sched.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160
  1. /* sched.c - SPU scheduler.
  2. *
  3. * Copyright (C) IBM 2005
  4. * Author: Mark Nutter <mnutter@us.ibm.com>
  5. *
  6. * 2006-03-31 NUMA domains added.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/sched.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mm.h>
  28. #include <linux/completion.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/smp.h>
  31. #include <linux/stddef.h>
  32. #include <linux/unistd.h>
  33. #include <linux/numa.h>
  34. #include <linux/mutex.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/pid_namespace.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/seq_file.h>
  40. #include <linux/marker.h>
  41. #include <asm/io.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/spu.h>
  44. #include <asm/spu_csa.h>
  45. #include <asm/spu_priv1.h>
  46. #include "spufs.h"
  47. struct spu_prio_array {
  48. DECLARE_BITMAP(bitmap, MAX_PRIO);
  49. struct list_head runq[MAX_PRIO];
  50. spinlock_t runq_lock;
  51. int nr_waiting;
  52. };
  53. static unsigned long spu_avenrun[3];
  54. static struct spu_prio_array *spu_prio;
  55. static struct task_struct *spusched_task;
  56. static struct timer_list spusched_timer;
  57. static struct timer_list spuloadavg_timer;
  58. /*
  59. * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  60. */
  61. #define NORMAL_PRIO 120
  62. /*
  63. * Frequency of the spu scheduler tick. By default we do one SPU scheduler
  64. * tick for every 10 CPU scheduler ticks.
  65. */
  66. #define SPUSCHED_TICK (10)
  67. /*
  68. * These are the 'tuning knobs' of the scheduler:
  69. *
  70. * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  71. * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  72. */
  73. #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  74. #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
  75. #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
  76. #define SCALE_PRIO(x, prio) \
  77. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  78. /*
  79. * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  80. * [800ms ... 100ms ... 5ms]
  81. *
  82. * The higher a thread's priority, the bigger timeslices
  83. * it gets during one round of execution. But even the lowest
  84. * priority thread gets MIN_TIMESLICE worth of execution time.
  85. */
  86. void spu_set_timeslice(struct spu_context *ctx)
  87. {
  88. if (ctx->prio < NORMAL_PRIO)
  89. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
  90. else
  91. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
  92. }
  93. /*
  94. * Update scheduling information from the owning thread.
  95. */
  96. void __spu_update_sched_info(struct spu_context *ctx)
  97. {
  98. /*
  99. * assert that the context is not on the runqueue, so it is safe
  100. * to change its scheduling parameters.
  101. */
  102. BUG_ON(!list_empty(&ctx->rq));
  103. /*
  104. * 32-Bit assignments are atomic on powerpc, and we don't care about
  105. * memory ordering here because retrieving the controlling thread is
  106. * per definition racy.
  107. */
  108. ctx->tid = current->pid;
  109. /*
  110. * We do our own priority calculations, so we normally want
  111. * ->static_prio to start with. Unfortunately this field
  112. * contains junk for threads with a realtime scheduling
  113. * policy so we have to look at ->prio in this case.
  114. */
  115. if (rt_prio(current->prio))
  116. ctx->prio = current->prio;
  117. else
  118. ctx->prio = current->static_prio;
  119. ctx->policy = current->policy;
  120. /*
  121. * TO DO: the context may be loaded, so we may need to activate
  122. * it again on a different node. But it shouldn't hurt anything
  123. * to update its parameters, because we know that the scheduler
  124. * is not actively looking at this field, since it is not on the
  125. * runqueue. The context will be rescheduled on the proper node
  126. * if it is timesliced or preempted.
  127. */
  128. ctx->cpus_allowed = current->cpus_allowed;
  129. /* Save the current cpu id for spu interrupt routing. */
  130. ctx->last_ran = raw_smp_processor_id();
  131. }
  132. void spu_update_sched_info(struct spu_context *ctx)
  133. {
  134. int node;
  135. if (ctx->state == SPU_STATE_RUNNABLE) {
  136. node = ctx->spu->node;
  137. /*
  138. * Take list_mutex to sync with find_victim().
