sched.c 257 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  113. /*
  114. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  115. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  116. */
  117. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  118. {
  119. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  120. }
  121. /*
  122. * Each time a sched group cpu_power is changed,
  123. * we must compute its reciprocal value
  124. */
  125. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  126. {
  127. sg->__cpu_power += val;
  128. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  129. }
  130. #endif
  131. static inline int rt_policy(int policy)
  132. {
  133. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  134. return 1;
  135. return 0;
  136. }
  137. static inline int task_has_rt_policy(struct task_struct *p)
  138. {
  139. return rt_policy(p->policy);
  140. }
  141. /*
  142. * This is the priority-queue data structure of the RT scheduling class:
  143. */
  144. struct rt_prio_array {
  145. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  146. struct list_head queue[MAX_RT_PRIO];
  147. };
  148. struct rt_bandwidth {
  149. /* nests inside the rq lock: */
  150. spinlock_t rt_runtime_lock;
  151. ktime_t rt_period;
  152. u64 rt_runtime;
  153. struct hrtimer rt_period_timer;
  154. };
  155. static struct rt_bandwidth def_rt_bandwidth;
  156. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  157. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  158. {
  159. struct rt_bandwidth *rt_b =
  160. container_of(timer, struct rt_bandwidth, rt_period_timer);
  161. ktime_t now;
  162. int overrun;
  163. int idle = 0;
  164. for (;;) {
  165. now = hrtimer_cb_get_time(timer);
  166. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  167. if (!overrun)
  168. break;
  169. idle = do_sched_rt_period_timer(rt_b, overrun);
  170. }
  171. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  172. }
  173. static
  174. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  175. {
  176. rt_b->rt_period = ns_to_ktime(period);
  177. rt_b->rt_runtime = runtime;
  178. spin_lock_init(&rt_b->rt_runtime_lock);
  179. hrtimer_init(&rt_b->rt_period_timer,
  180. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  181. rt_b->rt_period_timer.function = sched_rt_period_timer;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. unsigned long delta;
  197. ktime_t soft, hard;
  198. if (hrtimer_active(&rt_b->rt_period_timer))
  199. break;
  200. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  201. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  202. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  203. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  204. delta = ktime_to_ns(ktime_sub(hard, soft));
  205. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  206. HRTIMER_MODE_ABS, 0);
  207. }
  208. spin_unlock(&rt_b->rt_runtime_lock);
  209. }
  210. #ifdef CONFIG_RT_GROUP_SCHED
  211. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  212. {
  213. hrtimer_cancel(&rt_b->rt_period_timer);
  214. }
  215. #endif
  216. /*
  217. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  218. * detach_destroy_domains and partition_sched_domains.
  219. */
  220. static DEFINE_MUTEX(sched_domains_mutex);
  221. #ifdef CONFIG_GROUP_SCHED
  222. #include <linux/cgroup.h>
  223. struct cfs_rq;
  224. static LIST_HEAD(task_groups);
  225. /* task group related information */
  226. struct task_group {
  227. #ifdef CONFIG_CGROUP_SCHED
  228. struct cgroup_subsys_state css;
  229. #endif
  230. #ifdef CONFIG_USER_SCHED
  231. uid_t uid;
  232. #endif
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* schedulable entities of this group on each cpu */
  235. struct sched_entity **se;
  236. /* runqueue "owned" by this group on each cpu */
  237. struct cfs_rq **cfs_rq;
  238. unsigned long shares;
  239. #endif
  240. #ifdef CONFIG_RT_GROUP_SCHED
  241. struct sched_rt_entity **rt_se;
  242. struct rt_rq **rt_rq;
  243. struct rt_bandwidth rt_bandwidth;
  244. #endif
  245. struct rcu_head rcu;
  246. struct list_head list;
  247. struct task_group *parent;
  248. struct list_head siblings;
  249. struct list_head children;
  250. };
  251. #ifdef CONFIG_USER_SCHED
  252. /* Helper function to pass uid information to create_sched_user() */
  253. void set_tg_uid(struct user_struct *user)
  254. {
  255. user->tg->uid = user->uid;
  256. }
  257. /*
  258. * Root task group.
  259. * Every UID task group (including init_task_group aka UID-0) will
  260. * be a child to this group.
  261. */
  262. struct task_group root_task_group;
  263. #ifdef CONFIG_FAIR_GROUP_SCHED
  264. /* Default task group's sched entity on each cpu */
  265. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  266. /* Default task group's cfs_rq on each cpu */
  267. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  268. #endif /* CONFIG_FAIR_GROUP_SCHED */
  269. #ifdef CONFIG_RT_GROUP_SCHED
  270. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  271. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  272. #endif /* CONFIG_RT_GROUP_SCHED */
  273. #else /* !CONFIG_USER_SCHED */
  274. #define root_task_group init_task_group
  275. #endif /* CONFIG_USER_SCHED */
  276. /* task_group_lock serializes add/remove of task groups and also changes to
  277. * a task group's cpu shares.
  278. */
  279. static DEFINE_SPINLOCK(task_group_lock);
  280. #ifdef CONFIG_SMP
  281. static int root_task_group_empty(void)
  282. {
  283. return list_empty(&root_task_group.children);
  284. }
  285. #endif
  286. #ifdef CONFIG_FAIR_GROUP_SCHED
  287. #ifdef CONFIG_USER_SCHED
  288. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  289. #else /* !CONFIG_USER_SCHED */
  290. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  291. #endif /* CONFIG_USER_SCHED */
  292. /*
  293. * A weight of 0 or 1 can cause arithmetics problems.
  294. * A weight of a cfs_rq is the sum of weights of which entities
  295. * are queued on this cfs_rq, so a weight of a entity should not be
  296. * too large, so as the shares value of a task group.
  297. * (The default weight is 1024 - so there's no practical
  298. * limitation from this.)
  299. */
  300. #define MIN_SHARES 2
  301. #define MAX_SHARES (1UL << 18)
  302. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  303. #endif
  304. /* Default task group.
  305. * Every task in system belong to this group at bootup.
  306. */
  307. struct task_group init_task_group;
  308. /* return group to which a task belongs */
  309. static inline struct task_group *task_group(struct task_struct *p)
  310. {
  311. struct task_group *tg;
  312. #ifdef CONFIG_USER_SCHED
  313. rcu_read_lock();
  314. tg = __task_cred(p)->user->tg;
  315. rcu_read_unlock();
  316. #elif defined(CONFIG_CGROUP_SCHED)
  317. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  318. struct task_group, css);
  319. #else
  320. tg = &init_task_group;
  321. #endif
  322. return tg;
  323. }
  324. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  325. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  326. {
  327. #ifdef CONFIG_FAIR_GROUP_SCHED
  328. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  329. p->se.parent = task_group(p)->se[cpu];
  330. #endif
  331. #ifdef CONFIG_RT_GROUP_SCHED
  332. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  333. p->rt.parent = task_group(p)->rt_se[cpu];
  334. #endif
  335. }
  336. #else
  337. #ifdef CONFIG_SMP
  338. static int root_task_group_empty(void)
  339. {
  340. return 1;
  341. }
  342. #endif
  343. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  344. static inline struct task_group *task_group(struct task_struct *p)
  345. {
  346. return NULL;
  347. }
  348. #endif /* CONFIG_GROUP_SCHED */
  349. /* CFS-related fields in a runqueue */
  350. struct cfs_rq {
  351. struct load_weight load;
  352. unsigned long nr_running;
  353. u64 exec_clock;
  354. u64 min_vruntime;
  355. struct rb_root tasks_timeline;
  356. struct rb_node *rb_leftmost;
  357. struct list_head tasks;
  358. struct list_head *balance_iterator;
  359. /*
  360. * 'curr' points to currently running entity on this cfs_rq.
  361. * It is set to NULL otherwise (i.e when none are currently running).
  362. */
  363. struct sched_entity *curr, *next, *last;
  364. unsigned int nr_spread_over;
  365. #ifdef CONFIG_FAIR_GROUP_SCHED
  366. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  367. /*
  368. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  369. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  370. * (like users, containers etc.)
  371. *
  372. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  373. * list is used during load balance.
  374. */
  375. struct list_head leaf_cfs_rq_list;
  376. struct task_group *tg; /* group that "owns" this runqueue */
  377. #ifdef CONFIG_SMP
  378. /*
  379. * the part of load.weight contributed by tasks
  380. */
  381. unsigned long task_weight;
  382. /*
  383. * h_load = weight * f(tg)
  384. *
  385. * Where f(tg) is the recursive weight fraction assigned to
  386. * this group.
  387. */
  388. unsigned long h_load;
  389. /*
  390. * this cpu's part of tg->shares
  391. */
  392. unsigned long shares;
  393. /*
  394. * load.weight at the time we set shares
  395. */
  396. unsigned long rq_weight;
  397. #endif
  398. #endif
  399. };
  400. /* Real-Time classes' related field in a runqueue: */
  401. struct rt_rq {
  402. struct rt_prio_array active;
  403. unsigned long rt_nr_running;
  404. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  405. struct {
  406. int curr; /* highest queued rt task prio */
  407. #ifdef CONFIG_SMP
  408. int next; /* next highest */
  409. #endif
  410. } highest_prio;
  411. #endif
  412. #ifdef CONFIG_SMP
  413. unsigned long rt_nr_migratory;
  414. int overloaded;
  415. struct plist_head pushable_tasks;
  416. #endif
  417. int rt_throttled;
  418. u64 rt_time;
  419. u64 rt_runtime;
  420. /* Nests inside the rq lock: */
  421. spinlock_t rt_runtime_lock;
  422. #ifdef CONFIG_RT_GROUP_SCHED
  423. unsigned long rt_nr_boosted;
  424. struct rq *rq;
  425. struct list_head leaf_rt_rq_list;
  426. struct task_group *tg;
  427. struct sched_rt_entity *rt_se;
  428. #endif
  429. };
  430. #ifdef CONFIG_SMP
  431. /*
  432. * We add the notion of a root-domain which will be used to define per-domain
  433. * variables. Each exclusive cpuset essentially defines an island domain by
  434. * fully partitioning the member cpus from any other cpuset. Whenever a new
  435. * exclusive cpuset is created, we also create and attach a new root-domain
  436. * object.
  437. *
  438. */
  439. struct root_domain {
  440. atomic_t refcount;
  441. cpumask_var_t span;
  442. cpumask_var_t online;
  443. /*
  444. * The "RT overload" flag: it gets set if a CPU has more than
  445. * one runnable RT task.
  446. */
  447. cpumask_var_t rto_mask;
  448. atomic_t rto_count;
  449. #ifdef CONFIG_SMP
  450. struct cpupri cpupri;
  451. #endif
  452. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  453. /*
  454. * Preferred wake up cpu nominated by sched_mc balance that will be
  455. * used when most cpus are idle in the system indicating overall very
  456. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  457. */
  458. unsigned int sched_mc_preferred_wakeup_cpu;
  459. #endif
  460. };
  461. /*
  462. * By default the system creates a single root-domain with all cpus as
  463. * members (mimicking the global state we have today).
  464. */
  465. static struct root_domain def_root_domain;
  466. #endif
  467. /*
  468. * This is the main, per-CPU runqueue data structure.
  469. *
  470. * Locking rule: those places that want to lock multiple runqueues
  471. * (such as the load balancing or the thread migration code), lock
  472. * acquire operations must be ordered by ascending &runqueue.
  473. */
  474. struct rq {
  475. /* runqueue lock: */
  476. spinlock_t lock;
  477. /*
  478. * nr_running and cpu_load should be in the same cacheline because
  479. * remote CPUs use both these fields when doing load calculation.
