cpu.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
  1. /* CPU control.
  2. * (C) 2001, 2002, 2003, 2004 Rusty Russell
  3. *
  4. * This code is licenced under the GPL.
  5. */
  6. #include <linux/proc_fs.h>
  7. #include <linux/smp.h>
  8. #include <linux/init.h>
  9. #include <linux/notifier.h>
  10. #include <linux/sched.h>
  11. #include <linux/unistd.h>
  12. #include <linux/cpu.h>
  13. #include <linux/export.h>
  14. #include <linux/kthread.h>
  15. #include <linux/stop_machine.h>
  16. #include <linux/mutex.h>
  17. #include <linux/gfp.h>
  18. #include <linux/suspend.h>
  19. #include "smpboot.h"
  20. #ifdef CONFIG_SMP
  21. /* Serializes the updates to cpu_online_mask, cpu_present_mask */
  22. static DEFINE_MUTEX(cpu_add_remove_lock);
  23. /*
  24. * The following two API's must be used when attempting
  25. * to serialize the updates to cpu_online_mask, cpu_present_mask.
  26. */
  27. void cpu_maps_update_begin(void)
  28. {
  29. mutex_lock(&cpu_add_remove_lock);
  30. }
  31. void cpu_maps_update_done(void)
  32. {
  33. mutex_unlock(&cpu_add_remove_lock);
  34. }
  35. static RAW_NOTIFIER_HEAD(cpu_chain);
  36. /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
  37. * Should always be manipulated under cpu_add_remove_lock
  38. */
  39. static int cpu_hotplug_disabled;
  40. #ifdef CONFIG_HOTPLUG_CPU
  41. static struct {
  42. struct task_struct *active_writer;
  43. struct mutex lock; /* Synchronizes accesses to refcount, */
  44. /*
  45. * Also blocks the new readers during
  46. * an ongoing cpu hotplug operation.
  47. */
  48. int refcount;
  49. } cpu_hotplug = {
  50. .active_writer = NULL,
  51. .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
  52. .refcount = 0,
  53. };
  54. void get_online_cpus(void)
  55. {
  56. might_sleep();
  57. if (cpu_hotplug.active_writer == current)
  58. return;
  59. mutex_lock(&cpu_hotplug.lock);
  60. cpu_hotplug.refcount++;
  61. mutex_unlock(&cpu_hotplug.lock);
  62. }
  63. EXPORT_SYMBOL_GPL(get_online_cpus);
  64. void put_online_cpus(void)
  65. {
  66. if (cpu_hotplug.active_writer == current)
  67. return;
  68. mutex_lock(&cpu_hotplug.lock);
  69. if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
  70. wake_up_process(cpu_hotplug.active_writer);
  71. mutex_unlock(&cpu_hotplug.lock);
  72. }
  73. EXPORT_SYMBOL_GPL(put_online_cpus);
  74. /*
  75. * This ensures that the hotplug operation can begin only when the
  76. * refcount goes to zero.
  77. *
  78. * Note that during a cpu-hotplug operation, the new readers, if any,
  79. * will be blocked by the cpu_hotplug.lock
  80. *
  81. * Since cpu_hotplug_begin() is always called after invoking
  82. * cpu_maps_update_begin(), we can be sure that only one writer is active.
  83. *
  84. * Note that theoretically, there is a possibility of a livelock:
  85. * - Refcount goes to zero, last reader wakes up the sleeping
  86. * writer.
  87. * - Last reader unlocks the cpu_hotplug.lock.
  88. * - A new reader arrives at this moment, bumps up the refcount.
  89. * - The writer acquires the cpu_hotplug.lock finds the refcount
  90. * non zero and goes to sleep again.
  91. *
  92. * However, this is very difficult to achieve in practice since
  93. * get_online_cpus() not an api which is called all that often.
