mmu.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include <asm/cmpxchg.h>
  26. #include "vmx.h"
  27. #include "kvm.h"
  28. #undef MMU_DEBUG
  29. #undef AUDIT
  30. #ifdef AUDIT
  31. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  32. #else
  33. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  34. #endif
  35. #ifdef MMU_DEBUG
  36. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  37. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  38. #else
  39. #define pgprintk(x...) do { } while (0)
  40. #define rmap_printk(x...) do { } while (0)
  41. #endif
  42. #if defined(MMU_DEBUG) || defined(AUDIT)
  43. static int dbg = 1;
  44. #endif
  45. #ifndef MMU_DEBUG
  46. #define ASSERT(x) do { } while (0)
  47. #else
  48. #define ASSERT(x) \
  49. if (!(x)) { \
  50. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  51. __FILE__, __LINE__, #x); \
  52. }
  53. #endif
  54. #define PT64_PT_BITS 9
  55. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  56. #define PT32_PT_BITS 10
  57. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  58. #define PT_WRITABLE_SHIFT 1
  59. #define PT_PRESENT_MASK (1ULL << 0)
  60. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  61. #define PT_USER_MASK (1ULL << 2)
  62. #define PT_PWT_MASK (1ULL << 3)
  63. #define PT_PCD_MASK (1ULL << 4)
  64. #define PT_ACCESSED_MASK (1ULL << 5)
  65. #define PT_DIRTY_MASK (1ULL << 6)
  66. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  67. #define PT_PAT_MASK (1ULL << 7)
  68. #define PT_GLOBAL_MASK (1ULL << 8)
  69. #define PT64_NX_MASK (1ULL << 63)
  70. #define PT_PAT_SHIFT 7
  71. #define PT_DIR_PAT_SHIFT 12
  72. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  73. #define PT32_DIR_PSE36_SIZE 4
  74. #define PT32_DIR_PSE36_SHIFT 13
  75. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  79. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  80. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  81. #define PT64_LEVEL_BITS 9
  82. #define PT64_LEVEL_SHIFT(level) \
  83. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  84. #define PT64_LEVEL_MASK(level) \
  85. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  86. #define PT64_INDEX(address, level)\
  87. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  88. #define PT32_LEVEL_BITS 10
  89. #define PT32_LEVEL_SHIFT(level) \
  90. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  91. #define PT32_LEVEL_MASK(level) \
  92. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT32_BASE_ADDR_MASK PAGE_MASK
  99. #define PT32_DIR_BASE_ADDR_MASK \
  100. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  101. #define PFERR_PRESENT_MASK (1U << 0)
  102. #define PFERR_WRITE_MASK (1U << 1)
  103. #define PFERR_USER_MASK (1U << 2)
  104. #define PFERR_FETCH_MASK (1U << 4)
  105. #define PT64_ROOT_LEVEL 4
  106. #define PT32_ROOT_LEVEL 2
  107. #define PT32E_ROOT_LEVEL 3
  108. #define PT_DIRECTORY_LEVEL 2
  109. #define PT_PAGE_TABLE_LEVEL 1
  110. #define RMAP_EXT 4
  111. struct kvm_rmap_desc {
  112. u64 *shadow_ptes[RMAP_EXT];
  113. struct kvm_rmap_desc *more;
  114. };
  115. static struct kmem_cache *pte_chain_cache;
  116. static struct kmem_cache *rmap_desc_cache;
  117. static struct kmem_cache *mmu_page_cache;
  118. static struct kmem_cache *mmu_page_header_cache;
  119. static int is_write_protection(struct kvm_vcpu *vcpu)
  120. {
  121. return vcpu->cr0 & CR0_WP_MASK;
  122. }
  123. static int is_cpuid_PSE36(void)
  124. {
  125. return 1;
  126. }
  127. static int is_nx(struct kvm_vcpu *vcpu)
  128. {
  129. return vcpu->shadow_efer & EFER_NX;
  130. }
  131. static int is_present_pte(unsigned long pte)
  132. {
  133. return pte & PT_PRESENT_MASK;
  134. }
  135. static int is_writeble_pte(unsigned long pte)
  136. {
  137. return pte & PT_WRITABLE_MASK;
  138. }
  139. static int is_io_pte(unsigned long pte)
  140. {
  141. return pte & PT_SHADOW_IO_MARK;
  142. }
  143. static int is_rmap_pte(u64 pte)
  144. {
  145. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  146. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  147. }
  148. static void set_shadow_pte(u64 *sptep, u64 spte)
  149. {
  150. #ifdef CONFIG_X86_64
  151. set_64bit((unsigned long *)sptep, spte);
  152. #else
  153. set_64bit((unsigned long long *)sptep, spte);
  154. #endif
  155. }
  156. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  157. struct kmem_cache *base_cache, int min,
  158. gfp_t gfp_flags)
  159. {
  160. void *obj;
  161. if (cache->nobjs >= min)
  162. return 0;
  163. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  164. obj = kmem_cache_zalloc(base_cache, gfp_flags);
  165. if (!obj)
  166. return -ENOMEM;
  167. cache->objects[cache->nobjs++] = obj;
  168. }
  169. return 0;
  170. }
  171. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  172. {
  173. while (mc->nobjs)
  174. kfree(mc->objects[--mc->nobjs]);
  175. }
  176. static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
  177. {
  178. int r;
  179. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  180. pte_chain_cache, 4, gfp_flags);
  181. if (r)
  182. goto out;
  183. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  184. rmap_desc_cache, 1, gfp_flags);
  185. if (r)
  186. goto out;
  187. r = mmu_topup_memory_cache(&vcpu->mmu_page_cache,
