xfs_log_recover.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir.h"
  28. #include "xfs_dir2.h"
  29. #include "xfs_dmapi.h"
  30. #include "xfs_mount.h"
  31. #include "xfs_error.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir_sf.h"
  36. #include "xfs_dir2_sf.h"
  37. #include "xfs_attr_sf.h"
  38. #include "xfs_dinode.h"
  39. #include "xfs_inode.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_imap.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_log_priv.h"
  45. #include "xfs_buf_item.h"
  46. #include "xfs_log_recover.h"
  47. #include "xfs_extfree_item.h"
  48. #include "xfs_trans_priv.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_rw.h"
  51. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  52. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  53. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  54. xlog_recover_item_t *item);
  55. #if defined(DEBUG)
  56. STATIC void xlog_recover_check_summary(xlog_t *);
  57. STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
  58. #else
  59. #define xlog_recover_check_summary(log)
  60. #define xlog_recover_check_ail(mp, lip, gen)
  61. #endif
  62. /*
  63. * Sector aligned buffer routines for buffer create/read/write/access
  64. */
  65. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  66. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  67. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  68. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  69. xfs_buf_t *
  70. xlog_get_bp(
  71. xlog_t *log,
  72. int num_bblks)
  73. {
  74. ASSERT(num_bblks > 0);
  75. if (log->l_sectbb_log) {
  76. if (num_bblks > 1)
  77. num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  78. num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
  79. }
  80. return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
  81. }
  82. void
  83. xlog_put_bp(
  84. xfs_buf_t *bp)
  85. {
  86. xfs_buf_free(bp);
  87. }
  88. /*
  89. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  90. */
  91. int
  92. xlog_bread(
  93. xlog_t *log,
  94. xfs_daddr_t blk_no,
  95. int nbblks,
  96. xfs_buf_t *bp)
  97. {
  98. int error;
  99. if (log->l_sectbb_log) {
  100. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  101. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  102. }
  103. ASSERT(nbblks > 0);
  104. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  105. ASSERT(bp);
  106. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  107. XFS_BUF_READ(bp);
  108. XFS_BUF_BUSY(bp);
  109. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  110. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  111. xfsbdstrat(log->l_mp, bp);
  112. if ((error = xfs_iowait(bp)))
  113. xfs_ioerror_alert("xlog_bread", log->l_mp,
  114. bp, XFS_BUF_ADDR(bp));
  115. return error;
  116. }
  117. /*
  118. * Write out the buffer at the given block for the given number of blocks.
  119. * The buffer is kept locked across the write and is returned locked.
  120. * This can only be used for synchronous log writes.
  121. */
  122. STATIC int
  123. xlog_bwrite(
  124. xlog_t *log,
  125. xfs_daddr_t blk_no,
  126. int nbblks,
  127. xfs_buf_t *bp)
  128. {
  129. int error;
  130. if (log->l_sectbb_log) {
  131. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  132. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  133. }
  134. ASSERT(nbblks > 0);
  135. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  136. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  137. XFS_BUF_ZEROFLAGS(bp);
  138. XFS_BUF_BUSY(bp);
  139. XFS_BUF_HOLD(bp);
  140. XFS_BUF_PSEMA(bp, PRIBIO);
  141. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  142. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  143. if ((error = xfs_bwrite(log->l_mp, bp)))
  144. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  145. bp, XFS_BUF_ADDR(bp));
  146. return error;
  147. }
  148. STATIC xfs_caddr_t
  149. xlog_align(
  150. xlog_t *log,
  151. xfs_daddr_t blk_no,
  152. int nbblks,
  153. xfs_buf_t *bp)
  154. {
  155. xfs_caddr_t ptr;
  156. if (!log->l_sectbb_log)
  157. return XFS_BUF_PTR(bp);
  158. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  159. ASSERT(XFS_BUF_SIZE(bp) >=
  160. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  161. return ptr;
  162. }
  163. #ifdef DEBUG
  164. /*
  165. * dump debug superblock and log record information
  166. */
  167. STATIC void
  168. xlog_header_check_dump(
  169. xfs_mount_t *mp,
  170. xlog_rec_header_t *head)
  171. {
  172. int b;
  173. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __FUNCTION__);
  174. for (b = 0; b < 16; b++)
  175. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  176. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  177. cmn_err(CE_DEBUG, " log : uuid = ");
  178. for (b = 0; b < 16; b++)
  179. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  180. cmn_err(CE_DEBUG, ", fmt = %d\n", INT_GET(head->h_fmt, ARCH_CONVERT));
  181. }
  182. #else
  183. #define xlog_header_check_dump(mp, head)
  184. #endif
  185. /*
  186. * check log record header for recovery
  187. */
  188. STATIC int
  189. xlog_header_check_recover(
  190. xfs_mount_t *mp,
  191. xlog_rec_header_t *head)
  192. {
  193. ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
  194. /*
  195. * IRIX doesn't write the h_fmt field and leaves it zeroed
  196. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  197. * a dirty log created in IRIX.
  198. */
  199. if (unlikely(INT_GET(head->h_fmt, ARCH_CONVERT) != XLOG_FMT)) {
  200. xlog_warn(
  201. "XFS: dirty log written in incompatible format - can't recover");
  202. xlog_header_check_dump(mp, head);
  203. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  204. XFS_ERRLEVEL_HIGH, mp);
  205. return XFS_ERROR(EFSCORRUPTED);
  206. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  207. xlog_warn(
  208. "XFS: dirty log entry has mismatched uuid - can't recover");
  209. xlog_header_check_dump(mp, head);
  210. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  211. XFS_ERRLEVEL_HIGH, mp);
  212. return XFS_ERROR(EFSCORRUPTED);
  213. }
  214. return 0;
  215. }
  216. /*
  217. * read the head block of the log and check the header
  218. */
  219. STATIC int
  220. xlog_header_check_mount(
  221. xfs_mount_t *mp,
  222. xlog_rec_header_t *head)
  223. {
  224. ASSERT(INT_GET(head->h_magicno, ARCH_CONVERT) == XLOG_HEADER_MAGIC_NUM);
  225. if (uuid_is_nil(&head->h_fs_uuid)) {
  226. /*
  227. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  228. * h_fs_uuid is nil, we assume this log was last mounted
  229. * by IRIX and continue.
  230. */
  231. xlog_warn("XFS: nil uuid in log - IRIX style log");
  232. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  233. xlog_warn("XFS: log has mismatched uuid - can't recover");
  234. xlog_header_check_dump(mp, head);
  235. XFS_ERROR_REPORT("xlog_header_check_mount",
  236. XFS_ERRLEVEL_HIGH, mp);
  237. return XFS_ERROR(EFSCORRUPTED);
  238. }
  239. return 0;
  240. }
  241. STATIC void
  242. xlog_recover_iodone(
  243. struct xfs_buf *bp)
  244. {
  245. xfs_mount_t *mp;
  246. ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
  247. if (XFS_BUF_GETERROR(bp)) {
  248. /*
  249. * We're not going to bother about retrying
  250. * this during recovery. One strike!
  251. */
  252. mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
  253. xfs_ioerror_alert("xlog_recover_iodone",
  254. mp, bp, XFS_BUF_ADDR(bp));
  255. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  256. }
  257. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  258. XFS_BUF_CLR_IODONE_FUNC(bp);
  259. xfs_biodone(bp);
  260. }
  261. /*
  262. * This routine finds (to an approximation) the first block in the physical
  263. * log which contains the given cycle. It uses a binary search algorithm.
  264. * Note that the algorithm can not be perfect because the disk will not
  265. * necessarily be perfect.
  266. */
  267. int
  268. xlog_find_cycle_start(
  269. xlog_t *log,
  270. xfs_buf_t *bp,
  271. xfs_daddr_t first_blk,
  272. xfs_daddr_t *last_blk,
  273. uint cycle)
  274. {
  275. xfs_caddr_t offset;
  276. xfs_daddr_t mid_blk;
  277. uint mid_cycle;
  278. int error;
  279. mid_blk = BLK_AVG(first_blk, *last_blk);
  280. while (mid_blk != first_blk && mid_blk != *last_blk) {
  281. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  282. return error;
  283. offset = xlog_align(log, mid_blk, 1, bp);
  284. mid_cycle = GET_CYCLE(offset, ARCH_CONVERT);
  285. if (mid_cycle == cycle) {
  286. *last_blk = mid_blk;
  287. /* last_half_cycle == mid_cycle */
  288. } else {
  289. first_blk = mid_blk;
  290. /* first_half_cycle == mid_cycle */
  291. }
  292. mid_blk = BLK_AVG(first_blk, *last_blk);
  293. }
  294. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  295. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  296. return 0;
  297. }
  298. /*
  299. * Check that the range of blocks does not contain the cycle number
  300. * given. The scan needs to occur from front to back and the ptr into the
  301. * region must be updated since a later routine will need to perform another
  302. * test. If the region is completely good, we end up returning the same
  303. * last block number.
  304. *
  305. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  306. * since we don't ever expect logs to get this large.
  307. */
  308. STATIC int
  309. xlog_find_verify_cycle(
  310. xlog_t *log,
  311. xfs_daddr_t start_blk,
  312. int nbblks,
  313. uint stop_on_cycle_no,
  314. xfs_daddr_t *new_blk)
  315. {
  316. xfs_daddr_t i, j;
  317. uint cycle;
  318. xfs_buf_t *bp;
  319. xfs_daddr_t bufblks;
  320. xfs_caddr_t buf = NULL;
  321. int error = 0;
  322. bufblks = 1 << ffs(nbblks);
  323. while (!(bp = xlog_get_bp(log, bufblks))) {
  324. /* can't get enough memory to do everything in one big buffer */
  325. bufblks >>= 1;
  326. if (bufblks <= log->l_sectbb_log)
  327. return ENOMEM;
  328. }
  329. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  330. int bcount;
  331. bcount = min(bufblks, (start_blk + nbblks - i));
  332. if ((error = xlog_bread(log, i, bcount, bp)))
  333. goto out;
  334. buf = xlog_align(log, i, bcount, bp);
  335. for (j = 0; j < bcount; j++) {
  336. cycle = GET_CYCLE(buf, ARCH_CONVERT);
  337. if (cycle == stop_on_cycle_no) {
  338. *new_blk = i+j;
  339. goto out;
  340. }
  341. buf += BBSIZE;
  342. }
  343. }
  344. *new_blk = -1;
  345. out:
  346. xlog_put_bp(bp);
  347. return error;
  348. }
  349. /*
  350. * Potentially backup over partial log record write.
  351. *
  352. * In the typical case, last_blk is the number of the block directly after
  353. * a good log record. Therefore, we subtract one to get the block number
  354. * of the last block in the given buffer. extra_bblks contains the number
  355. * of blocks we would have read on a previous read. This happens when the
  356. * last log record is split over the end of the physical log.
  357. *
  358. * extra_bblks is the number of blocks potentially verified on a previous
  359. * call to this routine.
  360. */
  361. STATIC int
  362. xlog_find_verify_log_record(
  363. xlog_t *log,
  364. xfs_daddr_t start_blk,
  365. xfs_daddr_t *last_blk,
  366. int extra_bblks)
  367. {
  368. xfs_daddr_t i;
  369. xfs_buf_t *bp;
  370. xfs_caddr_t offset = NULL;
  371. xlog_rec_header_t *head = NULL;
  372. int error = 0;
  373. int smallmem = 0;
  374. int num_blks = *last_blk - start_blk;
  375. int xhdrs;
  376. ASSERT(start_blk != 0 || *last_blk != start_blk);
  377. if (!(bp = xlog_get_bp(log, num_blks))) {
  378. if (!(bp = xlog_get_bp(log, 1)))
  379. return ENOMEM;
  380. smallmem = 1;
  381. } else {
  382. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  383. goto out;
  384. offset = xlog_align(log, start_blk, num_blks, bp);
  385. offset += ((num_blks - 1) << BBSHIFT);
  386. }
  387. for (i = (*last_blk) - 1; i >= 0; i--) {
  388. if (i < start_blk) {
  389. /* valid log record not found */
  390. xlog_warn(
  391. "XFS: Log inconsistent (didn't find previous header)");
  392. ASSERT(0);
  393. error = XFS_ERROR(EIO);
  394. goto out;
  395. }
  396. if (smallmem) {
  397. if ((error = xlog_bread(log, i, 1, bp)))
  398. goto out;
  399. offset = xlog_align(log, i, 1, bp);
  400. }
  401. head = (xlog_rec_header_t *)offset;
  402. if (XLOG_HEADER_MAGIC_NUM ==
  403. INT_GET(head->h_magicno, ARCH_CONVERT))
  404. break;
  405. if (!smallmem)
  406. offset -= BBSIZE;
  407. }
  408. /*
  409. * We hit the beginning of the physical log & still no header. Return
  410. * to caller. If caller can handle a return of -1, then this routine
  411. * will be called again for the end of the physical log.
  412. */
  413. if (i == -1) {
  414. error = -1;
  415. goto out;
  416. }
  417. /*
  418. * We have the final block of the good log (the first block
  419. * of the log record _before_ the head. So we check the uuid.
  420. */
  421. if ((error = xlog_header_check_mount(log->l_mp, head)))
  422. goto out;
  423. /*
  424. * We may have found a log record header before we expected one.
  425. * last_blk will be the 1st block # with a given cycle #. We may end
  426. * up reading an entire log record. In this case, we don't want to
  427. * reset last_blk. Only when last_blk points in the middle of a log
  428. * record do we update last_blk.
  429. */
  430. if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
  431. uint h_size = INT_GET(head->h_size, ARCH_CONVERT);
  432. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  433. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  434. xhdrs++;
  435. } else {
  436. xhdrs = 1;
  437. }
  438. if (*last_blk - i + extra_bblks
  439. != BTOBB(INT_GET(head->h_len, ARCH_CONVERT)) + xhdrs)
  440. *last_blk = i;
  441. out:
  442. xlog_put_bp(bp);
  443. return error;
  444. }
  445. /*
  446. * Head is defined to be the point of the log where the next log write
  447. * write could go. This means that incomplete LR writes at the end are
  448. * eliminated when calculating the head. We aren't guaranteed that previous
  449. * LR have complete transactions. We only know that a cycle number of
  450. * current cycle number -1 won't be present in the log if we start writing
  451. * from our current block number.
  452. *
  453. * last_blk contains the block number of the first block with a given
  454. * cycle number.
  455. *
  456. * Return: zero if normal, non-zero if error.
  457. */
  458. STATIC int
  459. xlog_find_head(
  460. xlog_t *log,
  461. xfs_daddr_t *return_head_blk)
  462. {
  463. xfs_buf_t *bp;
  464. xfs_caddr_t offset;
  465. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  466. int num_scan_bblks;
  467. uint first_half_cycle, last_half_cycle;
  468. uint stop_on_cycle;
  469. int error, log_bbnum = log->l_logBBsize;
  470. /* Is the end of the log device zeroed? */
  471. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  472. *return_head_blk = first_blk;
  473. /* Is the whole lot zeroed? */
  474. if (!first_blk) {
  475. /* Linux XFS shouldn't generate totally zeroed logs -
  476. * mkfs etc write a dummy unmount record to a fresh
  477. * log so we can store the uuid in there
  478. */
  479. xlog_warn("XFS: totally zeroed log");
  480. }
  481. return 0;
  482. } else if (error) {
  483. xlog_warn("XFS: empty log check failed");
  484. return error;
  485. }
  486. first_blk = 0; /* get cycle # of 1st block */
  487. bp = xlog_get_bp(log, 1);
  488. if (!bp)
  489. return ENOMEM;
  490. if ((error = xlog_bread(log, 0, 1, bp)))
  491. goto bp_err;
  492. offset = xlog_align(log, 0, 1, bp);
  493. first_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
  494. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  495. if ((error = xlog_bread(log, last_blk, 1, bp)))
  496. goto bp_err;
  497. offset = xlog_align(log, last_blk, 1, bp);
  498. last_half_cycle = GET_CYCLE(offset, ARCH_CONVERT);
  499. ASSERT(last_half_cycle != 0);
  500. /*
  501. * If the 1st half cycle number is equal to the last half cycle number,
  502. * then the entire log is stamped with the same cycle number. In this
  503. * case, head_blk can't be set to zero (which makes sense). The below
  504. * math doesn't work out properly with head_blk equal to zero. Instead,
  505. * we set it to log_bbnum which is an invalid block number, but this
  506. * value makes the math correct. If head_blk doesn't changed through
  507. * all the tests below, *head_blk is set to zero at the very end rather
  508. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  509. * in a circular file.
  510. */
  511. if (first_half_cycle == last_half_cycle) {
  512. /*
  513. * In this case we believe that the entire log should have
  514. * cycle number last_half_cycle. We need to scan backwards
  515. * from the end verifying that there are no holes still
  516. * containing last_half_cycle - 1. If we find such a hole,
  517. * then the start of that hole will be the new head. The
  518. * simple case looks like
  519. * x | x ... | x - 1 | x
  520. * Another case that fits this picture would be
  521. * x | x + 1 | x ... | x
  522. * In this case the head really is somewhere at the end of the
  523. * log, as one of the latest writes at the beginning was
  524. * incomplete.