  139. */
  140. mutex_lock(&cbe_spu_info[node].list_mutex);
  141. __spu_update_sched_info(ctx);
  142. mutex_unlock(&cbe_spu_info[node].list_mutex);
  143. } else {
  144. __spu_update_sched_info(ctx);
  145. }
  146. }
  147. static int __node_allowed(struct spu_context *ctx, int node)
  148. {
  149. if (nr_cpus_node(node)) {
  150. cpumask_t mask = node_to_cpumask(node);
  151. if (cpus_intersects(mask, ctx->cpus_allowed))
  152. return 1;
  153. }
  154. return 0;
  155. }
  156. static int node_allowed(struct spu_context *ctx, int node)
  157. {
  158. int rval;
  159. spin_lock(&spu_prio->runq_lock);
  160. rval = __node_allowed(ctx, node);
  161. spin_unlock(&spu_prio->runq_lock);
  162. return rval;
  163. }
  164. void do_notify_spus_active(void)
  165. {
  166. int node;
  167. /*
  168. * Wake up the active spu_contexts.
  169. *
  170. * When the awakened processes see their "notify_active" flag is set,
  171. * they will call spu_switch_notify().
  172. */
  173. for_each_online_node(node) {
  174. struct spu *spu;
  175. mutex_lock(&cbe_spu_info[node].list_mutex);
  176. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  177. if (spu->alloc_state != SPU_FREE) {
  178. struct spu_context *ctx = spu->ctx;
  179. set_bit(SPU_SCHED_NOTIFY_ACTIVE,
  180. &ctx->sched_flags);
  181. mb();
  182. wake_up_all(&ctx->stop_wq);
  183. }
  184. }
  185. mutex_unlock(&cbe_spu_info[node].list_mutex);
  186. }
  187. }
  188. /**
  189. * spu_bind_context - bind spu context to physical spu
  190. * @spu: physical spu to bind to
  191. * @ctx: context to bind
  192. */
  193. static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
  194. {
  195. spu_context_trace(spu_bind_context__enter, ctx, spu);
  196. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  197. if (ctx->flags & SPU_CREATE_NOSCHED)
  198. atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
  199. ctx->stats.slb_flt_base = spu->stats.slb_flt;
  200. ctx->stats.class2_intr_base = spu->stats.class2_intr;
  201. spu_associate_mm(spu, ctx->owner);
  202. spin_lock_irq(&spu->register_lock);
  203. spu->ctx = ctx;
  204. spu->flags = 0;
  205. ctx->spu = spu;
  206. ctx->ops = &spu_hw_ops;
  207. spu->pid = current->pid;
  208. spu->tgid = current->tgid;
  209. spu->ibox_callback = spufs_ibox_callback;
  210. spu->wbox_callback = spufs_wbox_callback;
  211. spu->stop_callback = spufs_stop_callback;
  212. spu->mfc_callback = spufs_mfc_callback;
  213. spin_unlock_irq(&spu->register_lock);
  214. spu_unmap_mappings(ctx);
  215. spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
  216. spu_restore(&ctx->csa, spu);
  217. spu->timestamp = jiffies;
  218. spu_switch_notify(spu, ctx);
  219. ctx->state = SPU_STATE_RUNNABLE;
  220. spuctx_switch_state(ctx, SPU_UTIL_USER);
  221. }
  222. /*
  223. * Must be used with the list_mutex held.
  224. */
  225. static inline int sched_spu(struct spu *spu)
  226. {
  227. BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
  228. return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
  229. }
  230. static void aff_merge_remaining_ctxs(struct spu_gang *gang)
  231. {
  232. struct spu_context *ctx;
  233. list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
  234. if (list_empty(&ctx->aff_list))
  235. list_add(&ctx->aff_list, &gang->aff_list_head);
  236. }
  237. gang->aff_flags |= AFF_MERGED;
  238. }
  239. static void aff_set_offsets(struct spu_gang *gang)
  240. {
  241. struct spu_context *ctx;
  242. int offset;
  243. offset = -1;
  244. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  245. aff_list) {
  246. if (&ctx->aff_list == &gang->aff_list_head)
  247. break;
  248. ctx->aff_offset = offset--;
  249. }
  250. offset = 0;
  251. list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
  252. if (&ctx->aff_list == &gang->aff_list_head)
  253. break;
  254. ctx->aff_offset = offset++;
  255. }
  256. gang->aff_flags |= AFF_OFFSETS_SET;
  257. }
  258. static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
  259. int group_size, int lowest_offset)
  260. {
  261. struct spu *spu;
  262. int node, n;
  263. /*
  264. * TODO: A better algorithm could be used to find a good spu to be
  265. * used as reference location for the ctxs chain.