  188. mmu_page_cache, 4, gfp_flags);
  189. if (r)
  190. goto out;
  191. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  192. mmu_page_header_cache, 4, gfp_flags);
  193. out:
  194. return r;
  195. }
  196. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  197. {
  198. int r;
  199. r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
  200. if (r < 0) {
  201. spin_unlock(&vcpu->kvm->lock);
  202. kvm_arch_ops->vcpu_put(vcpu);
  203. r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
  204. kvm_arch_ops->vcpu_load(vcpu);
  205. spin_lock(&vcpu->kvm->lock);
  206. }
  207. return r;
  208. }
  209. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  210. {
  211. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  212. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  213. mmu_free_memory_cache(&vcpu->mmu_page_cache);
  214. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  215. }
  216. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  217. size_t size)
  218. {
  219. void *p;
  220. BUG_ON(!mc->nobjs);
  221. p = mc->objects[--mc->nobjs];
  222. memset(p, 0, size);
  223. return p;
  224. }
  225. static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
  226. {
  227. if (mc->nobjs < KVM_NR_MEM_OBJS)
  228. mc->objects[mc->nobjs++] = obj;
  229. else
  230. kfree(obj);
  231. }
  232. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  233. {
  234. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  235. sizeof(struct kvm_pte_chain));
  236. }
  237. static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
  238. struct kvm_pte_chain *pc)
  239. {
  240. mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
  241. }
  242. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  243. {
  244. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  245. sizeof(struct kvm_rmap_desc));
  246. }
  247. static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
  248. struct kvm_rmap_desc *rd)
  249. {
  250. mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
  251. }
  252. /*
  253. * Reverse mapping data structures:
  254. *
  255. * If page->private bit zero is zero, then page->private points to the
  256. * shadow page table entry that points to page_address(page).
  257. *
  258. * If page->private bit zero is one, (then page->private & ~1) points
  259. * to a struct kvm_rmap_desc containing more mappings.
  260. */
  261. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  262. {
  263. struct page *page;
  264. struct kvm_rmap_desc *desc;
  265. int i;
  266. if (!is_rmap_pte(*spte))
  267. return;
  268. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  269. if (!page_private(page)) {
  270. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  271. set_page_private(page,(unsigned long)spte);
  272. } else if (!(page_private(page) & 1)) {
  273. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  274. desc = mmu_alloc_rmap_desc(vcpu);
  275. desc->shadow_ptes[0] = (u64 *)page_private(page);
  276. desc->shadow_ptes[1] = spte;
  277. set_page_private(page,(unsigned long)desc | 1);
  278. } else {
  279. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  280. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  281. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  282. desc = desc->more;
  283. if (desc->shadow_ptes[RMAP_EXT-1]) {
  284. desc->more = mmu_alloc_rmap_desc(vcpu);
  285. desc = desc->more;
  286. }
  287. for (i = 0; desc->shadow_ptes[i]; ++i)
  288. ;
  289. desc->shadow_ptes[i] = spte;
  290. }
  291. }
  292. static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
  293. struct page *page,
  294. struct kvm_rmap_desc *desc,
  295. int i,
  296. struct kvm_rmap_desc *prev_desc)
  297. {
  298. int j;
  299. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  300. ;
  301. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  302. desc->shadow_ptes[j] = NULL;
  303. if (j != 0)
  304. return;
  305. if (!prev_desc && !desc->more)
  306. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  307. else
  308. if (prev_desc)
  309. prev_desc->more = desc->more;
  310. else
  311. set_page_private(page,(unsigned long)desc->more | 1);
  312. mmu_free_rmap_desc(vcpu, desc);
  313. }
  314. static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
  315. {
  316. struct page *page;
  317. struct kvm_rmap_desc *desc;
  318. struct kvm_rmap_desc *prev_desc;
  319. int i;
  320. if (!is_rmap_pte(*spte))
  321. return;
  322. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  323. if (!page_private(page)) {
  324. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  325. BUG();
  326. } else if (!(page_private(page) & 1)) {
  327. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  328. if ((u64 *)page_private(page) != spte) {
  329. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  330. spte, *spte);
  331. BUG();
  332. }
  333. set_page_private(page,0);
  334. } else {
  335. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  336. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  337. prev_desc = NULL;
  338. while (desc) {
  339. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  340. if (desc->shadow_ptes[i] == spte) {
  341. rmap_desc_remove_entry(vcpu, page,
  342. desc, i,
  343. prev_desc);
  344. return;
