xfs_sync.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_inode.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_error.h"
  39. #include "xfs_mru_cache.h"
  40. #include "xfs_filestream.h"
  41. #include "xfs_vnodeops.h"
  42. #include "xfs_utils.h"
  43. #include "xfs_buf_item.h"
  44. #include "xfs_inode_item.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_quota.h"
  47. #include "xfs_trace.h"
  48. #include <linux/kthread.h>
  49. #include <linux/freezer.h>
  50. STATIC xfs_inode_t *
  51. xfs_inode_ag_lookup(
  52. struct xfs_mount *mp,
  53. struct xfs_perag *pag,
  54. uint32_t *first_index,
  55. int tag)
  56. {
  57. int nr_found;
  58. struct xfs_inode *ip;
  59. /*
  60. * use a gang lookup to find the next inode in the tree
  61. * as the tree is sparse and a gang lookup walks to find
  62. * the number of objects requested.
  63. */
  64. if (tag == XFS_ICI_NO_TAG) {
  65. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
  66. (void **)&ip, *first_index, 1);
  67. } else {
  68. nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
  69. (void **)&ip, *first_index, 1, tag);
  70. }
  71. if (!nr_found)
  72. return NULL;
  73. /*
  74. * Update the index for the next lookup. Catch overflows
  75. * into the next AG range which can occur if we have inodes
  76. * in the last block of the AG and we are currently
  77. * pointing to the last inode.
  78. */
  79. *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
  80. if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
  81. return NULL;
  82. return ip;
  83. }
  84. STATIC int
  85. xfs_inode_ag_walk(
  86. struct xfs_mount *mp,
  87. struct xfs_perag *pag,
  88. int (*execute)(struct xfs_inode *ip,
  89. struct xfs_perag *pag, int flags),
  90. int flags,
  91. int tag,
  92. int exclusive)
  93. {
  94. uint32_t first_index;
  95. int last_error = 0;
  96. int skipped;
  97. restart:
  98. skipped = 0;
  99. first_index = 0;
  100. do {
  101. int error = 0;
  102. xfs_inode_t *ip;
  103. if (exclusive)
  104. write_lock(&pag->pag_ici_lock);
  105. else
  106. read_lock(&pag->pag_ici_lock);
  107. ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
  108. if (!ip) {
  109. if (exclusive)
  110. write_unlock(&pag->pag_ici_lock);
  111. else
  112. read_unlock(&pag->pag_ici_lock);
  113. break;
  114. }
  115. /* execute releases pag->pag_ici_lock */
  116. error = execute(ip, pag, flags);
  117. if (error == EAGAIN) {
  118. skipped++;
  119. continue;
  120. }
  121. if (error)
  122. last_error = error;
  123. /* bail out if the filesystem is corrupted. */
  124. if (error == EFSCORRUPTED)
  125. break;
  126. } while (1);
  127. if (skipped) {
  128. delay(1);
  129. goto restart;
  130. }
  131. return last_error;
  132. }
  133. int
  134. xfs_inode_ag_iterator(
  135. struct xfs_mount *mp,
  136. int (*execute)(struct xfs_inode *ip,
  137. struct xfs_perag *pag, int flags),
  138. int flags,
  139. int tag,
  140. int exclusive)
  141. {
  142. int error = 0;
  143. int last_error = 0;
  144. xfs_agnumber_t ag;
  145. for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
  146. struct xfs_perag *pag;
  147. pag = xfs_perag_get(mp, ag);
  148. if (!pag->pag_ici_init) {
  149. xfs_perag_put(pag);
  150. continue;
  151. }
  152. error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
  153. exclusive);
  154. xfs_perag_put(pag);
  155. if (error) {
  156. last_error = error;
  157. if (error == EFSCORRUPTED)
  158. break;
  159. }
  160. }
  161. return XFS_ERROR(last_error);
  162. }
  163. /* must be called with pag_ici_lock held and releases it */
  164. int
  165. xfs_sync_inode_valid(
  166. struct xfs_inode *ip,
  167. struct xfs_perag *pag)
  168. {
  169. struct inode *inode = VFS_I(ip);
  170. int error = EFSCORRUPTED;
  171. /* nothing to sync during shutdown */
  172. if (XFS_FORCED_SHUTDOWN(ip->i_mount))
  173. goto out_unlock;
  174. /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
  175. error = ENOENT;
  176. if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
  177. goto out_unlock;
  178. /* If we can't grab the inode, it must on it's way to reclaim. */