  266. */
  267. node = cpu_to_node(raw_smp_processor_id());
  268. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  269. int available_spus;
  270. node = (node < MAX_NUMNODES) ? node : 0;
  271. if (!node_allowed(ctx, node))
  272. continue;
  273. available_spus = 0;
  274. mutex_lock(&cbe_spu_info[node].list_mutex);
  275. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  276. if (spu->ctx && spu->ctx->gang
  277. && spu->ctx->aff_offset == 0)
  278. available_spus -=
  279. (spu->ctx->gang->contexts - 1);
  280. else
  281. available_spus++;
  282. }
  283. if (available_spus < ctx->gang->contexts) {
  284. mutex_unlock(&cbe_spu_info[node].list_mutex);
  285. continue;
  286. }
  287. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  288. if ((!mem_aff || spu->has_mem_affinity) &&
  289. sched_spu(spu)) {
  290. mutex_unlock(&cbe_spu_info[node].list_mutex);
  291. return spu;
  292. }
  293. }
  294. mutex_unlock(&cbe_spu_info[node].list_mutex);
  295. }
  296. return NULL;
  297. }
  298. static void aff_set_ref_point_location(struct spu_gang *gang)
  299. {
  300. int mem_aff, gs, lowest_offset;
  301. struct spu_context *ctx;
  302. struct spu *tmp;
  303. mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
  304. lowest_offset = 0;
  305. gs = 0;
  306. list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
  307. gs++;
  308. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  309. aff_list) {
  310. if (&ctx->aff_list == &gang->aff_list_head)
  311. break;
  312. lowest_offset = ctx->aff_offset;
  313. }
  314. gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
  315. lowest_offset);
  316. }
  317. static struct spu *ctx_location(struct spu *ref, int offset, int node)
  318. {
  319. struct spu *spu;
  320. spu = NULL;
  321. if (offset >= 0) {
  322. list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
  323. BUG_ON(spu->node != node);
  324. if (offset == 0)
  325. break;
  326. if (sched_spu(spu))
  327. offset--;
  328. }
  329. } else {
  330. list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
  331. BUG_ON(spu->node != node);
  332. if (offset == 0)
  333. break;
  334. if (sched_spu(spu))
  335. offset++;
  336. }
  337. }
  338. return spu;
  339. }
  340. /*
  341. * affinity_check is called each time a context is going to be scheduled.
  342. * It returns the spu ptr on which the context must run.
  343. */
  344. static int has_affinity(struct spu_context *ctx)
  345. {
  346. struct spu_gang *gang = ctx->gang;
  347. if (list_empty(&ctx->aff_list))
  348. return 0;
  349. if (atomic_read(&ctx->gang->aff_sched_count) == 0)
  350. ctx->gang->aff_ref_spu = NULL;
  351. if (!gang->aff_ref_spu) {
  352. if (!(gang->aff_flags & AFF_MERGED))
  353. aff_merge_remaining_ctxs(gang);
  354. if (!(gang->aff_flags & AFF_OFFSETS_SET))
  355. aff_set_offsets(gang);
  356. aff_set_ref_point_location(gang);
  357. }
  358. return gang->aff_ref_spu != NULL;
  359. }
  360. /**
  361. * spu_unbind_context - unbind spu context from physical spu
  362. * @spu: physical spu to unbind from
  363. * @ctx: context to unbind
  364. */
  365. static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
  366. {
  367. u32 status;
  368. spu_context_trace(spu_unbind_context__enter, ctx, spu);
  369. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  370. if (spu->ctx->flags & SPU_CREATE_NOSCHED)
  371. atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
  372. if (ctx->gang)
  373. atomic_dec_if_positive(&ctx->gang->aff_sched_count);
  374. spu_switch_notify(spu, NULL);
  375. spu_unmap_mappings(ctx);
  376. spu_save(&ctx->csa, spu);
  377. spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
  378. spin_lock_irq(&spu->register_lock);
  379. spu->timestamp = jiffies;
  380. ctx->state = SPU_STATE_SAVED;
  381. spu->ibox_callback = NULL;
  382. spu->wbox_callback = NULL;
  383. spu->stop_callback = NULL;
  384. spu->mfc_callback = NULL;
  385. spu->pid = 0;
  386. spu->tgid = 0;
  387. ctx->ops = &spu_backing_ops;
  388. spu->flags = 0;
  389. spu->ctx = NULL;
  390. spin_unlock_irq(&spu->register_lock);
  391. spu_associate_mm(spu, NULL);
  392. ctx->stats.slb_flt +=
  393. (spu->stats.slb_flt - ctx->stats.slb_flt_base);
  394. ctx->stats.class2_intr +=
  395. (spu->stats.class2_intr - ctx->stats.class2_intr_base);
  396. /* This maps the underlying spu state to idle */
  397. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  398. ctx->spu = NULL;
  399. if (spu_stopped(ctx, &status))
  400. wake_up_all(&ctx->stop_wq);
  401. }
  402. /**
  403. * spu_add_to_rq - add a context to the runqueue
  404. * @ctx: context to add
  405. */
  406. static void __spu_add_to_rq(struct spu_context *ctx)
  407. {
  408. /*
  409. * Unfortunately this code path can be called from multiple threads
  410. * on behalf of a single context due to the way the problem state
  411. * mmap support works.