  345. }
  346. prev_desc = desc;
  347. desc = desc->more;
  348. }
  349. BUG();
  350. }
  351. }
  352. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  353. {
  354. struct kvm *kvm = vcpu->kvm;
  355. struct page *page;
  356. struct kvm_rmap_desc *desc;
  357. u64 *spte;
  358. page = gfn_to_page(kvm, gfn);
  359. BUG_ON(!page);
  360. while (page_private(page)) {
  361. if (!(page_private(page) & 1))
  362. spte = (u64 *)page_private(page);
  363. else {
  364. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  365. spte = desc->shadow_ptes[0];
  366. }
  367. BUG_ON(!spte);
  368. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  369. != page_to_pfn(page));
  370. BUG_ON(!(*spte & PT_PRESENT_MASK));
  371. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  372. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  373. rmap_remove(vcpu, spte);
  374. kvm_arch_ops->tlb_flush(vcpu);
  375. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  376. }
  377. }
  378. #ifdef MMU_DEBUG
  379. static int is_empty_shadow_page(u64 *spt)
  380. {
  381. u64 *pos;
  382. u64 *end;
  383. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  384. if (*pos != 0) {
  385. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  386. pos, *pos);
  387. return 0;
  388. }
  389. return 1;
  390. }
  391. #endif
  392. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu,
  393. struct kvm_mmu_page *page_head)
  394. {
  395. ASSERT(is_empty_shadow_page(page_head->spt));
  396. list_del(&page_head->link);
  397. mmu_memory_cache_free(&vcpu->mmu_page_cache, page_head->spt);
  398. mmu_memory_cache_free(&vcpu->mmu_page_header_cache, page_head);
  399. ++vcpu->kvm->n_free_mmu_pages;
  400. }
  401. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  402. {
  403. return gfn;
  404. }
  405. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  406. u64 *parent_pte)
  407. {
  408. struct kvm_mmu_page *page;
  409. if (!vcpu->kvm->n_free_mmu_pages)
  410. return NULL;
  411. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  412. sizeof *page);
  413. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  414. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  415. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  416. ASSERT(is_empty_shadow_page(page->spt));
  417. page->slot_bitmap = 0;
  418. page->multimapped = 0;
  419. page->parent_pte = parent_pte;
  420. --vcpu->kvm->n_free_mmu_pages;
  421. return page;
  422. }
  423. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  424. struct kvm_mmu_page *page, u64 *parent_pte)
  425. {
  426. struct kvm_pte_chain *pte_chain;
  427. struct hlist_node *node;
  428. int i;
  429. if (!parent_pte)
  430. return;
  431. if (!page->multimapped) {
  432. u64 *old = page->parent_pte;
  433. if (!old) {
  434. page->parent_pte = parent_pte;
  435. return;
  436. }
  437. page->multimapped = 1;
  438. pte_chain = mmu_alloc_pte_chain(vcpu);
  439. INIT_HLIST_HEAD(&page->parent_ptes);
  440. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  441. pte_chain->parent_ptes[0] = old;
  442. }
  443. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  444. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  445. continue;
  446. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  447. if (!pte_chain->parent_ptes[i]) {
  448. pte_chain->parent_ptes[i] = parent_pte;
  449. return;
  450. }
  451. }
  452. pte_chain = mmu_alloc_pte_chain(vcpu);
  453. BUG_ON(!pte_chain);
  454. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  455. pte_chain->parent_ptes[0] = parent_pte;
  456. }
  457. static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
  458. struct kvm_mmu_page *page,
  459. u64 *parent_pte)
  460. {
  461. struct kvm_pte_chain *pte_chain;
  462. struct hlist_node *node;
  463. int i;
  464. if (!page->multimapped) {
  465. BUG_ON(page->parent_pte != parent_pte);
  466. page->parent_pte = NULL;
  467. return;
  468. }
  469. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  470. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  471. if (!pte_chain->parent_ptes[i])
  472. break;
  473. if (pte_chain->parent_ptes[i] != parent_pte)
  474. continue;
  475. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  476. && pte_chain->parent_ptes[i + 1]) {
  477. pte_chain->parent_ptes[i]
  478. = pte_chain->parent_ptes[i + 1];
  479. ++i;
  480. }
  481. pte_chain->parent_ptes[i] = NULL;
  482. if (i == 0) {
  483. hlist_del(&pte_chain->link);
  484. mmu_free_pte_chain(vcpu, pte_chain);
  485. if (hlist_empty(&page->parent_ptes)) {
  486. page->multimapped = 0;
  487. page->parent_pte = NULL;
  488. }
  489. }
  490. return;
  491. }
  492. BUG();
  493. }
  494. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  495. gfn_t gfn)
  496. {
  497. unsigned index;
  498. struct hlist_head *bucket;
  499. struct kvm_mmu_page *page;
  500. struct hlist_node *node;
  501. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  502. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  503. bucket = &vcpu->kvm->mmu_page_hash[index];
  504. hlist_for_each_entry(page, node, bucket, hash_link)
  505. if (page->gfn == gfn && !page->role.metaphysical) {
  506. pgprintk("%s: found role %x\n",
  507. __FUNCTION__, page->role.word);
  508. return page;
  509. }