  525. * One more case is
  526. * x | x + 1 | x ... | x - 1 | x
  527. * This is really the combination of the above two cases, and
  528. * the head has to end up at the start of the x-1 hole at the
  529. * end of the log.
  530. *
  531. * In the 256k log case, we will read from the beginning to the
  532. * end of the log and search for cycle numbers equal to x-1.
  533. * We don't worry about the x+1 blocks that we encounter,
  534. * because we know that they cannot be the head since the log
  535. * started with x.
  536. */
  537. head_blk = log_bbnum;
  538. stop_on_cycle = last_half_cycle - 1;
  539. } else {
  540. /*
  541. * In this case we want to find the first block with cycle
  542. * number matching last_half_cycle. We expect the log to be
  543. * some variation on
  544. * x + 1 ... | x ...
  545. * The first block with cycle number x (last_half_cycle) will
  546. * be where the new head belongs. First we do a binary search
  547. * for the first occurrence of last_half_cycle. The binary
  548. * search may not be totally accurate, so then we scan back
  549. * from there looking for occurrences of last_half_cycle before
  550. * us. If that backwards scan wraps around the beginning of
  551. * the log, then we look for occurrences of last_half_cycle - 1
  552. * at the end of the log. The cases we're looking for look
  553. * like
  554. * x + 1 ... | x | x + 1 | x ...
  555. * ^ binary search stopped here
  556. * or
  557. * x + 1 ... | x ... | x - 1 | x
  558. * <---------> less than scan distance
  559. */
  560. stop_on_cycle = last_half_cycle;
  561. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  562. &head_blk, last_half_cycle)))
  563. goto bp_err;
  564. }
  565. /*
  566. * Now validate the answer. Scan back some number of maximum possible
  567. * blocks and make sure each one has the expected cycle number. The
  568. * maximum is determined by the total possible amount of buffering
  569. * in the in-core log. The following number can be made tighter if
  570. * we actually look at the block size of the filesystem.
  571. */
  572. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  573. if (head_blk >= num_scan_bblks) {
  574. /*
  575. * We are guaranteed that the entire check can be performed
  576. * in one buffer.
  577. */
  578. start_blk = head_blk - num_scan_bblks;
  579. if ((error = xlog_find_verify_cycle(log,
  580. start_blk, num_scan_bblks,
  581. stop_on_cycle, &new_blk)))
  582. goto bp_err;
  583. if (new_blk != -1)
  584. head_blk = new_blk;
  585. } else { /* need to read 2 parts of log */
  586. /*
  587. * We are going to scan backwards in the log in two parts.
  588. * First we scan the physical end of the log. In this part
  589. * of the log, we are looking for blocks with cycle number
  590. * last_half_cycle - 1.
  591. * If we find one, then we know that the log starts there, as
  592. * we've found a hole that didn't get written in going around
  593. * the end of the physical log. The simple case for this is
  594. * x + 1 ... | x ... | x - 1 | x
  595. * <---------> less than scan distance
  596. * If all of the blocks at the end of the log have cycle number
  597. * last_half_cycle, then we check the blocks at the start of
  598. * the log looking for occurrences of last_half_cycle. If we
  599. * find one, then our current estimate for the location of the
  600. * first occurrence of last_half_cycle is wrong and we move
  601. * back to the hole we've found. This case looks like
  602. * x + 1 ... | x | x + 1 | x ...
  603. * ^ binary search stopped here
  604. * Another case we need to handle that only occurs in 256k
  605. * logs is
  606. * x + 1 ... | x ... | x+1 | x ...
  607. * ^ binary search stops here
  608. * In a 256k log, the scan at the end of the log will see the
  609. * x + 1 blocks. We need to skip past those since that is
  610. * certainly not the head of the log. By searching for
  611. * last_half_cycle-1 we accomplish that.
  612. */
  613. start_blk = log_bbnum - num_scan_bblks + head_blk;
  614. ASSERT(head_blk <= INT_MAX &&
  615. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  616. if ((error = xlog_find_verify_cycle(log, start_blk,
  617. num_scan_bblks - (int)head_blk,
  618. (stop_on_cycle - 1), &new_blk)))
  619. goto bp_err;
  620. if (new_blk != -1) {
  621. head_blk = new_blk;
  622. goto bad_blk;
  623. }
  624. /*
  625. * Scan beginning of log now. The last part of the physical
  626. * log is good. This scan needs to verify that it doesn't find
  627. * the last_half_cycle.
  628. */
  629. start_blk = 0;
  630. ASSERT(head_blk <= INT_MAX);
  631. if ((error = xlog_find_verify_cycle(log,
  632. start_blk, (int)head_blk,
  633. stop_on_cycle, &new_blk)))
  634. goto bp_err;
  635. if (new_blk != -1)
  636. head_blk = new_blk;
  637. }
  638. bad_blk:
  639. /*
  640. * Now we need to make sure head_blk is not pointing to a block in
  641. * the middle of a log record.
  642. */
  643. num_scan_bblks = XLOG_REC_SHIFT(log);
  644. if (head_blk >= num_scan_bblks) {
  645. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  646. /* start ptr at last block ptr before head_blk */
  647. if ((error = xlog_find_verify_log_record(log, start_blk,
  648. &head_blk, 0)) == -1) {
  649. error = XFS_ERROR(EIO);
  650. goto bp_err;
  651. } else if (error)
  652. goto bp_err;
  653. } else {
  654. start_blk = 0;
  655. ASSERT(head_blk <= INT_MAX);
  656. if ((error = xlog_find_verify_log_record(log, start_blk,
  657. &head_blk, 0)) == -1) {
  658. /* We hit the beginning of the log during our search */
  659. start_blk = log_bbnum - num_scan_bblks + head_blk;
  660. new_blk = log_bbnum;
  661. ASSERT(start_blk <= INT_MAX &&
  662. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  663. ASSERT(head_blk <= INT_MAX);
  664. if ((error = xlog_find_verify_log_record(log,
  665. start_blk, &new_blk,
  666. (int)head_blk)) == -1) {
  667. error = XFS_ERROR(EIO);
  668. goto bp_err;
  669. } else if (error)
  670. goto bp_err;
  671. if (new_blk != log_bbnum)
  672. head_blk = new_blk;
  673. } else if (error)
  674. goto bp_err;
  675. }
  676. xlog_put_bp(bp);
  677. if (head_blk == log_bbnum)
  678. *return_head_blk = 0;
  679. else
  680. *return_head_blk = head_blk;
  681. /*
  682. * When returning here, we have a good block number. Bad block
  683. * means that during a previous crash, we didn't have a clean break
  684. * from cycle number N to cycle number N-1. In this case, we need
  685. * to find the first block with cycle number N-1.
  686. */
  687. return 0;
  688. bp_err:
  689. xlog_put_bp(bp);
  690. if (error)
  691. xlog_warn("XFS: failed to find log head");
  692. return error;
  693. }
  694. /*
  695. * Find the sync block number or the tail of the log.
  696. *
  697. * This will be the block number of the last record to have its
  698. * associated buffers synced to disk. Every log record header has
  699. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  700. * to get a sync block number. The only concern is to figure out which
  701. * log record header to believe.
  702. *
  703. * The following algorithm uses the log record header with the largest
  704. * lsn. The entire log record does not need to be valid. We only care
  705. * that the header is valid.
  706. *
  707. * We could speed up search by using current head_blk buffer, but it is not
  708. * available.
  709. */
  710. int
  711. xlog_find_tail(
  712. xlog_t *log,
  713. xfs_daddr_t *head_blk,
  714. xfs_daddr_t *tail_blk)
  715. {
  716. xlog_rec_header_t *rhead;
  717. xlog_op_header_t *op_head;
  718. xfs_caddr_t offset = NULL;
  719. xfs_buf_t *bp;
  720. int error, i, found;
  721. xfs_daddr_t umount_data_blk;
  722. xfs_daddr_t after_umount_blk;
  723. xfs_lsn_t tail_lsn;
  724. int hblks;
  725. found = 0;
  726. /*
  727. * Find previous log record
  728. */
  729. if ((error = xlog_find_head(log, head_blk)))
  730. return error;
  731. bp = xlog_get_bp(log, 1);
  732. if (!bp)
  733. return ENOMEM;
  734. if (*head_blk == 0) { /* special case */
  735. if ((error = xlog_bread(log, 0, 1, bp)))
  736. goto bread_err;
  737. offset = xlog_align(log, 0, 1, bp);
  738. if (GET_CYCLE(offset, ARCH_CONVERT) == 0) {
  739. *tail_blk = 0;
  740. /* leave all other log inited values alone */
  741. goto exit;
  742. }
  743. }
  744. /*
  745. * Search backwards looking for log record header block
  746. */
  747. ASSERT(*head_blk < INT_MAX);
  748. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  749. if ((error = xlog_bread(log, i, 1, bp)))
  750. goto bread_err;
  751. offset = xlog_align(log, i, 1, bp);
  752. if (XLOG_HEADER_MAGIC_NUM ==
  753. INT_GET(*(uint *)offset, ARCH_CONVERT)) {
  754. found = 1;
  755. break;
  756. }
  757. }
  758. /*
  759. * If we haven't found the log record header block, start looking
  760. * again from the end of the physical log. XXXmiken: There should be
  761. * a check here to make sure we didn't search more than N blocks in
  762. * the previous code.
  763. */
  764. if (!found) {
  765. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  766. if ((error = xlog_bread(log, i, 1, bp)))
  767. goto bread_err;
  768. offset = xlog_align(log, i, 1, bp);
  769. if (XLOG_HEADER_MAGIC_NUM ==
  770. INT_GET(*(uint*)offset, ARCH_CONVERT)) {
  771. found = 2;
  772. break;
  773. }
  774. }
  775. }
  776. if (!found) {
  777. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  778. ASSERT(0);
  779. return XFS_ERROR(EIO);
  780. }
  781. /* find blk_no of tail of log */
  782. rhead = (xlog_rec_header_t *)offset;
  783. *tail_blk = BLOCK_LSN(INT_GET(rhead->h_tail_lsn, ARCH_CONVERT));
  784. /*
  785. * Reset log values according to the state of the log when we
  786. * crashed. In the case where head_blk == 0, we bump curr_cycle
  787. * one because the next write starts a new cycle rather than
  788. * continuing the cycle of the last good log record. At this
  789. * point we have guaranteed that all partial log records have been
  790. * accounted for. Therefore, we know that the last good log record
  791. * written was complete and ended exactly on the end boundary
  792. * of the physical log.
  793. */
  794. log->l_prev_block = i;
  795. log->l_curr_block = (int)*head_blk;
  796. log->l_curr_cycle = INT_GET(rhead->h_cycle, ARCH_CONVERT);
  797. if (found == 2)
  798. log->l_curr_cycle++;
  799. log->l_tail_lsn = INT_GET(rhead->h_tail_lsn, ARCH_CONVERT);
  800. log->l_last_sync_lsn = INT_GET(rhead->h_lsn, ARCH_CONVERT);
  801. log->l_grant_reserve_cycle = log->l_curr_cycle;
  802. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  803. log->l_grant_write_cycle = log->l_curr_cycle;
  804. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  805. /*
  806. * Look for unmount record. If we find it, then we know there
  807. * was a clean unmount. Since 'i' could be the last block in
  808. * the physical log, we convert to a log block before comparing
  809. * to the head_blk.
  810. *
  811. * Save the current tail lsn to use to pass to
  812. * xlog_clear_stale_blocks() below. We won't want to clear the
  813. * unmount record if there is one, so we pass the lsn of the
  814. * unmount record rather than the block after it.
  815. */
  816. if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
  817. int h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
  818. int h_version = INT_GET(rhead->h_version, ARCH_CONVERT);
  819. if ((h_version & XLOG_VERSION_2) &&
  820. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  821. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  822. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  823. hblks++;
  824. } else {
  825. hblks = 1;
  826. }
  827. } else {
  828. hblks = 1;
  829. }
  830. after_umount_blk = (i + hblks + (int)
  831. BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT))) % log->l_logBBsize;
  832. tail_lsn = log->l_tail_lsn;
  833. if (*head_blk == after_umount_blk &&
  834. INT_GET(rhead->h_num_logops, ARCH_CONVERT) == 1) {
  835. umount_data_blk = (i + hblks) % log->l_logBBsize;
  836. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  837. goto bread_err;
  838. }
  839. offset = xlog_align(log, umount_data_blk, 1, bp);
  840. op_head = (xlog_op_header_t *)offset;
  841. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  842. /*
  843. * Set tail and last sync so that newly written
  844. * log records will point recovery to after the
  845. * current unmount record.
  846. */
  847. ASSIGN_ANY_LSN_HOST(log->l_tail_lsn, log->l_curr_cycle,
  848. after_umount_blk);
  849. ASSIGN_ANY_LSN_HOST(log->l_last_sync_lsn, log->l_curr_cycle,
  850. after_umount_blk);
  851. *tail_blk = after_umount_blk;
  852. }
  853. }
  854. /*
  855. * Make sure that there are no blocks in front of the head
  856. * with the same cycle number as the head. This can happen
  857. * because we allow multiple outstanding log writes concurrently,
  858. * and the later writes might make it out before earlier ones.
  859. *
  860. * We use the lsn from before modifying it so that we'll never
  861. * overwrite the unmount record after a clean unmount.
  862. *
  863. * Do this only if we are going to recover the filesystem
  864. *
  865. * NOTE: This used to say "if (!readonly)"
  866. * However on Linux, we can & do recover a read-only filesystem.
  867. * We only skip recovery if NORECOVERY is specified on mount,
  868. * in which case we would not be here.
  869. *
  870. * But... if the -device- itself is readonly, just skip this.
  871. * We can't recover this device anyway, so it won't matter.
  872. */
  873. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  874. error = xlog_clear_stale_blocks(log, tail_lsn);
  875. }
  876. bread_err:
  877. exit:
  878. xlog_put_bp(bp);
  879. if (error)
  880. xlog_warn("XFS: failed to locate log tail");
  881. return error;
  882. }
  883. /*
  884. * Is the log zeroed at all?
  885. *
  886. * The last binary search should be changed to perform an X block read
  887. * once X becomes small enough. You can then search linearly through
  888. * the X blocks. This will cut down on the number of reads we need to do.
  889. *
  890. * If the log is partially zeroed, this routine will pass back the blkno
  891. * of the first block with cycle number 0. It won't have a complete LR
  892. * preceding it.
  893. *
  894. * Return:
  895. * 0 => the log is completely written to
  896. * -1 => use *blk_no as the first block of the log
  897. * >0 => error has occurred
  898. */
  899. int
  900. xlog_find_zeroed(
  901. xlog_t *log,
  902. xfs_daddr_t *blk_no)
  903. {
  904. xfs_buf_t *bp;
  905. xfs_caddr_t offset;
  906. uint first_cycle, last_cycle;
  907. xfs_daddr_t new_blk, last_blk, start_blk;
  908. xfs_daddr_t num_scan_bblks;
  909. int error, log_bbnum = log->l_logBBsize;
  910. /* check totally zeroed log */
  911. bp = xlog_get_bp(log, 1);
  912. if (!bp)
  913. return ENOMEM;
  914. if ((error = xlog_bread(log, 0, 1, bp)))
  915. goto bp_err;
  916. offset = xlog_align(log, 0, 1, bp);
  917. first_cycle = GET_CYCLE(offset, ARCH_CONVERT);
  918. if (first_cycle == 0) { /* completely zeroed log */
  919. *blk_no = 0;
  920. xlog_put_bp(bp);
  921. return -1;
  922. }
  923. /* check partially zeroed log */
  924. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  925. goto bp_err;
  926. offset = xlog_align(log, log_bbnum-1, 1, bp);
  927. last_cycle = GET_CYCLE(offset, ARCH_CONVERT);
  928. if (last_cycle != 0) { /* log completely written to */
  929. xlog_put_bp(bp);
  930. return 0;
  931. } else if (first_cycle != 1) {
  932. /*
  933. * If the cycle of the last block is zero, the cycle of
  934. * the first block must be 1. If it's not, maybe we're
  935. * not looking at a log... Bail out.
  936. */
  937. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  938. return XFS_ERROR(EINVAL);
  939. }
  940. /* we have a partially zeroed log */
  941. last_blk = log_bbnum-1;
  942. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  943. goto bp_err;
  944. /*
  945. * Validate the answer. Because there is no way to guarantee that
  946. * the entire log is made up of log records which are the same size,
  947. * we scan over the defined maximum blocks. At this point, the maximum
  948. * is not chosen to mean anything special. XXXmiken
  949. */
  950. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  951. ASSERT(num_scan_bblks <= INT_MAX);
  952. if (last_blk < num_scan_bblks)
  953. num_scan_bblks = last_blk;
  954. start_blk = last_blk - num_scan_bblks;
  955. /*
  956. * We search for any instances of cycle number 0 that occur before
  957. * our current estimate of the head. What we're trying to detect is
  958. * 1 ... | 0 | 1 | 0...