  412. *
  413. * Fortunately we need to wake up all these threads at the same time
  414. * and can simply skip the runqueue addition for every but the first
  415. * thread getting into this codepath.
  416. *
  417. * It's still quite hacky, and long-term we should proxy all other
  418. * threads through the owner thread so that spu_run is in control
  419. * of all the scheduling activity for a given context.
  420. */
  421. if (list_empty(&ctx->rq)) {
  422. list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
  423. set_bit(ctx->prio, spu_prio->bitmap);
  424. if (!spu_prio->nr_waiting++)
  425. __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  426. }
  427. }
  428. static void spu_add_to_rq(struct spu_context *ctx)
  429. {
  430. spin_lock(&spu_prio->runq_lock);
  431. __spu_add_to_rq(ctx);
  432. spin_unlock(&spu_prio->runq_lock);
  433. }
  434. static void __spu_del_from_rq(struct spu_context *ctx)
  435. {
  436. int prio = ctx->prio;
  437. if (!list_empty(&ctx->rq)) {
  438. if (!--spu_prio->nr_waiting)
  439. del_timer(&spusched_timer);
  440. list_del_init(&ctx->rq);
  441. if (list_empty(&spu_prio->runq[prio]))
  442. clear_bit(prio, spu_prio->bitmap);
  443. }
  444. }
  445. void spu_del_from_rq(struct spu_context *ctx)
  446. {
  447. spin_lock(&spu_prio->runq_lock);
  448. __spu_del_from_rq(ctx);
  449. spin_unlock(&spu_prio->runq_lock);
  450. }
  451. static void spu_prio_wait(struct spu_context *ctx)
  452. {
  453. DEFINE_WAIT(wait);
  454. /*
  455. * The caller must explicitly wait for a context to be loaded
  456. * if the nosched flag is set. If NOSCHED is not set, the caller
  457. * queues the context and waits for an spu event or error.
  458. */
  459. BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
  460. spin_lock(&spu_prio->runq_lock);
  461. prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
  462. if (!signal_pending(current)) {
  463. __spu_add_to_rq(ctx);
  464. spin_unlock(&spu_prio->runq_lock);
  465. mutex_unlock(&ctx->state_mutex);
  466. schedule();
  467. mutex_lock(&ctx->state_mutex);
  468. spin_lock(&spu_prio->runq_lock);
  469. __spu_del_from_rq(ctx);
  470. }
  471. spin_unlock(&spu_prio->runq_lock);
  472. __set_current_state(TASK_RUNNING);
  473. remove_wait_queue(&ctx->stop_wq, &wait);
  474. }
  475. static struct spu *spu_get_idle(struct spu_context *ctx)
  476. {
  477. struct spu *spu, *aff_ref_spu;
  478. int node, n;
  479. spu_context_nospu_trace(spu_get_idle__enter, ctx);
  480. if (ctx->gang) {
  481. mutex_lock(&ctx->gang->aff_mutex);
  482. if (has_affinity(ctx)) {
  483. aff_ref_spu = ctx->gang->aff_ref_spu;
  484. atomic_inc(&ctx->gang->aff_sched_count);
  485. mutex_unlock(&ctx->gang->aff_mutex);
  486. node = aff_ref_spu->node;
  487. mutex_lock(&cbe_spu_info[node].list_mutex);
  488. spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
  489. if (spu && spu->alloc_state == SPU_FREE)
  490. goto found;
  491. mutex_unlock(&cbe_spu_info[node].list_mutex);
  492. atomic_dec(&ctx->gang->aff_sched_count);
  493. goto not_found;
  494. }
  495. mutex_unlock(&ctx->gang->aff_mutex);
  496. }
  497. node = cpu_to_node(raw_smp_processor_id());
  498. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  499. node = (node < MAX_NUMNODES) ? node : 0;
  500. if (!node_allowed(ctx, node))
  501. continue;
  502. mutex_lock(&cbe_spu_info[node].list_mutex);
  503. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  504. if (spu->alloc_state == SPU_FREE)
  505. goto found;
  506. }
  507. mutex_unlock(&cbe_spu_info[node].list_mutex);
  508. }
  509. not_found:
  510. spu_context_nospu_trace(spu_get_idle__not_found, ctx);
  511. return NULL;
  512. found:
  513. spu->alloc_state = SPU_USED;
  514. mutex_unlock(&cbe_spu_info[node].list_mutex);
  515. spu_context_trace(spu_get_idle__found, ctx, spu);
  516. spu_init_channels(spu);
  517. return spu;
  518. }
  519. /**
  520. * find_victim - find a lower priority context to preempt
  521. * @ctx: canidate context for running
  522. *
  523. * Returns the freed physical spu to run the new context on.