  94. *
  95. */
  96. static void cpu_hotplug_begin(void)
  97. {
  98. cpu_hotplug.active_writer = current;
  99. for (;;) {
  100. mutex_lock(&cpu_hotplug.lock);
  101. if (likely(!cpu_hotplug.refcount))
  102. break;
  103. __set_current_state(TASK_UNINTERRUPTIBLE);
  104. mutex_unlock(&cpu_hotplug.lock);
  105. schedule();
  106. }
  107. }
  108. static void cpu_hotplug_done(void)
  109. {
  110. cpu_hotplug.active_writer = NULL;
  111. mutex_unlock(&cpu_hotplug.lock);
  112. }
  113. #else /* #if CONFIG_HOTPLUG_CPU */
  114. static void cpu_hotplug_begin(void) {}
  115. static void cpu_hotplug_done(void) {}
  116. #endif /* #else #if CONFIG_HOTPLUG_CPU */
  117. /* Need to know about CPUs going up/down? */
  118. int __ref register_cpu_notifier(struct notifier_block *nb)
  119. {
  120. int ret;
  121. cpu_maps_update_begin();
  122. ret = raw_notifier_chain_register(&cpu_chain, nb);
  123. cpu_maps_update_done();
  124. return ret;
  125. }
  126. static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
  127. int *nr_calls)
  128. {
  129. int ret;
  130. ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
  131. nr_calls);
  132. return notifier_to_errno(ret);
  133. }
  134. static int cpu_notify(unsigned long val, void *v)
  135. {
  136. return __cpu_notify(val, v, -1, NULL);
  137. }
  138. #ifdef CONFIG_HOTPLUG_CPU
  139. static void cpu_notify_nofail(unsigned long val, void *v)
  140. {
  141. BUG_ON(cpu_notify(val, v));
  142. }
  143. EXPORT_SYMBOL(register_cpu_notifier);
  144. void __ref unregister_cpu_notifier(struct notifier_block *nb)
  145. {
  146. cpu_maps_update_begin();
  147. raw_notifier_chain_unregister(&cpu_chain, nb);
  148. cpu_maps_update_done();
  149. }
  150. EXPORT_SYMBOL(unregister_cpu_notifier);
  151. static inline void check_for_tasks(int cpu)
  152. {
  153. struct task_struct *p;
  154. write_lock_irq(&tasklist_lock);
  155. for_each_process(p) {
  156. if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
  157. (p->utime || p->stime))
  158. printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
  159. "(state = %ld, flags = %x)\n",
  160. p->comm, task_pid_nr(p), cpu,
  161. p->state, p->flags);
  162. }
  163. write_unlock_irq(&tasklist_lock);
  164. }
  165. struct take_cpu_down_param {
  166. unsigned long mod;
  167. void *hcpu;
  168. };
  169. /* Take this CPU down. */
  170. static int __ref take_cpu_down(void *_param)
  171. {
  172. struct take_cpu_down_param *param = _param;
  173. int err;
  174. /* Ensure this CPU doesn't handle any more interrupts. */
  175. err = __cpu_disable();
  176. if (err < 0)
  177. return err;
  178. cpu_notify(CPU_DYING | param->mod, param->hcpu);
  179. return 0;
  180. }
  181. /* Requires cpu_add_remove_lock to be held */
  182. static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
  183. {
  184. int err, nr_calls = 0;
  185. void *hcpu = (void *)(long)cpu;
  186. unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  187. struct take_cpu_down_param tcd_param = {
  188. .mod = mod,
  189. .hcpu = hcpu,
  190. };
  191. if (num_online_cpus() == 1)
  192. return -EBUSY;
  193. if (!cpu_online(cpu))
  194. return -EINVAL;
  195. cpu_hotplug_begin();
  196. err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
  197. if (err) {
  198. nr_calls--;
  199. __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
  200. printk("%s: attempt to take down CPU %u failed\n",
  201. __func__, cpu);
  202. goto out_release;
  203. }
  204. err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
  205. if (err) {
  206. /* CPU didn't die: tell everyone. Can't complain. */
  207. cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
  208. goto out_release;
  209. }
  210. BUG_ON(cpu_online(cpu));
  211. /*
  212. * The migration_call() CPU_DYING callback will have removed all
  213. * runnable tasks from the cpu, there's only the idle task left now
  214. * that the migration thread is done doing the stop_machine thing.
  215. *
  216. * Wait for the stop thread to go away.