  480. */
  481. unsigned long nr_running;
  482. #define CPU_LOAD_IDX_MAX 5
  483. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  484. #ifdef CONFIG_NO_HZ
  485. unsigned long last_tick_seen;
  486. unsigned char in_nohz_recently;
  487. #endif
  488. /* capture load from *all* tasks on this cpu: */
  489. struct load_weight load;
  490. unsigned long nr_load_updates;
  491. u64 nr_switches;
  492. struct cfs_rq cfs;
  493. struct rt_rq rt;
  494. #ifdef CONFIG_FAIR_GROUP_SCHED
  495. /* list of leaf cfs_rq on this cpu: */
  496. struct list_head leaf_cfs_rq_list;
  497. #endif
  498. #ifdef CONFIG_RT_GROUP_SCHED
  499. struct list_head leaf_rt_rq_list;
  500. #endif
  501. /*
  502. * This is part of a global counter where only the total sum
  503. * over all CPUs matters. A task can increase this counter on
  504. * one CPU and if it got migrated afterwards it may decrease
  505. * it on another CPU. Always updated under the runqueue lock:
  506. */
  507. unsigned long nr_uninterruptible;
  508. struct task_struct *curr, *idle;
  509. unsigned long next_balance;
  510. struct mm_struct *prev_mm;
  511. u64 clock;
  512. atomic_t nr_iowait;
  513. #ifdef CONFIG_SMP
  514. struct root_domain *rd;
  515. struct sched_domain *sd;
  516. unsigned char idle_at_tick;
  517. /* For active balancing */
  518. int active_balance;
  519. int push_cpu;
  520. /* cpu of this runqueue: */
  521. int cpu;
  522. int online;
  523. unsigned long avg_load_per_task;
  524. struct task_struct *migration_thread;
  525. struct list_head migration_queue;
  526. #endif
  527. /* calc_load related fields */
  528. unsigned long calc_load_update;
  529. long calc_load_active;
  530. #ifdef CONFIG_SCHED_HRTICK
  531. #ifdef CONFIG_SMP
  532. int hrtick_csd_pending;
  533. struct call_single_data hrtick_csd;
  534. #endif
  535. struct hrtimer hrtick_timer;
  536. #endif
  537. #ifdef CONFIG_SCHEDSTATS
  538. /* latency stats */
  539. struct sched_info rq_sched_info;
  540. unsigned long long rq_cpu_time;
  541. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  542. /* sys_sched_yield() stats */
  543. unsigned int yld_count;
  544. /* schedule() stats */
  545. unsigned int sched_switch;
  546. unsigned int sched_count;
  547. unsigned int sched_goidle;
  548. /* try_to_wake_up() stats */
  549. unsigned int ttwu_count;
  550. unsigned int ttwu_local;
  551. /* BKL stats */
  552. unsigned int bkl_count;
  553. #endif
  554. };
  555. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  556. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  557. {
  558. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  559. }
  560. static inline int cpu_of(struct rq *rq)
  561. {
  562. #ifdef CONFIG_SMP
  563. return rq->cpu;
  564. #else
  565. return 0;
  566. #endif
  567. }
  568. /*
  569. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  570. * See detach_destroy_domains: synchronize_sched for details.
  571. *
  572. * The domain tree of any CPU may only be accessed from within
  573. * preempt-disabled sections.
  574. */
  575. #define for_each_domain(cpu, __sd) \
  576. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  577. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  578. #define this_rq() (&__get_cpu_var(runqueues))
  579. #define task_rq(p) cpu_rq(task_cpu(p))
  580. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  581. static inline void update_rq_clock(struct rq *rq)
  582. {
  583. rq->clock = sched_clock_cpu(cpu_of(rq));
  584. }
  585. /*
  586. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  587. */
  588. #ifdef CONFIG_SCHED_DEBUG
  589. # define const_debug __read_mostly
  590. #else
  591. # define const_debug static const
  592. #endif
  593. /**
  594. * runqueue_is_locked
  595. *
  596. * Returns true if the current cpu runqueue is locked.
  597. * This interface allows printk to be called with the runqueue lock
  598. * held and know whether or not it is OK to wake up the klogd.
  599. */
  600. int runqueue_is_locked(void)
  601. {
  602. int cpu = get_cpu();
  603. struct rq *rq = cpu_rq(cpu);
  604. int ret;
  605. ret = spin_is_locked(&rq->lock);
  606. put_cpu();
  607. return ret;
  608. }
  609. /*
  610. * Debugging: various feature bits
  611. */
  612. #define SCHED_FEAT(name, enabled) \
  613. __SCHED_FEAT_##name ,
  614. enum {
  615. #include "sched_features.h"
  616. };
  617. #undef SCHED_FEAT
  618. #define SCHED_FEAT(name, enabled) \
  619. (1UL << __SCHED_FEAT_##name) * enabled |
  620. const_debug unsigned int sysctl_sched_features =
  621. #include "sched_features.h"
  622. 0;
  623. #undef SCHED_FEAT
  624. #ifdef CONFIG_SCHED_DEBUG
  625. #define SCHED_FEAT(name, enabled) \
  626. #name ,
  627. static __read_mostly char *sched_feat_names[] = {
  628. #include "sched_features.h"
  629. NULL
  630. };
  631. #undef SCHED_FEAT
  632. static int sched_feat_show(struct seq_file *m, void *v)
  633. {
  634. int i;
  635. for (i = 0; sched_feat_names[i]; i++) {
  636. if (!(sysctl_sched_features & (1UL << i)))
  637. seq_puts(m, "NO_");
  638. seq_printf(m, "%s ", sched_feat_names[i]);
  639. }
  640. seq_puts(m, "\n");
  641. return 0;
  642. }
  643. static ssize_t
  644. sched_feat_write(struct file *filp, const char __user *ubuf,
  645. size_t cnt, loff_t *ppos)
  646. {
  647. char buf[64];
  648. char *cmp = buf;
  649. int neg = 0;
  650. int i;
  651. if (cnt > 63)
  652. cnt = 63;
  653. if (copy_from_user(&buf, ubuf, cnt))
  654. return -EFAULT;
  655. buf[cnt] = 0;
  656. if (strncmp(buf, "NO_", 3) == 0) {
  657. neg = 1;
  658. cmp += 3;
  659. }
  660. for (i = 0; sched_feat_names[i]; i++) {
  661. int len = strlen(sched_feat_names[i]);
  662. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  663. if (neg)
  664. sysctl_sched_features &= ~(1UL << i);
  665. else
  666. sysctl_sched_features |= (1UL << i);
  667. break;
  668. }
  669. }
  670. if (!sched_feat_names[i])
  671. return -EINVAL;
  672. filp->f_pos += cnt;
  673. return cnt;
  674. }
  675. static int sched_feat_open(struct inode *inode, struct file *filp)
  676. {
  677. return single_open(filp, sched_feat_show, NULL);
  678. }
  679. static struct file_operations sched_feat_fops = {
  680. .open = sched_feat_open,
  681. .write = sched_feat_write,
  682. .read = seq_read,
  683. .llseek = seq_lseek,
  684. .release = single_release,
  685. };
  686. static __init int sched_init_debug(void)
  687. {
  688. debugfs_create_file("sched_features", 0644, NULL, NULL,
  689. &sched_feat_fops);
  690. return 0;
  691. }
  692. late_initcall(sched_init_debug);
  693. #endif
  694. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  695. /*
  696. * Number of tasks to iterate in a single balance run.
  697. * Limited because this is done with IRQs disabled.
  698. */
  699. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  700. /*
  701. * ratelimit for updating the group shares.
  702. * default: 0.25ms
  703. */
  704. unsigned int sysctl_sched_shares_ratelimit = 250000;
  705. /*
  706. * Inject some fuzzyness into changing the per-cpu group shares
  707. * this avoids remote rq-locks at the expense of fairness.
  708. * default: 4
  709. */
  710. unsigned int sysctl_sched_shares_thresh = 4;
  711. /*
  712. * period over which we measure -rt task cpu usage in us.
  713. * default: 1s
  714. */
  715. unsigned int sysctl_sched_rt_period = 1000000;
  716. static __read_mostly int scheduler_running;
  717. /*
  718. * part of the period that we allow rt tasks to run in us.
  719. * default: 0.95s
  720. */
  721. int sysctl_sched_rt_runtime = 950000;
  722. static inline u64 global_rt_period(void)
  723. {
  724. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  725. }
  726. static inline u64 global_rt_runtime(void)
  727. {
  728. if (sysctl_sched_rt_runtime < 0)
  729. return RUNTIME_INF;
  730. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  731. }
  732. #ifndef prepare_arch_switch
  733. # define prepare_arch_switch(next) do { } while (0)
  734. #endif
  735. #ifndef finish_arch_switch
  736. # define finish_arch_switch(prev) do { } while (0)
  737. #endif
  738. static inline int task_current(struct rq *rq, struct task_struct *p)
  739. {
  740. return rq->curr == p;
  741. }
  742. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  743. static inline int task_running(struct rq *rq, struct task_struct *p)
  744. {
  745. return task_current(rq, p);
  746. }
  747. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  748. {
  749. }
  750. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  751. {
  752. #ifdef CONFIG_DEBUG_SPINLOCK
  753. /* this is a valid case when another task releases the spinlock */
  754. rq->lock.owner = current;
  755. #endif
  756. /*
  757. * If we are tracking spinlock dependencies then we have to
  758. * fix up the runqueue lock - which gets 'carried over' from
  759. * prev into current:
  760. */
  761. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  762. spin_unlock_irq(&rq->lock);
  763. }
  764. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. static inline int task_running(struct rq *rq, struct task_struct *p)
  766. {
  767. #ifdef CONFIG_SMP
  768. return p->oncpu;
  769. #else
  770. return task_current(rq, p);
  771. #endif
  772. }
  773. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  774. {
  775. #ifdef CONFIG_SMP
  776. /*
  777. * We can optimise this out completely for !SMP, because the
  778. * SMP rebalancing from interrupt is the only thing that cares
  779. * here.
  780. */
  781. next->oncpu = 1;
  782. #endif
  783. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  784. spin_unlock_irq(&rq->lock);
  785. #else
  786. spin_unlock(&rq->lock);
  787. #endif
  788. }
  789. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  790. {
  791. #ifdef CONFIG_SMP
  792. /*
  793. * After ->oncpu is cleared, the task can be moved to a different CPU.
  794. * We must ensure this doesn't happen until the switch is completely
  795. * finished.
  796. */
  797. smp_wmb();
  798. prev->oncpu = 0;
  799. #endif
  800. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  801. local_irq_enable();
  802. #endif
  803. }
  804. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  805. /*
  806. * __task_rq_lock - lock the runqueue a given task resides on.
  807. * Must be called interrupts disabled.
  808. */
  809. static inline struct rq *__task_rq_lock(struct task_struct *p)
  810. __acquires(rq->lock)
  811. {
  812. for (;;) {
  813. struct rq *rq = task_rq(p);
  814. spin_lock(&rq->lock);
  815. if (likely(rq == task_rq(p)))
  816. return rq;
  817. spin_unlock(&rq->lock);
  818. }
  819. }
  820. /*
  821. * task_rq_lock - lock the runqueue a given task resides on and disable
  822. * interrupts. Note the ordering: we can safely lookup the task_rq without
  823. * explicitly disabling preemption.
  824. */
  825. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  826. __acquires(rq->lock)
  827. {
  828. struct rq *rq;
  829. for (;;) {
  830. local_irq_save(*flags);
  831. rq = task_rq(p);
  832. spin_lock(&rq->lock);
  833. if (likely(rq == task_rq(p)))
  834. return rq;
  835. spin_unlock_irqrestore(&rq->lock, *flags);
  836. }
  837. }
  838. void task_rq_unlock_wait(struct task_struct *p)
  839. {
  840. struct rq *rq = task_rq(p);
  841. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  842. spin_unlock_wait(&rq->lock);
  843. }
  844. static void __task_rq_unlock(struct rq *rq)
  845. __releases(rq->lock)
  846. {
  847. spin_unlock(&rq->lock);
  848. }
  849. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  850. __releases(rq->lock)
  851. {
  852. spin_unlock_irqrestore(&rq->lock, *flags);
  853. }
  854. /*
  855. * this_rq_lock - lock this runqueue and disable interrupts.
  856. */
  857. static struct rq *this_rq_lock(void)
  858. __acquires(rq->lock)
  859. {
  860. struct rq *rq;
  861. local_irq_disable();
  862. rq = this_rq();
  863. spin_lock(&rq->lock);
  864. return rq;
  865. }
  866. #ifdef CONFIG_SCHED_HRTICK
  867. /*
  868. * Use HR-timers to deliver accurate preemption points.