  524. */
  525. static struct spu *find_victim(struct spu_context *ctx)
  526. {
  527. struct spu_context *victim = NULL;
  528. struct spu *spu;
  529. int node, n;
  530. spu_context_nospu_trace(spu_find_victim__enter, ctx);
  531. /*
  532. * Look for a possible preemption candidate on the local node first.
  533. * If there is no candidate look at the other nodes. This isn't
  534. * exactly fair, but so far the whole spu scheduler tries to keep
  535. * a strong node affinity. We might want to fine-tune this in
  536. * the future.
  537. */
  538. restart:
  539. node = cpu_to_node(raw_smp_processor_id());
  540. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  541. node = (node < MAX_NUMNODES) ? node : 0;
  542. if (!node_allowed(ctx, node))
  543. continue;
  544. mutex_lock(&cbe_spu_info[node].list_mutex);
  545. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  546. struct spu_context *tmp = spu->ctx;
  547. if (tmp && tmp->prio > ctx->prio &&
  548. !(tmp->flags & SPU_CREATE_NOSCHED) &&
  549. (!victim || tmp->prio > victim->prio)) {
  550. victim = spu->ctx;
  551. }
  552. }
  553. if (victim)
  554. get_spu_context(victim);
  555. mutex_unlock(&cbe_spu_info[node].list_mutex);
  556. if (victim) {
  557. /*
  558. * This nests ctx->state_mutex, but we always lock
  559. * higher priority contexts before lower priority
  560. * ones, so this is safe until we introduce
  561. * priority inheritance schemes.
  562. *
  563. * XXX if the highest priority context is locked,
  564. * this can loop a long time. Might be better to
  565. * look at another context or give up after X retries.
  566. */
  567. if (!mutex_trylock(&victim->state_mutex)) {
  568. put_spu_context(victim);
  569. victim = NULL;
  570. goto restart;
  571. }
  572. spu = victim->spu;
  573. if (!spu || victim->prio <= ctx->prio) {
  574. /*
  575. * This race can happen because we've dropped
  576. * the active list mutex. Not a problem, just
  577. * restart the search.
  578. */
  579. mutex_unlock(&victim->state_mutex);
  580. put_spu_context(victim);
  581. victim = NULL;
  582. goto restart;
  583. }
  584. spu_context_trace(__spu_deactivate__unload, ctx, spu);
  585. mutex_lock(&cbe_spu_info[node].list_mutex);
  586. cbe_spu_info[node].nr_active--;
  587. spu_unbind_context(spu, victim);
  588. mutex_unlock(&cbe_spu_info[node].list_mutex);
  589. victim->stats.invol_ctx_switch++;
  590. spu->stats.invol_ctx_switch++;
  591. if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
  592. spu_add_to_rq(victim);
  593. mutex_unlock(&victim->state_mutex);
  594. put_spu_context(victim);
  595. return spu;
  596. }
  597. }
  598. return NULL;
  599. }
  600. static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
  601. {
  602. int node = spu->node;
  603. int success = 0;
  604. spu_set_timeslice(ctx);
  605. mutex_lock(&cbe_spu_info[node].list_mutex);
  606. if (spu->ctx == NULL) {
  607. spu_bind_context(spu, ctx);
  608. cbe_spu_info[node].nr_active++;
  609. spu->alloc_state = SPU_USED;
  610. success = 1;
  611. }
  612. mutex_unlock(&cbe_spu_info[node].list_mutex);
  613. if (success)
  614. wake_up_all(&ctx->run_wq);
  615. else
  616. spu_add_to_rq(ctx);
  617. }
  618. static void spu_schedule(struct spu *spu, struct spu_context *ctx)
  619. {
  620. /* not a candidate for interruptible because it's called either
  621. from the scheduler thread or from spu_deactivate */
  622. mutex_lock(&ctx->state_mutex);
  623. __spu_schedule(spu, ctx);
  624. spu_release(ctx);
  625. }
  626. /**
  627. * spu_unschedule - remove a context from a spu, and possibly release it.
