed.
  1739. */
  1740. void
  1741. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1742. {
  1743. uint32_t seqno;
  1744. int i;
  1745. if (list_empty(&ring->request_list))
  1746. return;
  1747. WARN_ON(i915_verify_lists(ring->dev));
  1748. seqno = ring->get_seqno(ring, true);
  1749. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1750. if (seqno >= ring->sync_seqno[i])
  1751. ring->sync_seqno[i] = 0;
  1752. while (!list_empty(&ring->request_list)) {
  1753. struct drm_i915_gem_request *request;
  1754. request = list_first_entry(&ring->request_list,
  1755. struct drm_i915_gem_request,
  1756. list);
  1757. if (!i915_seqno_passed(seqno, request->seqno))
  1758. break;
  1759. trace_i915_gem_request_retire(ring, request->seqno);
  1760. /* We know the GPU must have read the request to have
  1761. * sent us the seqno + interrupt, so use the position
  1762. * of tail of the request to update the last known position
  1763. * of the GPU head.
  1764. */
  1765. ring->last_retired_head = request->tail;
  1766. list_del(&request->list);
  1767. i915_gem_request_remove_from_client(request);
  1768. kfree(request);
  1769. }
  1770. /* Move any buffers on the active list that are no longer referenced
  1771. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1772. */
  1773. while (!list_empty(&ring->active_list)) {
  1774. struct drm_i915_gem_object *obj;
  1775. obj = list_first_entry(&ring->active_list,
  1776. struct drm_i915_gem_object,
  1777. ring_list);
  1778. if (!i915_seqno_passed(seqno, obj->last_read_seqno))
  1779. break;
  1780. i915_gem_object_move_to_inactive(obj);
  1781. }
  1782. if (unlikely(ring->trace_irq_seqno &&
  1783. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1784. ring->irq_put(ring);
  1785. ring->trace_irq_seqno = 0;
  1786. }
  1787. WARN_ON(i915_verify_lists(ring->dev));
  1788. }
  1789. void
  1790. i915_gem_retire_requests(struct drm_device *dev)
  1791. {
  1792. drm_i915_private_t *dev_priv = dev->dev_private;
  1793. struct intel_ring_buffer *ring;
  1794. int i;
  1795. for_each_ring(ring, dev_priv, i)
  1796. i915_gem_retire_requests_ring(ring);
  1797. }
  1798. static void
  1799. i915_gem_retire_work_handler(struct work_struct *work)
  1800. {
  1801. drm_i915_private_t *dev_priv;
  1802. struct drm_device *dev;
  1803. struct intel_ring_buffer *ring;
  1804. bool idle;
  1805. int i;
  1806. dev_priv = container_of(work, drm_i915_private_t,
  1807. mm.retire_work.work);
  1808. dev = dev_priv->dev;
  1809. /* Come back later if the device is busy... */
  1810. if (!mutex_trylock(&dev->struct_mutex)) {
  1811. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1812. return;
  1813. }
  1814. i915_gem_retire_requests(dev);
  1815. /* Send a periodic flush down the ring so we don't hold onto GEM
  1816. * objects indefinitely.
  1817. */
  1818. idle = true;
  1819. for_each_ring(ring, dev_priv, i) {
  1820. if (ring->gpu_caches_dirty)
  1821. i915_add_request(ring, NULL, NULL);
  1822. idle &= list_empty(&ring->request_list);
  1823. }
  1824. if (!dev_priv->mm.suspended && !idle)
  1825. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1826. if (idle)
  1827. intel_mark_idle(dev);
  1828. mutex_unlock(&dev->struct_mutex);
  1829. }
  1830. /**
  1831. * Ensures that an object will eventually get non-busy by flushing any required
  1832. * write domains, emitting any outstanding lazy request and retiring and
  1833. * completed requests.
  1834. */
  1835. static int
  1836. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1837. {
  1838. int ret;
  1839. if (obj->active) {
  1840. ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
  1841. if (ret)
  1842. return ret;
  1843. i915_gem_retire_requests_ring(obj->ring);
  1844. }
  1845. return 0;
  1846. }
  1847. /**
  1848. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1849. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1850. *
  1851. * Returns 0 if successful, else an error is returned with the remaining time in
  1852. * the timeout parameter.
  1853. * -ETIME: object is still busy after timeout
  1854. * -ERESTARTSYS: signal interrupted the wait
  1855. * -ENONENT: object doesn't exist
  1856. * Also possible, but rare:
  1857. * -EAGAIN: GPU wedged
  1858. * -ENOMEM: damn
  1859. * -ENODEV: Internal IRQ fail
  1860. * -E?: The add request failed
  1861. *
  1862. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1863. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1864. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1865. * without holding struct_mutex the object may become re-busied before this
  1866. * function completes. A similar but shorter * race condition exists in the busy
  1867. * ioctl
  1868. */
  1869. int
  1870. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1871. {
  1872. struct drm_i915_gem_wait *args = data;
  1873. struct drm_i915_gem_object *obj;
  1874. struct intel_ring_buffer *ring = NULL;
  1875. struct timespec timeout_stack, *timeout = NULL;
  1876. u32 seqno = 0;
  1877. int ret = 0;
  1878. if (args->timeout_ns >= 0) {
  1879. timeout_stack = ns_to_timespec(args->timeout_ns);
  1880. timeout = &timeout_stack;
  1881. }
  1882. ret = i915_mutex_lock_interruptible(dev);
  1883. if (ret)
  1884. return ret;
  1885. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1886. if (&obj->base == NULL) {
  1887. mutex_unlock(&dev->struct_mutex);
  1888. return -ENOENT;
  1889. }
  1890. /* Need to make sure the object gets inactive eventually. */
  1891. ret = i915_gem_object_flush_active(obj);
  1892. if (ret)
  1893. goto out;
  1894. if (obj->active) {
  1895. seqno = obj->last_read_seqno;
  1896. ring = obj->ring;
  1897. }
  1898. if (seqno == 0)
  1899. goto out;
  1900. /* Do this after OLR check to make sure we make forward progress polling
  1901. * on this IOCTL with a 0 timeout (like busy ioctl)
  1902. */
  1903. if (!args->timeout_ns) {
  1904. ret = -ETIME;
  1905. goto out;
  1906. }
  1907. drm_gem_object_unreference(&obj->base);
  1908. mutex_unlock(&dev->struct_mutex);
  1909. ret = __wait_seqno(ring, seqno, true, timeout);
  1910. if (timeout) {
  1911. WARN_ON(!timespec_valid(timeout));
  1912. args->timeout_ns = timespec_to_ns(timeout);
  1913. }
  1914. return ret;
  1915. out:
  1916. drm_gem_object_unreference(&obj->base);
  1917. mutex_unlock(&dev->struct_mutex);
  1918. return ret;
  1919. }
  1920. /**
  1921. * i915_gem_object_sync - sync an object to a ring.
  1922. *
  1923. * @obj: object which may be in use on another ring.
  1924. * @to: ring we wish to use the object on. May be NULL.
  1925. *
  1926. * This code is meant to abstract object synchronization with the GPU.
  1927. * Calling with NULL implies synchronizing the object with the CPU
  1928. * rather than a particular GPU ring.
  1929. *
  1930. * Returns 0 if successful, else propagates up the lower layer error.
  1931. */
  1932. int
  1933. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1934. struct intel_ring_buffer *to)
  1935. {
  1936. struct intel_ring_buffer *from = obj->ring;
  1937. u32 seqno;
  1938. int ret, idx;
  1939. if (from == NULL || to == from)
  1940. return 0;
  1941. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1942. return i915_gem_object_wait_rendering(obj, false);
  1943. idx = intel_ring_sync_index(from, to);
  1944. seqno = obj->last_read_seqno;
  1945. if (seqno <= from->sync_seqno[idx])
  1946. return 0;
  1947. ret = i915_gem_check_olr(obj->ring, seqno);
  1948. if (ret)
  1949. return ret;
  1950. ret = to->sync_to(to, from, seqno);
  1951. if (!ret)
  1952. from->sync_seqno[idx] = seqno;
  1953. return ret;
  1954. }
  1955. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1956. {
  1957. u32 old_write_domain, old_read_domains;
  1958. /* Act a barrier for all accesses through the GTT */
  1959. mb();
  1960. /* Force a pagefault for domain tracking on next user access */
  1961. i915_gem_release_mmap(obj);
  1962. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1963. return;
  1964. old_read_domains = obj->base.read_domains;
  1965. old_write_domain = obj->base.write_domain;
  1966. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1967. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1968. trace_i915_gem_object_change_domain(obj,
  1969. old_read_domains,
  1970. old_write_domain);
  1971. }
  1972. /**
  1973. * Unbinds an object from the GTT aperture.