  959. * ^ binary search ends here
  960. */
  961. if ((error = xlog_find_verify_cycle(log, start_blk,
  962. (int)num_scan_bblks, 0, &new_blk)))
  963. goto bp_err;
  964. if (new_blk != -1)
  965. last_blk = new_blk;
  966. /*
  967. * Potentially backup over partial log record write. We don't need
  968. * to search the end of the log because we know it is zero.
  969. */
  970. if ((error = xlog_find_verify_log_record(log, start_blk,
  971. &last_blk, 0)) == -1) {
  972. error = XFS_ERROR(EIO);
  973. goto bp_err;
  974. } else if (error)
  975. goto bp_err;
  976. *blk_no = last_blk;
  977. bp_err:
  978. xlog_put_bp(bp);
  979. if (error)
  980. return error;
  981. return -1;
  982. }
  983. /*
  984. * These are simple subroutines used by xlog_clear_stale_blocks() below
  985. * to initialize a buffer full of empty log record headers and write
  986. * them into the log.
  987. */
  988. STATIC void
  989. xlog_add_record(
  990. xlog_t *log,
  991. xfs_caddr_t buf,
  992. int cycle,
  993. int block,
  994. int tail_cycle,
  995. int tail_block)
  996. {
  997. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  998. memset(buf, 0, BBSIZE);
  999. INT_SET(recp->h_magicno, ARCH_CONVERT, XLOG_HEADER_MAGIC_NUM);
  1000. INT_SET(recp->h_cycle, ARCH_CONVERT, cycle);
  1001. INT_SET(recp->h_version, ARCH_CONVERT,
  1002. XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb) ? 2 : 1);
  1003. ASSIGN_ANY_LSN_DISK(recp->h_lsn, cycle, block);
  1004. ASSIGN_ANY_LSN_DISK(recp->h_tail_lsn, tail_cycle, tail_block);
  1005. INT_SET(recp->h_fmt, ARCH_CONVERT, XLOG_FMT);
  1006. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1007. }
  1008. STATIC int
  1009. xlog_write_log_records(
  1010. xlog_t *log,
  1011. int cycle,
  1012. int start_block,
  1013. int blocks,
  1014. int tail_cycle,
  1015. int tail_block)
  1016. {
  1017. xfs_caddr_t offset;
  1018. xfs_buf_t *bp;
  1019. int balign, ealign;
  1020. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1021. int end_block = start_block + blocks;
  1022. int bufblks;
  1023. int error = 0;
  1024. int i, j = 0;
  1025. bufblks = 1 << ffs(blocks);
  1026. while (!(bp = xlog_get_bp(log, bufblks))) {
  1027. bufblks >>= 1;
  1028. if (bufblks <= log->l_sectbb_log)
  1029. return ENOMEM;
  1030. }
  1031. /* We may need to do a read at the start to fill in part of
  1032. * the buffer in the starting sector not covered by the first
  1033. * write below.
  1034. */
  1035. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1036. if (balign != start_block) {
  1037. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1038. xlog_put_bp(bp);
  1039. return error;
  1040. }
  1041. j = start_block - balign;
  1042. }
  1043. for (i = start_block; i < end_block; i += bufblks) {
  1044. int bcount, endcount;
  1045. bcount = min(bufblks, end_block - start_block);
  1046. endcount = bcount - j;
  1047. /* We may need to do a read at the end to fill in part of
  1048. * the buffer in the final sector not covered by the write.
  1049. * If this is the same sector as the above read, skip it.
  1050. */
  1051. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1052. if (j == 0 && (start_block + endcount > ealign)) {
  1053. offset = XFS_BUF_PTR(bp);
  1054. balign = BBTOB(ealign - start_block);
  1055. XFS_BUF_SET_PTR(bp, offset + balign, BBTOB(sectbb));
  1056. if ((error = xlog_bread(log, ealign, sectbb, bp)))
  1057. break;
  1058. XFS_BUF_SET_PTR(bp, offset, bufblks);
  1059. }
  1060. offset = xlog_align(log, start_block, endcount, bp);
  1061. for (; j < endcount; j++) {
  1062. xlog_add_record(log, offset, cycle, i+j,
  1063. tail_cycle, tail_block);
  1064. offset += BBSIZE;
  1065. }
  1066. error = xlog_bwrite(log, start_block, endcount, bp);
  1067. if (error)
  1068. break;
  1069. start_block += endcount;
  1070. j = 0;
  1071. }
  1072. xlog_put_bp(bp);
  1073. return error;
  1074. }
  1075. /*
  1076. * This routine is called to blow away any incomplete log writes out
  1077. * in front of the log head. We do this so that we won't become confused
  1078. * if we come up, write only a little bit more, and then crash again.
  1079. * If we leave the partial log records out there, this situation could
  1080. * cause us to think those partial writes are valid blocks since they
  1081. * have the current cycle number. We get rid of them by overwriting them
  1082. * with empty log records with the old cycle number rather than the
  1083. * current one.
  1084. *
  1085. * The tail lsn is passed in rather than taken from
  1086. * the log so that we will not write over the unmount record after a
  1087. * clean unmount in a 512 block log. Doing so would leave the log without
  1088. * any valid log records in it until a new one was written. If we crashed
  1089. * during that time we would not be able to recover.
  1090. */
  1091. STATIC int
  1092. xlog_clear_stale_blocks(
  1093. xlog_t *log,
  1094. xfs_lsn_t tail_lsn)
  1095. {
  1096. int tail_cycle, head_cycle;
  1097. int tail_block, head_block;
  1098. int tail_distance, max_distance;
  1099. int distance;
  1100. int error;
  1101. tail_cycle = CYCLE_LSN(tail_lsn);
  1102. tail_block = BLOCK_LSN(tail_lsn);
  1103. head_cycle = log->l_curr_cycle;
  1104. head_block = log->l_curr_block;
  1105. /*
  1106. * Figure out the distance between the new head of the log
  1107. * and the tail. We want to write over any blocks beyond the
  1108. * head that we may have written just before the crash, but
  1109. * we don't want to overwrite the tail of the log.
  1110. */
  1111. if (head_cycle == tail_cycle) {
  1112. /*
  1113. * The tail is behind the head in the physical log,
  1114. * so the distance from the head to the tail is the
  1115. * distance from the head to the end of the log plus
  1116. * the distance from the beginning of the log to the
  1117. * tail.
  1118. */
  1119. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1120. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1121. XFS_ERRLEVEL_LOW, log->l_mp);
  1122. return XFS_ERROR(EFSCORRUPTED);
  1123. }
  1124. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1125. } else {
  1126. /*
  1127. * The head is behind the tail in the physical log,
  1128. * so the distance from the head to the tail is just
  1129. * the tail block minus the head block.
  1130. */
  1131. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1132. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1133. XFS_ERRLEVEL_LOW, log->l_mp);
  1134. return XFS_ERROR(EFSCORRUPTED);
  1135. }
  1136. tail_distance = tail_block - head_block;
  1137. }
  1138. /*
  1139. * If the head is right up against the tail, we can't clear
  1140. * anything.
  1141. */
  1142. if (tail_distance <= 0) {
  1143. ASSERT(tail_distance == 0);
  1144. return 0;
  1145. }
  1146. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1147. /*
  1148. * Take the smaller of the maximum amount of outstanding I/O
  1149. * we could have and the distance to the tail to clear out.
  1150. * We take the smaller so that we don't overwrite the tail and
  1151. * we don't waste all day writing from the head to the tail
  1152. * for no reason.
  1153. */
  1154. max_distance = MIN(max_distance, tail_distance);
  1155. if ((head_block + max_distance) <= log->l_logBBsize) {
  1156. /*
  1157. * We can stomp all the blocks we need to without
  1158. * wrapping around the end of the log. Just do it
  1159. * in a single write. Use the cycle number of the
  1160. * current cycle minus one so that the log will look like:
  1161. * n ... | n - 1 ...
  1162. */
  1163. error = xlog_write_log_records(log, (head_cycle - 1),
  1164. head_block, max_distance, tail_cycle,
  1165. tail_block);
  1166. if (error)
  1167. return error;
  1168. } else {
  1169. /*
  1170. * We need to wrap around the end of the physical log in
  1171. * order to clear all the blocks. Do it in two separate
  1172. * I/Os. The first write should be from the head to the
  1173. * end of the physical log, and it should use the current
  1174. * cycle number minus one just like above.
  1175. */
  1176. distance = log->l_logBBsize - head_block;
  1177. error = xlog_write_log_records(log, (head_cycle - 1),
  1178. head_block, distance, tail_cycle,
  1179. tail_block);
  1180. if (error)
  1181. return error;
  1182. /*
  1183. * Now write the blocks at the start of the physical log.
  1184. * This writes the remainder of the blocks we want to clear.
  1185. * It uses the current cycle number since we're now on the
  1186. * same cycle as the head so that we get:
  1187. * n ... n ... | n - 1 ...
  1188. * ^^^^^ blocks we're writing
  1189. */
  1190. distance = max_distance - (log->l_logBBsize - head_block);
  1191. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1192. tail_cycle, tail_block);
  1193. if (error)
  1194. return error;
  1195. }
  1196. return 0;
  1197. }
  1198. /******************************************************************************
  1199. *
  1200. * Log recover routines
  1201. *
  1202. ******************************************************************************
  1203. */
  1204. STATIC xlog_recover_t *
  1205. xlog_recover_find_tid(
  1206. xlog_recover_t *q,
  1207. xlog_tid_t tid)
  1208. {
  1209. xlog_recover_t *p = q;
  1210. while (p != NULL) {
  1211. if (p->r_log_tid == tid)
  1212. break;
  1213. p = p->r_next;
  1214. }
  1215. return p;
  1216. }
  1217. STATIC void
  1218. xlog_recover_put_hashq(
  1219. xlog_recover_t **q,
  1220. xlog_recover_t *trans)
  1221. {
  1222. trans->r_next = *q;
  1223. *q = trans;
  1224. }
  1225. STATIC void
  1226. xlog_recover_add_item(
  1227. xlog_recover_item_t **itemq)
  1228. {
  1229. xlog_recover_item_t *item;
  1230. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1231. xlog_recover_insert_item_backq(itemq, item);
  1232. }
  1233. STATIC int
  1234. xlog_recover_add_to_cont_trans(
  1235. xlog_recover_t *trans,
  1236. xfs_caddr_t dp,
  1237. int len)
  1238. {
  1239. xlog_recover_item_t *item;
  1240. xfs_caddr_t ptr, old_ptr;
  1241. int old_len;
  1242. item = trans->r_itemq;
  1243. if (item == 0) {
  1244. /* finish copying rest of trans header */
  1245. xlog_recover_add_item(&trans->r_itemq);
  1246. ptr = (xfs_caddr_t) &trans->r_theader +
  1247. sizeof(xfs_trans_header_t) - len;
  1248. memcpy(ptr, dp, len); /* d, s, l */
  1249. return 0;
  1250. }
  1251. item = item->ri_prev;
  1252. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1253. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1254. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1255. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1256. item->ri_buf[item->ri_cnt-1].i_len += len;
  1257. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1258. return 0;
  1259. }
  1260. /*
  1261. * The next region to add is the start of a new region. It could be
  1262. * a whole region or it could be the first part of a new region. Because
  1263. * of this, the assumption here is that the type and size fields of all
  1264. * format structures fit into the first 32 bits of the structure.
  1265. *
  1266. * This works because all regions must be 32 bit aligned. Therefore, we
  1267. * either have both fields or we have neither field. In the case we have
  1268. * neither field, the data part of the region is zero length. We only have
  1269. * a log_op_header and can throw away the header since a new one will appear
  1270. * later. If we have at least 4 bytes, then we can determine how many regions
  1271. * will appear in the current log item.
  1272. */
  1273. STATIC int
  1274. xlog_recover_add_to_trans(
  1275. xlog_recover_t *trans,
  1276. xfs_caddr_t dp,
  1277. int len)
  1278. {
  1279. xfs_inode_log_format_t *in_f; /* any will do */
  1280. xlog_recover_item_t *item;
  1281. xfs_caddr_t ptr;
  1282. if (!len)
  1283. return 0;
  1284. item = trans->r_itemq;
  1285. if (item == 0) {
  1286. ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
  1287. if (len == sizeof(xfs_trans_header_t))
  1288. xlog_recover_add_item(&trans->r_itemq);
  1289. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1290. return 0;
  1291. }
  1292. ptr = kmem_alloc(len, KM_SLEEP);
  1293. memcpy(ptr, dp, len);
  1294. in_f = (xfs_inode_log_format_t *)ptr;
  1295. if (item->ri_prev->ri_total != 0 &&
  1296. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1297. xlog_recover_add_item(&trans->r_itemq);
  1298. }
  1299. item = trans->r_itemq;
  1300. item = item->ri_prev;
  1301. if (item->ri_total == 0) { /* first region to be added */
  1302. item->ri_total = in_f->ilf_size;
  1303. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1304. item->ri_buf = kmem_zalloc((item->ri_total *
  1305. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1306. }
  1307. ASSERT(item->ri_total > item->ri_cnt);
  1308. /* Description region is ri_buf[0] */
  1309. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1310. item->ri_buf[item->ri_cnt].i_len = len;
  1311. item->ri_cnt++;
  1312. return 0;
  1313. }
  1314. STATIC void
  1315. xlog_recover_new_tid(
  1316. xlog_recover_t **q,
  1317. xlog_tid_t tid,
  1318. xfs_lsn_t lsn)
  1319. {
  1320. xlog_recover_t *trans;
  1321. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1322. trans->r_log_tid = tid;
  1323. trans->r_lsn = lsn;
  1324. xlog_recover_put_hashq(q, trans);
  1325. }
  1326. STATIC int
  1327. xlog_recover_unlink_tid(
  1328. xlog_recover_t **q,
  1329. xlog_recover_t *trans)
  1330. {
  1331. xlog_recover_t *tp;
  1332. int found = 0;
  1333. ASSERT(trans != 0);
  1334. if (trans == *q) {
  1335. *q = (*q)->r_next;
  1336. } else {
  1337. tp = *q;
  1338. while (tp != 0) {
  1339. if (tp->r_next == trans) {
  1340. found = 1;
  1341. break;
  1342. }
  1343. tp = tp->r_next;
  1344. }
  1345. if (!found) {
  1346. xlog_warn(
  1347. "XFS: xlog_recover_unlink_tid: trans not found");
  1348. ASSERT(0);
  1349. return XFS_ERROR(EIO);
  1350. }
  1351. tp->r_next = tp->r_next->r_next;
  1352. }
  1353. return 0;
  1354. }
  1355. STATIC void
  1356. xlog_recover_insert_item_backq(
  1357. xlog_recover_item_t **q,
  1358. xlog_recover_item_t *item)
  1359. {
  1360. if (*q == 0) {
  1361. item->ri_prev = item->ri_next = item;
  1362. *q = item;
  1363. } else {
  1364. item->ri_next = *q;
  1365. item->ri_prev = (*q)->ri_prev;
  1366. (*q)->ri_prev = item;
  1367. item->ri_prev->ri_next = item;
  1368. }
  1369. }
  1370. STATIC void
  1371. xlog_recover_insert_item_frontq(
  1372. xlog_recover_item_t **q,
  1373. xlog_recover_item_t *item)
  1374. {
  1375. xlog_recover_insert_item_backq(q, item);
  1376. *q = item;
  1377. }
  1378. STATIC int
  1379. xlog_recover_reorder_trans(
  1380. xlog_t *log,
  1381. xlog_recover_t *trans)
  1382. {
  1383. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1384. xfs_buf_log_format_t *buf_f;
  1385. xfs_buf_log_format_v1_t *obuf_f;
  1386. ushort flags = 0;
  1387. first_item = itemq = trans->r_itemq;
  1388. trans->r_itemq = NULL;
  1389. do {
  1390. itemq_next = itemq->ri_next;
  1391. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1392. switch (ITEM_TYPE(itemq)) {
  1393. case XFS_LI_BUF:
  1394. flags = buf_f->blf_flags;
  1395. break;
  1396. case XFS_LI_6_1_BUF:
  1397. case XFS_LI_5_3_BUF:
  1398. obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
  1399. flags = obuf_f->blf_flags;
  1400. break;
  1401. }
  1402. switch (ITEM_TYPE(itemq)) {
  1403. case XFS_LI_BUF:
  1404. case XFS_LI_6_1_BUF:
  1405. case XFS_LI_5_3_BUF:
  1406. if (!(flags & XFS_BLI_CANCEL)) {
  1407. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1408. itemq);
  1409. break;
  1410. }
  1411. case XFS_LI_INODE:
  1412. case XFS_LI_6_1_INODE:
  1413. case XFS_LI_5_3_INODE:
  1414. case XFS_LI_DQUOT:
  1415. case XFS_LI_QUOTAOFF:
  1416. case XFS_LI_EFD:
  1417. case XFS_LI_EFI:
  1418. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1419. break;
  1420. default:
  1421. xlog_warn(
  1422. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1423. ASSERT(0);
  1424. return XFS_ERROR(EIO);
  1425. }
  1426. itemq = itemq_next;
  1427. } while (first_item != itemq);
  1428. return 0;
  1429. }
  1430. /*
  1431. * Build up the table of buf cancel records so that we don't replay
  1432. * cancelled data in the second pass. For buffer records that are
  1433. * not cancel records, there is nothing to do here so we just return.
