huge_memory.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!khugepaged_enabled())
  96. return 0;
  97. for_each_populated_zone(zone)
  98. nr_zones++;
  99. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  100. recommended_min = pageblock_nr_pages * nr_zones * 2;
  101. /*
  102. * Make sure that on average at least two pageblocks are almost free
  103. * of another type, one for a migratetype to fall back to and a
  104. * second to avoid subsequent fallbacks of other types There are 3
  105. * MIGRATE_TYPES we care about.
  106. */
  107. recommended_min += pageblock_nr_pages * nr_zones *
  108. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  109. /* don't ever allow to reserve more than 5% of the lowmem */
  110. recommended_min = min(recommended_min,
  111. (unsigned long) nr_free_buffer_pages() / 20);
  112. recommended_min <<= (PAGE_SHIFT-10);
  113. if (recommended_min > min_free_kbytes)
  114. min_free_kbytes = recommended_min;
  115. setup_per_zone_wmarks();
  116. return 0;
  117. }
  118. late_initcall(set_recommended_min_free_kbytes);
  119. static int start_khugepaged(void)
  120. {
  121. int err = 0;
  122. if (khugepaged_enabled()) {
  123. if (!khugepaged_thread)
  124. khugepaged_thread = kthread_run(khugepaged, NULL,
  125. "khugepaged");
  126. if (unlikely(IS_ERR(khugepaged_thread))) {
  127. printk(KERN_ERR
  128. "khugepaged: kthread_run(khugepaged) failed\n");
  129. err = PTR_ERR(khugepaged_thread);
  130. khugepaged_thread = NULL;
  131. }
  132. if (!list_empty(&khugepaged_scan.mm_head))
  133. wake_up_interruptible(&khugepaged_wait);
  134. set_recommended_min_free_kbytes();
  135. } else if (khugepaged_thread) {
  136. kthread_stop(khugepaged_thread);
  137. khugepaged_thread = NULL;
  138. }
  139. return err;
  140. }
  141. #ifdef CONFIG_SYSFS
  142. static ssize_t double_flag_show(struct kobject *kobj,
  143. struct kobj_attribute *attr, char *buf,
  144. enum transparent_hugepage_flag enabled,
  145. enum transparent_hugepage_flag req_madv)
  146. {
  147. if (test_bit(enabled, &transparent_hugepage_flags)) {
  148. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  149. return sprintf(buf, "[always] madvise never\n");
  150. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  151. return sprintf(buf, "always [madvise] never\n");
  152. else
  153. return sprintf(buf, "always madvise [never]\n");
  154. }
  155. static ssize_t double_flag_store(struct kobject *kobj,
  156. struct kobj_attribute *attr,
  157. const char *buf, size_t count,
  158. enum transparent_hugepage_flag enabled,
  159. enum transparent_hugepage_flag req_madv)
  160. {
  161. if (!memcmp("always", buf,
  162. min(sizeof("always")-1, count))) {
  163. set_bit(enabled, &transparent_hugepage_flags);
  164. clear_bit(req_madv, &transparent_hugepage_flags);
  165. } else if (!memcmp("madvise", buf,
  166. min(sizeof("madvise")-1, count))) {
  167. clear_bit(enabled, &transparent_hugepage_flags);
  168. set_bit(req_madv, &transparent_hugepage_flags);
  169. } else if (!memcmp("never", buf,
  170. min(sizeof("never")-1, count))) {
  171. clear_bit(enabled, &transparent_hugepage_flags);
  172. clear_bit(req_madv, &transparent_hugepage_flags);
  173. } else
  174. return -EINVAL;
  175. return count;
  176. }
  177. static ssize_t enabled_show(struct kobject *kobj,
  178. struct kobj_attribute *attr, char *buf)
  179. {
  180. return double_flag_show(kobj, attr, buf,
  181. TRANSPARENT_HUGEPAGE_FLAG,
  182. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  183. }
  184. static ssize_t enabled_store(struct kobject *kobj,
  185. struct kobj_attribute *attr,
  186. const char *buf, size_t count)
  187. {
  188. ssize_t ret;
  189. ret = double_flag_store(kobj, attr, buf, count,
  190. TRANSPARENT_HUGEPAGE_FLAG,
  191. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  192. if (ret > 0) {
  193. int err;
  194. mutex_lock(&khugepaged_mutex);
  195. err = start_khugepaged();
  196. mutex_unlock(&khugepaged_mutex);
  197. if (err)
  198. ret = err;
  199. }
  200. return ret;
  201. }
  202. static struct kobj_attribute enabled_attr =
  203. __ATTR(enabled, 0644, enabled_show, enabled_store);
  204. static ssize_t single_flag_show(struct kobject *kobj,
  205. struct kobj_attribute *attr, char *buf,
  206. enum transparent_hugepage_flag flag)
  207. {
  208. return sprintf(buf, "%d\n",
  209. !!test_bit(flag, &transparent_hugepage_flags));
  210. }
  211. static ssize_t single_flag_store(struct kobject *kobj,
  212. struct kobj_attribute *attr,
  213. const char *buf, size_t count,
  214. enum transparent_hugepage_flag flag)
  215. {
  216. unsigned long value;
  217. int ret;
  218. ret = kstrtoul(buf, 10, &value);
  219. if (ret < 0)
  220. return ret;
  221. if (value > 1)
  222. return -EINVAL;
  223. if (value)
  224. set_bit(flag, &transparent_hugepage_flags);
  225. else
  226. clear_bit(flag, &transparent_hugepage_flags);
  227. return count;
  228. }
  229. /*
  230. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  231. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  232. * memory just to allocate one more hugepage.
  233. */
  234. static ssize_t defrag_show(struct kobject *kobj,
  235. struct kobj_attribute *attr, char *buf)
  236. {
  237. return double_flag_show(kobj, attr, buf,
  238. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  239. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  240. }
  241. static ssize_t defrag_store(struct kobject *kobj,
  242. struct kobj_attribute *attr,
  243. const char *buf, size_t count)
  244. {
  245. return double_flag_store(kobj, attr, buf, count,
  246. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  248. }
  249. static struct kobj_attribute defrag_attr =
  250. __ATTR(defrag, 0644, defrag_show, defrag_store);
  251. #ifdef CONFIG_DEBUG_VM
  252. static ssize_t debug_cow_show(struct kobject *kobj,
  253. struct kobj_attribute *attr, char *buf)
  254. {
  255. return single_flag_show(kobj, attr, buf,
  256. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  257. }
  258. static ssize_t debug_cow_store(struct kobject *kobj,
  259. struct kobj_attribute *attr,
  260. const char *buf, size_t count)
  261. {
  262. return single_flag_store(kobj, attr, buf, count,
  263. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  264. }
  265. static struct kobj_attribute debug_cow_attr =
  266. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  267. #endif /* CONFIG_DEBUG_VM */
  268. static struct attribute *hugepage_attr[] = {
  269. &enabled_attr.attr,
  270. &defrag_attr.attr,
  271. #ifdef CONFIG_DEBUG_VM
  272. &debug_cow_attr.attr,
  273. #endif
  274. NULL,
  275. };
  276. static struct attribute_group hugepage_attr_group = {
  277. .attrs = hugepage_attr,
  278. };
  279. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  280. struct kobj_attribute *attr,
  281. char *buf)
  282. {
  283. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  284. }
  285. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  286. struct kobj_attribute *attr,
  287. const char *buf, size_t count)
  288. {
  289. unsigned long msecs;
  290. int err;
  291. err = strict_strtoul(buf, 10, &msecs);
  292. if (err || msecs > UINT_MAX)
  293. return -EINVAL;
  294. khugepaged_scan_sleep_millisecs = msecs;
  295. wake_up_interruptible(&khugepaged_wait);
  296. return count;
  297. }
  298. static struct kobj_attribute scan_sleep_millisecs_attr =
  299. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  300. scan_sleep_millisecs_store);
  301. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  302. struct kobj_attribute *attr,
  303. char *buf)
  304. {
  305. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  306. }
  307. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. unsigned long msecs;
  312. int err;
  313. err = strict_strtoul(buf, 10, &msecs);
  314. if (err || msecs > UINT_MAX)
  315. return -EINVAL;
  316. khugepaged_alloc_sleep_millisecs = msecs;
  317. wake_up_interruptible(&khugepaged_wait);
  318. return count;
  319. }
  320. static struct kobj_attribute alloc_sleep_millisecs_attr =
  321. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  322. alloc_sleep_millisecs_store);
  323. static ssize_t pages_to_scan_show(struct kobject *kobj,
  324. struct kobj_attribute *attr,
  325. char *buf)
  326. {
  327. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  328. }
  329. static ssize_t pages_to_scan_store(struct kobject *kobj,
  330. struct kobj_attribute *attr,
  331. const char *buf, size_t count)
  332. {
  333. int err;
  334. unsigned long pages;
  335. err = strict_strtoul(buf, 10, &pages);
  336. if (err || !pages || pages > UINT_MAX)
  337. return -EINVAL;
  338. khugepaged_pages_to_scan = pages;
  339. return count;
  340. }
  341. static struct kobj_attribute pages_to_scan_attr =
  342. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  343. pages_to_scan_store);
  344. static ssize_t pages_collapsed_show(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. char *buf)
  347. {
  348. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  349. }
  350. static struct kobj_attribute pages_collapsed_attr =
  351. __ATTR_RO(pages_collapsed);
  352. static ssize_t full_scans_show(struct kobject *kobj,
  353. struct kobj_attribute *attr,
  354. char *buf)
  355. {
  356. return sprintf(buf, "%u\n", khugepaged_full_scans);
  357. }
  358. static struct kobj_attribute full_scans_attr =
  359. __ATTR_RO(full_scans);
  360. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  361. struct kobj_attribute *attr, char *buf)
  362. {
  363. return single_flag_show(kobj, attr, buf,
  364. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  365. }
  366. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. return single_flag_store(kobj, attr, buf, count,
  371. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  372. }
  373. static struct kobj_attribute khugepaged_defrag_attr =
  374. __ATTR(defrag, 0644, khugepaged_defrag_show,
  375. khugepaged_defrag_store);
  376. /*
  377. * max_ptes_none controls if khugepaged should collapse hugepages over
  378. * any unmapped ptes in turn potentially increasing the memory
  379. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  380. * reduce the available free memory in the system as it
  381. * runs. Increasing max_ptes_none will instead potentially reduce the
  382. * free memory in the system during the khugepaged scan.