  217. */
  218. while (!idle_cpu(cpu))
  219. cpu_relax();
  220. /* This actually kills the CPU. */
  221. __cpu_die(cpu);
  222. /* CPU is completely dead: tell everyone. Too late to complain. */
  223. cpu_notify_nofail(CPU_DEAD | mod, hcpu);
  224. check_for_tasks(cpu);
  225. out_release:
  226. cpu_hotplug_done();
  227. if (!err)
  228. cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
  229. return err;
  230. }
  231. int __ref cpu_down(unsigned int cpu)
  232. {
  233. int err;
  234. cpu_maps_update_begin();
  235. if (cpu_hotplug_disabled) {
  236. err = -EBUSY;
  237. goto out;
  238. }
  239. err = _cpu_down(cpu, 0);
  240. out:
  241. cpu_maps_update_done();
  242. return err;
  243. }
  244. EXPORT_SYMBOL(cpu_down);
  245. #endif /*CONFIG_HOTPLUG_CPU*/
  246. /* Requires cpu_add_remove_lock to be held */
  247. static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
  248. {
  249. int ret, nr_calls = 0;
  250. void *hcpu = (void *)(long)cpu;
  251. unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
  252. struct task_struct *idle;
  253. if (cpu_online(cpu) || !cpu_present(cpu))
  254. return -EINVAL;
  255. cpu_hotplug_begin();
  256. idle = idle_thread_get(cpu);
  257. if (IS_ERR(idle)) {
  258. ret = PTR_ERR(idle);
  259. goto out;
  260. }
  261. ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
  262. if (ret) {
  263. nr_calls--;
  264. printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
  265. __func__, cpu);
  266. goto out_notify;
  267. }
  268. /* Arch-specific enabling code. */
  269. ret = __cpu_up(cpu, idle);
  270. if (ret != 0)
  271. goto out_notify;
  272. BUG_ON(!cpu_online(cpu));
  273. /* Now call notifier in preparation. */
  274. cpu_notify(CPU_ONLINE | mod, hcpu);
  275. out_notify:
  276. if (ret != 0)
  277. __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
  278. out:
  279. cpu_hotplug_done();
  280. return ret;
  281. }
  282. int __cpuinit cpu_up(unsigned int cpu)
  283. {
  284. int err = 0;
  285. #ifdef CONFIG_MEMORY_HOTPLUG
  286. int nid;
  287. pg_data_t *pgdat;
  288. #endif
  289. if (!cpu_possible(cpu)) {
  290. printk(KERN_ERR "can't online cpu %d because it is not "
  291. "configured as may-hotadd at boot time\n", cpu);
  292. #if defined(CONFIG_IA64)
  293. printk(KERN_ERR "please check additional_cpus= boot "
  294. "parameter\n");
  295. #endif
  296. return -EINVAL;
  297. }
  298. #ifdef CONFIG_MEMORY_HOTPLUG
  299. nid = cpu_to_node(cpu);
  300. if (!node_online(nid)) {
  301. err = mem_online_node(nid);
  302. if (err)
  303. return err;
  304. }
  305. pgdat = NODE_DATA(nid);
  306. if (!pgdat) {
  307. printk(KERN_ERR
  308. "Can't online cpu %d due to NULL pgdat\n", cpu);
  309. return -ENOMEM;
  310. }
  311. if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
  312. mutex_lock(&zonelists_mutex);
  313. build_all_zonelists(NULL);
  314. mutex_unlock(&zonelists_mutex);
  315. }
  316. #endif
  317. cpu_maps_update_begin();
  318. if (cpu_hotplug_disabled) {
  319. err = -EBUSY;
  320. goto out;
  321. }
  322. err = _cpu_up(cpu, 0);
  323. out:
  324. cpu_maps_update_done();
  325. return err;
  326. }
  327. EXPORT_SYMBOL_GPL(cpu_up);
  328. #ifdef CONFIG_PM_SLEEP_SMP
  329. static cpumask_var_t frozen_cpus;
  330. void __weak arch_disable_nonboot_cpus_begin(void)
  331. {
  332. }
  333. void __weak arch_disable_nonboot_cpus_end(void)
  334. {
  335. }
  336. int disable_nonboot_cpus(void)
  337. {
  338. int cpu, first_cpu, error = 0;
  339. cpu_maps_update_begin();
  340. first_cpu = cpumask_first(cpu_online_mask);
  341. /*