  869. *
  870. * Its all a bit involved since we cannot program an hrt while holding the
  871. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  872. * reschedule event.
  873. *
  874. * When we get rescheduled we reprogram the hrtick_timer outside of the
  875. * rq->lock.
  876. */
  877. /*
  878. * Use hrtick when:
  879. * - enabled by features
  880. * - hrtimer is actually high res
  881. */
  882. static inline int hrtick_enabled(struct rq *rq)
  883. {
  884. if (!sched_feat(HRTICK))
  885. return 0;
  886. if (!cpu_active(cpu_of(rq)))
  887. return 0;
  888. return hrtimer_is_hres_active(&rq->hrtick_timer);
  889. }
  890. static void hrtick_clear(struct rq *rq)
  891. {
  892. if (hrtimer_active(&rq->hrtick_timer))
  893. hrtimer_cancel(&rq->hrtick_timer);
  894. }
  895. /*
  896. * High-resolution timer tick.
  897. * Runs from hardirq context with interrupts disabled.
  898. */
  899. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  900. {
  901. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  902. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  903. spin_lock(&rq->lock);
  904. update_rq_clock(rq);
  905. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  906. spin_unlock(&rq->lock);
  907. return HRTIMER_NORESTART;
  908. }
  909. #ifdef CONFIG_SMP
  910. /*
  911. * called from hardirq (IPI) context
  912. */
  913. static void __hrtick_start(void *arg)
  914. {
  915. struct rq *rq = arg;
  916. spin_lock(&rq->lock);
  917. hrtimer_restart(&rq->hrtick_timer);
  918. rq->hrtick_csd_pending = 0;
  919. spin_unlock(&rq->lock);
  920. }
  921. /*
  922. * Called to set the hrtick timer state.
  923. *
  924. * called with rq->lock held and irqs disabled
  925. */
  926. static void hrtick_start(struct rq *rq, u64 delay)
  927. {
  928. struct hrtimer *timer = &rq->hrtick_timer;
  929. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  930. hrtimer_set_expires(timer, time);
  931. if (rq == this_rq()) {
  932. hrtimer_restart(timer);
  933. } else if (!rq->hrtick_csd_pending) {
  934. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  935. rq->hrtick_csd_pending = 1;
  936. }
  937. }
  938. static int
  939. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  940. {
  941. int cpu = (int)(long)hcpu;
  942. switch (action) {
  943. case CPU_UP_CANCELED:
  944. case CPU_UP_CANCELED_FROZEN:
  945. case CPU_DOWN_PREPARE:
  946. case CPU_DOWN_PREPARE_FROZEN:
  947. case CPU_DEAD:
  948. case CPU_DEAD_FROZEN:
  949. hrtick_clear(cpu_rq(cpu));
  950. return NOTIFY_OK;
  951. }
  952. return NOTIFY_DONE;
  953. }
  954. static __init void init_hrtick(void)
  955. {
  956. hotcpu_notifier(hotplug_hrtick, 0);
  957. }
  958. #else
  959. /*
  960. * Called to set the hrtick timer state.
  961. *
  962. * called with rq->lock held and irqs disabled
  963. */
  964. static void hrtick_start(struct rq *rq, u64 delay)
  965. {
  966. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  967. HRTIMER_MODE_REL, 0);
  968. }
  969. static inline void init_hrtick(void)
  970. {
  971. }
  972. #endif /* CONFIG_SMP */
  973. static void init_rq_hrtick(struct rq *rq)
  974. {
  975. #ifdef CONFIG_SMP
  976. rq->hrtick_csd_pending = 0;
  977. rq->hrtick_csd.flags = 0;
  978. rq->hrtick_csd.func = __hrtick_start;
  979. rq->hrtick_csd.info = rq;
  980. #endif
  981. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  982. rq->hrtick_timer.function = hrtick;
  983. }
  984. #else /* CONFIG_SCHED_HRTICK */
  985. static inline void hrtick_clear(struct rq *rq)
  986. {
  987. }
  988. static inline void init_rq_hrtick(struct rq *rq)
  989. {
  990. }
  991. static inline void init_hrtick(void)
  992. {
  993. }
  994. #endif /* CONFIG_SCHED_HRTICK */
  995. /*
  996. * resched_task - mark a task 'to be rescheduled now'.
  997. *
  998. * On UP this means the setting of the need_resched flag, on SMP it
  999. * might also involve a cross-CPU call to trigger the scheduler on
  1000. * the target CPU.
  1001. */
  1002. #ifdef CONFIG_SMP
  1003. #ifndef tsk_is_polling
  1004. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1005. #endif
  1006. static void resched_task(struct task_struct *p)
  1007. {
  1008. int cpu;
  1009. assert_spin_locked(&task_rq(p)->lock);
  1010. if (test_tsk_need_resched(p))
  1011. return;
  1012. set_tsk_need_resched(p);
  1013. cpu = task_cpu(p);
  1014. if (cpu == smp_processor_id())
  1015. return;
  1016. /* NEED_RESCHED must be visible before we test polling */
  1017. smp_mb();
  1018. if (!tsk_is_polling(p))
  1019. smp_send_reschedule(cpu);
  1020. }
  1021. static void resched_cpu(int cpu)
  1022. {
  1023. struct rq *rq = cpu_rq(cpu);
  1024. unsigned long flags;
  1025. if (!spin_trylock_irqsave(&rq->lock, flags))
  1026. return;
  1027. resched_task(cpu_curr(cpu));
  1028. spin_unlock_irqrestore(&rq->lock, flags);
  1029. }
  1030. #ifdef CONFIG_NO_HZ
  1031. /*
  1032. * When add_timer_on() enqueues a timer into the timer wheel of an
  1033. * idle CPU then this timer might expire before the next timer event
  1034. * which is scheduled to wake up that CPU. In case of a completely
  1035. * idle system the next event might even be infinite time into the
  1036. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1037. * leaves the inner idle loop so the newly added timer is taken into
  1038. * account when the CPU goes back to idle and evaluates the timer
  1039. * wheel for the next timer event.
  1040. */
  1041. void wake_up_idle_cpu(int cpu)
  1042. {
  1043. struct rq *rq = cpu_rq(cpu);
  1044. if (cpu == smp_processor_id())
  1045. return;
  1046. /*
  1047. * This is safe, as this function is called with the timer
  1048. * wheel base lock of (cpu) held. When the CPU is on the way
  1049. * to idle and has not yet set rq->curr to idle then it will
  1050. * be serialized on the timer wheel base lock and take the new
  1051. * timer into account automatically.
  1052. */
  1053. if (rq->curr != rq->idle)
  1054. return;
  1055. /*
  1056. * We can set TIF_RESCHED on the idle task of the other CPU
  1057. * lockless. The worst case is that the other CPU runs the
  1058. * idle task through an additional NOOP schedule()
  1059. */
  1060. set_tsk_need_resched(rq->idle);
  1061. /* NEED_RESCHED must be visible before we test polling */
  1062. smp_mb();
  1063. if (!tsk_is_polling(rq->idle))
  1064. smp_send_reschedule(cpu);
  1065. }
  1066. #endif /* CONFIG_NO_HZ */
  1067. #else /* !CONFIG_SMP */
  1068. static void resched_task(struct task_struct *p)
  1069. {
  1070. assert_spin_locked(&task_rq(p)->lock);
  1071. set_tsk_need_resched(p);
  1072. }
  1073. #endif /* CONFIG_SMP */
  1074. #if BITS_PER_LONG == 32
  1075. # define WMULT_CONST (~0UL)
  1076. #else
  1077. # define WMULT_CONST (1UL << 32)
  1078. #endif
  1079. #define WMULT_SHIFT 32
  1080. /*
  1081. * Shift right and round:
  1082. */
  1083. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1084. /*
  1085. * delta *= weight / lw
  1086. */
  1087. static unsigned long
  1088. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1089. struct load_weight *lw)
  1090. {
  1091. u64 tmp;
  1092. if (!lw->inv_weight) {
  1093. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1094. lw->inv_weight = 1;
  1095. else
  1096. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1097. / (lw->weight+1);
  1098. }
  1099. tmp = (u64)delta_exec * weight;
  1100. /*
  1101. * Check whether we'd overflow the 64-bit multiplication:
  1102. */
  1103. if (unlikely(tmp > WMULT_CONST))
  1104. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1105. WMULT_SHIFT/2);
  1106. else
  1107. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1108. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1109. }
  1110. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1111. {
  1112. lw->weight += inc;
  1113. lw->inv_weight = 0;
  1114. }
  1115. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1116. {
  1117. lw->weight -= dec;
  1118. lw->inv_weight = 0;
  1119. }
  1120. /*
  1121. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1122. * of tasks with abnormal "nice" values across CPUs the contribution that
  1123. * each task makes to its run queue's load is weighted according to its
  1124. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1125. * scaled version of the new time slice allocation that they receive on time
  1126. * slice expiry etc.
  1127. */
  1128. #define WEIGHT_IDLEPRIO 3
  1129. #define WMULT_IDLEPRIO 1431655765
  1130. /*
  1131. * Nice levels are multiplicative, with a gentle 10% change for every
  1132. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1133. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1134. * that remained on nice 0.
  1135. *
  1136. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1137. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1138. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1139. * If a task goes up by ~10% and another task goes down by ~10% then
  1140. * the relative distance between them is ~25%.)
  1141. */
  1142. static const int prio_to_weight[40] = {
  1143. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1144. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1145. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1146. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1147. /* 0 */ 1024, 820, 655, 526, 423,
  1148. /* 5 */ 335, 272, 215, 172, 137,
  1149. /* 10 */ 110, 87, 70, 56, 45,
  1150. /* 15 */ 36, 29, 23, 18, 15,
  1151. };
  1152. /*
  1153. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1154. *
  1155. * In cases where the weight does not change often, we can use the
  1156. * precalculated inverse to speed up arithmetics by turning divisions
  1157. * into multiplications:
  1158. */
  1159. static const u32 prio_to_wmult[40] = {
  1160. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1161. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1162. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1163. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1164. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1165. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1166. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1167. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1168. };
  1169. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1170. /*
  1171. * runqueue iterator, to support SMP load-balancing between different
  1172. * scheduling classes, without having to expose their internal data
  1173. * structures to the load-balancing proper:
  1174. */
  1175. struct rq_iterator {
  1176. void *arg;
  1177. struct task_struct *(*start)(void *);
  1178. struct task_struct *(*next)(void *);
  1179. };
  1180. #ifdef CONFIG_SMP
  1181. static unsigned long
  1182. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1183. unsigned long max_load_move, struct sched_domain *sd,
  1184. enum cpu_idle_type idle, int *all_pinned,
  1185. int *this_best_prio, struct rq_iterator *iterator);
  1186. static int
  1187. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1188. struct sched_domain *sd, enum cpu_idle_type idle,
  1189. struct rq_iterator *iterator);
  1190. #endif
  1191. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1192. enum cpuacct_stat_index {
  1193. CPUACCT_STAT_USER, /* ... user mode */
  1194. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1195. CPUACCT_STAT_NSTATS,
  1196. };
  1197. #ifdef CONFIG_CGROUP_CPUACCT
  1198. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1199. static void cpuacct_update_stats(struct task_struct *tsk,
  1200. enum cpuacct_stat_index idx, cputime_t val);
  1201. #else
  1202. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1203. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1204. enum cpuacct_stat_index idx, cputime_t val) {}
  1205. #endif
  1206. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1207. {
  1208. update_load_add(&rq->load, load);
  1209. }
  1210. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1211. {
  1212. update_load_sub(&rq->load, load);
  1213. }
  1214. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1215. typedef int (*tg_visitor)(struct task_group *, void *);
  1216. /*
  1217. * Iterate the full tree, calling @down when first entering a node and @up when
  1218. * leaving it for the final time.