  1434. *
  1435. * If we get a cancel record which is already in the table, this indicates
  1436. * that the buffer was cancelled multiple times. In order to ensure
  1437. * that during pass 2 we keep the record in the table until we reach its
  1438. * last occurrence in the log, we keep a reference count in the cancel
  1439. * record in the table to tell us how many times we expect to see this
  1440. * record during the second pass.
  1441. */
  1442. STATIC void
  1443. xlog_recover_do_buffer_pass1(
  1444. xlog_t *log,
  1445. xfs_buf_log_format_t *buf_f)
  1446. {
  1447. xfs_buf_cancel_t *bcp;
  1448. xfs_buf_cancel_t *nextp;
  1449. xfs_buf_cancel_t *prevp;
  1450. xfs_buf_cancel_t **bucket;
  1451. xfs_buf_log_format_v1_t *obuf_f;
  1452. xfs_daddr_t blkno = 0;
  1453. uint len = 0;
  1454. ushort flags = 0;
  1455. switch (buf_f->blf_type) {
  1456. case XFS_LI_BUF:
  1457. blkno = buf_f->blf_blkno;
  1458. len = buf_f->blf_len;
  1459. flags = buf_f->blf_flags;
  1460. break;
  1461. case XFS_LI_6_1_BUF:
  1462. case XFS_LI_5_3_BUF:
  1463. obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
  1464. blkno = (xfs_daddr_t) obuf_f->blf_blkno;
  1465. len = obuf_f->blf_len;
  1466. flags = obuf_f->blf_flags;
  1467. break;
  1468. }
  1469. /*
  1470. * If this isn't a cancel buffer item, then just return.
  1471. */
  1472. if (!(flags & XFS_BLI_CANCEL))
  1473. return;
  1474. /*
  1475. * Insert an xfs_buf_cancel record into the hash table of
  1476. * them. If there is already an identical record, bump
  1477. * its reference count.
  1478. */
  1479. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1480. XLOG_BC_TABLE_SIZE];
  1481. /*
  1482. * If the hash bucket is empty then just insert a new record into
  1483. * the bucket.
  1484. */
  1485. if (*bucket == NULL) {
  1486. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1487. KM_SLEEP);
  1488. bcp->bc_blkno = blkno;
  1489. bcp->bc_len = len;
  1490. bcp->bc_refcount = 1;
  1491. bcp->bc_next = NULL;
  1492. *bucket = bcp;
  1493. return;
  1494. }
  1495. /*
  1496. * The hash bucket is not empty, so search for duplicates of our
  1497. * record. If we find one them just bump its refcount. If not
  1498. * then add us at the end of the list.
  1499. */
  1500. prevp = NULL;
  1501. nextp = *bucket;
  1502. while (nextp != NULL) {
  1503. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1504. nextp->bc_refcount++;
  1505. return;
  1506. }
  1507. prevp = nextp;
  1508. nextp = nextp->bc_next;
  1509. }
  1510. ASSERT(prevp != NULL);
  1511. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1512. KM_SLEEP);
  1513. bcp->bc_blkno = blkno;
  1514. bcp->bc_len = len;
  1515. bcp->bc_refcount = 1;
  1516. bcp->bc_next = NULL;
  1517. prevp->bc_next = bcp;
  1518. }
  1519. /*
  1520. * Check to see whether the buffer being recovered has a corresponding
  1521. * entry in the buffer cancel record table. If it does then return 1
  1522. * so that it will be cancelled, otherwise return 0. If the buffer is
  1523. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1524. * the refcount on the entry in the table and remove it from the table
  1525. * if this is the last reference.
  1526. *
  1527. * We remove the cancel record from the table when we encounter its
  1528. * last occurrence in the log so that if the same buffer is re-used
  1529. * again after its last cancellation we actually replay the changes
  1530. * made at that point.
  1531. */
  1532. STATIC int
  1533. xlog_check_buffer_cancelled(
  1534. xlog_t *log,
  1535. xfs_daddr_t blkno,
  1536. uint len,
  1537. ushort flags)
  1538. {
  1539. xfs_buf_cancel_t *bcp;
  1540. xfs_buf_cancel_t *prevp;
  1541. xfs_buf_cancel_t **bucket;
  1542. if (log->l_buf_cancel_table == NULL) {
  1543. /*
  1544. * There is nothing in the table built in pass one,
  1545. * so this buffer must not be cancelled.
  1546. */
  1547. ASSERT(!(flags & XFS_BLI_CANCEL));
  1548. return 0;
  1549. }
  1550. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1551. XLOG_BC_TABLE_SIZE];
  1552. bcp = *bucket;
  1553. if (bcp == NULL) {
  1554. /*
  1555. * There is no corresponding entry in the table built
  1556. * in pass one, so this buffer has not been cancelled.
  1557. */
  1558. ASSERT(!(flags & XFS_BLI_CANCEL));
  1559. return 0;
  1560. }
  1561. /*
  1562. * Search for an entry in the buffer cancel table that
  1563. * matches our buffer.
  1564. */
  1565. prevp = NULL;
  1566. while (bcp != NULL) {
  1567. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1568. /*
  1569. * We've go a match, so return 1 so that the
  1570. * recovery of this buffer is cancelled.
  1571. * If this buffer is actually a buffer cancel
  1572. * log item, then decrement the refcount on the
  1573. * one in the table and remove it if this is the
  1574. * last reference.
  1575. */
  1576. if (flags & XFS_BLI_CANCEL) {
  1577. bcp->bc_refcount--;
  1578. if (bcp->bc_refcount == 0) {
  1579. if (prevp == NULL) {
  1580. *bucket = bcp->bc_next;
  1581. } else {
  1582. prevp->bc_next = bcp->bc_next;
  1583. }
  1584. kmem_free(bcp,
  1585. sizeof(xfs_buf_cancel_t));
  1586. }
  1587. }
  1588. return 1;
  1589. }
  1590. prevp = bcp;
  1591. bcp = bcp->bc_next;
  1592. }
  1593. /*
  1594. * We didn't find a corresponding entry in the table, so
  1595. * return 0 so that the buffer is NOT cancelled.
  1596. */
  1597. ASSERT(!(flags & XFS_BLI_CANCEL));
  1598. return 0;
  1599. }
  1600. STATIC int
  1601. xlog_recover_do_buffer_pass2(
  1602. xlog_t *log,
  1603. xfs_buf_log_format_t *buf_f)
  1604. {
  1605. xfs_buf_log_format_v1_t *obuf_f;
  1606. xfs_daddr_t blkno = 0;
  1607. ushort flags = 0;
  1608. uint len = 0;
  1609. switch (buf_f->blf_type) {
  1610. case XFS_LI_BUF:
  1611. blkno = buf_f->blf_blkno;
  1612. flags = buf_f->blf_flags;
  1613. len = buf_f->blf_len;
  1614. break;
  1615. case XFS_LI_6_1_BUF:
  1616. case XFS_LI_5_3_BUF:
  1617. obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
  1618. blkno = (xfs_daddr_t) obuf_f->blf_blkno;
  1619. flags = obuf_f->blf_flags;
  1620. len = (xfs_daddr_t) obuf_f->blf_len;
  1621. break;
  1622. }
  1623. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1624. }
  1625. /*
  1626. * Perform recovery for a buffer full of inodes. In these buffers,
  1627. * the only data which should be recovered is that which corresponds
  1628. * to the di_next_unlinked pointers in the on disk inode structures.
  1629. * The rest of the data for the inodes is always logged through the
  1630. * inodes themselves rather than the inode buffer and is recovered
  1631. * in xlog_recover_do_inode_trans().
  1632. *
  1633. * The only time when buffers full of inodes are fully recovered is
  1634. * when the buffer is full of newly allocated inodes. In this case
  1635. * the buffer will not be marked as an inode buffer and so will be
  1636. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1637. */
  1638. STATIC int
  1639. xlog_recover_do_inode_buffer(
  1640. xfs_mount_t *mp,
  1641. xlog_recover_item_t *item,
  1642. xfs_buf_t *bp,
  1643. xfs_buf_log_format_t *buf_f)
  1644. {
  1645. int i;
  1646. int item_index;
  1647. int bit;
  1648. int nbits;
  1649. int reg_buf_offset;
  1650. int reg_buf_bytes;
  1651. int next_unlinked_offset;
  1652. int inodes_per_buf;
  1653. xfs_agino_t *logged_nextp;
  1654. xfs_agino_t *buffer_nextp;
  1655. xfs_buf_log_format_v1_t *obuf_f;
  1656. unsigned int *data_map = NULL;
  1657. unsigned int map_size = 0;
  1658. switch (buf_f->blf_type) {
  1659. case XFS_LI_BUF:
  1660. data_map = buf_f->blf_data_map;
  1661. map_size = buf_f->blf_map_size;
  1662. break;
  1663. case XFS_LI_6_1_BUF:
  1664. case XFS_LI_5_3_BUF:
  1665. obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
  1666. data_map = obuf_f->blf_data_map;
  1667. map_size = obuf_f->blf_map_size;
  1668. break;
  1669. }
  1670. /*
  1671. * Set the variables corresponding to the current region to
  1672. * 0 so that we'll initialize them on the first pass through
  1673. * the loop.
  1674. */
  1675. reg_buf_offset = 0;
  1676. reg_buf_bytes = 0;
  1677. bit = 0;
  1678. nbits = 0;
  1679. item_index = 0;
  1680. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1681. for (i = 0; i < inodes_per_buf; i++) {
  1682. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1683. offsetof(xfs_dinode_t, di_next_unlinked);
  1684. while (next_unlinked_offset >=
  1685. (reg_buf_offset + reg_buf_bytes)) {
  1686. /*
  1687. * The next di_next_unlinked field is beyond
  1688. * the current logged region. Find the next
  1689. * logged region that contains or is beyond
  1690. * the current di_next_unlinked field.
  1691. */
  1692. bit += nbits;
  1693. bit = xfs_next_bit(data_map, map_size, bit);
  1694. /*
  1695. * If there are no more logged regions in the
  1696. * buffer, then we're done.
  1697. */
  1698. if (bit == -1) {
  1699. return 0;
  1700. }
  1701. nbits = xfs_contig_bits(data_map, map_size,
  1702. bit);
  1703. ASSERT(nbits > 0);
  1704. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1705. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1706. item_index++;
  1707. }
  1708. /*
  1709. * If the current logged region starts after the current
  1710. * di_next_unlinked field, then move on to the next
  1711. * di_next_unlinked field.
  1712. */
  1713. if (next_unlinked_offset < reg_buf_offset) {
  1714. continue;
  1715. }
  1716. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1717. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1718. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1719. /*
  1720. * The current logged region contains a copy of the
  1721. * current di_next_unlinked field. Extract its value
  1722. * and copy it to the buffer copy.
  1723. */
  1724. logged_nextp = (xfs_agino_t *)
  1725. ((char *)(item->ri_buf[item_index].i_addr) +
  1726. (next_unlinked_offset - reg_buf_offset));
  1727. if (unlikely(*logged_nextp == 0)) {
  1728. xfs_fs_cmn_err(CE_ALERT, mp,
  1729. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1730. item, bp);
  1731. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1732. XFS_ERRLEVEL_LOW, mp);
  1733. return XFS_ERROR(EFSCORRUPTED);
  1734. }
  1735. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1736. next_unlinked_offset);
  1737. *buffer_nextp = *logged_nextp;
  1738. }
  1739. return 0;
  1740. }
  1741. /*
  1742. * Perform a 'normal' buffer recovery. Each logged region of the
  1743. * buffer should be copied over the corresponding region in the
  1744. * given buffer. The bitmap in the buf log format structure indicates
  1745. * where to place the logged data.
  1746. */
  1747. /*ARGSUSED*/
  1748. STATIC void
  1749. xlog_recover_do_reg_buffer(
  1750. xfs_mount_t *mp,
  1751. xlog_recover_item_t *item,
  1752. xfs_buf_t *bp,
  1753. xfs_buf_log_format_t *buf_f)
  1754. {
  1755. int i;
  1756. int bit;
  1757. int nbits;
  1758. xfs_buf_log_format_v1_t *obuf_f;
  1759. unsigned int *data_map = NULL;
  1760. unsigned int map_size = 0;
  1761. int error;
  1762. switch (buf_f->blf_type) {
  1763. case XFS_LI_BUF:
  1764. data_map = buf_f->blf_data_map;
  1765. map_size = buf_f->blf_map_size;
  1766. break;
  1767. case XFS_LI_6_1_BUF:
  1768. case XFS_LI_5_3_BUF:
  1769. obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
  1770. data_map = obuf_f->blf_data_map;
  1771. map_size = obuf_f->blf_map_size;
  1772. break;
  1773. }
  1774. bit = 0;
  1775. i = 1; /* 0 is the buf format structure */
  1776. while (1) {
  1777. bit = xfs_next_bit(data_map, map_size, bit);
  1778. if (bit == -1)
  1779. break;
  1780. nbits = xfs_contig_bits(data_map, map_size, bit);
  1781. ASSERT(nbits > 0);
  1782. ASSERT(item->ri_buf[i].i_addr != 0);
  1783. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1784. ASSERT(XFS_BUF_COUNT(bp) >=
  1785. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1786. /*
  1787. * Do a sanity check if this is a dquot buffer. Just checking
  1788. * the first dquot in the buffer should do. XXXThis is
  1789. * probably a good thing to do for other buf types also.
  1790. */
  1791. error = 0;
  1792. if (buf_f->blf_flags &
  1793. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1794. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1795. item->ri_buf[i].i_addr,
  1796. -1, 0, XFS_QMOPT_DOWARN,
  1797. "dquot_buf_recover");
  1798. }
  1799. if (!error)
  1800. memcpy(xfs_buf_offset(bp,
  1801. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1802. item->ri_buf[i].i_addr, /* source */
  1803. nbits<<XFS_BLI_SHIFT); /* length */
  1804. i++;
  1805. bit += nbits;
  1806. }
  1807. /* Shouldn't be any more regions */
  1808. ASSERT(i == item->ri_total);
  1809. }
  1810. /*
  1811. * Do some primitive error checking on ondisk dquot data structures.
  1812. */
  1813. int
  1814. xfs_qm_dqcheck(
  1815. xfs_disk_dquot_t *ddq,
  1816. xfs_dqid_t id,
  1817. uint type, /* used only when IO_dorepair is true */
  1818. uint flags,
  1819. char *str)
  1820. {
  1821. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1822. int errs = 0;
  1823. /*
  1824. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1825. * 1. If we crash while deleting the quotainode(s), and those blks got
  1826. * used for user data. This is because we take the path of regular
  1827. * file deletion; however, the size field of quotainodes is never
  1828. * updated, so all the tricks that we play in itruncate_finish
  1829. * don't quite matter.
  1830. *
  1831. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1832. * But the allocation will be replayed so we'll end up with an
  1833. * uninitialized quota block.
  1834. *
  1835. * This is all fine; things are still consistent, and we haven't lost
  1836. * any quota information. Just don't complain about bad dquot blks.