  342. * We take down all of the non-boot CPUs in one shot to avoid races
  343. * with the userspace trying to use the CPU hotplug at the same time
  344. */
  345. cpumask_clear(frozen_cpus);
  346. arch_disable_nonboot_cpus_begin();
  347. printk("Disabling non-boot CPUs ...\n");
  348. for_each_online_cpu(cpu) {
  349. if (cpu == first_cpu)
  350. continue;
  351. error = _cpu_down(cpu, 1);
  352. if (!error)
  353. cpumask_set_cpu(cpu, frozen_cpus);
  354. else {
  355. printk(KERN_ERR "Error taking CPU%d down: %d\n",
  356. cpu, error);
  357. break;
  358. }
  359. }
  360. arch_disable_nonboot_cpus_end();
  361. if (!error) {
  362. BUG_ON(num_online_cpus() > 1);
  363. /* Make sure the CPUs won't be enabled by someone else */
  364. cpu_hotplug_disabled = 1;
  365. } else {
  366. printk(KERN_ERR "Non-boot CPUs are not disabled\n");
  367. }
  368. cpu_maps_update_done();
  369. return error;
  370. }
  371. void __weak arch_enable_nonboot_cpus_begin(void)
  372. {
  373. }
  374. void __weak arch_enable_nonboot_cpus_end(void)
  375. {
  376. }
  377. void __ref enable_nonboot_cpus(void)
  378. {
  379. int cpu, error;
  380. /* Allow everyone to use the CPU hotplug again */
  381. cpu_maps_update_begin();
  382. cpu_hotplug_disabled = 0;
  383. if (cpumask_empty(frozen_cpus))
  384. goto out;
  385. printk(KERN_INFO "Enabling non-boot CPUs ...\n");
  386. arch_enable_nonboot_cpus_begin();
  387. for_each_cpu(cpu, frozen_cpus) {
  388. error = _cpu_up(cpu, 1);
  389. if (!error) {
  390. printk(KERN_INFO "CPU%d is up\n", cpu);
  391. continue;
  392. }
  393. printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
  394. }
  395. arch_enable_nonboot_cpus_end();
  396. cpumask_clear(frozen_cpus);
  397. out:
  398. cpu_maps_update_done();
  399. }
  400. static int __init alloc_frozen_cpus(void)
  401. {
  402. if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
  403. return -ENOMEM;
  404. return 0;
  405. }
  406. core_initcall(alloc_frozen_cpus);
  407. /*
  408. * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
  409. * hotplug when tasks are about to be frozen. Also, don't allow the freezer
  410. * to continue until any currently running CPU hotplug operation gets
  411. * completed.
  412. * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
  413. * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
  414. * CPU hotplug path and released only after it is complete. Thus, we
  415. * (and hence the freezer) will block here until any currently running CPU
  416. * hotplug operation gets completed.
  417. */
  418. void cpu_hotplug_disable_before_freeze(void)
  419. {
  420. cpu_maps_update_begin();
  421. cpu_hotplug_disabled = 1;
  422. cpu_maps_update_done();
  423. }
  424. /*
  425. * When tasks have been thawed, re-enable regular CPU hotplug (which had been
  426. * disabled while beginning to freeze tasks).
  427. */
  428. void cpu_hotplug_enable_after_thaw(void)
  429. {
  430. cpu_maps_update_begin();
  431. cpu_hotplug_disabled = 0;
  432. cpu_maps_update_done();
  433. }
  434. /*
  435. * When callbacks for CPU hotplug notifications are being executed, we must
  436. * ensure that the state of the system with respect to the tasks being frozen
  437. * or not, as reported by the notification, remains unchanged *throughout the
  438. * duration* of the execution of the callbacks.
  439. * Hence we need to prevent the freezer from racing with regular CPU hotplug.
  440. *
  441. * This synchronization is implemented by mutually excluding regular CPU
  442. * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
  443. * Hibernate notifications.