  1219. */
  1220. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1221. {
  1222. struct task_group *parent, *child;
  1223. int ret;
  1224. rcu_read_lock();
  1225. parent = &root_task_group;
  1226. down:
  1227. ret = (*down)(parent, data);
  1228. if (ret)
  1229. goto out_unlock;
  1230. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1231. parent = child;
  1232. goto down;
  1233. up:
  1234. continue;
  1235. }
  1236. ret = (*up)(parent, data);
  1237. if (ret)
  1238. goto out_unlock;
  1239. child = parent;
  1240. parent = parent->parent;
  1241. if (parent)
  1242. goto up;
  1243. out_unlock:
  1244. rcu_read_unlock();
  1245. return ret;
  1246. }
  1247. static int tg_nop(struct task_group *tg, void *data)
  1248. {
  1249. return 0;
  1250. }
  1251. #endif
  1252. #ifdef CONFIG_SMP
  1253. static unsigned long source_load(int cpu, int type);
  1254. static unsigned long target_load(int cpu, int type);
  1255. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1256. static unsigned long cpu_avg_load_per_task(int cpu)
  1257. {
  1258. struct rq *rq = cpu_rq(cpu);
  1259. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1260. if (nr_running)
  1261. rq->avg_load_per_task = rq->load.weight / nr_running;
  1262. else
  1263. rq->avg_load_per_task = 0;
  1264. return rq->avg_load_per_task;
  1265. }
  1266. #ifdef CONFIG_FAIR_GROUP_SCHED
  1267. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1268. /*
  1269. * Calculate and set the cpu's group shares.
  1270. */
  1271. static void
  1272. update_group_shares_cpu(struct task_group *tg, int cpu,
  1273. unsigned long sd_shares, unsigned long sd_rq_weight)
  1274. {
  1275. unsigned long shares;
  1276. unsigned long rq_weight;
  1277. if (!tg->se[cpu])
  1278. return;
  1279. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1280. /*
  1281. * \Sum shares * rq_weight
  1282. * shares = -----------------------
  1283. * \Sum rq_weight
  1284. *
  1285. */
  1286. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1287. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1288. if (abs(shares - tg->se[cpu]->load.weight) >
  1289. sysctl_sched_shares_thresh) {
  1290. struct rq *rq = cpu_rq(cpu);
  1291. unsigned long flags;
  1292. spin_lock_irqsave(&rq->lock, flags);
  1293. tg->cfs_rq[cpu]->shares = shares;
  1294. __set_se_shares(tg->se[cpu], shares);
  1295. spin_unlock_irqrestore(&rq->lock, flags);
  1296. }
  1297. }
  1298. /*
  1299. * Re-compute the task group their per cpu shares over the given domain.
  1300. * This needs to be done in a bottom-up fashion because the rq weight of a
  1301. * parent group depends on the shares of its child groups.
  1302. */
  1303. static int tg_shares_up(struct task_group *tg, void *data)
  1304. {
  1305. unsigned long weight, rq_weight = 0;
  1306. unsigned long shares = 0;
  1307. struct sched_domain *sd = data;
  1308. int i;
  1309. for_each_cpu(i, sched_domain_span(sd)) {
  1310. /*
  1311. * If there are currently no tasks on the cpu pretend there
  1312. * is one of average load so that when a new task gets to
  1313. * run here it will not get delayed by group starvation.
  1314. */
  1315. weight = tg->cfs_rq[i]->load.weight;
  1316. if (!weight)
  1317. weight = NICE_0_LOAD;
  1318. tg->cfs_rq[i]->rq_weight = weight;
  1319. rq_weight += weight;
  1320. shares += tg->cfs_rq[i]->shares;
  1321. }
  1322. if ((!shares && rq_weight) || shares > tg->shares)
  1323. shares = tg->shares;
  1324. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1325. shares = tg->shares;
  1326. for_each_cpu(i, sched_domain_span(sd))
  1327. update_group_shares_cpu(tg, i, shares, rq_weight);
  1328. return 0;
  1329. }
  1330. /*
  1331. * Compute the cpu's hierarchical load factor for each task group.
  1332. * This needs to be done in a top-down fashion because the load of a child
  1333. * group is a fraction of its parents load.
  1334. */
  1335. static int tg_load_down(struct task_group *tg, void *data)
  1336. {
  1337. unsigned long load;
  1338. long cpu = (long)data;
  1339. if (!tg->parent) {
  1340. load = cpu_rq(cpu)->load.weight;
  1341. } else {
  1342. load = tg->parent->cfs_rq[cpu]->h_load;
  1343. load *= tg->cfs_rq[cpu]->shares;
  1344. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1345. }
  1346. tg->cfs_rq[cpu]->h_load = load;
  1347. return 0;
  1348. }
  1349. static void update_shares(struct sched_domain *sd)
  1350. {
  1351. u64 now = cpu_clock(raw_smp_processor_id());
  1352. s64 elapsed = now - sd->last_update;
  1353. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1354. sd->last_update = now;
  1355. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1356. }
  1357. }
  1358. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1359. {
  1360. spin_unlock(&rq->lock);
  1361. update_shares(sd);
  1362. spin_lock(&rq->lock);
  1363. }
  1364. static void update_h_load(long cpu)
  1365. {
  1366. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1367. }
  1368. #else
  1369. static inline void update_shares(struct sched_domain *sd)
  1370. {
  1371. }
  1372. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1373. {
  1374. }
  1375. #endif
  1376. #ifdef CONFIG_PREEMPT
  1377. /*
  1378. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1379. * way at the expense of forcing extra atomic operations in all
  1380. * invocations. This assures that the double_lock is acquired using the
  1381. * same underlying policy as the spinlock_t on this architecture, which
  1382. * reduces latency compared to the unfair variant below. However, it
  1383. * also adds more overhead and therefore may reduce throughput.
  1384. */
  1385. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1386. __releases(this_rq->lock)
  1387. __acquires(busiest->lock)
  1388. __acquires(this_rq->lock)
  1389. {
  1390. spin_unlock(&this_rq->lock);
  1391. double_rq_lock(this_rq, busiest);
  1392. return 1;
  1393. }
  1394. #else
  1395. /*
  1396. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1397. * latency by eliminating extra atomic operations when the locks are
  1398. * already in proper order on entry. This favors lower cpu-ids and will
  1399. * grant the double lock to lower cpus over higher ids under contention,
  1400. * regardless of entry order into the function.
  1401. */
  1402. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1403. __releases(this_rq->lock)
  1404. __acquires(busiest->lock)
  1405. __acquires(this_rq->lock)
  1406. {
  1407. int ret = 0;
  1408. if (unlikely(!spin_trylock(&busiest->lock))) {
  1409. if (busiest < this_rq) {
  1410. spin_unlock(&this_rq->lock);
  1411. spin_lock(&busiest->lock);
  1412. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1413. ret = 1;
  1414. } else
  1415. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1416. }
  1417. return ret;
  1418. }
  1419. #endif /* CONFIG_PREEMPT */
  1420. /*
  1421. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1422. */
  1423. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1424. {
  1425. if (unlikely(!irqs_disabled())) {
  1426. /* printk() doesn't work good under rq->lock */
  1427. spin_unlock(&this_rq->lock);
  1428. BUG_ON(1);
  1429. }
  1430. return _double_lock_balance(this_rq, busiest);
  1431. }
  1432. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1433. __releases(busiest->lock)
  1434. {
  1435. spin_unlock(&busiest->lock);
  1436. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1437. }
  1438. #endif
  1439. #ifdef CONFIG_FAIR_GROUP_SCHED
  1440. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1441. {
  1442. #ifdef CONFIG_SMP
  1443. cfs_rq->shares = shares;
  1444. #endif
  1445. }
  1446. #endif
  1447. static void calc_load_account_active(struct rq *this_rq);
  1448. #include "sched_stats.h"
  1449. #include "sched_idletask.c"
  1450. #include "sched_fair.c"
  1451. #include "sched_rt.c"
  1452. #ifdef CONFIG_SCHED_DEBUG
  1453. # include "sched_debug.c"
  1454. #endif
  1455. #define sched_class_highest (&rt_sched_class)
  1456. #define for_each_class(class) \
  1457. for (class = sched_class_highest; class; class = class->next)
  1458. static void inc_nr_running(struct rq *rq)
  1459. {
  1460. rq->nr_running++;
  1461. }
  1462. static void dec_nr_running(struct rq *rq)
  1463. {
  1464. rq->nr_running--;
  1465. }
  1466. static void set_load_weight(struct task_struct *p)
  1467. {
  1468. if (task_has_rt_policy(p)) {
  1469. p->se.load.weight = prio_to_weight[0] * 2;
  1470. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1471. return;
  1472. }
  1473. /*
  1474. * SCHED_IDLE tasks get minimal weight:
  1475. */
  1476. if (p->policy == SCHED_IDLE) {
  1477. p->se.load.weight = WEIGHT_IDLEPRIO;
  1478. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1479. return;
  1480. }
  1481. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1482. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1483. }
  1484. static void update_avg(u64 *avg, u64 sample)
  1485. {
  1486. s64 diff = sample - *avg;
  1487. *avg += diff >> 3;
  1488. }
  1489. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1490. {
  1491. if (wakeup)
  1492. p->se.start_runtime = p->se.sum_exec_runtime;
  1493. sched_info_queued(p);
  1494. p->sched_class->enqueue_task(rq, p, wakeup);
  1495. p->se.on_rq = 1;
  1496. }
  1497. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1498. {
  1499. if (sleep) {
  1500. if (p->se.last_wakeup) {
  1501. update_avg(&p->se.avg_overlap,
  1502. p->se.sum_exec_runtime - p->se.last_wakeup);
  1503. p->se.last_wakeup = 0;
  1504. } else {
  1505. update_avg(&p->se.avg_wakeup,
  1506. sysctl_sched_wakeup_granularity);
  1507. }
  1508. }
  1509. sched_info_dequeued(p);
  1510. p->sched_class->dequeue_task(rq, p, sleep);
  1511. p->se.on_rq = 0;
  1512. }
  1513. /*
  1514. * __normal_prio - return the priority that is based on the static prio
  1515. */
  1516. static inline int __normal_prio(struct task_struct *p)
  1517. {
  1518. return p->static_prio;
  1519. }
  1520. /*
  1521. * Calculate the expected normal priority: i.e. priority
  1522. * without taking RT-inheritance into account. Might be
  1523. * boosted by interactivity modifiers. Changes upon fork,
  1524. * setprio syscalls, and whenever the interactivity
  1525. * estimator recalculates.
  1526. */
  1527. static inline int normal_prio(struct task_struct *p)
  1528. {
  1529. int prio;
  1530. if (task_has_rt_policy(p))
  1531. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1532. else
  1533. prio = __normal_prio(p);
  1534. return prio;
  1535. }
  1536. /*
  1537. * Calculate the current priority, i.e. the priority
  1538. * taken into account by the scheduler. This value might
  1539. * be boosted by RT tasks, or might be boosted by
  1540. * interactivity modifiers. Will be RT if the task got
  1541. * RT-boosted. If not then it returns p->normal_prio.
  1542. */
  1543. static int effective_prio(struct task_struct *p)
  1544. {
  1545. p->normal_prio = normal_prio(p);
  1546. /*
  1547. * If we are RT tasks or we were boosted to RT priority,
  1548. * keep the priority unchanged. Otherwise, update priority
  1549. * to the normal priority:
  1550. */
  1551. if (!rt_prio(p->prio))
  1552. return p->normal_prio;
  1553. return p->prio;
  1554. }
  1555. /*
  1556. * activate_task - move a task to the runqueue.
  1557. */
  1558. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1559. {
  1560. if (task_contributes_to_load(p))
  1561. rq->nr_uninterruptible--;
  1562. enqueue_task(rq, p, wakeup);
  1563. inc_nr_running(rq);
  1564. }
  1565. /*
  1566. * deactivate_task - remove a task from the runqueue.
  1567. */
  1568. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1569. {
  1570. if (task_contributes_to_load(p))
  1571. rq->nr_uninterruptible++;
  1572. dequeue_task(rq, p, sleep);
  1573. dec_nr_running(rq);
  1574. }
  1575. /**
  1576. * task_curr - is this task currently executing on a CPU?
  1577. * @p: the task in question.