  383. */
  384. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  385. struct kobj_attribute *attr,
  386. char *buf)
  387. {
  388. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  389. }
  390. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  391. struct kobj_attribute *attr,
  392. const char *buf, size_t count)
  393. {
  394. int err;
  395. unsigned long max_ptes_none;
  396. err = strict_strtoul(buf, 10, &max_ptes_none);
  397. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  398. return -EINVAL;
  399. khugepaged_max_ptes_none = max_ptes_none;
  400. return count;
  401. }
  402. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  403. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  404. khugepaged_max_ptes_none_store);
  405. static struct attribute *khugepaged_attr[] = {
  406. &khugepaged_defrag_attr.attr,
  407. &khugepaged_max_ptes_none_attr.attr,
  408. &pages_to_scan_attr.attr,
  409. &pages_collapsed_attr.attr,
  410. &full_scans_attr.attr,
  411. &scan_sleep_millisecs_attr.attr,
  412. &alloc_sleep_millisecs_attr.attr,
  413. NULL,
  414. };
  415. static struct attribute_group khugepaged_attr_group = {
  416. .attrs = khugepaged_attr,
  417. .name = "khugepaged",
  418. };
  419. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  420. {
  421. int err;
  422. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  423. if (unlikely(!*hugepage_kobj)) {
  424. printk(KERN_ERR "hugepage: failed kobject create\n");
  425. return -ENOMEM;
  426. }
  427. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  428. if (err) {
  429. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  430. goto delete_obj;
  431. }
  432. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  433. if (err) {
  434. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  435. goto remove_hp_group;
  436. }
  437. return 0;
  438. remove_hp_group:
  439. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  440. delete_obj:
  441. kobject_put(*hugepage_kobj);
  442. return err;
  443. }
  444. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  445. {
  446. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  447. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  448. kobject_put(hugepage_kobj);
  449. }
  450. #else
  451. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  452. {
  453. return 0;
  454. }
  455. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  456. {
  457. }
  458. #endif /* CONFIG_SYSFS */
  459. static int __init hugepage_init(void)
  460. {
  461. int err;
  462. struct kobject *hugepage_kobj;
  463. if (!has_transparent_hugepage()) {
  464. transparent_hugepage_flags = 0;
  465. return -EINVAL;
  466. }
  467. err = hugepage_init_sysfs(&hugepage_kobj);
  468. if (err)
  469. return err;
  470. err = khugepaged_slab_init();
  471. if (err)
  472. goto out;
  473. err = mm_slots_hash_init();
  474. if (err) {
  475. khugepaged_slab_free();
  476. goto out;
  477. }
  478. /*
  479. * By default disable transparent hugepages on smaller systems,
  480. * where the extra memory used could hurt more than TLB overhead
  481. * is likely to save. The admin can still enable it through /sys.
  482. */
  483. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  484. transparent_hugepage_flags = 0;
  485. start_khugepaged();
  486. return 0;
  487. out:
  488. hugepage_exit_sysfs(hugepage_kobj);
  489. return err;
  490. }
  491. module_init(hugepage_init)
  492. static int __init setup_transparent_hugepage(char *str)
  493. {
  494. int ret = 0;
  495. if (!str)
  496. goto out;
  497. if (!strcmp(str, "always")) {
  498. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  499. &transparent_hugepage_flags);
  500. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  501. &transparent_hugepage_flags);
  502. ret = 1;
  503. } else if (!strcmp(str, "madvise")) {
  504. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  505. &transparent_hugepage_flags);
  506. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  507. &transparent_hugepage_flags);
  508. ret = 1;
  509. } else if (!strcmp(str, "never")) {
  510. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  511. &transparent_hugepage_flags);
  512. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  513. &transparent_hugepage_flags);
  514. ret = 1;
  515. }
  516. out:
  517. if (!ret)
  518. printk(KERN_WARNING
  519. "transparent_hugepage= cannot parse, ignored\n");
  520. return ret;
  521. }
  522. __setup("transparent_hugepage=", setup_transparent_hugepage);
  523. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  524. {
  525. if (likely(vma->vm_flags & VM_WRITE))
  526. pmd = pmd_mkwrite(pmd);
  527. return pmd;
  528. }
  529. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  530. struct vm_area_struct *vma,
  531. unsigned long haddr, pmd_t *pmd,
  532. struct page *page)
  533. {
  534. pgtable_t pgtable;
  535. VM_BUG_ON(!PageCompound(page));
  536. pgtable = pte_alloc_one(mm, haddr);
  537. if (unlikely(!pgtable))
  538. return VM_FAULT_OOM;
  539. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  540. __SetPageUptodate(page);
  541. spin_lock(&mm->page_table_lock);
  542. if (unlikely(!pmd_none(*pmd))) {
  543. spin_unlock(&mm->page_table_lock);
  544. mem_cgroup_uncharge_page(page);
  545. put_page(page);
  546. pte_free(mm, pgtable);
  547. } else {
  548. pmd_t entry;
  549. entry = mk_pmd(page, vma->vm_page_prot);
  550. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  551. entry = pmd_mkhuge(entry);
  552. /*
  553. * The spinlocking to take the lru_lock inside
  554. * page_add_new_anon_rmap() acts as a full memory
  555. * barrier to be sure clear_huge_page writes become
  556. * visible after the set_pmd_at() write.
  557. */
  558. page_add_new_anon_rmap(page, vma, haddr);
  559. set_pmd_at(mm, haddr, pmd, entry);
  560. pgtable_trans_huge_deposit(mm, pgtable);
  561. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  562. mm->nr_ptes++;
  563. spin_unlock(&mm->page_table_lock);
  564. }
  565. return 0;
  566. }
  567. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  568. {
  569. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  570. }
  571. static inline struct page *alloc_hugepage_vma(int defrag,
  572. struct vm_area_struct *vma,
  573. unsigned long haddr, int nd,
  574. gfp_t extra_gfp)
  575. {
  576. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  577. HPAGE_PMD_ORDER, vma, haddr, nd);
  578. }
  579. #ifndef CONFIG_NUMA
  580. static inline struct page *alloc_hugepage(int defrag)
  581. {
  582. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  583. HPAGE_PMD_ORDER);
  584. }
  585. #endif
  586. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  587. unsigned long address, pmd_t *pmd,
  588. unsigned int flags)
  589. {
  590. struct page *page;
  591. unsigned long haddr = address & HPAGE_PMD_MASK;
  592. pte_t *pte;
  593. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  594. if (unlikely(anon_vma_prepare(vma)))
  595. return VM_FAULT_OOM;
  596. if (unlikely(khugepaged_enter(vma)))
  597. return VM_FAULT_OOM;
  598. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  599. vma, haddr, numa_node_id(), 0);
  600. if (unlikely(!page)) {
  601. count_vm_event(THP_FAULT_FALLBACK);
  602. goto out;
  603. }
  604. count_vm_event(THP_FAULT_ALLOC);
  605. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  606. put_page(page);
  607. goto out;
  608. }
  609. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  610. page))) {
  611. mem_cgroup_uncharge_page(page);
  612. put_page(page);
  613. goto out;
  614. }
  615. return 0;
  616. }
  617. out:
  618. /*
  619. * Use __pte_alloc instead of pte_alloc_map, because we can't
  620. * run pte_offset_map on the pmd, if an huge pmd could
  621. * materialize from under us from a different thread.
  622. */
  623. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  624. return VM_FAULT_OOM;
  625. /* if an huge pmd materialized from under us just retry later */
  626. if (unlikely(pmd_trans_huge(*pmd)))
  627. return 0;
  628. /*
  629. * A regular pmd is established and it can't morph into a huge pmd
  630. * from under us anymore at this point because we hold the mmap_sem
  631. * read mode and khugepaged takes it in write mode. So now it's
  632. * safe to run pte_offset_map().