  510. return NULL;
  511. }
  512. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  513. gfn_t gfn,
  514. gva_t gaddr,
  515. unsigned level,
  516. int metaphysical,
  517. unsigned hugepage_access,
  518. u64 *parent_pte)
  519. {
  520. union kvm_mmu_page_role role;
  521. unsigned index;
  522. unsigned quadrant;
  523. struct hlist_head *bucket;
  524. struct kvm_mmu_page *page;
  525. struct hlist_node *node;
  526. role.word = 0;
  527. role.glevels = vcpu->mmu.root_level;
  528. role.level = level;
  529. role.metaphysical = metaphysical;
  530. role.hugepage_access = hugepage_access;
  531. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  532. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  533. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  534. role.quadrant = quadrant;
  535. }
  536. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  537. gfn, role.word);
  538. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  539. bucket = &vcpu->kvm->mmu_page_hash[index];
  540. hlist_for_each_entry(page, node, bucket, hash_link)
  541. if (page->gfn == gfn && page->role.word == role.word) {
  542. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  543. pgprintk("%s: found\n", __FUNCTION__);
  544. return page;
  545. }
  546. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  547. if (!page)
  548. return page;
  549. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  550. page->gfn = gfn;
  551. page->role = role;
  552. hlist_add_head(&page->hash_link, bucket);
  553. if (!metaphysical)
  554. rmap_write_protect(vcpu, gfn);
  555. return page;
  556. }
  557. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  558. struct kvm_mmu_page *page)
  559. {
  560. unsigned i;
  561. u64 *pt;
  562. u64 ent;
  563. pt = page->spt;
  564. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  565. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  566. if (pt[i] & PT_PRESENT_MASK)
  567. rmap_remove(vcpu, &pt[i]);
  568. pt[i] = 0;
  569. }
  570. kvm_arch_ops->tlb_flush(vcpu);
  571. return;
  572. }
  573. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  574. ent = pt[i];
  575. pt[i] = 0;
  576. if (!(ent & PT_PRESENT_MASK))
  577. continue;
  578. ent &= PT64_BASE_ADDR_MASK;
  579. mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
  580. }
  581. }
  582. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  583. struct kvm_mmu_page *page,
  584. u64 *parent_pte)
  585. {
  586. mmu_page_remove_parent_pte(vcpu, page, parent_pte);
  587. }
  588. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  589. struct kvm_mmu_page *page)
  590. {
  591. u64 *parent_pte;
  592. while (page->multimapped || page->parent_pte) {
  593. if (!page->multimapped)
  594. parent_pte = page->parent_pte;
  595. else {
  596. struct kvm_pte_chain *chain;
  597. chain = container_of(page->parent_ptes.first,
  598. struct kvm_pte_chain, link);
  599. parent_pte = chain->parent_ptes[0];
  600. }
  601. BUG_ON(!parent_pte);
  602. kvm_mmu_put_page(vcpu, page, parent_pte);
  603. set_shadow_pte(parent_pte, 0);
  604. }
  605. kvm_mmu_page_unlink_children(vcpu, page);
  606. if (!page->root_count) {
  607. hlist_del(&page->hash_link);
  608. kvm_mmu_free_page(vcpu, page);
  609. } else
  610. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  611. }
  612. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  613. {
  614. unsigned index;
  615. struct hlist_head *bucket;
  616. struct kvm_mmu_page *page;
  617. struct hlist_node *node, *n;
  618. int r;
  619. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  620. r = 0;
  621. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  622. bucket = &vcpu->kvm->mmu_page_hash[index];
  623. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  624. if (page->gfn == gfn && !page->role.metaphysical) {
  625. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  626. page->role.word);
  627. kvm_mmu_zap_page(vcpu, page);
  628. r = 1;
  629. }
  630. return r;
  631. }
  632. static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
  633. {
  634. struct kvm_mmu_page *page;
  635. while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
  636. pgprintk("%s: zap %lx %x\n",
  637. __FUNCTION__, gfn, page->role.word);
  638. kvm_mmu_zap_page(vcpu, page);
  639. }
  640. }
  641. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  642. {
  643. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  644. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  645. __set_bit(slot, &page_head->slot_bitmap);
  646. }
  647. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  648. {
  649. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  650. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  651. }
  652. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  653. {
  654. struct page *page;
  655. ASSERT((gpa & HPA_ERR_MASK) == 0);
  656. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  657. if (!page)
  658. return gpa | HPA_ERR_MASK;
  659. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  660. | (gpa & (PAGE_SIZE-1));
  661. }
  662. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  663. {
  664. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  665. if (gpa == UNMAPPED_GVA)
  666. return UNMAPPED_GVA;
  667. return gpa_to_hpa(vcpu, gpa);