  1974. */
  1975. int
  1976. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1977. {
  1978. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1979. int ret = 0;
  1980. if (obj->gtt_space == NULL)
  1981. return 0;
  1982. if (obj->pin_count)
  1983. return -EBUSY;
  1984. BUG_ON(obj->pages == NULL);
  1985. ret = i915_gem_object_finish_gpu(obj);
  1986. if (ret)
  1987. return ret;
  1988. /* Continue on if we fail due to EIO, the GPU is hung so we
  1989. * should be safe and we need to cleanup or else we might
  1990. * cause memory corruption through use-after-free.
  1991. */
  1992. i915_gem_object_finish_gtt(obj);
  1993. /* release the fence reg _after_ flushing */
  1994. ret = i915_gem_object_put_fence(obj);
  1995. if (ret)
  1996. return ret;
  1997. trace_i915_gem_object_unbind(obj);
  1998. if (obj->has_global_gtt_mapping)
  1999. i915_gem_gtt_unbind_object(obj);
  2000. if (obj->has_aliasing_ppgtt_mapping) {
  2001. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  2002. obj->has_aliasing_ppgtt_mapping = 0;
  2003. }
  2004. i915_gem_gtt_finish_object(obj);
  2005. list_del(&obj->mm_list);
  2006. list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
  2007. /* Avoid an unnecessary call to unbind on rebind. */
  2008. obj->map_and_fenceable = true;
  2009. drm_mm_put_block(obj->gtt_space);
  2010. obj->gtt_space = NULL;
  2011. obj->gtt_offset = 0;
  2012. return 0;
  2013. }
  2014. static int i915_ring_idle(struct intel_ring_buffer *ring)
  2015. {
  2016. if (list_empty(&ring->active_list))
  2017. return 0;
  2018. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  2019. }
  2020. int i915_gpu_idle(struct drm_device *dev)
  2021. {
  2022. drm_i915_private_t *dev_priv = dev->dev_private;
  2023. struct intel_ring_buffer *ring;
  2024. int ret, i;
  2025. /* Flush everything onto the inactive list. */
  2026. for_each_ring(ring, dev_priv, i) {
  2027. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  2028. if (ret)
  2029. return ret;
  2030. ret = i915_ring_idle(ring);
  2031. if (ret)
  2032. return ret;
  2033. }
  2034. return 0;
  2035. }
  2036. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  2037. struct drm_i915_gem_object *obj)
  2038. {
  2039. drm_i915_private_t *dev_priv = dev->dev_private;
  2040. uint64_t val;
  2041. if (obj) {
  2042. u32 size = obj->gtt_space->size;
  2043. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2044. 0xfffff000) << 32;
  2045. val |= obj->gtt_offset & 0xfffff000;
  2046. val |= (uint64_t)((obj->stride / 128) - 1) <<
  2047. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  2048. if (obj->tiling_mode == I915_TILING_Y)
  2049. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2050. val |= I965_FENCE_REG_VALID;
  2051. } else
  2052. val = 0;
  2053. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  2054. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  2055. }
  2056. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  2057. struct drm_i915_gem_object *obj)
  2058. {
  2059. drm_i915_private_t *dev_priv = dev->dev_private;
  2060. uint64_t val;
  2061. if (obj) {
  2062. u32 size = obj->gtt_space->size;
  2063. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2064. 0xfffff000) << 32;
  2065. val |= obj->gtt_offset & 0xfffff000;
  2066. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2067. if (obj->tiling_mode == I915_TILING_Y)
  2068. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2069. val |= I965_FENCE_REG_VALID;
  2070. } else
  2071. val = 0;
  2072. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2073. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2074. }
  2075. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2076. struct drm_i915_gem_object *obj)
  2077. {
  2078. drm_i915_private_t *dev_priv = dev->dev_private;
  2079. u32 val;
  2080. if (obj) {
  2081. u32 size = obj->gtt_space->size;
  2082. int pitch_val;
  2083. int tile_width;
  2084. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2085. (size & -size) != size ||
  2086. (obj->gtt_offset & (size - 1)),
  2087. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2088. obj->gtt_offset, obj->map_and_fenceable, size);
  2089. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2090. tile_width = 128;
  2091. else
  2092. tile_width = 512;
  2093. /* Note: pitch better be a power of two tile widths */
  2094. pitch_val = obj->stride / tile_width;
  2095. pitch_val = ffs(pitch_val) - 1;
  2096. val = obj->gtt_offset;
  2097. if (obj->tiling_mode == I915_TILING_Y)
  2098. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2099. val |= I915_FENCE_SIZE_BITS(size);
  2100. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2101. val |= I830_FENCE_REG_VALID;
  2102. } else
  2103. val = 0;
  2104. if (reg < 8)
  2105. reg = FENCE_REG_830_0 + reg * 4;
  2106. else
  2107. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2108. I915_WRITE(reg, val);
  2109. POSTING_READ(reg);
  2110. }
  2111. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2112. struct drm_i915_gem_object *obj)
  2113. {
  2114. drm_i915_private_t *dev_priv = dev->dev_private;
  2115. uint32_t val;
  2116. if (obj) {
  2117. u32 size = obj->gtt_space->size;
  2118. uint32_t pitch_val;
  2119. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2120. (size & -size) != size ||
  2121. (obj->gtt_offset & (size - 1)),
  2122. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2123. obj->gtt_offset, size);
  2124. pitch_val = obj->stride / 128;
  2125. pitch_val = ffs(pitch_val) - 1;
  2126. val = obj->gtt_offset;
  2127. if (obj->tiling_mode == I915_TILING_Y)
  2128. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2129. val |= I830_FENCE_SIZE_BITS(size);
  2130. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2131. val |= I830_FENCE_REG_VALID;
  2132. } else
  2133. val = 0;
  2134. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2135. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2136. }
  2137. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2138. struct drm_i915_gem_object *obj)
  2139. {
  2140. switch (INTEL_INFO(dev)->gen) {
  2141. case 7:
  2142. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2143. case 5:
  2144. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2145. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2146. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2147. default: break;
  2148. }
  2149. }
  2150. static inline int fence_number(struct drm_i915_private *dev_priv,
  2151. struct drm_i915_fence_reg *fence)
  2152. {
  2153. return fence - dev_priv->fence_regs;
  2154. }
  2155. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2156. struct drm_i915_fence_reg *fence,
  2157. bool enable)
  2158. {
  2159. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2160. int reg = fence_number(dev_priv, fence);
  2161. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2162. if (enable) {
  2163. obj->fence_reg = reg;
  2164. fence->obj = obj;
  2165. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2166. } else {
  2167. obj->fence_reg = I915_FENCE_REG_NONE;
  2168. fence->obj = NULL;
  2169. list_del_init(&fence->lru_list);
  2170. }
  2171. }
  2172. static int
  2173. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2174. {
  2175. if (obj->last_fenced_seqno) {
  2176. int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2177. if (ret)
  2178. return ret;
  2179. obj->last_fenced_seqno = 0;
  2180. }
  2181. /* Ensure that all CPU reads are completed before installing a fence
  2182. * and all writes before removing the fence.