  633. */
  634. pte = pte_offset_map(pmd, address);
  635. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  636. }
  637. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  638. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  639. struct vm_area_struct *vma)
  640. {
  641. struct page *src_page;
  642. pmd_t pmd;
  643. pgtable_t pgtable;
  644. int ret;
  645. ret = -ENOMEM;
  646. pgtable = pte_alloc_one(dst_mm, addr);
  647. if (unlikely(!pgtable))
  648. goto out;
  649. spin_lock(&dst_mm->page_table_lock);
  650. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  651. ret = -EAGAIN;
  652. pmd = *src_pmd;
  653. if (unlikely(!pmd_trans_huge(pmd))) {
  654. pte_free(dst_mm, pgtable);
  655. goto out_unlock;
  656. }
  657. if (unlikely(pmd_trans_splitting(pmd))) {
  658. /* split huge page running from under us */
  659. spin_unlock(&src_mm->page_table_lock);
  660. spin_unlock(&dst_mm->page_table_lock);
  661. pte_free(dst_mm, pgtable);
  662. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  663. goto out;
  664. }
  665. src_page = pmd_page(pmd);
  666. VM_BUG_ON(!PageHead(src_page));
  667. get_page(src_page);
  668. page_dup_rmap(src_page);
  669. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  670. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  671. pmd = pmd_mkold(pmd_wrprotect(pmd));
  672. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  673. pgtable_trans_huge_deposit(dst_mm, pgtable);
  674. dst_mm->nr_ptes++;
  675. ret = 0;
  676. out_unlock:
  677. spin_unlock(&src_mm->page_table_lock);
  678. spin_unlock(&dst_mm->page_table_lock);
  679. out:
  680. return ret;
  681. }
  682. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  683. struct vm_area_struct *vma,
  684. unsigned long address,
  685. pmd_t *pmd, pmd_t orig_pmd,
  686. struct page *page,
  687. unsigned long haddr)
  688. {
  689. pgtable_t pgtable;
  690. pmd_t _pmd;
  691. int ret = 0, i;
  692. struct page **pages;
  693. unsigned long mmun_start; /* For mmu_notifiers */
  694. unsigned long mmun_end; /* For mmu_notifiers */
  695. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  696. GFP_KERNEL);
  697. if (unlikely(!pages)) {
  698. ret |= VM_FAULT_OOM;
  699. goto out;
  700. }
  701. for (i = 0; i < HPAGE_PMD_NR; i++) {
  702. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  703. __GFP_OTHER_NODE,
  704. vma, address, page_to_nid(page));
  705. if (unlikely(!pages[i] ||
  706. mem_cgroup_newpage_charge(pages[i], mm,
  707. GFP_KERNEL))) {
  708. if (pages[i])
  709. put_page(pages[i]);
  710. mem_cgroup_uncharge_start();
  711. while (--i >= 0) {
  712. mem_cgroup_uncharge_page(pages[i]);
  713. put_page(pages[i]);
  714. }
  715. mem_cgroup_uncharge_end();
  716. kfree(pages);
  717. ret |= VM_FAULT_OOM;
  718. goto out;
  719. }
  720. }
  721. for (i = 0; i < HPAGE_PMD_NR; i++) {
  722. copy_user_highpage(pages[i], page + i,
  723. haddr + PAGE_SIZE * i, vma);
  724. __SetPageUptodate(pages[i]);
  725. cond_resched();
  726. }
  727. mmun_start = haddr;
  728. mmun_end = haddr + HPAGE_PMD_SIZE;
  729. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  730. spin_lock(&mm->page_table_lock);
  731. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  732. goto out_free_pages;
  733. VM_BUG_ON(!PageHead(page));
  734. pmdp_clear_flush(vma, haddr, pmd);
  735. /* leave pmd empty until pte is filled */
  736. pgtable = pgtable_trans_huge_withdraw(mm);
  737. pmd_populate(mm, &_pmd, pgtable);
  738. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  739. pte_t *pte, entry;
  740. entry = mk_pte(pages[i], vma->vm_page_prot);
  741. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  742. page_add_new_anon_rmap(pages[i], vma, haddr);
  743. pte = pte_offset_map(&_pmd, haddr);
  744. VM_BUG_ON(!pte_none(*pte));
  745. set_pte_at(mm, haddr, pte, entry);
  746. pte_unmap(pte);
  747. }
  748. kfree(pages);
  749. smp_wmb(); /* make pte visible before pmd */
  750. pmd_populate(mm, pmd, pgtable);
  751. page_remove_rmap(page);
  752. spin_unlock(&mm->page_table_lock);
  753. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  754. ret |= VM_FAULT_WRITE;
  755. put_page(page);
  756. out:
  757. return ret;
  758. out_free_pages:
  759. spin_unlock(&mm->page_table_lock);
  760. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  761. mem_cgroup_uncharge_start();
  762. for (i = 0; i < HPAGE_PMD_NR; i++) {
  763. mem_cgroup_uncharge_page(pages[i]);
  764. put_page(pages[i]);
  765. }
  766. mem_cgroup_uncharge_end();
  767. kfree(pages);
  768. goto out;
  769. }
  770. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  771. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  772. {
  773. int ret = 0;
  774. struct page *page, *new_page;
  775. unsigned long haddr;
  776. unsigned long mmun_start; /* For mmu_notifiers */
  777. unsigned long mmun_end; /* For mmu_notifiers */
  778. VM_BUG_ON(!vma->anon_vma);
  779. spin_lock(&mm->page_table_lock);
  780. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  781. goto out_unlock;
  782. page = pmd_page(orig_pmd);
  783. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  784. haddr = address & HPAGE_PMD_MASK;
  785. if (page_mapcount(page) == 1) {
  786. pmd_t entry;
  787. entry = pmd_mkyoung(orig_pmd);
  788. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  789. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  790. update_mmu_cache(vma, address, pmd);
  791. ret |= VM_FAULT_WRITE;
  792. goto out_unlock;
  793. }
  794. get_page(page);
  795. spin_unlock(&mm->page_table_lock);
  796. if (transparent_hugepage_enabled(vma) &&
  797. !transparent_hugepage_debug_cow())
  798. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  799. vma, haddr, numa_node_id(), 0);
  800. else
  801. new_page = NULL;
  802. if (unlikely(!new_page)) {
  803. count_vm_event(THP_FAULT_FALLBACK);
  804. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  805. pmd, orig_pmd, page, haddr);
  806. if (ret & VM_FAULT_OOM)
  807. split_huge_page(page);
  808. put_page(page);
  809. goto out;
  810. }
  811. count_vm_event(THP_FAULT_ALLOC);
  812. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  813. put_page(new_page);
  814. split_huge_page(page);
  815. put_page(page);
  816. ret |= VM_FAULT_OOM;
  817. goto out;
  818. }
  819. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  820. __SetPageUptodate(new_page);
  821. mmun_start = haddr;
  822. mmun_end = haddr + HPAGE_PMD_SIZE;
  823. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  824. spin_lock(&mm->page_table_lock);
  825. put_page(page);
  826. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  827. spin_unlock(&mm->page_table_lock);
  828. mem_cgroup_uncharge_page(new_page);
  829. put_page(new_page);
  830. goto out_mn;
  831. } else {
  832. pmd_t entry;
  833. VM_BUG_ON(!PageHead(page));
  834. entry = mk_pmd(new_page, vma->vm_page_prot);
  835. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  836. entry = pmd_mkhuge(entry);
  837. pmdp_clear_flush(vma, haddr, pmd);
  838. page_add_new_anon_rmap(new_page, vma, haddr);
  839. set_pmd_at(mm, haddr, pmd, entry);
  840. update_mmu_cache(vma, address, pmd);
  841. page_remove_rmap(page);
  842. put_page(page);
  843. ret |= VM_FAULT_WRITE;
  844. }
  845. spin_unlock(&mm->page_table_lock);
  846. out_mn:
  847. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  848. out:
  849. return ret;
  850. out_unlock:
  851. spin_unlock(&mm->page_table_lock);
  852. return ret;
  853. }
  854. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  855. unsigned long addr,
  856. pmd_t *pmd,
  857. unsigned int flags)
  858. {
  859. struct mm_struct *mm = vma->vm_mm;
  860. struct page *page = NULL;
  861. assert_spin_locked(&mm->page_table_lock);
  862. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  863. goto out;
  864. page = pmd_page(*pmd);
  865. VM_BUG_ON(!PageHead(page));
  866. if (flags & FOLL_TOUCH) {
  867. pmd_t _pmd;
  868. /*
  869. * We should set the dirty bit only for FOLL_WRITE but
  870. * for now the dirty bit in the pmd is meaningless.
  871. * And if the dirty bit will become meaningful and
  872. * we'll only set it with FOLL_WRITE, an atomic
  873. * set_bit will be required on the pmd to set the
  874. * young bit, instead of the current set_pmd_at.