  668. }
  669. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  670. {
  671. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  672. if (gpa == UNMAPPED_GVA)
  673. return NULL;
  674. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  675. }
  676. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  677. {
  678. }
  679. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  680. {
  681. int level = PT32E_ROOT_LEVEL;
  682. hpa_t table_addr = vcpu->mmu.root_hpa;
  683. for (; ; level--) {
  684. u32 index = PT64_INDEX(v, level);
  685. u64 *table;
  686. u64 pte;
  687. ASSERT(VALID_PAGE(table_addr));
  688. table = __va(table_addr);
  689. if (level == 1) {
  690. pte = table[index];
  691. if (is_present_pte(pte) && is_writeble_pte(pte))
  692. return 0;
  693. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  694. page_header_update_slot(vcpu->kvm, table, v);
  695. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  696. PT_USER_MASK;
  697. rmap_add(vcpu, &table[index]);
  698. return 0;
  699. }
  700. if (table[index] == 0) {
  701. struct kvm_mmu_page *new_table;
  702. gfn_t pseudo_gfn;
  703. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  704. >> PAGE_SHIFT;
  705. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  706. v, level - 1,
  707. 1, 0, &table[index]);
  708. if (!new_table) {
  709. pgprintk("nonpaging_map: ENOMEM\n");
  710. return -ENOMEM;
  711. }
  712. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  713. | PT_WRITABLE_MASK | PT_USER_MASK;
  714. }
  715. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  716. }
  717. }
  718. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  719. {
  720. int i;
  721. struct kvm_mmu_page *page;
  722. #ifdef CONFIG_X86_64
  723. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  724. hpa_t root = vcpu->mmu.root_hpa;
  725. ASSERT(VALID_PAGE(root));
  726. page = page_header(root);
  727. --page->root_count;
  728. vcpu->mmu.root_hpa = INVALID_PAGE;
  729. return;
  730. }
  731. #endif
  732. for (i = 0; i < 4; ++i) {
  733. hpa_t root = vcpu->mmu.pae_root[i];
  734. if (root) {
  735. ASSERT(VALID_PAGE(root));
  736. root &= PT64_BASE_ADDR_MASK;
  737. page = page_header(root);
  738. --page->root_count;
  739. }
  740. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  741. }
  742. vcpu->mmu.root_hpa = INVALID_PAGE;
  743. }
  744. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  745. {
  746. int i;
  747. gfn_t root_gfn;
  748. struct kvm_mmu_page *page;
  749. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  750. #ifdef CONFIG_X86_64
  751. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  752. hpa_t root = vcpu->mmu.root_hpa;
  753. ASSERT(!VALID_PAGE(root));
  754. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  755. PT64_ROOT_LEVEL, 0, 0, NULL);
  756. root = __pa(page->spt);
  757. ++page->root_count;
  758. vcpu->mmu.root_hpa = root;
  759. return;
  760. }
  761. #endif
  762. for (i = 0; i < 4; ++i) {
  763. hpa_t root = vcpu->mmu.pae_root[i];
  764. ASSERT(!VALID_PAGE(root));
  765. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  766. if (!is_present_pte(vcpu->pdptrs[i])) {
  767. vcpu->mmu.pae_root[i] = 0;
  768. continue;
  769. }
  770. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  771. } else if (vcpu->mmu.root_level == 0)
  772. root_gfn = 0;
  773. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  774. PT32_ROOT_LEVEL, !is_paging(vcpu),
  775. 0, NULL);
  776. root = __pa(page->spt);
  777. ++page->root_count;
  778. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  779. }
  780. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  781. }
  782. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  783. {
  784. return vaddr;
  785. }
  786. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  787. u32 error_code)
  788. {
  789. gpa_t addr = gva;
  790. hpa_t paddr;
  791. int r;
  792. r = mmu_topup_memory_caches(vcpu);
  793. if (r)
  794. return r;
  795. ASSERT(vcpu);
  796. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  797. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  798. if (is_error_hpa(paddr))
  799. return 1;
  800. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  801. }
  802. static void nonpaging_free(struct kvm_vcpu *vcpu)
  803. {
  804. mmu_free_roots(vcpu);
  805. }
  806. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  807. {
  808. struct kvm_mmu *context = &vcpu->mmu;
  809. context->new_cr3 = nonpaging_new_cr3;
  810. context->page_fault = nonpaging_page_fault;
  811. context->gva_to_gpa = nonpaging_gva_to_gpa;
  812. context->free = nonpaging_free;
  813. context->root_level = 0;
  814. context->shadow_root_level = PT32E_ROOT_LEVEL;
  815. mmu_alloc_roots(vcpu);
  816. ASSERT(VALID_PAGE(context->root_hpa));
  817. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  818. return 0;
  819. }
  820. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  821. {
  822. ++vcpu->stat.tlb_flush;
  823. kvm_arch_ops->tlb_flush(vcpu);
  824. }
  825. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  826. {
  827. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  828. mmu_free_roots(vcpu);
  829. if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
  830. kvm_mmu_free_some_pages(vcpu);