  2183. */
  2184. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2185. mb();
  2186. obj->fenced_gpu_access = false;
  2187. return 0;
  2188. }
  2189. int
  2190. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2191. {
  2192. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2193. int ret;
  2194. ret = i915_gem_object_flush_fence(obj);
  2195. if (ret)
  2196. return ret;
  2197. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2198. return 0;
  2199. i915_gem_object_update_fence(obj,
  2200. &dev_priv->fence_regs[obj->fence_reg],
  2201. false);
  2202. i915_gem_object_fence_lost(obj);
  2203. return 0;
  2204. }
  2205. static struct drm_i915_fence_reg *
  2206. i915_find_fence_reg(struct drm_device *dev)
  2207. {
  2208. struct drm_i915_private *dev_priv = dev->dev_private;
  2209. struct drm_i915_fence_reg *reg, *avail;
  2210. int i;
  2211. /* First try to find a free reg */
  2212. avail = NULL;
  2213. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2214. reg = &dev_priv->fence_regs[i];
  2215. if (!reg->obj)
  2216. return reg;
  2217. if (!reg->pin_count)
  2218. avail = reg;
  2219. }
  2220. if (avail == NULL)
  2221. return NULL;
  2222. /* None available, try to steal one or wait for a user to finish */
  2223. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2224. if (reg->pin_count)
  2225. continue;
  2226. return reg;
  2227. }
  2228. return NULL;
  2229. }
  2230. /**
  2231. * i915_gem_object_get_fence - set up fencing for an object
  2232. * @obj: object to map through a fence reg
  2233. *
  2234. * When mapping objects through the GTT, userspace wants to be able to write
  2235. * to them without having to worry about swizzling if the object is tiled.
  2236. * This function walks the fence regs looking for a free one for @obj,
  2237. * stealing one if it can't find any.
  2238. *
  2239. * It then sets up the reg based on the object's properties: address, pitch
  2240. * and tiling format.
  2241. *
  2242. * For an untiled surface, this removes any existing fence.
  2243. */
  2244. int
  2245. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2246. {
  2247. struct drm_device *dev = obj->base.dev;
  2248. struct drm_i915_private *dev_priv = dev->dev_private;
  2249. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2250. struct drm_i915_fence_reg *reg;
  2251. int ret;
  2252. /* Have we updated the tiling parameters upon the object and so
  2253. * will need to serialise the write to the associated fence register?
  2254. */
  2255. if (obj->fence_dirty) {
  2256. ret = i915_gem_object_flush_fence(obj);
  2257. if (ret)
  2258. return ret;
  2259. }
  2260. /* Just update our place in the LRU if our fence is getting reused. */
  2261. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2262. reg = &dev_priv->fence_regs[obj->fence_reg];
  2263. if (!obj->fence_dirty) {
  2264. list_move_tail(&reg->lru_list,
  2265. &dev_priv->mm.fence_list);
  2266. return 0;
  2267. }
  2268. } else if (enable) {
  2269. reg = i915_find_fence_reg(dev);
  2270. if (reg == NULL)
  2271. return -EDEADLK;
  2272. if (reg->obj) {
  2273. struct drm_i915_gem_object *old = reg->obj;
  2274. ret = i915_gem_object_flush_fence(old);
  2275. if (ret)
  2276. return ret;
  2277. i915_gem_object_fence_lost(old);
  2278. }
  2279. } else
  2280. return 0;
  2281. i915_gem_object_update_fence(obj, reg, enable);
  2282. obj->fence_dirty = false;
  2283. return 0;
  2284. }
  2285. static bool i915_gem_valid_gtt_space(struct drm_device *dev,
  2286. struct drm_mm_node *gtt_space,
  2287. unsigned long cache_level)
  2288. {
  2289. struct drm_mm_node *other;
  2290. /* On non-LLC machines we have to be careful when putting differing
  2291. * types of snoopable memory together to avoid the prefetcher
  2292. * crossing memory domains and dieing.
  2293. */
  2294. if (HAS_LLC(dev))
  2295. return true;
  2296. if (gtt_space == NULL)
  2297. return true;
  2298. if (list_empty(&gtt_space->node_list))
  2299. return true;
  2300. other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
  2301. if (other->allocated && !other->hole_follows && other->color != cache_level)
  2302. return false;
  2303. other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
  2304. if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
  2305. return false;
  2306. return true;
  2307. }
  2308. static void i915_gem_verify_gtt(struct drm_device *dev)
  2309. {
  2310. #if WATCH_GTT
  2311. struct drm_i915_private *dev_priv = dev->dev_private;
  2312. struct drm_i915_gem_object *obj;
  2313. int err = 0;
  2314. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
  2315. if (obj->gtt_space == NULL) {
  2316. printk(KERN_ERR "object found on GTT list with no space reserved\n");
  2317. err++;
  2318. continue;
  2319. }
  2320. if (obj->cache_level != obj->gtt_space->color) {
  2321. printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
  2322. obj->gtt_space->start,
  2323. obj->gtt_space->start + obj->gtt_space->size,
  2324. obj->cache_level,
  2325. obj->gtt_space->color);
  2326. err++;
  2327. continue;
  2328. }
  2329. if (!i915_gem_valid_gtt_space(dev,
  2330. obj->gtt_space,
  2331. obj->cache_level)) {
  2332. printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
  2333. obj->gtt_space->start,
  2334. obj->gtt_space->start + obj->gtt_space->size,
  2335. obj->cache_level);
  2336. err++;
  2337. continue;
  2338. }
  2339. }
  2340. WARN_ON(err);
  2341. #endif
  2342. }
  2343. /**
  2344. * Finds free space in the GTT aperture and binds the object there.
  2345. */
  2346. static int
  2347. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2348. unsigned alignment,
  2349. bool map_and_fenceable,
  2350. bool nonblocking)
  2351. {
  2352. struct drm_device *dev = obj->base.dev;
  2353. drm_i915_private_t *dev_priv = dev->dev_private;
  2354. struct drm_mm_node *free_space;
  2355. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2356. bool mappable, fenceable;
  2357. int ret;
  2358. if (obj->madv != I915_MADV_WILLNEED) {
  2359. DRM_ERROR("Attempting to bind a purgeable object\n");
  2360. return -EINVAL;
  2361. }
  2362. fence_size = i915_gem_get_gtt_size(dev,
  2363. obj->base.size,
  2364. obj->tiling_mode);
  2365. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2366. obj->base.size,
  2367. obj->tiling_mode);
  2368. unfenced_alignment =
  2369. i915_gem_get_unfenced_gtt_alignment(dev,
  2370. obj->base.size,
  2371. obj->tiling_mode);
  2372. if (alignment == 0)
  2373. alignment = map_and_fenceable ? fence_alignment :
  2374. unfenced_alignment;
  2375. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2376. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2377. return -EINVAL;
  2378. }
  2379. size = map_and_fenceable ? fence_size : obj->base.size;
  2380. /* If the object is bigger than the entire aperture, reject it early
  2381. * before evicting everything in a vain attempt to find space.
  2382. */
  2383. if (obj->base.size >
  2384. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2385. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2386. return -E2BIG;
  2387. }
  2388. ret = i915_gem_object_get_pages_gtt(obj);
  2389. if (ret)
  2390. return ret;
  2391. search_free:
  2392. if (map_and_fenceable)
  2393. free_space =
  2394. drm_mm_search_free_in_range_color(&dev_priv->mm.gtt_space,
  2395. size, alignment, obj->cache_level,
  2396. 0, dev_priv->mm.gtt_mappable_end,
  2397. false);
  2398. else
  2399. free_space = drm_mm_search_free_color(&dev_priv->mm.gtt_space,
  2400. size, alignment, obj->cache_level,
  2401. false);
  2402. if (free_space != NULL) {
  2403. if (map_and_fenceable)
  2404. obj->gtt_space =
  2405. drm_mm_get_block_range_generic(free_space,
  2406. size, alignment, obj->cache_level,
  2407. 0, dev_priv->mm.gtt_mappable_end,
  2408. false);
  2409. else
  2410. obj->gtt_space =
  2411. drm_mm_get_block_generic(free_space,
  2412. size, alignment, obj->cache_level,
  2413. false);
  2414. }
  2415. if (obj->gtt_space == NULL) {
  2416. ret = i915_gem_evict_something(dev, size, alignment,
  2417. obj->cache_level,
  2418. map_and_fenceable,
  2419. nonblocking);
  2420. if (ret)
  2421. return ret;
  2422. goto search_free;
  2423. }
  2424. if (WARN_ON(!i915_gem_valid_gtt_space(dev,
  2425. obj->gtt_space,
  2426. obj->cache_level))) {
  2427. drm_mm_put_block(obj->gtt_space);
  2428. obj->gtt_space = NULL;
  2429. return -EINVAL;
  2430. }
  2431. ret = i915_gem_gtt_prepare_object(obj);
  2432. if (ret) {
  2433. drm_mm_put_block(obj->gtt_space);
  2434. obj->gtt_space = NULL;
  2435. return ret;
  2436. }
  2437. if (!dev_priv->mm.aliasing_ppgtt)
  2438. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2439. list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
  2440. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2441. obj->gtt_offset = obj->gtt_space->start;
  2442. fenceable =
  2443. obj->gtt_space->size == fence_size &&
  2444. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2445. mappable =
  2446. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2447. obj->map_and_fenceable = mappable && fenceable;
  2448. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2449. i915_gem_verify_gtt(dev);
  2450. return 0;
  2451. }
  2452. void
  2453. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2454. {
  2455. /* If we don't have a page list set up, then we're not pinned
  2456. * to GPU, and we can ignore the cache flush because it'll happen
  2457. * again at bind time.