  179. if (!igrab(inode))
  180. goto out_unlock;
  181. if (is_bad_inode(inode)) {
  182. IRELE(ip);
  183. goto out_unlock;
  184. }
  185. /* inode is valid */
  186. error = 0;
  187. out_unlock:
  188. read_unlock(&pag->pag_ici_lock);
  189. return error;
  190. }
  191. STATIC int
  192. xfs_sync_inode_data(
  193. struct xfs_inode *ip,
  194. struct xfs_perag *pag,
  195. int flags)
  196. {
  197. struct inode *inode = VFS_I(ip);
  198. struct address_space *mapping = inode->i_mapping;
  199. int error = 0;
  200. error = xfs_sync_inode_valid(ip, pag);
  201. if (error)
  202. return error;
  203. if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  204. goto out_wait;
  205. if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
  206. if (flags & SYNC_TRYLOCK)
  207. goto out_wait;
  208. xfs_ilock(ip, XFS_IOLOCK_SHARED);
  209. }
  210. error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
  211. 0 : XFS_B_ASYNC, FI_NONE);
  212. xfs_iunlock(ip, XFS_IOLOCK_SHARED);
  213. out_wait:
  214. if (flags & SYNC_WAIT)
  215. xfs_ioend_wait(ip);
  216. IRELE(ip);
  217. return error;
  218. }
  219. STATIC int
  220. xfs_sync_inode_attr(
  221. struct xfs_inode *ip,
  222. struct xfs_perag *pag,
  223. int flags)
  224. {
  225. int error = 0;
  226. error = xfs_sync_inode_valid(ip, pag);
  227. if (error)
  228. return error;
  229. xfs_ilock(ip, XFS_ILOCK_SHARED);
  230. if (xfs_inode_clean(ip))
  231. goto out_unlock;
  232. if (!xfs_iflock_nowait(ip)) {
  233. if (!(flags & SYNC_WAIT))
  234. goto out_unlock;
  235. xfs_iflock(ip);
  236. }
  237. if (xfs_inode_clean(ip)) {
  238. xfs_ifunlock(ip);
  239. goto out_unlock;
  240. }
  241. error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
  242. XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
  243. out_unlock:
  244. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  245. IRELE(ip);
  246. return error;
  247. }
  248. /*
  249. * Write out pagecache data for the whole filesystem.
  250. */
  251. int
  252. xfs_sync_data(
  253. struct xfs_mount *mp,
  254. int flags)
  255. {
  256. int error;
  257. ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
  258. error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
  259. XFS_ICI_NO_TAG, 0);
  260. if (error)
  261. return XFS_ERROR(error);
  262. xfs_log_force(mp, 0,
  263. (flags & SYNC_WAIT) ?
  264. XFS_LOG_FORCE | XFS_LOG_SYNC :
  265. XFS_LOG_FORCE);
  266. return 0;
  267. }
  268. /*
  269. * Write out inode metadata (attributes) for the whole filesystem.
  270. */
  271. int
  272. xfs_sync_attr(
  273. struct xfs_mount *mp,
  274. int flags)
  275. {
  276. ASSERT((flags & ~SYNC_WAIT) == 0);
  277. return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
  278. XFS_ICI_NO_TAG, 0);
  279. }
  280. STATIC int
  281. xfs_commit_dummy_trans(
  282. struct xfs_mount *mp,
  283. uint flags)
  284. {
  285. struct xfs_inode *ip = mp->m_rootip;
  286. struct xfs_trans *tp;
  287. int error;
  288. int log_flags = XFS_LOG_FORCE;
  289. if (flags & SYNC_WAIT)
  290. log_flags |= XFS_LOG_SYNC;
  291. /*
  292. * Put a dummy transaction in the log to tell recovery
  293. * that all others are OK.
  294. */
  295. tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
  296. error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
  297. if (error) {
  298. xfs_trans_cancel(tp, 0);
  299. return error;
  300. }
  301. xfs_ilock(ip, XFS_ILOCK_EXCL);
  302. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  303. xfs_trans_ihold(tp, ip);
  304. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  305. error = xfs_trans_commit(tp, 0);
  306. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  307. /* the log force ensures this transaction is pushed to disk */
  308. xfs_log_force(mp, 0, log_flags);
  309. return error;
  310. }
  311. STATIC int
  312. xfs_sync_fsdata(
  313. struct xfs_mount *mp,
  314. int flags)
  315. {
  316. struct xfs_buf *bp;
  317. struct xfs_buf_log_item *bip;
  318. int error = 0;
  319. /*
  320. * If this is xfssyncd() then only sync the superblock if we can
  321. * lock it without sleeping and it is not pinned.