  875. */
  876. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  877. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  878. }
  879. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  880. if (page->mapping && trylock_page(page)) {
  881. lru_add_drain();
  882. if (page->mapping)
  883. mlock_vma_page(page);
  884. unlock_page(page);
  885. }
  886. }
  887. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  888. VM_BUG_ON(!PageCompound(page));
  889. if (flags & FOLL_GET)
  890. get_page_foll(page);
  891. out:
  892. return page;
  893. }
  894. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  895. pmd_t *pmd, unsigned long addr)
  896. {
  897. int ret = 0;
  898. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  899. struct page *page;
  900. pgtable_t pgtable;
  901. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  902. page = pmd_page(*pmd);
  903. pmd_clear(pmd);
  904. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  905. page_remove_rmap(page);
  906. VM_BUG_ON(page_mapcount(page) < 0);
  907. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  908. VM_BUG_ON(!PageHead(page));
  909. tlb->mm->nr_ptes--;
  910. spin_unlock(&tlb->mm->page_table_lock);
  911. tlb_remove_page(tlb, page);
  912. pte_free(tlb->mm, pgtable);
  913. ret = 1;
  914. }
  915. return ret;
  916. }
  917. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  918. unsigned long addr, unsigned long end,
  919. unsigned char *vec)
  920. {
  921. int ret = 0;
  922. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  923. /*
  924. * All logical pages in the range are present
  925. * if backed by a huge page.
  926. */
  927. spin_unlock(&vma->vm_mm->page_table_lock);
  928. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  929. ret = 1;
  930. }
  931. return ret;
  932. }
  933. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  934. unsigned long old_addr,
  935. unsigned long new_addr, unsigned long old_end,
  936. pmd_t *old_pmd, pmd_t *new_pmd)
  937. {
  938. int ret = 0;
  939. pmd_t pmd;
  940. struct mm_struct *mm = vma->vm_mm;
  941. if ((old_addr & ~HPAGE_PMD_MASK) ||
  942. (new_addr & ~HPAGE_PMD_MASK) ||
  943. old_end - old_addr < HPAGE_PMD_SIZE ||
  944. (new_vma->vm_flags & VM_NOHUGEPAGE))
  945. goto out;
  946. /*
  947. * The destination pmd shouldn't be established, free_pgtables()
  948. * should have release it.
  949. */
  950. if (WARN_ON(!pmd_none(*new_pmd))) {
  951. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  952. goto out;
  953. }
  954. ret = __pmd_trans_huge_lock(old_pmd, vma);
  955. if (ret == 1) {
  956. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  957. VM_BUG_ON(!pmd_none(*new_pmd));
  958. set_pmd_at(mm, new_addr, new_pmd, pmd);
  959. spin_unlock(&mm->page_table_lock);
  960. }
  961. out:
  962. return ret;
  963. }
  964. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  965. unsigned long addr, pgprot_t newprot)
  966. {
  967. struct mm_struct *mm = vma->vm_mm;
  968. int ret = 0;
  969. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  970. pmd_t entry;
  971. entry = pmdp_get_and_clear(mm, addr, pmd);
  972. entry = pmd_modify(entry, newprot);
  973. set_pmd_at(mm, addr, pmd, entry);
  974. spin_unlock(&vma->vm_mm->page_table_lock);
  975. ret = 1;
  976. }
  977. return ret;
  978. }
  979. /*
  980. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  981. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  982. *
  983. * Note that if it returns 1, this routine returns without unlocking page
  984. * table locks. So callers must unlock them.
  985. */
  986. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  987. {
  988. spin_lock(&vma->vm_mm->page_table_lock);
  989. if (likely(pmd_trans_huge(*pmd))) {
  990. if (unlikely(pmd_trans_splitting(*pmd))) {
  991. spin_unlock(&vma->vm_mm->page_table_lock);
  992. wait_split_huge_page(vma->anon_vma, pmd);
  993. return -1;
  994. } else {
  995. /* Thp mapped by 'pmd' is stable, so we can
  996. * handle it as it is. */
  997. return 1;
  998. }
  999. }
  1000. spin_unlock(&vma->vm_mm->page_table_lock);
  1001. return 0;
  1002. }
  1003. pmd_t *page_check_address_pmd(struct page *page,
  1004. struct mm_struct *mm,
  1005. unsigned long address,
  1006. enum page_check_address_pmd_flag flag)
  1007. {
  1008. pgd_t *pgd;
  1009. pud_t *pud;
  1010. pmd_t *pmd, *ret = NULL;
  1011. if (address & ~HPAGE_PMD_MASK)
  1012. goto out;
  1013. pgd = pgd_offset(mm, address);
  1014. if (!pgd_present(*pgd))
  1015. goto out;
  1016. pud = pud_offset(pgd, address);
  1017. if (!pud_present(*pud))
  1018. goto out;
  1019. pmd = pmd_offset(pud, address);
  1020. if (pmd_none(*pmd))
  1021. goto out;
  1022. if (pmd_page(*pmd) != page)
  1023. goto out;
  1024. /*
  1025. * split_vma() may create temporary aliased mappings. There is
  1026. * no risk as long as all huge pmd are found and have their
  1027. * splitting bit set before __split_huge_page_refcount
  1028. * runs. Finding the same huge pmd more than once during the
  1029. * same rmap walk is not a problem.
  1030. */
  1031. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1032. pmd_trans_splitting(*pmd))
  1033. goto out;
  1034. if (pmd_trans_huge(*pmd)) {
  1035. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1036. !pmd_trans_splitting(*pmd));
  1037. ret = pmd;
  1038. }
  1039. out:
  1040. return ret;
  1041. }
  1042. static int __split_huge_page_splitting(struct page *page,
  1043. struct vm_area_struct *vma,
  1044. unsigned long address)
  1045. {
  1046. struct mm_struct *mm = vma->vm_mm;
  1047. pmd_t *pmd;
  1048. int ret = 0;
  1049. /* For mmu_notifiers */
  1050. const unsigned long mmun_start = address;
  1051. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1052. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1053. spin_lock(&mm->page_table_lock);
  1054. pmd = page_check_address_pmd(page, mm, address,
  1055. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1056. if (pmd) {
  1057. /*
  1058. * We can't temporarily set the pmd to null in order
  1059. * to split it, the pmd must remain marked huge at all
  1060. * times or the VM won't take the pmd_trans_huge paths
  1061. * and it won't wait on the anon_vma->root->mutex to
  1062. * serialize against split_huge_page*.
  1063. */
  1064. pmdp_splitting_flush(vma, address, pmd);
  1065. ret = 1;
  1066. }
  1067. spin_unlock(&mm->page_table_lock);
  1068. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1069. return ret;
  1070. }
  1071. static void __split_huge_page_refcount(struct page *page)
  1072. {
  1073. int i;
  1074. struct zone *zone = page_zone(page);
  1075. struct lruvec *lruvec;
  1076. int tail_count = 0;
  1077. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1078. spin_lock_irq(&zone->lru_lock);
  1079. lruvec = mem_cgroup_page_lruvec(page, zone);
  1080. compound_lock(page);
  1081. /* complete memcg works before add pages to LRU */
  1082. mem_cgroup_split_huge_fixup(page);
  1083. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1084. struct page *page_tail = page + i;
  1085. /* tail_page->_mapcount cannot change */
  1086. BUG_ON(page_mapcount(page_tail) < 0);
  1087. tail_count += page_mapcount(page_tail);
  1088. /* check for overflow */
  1089. BUG_ON(tail_count < 0);
  1090. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1091. /*
  1092. * tail_page->_count is zero and not changing from
  1093. * under us. But get_page_unless_zero() may be running
  1094. * from under us on the tail_page. If we used
  1095. * atomic_set() below instead of atomic_add(), we
  1096. * would then run atomic_set() concurrently with
  1097. * get_page_unless_zero(), and atomic_set() is
  1098. * implemented in C not using locked ops. spin_unlock
  1099. * on x86 sometime uses locked ops because of PPro
  1100. * errata 66, 92, so unless somebody can guarantee
  1101. * atomic_set() here would be safe on all archs (and
  1102. * not only on x86), it's safer to use atomic_add().
  1103. */
  1104. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1105. &page_tail->_count);
  1106. /* after clearing PageTail the gup refcount can be released */
  1107. smp_mb();
  1108. /*
  1109. * retain hwpoison flag of the poisoned tail page:
  1110. * fix for the unsuitable process killed on Guest Machine(KVM)
  1111. * by the memory-failure.
  1112. */
  1113. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1114. page_tail->flags |= (page->flags &
  1115. ((1L << PG_referenced) |
  1116. (1L << PG_swapbacked) |
  1117. (1L << PG_mlocked) |
  1118. (1L << PG_uptodate)));
  1119. page_tail->flags |= (1L << PG_dirty);
  1120. /* clear PageTail before overwriting first_page */
  1121. smp_wmb();
  1122. /*
  1123. * __split_huge_page_splitting() already set the
  1124. * splitting bit in all pmd that could map this
  1125. * hugepage, that will ensure no CPU can alter the
  1126. * mapcount on the head page. The mapcount is only
  1127. * accounted in the head page and it has to be
  1128. * transferred to all tail pages in the below code. So
  1129. * for this code to be safe, the split the mapcount
  1130. * can't change. But that doesn't mean userland can't
  1131. * keep changing and reading the page contents while
  1132. * we transfer the mapcount, so the pmd splitting
  1133. * status is achieved setting a reserved bit in the
  1134. * pmd, not by clearing the present bit.