  2458. */
  2459. if (obj->pages == NULL)
  2460. return;
  2461. /* If the GPU is snooping the contents of the CPU cache,
  2462. * we do not need to manually clear the CPU cache lines. However,
  2463. * the caches are only snooped when the render cache is
  2464. * flushed/invalidated. As we always have to emit invalidations
  2465. * and flushes when moving into and out of the RENDER domain, correct
  2466. * snooping behaviour occurs naturally as the result of our domain
  2467. * tracking.
  2468. */
  2469. if (obj->cache_level != I915_CACHE_NONE)
  2470. return;
  2471. trace_i915_gem_object_clflush(obj);
  2472. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2473. }
  2474. /** Flushes the GTT write domain for the object if it's dirty. */
  2475. static void
  2476. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2477. {
  2478. uint32_t old_write_domain;
  2479. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2480. return;
  2481. /* No actual flushing is required for the GTT write domain. Writes
  2482. * to it immediately go to main memory as far as we know, so there's
  2483. * no chipset flush. It also doesn't land in render cache.
  2484. *
  2485. * However, we do have to enforce the order so that all writes through
  2486. * the GTT land before any writes to the device, such as updates to
  2487. * the GATT itself.
  2488. */
  2489. wmb();
  2490. old_write_domain = obj->base.write_domain;
  2491. obj->base.write_domain = 0;
  2492. trace_i915_gem_object_change_domain(obj,
  2493. obj->base.read_domains,
  2494. old_write_domain);
  2495. }
  2496. /** Flushes the CPU write domain for the object if it's dirty. */
  2497. static void
  2498. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2499. {
  2500. uint32_t old_write_domain;
  2501. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2502. return;
  2503. i915_gem_clflush_object(obj);
  2504. intel_gtt_chipset_flush();
  2505. old_write_domain = obj->base.write_domain;
  2506. obj->base.write_domain = 0;
  2507. trace_i915_gem_object_change_domain(obj,
  2508. obj->base.read_domains,
  2509. old_write_domain);
  2510. }
  2511. /**
  2512. * Moves a single object to the GTT read, and possibly write domain.
  2513. *
  2514. * This function returns when the move is complete, including waiting on
  2515. * flushes to occur.
  2516. */
  2517. int
  2518. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2519. {
  2520. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2521. uint32_t old_write_domain, old_read_domains;
  2522. int ret;
  2523. /* Not valid to be called on unbound objects. */
  2524. if (obj->gtt_space == NULL)
  2525. return -EINVAL;
  2526. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2527. return 0;
  2528. ret = i915_gem_object_wait_rendering(obj, !write);
  2529. if (ret)
  2530. return ret;
  2531. i915_gem_object_flush_cpu_write_domain(obj);
  2532. old_write_domain = obj->base.write_domain;
  2533. old_read_domains = obj->base.read_domains;
  2534. /* It should now be out of any other write domains, and we can update
  2535. * the domain values for our changes.
  2536. */
  2537. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2538. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2539. if (write) {
  2540. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2541. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2542. obj->dirty = 1;
  2543. }
  2544. trace_i915_gem_object_change_domain(obj,
  2545. old_read_domains,
  2546. old_write_domain);
  2547. /* And bump the LRU for this access */
  2548. if (i915_gem_object_is_inactive(obj))
  2549. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2550. return 0;
  2551. }
  2552. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2553. enum i915_cache_level cache_level)
  2554. {
  2555. struct drm_device *dev = obj->base.dev;
  2556. drm_i915_private_t *dev_priv = dev->dev_private;
  2557. int ret;
  2558. if (obj->cache_level == cache_level)
  2559. return 0;
  2560. if (obj->pin_count) {
  2561. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2562. return -EBUSY;
  2563. }
  2564. if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
  2565. ret = i915_gem_object_unbind(obj);
  2566. if (ret)
  2567. return ret;
  2568. }
  2569. if (obj->gtt_space) {
  2570. ret = i915_gem_object_finish_gpu(obj);
  2571. if (ret)
  2572. return ret;
  2573. i915_gem_object_finish_gtt(obj);
  2574. /* Before SandyBridge, you could not use tiling or fence
  2575. * registers with snooped memory, so relinquish any fences
  2576. * currently pointing to our region in the aperture.
  2577. */
  2578. if (INTEL_INFO(dev)->gen < 6) {
  2579. ret = i915_gem_object_put_fence(obj);
  2580. if (ret)
  2581. return ret;
  2582. }
  2583. if (obj->has_global_gtt_mapping)
  2584. i915_gem_gtt_bind_object(obj, cache_level);
  2585. if (obj->has_aliasing_ppgtt_mapping)
  2586. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2587. obj, cache_level);
  2588. obj->gtt_space->color = cache_level;
  2589. }
  2590. if (cache_level == I915_CACHE_NONE) {
  2591. u32 old_read_domains, old_write_domain;
  2592. /* If we're coming from LLC cached, then we haven't
  2593. * actually been tracking whether the data is in the
  2594. * CPU cache or not, since we only allow one bit set
  2595. * in obj->write_domain and have been skipping the clflushes.
  2596. * Just set it to the CPU cache for now.
  2597. */
  2598. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2599. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2600. old_read_domains = obj->base.read_domains;
  2601. old_write_domain = obj->base.write_domain;
  2602. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2603. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2604. trace_i915_gem_object_change_domain(obj,
  2605. old_read_domains,
  2606. old_write_domain);
  2607. }
  2608. obj->cache_level = cache_level;
  2609. i915_gem_verify_gtt(dev);
  2610. return 0;
  2611. }
  2612. int i915_gem_get_cacheing_ioctl(struct drm_device *dev, void *data,
  2613. struct drm_file *file)
  2614. {
  2615. struct drm_i915_gem_cacheing *args = data;
  2616. struct drm_i915_gem_object *obj;
  2617. int ret;
  2618. ret = i915_mutex_lock_interruptible(dev);
  2619. if (ret)
  2620. return ret;
  2621. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2622. if (&obj->base == NULL) {
  2623. ret = -ENOENT;
  2624. goto unlock;
  2625. }
  2626. args->cacheing = obj->cache_level != I915_CACHE_NONE;
  2627. drm_gem_object_unreference(&obj->base);
  2628. unlock:
  2629. mutex_unlock(&dev->struct_mutex);
  2630. return ret;
  2631. }
  2632. int i915_gem_set_cacheing_ioctl(struct drm_device *dev, void *data,
  2633. struct drm_file *file)
  2634. {
  2635. struct drm_i915_gem_cacheing *args = data;
  2636. struct drm_i915_gem_object *obj;
  2637. enum i915_cache_level level;
  2638. int ret;
  2639. ret = i915_mutex_lock_interruptible(dev);
  2640. if (ret)
  2641. return ret;
  2642. switch (args->cacheing) {
  2643. case I915_CACHEING_NONE:
  2644. level = I915_CACHE_NONE;
  2645. break;
  2646. case I915_CACHEING_CACHED:
  2647. level = I915_CACHE_LLC;
  2648. break;
  2649. default:
  2650. return -EINVAL;
  2651. }
  2652. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2653. if (&obj->base == NULL) {
  2654. ret = -ENOENT;
  2655. goto unlock;
  2656. }
  2657. ret = i915_gem_object_set_cache_level(obj, level);
  2658. drm_gem_object_unreference(&obj->base);
  2659. unlock:
  2660. mutex_unlock(&dev->struct_mutex);
  2661. return ret;
  2662. }
  2663. /*
  2664. * Prepare buffer for display plane (scanout, cursors, etc).
  2665. * Can be called from an uninterruptible phase (modesetting) and allows
  2666. * any flushes to be pipelined (for pageflips).