  628. * @spu: The SPU to unschedule from
  629. * @ctx: The context currently scheduled on the SPU
  630. * @free_spu Whether to free the SPU for other contexts
  631. *
  632. * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
  633. * SPU is made available for other contexts (ie, may be returned by
  634. * spu_get_idle). If this is zero, the caller is expected to schedule another
  635. * context to this spu.
  636. *
  637. * Should be called with ctx->state_mutex held.
  638. */
  639. static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
  640. int free_spu)
  641. {
  642. int node = spu->node;
  643. mutex_lock(&cbe_spu_info[node].list_mutex);
  644. cbe_spu_info[node].nr_active--;
  645. if (free_spu)
  646. spu->alloc_state = SPU_FREE;
  647. spu_unbind_context(spu, ctx);
  648. ctx->stats.invol_ctx_switch++;
  649. spu->stats.invol_ctx_switch++;
  650. mutex_unlock(&cbe_spu_info[node].list_mutex);
  651. }
  652. /**
  653. * spu_activate - find a free spu for a context and execute it
  654. * @ctx: spu context to schedule
  655. * @flags: flags (currently ignored)
  656. *
  657. * Tries to find a free spu to run @ctx. If no free spu is available
  658. * add the context to the runqueue so it gets woken up once an spu
  659. * is available.
  660. */
  661. int spu_activate(struct spu_context *ctx, unsigned long flags)
  662. {
  663. struct spu *spu;
  664. /*
  665. * If there are multiple threads waiting for a single context
  666. * only one actually binds the context while the others will
  667. * only be able to acquire the state_mutex once the context
  668. * already is in runnable state.
  669. */
  670. if (ctx->spu)
  671. return 0;
  672. spu_activate_top:
  673. if (signal_pending(current))
  674. return -ERESTARTSYS;
  675. spu = spu_get_idle(ctx);
  676. /*
  677. * If this is a realtime thread we try to get it running by
  678. * preempting a lower priority thread.
  679. */
  680. if (!spu && rt_prio(ctx->prio))
  681. spu = find_victim(ctx);
  682. if (spu) {
  683. unsigned long runcntl;
  684. runcntl = ctx->ops->runcntl_read(ctx);
  685. __spu_schedule(spu, ctx);
  686. if (runcntl & SPU_RUNCNTL_RUNNABLE)
  687. spuctx_switch_state(ctx, SPU_UTIL_USER);
  688. return 0;
  689. }
  690. if (ctx->flags & SPU_CREATE_NOSCHED) {
  691. spu_prio_wait(ctx);
  692. goto spu_activate_top;
  693. }
  694. spu_add_to_rq(ctx);
  695. return 0;
  696. }
  697. /**
  698. * grab_runnable_context - try to find a runnable context
  699. *
  700. * Remove the highest priority context on the runqueue and return it
  701. * to the caller. Returns %NULL if no runnable context was found.
  702. */
  703. static struct spu_context *grab_runnable_context(int prio, int node)
  704. {
  705. struct spu_context *ctx;
  706. int best;
  707. spin_lock(&spu_prio->runq_lock);
  708. best = find_first_bit(spu_prio->bitmap, prio);
  709. while (best < prio) {
  710. struct list_head *rq = &spu_prio->runq[best];
  711. list_for_each_entry(ctx, rq, rq) {
  712. /* XXX(hch): check for affinity here aswell */
  713. if (__node_allowed(ctx, node)) {
  714. __spu_del_from_rq(ctx);
  715. goto found;
  716. }
  717. }
  718. best++;
  719. }
  720. ctx = NULL;
  721. found:
  722. spin_unlock(&spu_prio->runq_lock);
  723. return ctx;
  724. }
  725. static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
  726. {
  727. struct spu *spu = ctx->spu;
  728. struct spu_context *new = NULL;
  729. if (spu) {
  730. new = grab_runnable_context(max_prio, spu->node);
  731. if (new || force) {
  732. spu_unschedule(spu, ctx, new == NULL);
  733. if (new) {
  734. if (new->flags & SPU_CREATE_NOSCHED)
  735. wake_up(&new->stop_wq);
  736. else {
  737. spu_release(ctx);
  738. spu_schedule(spu, new);
  739. /* this one can't easily be made
  740. interruptible */
  741. mutex_lock(&ctx->state_mutex);
  742. }
  743. }
  744. }
  745. }
  746. return new != NULL;
  747. }
  748. /**
  749. * spu_deactivate - unbind a context from it's physical spu
  750. * @ctx: spu context to unbind
  751. *
  752. * Unbind @ctx from the physical spu it is running on and schedule
  753. * the highest priority context to run on the freed physical spu.