  1135. */
  1136. page_tail->_mapcount = page->_mapcount;
  1137. BUG_ON(page_tail->mapping);
  1138. page_tail->mapping = page->mapping;
  1139. page_tail->index = page->index + i;
  1140. BUG_ON(!PageAnon(page_tail));
  1141. BUG_ON(!PageUptodate(page_tail));
  1142. BUG_ON(!PageDirty(page_tail));
  1143. BUG_ON(!PageSwapBacked(page_tail));
  1144. lru_add_page_tail(page, page_tail, lruvec);
  1145. }
  1146. atomic_sub(tail_count, &page->_count);
  1147. BUG_ON(atomic_read(&page->_count) <= 0);
  1148. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1149. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1150. ClearPageCompound(page);
  1151. compound_unlock(page);
  1152. spin_unlock_irq(&zone->lru_lock);
  1153. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1154. struct page *page_tail = page + i;
  1155. BUG_ON(page_count(page_tail) <= 0);
  1156. /*
  1157. * Tail pages may be freed if there wasn't any mapping
  1158. * like if add_to_swap() is running on a lru page that
  1159. * had its mapping zapped. And freeing these pages
  1160. * requires taking the lru_lock so we do the put_page
  1161. * of the tail pages after the split is complete.
  1162. */
  1163. put_page(page_tail);
  1164. }
  1165. /*
  1166. * Only the head page (now become a regular page) is required
  1167. * to be pinned by the caller.
  1168. */
  1169. BUG_ON(page_count(page) <= 0);
  1170. }
  1171. static int __split_huge_page_map(struct page *page,
  1172. struct vm_area_struct *vma,
  1173. unsigned long address)
  1174. {
  1175. struct mm_struct *mm = vma->vm_mm;
  1176. pmd_t *pmd, _pmd;
  1177. int ret = 0, i;
  1178. pgtable_t pgtable;
  1179. unsigned long haddr;
  1180. spin_lock(&mm->page_table_lock);
  1181. pmd = page_check_address_pmd(page, mm, address,
  1182. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1183. if (pmd) {
  1184. pgtable = pgtable_trans_huge_withdraw(mm);
  1185. pmd_populate(mm, &_pmd, pgtable);
  1186. haddr = address;
  1187. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1188. pte_t *pte, entry;
  1189. BUG_ON(PageCompound(page+i));
  1190. entry = mk_pte(page + i, vma->vm_page_prot);
  1191. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1192. if (!pmd_write(*pmd))
  1193. entry = pte_wrprotect(entry);
  1194. else
  1195. BUG_ON(page_mapcount(page) != 1);
  1196. if (!pmd_young(*pmd))
  1197. entry = pte_mkold(entry);
  1198. pte = pte_offset_map(&_pmd, haddr);
  1199. BUG_ON(!pte_none(*pte));
  1200. set_pte_at(mm, haddr, pte, entry);
  1201. pte_unmap(pte);
  1202. }
  1203. smp_wmb(); /* make pte visible before pmd */
  1204. /*
  1205. * Up to this point the pmd is present and huge and
  1206. * userland has the whole access to the hugepage
  1207. * during the split (which happens in place). If we
  1208. * overwrite the pmd with the not-huge version
  1209. * pointing to the pte here (which of course we could
  1210. * if all CPUs were bug free), userland could trigger
  1211. * a small page size TLB miss on the small sized TLB
  1212. * while the hugepage TLB entry is still established
  1213. * in the huge TLB. Some CPU doesn't like that. See
  1214. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1215. * Erratum 383 on page 93. Intel should be safe but is
  1216. * also warns that it's only safe if the permission
  1217. * and cache attributes of the two entries loaded in
  1218. * the two TLB is identical (which should be the case
  1219. * here). But it is generally safer to never allow
  1220. * small and huge TLB entries for the same virtual
  1221. * address to be loaded simultaneously. So instead of
  1222. * doing "pmd_populate(); flush_tlb_range();" we first
  1223. * mark the current pmd notpresent (atomically because
  1224. * here the pmd_trans_huge and pmd_trans_splitting
  1225. * must remain set at all times on the pmd until the
  1226. * split is complete for this pmd), then we flush the
  1227. * SMP TLB and finally we write the non-huge version
  1228. * of the pmd entry with pmd_populate.
  1229. */
  1230. pmdp_invalidate(vma, address, pmd);
  1231. pmd_populate(mm, pmd, pgtable);
  1232. ret = 1;
  1233. }
  1234. spin_unlock(&mm->page_table_lock);
  1235. return ret;
  1236. }
  1237. /* must be called with anon_vma->root->mutex hold */
  1238. static void __split_huge_page(struct page *page,
  1239. struct anon_vma *anon_vma)
  1240. {
  1241. int mapcount, mapcount2;
  1242. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1243. struct anon_vma_chain *avc;
  1244. BUG_ON(!PageHead(page));
  1245. BUG_ON(PageTail(page));
  1246. mapcount = 0;
  1247. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1248. struct vm_area_struct *vma = avc->vma;
  1249. unsigned long addr = vma_address(page, vma);
  1250. BUG_ON(is_vma_temporary_stack(vma));
  1251. mapcount += __split_huge_page_splitting(page, vma, addr);
  1252. }
  1253. /*
  1254. * It is critical that new vmas are added to the tail of the
  1255. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1256. * and establishes a child pmd before
  1257. * __split_huge_page_splitting() freezes the parent pmd (so if
  1258. * we fail to prevent copy_huge_pmd() from running until the
  1259. * whole __split_huge_page() is complete), we will still see
  1260. * the newly established pmd of the child later during the
  1261. * walk, to be able to set it as pmd_trans_splitting too.
  1262. */
  1263. if (mapcount != page_mapcount(page))
  1264. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1265. mapcount, page_mapcount(page));
  1266. BUG_ON(mapcount != page_mapcount(page));
  1267. __split_huge_page_refcount(page);
  1268. mapcount2 = 0;
  1269. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1270. struct vm_area_struct *vma = avc->vma;
  1271. unsigned long addr = vma_address(page, vma);
  1272. BUG_ON(is_vma_temporary_stack(vma));
  1273. mapcount2 += __split_huge_page_map(page, vma, addr);
  1274. }
  1275. if (mapcount != mapcount2)
  1276. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1277. mapcount, mapcount2, page_mapcount(page));
  1278. BUG_ON(mapcount != mapcount2);
  1279. }
  1280. int split_huge_page(struct page *page)
  1281. {
  1282. struct anon_vma *anon_vma;
  1283. int ret = 1;
  1284. BUG_ON(!PageAnon(page));
  1285. anon_vma = page_lock_anon_vma(page);
  1286. if (!anon_vma)
  1287. goto out;
  1288. ret = 0;
  1289. if (!PageCompound(page))
  1290. goto out_unlock;
  1291. BUG_ON(!PageSwapBacked(page));
  1292. __split_huge_page(page, anon_vma);
  1293. count_vm_event(THP_SPLIT);
  1294. BUG_ON(PageCompound(page));
  1295. out_unlock:
  1296. page_unlock_anon_vma(anon_vma);
  1297. out:
  1298. return ret;
  1299. }
  1300. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1301. int hugepage_madvise(struct vm_area_struct *vma,
  1302. unsigned long *vm_flags, int advice)
  1303. {
  1304. struct mm_struct *mm = vma->vm_mm;
  1305. switch (advice) {
  1306. case MADV_HUGEPAGE:
  1307. /*
  1308. * Be somewhat over-protective like KSM for now!
  1309. */
  1310. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1311. return -EINVAL;
  1312. if (mm->def_flags & VM_NOHUGEPAGE)
  1313. return -EINVAL;
  1314. *vm_flags &= ~VM_NOHUGEPAGE;
  1315. *vm_flags |= VM_HUGEPAGE;
  1316. /*
  1317. * If the vma become good for khugepaged to scan,
  1318. * register it here without waiting a page fault that
  1319. * may not happen any time soon.
  1320. */
  1321. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1322. return -ENOMEM;
  1323. break;
  1324. case MADV_NOHUGEPAGE:
  1325. /*
  1326. * Be somewhat over-protective like KSM for now!
  1327. */
  1328. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1329. return -EINVAL;
  1330. *vm_flags &= ~VM_HUGEPAGE;
  1331. *vm_flags |= VM_NOHUGEPAGE;
  1332. /*
  1333. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1334. * this vma even if we leave the mm registered in khugepaged if
  1335. * it got registered before VM_NOHUGEPAGE was set.