  322. */
  323. if (flags & SYNC_TRYLOCK) {
  324. ASSERT(!(flags & SYNC_WAIT));
  325. bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
  326. if (!bp)
  327. goto out;
  328. bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
  329. if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
  330. goto out_brelse;
  331. } else {
  332. bp = xfs_getsb(mp, 0);
  333. /*
  334. * If the buffer is pinned then push on the log so we won't
  335. * get stuck waiting in the write for someone, maybe
  336. * ourselves, to flush the log.
  337. *
  338. * Even though we just pushed the log above, we did not have
  339. * the superblock buffer locked at that point so it can
  340. * become pinned in between there and here.
  341. */
  342. if (XFS_BUF_ISPINNED(bp))
  343. xfs_log_force(mp, 0, XFS_LOG_FORCE);
  344. }
  345. if (flags & SYNC_WAIT)
  346. XFS_BUF_UNASYNC(bp);
  347. else
  348. XFS_BUF_ASYNC(bp);
  349. error = xfs_bwrite(mp, bp);
  350. if (error)
  351. return error;
  352. /*
  353. * If this is a data integrity sync make sure all pending buffers
  354. * are flushed out for the log coverage check below.
  355. */
  356. if (flags & SYNC_WAIT)
  357. xfs_flush_buftarg(mp->m_ddev_targp, 1);
  358. if (xfs_log_need_covered(mp))
  359. error = xfs_commit_dummy_trans(mp, flags);
  360. return error;
  361. out_brelse:
  362. xfs_buf_relse(bp);
  363. out:
  364. return error;
  365. }
  366. /*
  367. * When remounting a filesystem read-only or freezing the filesystem, we have
  368. * two phases to execute. This first phase is syncing the data before we
  369. * quiesce the filesystem, and the second is flushing all the inodes out after
  370. * we've waited for all the transactions created by the first phase to
  371. * complete. The second phase ensures that the inodes are written to their
  372. * location on disk rather than just existing in transactions in the log. This
  373. * means after a quiesce there is no log replay required to write the inodes to
  374. * disk (this is the main difference between a sync and a quiesce).
  375. */
  376. /*
  377. * First stage of freeze - no writers will make progress now we are here,
  378. * so we flush delwri and delalloc buffers here, then wait for all I/O to
  379. * complete. Data is frozen at that point. Metadata is not frozen,
  380. * transactions can still occur here so don't bother flushing the buftarg
  381. * because it'll just get dirty again.
  382. */
  383. int
  384. xfs_quiesce_data(
  385. struct xfs_mount *mp)
  386. {
  387. int error;
  388. /* push non-blocking */
  389. xfs_sync_data(mp, 0);
  390. xfs_qm_sync(mp, SYNC_TRYLOCK);
  391. /* push and block till complete */
  392. xfs_sync_data(mp, SYNC_WAIT);
  393. xfs_qm_sync(mp, SYNC_WAIT);
  394. /* write superblock and hoover up shutdown errors */
  395. error = xfs_sync_fsdata(mp, SYNC_WAIT);
  396. /* flush data-only devices */
  397. if (mp->m_rtdev_targp)
  398. XFS_bflush(mp->m_rtdev_targp);
  399. return error;
  400. }
  401. STATIC void
  402. xfs_quiesce_fs(
  403. struct xfs_mount *mp)
  404. {
  405. int count = 0, pincount;
  406. xfs_flush_buftarg(mp->m_ddev_targp, 0);
  407. xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
  408. /*
  409. * This loop must run at least twice. The first instance of the loop
  410. * will flush most meta data but that will generate more meta data
  411. * (typically directory updates). Which then must be flushed and
  412. * logged before we can write the unmount record.
  413. */
  414. do {
  415. xfs_sync_attr(mp, SYNC_WAIT);
  416. pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
  417. if (!pincount) {
  418. delay(50);
  419. count++;
  420. }
  421. } while (count < 2);
  422. }
  423. /*
  424. * Second stage of a quiesce. The data is already synced, now we have to take
  425. * care of the metadata. New transactions are already blocked, so we need to
  426. * wait for any remaining transactions to drain out before proceding.
  427. */
  428. void
  429. xfs_quiesce_attr(
  430. struct xfs_mount *mp)
  431. {
  432. int error = 0;
  433. /* wait for all modifications to complete */
  434. while (atomic_read(&mp->m_active_trans) > 0)
  435. delay(100);
  436. /* flush inodes and push all remaining buffers out to disk */
  437. xfs_quiesce_fs(mp);
  438. /*
  439. * Just warn here till VFS can correctly support
  440. * read-only remount without racing.