  831. mmu_alloc_roots(vcpu);
  832. kvm_mmu_flush_tlb(vcpu);
  833. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  834. }
  835. static void inject_page_fault(struct kvm_vcpu *vcpu,
  836. u64 addr,
  837. u32 err_code)
  838. {
  839. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  840. }
  841. static void paging_free(struct kvm_vcpu *vcpu)
  842. {
  843. nonpaging_free(vcpu);
  844. }
  845. #define PTTYPE 64
  846. #include "paging_tmpl.h"
  847. #undef PTTYPE
  848. #define PTTYPE 32
  849. #include "paging_tmpl.h"
  850. #undef PTTYPE
  851. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  852. {
  853. struct kvm_mmu *context = &vcpu->mmu;
  854. ASSERT(is_pae(vcpu));
  855. context->new_cr3 = paging_new_cr3;
  856. context->page_fault = paging64_page_fault;
  857. context->gva_to_gpa = paging64_gva_to_gpa;
  858. context->free = paging_free;
  859. context->root_level = level;
  860. context->shadow_root_level = level;
  861. mmu_alloc_roots(vcpu);
  862. ASSERT(VALID_PAGE(context->root_hpa));
  863. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  864. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  865. return 0;
  866. }
  867. static int paging64_init_context(struct kvm_vcpu *vcpu)
  868. {
  869. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  870. }
  871. static int paging32_init_context(struct kvm_vcpu *vcpu)
  872. {
  873. struct kvm_mmu *context = &vcpu->mmu;
  874. context->new_cr3 = paging_new_cr3;
  875. context->page_fault = paging32_page_fault;
  876. context->gva_to_gpa = paging32_gva_to_gpa;
  877. context->free = paging_free;
  878. context->root_level = PT32_ROOT_LEVEL;
  879. context->shadow_root_level = PT32E_ROOT_LEVEL;
  880. mmu_alloc_roots(vcpu);
  881. ASSERT(VALID_PAGE(context->root_hpa));
  882. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  883. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  884. return 0;
  885. }
  886. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  887. {
  888. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  889. }
  890. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  891. {
  892. ASSERT(vcpu);
  893. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  894. mmu_topup_memory_caches(vcpu);
  895. if (!is_paging(vcpu))
  896. return nonpaging_init_context(vcpu);
  897. else if (is_long_mode(vcpu))
  898. return paging64_init_context(vcpu);
  899. else if (is_pae(vcpu))
  900. return paging32E_init_context(vcpu);
  901. else
  902. return paging32_init_context(vcpu);
  903. }
  904. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  905. {
  906. ASSERT(vcpu);
  907. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  908. vcpu->mmu.free(vcpu);
  909. vcpu->mmu.root_hpa = INVALID_PAGE;
  910. }
  911. }
  912. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  913. {
  914. int r;
  915. destroy_kvm_mmu(vcpu);
  916. r = init_kvm_mmu(vcpu);
  917. if (r < 0)
  918. goto out;
  919. r = mmu_topup_memory_caches(vcpu);
  920. out:
  921. return r;
  922. }
  923. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  924. struct kvm_mmu_page *page,
  925. u64 *spte)
  926. {
  927. u64 pte;
  928. struct kvm_mmu_page *child;
  929. pte = *spte;
  930. if (is_present_pte(pte)) {
  931. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  932. rmap_remove(vcpu, spte);
  933. else {
  934. child = page_header(pte & PT64_BASE_ADDR_MASK);
  935. mmu_page_remove_parent_pte(vcpu, child, spte);
  936. }
  937. }
  938. *spte = 0;
  939. }
  940. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  941. struct kvm_mmu_page *page,
  942. u64 *spte,
  943. const void *new, int bytes)
  944. {
  945. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  946. return;
  947. if (page->role.glevels == PT32_ROOT_LEVEL)
  948. paging32_update_pte(vcpu, page, spte, new, bytes);
  949. else
  950. paging64_update_pte(vcpu, page, spte, new, bytes);
  951. }
  952. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  953. const u8 *old, const u8 *new, int bytes)
  954. {
  955. gfn_t gfn = gpa >> PAGE_SHIFT;
  956. struct kvm_mmu_page *page;
  957. struct hlist_node *node, *n;
  958. struct hlist_head *bucket;
  959. unsigned index;
  960. u64 *spte;
  961. unsigned offset = offset_in_page(gpa);
  962. unsigned pte_size;
  963. unsigned page_offset;
  964. unsigned misaligned;
  965. unsigned quadrant;
  966. int level;
  967. int flooded = 0;
  968. int npte;
  969. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  970. if (gfn == vcpu->last_pt_write_gfn) {
  971. ++vcpu->last_pt_write_count;
  972. if (vcpu->last_pt_write_count >= 3)
  973. flooded = 1;
  974. } else {
  975. vcpu->last_pt_write_gfn = gfn;
  976. vcpu->last_pt_write_count = 1;
  977. }
  978. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  979. bucket = &vcpu->kvm->mmu_page_hash[index];
  980. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  981. if (page->gfn != gfn || page->role.metaphysical)
  982. continue;
  983. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  984. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  985. misaligned |= bytes < 4;
  986. if (misaligned || flooded) {
  987. /*
  988. * Misaligned accesses are too much trouble to fix
  989. * up; also, they usually indicate a page is not used
  990. * as a page table.