  1336. */
  1337. break;
  1338. }
  1339. return 0;
  1340. }
  1341. static int __init khugepaged_slab_init(void)
  1342. {
  1343. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1344. sizeof(struct mm_slot),
  1345. __alignof__(struct mm_slot), 0, NULL);
  1346. if (!mm_slot_cache)
  1347. return -ENOMEM;
  1348. return 0;
  1349. }
  1350. static void __init khugepaged_slab_free(void)
  1351. {
  1352. kmem_cache_destroy(mm_slot_cache);
  1353. mm_slot_cache = NULL;
  1354. }
  1355. static inline struct mm_slot *alloc_mm_slot(void)
  1356. {
  1357. if (!mm_slot_cache) /* initialization failed */
  1358. return NULL;
  1359. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1360. }
  1361. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1362. {
  1363. kmem_cache_free(mm_slot_cache, mm_slot);
  1364. }
  1365. static int __init mm_slots_hash_init(void)
  1366. {
  1367. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1368. GFP_KERNEL);
  1369. if (!mm_slots_hash)
  1370. return -ENOMEM;
  1371. return 0;
  1372. }
  1373. #if 0
  1374. static void __init mm_slots_hash_free(void)
  1375. {
  1376. kfree(mm_slots_hash);
  1377. mm_slots_hash = NULL;
  1378. }
  1379. #endif
  1380. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1381. {
  1382. struct mm_slot *mm_slot;
  1383. struct hlist_head *bucket;
  1384. struct hlist_node *node;
  1385. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1386. % MM_SLOTS_HASH_HEADS];
  1387. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1388. if (mm == mm_slot->mm)
  1389. return mm_slot;
  1390. }
  1391. return NULL;
  1392. }
  1393. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1394. struct mm_slot *mm_slot)
  1395. {
  1396. struct hlist_head *bucket;
  1397. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1398. % MM_SLOTS_HASH_HEADS];
  1399. mm_slot->mm = mm;
  1400. hlist_add_head(&mm_slot->hash, bucket);
  1401. }
  1402. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1403. {
  1404. return atomic_read(&mm->mm_users) == 0;
  1405. }
  1406. int __khugepaged_enter(struct mm_struct *mm)
  1407. {
  1408. struct mm_slot *mm_slot;
  1409. int wakeup;
  1410. mm_slot = alloc_mm_slot();
  1411. if (!mm_slot)
  1412. return -ENOMEM;
  1413. /* __khugepaged_exit() must not run from under us */
  1414. VM_BUG_ON(khugepaged_test_exit(mm));
  1415. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1416. free_mm_slot(mm_slot);
  1417. return 0;
  1418. }
  1419. spin_lock(&khugepaged_mm_lock);
  1420. insert_to_mm_slots_hash(mm, mm_slot);
  1421. /*
  1422. * Insert just behind the scanning cursor, to let the area settle
  1423. * down a little.
  1424. */
  1425. wakeup = list_empty(&khugepaged_scan.mm_head);
  1426. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1427. spin_unlock(&khugepaged_mm_lock);
  1428. atomic_inc(&mm->mm_count);
  1429. if (wakeup)
  1430. wake_up_interruptible(&khugepaged_wait);
  1431. return 0;
  1432. }
  1433. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1434. {
  1435. unsigned long hstart, hend;
  1436. if (!vma->anon_vma)
  1437. /*
  1438. * Not yet faulted in so we will register later in the
  1439. * page fault if needed.
  1440. */
  1441. return 0;
  1442. if (vma->vm_ops)
  1443. /* khugepaged not yet working on file or special mappings */
  1444. return 0;
  1445. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1446. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1447. hend = vma->vm_end & HPAGE_PMD_MASK;
  1448. if (hstart < hend)
  1449. return khugepaged_enter(vma);
  1450. return 0;
  1451. }
  1452. void __khugepaged_exit(struct mm_struct *mm)
  1453. {
  1454. struct mm_slot *mm_slot;
  1455. int free = 0;
  1456. spin_lock(&khugepaged_mm_lock);
  1457. mm_slot = get_mm_slot(mm);
  1458. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1459. hlist_del(&mm_slot->hash);
  1460. list_del(&mm_slot->mm_node);
  1461. free = 1;
  1462. }
  1463. spin_unlock(&khugepaged_mm_lock);
  1464. if (free) {
  1465. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1466. free_mm_slot(mm_slot);
  1467. mmdrop(mm);
  1468. } else if (mm_slot) {
  1469. /*
  1470. * This is required to serialize against
  1471. * khugepaged_test_exit() (which is guaranteed to run
  1472. * under mmap sem read mode). Stop here (after we
  1473. * return all pagetables will be destroyed) until
  1474. * khugepaged has finished working on the pagetables
  1475. * under the mmap_sem.
  1476. */
  1477. down_write(&mm->mmap_sem);
  1478. up_write(&mm->mmap_sem);
  1479. }
  1480. }
  1481. static void release_pte_page(struct page *page)
  1482. {
  1483. /* 0 stands for page_is_file_cache(page) == false */
  1484. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1485. unlock_page(page);
  1486. putback_lru_page(page);
  1487. }
  1488. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1489. {
  1490. while (--_pte >= pte) {
  1491. pte_t pteval = *_pte;
  1492. if (!pte_none(pteval))
  1493. release_pte_page(pte_page(pteval));
  1494. }
  1495. }
  1496. static void release_all_pte_pages(pte_t *pte)
  1497. {
  1498. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1499. }
  1500. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1501. unsigned long address,
  1502. pte_t *pte)
  1503. {
  1504. struct page *page;
  1505. pte_t *_pte;
  1506. int referenced = 0, isolated = 0, none = 0;
  1507. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1508. _pte++, address += PAGE_SIZE) {
  1509. pte_t pteval = *_pte;
  1510. if (pte_none(pteval)) {
  1511. if (++none <= khugepaged_max_ptes_none)
  1512. continue;
  1513. else {
  1514. release_pte_pages(pte, _pte);
  1515. goto out;
  1516. }
  1517. }
  1518. if (!pte_present(pteval) || !pte_write(pteval)) {
  1519. release_pte_pages(pte, _pte);
  1520. goto out;
  1521. }
  1522. page = vm_normal_page(vma, address, pteval);
  1523. if (unlikely(!page)) {
  1524. release_pte_pages(pte, _pte);
  1525. goto out;
  1526. }
  1527. VM_BUG_ON(PageCompound(page));
  1528. BUG_ON(!PageAnon(page));
  1529. VM_BUG_ON(!PageSwapBacked(page));
  1530. /* cannot use mapcount: can't collapse if there's a gup pin */
  1531. if (page_count(page) != 1) {
  1532. release_pte_pages(pte, _pte);
  1533. goto out;
  1534. }
  1535. /*
  1536. * We can do it before isolate_lru_page because the
  1537. * page can't be freed from under us. NOTE: PG_lock
  1538. * is needed to serialize against split_huge_page
  1539. * when invoked from the VM.
  1540. */
  1541. if (!trylock_page(page)) {
  1542. release_pte_pages(pte, _pte);
  1543. goto out;
  1544. }
  1545. /*
  1546. * Isolate the page to avoid collapsing an hugepage
  1547. * currently in use by the VM.
  1548. */
  1549. if (isolate_lru_page(page)) {
  1550. unlock_page(page);
  1551. release_pte_pages(pte, _pte);
  1552. goto out;
  1553. }
  1554. /* 0 stands for page_is_file_cache(page) == false */
  1555. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1556. VM_BUG_ON(!PageLocked(page));
  1557. VM_BUG_ON(PageLRU(page));
  1558. /* If there is no mapped pte young don't collapse the page */
  1559. if (pte_young(pteval) || PageReferenced(page) ||
  1560. mmu_notifier_test_young(vma->vm_mm, address))
  1561. referenced = 1;
  1562. }
  1563. if (unlikely(!referenced))
  1564. release_all_pte_pages(pte);
  1565. else
  1566. isolated = 1;
  1567. out:
  1568. return isolated;
  1569. }
  1570. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1571. struct vm_area_struct *vma,
  1572. unsigned long address,
  1573. spinlock_t *ptl)
  1574. {
  1575. pte_t *_pte;
  1576. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1577. pte_t pteval = *_pte;
  1578. struct page *src_page;
  1579. if (pte_none(pteval)) {
  1580. clear_user_highpage(page, address);
  1581. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1582. } else {
  1583. src_page = pte_page(pteval);
  1584. copy_user_highpage(page, src_page, address, vma);
  1585. VM_BUG_ON(page_mapcount(src_page) != 1);
  1586. release_pte_page(src_page);
  1587. /*
  1588. * ptl mostly unnecessary, but preempt has to
  1589. * be disabled to update the per-cpu stats
  1590. * inside page_remove_rmap().
  1591. */
  1592. spin_lock(ptl);
  1593. /*
  1594. * paravirt calls inside pte_clear here are
  1595. * superfluous.
  1596. */
  1597. pte_clear(vma->vm_mm, address, _pte);
  1598. page_remove_rmap(src_page);
  1599. spin_unlock(ptl);
  1600. free_page_and_swap_cache(src_page);
  1601. }
  1602. address += PAGE_SIZE;
  1603. page++;
  1604. }
  1605. }
  1606. static void khugepaged_alloc_sleep(void)
  1607. {
  1608. wait_event_freezable_timeout(khugepaged_wait, false,
  1609. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1610. }
  1611. #ifdef CONFIG_NUMA
  1612. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1613. {
  1614. if (IS_ERR(*hpage)) {
  1615. if (!*wait)
  1616. return false;
  1617. *wait = false;
  1618. *hpage = NULL;
  1619. khugepaged_alloc_sleep();
  1620. } else if (*hpage) {
  1621. put_page(*hpage);
  1622. *hpage = NULL;
  1623. }
  1624. return true;
  1625. }
  1626. static struct page
  1627. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1628. struct vm_area_struct *vma, unsigned long address,
  1629. int node)
  1630. {
  1631. VM_BUG_ON(*hpage);
  1632. /*
  1633. * Allocate the page while the vma is still valid and under
  1634. * the mmap_sem read mode so there is no memory allocation
  1635. * later when we take the mmap_sem in write mode. This is more
  1636. * friendly behavior (OTOH it may actually hide bugs) to
  1637. * filesystems in userland with daemons allocating memory in
  1638. * the userland I/O paths. Allocating memory with the
  1639. * mmap_sem in read mode is good idea also to allow greater
  1640. * scalability.