  444. */
  445. static int
  446. cpu_hotplug_pm_callback(struct notifier_block *nb,
  447. unsigned long action, void *ptr)
  448. {
  449. switch (action) {
  450. case PM_SUSPEND_PREPARE:
  451. case PM_HIBERNATION_PREPARE:
  452. cpu_hotplug_disable_before_freeze();
  453. break;
  454. case PM_POST_SUSPEND:
  455. case PM_POST_HIBERNATION:
  456. cpu_hotplug_enable_after_thaw();
  457. break;
  458. default:
  459. return NOTIFY_DONE;
  460. }
  461. return NOTIFY_OK;
  462. }
  463. static int __init cpu_hotplug_pm_sync_init(void)
  464. {
  465. pm_notifier(cpu_hotplug_pm_callback, 0);
  466. return 0;
  467. }
  468. core_initcall(cpu_hotplug_pm_sync_init);
  469. #endif /* CONFIG_PM_SLEEP_SMP */
  470. /**
  471. * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
  472. * @cpu: cpu that just started
  473. *
  474. * This function calls the cpu_chain notifiers with CPU_STARTING.
  475. * It must be called by the arch code on the new cpu, before the new cpu
  476. * enables interrupts and before the "boot" cpu returns from __cpu_up().
  477. */
  478. void __cpuinit notify_cpu_starting(unsigned int cpu)
  479. {
  480. unsigned long val = CPU_STARTING;
  481. #ifdef CONFIG_PM_SLEEP_SMP
  482. if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
  483. val = CPU_STARTING_FROZEN;
  484. #endif /* CONFIG_PM_SLEEP_SMP */
  485. cpu_notify(val, (void *)(long)cpu);
  486. }
  487. #endif /* CONFIG_SMP */
  488. /*
  489. * cpu_bit_bitmap[] is a special, "compressed" data structure that
  490. * represents all NR_CPUS bits binary values of 1<<nr.
  491. *
  492. * It is used by cpumask_of() to get a constant address to a CPU
  493. * mask value that has a single bit set only.
  494. */
  495. /* cpu_bit_bitmap[0] is empty - so we can back into it */
  496. #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
  497. #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
  498. #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
  499. #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
  500. const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
  501. MASK_DECLARE_8(0), MASK_DECLARE_8(8),
  502. MASK_DECLARE_8(16), MASK_DECLARE_8(24),
  503. #if BITS_PER_LONG > 32
  504. MASK_DECLARE_8(32), MASK_DECLARE_8(40),
  505. MASK_DECLARE_8(48), MASK_DECLARE_8(56),
  506. #endif
  507. };
  508. EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
  509. const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
  510. EXPORT_SYMBOL(cpu_all_bits);
  511. #ifdef CONFIG_INIT_ALL_POSSIBLE
  512. static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
  513. = CPU_BITS_ALL;
  514. #else
  515. static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
  516. #endif
  517. const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
  518. EXPORT_SYMBOL(cpu_possible_mask);
  519. static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
  520. const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
  521. EXPORT_SYMBOL(cpu_online_mask);
  522. static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
  523. const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
  524. EXPORT_SYMBOL(cpu_present_mask);
  525. static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
  526. const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
  527. EXPORT_SYMBOL(cpu_active_mask);
  528. void set_cpu_possible(unsigned int cpu, bool possible)
  529. {
  530. if (possible)
  531. cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
  532. else
  533. cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
  534. }
  535. void set_cpu_present(unsigned int cpu, bool present)
  536. {
  537. if (present)
  538. cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
  539. else
  540. cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
  541. }
  542. void set_cpu_online(unsigned int cpu, bool online)
  543. {
  544. if (online)
  545. cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
  546. else
  547. cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
  548. }
  549. void set_cpu_active(unsigned int cpu, bool active)
  550. {
  551. if (active)
  552. cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
  553. else
  554. cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
  555. }
  556. void init_cpu_present(const struct cpumask *src)
  557. {
  558. cpumask_copy(to_cpumask(cpu_present_bits), src);
  559. }
  560. void init_cpu_possible(const struct cpumask *src)
  561. {
  562. cpumask_copy(to_cpumask(cpu_possible_bits), src);
  563. }
  564. void init_cpu_online(const struct cpumask *src)
  565. {
  566. cpumask_copy(to_cpumask(cpu_online_bits), src);
  567. }