  1578. */
  1579. inline int task_curr(const struct task_struct *p)
  1580. {
  1581. return cpu_curr(task_cpu(p)) == p;
  1582. }
  1583. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1584. {
  1585. set_task_rq(p, cpu);
  1586. #ifdef CONFIG_SMP
  1587. /*
  1588. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1589. * successfuly executed on another CPU. We must ensure that updates of
  1590. * per-task data have been completed by this moment.
  1591. */
  1592. smp_wmb();
  1593. task_thread_info(p)->cpu = cpu;
  1594. #endif
  1595. }
  1596. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1597. const struct sched_class *prev_class,
  1598. int oldprio, int running)
  1599. {
  1600. if (prev_class != p->sched_class) {
  1601. if (prev_class->switched_from)
  1602. prev_class->switched_from(rq, p, running);
  1603. p->sched_class->switched_to(rq, p, running);
  1604. } else
  1605. p->sched_class->prio_changed(rq, p, oldprio, running);
  1606. }
  1607. #ifdef CONFIG_SMP
  1608. /* Used instead of source_load when we know the type == 0 */
  1609. static unsigned long weighted_cpuload(const int cpu)
  1610. {
  1611. return cpu_rq(cpu)->load.weight;
  1612. }
  1613. /*
  1614. * Is this task likely cache-hot:
  1615. */
  1616. static int
  1617. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1618. {
  1619. s64 delta;
  1620. /*
  1621. * Buddy candidates are cache hot:
  1622. */
  1623. if (sched_feat(CACHE_HOT_BUDDY) &&
  1624. (&p->se == cfs_rq_of(&p->se)->next ||
  1625. &p->se == cfs_rq_of(&p->se)->last))
  1626. return 1;
  1627. if (p->sched_class != &fair_sched_class)
  1628. return 0;
  1629. if (sysctl_sched_migration_cost == -1)
  1630. return 1;
  1631. if (sysctl_sched_migration_cost == 0)
  1632. return 0;
  1633. delta = now - p->se.exec_start;
  1634. return delta < (s64)sysctl_sched_migration_cost;
  1635. }
  1636. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1637. {
  1638. int old_cpu = task_cpu(p);
  1639. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1640. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1641. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1642. u64 clock_offset;
  1643. clock_offset = old_rq->clock - new_rq->clock;
  1644. trace_sched_migrate_task(p, new_cpu);
  1645. #ifdef CONFIG_SCHEDSTATS
  1646. if (p->se.wait_start)
  1647. p->se.wait_start -= clock_offset;
  1648. if (p->se.sleep_start)
  1649. p->se.sleep_start -= clock_offset;
  1650. if (p->se.block_start)
  1651. p->se.block_start -= clock_offset;
  1652. if (old_cpu != new_cpu) {
  1653. schedstat_inc(p, se.nr_migrations);
  1654. if (task_hot(p, old_rq->clock, NULL))
  1655. schedstat_inc(p, se.nr_forced2_migrations);
  1656. }
  1657. #endif
  1658. p->se.vruntime -= old_cfsrq->min_vruntime -
  1659. new_cfsrq->min_vruntime;
  1660. __set_task_cpu(p, new_cpu);
  1661. }
  1662. struct migration_req {
  1663. struct list_head list;
  1664. struct task_struct *task;
  1665. int dest_cpu;
  1666. struct completion done;
  1667. };
  1668. /*
  1669. * The task's runqueue lock must be held.
  1670. * Returns true if you have to wait for migration thread.
  1671. */
  1672. static int
  1673. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1674. {
  1675. struct rq *rq = task_rq(p);
  1676. /*
  1677. * If the task is not on a runqueue (and not running), then
  1678. * it is sufficient to simply update the task's cpu field.
  1679. */
  1680. if (!p->se.on_rq && !task_running(rq, p)) {
  1681. set_task_cpu(p, dest_cpu);
  1682. return 0;
  1683. }
  1684. init_completion(&req->done);
  1685. req->task = p;
  1686. req->dest_cpu = dest_cpu;
  1687. list_add(&req->list, &rq->migration_queue);
  1688. return 1;
  1689. }
  1690. /*
  1691. * wait_task_context_switch - wait for a thread to complete at least one
  1692. * context switch.
  1693. *
  1694. * @p must not be current.
  1695. */
  1696. void wait_task_context_switch(struct task_struct *p)
  1697. {
  1698. unsigned long nvcsw, nivcsw, flags;
  1699. int running;
  1700. struct rq *rq;
  1701. nvcsw = p->nvcsw;
  1702. nivcsw = p->nivcsw;
  1703. for (;;) {
  1704. /*
  1705. * The runqueue is assigned before the actual context
  1706. * switch. We need to take the runqueue lock.
  1707. *
  1708. * We could check initially without the lock but it is
  1709. * very likely that we need to take the lock in every
  1710. * iteration.
  1711. */
  1712. rq = task_rq_lock(p, &flags);
  1713. running = task_running(rq, p);
  1714. task_rq_unlock(rq, &flags);
  1715. if (likely(!running))
  1716. break;
  1717. /*
  1718. * The switch count is incremented before the actual
  1719. * context switch. We thus wait for two switches to be
  1720. * sure at least one completed.
  1721. */
  1722. if ((p->nvcsw - nvcsw) > 1)
  1723. break;
  1724. if ((p->nivcsw - nivcsw) > 1)
  1725. break;
  1726. cpu_relax();
  1727. }
  1728. }
  1729. /*
  1730. * wait_task_inactive - wait for a thread to unschedule.
  1731. *
  1732. * If @match_state is nonzero, it's the @p->state value just checked and
  1733. * not expected to change. If it changes, i.e. @p might have woken up,
  1734. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1735. * we return a positive number (its total switch count). If a second call
  1736. * a short while later returns the same number, the caller can be sure that
  1737. * @p has remained unscheduled the whole time.
  1738. *
  1739. * The caller must ensure that the task *will* unschedule sometime soon,
  1740. * else this function might spin for a *long* time. This function can't
  1741. * be called with interrupts off, or it may introduce deadlock with
  1742. * smp_call_function() if an IPI is sent by the same process we are
  1743. * waiting to become inactive.
  1744. */
  1745. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1746. {
  1747. unsigned long flags;
  1748. int running, on_rq;
  1749. unsigned long ncsw;
  1750. struct rq *rq;
  1751. for (;;) {
  1752. /*
  1753. * We do the initial early heuristics without holding
  1754. * any task-queue locks at all. We'll only try to get
  1755. * the runqueue lock when things look like they will
  1756. * work out!
  1757. */
  1758. rq = task_rq(p);
  1759. /*
  1760. * If the task is actively running on another CPU
  1761. * still, just relax and busy-wait without holding
  1762. * any locks.
  1763. *
  1764. * NOTE! Since we don't hold any locks, it's not
  1765. * even sure that "rq" stays as the right runqueue!
  1766. * But we don't care, since "task_running()" will
  1767. * return false if the runqueue has changed and p
  1768. * is actually now running somewhere else!
  1769. */
  1770. while (task_running(rq, p)) {
  1771. if (match_state && unlikely(p->state != match_state))
  1772. return 0;
  1773. cpu_relax();
  1774. }
  1775. /*
  1776. * Ok, time to look more closely! We need the rq
  1777. * lock now, to be *sure*. If we're wrong, we'll
  1778. * just go back and repeat.
  1779. */
  1780. rq = task_rq_lock(p, &flags);
  1781. trace_sched_wait_task(rq, p);
  1782. running = task_running(rq, p);
  1783. on_rq = p->se.on_rq;
  1784. ncsw = 0;
  1785. if (!match_state || p->state == match_state)
  1786. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1787. task_rq_unlock(rq, &flags);
  1788. /*
  1789. * If it changed from the expected state, bail out now.
  1790. */
  1791. if (unlikely(!ncsw))
  1792. break;
  1793. /*
  1794. * Was it really running after all now that we
  1795. * checked with the proper locks actually held?
  1796. *
  1797. * Oops. Go back and try again..
  1798. */
  1799. if (unlikely(running)) {
  1800. cpu_relax();
  1801. continue;
  1802. }
  1803. /*
  1804. * It's not enough that it's not actively running,
  1805. * it must be off the runqueue _entirely_, and not
  1806. * preempted!
  1807. *
  1808. * So if it was still runnable (but just not actively
  1809. * running right now), it's preempted, and we should
  1810. * yield - it could be a while.
  1811. */
  1812. if (unlikely(on_rq)) {
  1813. schedule_timeout_uninterruptible(1);
  1814. continue;
  1815. }
  1816. /*
  1817. * Ahh, all good. It wasn't running, and it wasn't
  1818. * runnable, which means that it will never become
  1819. * running in the future either. We're all done!
  1820. */
  1821. break;
  1822. }
  1823. return ncsw;
  1824. }
  1825. /***
  1826. * kick_process - kick a running thread to enter/exit the kernel
  1827. * @p: the to-be-kicked thread
  1828. *
  1829. * Cause a process which is running on another CPU to enter
  1830. * kernel-mode, without any delay. (to get signals handled.)
  1831. *
  1832. * NOTE: this function doesnt have to take the runqueue lock,
  1833. * because all it wants to ensure is that the remote task enters
  1834. * the kernel. If the IPI races and the task has been migrated
  1835. * to another CPU then no harm is done and the purpose has been
  1836. * achieved as well.
  1837. */
  1838. void kick_process(struct task_struct *p)
  1839. {
  1840. int cpu;
  1841. preempt_disable();
  1842. cpu = task_cpu(p);
  1843. if ((cpu != smp_processor_id()) && task_curr(p))
  1844. smp_send_reschedule(cpu);
  1845. preempt_enable();
  1846. }
  1847. /*
  1848. * Return a low guess at the load of a migration-source cpu weighted
  1849. * according to the scheduling class and "nice" value.
  1850. *
  1851. * We want to under-estimate the load of migration sources, to
  1852. * balance conservatively.
  1853. */
  1854. static unsigned long source_load(int cpu, int type)
  1855. {
  1856. struct rq *rq = cpu_rq(cpu);
  1857. unsigned long total = weighted_cpuload(cpu);
  1858. if (type == 0 || !sched_feat(LB_BIAS))
  1859. return total;
  1860. return min(rq->cpu_load[type-1], total);
  1861. }
  1862. /*
  1863. * Return a high guess at the load of a migration-target cpu weighted
  1864. * according to the scheduling class and "nice" value.
  1865. */
  1866. static unsigned long target_load(int cpu, int type)
  1867. {
  1868. struct rq *rq = cpu_rq(cpu);
  1869. unsigned long total = weighted_cpuload(cpu);
  1870. if (type == 0 || !sched_feat(LB_BIAS))
  1871. return total;
  1872. return max(rq->cpu_load[type-1], total);
  1873. }
  1874. /*
  1875. * find_idlest_group finds and returns the least busy CPU group within the
  1876. * domain.
  1877. */
  1878. static struct sched_group *
  1879. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1880. {
  1881. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1882. unsigned long min_load = ULONG_MAX, this_load = 0;
  1883. int load_idx = sd->forkexec_idx;
  1884. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1885. do {
  1886. unsigned long load, avg_load;
  1887. int local_group;
  1888. int i;
  1889. /* Skip over this group if it has no CPUs allowed */
  1890. if (!cpumask_intersects(sched_group_cpus(group),
  1891. &p->cpus_allowed))
  1892. continue;
  1893. local_group = cpumask_test_cpu(this_cpu,
  1894. sched_group_cpus(group));
  1895. /* Tally up the load of all CPUs in the group */
  1896. avg_load = 0;
  1897. for_each_cpu(i, sched_group_cpus(group)) {
  1898. /* Bias balancing toward cpus of our domain */
  1899. if (local_group)
  1900. load = source_load(i, load_idx);
  1901. else
  1902. load = target_load(i, load_idx);
  1903. avg_load += load;
  1904. }
  1905. /* Adjust by relative CPU power of the group */
  1906. avg_load = sg_div_cpu_power(group,
  1907. avg_load * SCHED_LOAD_SCALE);
  1908. if (local_group) {
  1909. this_load = avg_load;
  1910. this = group;
  1911. } else if (avg_load < min_load) {
  1912. min_load = avg_load;
  1913. idlest = group;
  1914. }
  1915. } while (group = group->next, group != sd->groups);
  1916. if (!idlest || 100*this_load < imbalance*min_load)
  1917. return NULL;
  1918. return idlest;
  1919. }
  1920. /*
  1921. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1922. */
  1923. static int
  1924. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1925. {
  1926. unsigned long load, min_load = ULONG_MAX;
  1927. int idlest = -1;
  1928. int i;
  1929. /* Traverse only the allowed CPUs */
  1930. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1931. load = weighted_cpuload(i);
  1932. if (load < min_load || (load == min_load && i == this_cpu)) {
  1933. min_load = load;
  1934. idlest = i;
  1935. }
  1936. }
  1937. return idlest;
  1938. }
  1939. /*
  1940. * sched_balance_self: balance the current task (running on cpu) in domains
  1941. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1942. * SD_BALANCE_EXEC.