  441. */
  442. WARN_ON(atomic_read(&mp->m_active_trans) != 0);
  443. /* Push the superblock and write an unmount record */
  444. error = xfs_log_sbcount(mp, 1);
  445. if (error)
  446. xfs_fs_cmn_err(CE_WARN, mp,
  447. "xfs_attr_quiesce: failed to log sb changes. "
  448. "Frozen image may not be consistent.");
  449. xfs_log_unmount_write(mp);
  450. xfs_unmountfs_writesb(mp);
  451. }
  452. /*
  453. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  454. * Doing this has two advantages:
  455. * - It saves on stack space, which is tight in certain situations
  456. * - It can be used (with care) as a mechanism to avoid deadlocks.
  457. * Flushing while allocating in a full filesystem requires both.
  458. */
  459. STATIC void
  460. xfs_syncd_queue_work(
  461. struct xfs_mount *mp,
  462. void *data,
  463. void (*syncer)(struct xfs_mount *, void *),
  464. struct completion *completion)
  465. {
  466. struct xfs_sync_work *work;
  467. work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
  468. INIT_LIST_HEAD(&work->w_list);
  469. work->w_syncer = syncer;
  470. work->w_data = data;
  471. work->w_mount = mp;
  472. work->w_completion = completion;
  473. spin_lock(&mp->m_sync_lock);
  474. list_add_tail(&work->w_list, &mp->m_sync_list);
  475. spin_unlock(&mp->m_sync_lock);
  476. wake_up_process(mp->m_sync_task);
  477. }
  478. /*
  479. * Flush delayed allocate data, attempting to free up reserved space
  480. * from existing allocations. At this point a new allocation attempt
  481. * has failed with ENOSPC and we are in the process of scratching our
  482. * heads, looking about for more room...
  483. */
  484. STATIC void
  485. xfs_flush_inodes_work(
  486. struct xfs_mount *mp,
  487. void *arg)
  488. {
  489. struct inode *inode = arg;
  490. xfs_sync_data(mp, SYNC_TRYLOCK);
  491. xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
  492. iput(inode);
  493. }
  494. void
  495. xfs_flush_inodes(
  496. xfs_inode_t *ip)
  497. {
  498. struct inode *inode = VFS_I(ip);
  499. DECLARE_COMPLETION_ONSTACK(completion);
  500. igrab(inode);
  501. xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
  502. wait_for_completion(&completion);
  503. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  504. }
  505. /*
  506. * Every sync period we need to unpin all items, reclaim inodes, sync
  507. * quota and write out the superblock. We might need to cover the log
  508. * to indicate it is idle.
  509. */
  510. STATIC void
  511. xfs_sync_worker(
  512. struct xfs_mount *mp,
  513. void *unused)
  514. {
  515. int error;
  516. if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
  517. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  518. xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
  519. /* dgc: errors ignored here */
  520. error = xfs_qm_sync(mp, SYNC_TRYLOCK);
  521. error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
  522. }
  523. mp->m_sync_seq++;
  524. wake_up(&mp->m_wait_single_sync_task);
  525. }
  526. STATIC int
  527. xfssyncd(
  528. void *arg)
  529. {
  530. struct xfs_mount *mp = arg;
  531. long timeleft;
  532. xfs_sync_work_t *work, *n;
  533. LIST_HEAD (tmp);
  534. set_freezable();
  535. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  536. for (;;) {
  537. timeleft = schedule_timeout_interruptible(timeleft);
  538. /* swsusp */
  539. try_to_freeze();
  540. if (kthread_should_stop() && list_empty(&mp->m_sync_list))
  541. break;
  542. spin_lock(&mp->m_sync_lock);
  543. /*
  544. * We can get woken by laptop mode, to do a sync -
  545. * that's the (only!) case where the list would be
  546. * empty with time remaining.