  1837. */
  1838. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1839. if (flags & XFS_QMOPT_DOWARN)
  1840. cmn_err(CE_ALERT,
  1841. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1842. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1843. errs++;
  1844. }
  1845. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1846. if (flags & XFS_QMOPT_DOWARN)
  1847. cmn_err(CE_ALERT,
  1848. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1849. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1850. errs++;
  1851. }
  1852. if (ddq->d_flags != XFS_DQ_USER &&
  1853. ddq->d_flags != XFS_DQ_PROJ &&
  1854. ddq->d_flags != XFS_DQ_GROUP) {
  1855. if (flags & XFS_QMOPT_DOWARN)
  1856. cmn_err(CE_ALERT,
  1857. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1858. str, id, ddq->d_flags);
  1859. errs++;
  1860. }
  1861. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1862. if (flags & XFS_QMOPT_DOWARN)
  1863. cmn_err(CE_ALERT,
  1864. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1865. "0x%x expected, found id 0x%x",
  1866. str, ddq, id, be32_to_cpu(ddq->d_id));
  1867. errs++;
  1868. }
  1869. if (!errs && ddq->d_id) {
  1870. if (ddq->d_blk_softlimit &&
  1871. be64_to_cpu(ddq->d_bcount) >=
  1872. be64_to_cpu(ddq->d_blk_softlimit)) {
  1873. if (!ddq->d_btimer) {
  1874. if (flags & XFS_QMOPT_DOWARN)
  1875. cmn_err(CE_ALERT,
  1876. "%s : Dquot ID 0x%x (0x%p) "
  1877. "BLK TIMER NOT STARTED",
  1878. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1879. errs++;
  1880. }
  1881. }
  1882. if (ddq->d_ino_softlimit &&
  1883. be64_to_cpu(ddq->d_icount) >=
  1884. be64_to_cpu(ddq->d_ino_softlimit)) {
  1885. if (!ddq->d_itimer) {
  1886. if (flags & XFS_QMOPT_DOWARN)
  1887. cmn_err(CE_ALERT,
  1888. "%s : Dquot ID 0x%x (0x%p) "
  1889. "INODE TIMER NOT STARTED",
  1890. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1891. errs++;
  1892. }
  1893. }
  1894. if (ddq->d_rtb_softlimit &&
  1895. be64_to_cpu(ddq->d_rtbcount) >=
  1896. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1897. if (!ddq->d_rtbtimer) {
  1898. if (flags & XFS_QMOPT_DOWARN)
  1899. cmn_err(CE_ALERT,
  1900. "%s : Dquot ID 0x%x (0x%p) "
  1901. "RTBLK TIMER NOT STARTED",
  1902. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1903. errs++;
  1904. }
  1905. }
  1906. }
  1907. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1908. return errs;
  1909. if (flags & XFS_QMOPT_DOWARN)
  1910. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1911. /*
  1912. * Typically, a repair is only requested by quotacheck.
  1913. */
  1914. ASSERT(id != -1);
  1915. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1916. memset(d, 0, sizeof(xfs_dqblk_t));
  1917. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1918. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1919. d->dd_diskdq.d_flags = type;
  1920. d->dd_diskdq.d_id = cpu_to_be32(id);
  1921. return errs;
  1922. }
  1923. /*
  1924. * Perform a dquot buffer recovery.
  1925. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1926. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1927. * Else, treat it as a regular buffer and do recovery.
  1928. */
  1929. STATIC void
  1930. xlog_recover_do_dquot_buffer(
  1931. xfs_mount_t *mp,
  1932. xlog_t *log,
  1933. xlog_recover_item_t *item,
  1934. xfs_buf_t *bp,
  1935. xfs_buf_log_format_t *buf_f)
  1936. {
  1937. uint type;
  1938. /*
  1939. * Filesystems are required to send in quota flags at mount time.
  1940. */
  1941. if (mp->m_qflags == 0) {
  1942. return;
  1943. }
  1944. type = 0;
  1945. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1946. type |= XFS_DQ_USER;
  1947. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1948. type |= XFS_DQ_PROJ;
  1949. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1950. type |= XFS_DQ_GROUP;
  1951. /*
  1952. * This type of quotas was turned off, so ignore this buffer
  1953. */
  1954. if (log->l_quotaoffs_flag & type)
  1955. return;
  1956. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1957. }
  1958. /*
  1959. * This routine replays a modification made to a buffer at runtime.
  1960. * There are actually two types of buffer, regular and inode, which
  1961. * are handled differently. Inode buffers are handled differently
  1962. * in that we only recover a specific set of data from them, namely
  1963. * the inode di_next_unlinked fields. This is because all other inode
  1964. * data is actually logged via inode records and any data we replay
  1965. * here which overlaps that may be stale.
  1966. *
  1967. * When meta-data buffers are freed at run time we log a buffer item
  1968. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1969. * of the buffer in the log should not be replayed at recovery time.
  1970. * This is so that if the blocks covered by the buffer are reused for
  1971. * file data before we crash we don't end up replaying old, freed
  1972. * meta-data into a user's file.
  1973. *
  1974. * To handle the cancellation of buffer log items, we make two passes
  1975. * over the log during recovery. During the first we build a table of
  1976. * those buffers which have been cancelled, and during the second we
  1977. * only replay those buffers which do not have corresponding cancel
  1978. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1979. * for more details on the implementation of the table of cancel records.
  1980. */
  1981. STATIC int
  1982. xlog_recover_do_buffer_trans(
  1983. xlog_t *log,
  1984. xlog_recover_item_t *item,
  1985. int pass)
  1986. {
  1987. xfs_buf_log_format_t *buf_f;
  1988. xfs_buf_log_format_v1_t *obuf_f;
  1989. xfs_mount_t *mp;
  1990. xfs_buf_t *bp;
  1991. int error;
  1992. int cancel;
  1993. xfs_daddr_t blkno;
  1994. int len;
  1995. ushort flags;
  1996. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1997. if (pass == XLOG_RECOVER_PASS1) {
  1998. /*
  1999. * In this pass we're only looking for buf items
  2000. * with the XFS_BLI_CANCEL bit set.
  2001. */
  2002. xlog_recover_do_buffer_pass1(log, buf_f);
  2003. return 0;
  2004. } else {
  2005. /*
  2006. * In this pass we want to recover all the buffers
  2007. * which have not been cancelled and are not
  2008. * cancellation buffers themselves. The routine
  2009. * we call here will tell us whether or not to
  2010. * continue with the replay of this buffer.
  2011. */
  2012. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  2013. if (cancel) {
  2014. return 0;
  2015. }
  2016. }
  2017. switch (buf_f->blf_type) {
  2018. case XFS_LI_BUF:
  2019. blkno = buf_f->blf_blkno;
  2020. len = buf_f->blf_len;
  2021. flags = buf_f->blf_flags;
  2022. break;
  2023. case XFS_LI_6_1_BUF:
  2024. case XFS_LI_5_3_BUF:
  2025. obuf_f = (xfs_buf_log_format_v1_t*)buf_f;
  2026. blkno = obuf_f->blf_blkno;
  2027. len = obuf_f->blf_len;
  2028. flags = obuf_f->blf_flags;
  2029. break;
  2030. default:
  2031. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  2032. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  2033. buf_f->blf_type, log->l_mp->m_logname ?
  2034. log->l_mp->m_logname : "internal");
  2035. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  2036. XFS_ERRLEVEL_LOW, log->l_mp);
  2037. return XFS_ERROR(EFSCORRUPTED);
  2038. }
  2039. mp = log->l_mp;
  2040. if (flags & XFS_BLI_INODE_BUF) {
  2041. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  2042. XFS_BUF_LOCK);
  2043. } else {
  2044. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  2045. }
  2046. if (XFS_BUF_ISERROR(bp)) {
  2047. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2048. bp, blkno);
  2049. error = XFS_BUF_GETERROR(bp);
  2050. xfs_buf_relse(bp);
  2051. return error;
  2052. }
  2053. error = 0;
  2054. if (flags & XFS_BLI_INODE_BUF) {
  2055. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2056. } else if (flags &
  2057. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2058. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2059. } else {
  2060. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  2061. }
  2062. if (error)
  2063. return XFS_ERROR(error);
  2064. /*
  2065. * Perform delayed write on the buffer. Asynchronous writes will be
  2066. * slower when taking into account all the buffers to be flushed.
  2067. *
  2068. * Also make sure that only inode buffers with good sizes stay in
  2069. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2070. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2071. * buffers in the log can be a different size if the log was generated
  2072. * by an older kernel using unclustered inode buffers or a newer kernel
  2073. * running with a different inode cluster size. Regardless, if the
  2074. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2075. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2076. * the buffer out of the buffer cache so that the buffer won't
  2077. * overlap with future reads of those inodes.
  2078. */
  2079. if (XFS_DINODE_MAGIC ==
  2080. INT_GET(*((__uint16_t *)(xfs_buf_offset(bp, 0))), ARCH_CONVERT) &&
  2081. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2082. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2083. XFS_BUF_STALE(bp);
  2084. error = xfs_bwrite(mp, bp);
  2085. } else {
  2086. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2087. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2088. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2089. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2090. xfs_bdwrite(mp, bp);
  2091. }
  2092. return (error);
  2093. }
  2094. STATIC int
  2095. xlog_recover_do_inode_trans(
  2096. xlog_t *log,
  2097. xlog_recover_item_t *item,
  2098. int pass)
  2099. {
  2100. xfs_inode_log_format_t *in_f;
  2101. xfs_mount_t *mp;
  2102. xfs_buf_t *bp;
  2103. xfs_imap_t imap;
  2104. xfs_dinode_t *dip;
  2105. xfs_ino_t ino;
  2106. int len;
  2107. xfs_caddr_t src;
  2108. xfs_caddr_t dest;
  2109. int error;
  2110. int attr_index;
  2111. uint fields;
  2112. xfs_dinode_core_t *dicp;
  2113. int need_free = 0;
  2114. if (pass == XLOG_RECOVER_PASS1) {
  2115. return 0;
  2116. }
  2117. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2118. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2119. } else {
  2120. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2121. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2122. need_free = 1;
  2123. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2124. if (error)
  2125. goto error;
  2126. }
  2127. ino = in_f->ilf_ino;
  2128. mp = log->l_mp;
  2129. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2130. imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
  2131. imap.im_len = in_f->ilf_len;
  2132. imap.im_boffset = in_f->ilf_boffset;
  2133. } else {
  2134. /*
  2135. * It's an old inode format record. We don't know where
  2136. * its cluster is located on disk, and we can't allow
  2137. * xfs_imap() to figure it out because the inode btrees
  2138. * are not ready to be used. Therefore do not pass the
  2139. * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
  2140. * us only the single block in which the inode lives
  2141. * rather than its cluster, so we must make sure to
  2142. * invalidate the buffer when we write it out below.
  2143. */
  2144. imap.im_blkno = 0;
  2145. xfs_imap(log->l_mp, NULL, ino, &imap, 0);
  2146. }
  2147. /*
  2148. * Inode buffers can be freed, look out for it,
  2149. * and do not replay the inode.
  2150. */
  2151. if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
  2152. error = 0;
  2153. goto error;
  2154. }
  2155. bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
  2156. XFS_BUF_LOCK);
  2157. if (XFS_BUF_ISERROR(bp)) {
  2158. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2159. bp, imap.im_blkno);
  2160. error = XFS_BUF_GETERROR(bp);
  2161. xfs_buf_relse(bp);
  2162. goto error;
  2163. }
  2164. error = 0;
  2165. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2166. dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  2167. /*
  2168. * Make sure the place we're flushing out to really looks
  2169. * like an inode!
  2170. */
  2171. if (unlikely(INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC)) {
  2172. xfs_buf_relse(bp);
  2173. xfs_fs_cmn_err(CE_ALERT, mp,
  2174. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2175. dip, bp, ino);
  2176. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2177. XFS_ERRLEVEL_LOW, mp);
  2178. error = EFSCORRUPTED;
  2179. goto error;
  2180. }
  2181. dicp = (xfs_dinode_core_t*)(item->ri_buf[1].i_addr);
  2182. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2183. xfs_buf_relse(bp);
  2184. xfs_fs_cmn_err(CE_ALERT, mp,
  2185. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2186. item, ino);
  2187. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2188. XFS_ERRLEVEL_LOW, mp);
  2189. error = EFSCORRUPTED;
  2190. goto error;
  2191. }
  2192. /* Skip replay when the on disk inode is newer than the log one */
  2193. if (dicp->di_flushiter <
  2194. INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)) {
  2195. /*
  2196. * Deal with the wrap case, DI_MAX_FLUSH is less
  2197. * than smaller numbers
  2198. */
  2199. if ((INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT)
  2200. == DI_MAX_FLUSH) &&
  2201. (dicp->di_flushiter < (DI_MAX_FLUSH>>1))) {
  2202. /* do nothing */
  2203. } else {
  2204. xfs_buf_relse(bp);
  2205. error = 0;
  2206. goto error;
  2207. }
  2208. }
  2209. /* Take the opportunity to reset the flush iteration count */
  2210. dicp->di_flushiter = 0;
  2211. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2212. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2213. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2214. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2215. XFS_ERRLEVEL_LOW, mp, dicp);
  2216. xfs_buf_relse(bp);
  2217. xfs_fs_cmn_err(CE_ALERT, mp,
  2218. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2219. item, dip, bp, ino);
  2220. error = EFSCORRUPTED;
  2221. goto error;
  2222. }
  2223. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2224. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2225. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2226. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2227. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2228. XFS_ERRLEVEL_LOW, mp, dicp);
  2229. xfs_buf_relse(bp);
  2230. xfs_fs_cmn_err(CE_ALERT, mp,
  2231. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2232. item, dip, bp, ino);
  2233. error = EFSCORRUPTED;
  2234. goto error;
  2235. }
  2236. }
  2237. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2238. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2239. XFS_ERRLEVEL_LOW, mp, dicp);
  2240. xfs_buf_relse(bp);
  2241. xfs_fs_cmn_err(CE_ALERT, mp,
  2242. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2243. item, dip, bp, ino,
  2244. dicp->di_nextents + dicp->di_anextents,
  2245. dicp->di_nblocks);
  2246. error = EFSCORRUPTED;
  2247. goto error;
  2248. }
  2249. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2250. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2251. XFS_ERRLEVEL_LOW, mp, dicp);
  2252. xfs_buf_relse(bp);
  2253. xfs_fs_cmn_err(CE_ALERT, mp,
  2254. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2255. item, dip, bp, ino, dicp->di_forkoff);
  2256. error = EFSCORRUPTED;
  2257. goto error;
  2258. }
  2259. if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
  2260. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2261. XFS_ERRLEVEL_LOW, mp, dicp);
  2262. xfs_buf_relse(bp);
  2263. xfs_fs_cmn_err(CE_ALERT, mp,
  2264. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2265. item->ri_buf[1].i_len, item);
  2266. error = EFSCORRUPTED;
  2267. goto error;
  2268. }
  2269. /* The core is in in-core format */
  2270. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  2271. (xfs_dinode_core_t*)item->ri_buf[1].i_addr, -1);
  2272. /* the rest is in on-disk format */
  2273. if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
  2274. memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
  2275. item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
  2276. item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
  2277. }
  2278. fields = in_f->ilf_fields;
  2279. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2280. case XFS_ILOG_DEV:
  2281. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, in_f->ilf_u.ilfu_rdev);
  2282. break;
  2283. case XFS_ILOG_UUID:
  2284. dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
  2285. break;
  2286. }
  2287. if (in_f->ilf_size == 2)
  2288. goto write_inode_buffer;
  2289. len = item->ri_buf[2].i_len;
  2290. src = item->ri_buf[2].i_addr;
  2291. ASSERT(in_f->ilf_size <= 4);
  2292. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2293. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2294. (len == in_f->ilf_dsize));
  2295. switch (fields & XFS_ILOG_DFORK) {
  2296. case XFS_ILOG_DDATA:
  2297. case XFS_ILOG_DEXT:
  2298. memcpy(&dip->di_u, src, len);
  2299. break;
  2300. case XFS_ILOG_DBROOT:
  2301. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2302. &(dip->di_u.di_bmbt),
  2303. XFS_DFORK_DSIZE(dip, mp));
  2304. break;
  2305. default:
  2306. /*
  2307. * There are no data fork flags set.
  2308. */
  2309. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2310. break;
  2311. }
  2312. /*
  2313. * If we logged any attribute data, recover it. There may or
  2314. * may not have been any other non-core data logged in this
  2315. * transaction.
  2316. */
  2317. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2318. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2319. attr_index = 3;
  2320. } else {
  2321. attr_index = 2;
  2322. }
  2323. len = item->ri_buf[attr_index].i_len;
  2324. src = item->ri_buf[attr_index].i_addr;
  2325. ASSERT(len == in_f->ilf_asize);
  2326. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2327. case XFS_ILOG_ADATA:
  2328. case XFS_ILOG_AEXT:
  2329. dest = XFS_DFORK_APTR(dip);
  2330. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2331. memcpy(dest, src, len);
  2332. break;
  2333. case XFS_ILOG_ABROOT:
  2334. dest = XFS_DFORK_APTR(dip);
  2335. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2336. (xfs_bmdr_block_t*)dest,
  2337. XFS_DFORK_ASIZE(dip, mp));
  2338. break;
  2339. default:
  2340. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2341. ASSERT(0);
  2342. xfs_buf_relse(bp);
  2343. error = EIO;
  2344. goto error;
  2345. }
  2346. }
  2347. write_inode_buffer:
  2348. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2349. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2350. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2351. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2352. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2353. xfs_bdwrite(mp, bp);
  2354. } else {
  2355. XFS_BUF_STALE(bp);
  2356. error = xfs_bwrite(mp, bp);
  2357. }
  2358. error:
  2359. if (need_free)
  2360. kmem_free(in_f, sizeof(*in_f));
  2361. return XFS_ERROR(error);
  2362. }
  2363. /*
  2364. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2365. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2366. * of that type.