  1943. *
  1944. * Balance, ie. select the least loaded group.
  1945. *
  1946. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1947. *
  1948. * preempt must be disabled.
  1949. */
  1950. static int sched_balance_self(int cpu, int flag)
  1951. {
  1952. struct task_struct *t = current;
  1953. struct sched_domain *tmp, *sd = NULL;
  1954. for_each_domain(cpu, tmp) {
  1955. /*
  1956. * If power savings logic is enabled for a domain, stop there.
  1957. */
  1958. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1959. break;
  1960. if (tmp->flags & flag)
  1961. sd = tmp;
  1962. }
  1963. if (sd)
  1964. update_shares(sd);
  1965. while (sd) {
  1966. struct sched_group *group;
  1967. int new_cpu, weight;
  1968. if (!(sd->flags & flag)) {
  1969. sd = sd->child;
  1970. continue;
  1971. }
  1972. group = find_idlest_group(sd, t, cpu);
  1973. if (!group) {
  1974. sd = sd->child;
  1975. continue;
  1976. }
  1977. new_cpu = find_idlest_cpu(group, t, cpu);
  1978. if (new_cpu == -1 || new_cpu == cpu) {
  1979. /* Now try balancing at a lower domain level of cpu */
  1980. sd = sd->child;
  1981. continue;
  1982. }
  1983. /* Now try balancing at a lower domain level of new_cpu */
  1984. cpu = new_cpu;
  1985. weight = cpumask_weight(sched_domain_span(sd));
  1986. sd = NULL;
  1987. for_each_domain(cpu, tmp) {
  1988. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1989. break;
  1990. if (tmp->flags & flag)
  1991. sd = tmp;
  1992. }
  1993. /* while loop will break here if sd == NULL */
  1994. }
  1995. return cpu;
  1996. }
  1997. #endif /* CONFIG_SMP */
  1998. /***
  1999. * try_to_wake_up - wake up a thread
  2000. * @p: the to-be-woken-up thread
  2001. * @state: the mask of task states that can be woken
  2002. * @sync: do a synchronous wakeup?
  2003. *
  2004. * Put it on the run-queue if it's not already there. The "current"
  2005. * thread is always on the run-queue (except when the actual
  2006. * re-schedule is in progress), and as such you're allowed to do
  2007. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2008. * runnable without the overhead of this.
  2009. *
  2010. * returns failure only if the task is already active.
  2011. */
  2012. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2013. {
  2014. int cpu, orig_cpu, this_cpu, success = 0;
  2015. unsigned long flags;
  2016. long old_state;
  2017. struct rq *rq;
  2018. if (!sched_feat(SYNC_WAKEUPS))
  2019. sync = 0;
  2020. #ifdef CONFIG_SMP
  2021. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2022. struct sched_domain *sd;
  2023. this_cpu = raw_smp_processor_id();
  2024. cpu = task_cpu(p);
  2025. for_each_domain(this_cpu, sd) {
  2026. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2027. update_shares(sd);
  2028. break;
  2029. }
  2030. }
  2031. }
  2032. #endif
  2033. smp_wmb();
  2034. rq = task_rq_lock(p, &flags);
  2035. update_rq_clock(rq);
  2036. old_state = p->state;
  2037. if (!(old_state & state))
  2038. goto out;
  2039. if (p->se.on_rq)
  2040. goto out_running;
  2041. cpu = task_cpu(p);
  2042. orig_cpu = cpu;
  2043. this_cpu = smp_processor_id();
  2044. #ifdef CONFIG_SMP
  2045. if (unlikely(task_running(rq, p)))
  2046. goto out_activate;
  2047. cpu = p->sched_class->select_task_rq(p, sync);
  2048. if (cpu != orig_cpu) {
  2049. set_task_cpu(p, cpu);
  2050. task_rq_unlock(rq, &flags);
  2051. /* might preempt at this point */
  2052. rq = task_rq_lock(p, &flags);
  2053. old_state = p->state;
  2054. if (!(old_state & state))
  2055. goto out;
  2056. if (p->se.on_rq)
  2057. goto out_running;
  2058. this_cpu = smp_processor_id();
  2059. cpu = task_cpu(p);
  2060. }
  2061. #ifdef CONFIG_SCHEDSTATS
  2062. schedstat_inc(rq, ttwu_count);
  2063. if (cpu == this_cpu)
  2064. schedstat_inc(rq, ttwu_local);
  2065. else {
  2066. struct sched_domain *sd;
  2067. for_each_domain(this_cpu, sd) {
  2068. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2069. schedstat_inc(sd, ttwu_wake_remote);
  2070. break;
  2071. }
  2072. }
  2073. }
  2074. #endif /* CONFIG_SCHEDSTATS */
  2075. out_activate:
  2076. #endif /* CONFIG_SMP */
  2077. schedstat_inc(p, se.nr_wakeups);
  2078. if (sync)
  2079. schedstat_inc(p, se.nr_wakeups_sync);
  2080. if (orig_cpu != cpu)
  2081. schedstat_inc(p, se.nr_wakeups_migrate);
  2082. if (cpu == this_cpu)
  2083. schedstat_inc(p, se.nr_wakeups_local);
  2084. else
  2085. schedstat_inc(p, se.nr_wakeups_remote);
  2086. activate_task(rq, p, 1);
  2087. success = 1;
  2088. /*
  2089. * Only attribute actual wakeups done by this task.
  2090. */
  2091. if (!in_interrupt()) {
  2092. struct sched_entity *se = &current->se;
  2093. u64 sample = se->sum_exec_runtime;
  2094. if (se->last_wakeup)
  2095. sample -= se->last_wakeup;
  2096. else
  2097. sample -= se->start_runtime;
  2098. update_avg(&se->avg_wakeup, sample);
  2099. se->last_wakeup = se->sum_exec_runtime;
  2100. }
  2101. out_running:
  2102. trace_sched_wakeup(rq, p, success);
  2103. check_preempt_curr(rq, p, sync);
  2104. p->state = TASK_RUNNING;
  2105. #ifdef CONFIG_SMP
  2106. if (p->sched_class->task_wake_up)
  2107. p->sched_class->task_wake_up(rq, p);
  2108. #endif
  2109. out:
  2110. task_rq_unlock(rq, &flags);
  2111. return success;
  2112. }
  2113. /**
  2114. * wake_up_process - Wake up a specific process
  2115. * @p: The process to be woken up.
  2116. *
  2117. * Attempt to wake up the nominated process and move it to the set of runnable
  2118. * processes. Returns 1 if the process was woken up, 0 if it was already
  2119. * running.
  2120. *
  2121. * It may be assumed that this function implies a write memory barrier before
  2122. * changing the task state if and only if any tasks are woken up.
  2123. */
  2124. int wake_up_process(struct task_struct *p)
  2125. {
  2126. return try_to_wake_up(p, TASK_ALL, 0);
  2127. }
  2128. EXPORT_SYMBOL(wake_up_process);
  2129. int wake_up_state(struct task_struct *p, unsigned int state)
  2130. {
  2131. return try_to_wake_up(p, state, 0);
  2132. }
  2133. /*
  2134. * Perform scheduler related setup for a newly forked process p.
  2135. * p is forked by current.
  2136. *
  2137. * __sched_fork() is basic setup used by init_idle() too:
  2138. */
  2139. static void __sched_fork(struct task_struct *p)
  2140. {
  2141. p->se.exec_start = 0;
  2142. p->se.sum_exec_runtime = 0;
  2143. p->se.prev_sum_exec_runtime = 0;
  2144. p->se.last_wakeup = 0;
  2145. p->se.avg_overlap = 0;
  2146. p->se.start_runtime = 0;
  2147. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2148. #ifdef CONFIG_SCHEDSTATS
  2149. p->se.wait_start = 0;
  2150. p->se.sum_sleep_runtime = 0;
  2151. p->se.sleep_start = 0;
  2152. p->se.block_start = 0;
  2153. p->se.sleep_max = 0;
  2154. p->se.block_max = 0;
  2155. p->se.exec_max = 0;
  2156. p->se.slice_max = 0;
  2157. p->se.wait_max = 0;
  2158. #endif
  2159. INIT_LIST_HEAD(&p->rt.run_list);
  2160. p->se.on_rq = 0;
  2161. INIT_LIST_HEAD(&p->se.group_node);
  2162. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2163. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2164. #endif
  2165. /*
  2166. * We mark the process as running here, but have not actually
  2167. * inserted it onto the runqueue yet. This guarantees that
  2168. * nobody will actually run it, and a signal or other external
  2169. * event cannot wake it up and insert it on the runqueue either.
  2170. */
  2171. p->state = TASK_RUNNING;
  2172. }
  2173. /*
  2174. * fork()/clone()-time setup:
  2175. */
  2176. void sched_fork(struct task_struct *p, int clone_flags)
  2177. {
  2178. int cpu = get_cpu();
  2179. __sched_fork(p);
  2180. #ifdef CONFIG_SMP
  2181. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2182. #endif
  2183. set_task_cpu(p, cpu);
  2184. /*
  2185. * Make sure we do not leak PI boosting priority to the child:
  2186. */
  2187. p->prio = current->normal_prio;
  2188. if (!rt_prio(p->prio))
  2189. p->sched_class = &fair_sched_class;
  2190. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2191. if (likely(sched_info_on()))
  2192. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2193. #endif
  2194. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2195. p->oncpu = 0;
  2196. #endif
  2197. #ifdef CONFIG_PREEMPT
  2198. /* Want to start with kernel preemption disabled. */
  2199. task_thread_info(p)->preempt_count = 1;
  2200. #endif
  2201. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2202. put_cpu();
  2203. }
  2204. /*
  2205. * wake_up_new_task - wake up a newly created task for the first time.
  2206. *
  2207. * This function will do some initial scheduler statistics housekeeping
  2208. * that must be done for every newly created context, then puts the task
  2209. * on the runqueue and wakes it.
  2210. */
  2211. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2212. {
  2213. unsigned long flags;
  2214. struct rq *rq;
  2215. rq = task_rq_lock(p, &flags);
  2216. BUG_ON(p->state != TASK_RUNNING);
  2217. update_rq_clock(rq);
  2218. p->prio = effective_prio(p);
  2219. if (!p->sched_class->task_new || !current->se.on_rq) {
  2220. activate_task(rq, p, 0);
  2221. } else {
  2222. /*
  2223. * Let the scheduling class do new task startup
  2224. * management (if any):
  2225. */
  2226. p->sched_class->task_new(rq, p);
  2227. inc_nr_running(rq);
  2228. }
  2229. trace_sched_wakeup_new(rq, p, 1);
  2230. check_preempt_curr(rq, p, 0);
  2231. #ifdef CONFIG_SMP
  2232. if (p->sched_class->task_wake_up)
  2233. p->sched_class->task_wake_up(rq, p);
  2234. #endif
  2235. task_rq_unlock(rq, &flags);
  2236. }
  2237. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2238. /**
  2239. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2240. * @notifier: notifier struct to register
  2241. */
  2242. void preempt_notifier_register(struct preempt_notifier *notifier)
  2243. {
  2244. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2245. }
  2246. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2247. /**
  2248. * preempt_notifier_unregister - no longer interested in preemption notifications
  2249. * @notifier: notifier struct to unregister
  2250. *
  2251. * This is safe to call from within a preemption notifier.