  2667. */
  2668. int
  2669. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2670. u32 alignment,
  2671. struct intel_ring_buffer *pipelined)
  2672. {
  2673. u32 old_read_domains, old_write_domain;
  2674. int ret;
  2675. if (pipelined != obj->ring) {
  2676. ret = i915_gem_object_sync(obj, pipelined);
  2677. if (ret)
  2678. return ret;
  2679. }
  2680. /* The display engine is not coherent with the LLC cache on gen6. As
  2681. * a result, we make sure that the pinning that is about to occur is
  2682. * done with uncached PTEs. This is lowest common denominator for all
  2683. * chipsets.
  2684. *
  2685. * However for gen6+, we could do better by using the GFDT bit instead
  2686. * of uncaching, which would allow us to flush all the LLC-cached data
  2687. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2688. */
  2689. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2690. if (ret)
  2691. return ret;
  2692. /* As the user may map the buffer once pinned in the display plane
  2693. * (e.g. libkms for the bootup splash), we have to ensure that we
  2694. * always use map_and_fenceable for all scanout buffers.
  2695. */
  2696. ret = i915_gem_object_pin(obj, alignment, true, false);
  2697. if (ret)
  2698. return ret;
  2699. i915_gem_object_flush_cpu_write_domain(obj);
  2700. old_write_domain = obj->base.write_domain;
  2701. old_read_domains = obj->base.read_domains;
  2702. /* It should now be out of any other write domains, and we can update
  2703. * the domain values for our changes.
  2704. */
  2705. obj->base.write_domain = 0;
  2706. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2707. trace_i915_gem_object_change_domain(obj,
  2708. old_read_domains,
  2709. old_write_domain);
  2710. return 0;
  2711. }
  2712. int
  2713. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2714. {
  2715. int ret;
  2716. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2717. return 0;
  2718. ret = i915_gem_object_wait_rendering(obj, false);
  2719. if (ret)
  2720. return ret;
  2721. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2722. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2723. return 0;
  2724. }
  2725. /**
  2726. * Moves a single object to the CPU read, and possibly write domain.
  2727. *
  2728. * This function returns when the move is complete, including waiting on
  2729. * flushes to occur.
  2730. */
  2731. int
  2732. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2733. {
  2734. uint32_t old_write_domain, old_read_domains;
  2735. int ret;
  2736. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2737. return 0;
  2738. ret = i915_gem_object_wait_rendering(obj, !write);
  2739. if (ret)
  2740. return ret;
  2741. i915_gem_object_flush_gtt_write_domain(obj);
  2742. old_write_domain = obj->base.write_domain;
  2743. old_read_domains = obj->base.read_domains;
  2744. /* Flush the CPU cache if it's still invalid. */
  2745. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2746. i915_gem_clflush_object(obj);
  2747. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2748. }
  2749. /* It should now be out of any other write domains, and we can update
  2750. * the domain values for our changes.
  2751. */
  2752. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2753. /* If we're writing through the CPU, then the GPU read domains will
  2754. * need to be invalidated at next use.
  2755. */
  2756. if (write) {
  2757. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2758. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2759. }
  2760. trace_i915_gem_object_change_domain(obj,
  2761. old_read_domains,
  2762. old_write_domain);
  2763. return 0;
  2764. }
  2765. /* Throttle our rendering by waiting until the ring has completed our requests
  2766. * emitted over 20 msec ago.
  2767. *
  2768. * Note that if we were to use the current jiffies each time around the loop,
  2769. * we wouldn't escape the function with any frames outstanding if the time to
  2770. * render a frame was over 20ms.
  2771. *
  2772. * This should get us reasonable parallelism between CPU and GPU but also
  2773. * relatively low latency when blocking on a particular request to finish.
  2774. */
  2775. static int
  2776. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2777. {
  2778. struct drm_i915_private *dev_priv = dev->dev_private;
  2779. struct drm_i915_file_private *file_priv = file->driver_priv;
  2780. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2781. struct drm_i915_gem_request *request;
  2782. struct intel_ring_buffer *ring = NULL;
  2783. u32 seqno = 0;
  2784. int ret;
  2785. if (atomic_read(&dev_priv->mm.wedged))
  2786. return -EIO;
  2787. spin_lock(&file_priv->mm.lock);
  2788. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2789. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2790. break;
  2791. ring = request->ring;
  2792. seqno = request->seqno;
  2793. }
  2794. spin_unlock(&file_priv->mm.lock);
  2795. if (seqno == 0)
  2796. return 0;
  2797. ret = __wait_seqno(ring, seqno, true, NULL);
  2798. if (ret == 0)
  2799. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2800. return ret;
  2801. }
  2802. int
  2803. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2804. uint32_t alignment,
  2805. bool map_and_fenceable,
  2806. bool nonblocking)
  2807. {
  2808. int ret;
  2809. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2810. if (obj->gtt_space != NULL) {
  2811. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2812. (map_and_fenceable && !obj->map_and_fenceable)) {
  2813. WARN(obj->pin_count,
  2814. "bo is already pinned with incorrect alignment:"
  2815. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2816. " obj->map_and_fenceable=%d\n",
  2817. obj->gtt_offset, alignment,
  2818. map_and_fenceable,
  2819. obj->map_and_fenceable);
  2820. ret = i915_gem_object_unbind(obj);
  2821. if (ret)
  2822. return ret;
  2823. }
  2824. }
  2825. if (obj->gtt_space == NULL) {
  2826. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2827. map_and_fenceable,
  2828. nonblocking);
  2829. if (ret)
  2830. return ret;
  2831. }
  2832. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2833. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2834. obj->pin_count++;
  2835. obj->pin_mappable |= map_and_fenceable;
  2836. return 0;
  2837. }
  2838. void
  2839. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2840. {
  2841. BUG_ON(obj->pin_count == 0);
  2842. BUG_ON(obj->gtt_space == NULL);
  2843. if (--obj->pin_count == 0)
  2844. obj->pin_mappable = false;
  2845. }
  2846. int
  2847. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2848. struct drm_file *file)
  2849. {
  2850. struct drm_i915_gem_pin *args = data;
  2851. struct drm_i915_gem_object *obj;
  2852. int ret;
  2853. ret = i915_mutex_lock_interruptible(dev);
  2854. if (ret)
  2855. return ret;
  2856. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2857. if (&obj->base == NULL) {
  2858. ret = -ENOENT;
  2859. goto unlock;
  2860. }
  2861. if (obj->madv != I915_MADV_WILLNEED) {
  2862. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2863. ret = -EINVAL;
  2864. goto out;
  2865. }
  2866. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2867. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2868. args->handle);
  2869. ret = -EINVAL;
  2870. goto out;
  2871. }
  2872. obj->user_pin_count++;
  2873. obj->pin_filp = file;
  2874. if (obj->user_pin_count == 1) {
  2875. ret = i915_gem_object_pin(obj, args->alignment, true, false);
  2876. if (ret)
  2877. goto out;
  2878. }
  2879. /* XXX - flush the CPU caches for pinned objects
  2880. * as the X server doesn't manage domains yet
  2881. */
  2882. i915_gem_object_flush_cpu_write_domain(obj);
  2883. args->offset = obj->gtt_offset;
  2884. out:
  2885. drm_gem_object_unreference(&obj->base);
  2886. unlock:
  2887. mutex_unlock(&dev->struct_mutex);
  2888. return ret;
  2889. }
  2890. int
  2891. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2892. struct drm_file *file)
  2893. {
  2894. struct drm_i915_gem_pin *args = data;
  2895. struct drm_i915_gem_object *obj;
  2896. int ret;
  2897. ret = i915_mutex_lock_interruptible(dev);
  2898. if (ret)
  2899. return ret;
  2900. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2901. if (&obj->base == NULL) {
  2902. ret = -ENOENT;
  2903. goto unlock;
  2904. }
  2905. if (obj->pin_filp != file) {
  2906. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2907. args->handle);
  2908. ret = -EINVAL;
  2909. goto out;
  2910. }
  2911. obj->user_pin_count--;
  2912. if (obj->user_pin_count == 0) {
  2913. obj->pin_filp = NULL;
  2914. i915_gem_object_unpin(obj);
  2915. }
  2916. out:
  2917. drm_gem_object_unreference(&obj->base);
  2918. unlock:
  2919. mutex_unlock(&dev->struct_mutex);
  2920. return ret;
  2921. }
  2922. int
  2923. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2924. struct drm_file *file)
  2925. {
  2926. struct drm_i915_gem_busy *args = data;
  2927. struct drm_i915_gem_object *obj;
  2928. int ret;
  2929. ret = i915_mutex_lock_interruptible(dev);
  2930. if (ret)
  2931. return ret;
  2932. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2933. if (&obj->base == NULL) {
  2934. ret = -ENOENT;
  2935. goto unlock;
  2936. }
  2937. /* Count all active objects as busy, even if they are currently not used
  2938. * by the gpu. Users of this interface expect objects to eventually
  2939. * become non-busy without any further actions, therefore emit any
  2940. * necessary flushes here.