  1641. */
  1642. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1643. node, __GFP_OTHER_NODE);
  1644. /*
  1645. * After allocating the hugepage, release the mmap_sem read lock in
  1646. * preparation for taking it in write mode.
  1647. */
  1648. up_read(&mm->mmap_sem);
  1649. if (unlikely(!*hpage)) {
  1650. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1651. *hpage = ERR_PTR(-ENOMEM);
  1652. return NULL;
  1653. }
  1654. count_vm_event(THP_COLLAPSE_ALLOC);
  1655. return *hpage;
  1656. }
  1657. #else
  1658. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1659. {
  1660. struct page *hpage;
  1661. do {
  1662. hpage = alloc_hugepage(khugepaged_defrag());
  1663. if (!hpage) {
  1664. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1665. if (!*wait)
  1666. return NULL;
  1667. *wait = false;
  1668. khugepaged_alloc_sleep();
  1669. } else
  1670. count_vm_event(THP_COLLAPSE_ALLOC);
  1671. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1672. return hpage;
  1673. }
  1674. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1675. {
  1676. if (!*hpage)
  1677. *hpage = khugepaged_alloc_hugepage(wait);
  1678. if (unlikely(!*hpage))
  1679. return false;
  1680. return true;
  1681. }
  1682. static struct page
  1683. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1684. struct vm_area_struct *vma, unsigned long address,
  1685. int node)
  1686. {
  1687. up_read(&mm->mmap_sem);
  1688. VM_BUG_ON(!*hpage);
  1689. return *hpage;
  1690. }
  1691. #endif
  1692. static void collapse_huge_page(struct mm_struct *mm,
  1693. unsigned long address,
  1694. struct page **hpage,
  1695. struct vm_area_struct *vma,
  1696. int node)
  1697. {
  1698. pgd_t *pgd;
  1699. pud_t *pud;
  1700. pmd_t *pmd, _pmd;
  1701. pte_t *pte;
  1702. pgtable_t pgtable;
  1703. struct page *new_page;
  1704. spinlock_t *ptl;
  1705. int isolated;
  1706. unsigned long hstart, hend;
  1707. unsigned long mmun_start; /* For mmu_notifiers */
  1708. unsigned long mmun_end; /* For mmu_notifiers */
  1709. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1710. /* release the mmap_sem read lock. */
  1711. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1712. if (!new_page)
  1713. return;
  1714. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1715. return;
  1716. /*
  1717. * Prevent all access to pagetables with the exception of
  1718. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1719. * handled by the anon_vma lock + PG_lock.
  1720. */
  1721. down_write(&mm->mmap_sem);
  1722. if (unlikely(khugepaged_test_exit(mm)))
  1723. goto out;
  1724. vma = find_vma(mm, address);
  1725. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1726. hend = vma->vm_end & HPAGE_PMD_MASK;
  1727. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1728. goto out;
  1729. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1730. (vma->vm_flags & VM_NOHUGEPAGE))
  1731. goto out;
  1732. if (!vma->anon_vma || vma->vm_ops)
  1733. goto out;
  1734. if (is_vma_temporary_stack(vma))
  1735. goto out;
  1736. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1737. pgd = pgd_offset(mm, address);
  1738. if (!pgd_present(*pgd))
  1739. goto out;
  1740. pud = pud_offset(pgd, address);
  1741. if (!pud_present(*pud))
  1742. goto out;
  1743. pmd = pmd_offset(pud, address);
  1744. /* pmd can't go away or become huge under us */
  1745. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1746. goto out;
  1747. anon_vma_lock(vma->anon_vma);
  1748. pte = pte_offset_map(pmd, address);
  1749. ptl = pte_lockptr(mm, pmd);
  1750. mmun_start = address;
  1751. mmun_end = address + HPAGE_PMD_SIZE;
  1752. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1753. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1754. /*
  1755. * After this gup_fast can't run anymore. This also removes
  1756. * any huge TLB entry from the CPU so we won't allow
  1757. * huge and small TLB entries for the same virtual address
  1758. * to avoid the risk of CPU bugs in that area.
  1759. */
  1760. _pmd = pmdp_clear_flush(vma, address, pmd);
  1761. spin_unlock(&mm->page_table_lock);
  1762. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1763. spin_lock(ptl);
  1764. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1765. spin_unlock(ptl);
  1766. if (unlikely(!isolated)) {
  1767. pte_unmap(pte);
  1768. spin_lock(&mm->page_table_lock);
  1769. BUG_ON(!pmd_none(*pmd));
  1770. set_pmd_at(mm, address, pmd, _pmd);
  1771. spin_unlock(&mm->page_table_lock);
  1772. anon_vma_unlock(vma->anon_vma);
  1773. goto out;
  1774. }
  1775. /*
  1776. * All pages are isolated and locked so anon_vma rmap
  1777. * can't run anymore.
  1778. */
  1779. anon_vma_unlock(vma->anon_vma);
  1780. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1781. pte_unmap(pte);
  1782. __SetPageUptodate(new_page);
  1783. pgtable = pmd_pgtable(_pmd);
  1784. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1785. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1786. _pmd = pmd_mkhuge(_pmd);
  1787. /*
  1788. * spin_lock() below is not the equivalent of smp_wmb(), so
  1789. * this is needed to avoid the copy_huge_page writes to become
  1790. * visible after the set_pmd_at() write.
  1791. */
  1792. smp_wmb();
  1793. spin_lock(&mm->page_table_lock);
  1794. BUG_ON(!pmd_none(*pmd));
  1795. page_add_new_anon_rmap(new_page, vma, address);
  1796. set_pmd_at(mm, address, pmd, _pmd);
  1797. update_mmu_cache(vma, address, pmd);
  1798. pgtable_trans_huge_deposit(mm, pgtable);
  1799. spin_unlock(&mm->page_table_lock);
  1800. *hpage = NULL;
  1801. khugepaged_pages_collapsed++;
  1802. out_up_write:
  1803. up_write(&mm->mmap_sem);
  1804. return;
  1805. out:
  1806. mem_cgroup_uncharge_page(new_page);
  1807. goto out_up_write;
  1808. }
  1809. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1810. struct vm_area_struct *vma,
  1811. unsigned long address,
  1812. struct page **hpage)
  1813. {
  1814. pgd_t *pgd;
  1815. pud_t *pud;
  1816. pmd_t *pmd;
  1817. pte_t *pte, *_pte;
  1818. int ret = 0, referenced = 0, none = 0;
  1819. struct page *page;
  1820. unsigned long _address;
  1821. spinlock_t *ptl;
  1822. int node = -1;
  1823. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1824. pgd = pgd_offset(mm, address);
  1825. if (!pgd_present(*pgd))
  1826. goto out;
  1827. pud = pud_offset(pgd, address);
  1828. if (!pud_present(*pud))
  1829. goto out;
  1830. pmd = pmd_offset(pud, address);
  1831. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1832. goto out;
  1833. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1834. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1835. _pte++, _address += PAGE_SIZE) {
  1836. pte_t pteval = *_pte;
  1837. if (pte_none(pteval)) {
  1838. if (++none <= khugepaged_max_ptes_none)
  1839. continue;
  1840. else
  1841. goto out_unmap;
  1842. }
  1843. if (!pte_present(pteval) || !pte_write(pteval))
  1844. goto out_unmap;
  1845. page = vm_normal_page(vma, _address, pteval);
  1846. if (unlikely(!page))
  1847. goto out_unmap;
  1848. /*
  1849. * Chose the node of the first page. This could
  1850. * be more sophisticated and look at more pages,
  1851. * but isn't for now.
  1852. */
  1853. if (node == -1)
  1854. node = page_to_nid(page);
  1855. VM_BUG_ON(PageCompound(page));
  1856. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1857. goto out_unmap;
  1858. /* cannot use mapcount: can't collapse if there's a gup pin */
  1859. if (page_count(page) != 1)
  1860. goto out_unmap;
  1861. if (pte_young(pteval) || PageReferenced(page) ||
  1862. mmu_notifier_test_young(vma->vm_mm, address))
  1863. referenced = 1;
  1864. }
  1865. if (referenced)
  1866. ret = 1;
  1867. out_unmap:
  1868. pte_unmap_unlock(pte, ptl);
  1869. if (ret)
  1870. /* collapse_huge_page will return with the mmap_sem released */
  1871. collapse_huge_page(mm, address, hpage, vma, node);
  1872. out:
  1873. return ret;
  1874. }
  1875. static void collect_mm_slot(struct mm_slot *mm_slot)
  1876. {
  1877. struct mm_struct *mm = mm_slot->mm;
  1878. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1879. if (khugepaged_test_exit(mm)) {
  1880. /* free mm_slot */
  1881. hlist_del(&mm_slot->hash);
  1882. list_del(&mm_slot->mm_node);
  1883. /*
  1884. * Not strictly needed because the mm exited already.