  991. *
  992. * If we're seeing too many writes to a page,
  993. * it may no longer be a page table, or we may be
  994. * forking, in which case it is better to unmap the
  995. * page.
  996. */
  997. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  998. gpa, bytes, page->role.word);
  999. kvm_mmu_zap_page(vcpu, page);
  1000. continue;
  1001. }
  1002. page_offset = offset;
  1003. level = page->role.level;
  1004. npte = 1;
  1005. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1006. page_offset <<= 1; /* 32->64 */
  1007. /*
  1008. * A 32-bit pde maps 4MB while the shadow pdes map
  1009. * only 2MB. So we need to double the offset again
  1010. * and zap two pdes instead of one.
  1011. */
  1012. if (level == PT32_ROOT_LEVEL) {
  1013. page_offset &= ~7; /* kill rounding error */
  1014. page_offset <<= 1;
  1015. npte = 2;
  1016. }
  1017. quadrant = page_offset >> PAGE_SHIFT;
  1018. page_offset &= ~PAGE_MASK;
  1019. if (quadrant != page->role.quadrant)
  1020. continue;
  1021. }
  1022. spte = &page->spt[page_offset / sizeof(*spte)];
  1023. while (npte--) {
  1024. mmu_pte_write_zap_pte(vcpu, page, spte);
  1025. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
  1026. ++spte;
  1027. }
  1028. }
  1029. }
  1030. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1031. {
  1032. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1033. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1034. }
  1035. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1036. {
  1037. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1038. struct kvm_mmu_page *page;
  1039. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1040. struct kvm_mmu_page, link);
  1041. kvm_mmu_zap_page(vcpu, page);
  1042. }
  1043. }
  1044. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  1045. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1046. {
  1047. struct kvm_mmu_page *page;
  1048. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1049. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1050. struct kvm_mmu_page, link);
  1051. kvm_mmu_zap_page(vcpu, page);
  1052. }
  1053. free_page((unsigned long)vcpu->mmu.pae_root);
  1054. }
  1055. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1056. {
  1057. struct page *page;
  1058. int i;
  1059. ASSERT(vcpu);
  1060. vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
  1061. /*
  1062. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1063. * Therefore we need to allocate shadow page tables in the first
  1064. * 4GB of memory, which happens to fit the DMA32 zone.
  1065. */
  1066. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1067. if (!page)
  1068. goto error_1;
  1069. vcpu->mmu.pae_root = page_address(page);
  1070. for (i = 0; i < 4; ++i)
  1071. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1072. return 0;
  1073. error_1:
  1074. free_mmu_pages(vcpu);
  1075. return -ENOMEM;
  1076. }
  1077. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1078. {
  1079. ASSERT(vcpu);
  1080. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1081. return alloc_mmu_pages(vcpu);
  1082. }
  1083. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1084. {
  1085. ASSERT(vcpu);
  1086. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1087. return init_kvm_mmu(vcpu);
  1088. }
  1089. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1090. {
  1091. ASSERT(vcpu);
  1092. destroy_kvm_mmu(vcpu);
  1093. free_mmu_pages(vcpu);
  1094. mmu_free_memory_caches(vcpu);
  1095. }
  1096. void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  1097. {
  1098. struct kvm *kvm = vcpu->kvm;
  1099. struct kvm_mmu_page *page;
  1100. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1101. int i;
  1102. u64 *pt;
  1103. if (!test_bit(slot, &page->slot_bitmap))
  1104. continue;
  1105. pt = page->spt;
  1106. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1107. /* avoid RMW */
  1108. if (pt[i] & PT_WRITABLE_MASK) {
  1109. rmap_remove(vcpu, &pt[i]);
  1110. pt[i] &= ~PT_WRITABLE_MASK;
  1111. }
  1112. }
  1113. }
  1114. void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
  1115. {
  1116. destroy_kvm_mmu(vcpu);
  1117. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1118. struct kvm_mmu_page *page;
  1119. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1120. struct kvm_mmu_page, link);
  1121. kvm_mmu_zap_page(vcpu, page);
  1122. }
  1123. mmu_free_memory_caches(vcpu);
  1124. kvm_arch_ops->tlb_flush(vcpu);
  1125. init_kvm_mmu(vcpu);
  1126. }
  1127. void kvm_mmu_module_exit(void)
  1128. {
  1129. if (pte_chain_cache)
  1130. kmem_cache_destroy(pte_chain_cache);
  1131. if (rmap_desc_cache)
  1132. kmem_cache_destroy(rmap_desc_cache);
  1133. if (mmu_page_cache)
  1134. kmem_cache_destroy(mmu_page_cache);
  1135. if (mmu_page_header_cache)
  1136. kmem_cache_destroy(mmu_page_header_cache);