  2941. */
  2942. ret = i915_gem_object_flush_active(obj);
  2943. args->busy = obj->active;
  2944. if (obj->ring) {
  2945. BUILD_BUG_ON(I915_NUM_RINGS > 16);
  2946. args->busy |= intel_ring_flag(obj->ring) << 16;
  2947. }
  2948. drm_gem_object_unreference(&obj->base);
  2949. unlock:
  2950. mutex_unlock(&dev->struct_mutex);
  2951. return ret;
  2952. }
  2953. int
  2954. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2955. struct drm_file *file_priv)
  2956. {
  2957. return i915_gem_ring_throttle(dev, file_priv);
  2958. }
  2959. int
  2960. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2961. struct drm_file *file_priv)
  2962. {
  2963. struct drm_i915_gem_madvise *args = data;
  2964. struct drm_i915_gem_object *obj;
  2965. int ret;
  2966. switch (args->madv) {
  2967. case I915_MADV_DONTNEED:
  2968. case I915_MADV_WILLNEED:
  2969. break;
  2970. default:
  2971. return -EINVAL;
  2972. }
  2973. ret = i915_mutex_lock_interruptible(dev);
  2974. if (ret)
  2975. return ret;
  2976. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2977. if (&obj->base == NULL) {
  2978. ret = -ENOENT;
  2979. goto unlock;
  2980. }
  2981. if (obj->pin_count) {
  2982. ret = -EINVAL;
  2983. goto out;
  2984. }
  2985. if (obj->madv != __I915_MADV_PURGED)
  2986. obj->madv = args->madv;
  2987. /* if the object is no longer attached, discard its backing storage */
  2988. if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
  2989. i915_gem_object_truncate(obj);
  2990. args->retained = obj->madv != __I915_MADV_PURGED;
  2991. out:
  2992. drm_gem_object_unreference(&obj->base);
  2993. unlock:
  2994. mutex_unlock(&dev->struct_mutex);
  2995. return ret;
  2996. }
  2997. void i915_gem_object_init(struct drm_i915_gem_object *obj)
  2998. {
  2999. obj->base.driver_private = NULL;
  3000. INIT_LIST_HEAD(&obj->mm_list);
  3001. INIT_LIST_HEAD(&obj->gtt_list);
  3002. INIT_LIST_HEAD(&obj->ring_list);
  3003. INIT_LIST_HEAD(&obj->exec_list);
  3004. obj->fence_reg = I915_FENCE_REG_NONE;
  3005. obj->madv = I915_MADV_WILLNEED;
  3006. /* Avoid an unnecessary call to unbind on the first bind. */
  3007. obj->map_and_fenceable = true;
  3008. i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
  3009. }
  3010. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  3011. size_t size)
  3012. {
  3013. struct drm_i915_gem_object *obj;
  3014. struct address_space *mapping;
  3015. u32 mask;
  3016. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3017. if (obj == NULL)
  3018. return NULL;
  3019. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3020. kfree(obj);
  3021. return NULL;
  3022. }
  3023. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  3024. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  3025. /* 965gm cannot relocate objects above 4GiB. */
  3026. mask &= ~__GFP_HIGHMEM;
  3027. mask |= __GFP_DMA32;
  3028. }
  3029. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3030. mapping_set_gfp_mask(mapping, mask);
  3031. i915_gem_object_init(obj);
  3032. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3033. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3034. if (HAS_LLC(dev)) {
  3035. /* On some devices, we can have the GPU use the LLC (the CPU
  3036. * cache) for about a 10% performance improvement
  3037. * compared to uncached. Graphics requests other than
  3038. * display scanout are coherent with the CPU in
  3039. * accessing this cache. This means in this mode we
  3040. * don't need to clflush on the CPU side, and on the
  3041. * GPU side we only need to flush internal caches to
  3042. * get data visible to the CPU.
  3043. *
  3044. * However, we maintain the display planes as UC, and so
  3045. * need to rebind when first used as such.
  3046. */
  3047. obj->cache_level = I915_CACHE_LLC;
  3048. } else
  3049. obj->cache_level = I915_CACHE_NONE;
  3050. return obj;
  3051. }
  3052. int i915_gem_init_object(struct drm_gem_object *obj)
  3053. {
  3054. BUG();
  3055. return 0;
  3056. }
  3057. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  3058. {
  3059. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  3060. struct drm_device *dev = obj->base.dev;
  3061. drm_i915_private_t *dev_priv = dev->dev_private;
  3062. trace_i915_gem_object_destroy(obj);
  3063. if (gem_obj->import_attach)
  3064. drm_prime_gem_destroy(gem_obj, obj->sg_table);
  3065. if (obj->phys_obj)
  3066. i915_gem_detach_phys_object(dev, obj);
  3067. obj->pin_count = 0;
  3068. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  3069. bool was_interruptible;
  3070. was_interruptible = dev_priv->mm.interruptible;
  3071. dev_priv->mm.interruptible = false;
  3072. WARN_ON(i915_gem_object_unbind(obj));
  3073. dev_priv->mm.interruptible = was_interruptible;
  3074. }
  3075. i915_gem_object_put_pages_gtt(obj);
  3076. i915_gem_object_free_mmap_offset(obj);
  3077. drm_gem_object_release(&obj->base);
  3078. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  3079. kfree(obj->bit_17);
  3080. kfree(obj);
  3081. }
  3082. int
  3083. i915_gem_idle(struct drm_device *dev)
  3084. {
  3085. drm_i915_private_t *dev_priv = dev->dev_private;
  3086. int ret;
  3087. mutex_lock(&dev->struct_mutex);
  3088. if (dev_priv->mm.suspended) {
  3089. mutex_unlock(&dev->struct_mutex);
  3090. return 0;
  3091. }
  3092. ret = i915_gpu_idle(dev);
  3093. if (ret) {
  3094. mutex_unlock(&dev->struct_mutex);
  3095. return ret;
  3096. }
  3097. i915_gem_retire_requests(dev);
  3098. /* Under UMS, be paranoid and evict. */
  3099. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3100. i915_gem_evict_everything(dev);
  3101. i915_gem_reset_fences(dev);
  3102. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3103. * We need to replace this with a semaphore, or something.
  3104. * And not confound mm.suspended!