  2252. */
  2253. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2254. {
  2255. hlist_del(&notifier->link);
  2256. }
  2257. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2258. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2259. {
  2260. struct preempt_notifier *notifier;
  2261. struct hlist_node *node;
  2262. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2263. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2264. }
  2265. static void
  2266. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2267. struct task_struct *next)
  2268. {
  2269. struct preempt_notifier *notifier;
  2270. struct hlist_node *node;
  2271. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2272. notifier->ops->sched_out(notifier, next);
  2273. }
  2274. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2275. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2276. {
  2277. }
  2278. static void
  2279. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2280. struct task_struct *next)
  2281. {
  2282. }
  2283. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2284. /**
  2285. * prepare_task_switch - prepare to switch tasks
  2286. * @rq: the runqueue preparing to switch
  2287. * @prev: the current task that is being switched out
  2288. * @next: the task we are going to switch to.
  2289. *
  2290. * This is called with the rq lock held and interrupts off. It must
  2291. * be paired with a subsequent finish_task_switch after the context
  2292. * switch.
  2293. *
  2294. * prepare_task_switch sets up locking and calls architecture specific
  2295. * hooks.
  2296. */
  2297. static inline void
  2298. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2299. struct task_struct *next)
  2300. {
  2301. fire_sched_out_preempt_notifiers(prev, next);
  2302. prepare_lock_switch(rq, next);
  2303. prepare_arch_switch(next);
  2304. }
  2305. /**
  2306. * finish_task_switch - clean up after a task-switch
  2307. * @rq: runqueue associated with task-switch
  2308. * @prev: the thread we just switched away from.
  2309. *
  2310. * finish_task_switch must be called after the context switch, paired
  2311. * with a prepare_task_switch call before the context switch.
  2312. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2313. * and do any other architecture-specific cleanup actions.
  2314. *
  2315. * Note that we may have delayed dropping an mm in context_switch(). If
  2316. * so, we finish that here outside of the runqueue lock. (Doing it
  2317. * with the lock held can cause deadlocks; see schedule() for
  2318. * details.)
  2319. */
  2320. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2321. __releases(rq->lock)
  2322. {
  2323. struct mm_struct *mm = rq->prev_mm;
  2324. long prev_state;
  2325. #ifdef CONFIG_SMP
  2326. int post_schedule = 0;
  2327. if (current->sched_class->needs_post_schedule)
  2328. post_schedule = current->sched_class->needs_post_schedule(rq);
  2329. #endif
  2330. rq->prev_mm = NULL;
  2331. /*
  2332. * A task struct has one reference for the use as "current".
  2333. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2334. * schedule one last time. The schedule call will never return, and
  2335. * the scheduled task must drop that reference.
  2336. * The test for TASK_DEAD must occur while the runqueue locks are
  2337. * still held, otherwise prev could be scheduled on another cpu, die
  2338. * there before we look at prev->state, and then the reference would
  2339. * be dropped twice.
  2340. * Manfred Spraul <manfred@colorfullife.com>
  2341. */
  2342. prev_state = prev->state;
  2343. finish_arch_switch(prev);
  2344. finish_lock_switch(rq, prev);
  2345. #ifdef CONFIG_SMP
  2346. if (post_schedule)
  2347. current->sched_class->post_schedule(rq);
  2348. #endif
  2349. fire_sched_in_preempt_notifiers(current);
  2350. if (mm)
  2351. mmdrop(mm);
  2352. if (unlikely(prev_state == TASK_DEAD)) {
  2353. /*
  2354. * Remove function-return probe instances associated with this
  2355. * task and put them back on the free list.
  2356. */
  2357. kprobe_flush_task(prev);
  2358. put_task_struct(prev);
  2359. }
  2360. }
  2361. /**
  2362. * schedule_tail - first thing a freshly forked thread must call.
  2363. * @prev: the thread we just switched away from.
  2364. */
  2365. asmlinkage void schedule_tail(struct task_struct *prev)
  2366. __releases(rq->lock)
  2367. {
  2368. struct rq *rq = this_rq();
  2369. finish_task_switch(rq, prev);
  2370. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2371. /* In this case, finish_task_switch does not reenable preemption */
  2372. preempt_enable();
  2373. #endif
  2374. if (current->set_child_tid)
  2375. put_user(task_pid_vnr(current), current->set_child_tid);
  2376. }
  2377. /*
  2378. * context_switch - switch to the new MM and the new
  2379. * thread's register state.
  2380. */
  2381. static inline void
  2382. context_switch(struct rq *rq, struct task_struct *prev,
  2383. struct task_struct *next)
  2384. {
  2385. struct mm_struct *mm, *oldmm;
  2386. prepare_task_switch(rq, prev, next);
  2387. trace_sched_switch(rq, prev, next);
  2388. mm = next->mm;
  2389. oldmm = prev->active_mm;
  2390. /*
  2391. * For paravirt, this is coupled with an exit in switch_to to
  2392. * combine the page table reload and the switch backend into
  2393. * one hypercall.
  2394. */
  2395. arch_start_context_switch(prev);
  2396. if (unlikely(!mm)) {
  2397. next->active_mm = oldmm;
  2398. atomic_inc(&oldmm->mm_count);
  2399. enter_lazy_tlb(oldmm, next);
  2400. } else
  2401. switch_mm(oldmm, mm, next);
  2402. if (unlikely(!prev->mm)) {
  2403. prev->active_mm = NULL;
  2404. rq->prev_mm = oldmm;
  2405. }
  2406. /*
  2407. * Since the runqueue lock will be released by the next
  2408. * task (which is an invalid locking op but in the case
  2409. * of the scheduler it's an obvious special-case), so we
  2410. * do an early lockdep release here:
  2411. */
  2412. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2413. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2414. #endif
  2415. /* Here we just switch the register state and the stack. */
  2416. switch_to(prev, next, prev);
  2417. barrier();
  2418. /*
  2419. * this_rq must be evaluated again because prev may have moved
  2420. * CPUs since it called schedule(), thus the 'rq' on its stack
  2421. * frame will be invalid.
  2422. */
  2423. finish_task_switch(this_rq(), prev);
  2424. }
  2425. /*
  2426. * nr_running, nr_uninterruptible and nr_context_switches:
  2427. *
  2428. * externally visible scheduler statistics: current number of runnable
  2429. * threads, current number of uninterruptible-sleeping threads, total
  2430. * number of context switches performed since bootup.
  2431. */
  2432. unsigned long nr_running(void)
  2433. {
  2434. unsigned long i, sum = 0;
  2435. for_each_online_cpu(i)
  2436. sum += cpu_rq(i)->nr_running;
  2437. return sum;
  2438. }
  2439. unsigned long nr_uninterruptible(void)
  2440. {
  2441. unsigned long i, sum = 0;
  2442. for_each_possible_cpu(i)
  2443. sum += cpu_rq(i)->nr_uninterruptible;
  2444. /*
  2445. * Since we read the counters lockless, it might be slightly
  2446. * inaccurate. Do not allow it to go below zero though:
  2447. */
  2448. if (unlikely((long)sum < 0))
  2449. sum = 0;
  2450. return sum;
  2451. }
  2452. unsigned long long nr_context_switches(void)
  2453. {
  2454. int i;
  2455. unsigned long long sum = 0;
  2456. for_each_possible_cpu(i)
  2457. sum += cpu_rq(i)->nr_switches;
  2458. return sum;
  2459. }
  2460. unsigned long nr_iowait(void)
  2461. {
  2462. unsigned long i, sum = 0;
  2463. for_each_possible_cpu(i)
  2464. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2465. return sum;
  2466. }
  2467. /* Variables and functions for calc_load */
  2468. static atomic_long_t calc_load_tasks;
  2469. static unsigned long calc_load_update;
  2470. unsigned long avenrun[3];
  2471. EXPORT_SYMBOL(avenrun);
  2472. /**
  2473. * get_avenrun - get the load average array
  2474. * @loads: pointer to dest load array
  2475. * @offset: offset to add
  2476. * @shift: shift count to shift the result left
  2477. *
  2478. * These values are estimates at best, so no need for locking.
  2479. */
  2480. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2481. {
  2482. loads[0] = (avenrun[0] + offset) << shift;
  2483. loads[1] = (avenrun[1] + offset) << shift;
  2484. loads[2] = (avenrun[2] + offset) << shift;
  2485. }
  2486. static unsigned long
  2487. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2488. {
  2489. load *= exp;
  2490. load += active * (FIXED_1 - exp);
  2491. return load >> FSHIFT;
  2492. }
  2493. /*
  2494. * calc_load - update the avenrun load estimates 10 ticks after the
  2495. * CPUs have updated calc_load_tasks.
  2496. */
  2497. void calc_global_load(void)
  2498. {
  2499. unsigned long upd = calc_load_update + 10;
  2500. long active;
  2501. if (time_before(jiffies, upd))
  2502. return;
  2503. active = atomic_long_read(&calc_load_tasks);
  2504. active = active > 0 ? active * FIXED_1 : 0;
  2505. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2506. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2507. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2508. calc_load_update += LOAD_FREQ;
  2509. }
  2510. /*
  2511. * Either called from update_cpu_load() or from a cpu going idle
  2512. */
  2513. static void calc_load_account_active(struct rq *this_rq)
  2514. {
  2515. long nr_active, delta;
  2516. nr_active = this_rq->nr_running;
  2517. nr_active += (long) this_rq->nr_uninterruptible;
  2518. if (nr_active != this_rq->calc_load_active) {
  2519. delta = nr_active - this_rq->calc_load_active;
  2520. this_rq->calc_load_active = nr_active;
  2521. atomic_long_add(delta, &calc_load_tasks);
  2522. }
  2523. }
  2524. /*
  2525. * Update rq->cpu_load[] statistics. This function is usually called every
  2526. * scheduler tick (TICK_NSEC).
  2527. */
  2528. static void update_cpu_load(struct rq *this_rq)
  2529. {
  2530. unsigned long this_load = this_rq->load.weight;
  2531. int i, scale;
  2532. this_rq->nr_load_updates++;
  2533. /* Update our load: */
  2534. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2535. unsigned long old_load, new_load;
  2536. /* scale is effectively 1 << i now, and >> i divides by scale */
  2537. old_load = this_rq->cpu_load[i];
  2538. new_load = this_load;
  2539. /*
  2540. * Round up the averaging division if load is increasing. This
  2541. * prevents us from getting stuck on 9 if the load is 10, for
  2542. * example.
  2543. */
  2544. if (new_load > old_load)
  2545. new_load += scale-1;
  2546. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2547. }
  2548. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2549. this_rq->calc_load_update += LOAD_FREQ;
  2550. calc_load_account_active(this_rq);
  2551. }
  2552. }
  2553. #ifdef CONFIG_SMP
  2554. /*
  2555. * double_rq_lock - safely lock two runqueues
  2556. *
  2557. * Note this does not disable interrupts like task_rq_lock,
  2558. * you need to do so manually before calling.
  2559. */
  2560. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2561. __acquires(rq1->lock)
  2562. __acquires(rq2->lock)
  2563. {
  2564. BUG_ON(!irqs_disabled());
  2565. if (rq1 == rq2) {
  2566. spin_lock(&rq1->lock);
  2567. __acquire(rq2->lock); /* Fake it out ;) */
  2568. } else {
  2569. if (rq1 < rq2) {
  2570. spin_lock(&rq1->lock);
  2571. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2572. } else {
  2573. spin_lock(&rq2->lock);
  2574. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2575. }
  2576. }
  2577. update_rq_clock(rq1);
  2578. update_rq_clock(rq2);
  2579. }
  2580. /*
  2581. * double_rq_unlock - safely unlock two runqueues
  2582. *
  2583. * Note this does not restore interrupts like task_rq_unlock,
  2584. * you need to do so manually after calling.
  2585. */
  2586. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2587. __releases(rq1->lock)
  2588. __releases(rq2->lock)
  2589. {
  2590. spin_unlock(&rq1->lock);
  2591. if (rq1 != rq2)
  2592. spin_unlock(&rq2->lock);
  2593. else
  2594. __release(rq2->lock);
  2595. }
  2596. /*
  2597. * If dest_cpu is allowed for this process, migrate the task to it.