  1137. }
  1138. int kvm_mmu_module_init(void)
  1139. {
  1140. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1141. sizeof(struct kvm_pte_chain),
  1142. 0, 0, NULL, NULL);
  1143. if (!pte_chain_cache)
  1144. goto nomem;
  1145. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1146. sizeof(struct kvm_rmap_desc),
  1147. 0, 0, NULL, NULL);
  1148. if (!rmap_desc_cache)
  1149. goto nomem;
  1150. mmu_page_cache = kmem_cache_create("kvm_mmu_page",
  1151. PAGE_SIZE,
  1152. PAGE_SIZE, 0, NULL, NULL);
  1153. if (!mmu_page_cache)
  1154. goto nomem;
  1155. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1156. sizeof(struct kvm_mmu_page),
  1157. 0, 0, NULL, NULL);
  1158. if (!mmu_page_header_cache)
  1159. goto nomem;
  1160. return 0;
  1161. nomem:
  1162. kvm_mmu_module_exit();
  1163. return -ENOMEM;
  1164. }
  1165. #ifdef AUDIT
  1166. static const char *audit_msg;
  1167. static gva_t canonicalize(gva_t gva)
  1168. {
  1169. #ifdef CONFIG_X86_64
  1170. gva = (long long)(gva << 16) >> 16;
  1171. #endif
  1172. return gva;
  1173. }
  1174. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1175. gva_t va, int level)
  1176. {
  1177. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1178. int i;
  1179. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1180. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1181. u64 ent = pt[i];
  1182. if (!(ent & PT_PRESENT_MASK))
  1183. continue;
  1184. va = canonicalize(va);
  1185. if (level > 1)
  1186. audit_mappings_page(vcpu, ent, va, level - 1);
  1187. else {
  1188. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1189. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1190. if ((ent & PT_PRESENT_MASK)
  1191. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1192. printk(KERN_ERR "audit error: (%s) levels %d"
  1193. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1194. audit_msg, vcpu->mmu.root_level,
  1195. va, gpa, hpa, ent);
  1196. }
  1197. }
  1198. }
  1199. static void audit_mappings(struct kvm_vcpu *vcpu)
  1200. {
  1201. unsigned i;
  1202. if (vcpu->mmu.root_level == 4)
  1203. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1204. else
  1205. for (i = 0; i < 4; ++i)
  1206. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1207. audit_mappings_page(vcpu,
  1208. vcpu->mmu.pae_root[i],
  1209. i << 30,
  1210. 2);
  1211. }
  1212. static int count_rmaps(struct kvm_vcpu *vcpu)
  1213. {
  1214. int nmaps = 0;
  1215. int i, j, k;
  1216. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1217. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1218. struct kvm_rmap_desc *d;
  1219. for (j = 0; j < m->npages; ++j) {
  1220. struct page *page = m->phys_mem[j];
  1221. if (!page->private)
  1222. continue;
  1223. if (!(page->private & 1)) {
  1224. ++nmaps;
  1225. continue;
  1226. }
  1227. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1228. while (d) {
  1229. for (k = 0; k < RMAP_EXT; ++k)
  1230. if (d->shadow_ptes[k])
  1231. ++nmaps;
  1232. else
  1233. break;
  1234. d = d->more;
  1235. }
  1236. }
  1237. }
  1238. return nmaps;
  1239. }
  1240. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1241. {
  1242. int nmaps = 0;
  1243. struct kvm_mmu_page *page;
  1244. int i;
  1245. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1246. u64 *pt = page->spt;
  1247. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1248. continue;
  1249. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1250. u64 ent = pt[i];
  1251. if (!(ent & PT_PRESENT_MASK))
  1252. continue;
  1253. if (!(ent & PT_WRITABLE_MASK))
  1254. continue;
  1255. ++nmaps;
  1256. }
  1257. }
  1258. return nmaps;
  1259. }
  1260. static void audit_rmap(struct kvm_vcpu *vcpu)
  1261. {
  1262. int n_rmap = count_rmaps(vcpu);
  1263. int n_actual = count_writable_mappings(vcpu);
  1264. if (n_rmap != n_actual)
  1265. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1266. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1267. }
  1268. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1269. {
  1270. struct kvm_mmu_page *page;
  1271. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1272. hfn_t hfn;
  1273. struct page *pg;
  1274. if (page->role.metaphysical)
  1275. continue;
  1276. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1277. >> PAGE_SHIFT;
  1278. pg = pfn_to_page(hfn);
  1279. if (pg->private)
  1280. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1281. " mappings: gfn %lx role %x\n",
  1282. __FUNCTION__, audit_msg, page->gfn,
  1283. page->role.word);
  1284. }
  1285. }
  1286. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1287. {
  1288. int olddbg = dbg;
  1289. dbg = 0;
  1290. audit_msg = msg;
  1291. audit_rmap(vcpu);
  1292. audit_write_protection(vcpu);
  1293. audit_mappings(vcpu);
  1294. dbg = olddbg;
  1295. }
  1296. #endif