  1885. *
  1886. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1887. */
  1888. /* khugepaged_mm_lock actually not necessary for the below */
  1889. free_mm_slot(mm_slot);
  1890. mmdrop(mm);
  1891. }
  1892. }
  1893. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1894. struct page **hpage)
  1895. __releases(&khugepaged_mm_lock)
  1896. __acquires(&khugepaged_mm_lock)
  1897. {
  1898. struct mm_slot *mm_slot;
  1899. struct mm_struct *mm;
  1900. struct vm_area_struct *vma;
  1901. int progress = 0;
  1902. VM_BUG_ON(!pages);
  1903. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1904. if (khugepaged_scan.mm_slot)
  1905. mm_slot = khugepaged_scan.mm_slot;
  1906. else {
  1907. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1908. struct mm_slot, mm_node);
  1909. khugepaged_scan.address = 0;
  1910. khugepaged_scan.mm_slot = mm_slot;
  1911. }
  1912. spin_unlock(&khugepaged_mm_lock);
  1913. mm = mm_slot->mm;
  1914. down_read(&mm->mmap_sem);
  1915. if (unlikely(khugepaged_test_exit(mm)))
  1916. vma = NULL;
  1917. else
  1918. vma = find_vma(mm, khugepaged_scan.address);
  1919. progress++;
  1920. for (; vma; vma = vma->vm_next) {
  1921. unsigned long hstart, hend;
  1922. cond_resched();
  1923. if (unlikely(khugepaged_test_exit(mm))) {
  1924. progress++;
  1925. break;
  1926. }
  1927. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1928. !khugepaged_always()) ||
  1929. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1930. skip:
  1931. progress++;
  1932. continue;
  1933. }
  1934. if (!vma->anon_vma || vma->vm_ops)
  1935. goto skip;
  1936. if (is_vma_temporary_stack(vma))
  1937. goto skip;
  1938. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1939. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1940. hend = vma->vm_end & HPAGE_PMD_MASK;
  1941. if (hstart >= hend)
  1942. goto skip;
  1943. if (khugepaged_scan.address > hend)
  1944. goto skip;
  1945. if (khugepaged_scan.address < hstart)
  1946. khugepaged_scan.address = hstart;
  1947. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1948. while (khugepaged_scan.address < hend) {
  1949. int ret;
  1950. cond_resched();
  1951. if (unlikely(khugepaged_test_exit(mm)))
  1952. goto breakouterloop;
  1953. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1954. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1955. hend);
  1956. ret = khugepaged_scan_pmd(mm, vma,
  1957. khugepaged_scan.address,
  1958. hpage);
  1959. /* move to next address */
  1960. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1961. progress += HPAGE_PMD_NR;
  1962. if (ret)
  1963. /* we released mmap_sem so break loop */
  1964. goto breakouterloop_mmap_sem;
  1965. if (progress >= pages)
  1966. goto breakouterloop;
  1967. }
  1968. }
  1969. breakouterloop:
  1970. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1971. breakouterloop_mmap_sem:
  1972. spin_lock(&khugepaged_mm_lock);
  1973. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1974. /*
  1975. * Release the current mm_slot if this mm is about to die, or
  1976. * if we scanned all vmas of this mm.
  1977. */
  1978. if (khugepaged_test_exit(mm) || !vma) {
  1979. /*
  1980. * Make sure that if mm_users is reaching zero while
  1981. * khugepaged runs here, khugepaged_exit will find
  1982. * mm_slot not pointing to the exiting mm.
  1983. */
  1984. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1985. khugepaged_scan.mm_slot = list_entry(
  1986. mm_slot->mm_node.next,
  1987. struct mm_slot, mm_node);
  1988. khugepaged_scan.address = 0;
  1989. } else {
  1990. khugepaged_scan.mm_slot = NULL;
  1991. khugepaged_full_scans++;
  1992. }
  1993. collect_mm_slot(mm_slot);
  1994. }
  1995. return progress;
  1996. }
  1997. static int khugepaged_has_work(void)
  1998. {
  1999. return !list_empty(&khugepaged_scan.mm_head) &&
  2000. khugepaged_enabled();
  2001. }
  2002. static int khugepaged_wait_event(void)
  2003. {
  2004. return !list_empty(&khugepaged_scan.mm_head) ||
  2005. kthread_should_stop();
  2006. }
  2007. static void khugepaged_do_scan(void)
  2008. {
  2009. struct page *hpage = NULL;
  2010. unsigned int progress = 0, pass_through_head = 0;
  2011. unsigned int pages = khugepaged_pages_to_scan;
  2012. bool wait = true;
  2013. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2014. while (progress < pages) {
  2015. if (!khugepaged_prealloc_page(&hpage, &wait))
  2016. break;
  2017. cond_resched();
  2018. if (unlikely(kthread_should_stop() || freezing(current)))
  2019. break;
  2020. spin_lock(&khugepaged_mm_lock);
  2021. if (!khugepaged_scan.mm_slot)
  2022. pass_through_head++;
  2023. if (khugepaged_has_work() &&
  2024. pass_through_head < 2)
  2025. progress += khugepaged_scan_mm_slot(pages - progress,
  2026. &hpage);
  2027. else
  2028. progress = pages;
  2029. spin_unlock(&khugepaged_mm_lock);
  2030. }
  2031. if (!IS_ERR_OR_NULL(hpage))
  2032. put_page(hpage);
  2033. }
  2034. static void khugepaged_wait_work(void)
  2035. {
  2036. try_to_freeze();
  2037. if (khugepaged_has_work()) {
  2038. if (!khugepaged_scan_sleep_millisecs)
  2039. return;
  2040. wait_event_freezable_timeout(khugepaged_wait,
  2041. kthread_should_stop(),
  2042. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2043. return;
  2044. }
  2045. if (khugepaged_enabled())
  2046. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2047. }
  2048. static int khugepaged(void *none)
  2049. {
  2050. struct mm_slot *mm_slot;
  2051. set_freezable();
  2052. set_user_nice(current, 19);
  2053. while (!kthread_should_stop()) {
  2054. khugepaged_do_scan();
  2055. khugepaged_wait_work();
  2056. }
  2057. spin_lock(&khugepaged_mm_lock);
  2058. mm_slot = khugepaged_scan.mm_slot;
  2059. khugepaged_scan.mm_slot = NULL;
  2060. if (mm_slot)
  2061. collect_mm_slot(mm_slot);
  2062. spin_unlock(&khugepaged_mm_lock);
  2063. return 0;
  2064. }
  2065. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2066. {
  2067. struct page *page;
  2068. spin_lock(&mm->page_table_lock);
  2069. if (unlikely(!pmd_trans_huge(*pmd))) {
  2070. spin_unlock(&mm->page_table_lock);
  2071. return;
  2072. }
  2073. page = pmd_page(*pmd);
  2074. VM_BUG_ON(!page_count(page));
  2075. get_page(page);
  2076. spin_unlock(&mm->page_table_lock);
  2077. split_huge_page(page);
  2078. put_page(page);
  2079. BUG_ON(pmd_trans_huge(*pmd));
  2080. }
  2081. static void split_huge_page_address(struct mm_struct *mm,
  2082. unsigned long address)
  2083. {
  2084. pgd_t *pgd;
  2085. pud_t *pud;
  2086. pmd_t *pmd;
  2087. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2088. pgd = pgd_offset(mm, address);
  2089. if (!pgd_present(*pgd))
  2090. return;
  2091. pud = pud_offset(pgd, address);
  2092. if (!pud_present(*pud))
  2093. return;
  2094. pmd = pmd_offset(pud, address);
  2095. if (!pmd_present(*pmd))
  2096. return;
  2097. /*
  2098. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2099. * materialize from under us.
  2100. */
  2101. split_huge_page_pmd(mm, pmd);
  2102. }
  2103. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2104. unsigned long start,
  2105. unsigned long end,
  2106. long adjust_next)
  2107. {
  2108. /*
  2109. * If the new start address isn't hpage aligned and it could
  2110. * previously contain an hugepage: check if we need to split
  2111. * an huge pmd.
  2112. */
  2113. if (start & ~HPAGE_PMD_MASK &&
  2114. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2115. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2116. split_huge_page_address(vma->vm_mm, start);
  2117. /*
  2118. * If the new end address isn't hpage aligned and it could
  2119. * previously contain an hugepage: check if we need to split
  2120. * an huge pmd.
  2121. */
  2122. if (end & ~HPAGE_PMD_MASK &&
  2123. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2124. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2125. split_huge_page_address(vma->vm_mm, end);
  2126. /*
  2127. * If we're also updating the vma->vm_next->vm_start, if the new
  2128. * vm_next->vm_start isn't page aligned and it could previously
  2129. * contain an hugepage: check if we need to split an huge pmd.
  2130. */
  2131. if (adjust_next > 0) {
  2132. struct vm_area_struct *next = vma->vm_next;
  2133. unsigned long nstart = next->vm_start;
  2134. nstart += adjust_next << PAGE_SHIFT;
  2135. if (nstart & ~HPAGE_PMD_MASK &&
  2136. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2137. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2138. split_huge_page_address(next->vm_mm, nstart);
  2139. }
  2140. }