  754. */
  755. void spu_deactivate(struct spu_context *ctx)
  756. {
  757. spu_context_nospu_trace(spu_deactivate__enter, ctx);
  758. __spu_deactivate(ctx, 1, MAX_PRIO);
  759. }
  760. /**
  761. * spu_yield - yield a physical spu if others are waiting
  762. * @ctx: spu context to yield
  763. *
  764. * Check if there is a higher priority context waiting and if yes
  765. * unbind @ctx from the physical spu and schedule the highest
  766. * priority context to run on the freed physical spu instead.
  767. */
  768. void spu_yield(struct spu_context *ctx)
  769. {
  770. spu_context_nospu_trace(spu_yield__enter, ctx);
  771. if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
  772. mutex_lock(&ctx->state_mutex);
  773. __spu_deactivate(ctx, 0, MAX_PRIO);
  774. mutex_unlock(&ctx->state_mutex);
  775. }
  776. }
  777. static noinline void spusched_tick(struct spu_context *ctx)
  778. {
  779. struct spu_context *new = NULL;
  780. struct spu *spu = NULL;
  781. if (spu_acquire(ctx))
  782. BUG(); /* a kernel thread never has signals pending */
  783. if (ctx->state != SPU_STATE_RUNNABLE)
  784. goto out;
  785. if (ctx->flags & SPU_CREATE_NOSCHED)
  786. goto out;
  787. if (ctx->policy == SCHED_FIFO)
  788. goto out;
  789. if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
  790. goto out;
  791. spu = ctx->spu;
  792. spu_context_trace(spusched_tick__preempt, ctx, spu);
  793. new = grab_runnable_context(ctx->prio + 1, spu->node);
  794. if (new) {
  795. spu_unschedule(spu, ctx, 0);
  796. if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
  797. spu_add_to_rq(ctx);
  798. } else {
  799. spu_context_nospu_trace(spusched_tick__newslice, ctx);
  800. if (!ctx->time_slice)
  801. ctx->time_slice++;
  802. }
  803. out:
  804. spu_release(ctx);
  805. if (new)
  806. spu_schedule(spu, new);
  807. }
  808. /**
  809. * count_active_contexts - count nr of active tasks
  810. *
  811. * Return the number of tasks currently running or waiting to run.
  812. *
  813. * Note that we don't take runq_lock / list_mutex here. Reading
  814. * a single 32bit value is atomic on powerpc, and we don't care
  815. * about memory ordering issues here.
  816. */
  817. static unsigned long count_active_contexts(void)
  818. {
  819. int nr_active = 0, node;
  820. for (node = 0; node < MAX_NUMNODES; node++)
  821. nr_active += cbe_spu_info[node].nr_active;
  822. nr_active += spu_prio->nr_waiting;
  823. return nr_active;
  824. }
  825. /**
  826. * spu_calc_load - update the avenrun load estimates.
  827. *
  828. * No locking against reading these values from userspace, as for
  829. * the CPU loadavg code.
  830. */
  831. static void spu_calc_load(void)
  832. {
  833. unsigned long active_tasks; /* fixed-point */
  834. active_tasks = count_active_contexts() * FIXED_1;
  835. CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
  836. CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
  837. CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
  838. }
  839. static void spusched_wake(unsigned long data)
  840. {
  841. mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  842. wake_up_process(spusched_task);
  843. }
  844. static void spuloadavg_wake(unsigned long data)
  845. {
  846. mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
  847. spu_calc_load();
  848. }
  849. static int spusched_thread(void *unused)
  850. {
  851. struct spu *spu;
  852. int node;
  853. while (!kthread_should_stop()) {
  854. set_current_state(TASK_INTERRUPTIBLE);
  855. schedule();
  856. for (node = 0; node < MAX_NUMNODES; node++) {
  857. struct mutex *mtx = &cbe_spu_info[node].list_mutex;
  858. mutex_lock(mtx);
  859. list_for_each_entry(spu, &cbe_spu_info[node].spus,
  860. cbe_list) {
  861. struct spu_context *ctx = spu->ctx;
  862. if (ctx) {
  863. get_spu_context(ctx);
  864. mutex_unlock(mtx);
  865. spusched_tick(ctx);
  866. mutex_lock(mtx);
  867. put_spu_context(ctx);
  868. }
  869. }
  870. mutex_unlock(mtx);
  871. }
  872. }
  873. return 0;
  874. }
  875. void spuctx_switch_state(struct spu_context *ctx,
  876. enum spu_utilization_state new_state)
  877. {
  878. unsigned long long curtime;
  879. signed long long delta;
  880. struct timespec ts;
  881. struct spu *spu;
  882. enum spu_utilization_state old_state;
  883. int node;
  884. ktime_get_ts(&ts);
  885. curtime = timespec_to_ns(&ts);
  886. delta = curtime - ctx->stats.tstamp;
  887. WARN_ON(!mutex_is_locked(&ctx->state_mutex));
  888. WARN_ON(delta < 0);
  889. spu = ctx->spu;
  890. old_state = ctx->stats.util_state;
  891. ctx->stats.util_state = new_state;
  892. ctx->stats.tstamp = curtime;
  893. /*
  894. * Update the physical SPU utilization statistics.