  2367. */
  2368. STATIC int
  2369. xlog_recover_do_quotaoff_trans(
  2370. xlog_t *log,
  2371. xlog_recover_item_t *item,
  2372. int pass)
  2373. {
  2374. xfs_qoff_logformat_t *qoff_f;
  2375. if (pass == XLOG_RECOVER_PASS2) {
  2376. return (0);
  2377. }
  2378. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2379. ASSERT(qoff_f);
  2380. /*
  2381. * The logitem format's flag tells us if this was user quotaoff,
  2382. * group/project quotaoff or both.
  2383. */
  2384. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2385. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2386. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2387. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2388. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2389. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2390. return (0);
  2391. }
  2392. /*
  2393. * Recover a dquot record
  2394. */
  2395. STATIC int
  2396. xlog_recover_do_dquot_trans(
  2397. xlog_t *log,
  2398. xlog_recover_item_t *item,
  2399. int pass)
  2400. {
  2401. xfs_mount_t *mp;
  2402. xfs_buf_t *bp;
  2403. struct xfs_disk_dquot *ddq, *recddq;
  2404. int error;
  2405. xfs_dq_logformat_t *dq_f;
  2406. uint type;
  2407. if (pass == XLOG_RECOVER_PASS1) {
  2408. return 0;
  2409. }
  2410. mp = log->l_mp;
  2411. /*
  2412. * Filesystems are required to send in quota flags at mount time.
  2413. */
  2414. if (mp->m_qflags == 0)
  2415. return (0);
  2416. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2417. ASSERT(recddq);
  2418. /*
  2419. * This type of quotas was turned off, so ignore this record.
  2420. */
  2421. type = INT_GET(recddq->d_flags, ARCH_CONVERT) &
  2422. (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2423. ASSERT(type);
  2424. if (log->l_quotaoffs_flag & type)
  2425. return (0);
  2426. /*
  2427. * At this point we know that quota was _not_ turned off.
  2428. * Since the mount flags are not indicating to us otherwise, this
  2429. * must mean that quota is on, and the dquot needs to be replayed.
  2430. * Remember that we may not have fully recovered the superblock yet,
  2431. * so we can't do the usual trick of looking at the SB quota bits.
  2432. *
  2433. * The other possibility, of course, is that the quota subsystem was
  2434. * removed since the last mount - ENOSYS.
  2435. */
  2436. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2437. ASSERT(dq_f);
  2438. if ((error = xfs_qm_dqcheck(recddq,
  2439. dq_f->qlf_id,
  2440. 0, XFS_QMOPT_DOWARN,
  2441. "xlog_recover_do_dquot_trans (log copy)"))) {
  2442. return XFS_ERROR(EIO);
  2443. }
  2444. ASSERT(dq_f->qlf_len == 1);
  2445. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2446. dq_f->qlf_blkno,
  2447. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2448. 0, &bp);
  2449. if (error) {
  2450. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2451. bp, dq_f->qlf_blkno);
  2452. return error;
  2453. }
  2454. ASSERT(bp);
  2455. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2456. /*
  2457. * At least the magic num portion should be on disk because this
  2458. * was among a chunk of dquots created earlier, and we did some
  2459. * minimal initialization then.
  2460. */
  2461. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2462. "xlog_recover_do_dquot_trans")) {
  2463. xfs_buf_relse(bp);
  2464. return XFS_ERROR(EIO);
  2465. }
  2466. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2467. ASSERT(dq_f->qlf_size == 2);
  2468. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2469. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2470. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2471. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2472. xfs_bdwrite(mp, bp);
  2473. return (0);
  2474. }
  2475. /*
  2476. * This routine is called to create an in-core extent free intent
  2477. * item from the efi format structure which was logged on disk.
  2478. * It allocates an in-core efi, copies the extents from the format
  2479. * structure into it, and adds the efi to the AIL with the given
  2480. * LSN.
  2481. */
  2482. STATIC int
  2483. xlog_recover_do_efi_trans(
  2484. xlog_t *log,
  2485. xlog_recover_item_t *item,
  2486. xfs_lsn_t lsn,
  2487. int pass)
  2488. {
  2489. int error;
  2490. xfs_mount_t *mp;
  2491. xfs_efi_log_item_t *efip;
  2492. xfs_efi_log_format_t *efi_formatp;
  2493. SPLDECL(s);
  2494. if (pass == XLOG_RECOVER_PASS1) {
  2495. return 0;
  2496. }
  2497. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2498. mp = log->l_mp;
  2499. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2500. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2501. &(efip->efi_format)))) {
  2502. xfs_efi_item_free(efip);
  2503. return error;
  2504. }
  2505. efip->efi_next_extent = efi_formatp->efi_nextents;
  2506. efip->efi_flags |= XFS_EFI_COMMITTED;
  2507. AIL_LOCK(mp,s);
  2508. /*
  2509. * xfs_trans_update_ail() drops the AIL lock.
  2510. */
  2511. xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn, s);
  2512. return 0;
  2513. }
  2514. /*
  2515. * This routine is called when an efd format structure is found in
  2516. * a committed transaction in the log. It's purpose is to cancel
  2517. * the corresponding efi if it was still in the log. To do this
  2518. * it searches the AIL for the efi with an id equal to that in the
  2519. * efd format structure. If we find it, we remove the efi from the
  2520. * AIL and free it.
  2521. */
  2522. STATIC void
  2523. xlog_recover_do_efd_trans(
  2524. xlog_t *log,
  2525. xlog_recover_item_t *item,
  2526. int pass)
  2527. {
  2528. xfs_mount_t *mp;
  2529. xfs_efd_log_format_t *efd_formatp;
  2530. xfs_efi_log_item_t *efip = NULL;
  2531. xfs_log_item_t *lip;
  2532. int gen;
  2533. __uint64_t efi_id;
  2534. SPLDECL(s);
  2535. if (pass == XLOG_RECOVER_PASS1) {
  2536. return;
  2537. }
  2538. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2539. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2540. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2541. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2542. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2543. efi_id = efd_formatp->efd_efi_id;
  2544. /*
  2545. * Search for the efi with the id in the efd format structure
  2546. * in the AIL.
  2547. */
  2548. mp = log->l_mp;
  2549. AIL_LOCK(mp,s);
  2550. lip = xfs_trans_first_ail(mp, &gen);
  2551. while (lip != NULL) {
  2552. if (lip->li_type == XFS_LI_EFI) {
  2553. efip = (xfs_efi_log_item_t *)lip;
  2554. if (efip->efi_format.efi_id == efi_id) {
  2555. /*
  2556. * xfs_trans_delete_ail() drops the
  2557. * AIL lock.
  2558. */
  2559. xfs_trans_delete_ail(mp, lip, s);
  2560. break;
  2561. }
  2562. }
  2563. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2564. }
  2565. /*
  2566. * If we found it, then free it up. If it wasn't there, it
  2567. * must have been overwritten in the log. Oh well.
  2568. */
  2569. if (lip != NULL) {
  2570. xfs_efi_item_free(efip);
  2571. } else {
  2572. AIL_UNLOCK(mp, s);
  2573. }
  2574. }
  2575. /*
  2576. * Perform the transaction
  2577. *
  2578. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2579. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2580. */
  2581. STATIC int
  2582. xlog_recover_do_trans(
  2583. xlog_t *log,
  2584. xlog_recover_t *trans,
  2585. int pass)
  2586. {
  2587. int error = 0;
  2588. xlog_recover_item_t *item, *first_item;
  2589. if ((error = xlog_recover_reorder_trans(log, trans)))
  2590. return error;
  2591. first_item = item = trans->r_itemq;
  2592. do {
  2593. /*
  2594. * we don't need to worry about the block number being
  2595. * truncated in > 1 TB buffers because in user-land,
  2596. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2597. * the blknos will get through the user-mode buffer
  2598. * cache properly. The only bad case is o32 kernels
  2599. * where xfs_daddr_t is 32-bits but mount will warn us
  2600. * off a > 1 TB filesystem before we get here.
  2601. */
  2602. if ((ITEM_TYPE(item) == XFS_LI_BUF) ||
  2603. (ITEM_TYPE(item) == XFS_LI_6_1_BUF) ||
  2604. (ITEM_TYPE(item) == XFS_LI_5_3_BUF)) {
  2605. if ((error = xlog_recover_do_buffer_trans(log, item,
  2606. pass)))
  2607. break;
  2608. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2609. if ((error = xlog_recover_do_inode_trans(log, item,
  2610. pass)))
  2611. break;
  2612. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2613. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2614. pass)))
  2615. break;
  2616. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2617. xlog_recover_do_efd_trans(log, item, pass);
  2618. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2619. if ((error = xlog_recover_do_dquot_trans(log, item,
  2620. pass)))
  2621. break;
  2622. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2623. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2624. pass)))
  2625. break;
  2626. } else {
  2627. xlog_warn("XFS: xlog_recover_do_trans");
  2628. ASSERT(0);
  2629. error = XFS_ERROR(EIO);
  2630. break;
  2631. }
  2632. item = item->ri_next;
  2633. } while (first_item != item);
  2634. return error;
  2635. }
  2636. /*
  2637. * Free up any resources allocated by the transaction
  2638. *
  2639. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2640. */
  2641. STATIC void
  2642. xlog_recover_free_trans(
  2643. xlog_recover_t *trans)
  2644. {
  2645. xlog_recover_item_t *first_item, *item, *free_item;
  2646. int i;
  2647. item = first_item = trans->r_itemq;
  2648. do {
  2649. free_item = item;
  2650. item = item->ri_next;
  2651. /* Free the regions in the item. */
  2652. for (i = 0; i < free_item->ri_cnt; i++) {
  2653. kmem_free(free_item->ri_buf[i].i_addr,
  2654. free_item->ri_buf[i].i_len);
  2655. }
  2656. /* Free the item itself */
  2657. kmem_free(free_item->ri_buf,
  2658. (free_item->ri_total * sizeof(xfs_log_iovec_t)));
  2659. kmem_free(free_item, sizeof(xlog_recover_item_t));
  2660. } while (first_item != item);
  2661. /* Free the transaction recover structure */
  2662. kmem_free(trans, sizeof(xlog_recover_t));
  2663. }
  2664. STATIC int
  2665. xlog_recover_commit_trans(
  2666. xlog_t *log,
  2667. xlog_recover_t **q,
  2668. xlog_recover_t *trans,
  2669. int pass)
  2670. {
  2671. int error;
  2672. if ((error = xlog_recover_unlink_tid(q, trans)))
  2673. return error;
  2674. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2675. return error;
  2676. xlog_recover_free_trans(trans); /* no error */
  2677. return 0;
  2678. }
  2679. STATIC int
  2680. xlog_recover_unmount_trans(
  2681. xlog_recover_t *trans)
  2682. {
  2683. /* Do nothing now */
  2684. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2685. return 0;
  2686. }
  2687. /*
  2688. * There are two valid states of the r_state field. 0 indicates that the
  2689. * transaction structure is in a normal state. We have either seen the
  2690. * start of the transaction or the last operation we added was not a partial
  2691. * operation. If the last operation we added to the transaction was a
  2692. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2693. *
  2694. * NOTE: skip LRs with 0 data length.
  2695. */
  2696. STATIC int
  2697. xlog_recover_process_data(
  2698. xlog_t *log,
  2699. xlog_recover_t *rhash[],
  2700. xlog_rec_header_t *rhead,
  2701. xfs_caddr_t dp,
  2702. int pass)
  2703. {
  2704. xfs_caddr_t lp;
  2705. int num_logops;
  2706. xlog_op_header_t *ohead;
  2707. xlog_recover_t *trans;
  2708. xlog_tid_t tid;
  2709. int error;
  2710. unsigned long hash;
  2711. uint flags;
  2712. lp = dp + INT_GET(rhead->h_len, ARCH_CONVERT);
  2713. num_logops = INT_GET(rhead->h_num_logops, ARCH_CONVERT);
  2714. /* check the log format matches our own - else we can't recover */
  2715. if (xlog_header_check_recover(log->l_mp, rhead))
  2716. return (XFS_ERROR(EIO));
  2717. while ((dp < lp) && num_logops) {
  2718. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2719. ohead = (xlog_op_header_t *)dp;
  2720. dp += sizeof(xlog_op_header_t);
  2721. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2722. ohead->oh_clientid != XFS_LOG) {
  2723. xlog_warn(
  2724. "XFS: xlog_recover_process_data: bad clientid");
  2725. ASSERT(0);
  2726. return (XFS_ERROR(EIO));
  2727. }
  2728. tid = INT_GET(ohead->oh_tid, ARCH_CONVERT);
  2729. hash = XLOG_RHASH(tid);
  2730. trans = xlog_recover_find_tid(rhash[hash], tid);
  2731. if (trans == NULL) { /* not found; add new tid */
  2732. if (ohead->oh_flags & XLOG_START_TRANS)
  2733. xlog_recover_new_tid(&rhash[hash], tid,
  2734. INT_GET(rhead->h_lsn, ARCH_CONVERT));
  2735. } else {
  2736. ASSERT(dp+INT_GET(ohead->oh_len, ARCH_CONVERT) <= lp);
  2737. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2738. if (flags & XLOG_WAS_CONT_TRANS)
  2739. flags &= ~XLOG_CONTINUE_TRANS;
  2740. switch (flags) {
  2741. case XLOG_COMMIT_TRANS:
  2742. error = xlog_recover_commit_trans(log,
  2743. &rhash[hash], trans, pass);
  2744. break;
  2745. case XLOG_UNMOUNT_TRANS:
  2746. error = xlog_recover_unmount_trans(trans);
  2747. break;
  2748. case XLOG_WAS_CONT_TRANS:
  2749. error = xlog_recover_add_to_cont_trans(trans,
  2750. dp, INT_GET(ohead->oh_len,
  2751. ARCH_CONVERT));
  2752. break;
  2753. case XLOG_START_TRANS:
  2754. xlog_warn(
  2755. "XFS: xlog_recover_process_data: bad transaction");
  2756. ASSERT(0);
  2757. error = XFS_ERROR(EIO);
  2758. break;
  2759. case 0:
  2760. case XLOG_CONTINUE_TRANS:
  2761. error = xlog_recover_add_to_trans(trans,
  2762. dp, INT_GET(ohead->oh_len,
  2763. ARCH_CONVERT));
  2764. break;
  2765. default:
  2766. xlog_warn(
  2767. "XFS: xlog_recover_process_data: bad flag");
  2768. ASSERT(0);
  2769. error = XFS_ERROR(EIO);
  2770. break;
  2771. }
  2772. if (error)
  2773. return error;
  2774. }
  2775. dp += INT_GET(ohead->oh_len, ARCH_CONVERT);
  2776. num_logops--;
  2777. }
  2778. return 0;
  2779. }
  2780. /*
  2781. * Process an extent free intent item that was recovered from
  2782. * the log. We need to free the extents that it describes.
  2783. */
  2784. STATIC void
  2785. xlog_recover_process_efi(
  2786. xfs_mount_t *mp,
  2787. xfs_efi_log_item_t *efip)
  2788. {
  2789. xfs_efd_log_item_t *efdp;
  2790. xfs_trans_t *tp;
  2791. int i;
  2792. xfs_extent_t *extp;
  2793. xfs_fsblock_t startblock_fsb;
  2794. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2795. /*
  2796. * First check the validity of the extents described by the
  2797. * EFI. If any are bad, then assume that all are bad and
  2798. * just toss the EFI.
  2799. */
  2800. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2801. extp = &(efip->efi_format.efi_extents[i]);
  2802. startblock_fsb = XFS_BB_TO_FSB(mp,
  2803. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2804. if ((startblock_fsb == 0) ||
  2805. (extp->ext_len == 0) ||
  2806. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2807. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2808. /*
  2809. * This will pull the EFI from the AIL and
  2810. * free the memory associated with it.
  2811. */
  2812. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2813. return;
  2814. }
  2815. }
  2816. tp = xfs_trans_alloc(mp, 0);
  2817. xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2818. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2819. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2820. extp = &(efip->efi_format.efi_extents[i]);
  2821. xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2822. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2823. extp->ext_len);
  2824. }
  2825. efip->efi_flags |= XFS_EFI_RECOVERED;
  2826. xfs_trans_commit(tp, 0, NULL);
  2827. }
  2828. /*
  2829. * Verify that once we've encountered something other than an EFI
  2830. * in the AIL that there are no more EFIs in the AIL.
  2831. */
  2832. #if defined(DEBUG)
  2833. STATIC void
  2834. xlog_recover_check_ail(
  2835. xfs_mount_t *mp,
  2836. xfs_log_item_t *lip,
  2837. int gen)
  2838. {
  2839. int orig_gen = gen;
  2840. do {
  2841. ASSERT(lip->li_type != XFS_LI_EFI);
  2842. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2843. /*
  2844. * The check will be bogus if we restart from the
  2845. * beginning of the AIL, so ASSERT that we don't.
  2846. * We never should since we're holding the AIL lock
  2847. * the entire time.
  2848. */
  2849. ASSERT(gen == orig_gen);
  2850. } while (lip != NULL);
  2851. }
  2852. #endif /* DEBUG */
  2853. /*
  2854. * When this is called, all of the EFIs which did not have
  2855. * corresponding EFDs should be in the AIL. What we do now
  2856. * is free the extents associated with each one.