  547. */
  548. if (!timeleft || list_empty(&mp->m_sync_list)) {
  549. if (!timeleft)
  550. timeleft = xfs_syncd_centisecs *
  551. msecs_to_jiffies(10);
  552. INIT_LIST_HEAD(&mp->m_sync_work.w_list);
  553. list_add_tail(&mp->m_sync_work.w_list,
  554. &mp->m_sync_list);
  555. }
  556. list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
  557. list_move(&work->w_list, &tmp);
  558. spin_unlock(&mp->m_sync_lock);
  559. list_for_each_entry_safe(work, n, &tmp, w_list) {
  560. (*work->w_syncer)(mp, work->w_data);
  561. list_del(&work->w_list);
  562. if (work == &mp->m_sync_work)
  563. continue;
  564. if (work->w_completion)
  565. complete(work->w_completion);
  566. kmem_free(work);
  567. }
  568. }
  569. return 0;
  570. }
  571. int
  572. xfs_syncd_init(
  573. struct xfs_mount *mp)
  574. {
  575. mp->m_sync_work.w_syncer = xfs_sync_worker;
  576. mp->m_sync_work.w_mount = mp;
  577. mp->m_sync_work.w_completion = NULL;
  578. mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
  579. if (IS_ERR(mp->m_sync_task))
  580. return -PTR_ERR(mp->m_sync_task);
  581. return 0;
  582. }
  583. void
  584. xfs_syncd_stop(
  585. struct xfs_mount *mp)
  586. {
  587. kthread_stop(mp->m_sync_task);
  588. }
  589. void
  590. __xfs_inode_set_reclaim_tag(
  591. struct xfs_perag *pag,
  592. struct xfs_inode *ip)
  593. {
  594. radix_tree_tag_set(&pag->pag_ici_root,
  595. XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
  596. XFS_ICI_RECLAIM_TAG);
  597. }
  598. /*
  599. * We set the inode flag atomically with the radix tree tag.
  600. * Once we get tag lookups on the radix tree, this inode flag
  601. * can go away.
  602. */
  603. void
  604. xfs_inode_set_reclaim_tag(
  605. xfs_inode_t *ip)
  606. {
  607. struct xfs_mount *mp = ip->i_mount;
  608. struct xfs_perag *pag;
  609. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  610. read_lock(&pag->pag_ici_lock);
  611. spin_lock(&ip->i_flags_lock);
  612. __xfs_inode_set_reclaim_tag(pag, ip);
  613. __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
  614. spin_unlock(&ip->i_flags_lock);
  615. read_unlock(&pag->pag_ici_lock);
  616. xfs_perag_put(pag);
  617. }
  618. void
  619. __xfs_inode_clear_reclaim_tag(
  620. xfs_mount_t *mp,
  621. xfs_perag_t *pag,
  622. xfs_inode_t *ip)
  623. {
  624. radix_tree_tag_clear(&pag->pag_ici_root,
  625. XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
  626. }
  627. STATIC int
  628. xfs_reclaim_inode(
  629. struct xfs_inode *ip,
  630. struct xfs_perag *pag,
  631. int sync_mode)
  632. {
  633. /*
  634. * The radix tree lock here protects a thread in xfs_iget from racing
  635. * with us starting reclaim on the inode. Once we have the
  636. * XFS_IRECLAIM flag set it will not touch us.
  637. */
  638. spin_lock(&ip->i_flags_lock);
  639. ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
  640. if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
  641. /* ignore as it is already under reclaim */
  642. spin_unlock(&ip->i_flags_lock);
  643. write_unlock(&pag->pag_ici_lock);
  644. return 0;
  645. }
  646. __xfs_iflags_set(ip, XFS_IRECLAIM);
  647. spin_unlock(&ip->i_flags_lock);
  648. write_unlock(&pag->pag_ici_lock);
  649. /*
  650. * If the inode is still dirty, then flush it out. If the inode
  651. * is not in the AIL, then it will be OK to flush it delwri as
  652. * long as xfs_iflush() does not keep any references to the inode.
  653. * We leave that decision up to xfs_iflush() since it has the
  654. * knowledge of whether it's OK to simply do a delwri flush of
  655. * the inode or whether we need to wait until the inode is
  656. * pulled from the AIL.
  657. * We get the flush lock regardless, though, just to make sure
  658. * we don't free it while it is being flushed.
  659. */
  660. xfs_ilock(ip, XFS_ILOCK_EXCL);
  661. xfs_iflock(ip);
  662. /*
  663. * In the case of a forced shutdown we rely on xfs_iflush() to
  664. * wait for the inode to be unpinned before returning an error.
  665. */
  666. if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
  667. /* synchronize with xfs_iflush_done */
  668. xfs_iflock(ip);
  669. xfs_ifunlock(ip);
  670. }
  671. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  672. xfs_ireclaim(ip);
  673. return 0;
  674. }
  675. int
  676. xfs_reclaim_inodes(
  677. xfs_mount_t *mp,
  678. int mode)
  679. {
  680. return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
  681. XFS_ICI_RECLAIM_TAG, 1);
  682. }