  3105. */
  3106. dev_priv->mm.suspended = 1;
  3107. del_timer_sync(&dev_priv->hangcheck_timer);
  3108. i915_kernel_lost_context(dev);
  3109. i915_gem_cleanup_ringbuffer(dev);
  3110. mutex_unlock(&dev->struct_mutex);
  3111. /* Cancel the retire work handler, which should be idle now. */
  3112. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3113. return 0;
  3114. }
  3115. void i915_gem_l3_remap(struct drm_device *dev)
  3116. {
  3117. drm_i915_private_t *dev_priv = dev->dev_private;
  3118. u32 misccpctl;
  3119. int i;
  3120. if (!IS_IVYBRIDGE(dev))
  3121. return;
  3122. if (!dev_priv->mm.l3_remap_info)
  3123. return;
  3124. misccpctl = I915_READ(GEN7_MISCCPCTL);
  3125. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  3126. POSTING_READ(GEN7_MISCCPCTL);
  3127. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  3128. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  3129. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  3130. DRM_DEBUG("0x%x was already programmed to %x\n",
  3131. GEN7_L3LOG_BASE + i, remap);
  3132. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  3133. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  3134. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3135. }
  3136. /* Make sure all the writes land before disabling dop clock gating */
  3137. POSTING_READ(GEN7_L3LOG_BASE);
  3138. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3139. }
  3140. void i915_gem_init_swizzling(struct drm_device *dev)
  3141. {
  3142. drm_i915_private_t *dev_priv = dev->dev_private;
  3143. if (INTEL_INFO(dev)->gen < 5 ||
  3144. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3145. return;
  3146. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3147. DISP_TILE_SURFACE_SWIZZLING);
  3148. if (IS_GEN5(dev))
  3149. return;
  3150. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3151. if (IS_GEN6(dev))
  3152. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3153. else
  3154. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3155. }
  3156. void i915_gem_init_ppgtt(struct drm_device *dev)
  3157. {
  3158. drm_i915_private_t *dev_priv = dev->dev_private;
  3159. uint32_t pd_offset;
  3160. struct intel_ring_buffer *ring;
  3161. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3162. uint32_t __iomem *pd_addr;
  3163. uint32_t pd_entry;
  3164. int i;
  3165. if (!dev_priv->mm.aliasing_ppgtt)
  3166. return;
  3167. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3168. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3169. dma_addr_t pt_addr;
  3170. if (dev_priv->mm.gtt->needs_dmar)
  3171. pt_addr = ppgtt->pt_dma_addr[i];
  3172. else
  3173. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3174. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3175. pd_entry |= GEN6_PDE_VALID;
  3176. writel(pd_entry, pd_addr + i);
  3177. }
  3178. readl(pd_addr);
  3179. pd_offset = ppgtt->pd_offset;
  3180. pd_offset /= 64; /* in cachelines, */
  3181. pd_offset <<= 16;
  3182. if (INTEL_INFO(dev)->gen == 6) {
  3183. uint32_t ecochk, gab_ctl, ecobits;
  3184. ecobits = I915_READ(GAC_ECO_BITS);
  3185. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3186. gab_ctl = I915_READ(GAB_CTL);
  3187. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3188. ecochk = I915_READ(GAM_ECOCHK);
  3189. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3190. ECOCHK_PPGTT_CACHE64B);
  3191. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3192. } else if (INTEL_INFO(dev)->gen >= 7) {
  3193. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3194. /* GFX_MODE is per-ring on gen7+ */
  3195. }
  3196. for_each_ring(ring, dev_priv, i) {
  3197. if (INTEL_INFO(dev)->gen >= 7)
  3198. I915_WRITE(RING_MODE_GEN7(ring),
  3199. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3200. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3201. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3202. }
  3203. }
  3204. static bool
  3205. intel_enable_blt(struct drm_device *dev)
  3206. {
  3207. if (!HAS_BLT(dev))
  3208. return false;
  3209. /* The blitter was dysfunctional on early prototypes */
  3210. if (IS_GEN6(dev) && dev->pdev->revision < 8) {
  3211. DRM_INFO("BLT not supported on this pre-production hardware;"
  3212. " graphics performance will be degraded.\n");
  3213. return false;
  3214. }
  3215. return true;
  3216. }
  3217. int
  3218. i915_gem_init_hw(struct drm_device *dev)
  3219. {
  3220. drm_i915_private_t *dev_priv = dev->dev_private;
  3221. int ret;
  3222. if (!intel_enable_gtt())
  3223. return -EIO;
  3224. i915_gem_l3_remap(dev);
  3225. i915_gem_init_swizzling(dev);
  3226. ret = intel_init_render_ring_buffer(dev);
  3227. if (ret)
  3228. return ret;
  3229. if (HAS_BSD(dev)) {
  3230. ret = intel_init_bsd_ring_buffer(dev);
  3231. if (ret)
  3232. goto cleanup_render_ring;
  3233. }
  3234. if (intel_enable_blt(dev)) {
  3235. ret = intel_init_blt_ring_buffer(dev);
  3236. if (ret)
  3237. goto cleanup_bsd_ring;
  3238. }
  3239. dev_priv->next_seqno = 1;
  3240. /*
  3241. * XXX: There was some w/a described somewhere suggesting loading
  3242. * contexts before PPGTT.
  3243. */
  3244. i915_gem_context_init(dev);
  3245. i915_gem_init_ppgtt(dev);
  3246. return 0;
  3247. cleanup_bsd_ring:
  3248. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3249. cleanup_render_ring:
  3250. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3251. return ret;
  3252. }
  3253. static bool
  3254. intel_enable_ppgtt(struct drm_device *dev)
  3255. {
  3256. if (i915_enable_ppgtt >= 0)
  3257. return i915_enable_ppgtt;
  3258. #ifdef CONFIG_INTEL_IOMMU
  3259. /* Disable ppgtt on SNB if VT-d is on. */
  3260. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3261. return false;
  3262. #endif
  3263. return true;
  3264. }
  3265. int i915_gem_init(struct drm_device *dev)
  3266. {
  3267. struct drm_i915_private *dev_priv = dev->dev_private;
  3268. unsigned long gtt_size, mappable_size;
  3269. int ret;
  3270. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3271. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3272. mutex_lock(&dev->struct_mutex);
  3273. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3274. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3275. * aperture accordingly when using aliasing ppgtt. */
  3276. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3277. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3278. ret = i915_gem_init_aliasing_ppgtt(dev);
  3279. if (ret) {
  3280. mutex_unlock(&dev->struct_mutex);
  3281. return ret;
  3282. }
  3283. } else {
  3284. /* Let GEM Manage all of the aperture.
  3285. *
  3286. * However, leave one page at the end still bound to the scratch
  3287. * page. There are a number of places where the hardware
  3288. * apparently prefetches past the end of the object, and we've
  3289. * seen multiple hangs with the GPU head pointer stuck in a
  3290. * batchbuffer bound at the last page of the aperture. One page
  3291. * should be enough to keep any prefetching inside of the
  3292. * aperture.
  3293. */
  3294. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3295. gtt_size);
  3296. }
  3297. ret = i915_gem_init_hw(dev);
  3298. mutex_unlock(&dev->struct_mutex);
  3299. if (ret) {
  3300. i915_gem_cleanup_aliasing_ppgtt(dev);
  3301. return ret;
  3302. }
  3303. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3304. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3305. dev_priv->dri1.allow_batchbuffer = 1;
  3306. return 0;
  3307. }
  3308. void
  3309. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3310. {
  3311. drm_i915_private_t *dev_priv = dev->dev_private;
  3312. struct intel_ring_buffer *ring;
  3313. int i;
  3314. for_each_ring(ring, dev_priv, i)
  3315. intel_cleanup_ring_buffer(ring);
  3316. }
  3317. int
  3318. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3319. struct drm_file *file_priv)
  3320. {
  3321. drm_i915_private_t *dev_priv = dev->dev_private;
  3322. int ret;
  3323. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3324. return 0;
  3325. if (atomic_read(&dev_priv->mm.wedged)) {
  3326. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3327. atomic_set(&dev_priv->mm.wedged, 0);
  3328. }
  3329. mutex_lock(&dev->struct_mutex);
  3330. dev_priv->mm.suspended = 0;
  3331. ret = i915_gem_init_hw(dev);
  3332. if (ret != 0) {
  3333. mutex_unlock(&dev->struct_mutex);
  3334. return ret;
  3335. }
  3336. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3337. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3338. mutex_unlock(&dev->struct_mutex);
  3339. ret = drm_irq_install(dev);
  3340. if (ret)
  3341. goto cleanup_ringbuffer;
  3342. return 0;
  3343. cleanup_ringbuffer:
  3344. mutex_lock(&dev->struct_mutex);
  3345. i915_gem_cleanup_ringbuffer(dev);
  3346. dev_priv->mm.suspended = 1;
  3347. mutex_unlock(&dev->struct_mutex);
  3348. return ret;
  3349. }
  3350. int
  3351. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3352. struct drm_file *file_priv)
  3353. {