  2857. *
  2858. * Since we process the EFIs in normal transactions, they
  2859. * will be removed at some point after the commit. This prevents
  2860. * us from just walking down the list processing each one.
  2861. * We'll use a flag in the EFI to skip those that we've already
  2862. * processed and use the AIL iteration mechanism's generation
  2863. * count to try to speed this up at least a bit.
  2864. *
  2865. * When we start, we know that the EFIs are the only things in
  2866. * the AIL. As we process them, however, other items are added
  2867. * to the AIL. Since everything added to the AIL must come after
  2868. * everything already in the AIL, we stop processing as soon as
  2869. * we see something other than an EFI in the AIL.
  2870. */
  2871. STATIC void
  2872. xlog_recover_process_efis(
  2873. xlog_t *log)
  2874. {
  2875. xfs_log_item_t *lip;
  2876. xfs_efi_log_item_t *efip;
  2877. int gen;
  2878. xfs_mount_t *mp;
  2879. SPLDECL(s);
  2880. mp = log->l_mp;
  2881. AIL_LOCK(mp,s);
  2882. lip = xfs_trans_first_ail(mp, &gen);
  2883. while (lip != NULL) {
  2884. /*
  2885. * We're done when we see something other than an EFI.
  2886. */
  2887. if (lip->li_type != XFS_LI_EFI) {
  2888. xlog_recover_check_ail(mp, lip, gen);
  2889. break;
  2890. }
  2891. /*
  2892. * Skip EFIs that we've already processed.
  2893. */
  2894. efip = (xfs_efi_log_item_t *)lip;
  2895. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2896. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2897. continue;
  2898. }
  2899. AIL_UNLOCK(mp, s);
  2900. xlog_recover_process_efi(mp, efip);
  2901. AIL_LOCK(mp,s);
  2902. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2903. }
  2904. AIL_UNLOCK(mp, s);
  2905. }
  2906. /*
  2907. * This routine performs a transaction to null out a bad inode pointer
  2908. * in an agi unlinked inode hash bucket.
  2909. */
  2910. STATIC void
  2911. xlog_recover_clear_agi_bucket(
  2912. xfs_mount_t *mp,
  2913. xfs_agnumber_t agno,
  2914. int bucket)
  2915. {
  2916. xfs_trans_t *tp;
  2917. xfs_agi_t *agi;
  2918. xfs_buf_t *agibp;
  2919. int offset;
  2920. int error;
  2921. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2922. xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
  2923. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
  2924. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2925. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  2926. if (error) {
  2927. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2928. return;
  2929. }
  2930. agi = XFS_BUF_TO_AGI(agibp);
  2931. if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC) {
  2932. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2933. return;
  2934. }
  2935. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2936. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2937. (sizeof(xfs_agino_t) * bucket);
  2938. xfs_trans_log_buf(tp, agibp, offset,
  2939. (offset + sizeof(xfs_agino_t) - 1));
  2940. (void) xfs_trans_commit(tp, 0, NULL);
  2941. }
  2942. /*
  2943. * xlog_iunlink_recover
  2944. *
  2945. * This is called during recovery to process any inodes which
  2946. * we unlinked but not freed when the system crashed. These
  2947. * inodes will be on the lists in the AGI blocks. What we do
  2948. * here is scan all the AGIs and fully truncate and free any
  2949. * inodes found on the lists. Each inode is removed from the
  2950. * lists when it has been fully truncated and is freed. The
  2951. * freeing of the inode and its removal from the list must be
  2952. * atomic.
  2953. */
  2954. void
  2955. xlog_recover_process_iunlinks(
  2956. xlog_t *log)
  2957. {
  2958. xfs_mount_t *mp;
  2959. xfs_agnumber_t agno;
  2960. xfs_agi_t *agi;
  2961. xfs_buf_t *agibp;
  2962. xfs_buf_t *ibp;
  2963. xfs_dinode_t *dip;
  2964. xfs_inode_t *ip;
  2965. xfs_agino_t agino;
  2966. xfs_ino_t ino;
  2967. int bucket;
  2968. int error;
  2969. uint mp_dmevmask;
  2970. mp = log->l_mp;
  2971. /*
  2972. * Prevent any DMAPI event from being sent while in this function.
  2973. */
  2974. mp_dmevmask = mp->m_dmevmask;
  2975. mp->m_dmevmask = 0;
  2976. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2977. /*
  2978. * Find the agi for this ag.
  2979. */
  2980. agibp = xfs_buf_read(mp->m_ddev_targp,
  2981. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2982. XFS_FSS_TO_BB(mp, 1), 0);
  2983. if (XFS_BUF_ISERROR(agibp)) {
  2984. xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
  2985. log->l_mp, agibp,
  2986. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
  2987. }
  2988. agi = XFS_BUF_TO_AGI(agibp);
  2989. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
  2990. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2991. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2992. while (agino != NULLAGINO) {
  2993. /*
  2994. * Release the agi buffer so that it can
  2995. * be acquired in the normal course of the
  2996. * transaction to truncate and free the inode.
  2997. */
  2998. xfs_buf_relse(agibp);
  2999. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  3000. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  3001. ASSERT(error || (ip != NULL));
  3002. if (!error) {
  3003. /*
  3004. * Get the on disk inode to find the
  3005. * next inode in the bucket.
  3006. */
  3007. error = xfs_itobp(mp, NULL, ip, &dip,
  3008. &ibp, 0, 0);
  3009. ASSERT(error || (dip != NULL));
  3010. }
  3011. if (!error) {
  3012. ASSERT(ip->i_d.di_nlink == 0);
  3013. /* setup for the next pass */
  3014. agino = INT_GET(dip->di_next_unlinked,
  3015. ARCH_CONVERT);
  3016. xfs_buf_relse(ibp);
  3017. /*
  3018. * Prevent any DMAPI event from
  3019. * being sent when the
  3020. * reference on the inode is
  3021. * dropped.
  3022. */
  3023. ip->i_d.di_dmevmask = 0;
  3024. /*
  3025. * If this is a new inode, handle
  3026. * it specially. Otherwise,
  3027. * just drop our reference to the
  3028. * inode. If there are no
  3029. * other references, this will
  3030. * send the inode to
  3031. * xfs_inactive() which will
  3032. * truncate the file and free
  3033. * the inode.
  3034. */
  3035. if (ip->i_d.di_mode == 0)
  3036. xfs_iput_new(ip, 0);
  3037. else
  3038. VN_RELE(XFS_ITOV(ip));
  3039. } else {
  3040. /*
  3041. * We can't read in the inode
  3042. * this bucket points to, or
  3043. * this inode is messed up. Just
  3044. * ditch this bucket of inodes. We
  3045. * will lose some inodes and space,
  3046. * but at least we won't hang. Call
  3047. * xlog_recover_clear_agi_bucket()
  3048. * to perform a transaction to clear
  3049. * the inode pointer in the bucket.
  3050. */
  3051. xlog_recover_clear_agi_bucket(mp, agno,
  3052. bucket);
  3053. agino = NULLAGINO;
  3054. }
  3055. /*
  3056. * Reacquire the agibuffer and continue around
  3057. * the loop.
  3058. */
  3059. agibp = xfs_buf_read(mp->m_ddev_targp,
  3060. XFS_AG_DADDR(mp, agno,
  3061. XFS_AGI_DADDR(mp)),
  3062. XFS_FSS_TO_BB(mp, 1), 0);
  3063. if (XFS_BUF_ISERROR(agibp)) {
  3064. xfs_ioerror_alert(
  3065. "xlog_recover_process_iunlinks(#2)",
  3066. log->l_mp, agibp,
  3067. XFS_AG_DADDR(mp, agno,
  3068. XFS_AGI_DADDR(mp)));
  3069. }
  3070. agi = XFS_BUF_TO_AGI(agibp);
  3071. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
  3072. agi->agi_magicnum));
  3073. }
  3074. }
  3075. /*
  3076. * Release the buffer for the current agi so we can
  3077. * go on to the next one.
  3078. */
  3079. xfs_buf_relse(agibp);
  3080. }
  3081. mp->m_dmevmask = mp_dmevmask;
  3082. }
  3083. #ifdef DEBUG
  3084. STATIC void
  3085. xlog_pack_data_checksum(
  3086. xlog_t *log,
  3087. xlog_in_core_t *iclog,
  3088. int size)
  3089. {
  3090. int i;
  3091. uint *up;
  3092. uint chksum = 0;
  3093. up = (uint *)iclog->ic_datap;
  3094. /* divide length by 4 to get # words */
  3095. for (i = 0; i < (size >> 2); i++) {
  3096. chksum ^= INT_GET(*up, ARCH_CONVERT);
  3097. up++;
  3098. }
  3099. INT_SET(iclog->ic_header.h_chksum, ARCH_CONVERT, chksum);
  3100. }
  3101. #else
  3102. #define xlog_pack_data_checksum(log, iclog, size)
  3103. #endif
  3104. /*
  3105. * Stamp cycle number in every block
  3106. */
  3107. void
  3108. xlog_pack_data(
  3109. xlog_t *log,
  3110. xlog_in_core_t *iclog,
  3111. int roundoff)
  3112. {
  3113. int i, j, k;
  3114. int size = iclog->ic_offset + roundoff;
  3115. uint cycle_lsn;
  3116. xfs_caddr_t dp;
  3117. xlog_in_core_2_t *xhdr;
  3118. xlog_pack_data_checksum(log, iclog, size);
  3119. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3120. dp = iclog->ic_datap;
  3121. for (i = 0; i < BTOBB(size) &&
  3122. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3123. iclog->ic_header.h_cycle_data[i] = *(uint *)dp;
  3124. *(uint *)dp = cycle_lsn;
  3125. dp += BBSIZE;
  3126. }
  3127. if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
  3128. xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
  3129. for ( ; i < BTOBB(size); i++) {
  3130. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3131. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3132. xhdr[j].hic_xheader.xh_cycle_data[k] = *(uint *)dp;
  3133. *(uint *)dp = cycle_lsn;
  3134. dp += BBSIZE;
  3135. }
  3136. for (i = 1; i < log->l_iclog_heads; i++) {
  3137. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3138. }
  3139. }
  3140. }
  3141. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3142. STATIC void
  3143. xlog_unpack_data_checksum(
  3144. xlog_rec_header_t *rhead,
  3145. xfs_caddr_t dp,
  3146. xlog_t *log)
  3147. {
  3148. uint *up = (uint *)dp;
  3149. uint chksum = 0;
  3150. int i;
  3151. /* divide length by 4 to get # words */
  3152. for (i=0; i < INT_GET(rhead->h_len, ARCH_CONVERT) >> 2; i++) {
  3153. chksum ^= INT_GET(*up, ARCH_CONVERT);
  3154. up++;
  3155. }
  3156. if (chksum != INT_GET(rhead->h_chksum, ARCH_CONVERT)) {
  3157. if (rhead->h_chksum ||
  3158. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3159. cmn_err(CE_DEBUG,
  3160. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3161. INT_GET(rhead->h_chksum, ARCH_CONVERT), chksum);
  3162. cmn_err(CE_DEBUG,
  3163. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3164. if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
  3165. cmn_err(CE_DEBUG,
  3166. "XFS: LogR this is a LogV2 filesystem\n");
  3167. }
  3168. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3169. }
  3170. }
  3171. }
  3172. #else
  3173. #define xlog_unpack_data_checksum(rhead, dp, log)
  3174. #endif
  3175. STATIC void
  3176. xlog_unpack_data(
  3177. xlog_rec_header_t *rhead,
  3178. xfs_caddr_t dp,
  3179. xlog_t *log)
  3180. {
  3181. int i, j, k;
  3182. xlog_in_core_2_t *xhdr;
  3183. for (i = 0; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)) &&
  3184. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3185. *(uint *)dp = *(uint *)&rhead->h_cycle_data[i];
  3186. dp += BBSIZE;
  3187. }
  3188. if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
  3189. xhdr = (xlog_in_core_2_t *)rhead;
  3190. for ( ; i < BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT)); i++) {
  3191. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3192. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3193. *(uint *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3194. dp += BBSIZE;
  3195. }
  3196. }
  3197. xlog_unpack_data_checksum(rhead, dp, log);
  3198. }
  3199. STATIC int
  3200. xlog_valid_rec_header(
  3201. xlog_t *log,
  3202. xlog_rec_header_t *rhead,
  3203. xfs_daddr_t blkno)
  3204. {
  3205. int hlen;
  3206. if (unlikely(
  3207. (INT_GET(rhead->h_magicno, ARCH_CONVERT) !=
  3208. XLOG_HEADER_MAGIC_NUM))) {
  3209. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3210. XFS_ERRLEVEL_LOW, log->l_mp);
  3211. return XFS_ERROR(EFSCORRUPTED);
  3212. }
  3213. if (unlikely(
  3214. (!rhead->h_version ||
  3215. (INT_GET(rhead->h_version, ARCH_CONVERT) &
  3216. (~XLOG_VERSION_OKBITS)) != 0))) {
  3217. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3218. __FUNCTION__, INT_GET(rhead->h_version, ARCH_CONVERT));
  3219. return XFS_ERROR(EIO);
  3220. }
  3221. /* LR body must have data or it wouldn't have been written */
  3222. hlen = INT_GET(rhead->h_len, ARCH_CONVERT);
  3223. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3224. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3225. XFS_ERRLEVEL_LOW, log->l_mp);
  3226. return XFS_ERROR(EFSCORRUPTED);
  3227. }
  3228. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3229. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3230. XFS_ERRLEVEL_LOW, log->l_mp);
  3231. return XFS_ERROR(EFSCORRUPTED);
  3232. }
  3233. return 0;
  3234. }
  3235. /*
  3236. * Read the log from tail to head and process the log records found.
  3237. * Handle the two cases where the tail and head are in the same cycle
  3238. * and where the active portion of the log wraps around the end of
  3239. * the physical log separately. The pass parameter is passed through
  3240. * to the routines called to process the data and is not looked at
  3241. * here.
  3242. */
  3243. STATIC int
  3244. xlog_do_recovery_pass(
  3245. xlog_t *log,
  3246. xfs_daddr_t head_blk,
  3247. xfs_daddr_t tail_blk,
  3248. int pass)
  3249. {
  3250. xlog_rec_header_t *rhead;
  3251. xfs_daddr_t blk_no;
  3252. xfs_caddr_t bufaddr, offset;
  3253. xfs_buf_t *hbp, *dbp;
  3254. int error = 0, h_size;
  3255. int bblks, split_bblks;
  3256. int hblks, split_hblks, wrapped_hblks;
  3257. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3258. ASSERT(head_blk != tail_blk);
  3259. /*
  3260. * Read the header of the tail block and get the iclog buffer size from
  3261. * h_size. Use this to tell how many sectors make up the log header.
  3262. */
  3263. if (XFS_SB_VERSION_HASLOGV2(&log->l_mp->m_sb)) {
  3264. /*
  3265. * When using variable length iclogs, read first sector of
  3266. * iclog header and extract the header size from it. Get a
  3267. * new hbp that is the correct size.
  3268. */
  3269. hbp = xlog_get_bp(log, 1);
  3270. if (!hbp)
  3271. return ENOMEM;
  3272. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3273. goto bread_err1;
  3274. offset = xlog_align(log, tail_blk, 1, hbp);
  3275. rhead = (xlog_rec_header_t *)offset;
  3276. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3277. if (error)
  3278. goto bread_err1;
  3279. h_size = INT_GET(rhead->h_size, ARCH_CONVERT);
  3280. if ((INT_GET(rhead->h_version, ARCH_CONVERT)
  3281. & XLOG_VERSION_2) &&
  3282. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3283. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3284. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3285. hblks++;
  3286. xlog_put_bp(hbp);
  3287. hbp = xlog_get_bp(log, hblks);
  3288. } else {
  3289. hblks = 1;
  3290. }
  3291. } else {
  3292. ASSERT(log->l_sectbb_log == 0);
  3293. hblks = 1;
  3294. hbp = xlog_get_bp(log, 1);
  3295. h_size = XLOG_BIG_RECORD_BSIZE;
  3296. }
  3297. if (!hbp)
  3298. return ENOMEM;
  3299. dbp = xlog_get_bp(log, BTOBB(h_size));
  3300. if (!dbp) {
  3301. xlog_put_bp(hbp);
  3302. return ENOMEM;
  3303. }
  3304. memset(rhash, 0, sizeof(rhash));
  3305. if (tail_blk <= head_blk) {
  3306. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3307. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3308. goto bread_err2;
  3309. offset = xlog_align(log, blk_no, hblks, hbp);
  3310. rhead = (xlog_rec_header_t *)offset;
  3311. error = xlog_valid_rec_header(log, rhead, blk_no);
  3312. if (error)
  3313. goto bread_err2;
  3314. /* blocks in data section */
  3315. bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
  3316. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3317. if (error)
  3318. goto bread_err2;
  3319. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3320. xlog_unpack_data(rhead, offset, log);
  3321. if ((error = xlog_recover_process_data(log,
  3322. rhash, rhead, offset, pass)))
  3323. goto bread_err2;
  3324. blk_no += bblks + hblks;
  3325. }
  3326. } else {
  3327. /*
  3328. * Perform recovery around the end of the physical log.