  895. */
  896. if (spu) {
  897. ctx->stats.times[old_state] += delta;
  898. spu->stats.times[old_state] += delta;
  899. spu->stats.util_state = new_state;
  900. spu->stats.tstamp = curtime;
  901. node = spu->node;
  902. if (old_state == SPU_UTIL_USER)
  903. atomic_dec(&cbe_spu_info[node].busy_spus);
  904. if (new_state == SPU_UTIL_USER)
  905. atomic_inc(&cbe_spu_info[node].busy_spus);
  906. }
  907. }
  908. #define LOAD_INT(x) ((x) >> FSHIFT)
  909. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  910. static int show_spu_loadavg(struct seq_file *s, void *private)
  911. {
  912. int a, b, c;
  913. a = spu_avenrun[0] + (FIXED_1/200);
  914. b = spu_avenrun[1] + (FIXED_1/200);
  915. c = spu_avenrun[2] + (FIXED_1/200);
  916. /*
  917. * Note that last_pid doesn't really make much sense for the
  918. * SPU loadavg (it even seems very odd on the CPU side...),
  919. * but we include it here to have a 100% compatible interface.
  920. */
  921. seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
  922. LOAD_INT(a), LOAD_FRAC(a),
  923. LOAD_INT(b), LOAD_FRAC(b),
  924. LOAD_INT(c), LOAD_FRAC(c),
  925. count_active_contexts(),
  926. atomic_read(&nr_spu_contexts),
  927. current->nsproxy->pid_ns->last_pid);
  928. return 0;
  929. }
  930. static int spu_loadavg_open(struct inode *inode, struct file *file)
  931. {
  932. return single_open(file, show_spu_loadavg, NULL);
  933. }
  934. static const struct file_operations spu_loadavg_fops = {
  935. .open = spu_loadavg_open,
  936. .read = seq_read,
  937. .llseek = seq_lseek,
  938. .release = single_release,
  939. };
  940. int __init spu_sched_init(void)
  941. {
  942. struct proc_dir_entry *entry;
  943. int err = -ENOMEM, i;
  944. spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
  945. if (!spu_prio)
  946. goto out;
  947. for (i = 0; i < MAX_PRIO; i++) {
  948. INIT_LIST_HEAD(&spu_prio->runq[i]);
  949. __clear_bit(i, spu_prio->bitmap);
  950. }
  951. spin_lock_init(&spu_prio->runq_lock);
  952. setup_timer(&spusched_timer, spusched_wake, 0);
  953. setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
  954. spusched_task = kthread_run(spusched_thread, NULL, "spusched");
  955. if (IS_ERR(spusched_task)) {
  956. err = PTR_ERR(spusched_task);
  957. goto out_free_spu_prio;
  958. }
  959. mod_timer(&spuloadavg_timer, 0);
  960. entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
  961. if (!entry)
  962. goto out_stop_kthread;
  963. pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
  964. SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
  965. return 0;
  966. out_stop_kthread:
  967. kthread_stop(spusched_task);
  968. out_free_spu_prio:
  969. kfree(spu_prio);
  970. out:
  971. return err;
  972. }
  973. void spu_sched_exit(void)
  974. {
  975. struct spu *spu;
  976. int node;
  977. remove_proc_entry("spu_loadavg", NULL);
  978. del_timer_sync(&spusched_timer);
  979. del_timer_sync(&spuloadavg_timer);
  980. kthread_stop(spusched_task);
  981. for (node = 0; node < MAX_NUMNODES; node++) {
  982. mutex_lock(&cbe_spu_info[node].list_mutex);
  983. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
  984. if (spu->alloc_state != SPU_FREE)
  985. spu->alloc_state = SPU_FREE;
  986. mutex_unlock(&cbe_spu_info[node].list_mutex);
  987. }
  988. kfree(spu_prio);
  989. }