  3354. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3355. return 0;
  3356. drm_irq_uninstall(dev);
  3357. return i915_gem_idle(dev);
  3358. }
  3359. void
  3360. i915_gem_lastclose(struct drm_device *dev)
  3361. {
  3362. int ret;
  3363. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3364. return;
  3365. ret = i915_gem_idle(dev);
  3366. if (ret)
  3367. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3368. }
  3369. static void
  3370. init_ring_lists(struct intel_ring_buffer *ring)
  3371. {
  3372. INIT_LIST_HEAD(&ring->active_list);
  3373. INIT_LIST_HEAD(&ring->request_list);
  3374. }
  3375. void
  3376. i915_gem_load(struct drm_device *dev)
  3377. {
  3378. int i;
  3379. drm_i915_private_t *dev_priv = dev->dev_private;
  3380. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3381. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3382. INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
  3383. INIT_LIST_HEAD(&dev_priv->mm.bound_list);
  3384. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3385. for (i = 0; i < I915_NUM_RINGS; i++)
  3386. init_ring_lists(&dev_priv->ring[i]);
  3387. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3388. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3389. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3390. i915_gem_retire_work_handler);
  3391. init_completion(&dev_priv->error_completion);
  3392. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3393. if (IS_GEN3(dev)) {
  3394. I915_WRITE(MI_ARB_STATE,
  3395. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3396. }
  3397. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3398. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3399. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3400. dev_priv->fence_reg_start = 3;
  3401. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3402. dev_priv->num_fence_regs = 16;
  3403. else
  3404. dev_priv->num_fence_regs = 8;
  3405. /* Initialize fence registers to zero */
  3406. i915_gem_reset_fences(dev);
  3407. i915_gem_detect_bit_6_swizzle(dev);
  3408. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3409. dev_priv->mm.interruptible = true;
  3410. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3411. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3412. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3413. }
  3414. /*
  3415. * Create a physically contiguous memory object for this object
  3416. * e.g. for cursor + overlay regs
  3417. */
  3418. static int i915_gem_init_phys_object(struct drm_device *dev,
  3419. int id, int size, int align)
  3420. {
  3421. drm_i915_private_t *dev_priv = dev->dev_private;
  3422. struct drm_i915_gem_phys_object *phys_obj;
  3423. int ret;
  3424. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3425. return 0;
  3426. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3427. if (!phys_obj)
  3428. return -ENOMEM;
  3429. phys_obj->id = id;
  3430. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3431. if (!phys_obj->handle) {
  3432. ret = -ENOMEM;
  3433. goto kfree_obj;
  3434. }
  3435. #ifdef CONFIG_X86
  3436. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3437. #endif
  3438. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3439. return 0;
  3440. kfree_obj:
  3441. kfree(phys_obj);
  3442. return ret;
  3443. }
  3444. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3445. {
  3446. drm_i915_private_t *dev_priv = dev->dev_private;
  3447. struct drm_i915_gem_phys_object *phys_obj;
  3448. if (!dev_priv->mm.phys_objs[id - 1])
  3449. return;
  3450. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3451. if (phys_obj->cur_obj) {
  3452. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3453. }
  3454. #ifdef CONFIG_X86
  3455. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3456. #endif
  3457. drm_pci_free(dev, phys_obj->handle);
  3458. kfree(phys_obj);
  3459. dev_priv->mm.phys_objs[id - 1] = NULL;
  3460. }
  3461. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3462. {
  3463. int i;
  3464. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3465. i915_gem_free_phys_object(dev, i);
  3466. }
  3467. void i915_gem_detach_phys_object(struct drm_device *dev,
  3468. struct drm_i915_gem_object *obj)
  3469. {
  3470. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3471. char *vaddr;
  3472. int i;
  3473. int page_count;
  3474. if (!obj->phys_obj)
  3475. return;
  3476. vaddr = obj->phys_obj->handle->vaddr;
  3477. page_count = obj->base.size / PAGE_SIZE;
  3478. for (i = 0; i < page_count; i++) {
  3479. struct page *page = shmem_read_mapping_page(mapping, i);
  3480. if (!IS_ERR(page)) {
  3481. char *dst = kmap_atomic(page);
  3482. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3483. kunmap_atomic(dst);
  3484. drm_clflush_pages(&page, 1);
  3485. set_page_dirty(page);
  3486. mark_page_accessed(page);
  3487. page_cache_release(page);
  3488. }
  3489. }
  3490. intel_gtt_chipset_flush();
  3491. obj->phys_obj->cur_obj = NULL;
  3492. obj->phys_obj = NULL;
  3493. }
  3494. int
  3495. i915_gem_attach_phys_object(struct drm_device *dev,
  3496. struct drm_i915_gem_object *obj,
  3497. int id,
  3498. int align)
  3499. {
  3500. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3501. drm_i915_private_t *dev_priv = dev->dev_private;
  3502. int ret = 0;
  3503. int page_count;
  3504. int i;
  3505. if (id > I915_MAX_PHYS_OBJECT)
  3506. return -EINVAL;
  3507. if (obj->phys_obj) {
  3508. if (obj->phys_obj->id == id)
  3509. return 0;
  3510. i915_gem_detach_phys_object(dev, obj);
  3511. }
  3512. /* create a new object */
  3513. if (!dev_priv->mm.phys_objs[id - 1]) {
  3514. ret = i915_gem_init_phys_object(dev, id,
  3515. obj->base.size, align);
  3516. if (ret) {
  3517. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3518. id, obj->base.size);
  3519. return ret;
  3520. }
  3521. }
  3522. /* bind to the object */
  3523. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3524. obj->phys_obj->cur_obj = obj;
  3525. page_count = obj->base.size / PAGE_SIZE;
  3526. for (i = 0; i < page_count; i++) {
  3527. struct page *page;
  3528. char *dst, *src;
  3529. page = shmem_read_mapping_page(mapping, i);
  3530. if (IS_ERR(page))
  3531. return PTR_ERR(page);
  3532. src = kmap_atomic(page);
  3533. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3534. memcpy(dst, src, PAGE_SIZE);
  3535. kunmap_atomic(src);
  3536. mark_page_accessed(page);
  3537. page_cache_release(page);
  3538. }
  3539. return 0;
  3540. }
  3541. static int
  3542. i915_gem_phys_pwrite(struct drm_device *dev,
  3543. struct drm_i915_gem_object *obj,
  3544. struct drm_i915_gem_pwrite *args,
  3545. struct drm_file *file_priv)
  3546. {
  3547. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3548. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3549. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3550. unsigned long unwritten;
  3551. /* The physical object once assigned is fixed for the lifetime
  3552. * of the obj, so we can safely drop the lock and continue
  3553. * to access vaddr.
  3554. */
  3555. mutex_unlock(&dev->struct_mutex);
  3556. unwritten = copy_from_user(vaddr, user_data, args->size);
  3557. mutex_lock(&dev->struct_mutex);
  3558. if (unwritten)
  3559. return -EFAULT;
  3560. }
  3561. intel_gtt_chipset_flush();
  3562. return 0;
  3563. }
  3564. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3565. {
  3566. struct drm_i915_file_private *file_priv = file->driver_priv;
  3567. /* Clean up our request list when the client is going away, so that
  3568. * later retire_requests won't dereference our soon-to-be-gone
  3569. * file_priv.
  3570. */
  3571. spin_lock(&file_priv->mm.lock);
  3572. while (!list_empty(&file_priv->mm.request_list)) {
  3573. struct drm_i915_gem_request *request;
  3574. request = list_first_entry(&file_priv->mm.request_list,
  3575. struct drm_i915_gem_request,
  3576. client_list);
  3577. list_del(&request->client_list);
  3578. request->file_priv = NULL;
  3579. }
  3580. spin_unlock(&file_priv->mm.lock);
  3581. }
  3582. static int
  3583. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3584. {
  3585. struct drm_i915_private *dev_priv =
  3586. container_of(shrinker,
  3587. struct drm_i915_private,
  3588. mm.inactive_shrinker);
  3589. struct drm_device *dev = dev_priv->dev;
  3590. struct drm_i915_gem_object *obj;
  3591. int nr_to_scan = sc->nr_to_scan;
  3592. int cnt;
  3593. if (!mutex_trylock(&dev->struct_mutex))
  3594. return 0;
  3595. if (nr_to_scan) {
  3596. nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
  3597. if (nr_to_scan > 0)
  3598. i915_gem_shrink_all(dev_priv);
  3599. }
  3600. cnt = 0;
  3601. list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
  3602. cnt += obj->base.size >> PAGE_SHIFT;
  3603. list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
  3604. if (obj->pin_count == 0)
  3605. cnt += obj->base.size >> PAGE_SHIFT;
  3606. mutex_unlock(&dev->struct_mutex);
  3607. return cnt;
  3608. }