  3329. * When the head is not on the same cycle number as the tail,
  3330. * we can't do a sequential recovery as above.
  3331. */
  3332. blk_no = tail_blk;
  3333. while (blk_no < log->l_logBBsize) {
  3334. /*
  3335. * Check for header wrapping around physical end-of-log
  3336. */
  3337. offset = NULL;
  3338. split_hblks = 0;
  3339. wrapped_hblks = 0;
  3340. if (blk_no + hblks <= log->l_logBBsize) {
  3341. /* Read header in one read */
  3342. error = xlog_bread(log, blk_no, hblks, hbp);
  3343. if (error)
  3344. goto bread_err2;
  3345. offset = xlog_align(log, blk_no, hblks, hbp);
  3346. } else {
  3347. /* This LR is split across physical log end */
  3348. if (blk_no != log->l_logBBsize) {
  3349. /* some data before physical log end */
  3350. ASSERT(blk_no <= INT_MAX);
  3351. split_hblks = log->l_logBBsize - (int)blk_no;
  3352. ASSERT(split_hblks > 0);
  3353. if ((error = xlog_bread(log, blk_no,
  3354. split_hblks, hbp)))
  3355. goto bread_err2;
  3356. offset = xlog_align(log, blk_no,
  3357. split_hblks, hbp);
  3358. }
  3359. /*
  3360. * Note: this black magic still works with
  3361. * large sector sizes (non-512) only because:
  3362. * - we increased the buffer size originally
  3363. * by 1 sector giving us enough extra space
  3364. * for the second read;
  3365. * - the log start is guaranteed to be sector
  3366. * aligned;
  3367. * - we read the log end (LR header start)
  3368. * _first_, then the log start (LR header end)
  3369. * - order is important.
  3370. */
  3371. bufaddr = XFS_BUF_PTR(hbp);
  3372. XFS_BUF_SET_PTR(hbp,
  3373. bufaddr + BBTOB(split_hblks),
  3374. BBTOB(hblks - split_hblks));
  3375. wrapped_hblks = hblks - split_hblks;
  3376. error = xlog_bread(log, 0, wrapped_hblks, hbp);
  3377. if (error)
  3378. goto bread_err2;
  3379. XFS_BUF_SET_PTR(hbp, bufaddr, BBTOB(hblks));
  3380. if (!offset)
  3381. offset = xlog_align(log, 0,
  3382. wrapped_hblks, hbp);
  3383. }
  3384. rhead = (xlog_rec_header_t *)offset;
  3385. error = xlog_valid_rec_header(log, rhead,
  3386. split_hblks ? blk_no : 0);
  3387. if (error)
  3388. goto bread_err2;
  3389. bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
  3390. blk_no += hblks;
  3391. /* Read in data for log record */
  3392. if (blk_no + bblks <= log->l_logBBsize) {
  3393. error = xlog_bread(log, blk_no, bblks, dbp);
  3394. if (error)
  3395. goto bread_err2;
  3396. offset = xlog_align(log, blk_no, bblks, dbp);
  3397. } else {
  3398. /* This log record is split across the
  3399. * physical end of log */
  3400. offset = NULL;
  3401. split_bblks = 0;
  3402. if (blk_no != log->l_logBBsize) {
  3403. /* some data is before the physical
  3404. * end of log */
  3405. ASSERT(!wrapped_hblks);
  3406. ASSERT(blk_no <= INT_MAX);
  3407. split_bblks =
  3408. log->l_logBBsize - (int)blk_no;
  3409. ASSERT(split_bblks > 0);
  3410. if ((error = xlog_bread(log, blk_no,
  3411. split_bblks, dbp)))
  3412. goto bread_err2;
  3413. offset = xlog_align(log, blk_no,
  3414. split_bblks, dbp);
  3415. }
  3416. /*
  3417. * Note: this black magic still works with
  3418. * large sector sizes (non-512) only because:
  3419. * - we increased the buffer size originally
  3420. * by 1 sector giving us enough extra space
  3421. * for the second read;
  3422. * - the log start is guaranteed to be sector
  3423. * aligned;
  3424. * - we read the log end (LR header start)
  3425. * _first_, then the log start (LR header end)
  3426. * - order is important.
  3427. */
  3428. bufaddr = XFS_BUF_PTR(dbp);
  3429. XFS_BUF_SET_PTR(dbp,
  3430. bufaddr + BBTOB(split_bblks),
  3431. BBTOB(bblks - split_bblks));
  3432. if ((error = xlog_bread(log, wrapped_hblks,
  3433. bblks - split_bblks, dbp)))
  3434. goto bread_err2;
  3435. XFS_BUF_SET_PTR(dbp, bufaddr, h_size);
  3436. if (!offset)
  3437. offset = xlog_align(log, wrapped_hblks,
  3438. bblks - split_bblks, dbp);
  3439. }
  3440. xlog_unpack_data(rhead, offset, log);
  3441. if ((error = xlog_recover_process_data(log, rhash,
  3442. rhead, offset, pass)))
  3443. goto bread_err2;
  3444. blk_no += bblks;
  3445. }
  3446. ASSERT(blk_no >= log->l_logBBsize);
  3447. blk_no -= log->l_logBBsize;
  3448. /* read first part of physical log */
  3449. while (blk_no < head_blk) {
  3450. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3451. goto bread_err2;
  3452. offset = xlog_align(log, blk_no, hblks, hbp);
  3453. rhead = (xlog_rec_header_t *)offset;
  3454. error = xlog_valid_rec_header(log, rhead, blk_no);
  3455. if (error)
  3456. goto bread_err2;
  3457. bblks = (int)BTOBB(INT_GET(rhead->h_len, ARCH_CONVERT));
  3458. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3459. goto bread_err2;
  3460. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3461. xlog_unpack_data(rhead, offset, log);
  3462. if ((error = xlog_recover_process_data(log, rhash,
  3463. rhead, offset, pass)))
  3464. goto bread_err2;
  3465. blk_no += bblks + hblks;
  3466. }
  3467. }
  3468. bread_err2:
  3469. xlog_put_bp(dbp);
  3470. bread_err1:
  3471. xlog_put_bp(hbp);
  3472. return error;
  3473. }
  3474. /*
  3475. * Do the recovery of the log. We actually do this in two phases.
  3476. * The two passes are necessary in order to implement the function
  3477. * of cancelling a record written into the log. The first pass
  3478. * determines those things which have been cancelled, and the
  3479. * second pass replays log items normally except for those which
  3480. * have been cancelled. The handling of the replay and cancellations
  3481. * takes place in the log item type specific routines.
  3482. *
  3483. * The table of items which have cancel records in the log is allocated
  3484. * and freed at this level, since only here do we know when all of
  3485. * the log recovery has been completed.
  3486. */
  3487. STATIC int
  3488. xlog_do_log_recovery(
  3489. xlog_t *log,
  3490. xfs_daddr_t head_blk,
  3491. xfs_daddr_t tail_blk)
  3492. {
  3493. int error;
  3494. ASSERT(head_blk != tail_blk);
  3495. /*
  3496. * First do a pass to find all of the cancelled buf log items.
  3497. * Store them in the buf_cancel_table for use in the second pass.
  3498. */
  3499. log->l_buf_cancel_table =
  3500. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3501. sizeof(xfs_buf_cancel_t*),
  3502. KM_SLEEP);
  3503. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3504. XLOG_RECOVER_PASS1);
  3505. if (error != 0) {
  3506. kmem_free(log->l_buf_cancel_table,
  3507. XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
  3508. log->l_buf_cancel_table = NULL;
  3509. return error;
  3510. }
  3511. /*
  3512. * Then do a second pass to actually recover the items in the log.
  3513. * When it is complete free the table of buf cancel items.
  3514. */
  3515. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3516. XLOG_RECOVER_PASS2);
  3517. #ifdef DEBUG
  3518. if (!error) {
  3519. int i;
  3520. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3521. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3522. }
  3523. #endif /* DEBUG */
  3524. kmem_free(log->l_buf_cancel_table,
  3525. XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
  3526. log->l_buf_cancel_table = NULL;
  3527. return error;
  3528. }
  3529. /*
  3530. * Do the actual recovery
  3531. */
  3532. STATIC int
  3533. xlog_do_recover(
  3534. xlog_t *log,
  3535. xfs_daddr_t head_blk,
  3536. xfs_daddr_t tail_blk)
  3537. {
  3538. int error;
  3539. xfs_buf_t *bp;
  3540. xfs_sb_t *sbp;
  3541. /*
  3542. * First replay the images in the log.
  3543. */
  3544. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3545. if (error) {
  3546. return error;
  3547. }
  3548. XFS_bflush(log->l_mp->m_ddev_targp);
  3549. /*
  3550. * If IO errors happened during recovery, bail out.
  3551. */
  3552. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3553. return (EIO);
  3554. }
  3555. /*
  3556. * We now update the tail_lsn since much of the recovery has completed
  3557. * and there may be space available to use. If there were no extent
  3558. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3559. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3560. * lsn of the last known good LR on disk. If there are extent frees
  3561. * or iunlinks they will have some entries in the AIL; so we look at
  3562. * the AIL to determine how to set the tail_lsn.
  3563. */
  3564. xlog_assign_tail_lsn(log->l_mp);
  3565. /*
  3566. * Now that we've finished replaying all buffer and inode
  3567. * updates, re-read in the superblock.
  3568. */
  3569. bp = xfs_getsb(log->l_mp, 0);
  3570. XFS_BUF_UNDONE(bp);
  3571. XFS_BUF_READ(bp);
  3572. xfsbdstrat(log->l_mp, bp);
  3573. if ((error = xfs_iowait(bp))) {
  3574. xfs_ioerror_alert("xlog_do_recover",
  3575. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3576. ASSERT(0);
  3577. xfs_buf_relse(bp);
  3578. return error;
  3579. }
  3580. /* Convert superblock from on-disk format */
  3581. sbp = &log->l_mp->m_sb;
  3582. xfs_xlatesb(XFS_BUF_TO_SBP(bp), sbp, 1, XFS_SB_ALL_BITS);
  3583. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3584. ASSERT(XFS_SB_GOOD_VERSION(sbp));
  3585. xfs_buf_relse(bp);
  3586. xlog_recover_check_summary(log);
  3587. /* Normal transactions can now occur */
  3588. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3589. return 0;
  3590. }
  3591. /*
  3592. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3593. *
  3594. * Return error or zero.
  3595. */
  3596. int
  3597. xlog_recover(
  3598. xlog_t *log)
  3599. {
  3600. xfs_daddr_t head_blk, tail_blk;
  3601. int error;
  3602. /* find the tail of the log */
  3603. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3604. return error;
  3605. if (tail_blk != head_blk) {
  3606. /* There used to be a comment here:
  3607. *
  3608. * disallow recovery on read-only mounts. note -- mount
  3609. * checks for ENOSPC and turns it into an intelligent
  3610. * error message.
  3611. * ...but this is no longer true. Now, unless you specify
  3612. * NORECOVERY (in which case this function would never be
  3613. * called), we just go ahead and recover. We do this all
  3614. * under the vfs layer, so we can get away with it unless
  3615. * the device itself is read-only, in which case we fail.
  3616. */
  3617. if ((error = xfs_dev_is_read_only(log->l_mp,
  3618. "recovery required"))) {
  3619. return error;
  3620. }
  3621. cmn_err(CE_NOTE,
  3622. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3623. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3624. log->l_mp->m_logname : "internal");
  3625. error = xlog_do_recover(log, head_blk, tail_blk);
  3626. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3627. }
  3628. return error;
  3629. }
  3630. /*
  3631. * In the first part of recovery we replay inodes and buffers and build
  3632. * up the list of extent free items which need to be processed. Here
  3633. * we process the extent free items and clean up the on disk unlinked
  3634. * inode lists. This is separated from the first part of recovery so
  3635. * that the root and real-time bitmap inodes can be read in from disk in
  3636. * between the two stages. This is necessary so that we can free space
  3637. * in the real-time portion of the file system.
  3638. */
  3639. int
  3640. xlog_recover_finish(
  3641. xlog_t *log,
  3642. int mfsi_flags)
  3643. {
  3644. /*
  3645. * Now we're ready to do the transactions needed for the
  3646. * rest of recovery. Start with completing all the extent
  3647. * free intent records and then process the unlinked inode
  3648. * lists. At this point, we essentially run in normal mode
  3649. * except that we're still performing recovery actions
  3650. * rather than accepting new requests.
  3651. */
  3652. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3653. xlog_recover_process_efis(log);
  3654. /*
  3655. * Sync the log to get all the EFIs out of the AIL.
  3656. * This isn't absolutely necessary, but it helps in
  3657. * case the unlink transactions would have problems
  3658. * pushing the EFIs out of the way.
  3659. */
  3660. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3661. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3662. if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
  3663. xlog_recover_process_iunlinks(log);
  3664. }
  3665. xlog_recover_check_summary(log);
  3666. cmn_err(CE_NOTE,
  3667. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3668. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3669. log->l_mp->m_logname : "internal");
  3670. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3671. } else {
  3672. cmn_err(CE_DEBUG,
  3673. "!Ending clean XFS mount for filesystem: %s\n",
  3674. log->l_mp->m_fsname);
  3675. }
  3676. return 0;
  3677. }
  3678. #if defined(DEBUG)
  3679. /*
  3680. * Read all of the agf and agi counters and check that they
  3681. * are consistent with the superblock counters.
  3682. */
  3683. void
  3684. xlog_recover_check_summary(
  3685. xlog_t *log)
  3686. {
  3687. xfs_mount_t *mp;
  3688. xfs_agf_t *agfp;
  3689. xfs_agi_t *agip;
  3690. xfs_buf_t *agfbp;
  3691. xfs_buf_t *agibp;
  3692. xfs_daddr_t agfdaddr;
  3693. xfs_daddr_t agidaddr;
  3694. xfs_buf_t *sbbp;
  3695. #ifdef XFS_LOUD_RECOVERY
  3696. xfs_sb_t *sbp;
  3697. #endif
  3698. xfs_agnumber_t agno;
  3699. __uint64_t freeblks;
  3700. __uint64_t itotal;
  3701. __uint64_t ifree;
  3702. mp = log->l_mp;
  3703. freeblks = 0LL;
  3704. itotal = 0LL;
  3705. ifree = 0LL;
  3706. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3707. agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
  3708. agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
  3709. XFS_FSS_TO_BB(mp, 1), 0);
  3710. if (XFS_BUF_ISERROR(agfbp)) {
  3711. xfs_ioerror_alert("xlog_recover_check_summary(agf)",
  3712. mp, agfbp, agfdaddr);
  3713. }
  3714. agfp = XFS_BUF_TO_AGF(agfbp);
  3715. ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
  3716. ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
  3717. ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
  3718. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3719. be32_to_cpu(agfp->agf_flcount);
  3720. xfs_buf_relse(agfbp);
  3721. agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  3722. agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
  3723. XFS_FSS_TO_BB(mp, 1), 0);
  3724. if (XFS_BUF_ISERROR(agibp)) {
  3725. xfs_ioerror_alert("xlog_recover_check_summary(agi)",
  3726. mp, agibp, agidaddr);
  3727. }
  3728. agip = XFS_BUF_TO_AGI(agibp);
  3729. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
  3730. ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
  3731. ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
  3732. itotal += be32_to_cpu(agip->agi_count);
  3733. ifree += be32_to_cpu(agip->agi_freecount);
  3734. xfs_buf_relse(agibp);
  3735. }
  3736. sbbp = xfs_getsb(mp, 0);
  3737. #ifdef XFS_LOUD_RECOVERY
  3738. sbp = &mp->m_sb;
  3739. xfs_xlatesb(XFS_BUF_TO_SBP(sbbp), sbp, 1, XFS_SB_ALL_BITS);
  3740. cmn_err(CE_NOTE,
  3741. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3742. sbp->sb_icount, itotal);
  3743. cmn_err(CE_NOTE,
  3744. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3745. sbp->sb_ifree, ifree);
  3746. cmn_err(CE_NOTE,
  3747. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3748. sbp->sb_fdblocks, freeblks);
  3749. #if 0
  3750. /*
  3751. * This is turned off until I account for the allocation
  3752. * btree blocks which live in free space.
  3753. */
  3754. ASSERT(sbp->sb_icount == itotal);
  3755. ASSERT(sbp->sb_ifree == ifree);
  3756. ASSERT(sbp->sb_fdblocks == freeblks);
  3757. #endif
  3758. #endif
  3759. xfs_buf_relse(sbbp);
  3760. }
  3761. #endif /* DEBUG */