  2598. * This is accomplished by forcing the cpu_allowed mask to only
  2599. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2600. * the cpu_allowed mask is restored.
  2601. */
  2602. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2603. {
  2604. struct migration_req req;
  2605. unsigned long flags;
  2606. struct rq *rq;
  2607. rq = task_rq_lock(p, &flags);
  2608. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2609. || unlikely(!cpu_active(dest_cpu)))
  2610. goto out;
  2611. /* force the process onto the specified CPU */
  2612. if (migrate_task(p, dest_cpu, &req)) {
  2613. /* Need to wait for migration thread (might exit: take ref). */
  2614. struct task_struct *mt = rq->migration_thread;
  2615. get_task_struct(mt);
  2616. task_rq_unlock(rq, &flags);
  2617. wake_up_process(mt);
  2618. put_task_struct(mt);
  2619. wait_for_completion(&req.done);
  2620. return;
  2621. }
  2622. out:
  2623. task_rq_unlock(rq, &flags);
  2624. }
  2625. /*
  2626. * sched_exec - execve() is a valuable balancing opportunity, because at
  2627. * this point the task has the smallest effective memory and cache footprint.
  2628. */
  2629. void sched_exec(void)
  2630. {
  2631. int new_cpu, this_cpu = get_cpu();
  2632. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2633. put_cpu();
  2634. if (new_cpu != this_cpu)
  2635. sched_migrate_task(current, new_cpu);
  2636. }
  2637. /*
  2638. * pull_task - move a task from a remote runqueue to the local runqueue.
  2639. * Both runqueues must be locked.
  2640. */
  2641. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2642. struct rq *this_rq, int this_cpu)
  2643. {
  2644. deactivate_task(src_rq, p, 0);
  2645. set_task_cpu(p, this_cpu);
  2646. activate_task(this_rq, p, 0);
  2647. /*
  2648. * Note that idle threads have a prio of MAX_PRIO, for this test
  2649. * to be always true for them.
  2650. */
  2651. check_preempt_curr(this_rq, p, 0);
  2652. }
  2653. /*
  2654. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2655. */
  2656. static
  2657. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2658. struct sched_domain *sd, enum cpu_idle_type idle,
  2659. int *all_pinned)
  2660. {
  2661. int tsk_cache_hot = 0;
  2662. /*
  2663. * We do not migrate tasks that are:
  2664. * 1) running (obviously), or
  2665. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2666. * 3) are cache-hot on their current CPU.
  2667. */
  2668. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2669. schedstat_inc(p, se.nr_failed_migrations_affine);
  2670. return 0;
  2671. }
  2672. *all_pinned = 0;
  2673. if (task_running(rq, p)) {
  2674. schedstat_inc(p, se.nr_failed_migrations_running);
  2675. return 0;
  2676. }
  2677. /*
  2678. * Aggressive migration if:
  2679. * 1) task is cache cold, or
  2680. * 2) too many balance attempts have failed.
  2681. */
  2682. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2683. if (!tsk_cache_hot ||
  2684. sd->nr_balance_failed > sd->cache_nice_tries) {
  2685. #ifdef CONFIG_SCHEDSTATS
  2686. if (tsk_cache_hot) {
  2687. schedstat_inc(sd, lb_hot_gained[idle]);
  2688. schedstat_inc(p, se.nr_forced_migrations);
  2689. }
  2690. #endif
  2691. return 1;
  2692. }
  2693. if (tsk_cache_hot) {
  2694. schedstat_inc(p, se.nr_failed_migrations_hot);
  2695. return 0;
  2696. }
  2697. return 1;
  2698. }
  2699. static unsigned long
  2700. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2701. unsigned long max_load_move, struct sched_domain *sd,
  2702. enum cpu_idle_type idle, int *all_pinned,
  2703. int *this_best_prio, struct rq_iterator *iterator)
  2704. {
  2705. int loops = 0, pulled = 0, pinned = 0;
  2706. struct task_struct *p;
  2707. long rem_load_move = max_load_move;
  2708. if (max_load_move == 0)
  2709. goto out;
  2710. pinned = 1;
  2711. /*
  2712. * Start the load-balancing iterator:
  2713. */
  2714. p = iterator->start(iterator->arg);
  2715. next:
  2716. if (!p || loops++ > sysctl_sched_nr_migrate)
  2717. goto out;
  2718. if ((p->se.load.weight >> 1) > rem_load_move ||
  2719. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2720. p = iterator->next(iterator->arg);
  2721. goto next;
  2722. }
  2723. pull_task(busiest, p, this_rq, this_cpu);
  2724. pulled++;
  2725. rem_load_move -= p->se.load.weight;
  2726. #ifdef CONFIG_PREEMPT
  2727. /*
  2728. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2729. * will stop after the first task is pulled to minimize the critical
  2730. * section.
  2731. */
  2732. if (idle == CPU_NEWLY_IDLE)
  2733. goto out;
  2734. #endif
  2735. /*
  2736. * We only want to steal up to the prescribed amount of weighted load.
  2737. */
  2738. if (rem_load_move > 0) {
  2739. if (p->prio < *this_best_prio)
  2740. *this_best_prio = p->prio;
  2741. p = iterator->next(iterator->arg);
  2742. goto next;
  2743. }
  2744. out:
  2745. /*
  2746. * Right now, this is one of only two places pull_task() is called,
  2747. * so we can safely collect pull_task() stats here rather than
  2748. * inside pull_task().
  2749. */
  2750. schedstat_add(sd, lb_gained[idle], pulled);
  2751. if (all_pinned)
  2752. *all_pinned = pinned;
  2753. return max_load_move - rem_load_move;
  2754. }
  2755. /*
  2756. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2757. * this_rq, as part of a balancing operation within domain "sd".
  2758. * Returns 1 if successful and 0 otherwise.
  2759. *
  2760. * Called with both runqueues locked.
  2761. */
  2762. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2763. unsigned long max_load_move,
  2764. struct sched_domain *sd, enum cpu_idle_type idle,
  2765. int *all_pinned)
  2766. {
  2767. const struct sched_class *class = sched_class_highest;
  2768. unsigned long total_load_moved = 0;
  2769. int this_best_prio = this_rq->curr->prio;
  2770. do {
  2771. total_load_moved +=
  2772. class->load_balance(this_rq, this_cpu, busiest,
  2773. max_load_move - total_load_moved,
  2774. sd, idle, all_pinned, &this_best_prio);
  2775. class = class->next;
  2776. #ifdef CONFIG_PREEMPT
  2777. /*
  2778. * NEWIDLE balancing is a source of latency, so preemptible
  2779. * kernels will stop after the first task is pulled to minimize
  2780. * the critical section.
  2781. */
  2782. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2783. break;
  2784. #endif
  2785. } while (class && max_load_move > total_load_moved);
  2786. return total_load_moved > 0;
  2787. }
  2788. static int
  2789. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2790. struct sched_domain *sd, enum cpu_idle_type idle,
  2791. struct rq_iterator *iterator)
  2792. {
  2793. struct task_struct *p = iterator->start(iterator->arg);
  2794. int pinned = 0;
  2795. while (p) {
  2796. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2797. pull_task(busiest, p, this_rq, this_cpu);
  2798. /*
  2799. * Right now, this is only the second place pull_task()
  2800. * is called, so we can safely collect pull_task()
  2801. * stats here rather than inside pull_task().
  2802. */
  2803. schedstat_inc(sd, lb_gained[idle]);
  2804. return 1;
  2805. }
  2806. p = iterator->next(iterator->arg);
  2807. }
  2808. return 0;
  2809. }
  2810. /*
  2811. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2812. * part of active balancing operations within "domain".
  2813. * Returns 1 if successful and 0 otherwise.
  2814. *
  2815. * Called with both runqueues locked.
  2816. */
  2817. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2818. struct sched_domain *sd, enum cpu_idle_type idle)
  2819. {
  2820. const struct sched_class *class;
  2821. for (class = sched_class_highest; class; class = class->next)
  2822. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2823. return 1;
  2824. return 0;
  2825. }
  2826. /********** Helpers for find_busiest_group ************************/
  2827. /*
  2828. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2829. * during load balancing.
  2830. */
  2831. struct sd_lb_stats {
  2832. struct sched_group *busiest; /* Busiest group in this sd */
  2833. struct sched_group *this; /* Local group in this sd */
  2834. unsigned long total_load; /* Total load of all groups in sd */
  2835. unsigned long total_pwr; /* Total power of all groups in sd */
  2836. unsigned long avg_load; /* Average load across all groups in sd */
  2837. /** Statistics of this group */
  2838. unsigned long this_load;
  2839. unsigned long this_load_per_task;
  2840. unsigned long this_nr_running;
  2841. /* Statistics of the busiest group */
  2842. unsigned long max_load;
  2843. unsigned long busiest_load_per_task;
  2844. unsigned long busiest_nr_running;
  2845. int group_imb; /* Is there imbalance in this sd */
  2846. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2847. int power_savings_balance; /* Is powersave balance needed for this sd */
  2848. struct sched_group *group_min; /* Least loaded group in sd */
  2849. struct sched_group *group_leader; /* Group which relieves group_min */
  2850. unsigned long min_load_per_task; /* load_per_task in group_min */
  2851. unsigned long leader_nr_running; /* Nr running of group_leader */
  2852. unsigned long min_nr_running; /* Nr running of group_min */
  2853. #endif
  2854. };
  2855. /*
  2856. * sg_lb_stats - stats of a sched_group required for load_balancing
  2857. */
  2858. struct sg_lb_stats {
  2859. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2860. unsigned long group_load; /* Total load over the CPUs of the group */
  2861. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2862. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2863. unsigned long group_capacity;
  2864. int group_imb; /* Is there an imbalance in the group ? */
  2865. };
  2866. /**
  2867. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2868. * @group: The group whose first cpu is to be returned.
  2869. */
  2870. static inline unsigned int group_first_cpu(struct sched_group *group)
  2871. {
  2872. return cpumask_first(sched_group_cpus(group));
  2873. }
  2874. /**
  2875. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2876. * @sd: The sched_domain whose load_idx is to be obtained.
  2877. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2878. */
  2879. static inline int get_sd_load_idx(struct sched_domain *sd,
  2880. enum cpu_idle_type idle)
  2881. {
  2882. int load_idx;
  2883. switch (idle) {
  2884. case CPU_NOT_IDLE:
  2885. load_idx = sd->busy_idx;
  2886. break;
  2887. case CPU_NEWLY_IDLE:
  2888. load_idx = sd->newidle_idx;
  2889. break;
  2890. default:
  2891. load_idx = sd->idle_idx;
  2892. break;
  2893. }
  2894. return load_idx;
  2895. }
  2896. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2897. /**
  2898. * init_sd_power_savings_stats - Initialize power savings statistics for
  2899. * the given sched_domain, during load balancing.
  2900. *
  2901. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2902. * @sds: Variable containing the statistics for sd.
  2903. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2904. */
  2905. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2906. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2907. {
  2908. /*
  2909. * Busy processors will not participate in power savings
  2910. * balance.
  2911. */
  2912. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2913. sds->power_savings_balance = 0;
  2914. else {
  2915. sds->power_savings_balance = 1;
  2916. sds->min_nr_running = ULONG_MAX;
  2917. sds->leader_nr_running = 0;
  2918. }
  2919. }
  2920. /**
  2921. * update_sd_power_savings_stats - Update the power saving stats for a
  2922. * sched_domain while performing load balancing.
  2923. *
  2924. * @group: sched_group belonging to the sched_domain under consideration.
  2925. * @sds: Variable containing the statistics of the sched_domain
  2926. * @local_group: Does group contain the CPU for which we're performing
  2927. * load balancing ?
  2928. * @sgs: Variable containing the statistics of the group.
  2929. */
  2930. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2931. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2932. {
  2933. if (!sds->power_savings_balance)
  2934. return;
  2935. /*
  2936. * If the local group is idle or completely loaded
  2937. * no need to do power savings balance at this domain
  2938. */
  2939. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2940. !sds->this_nr_running))
  2941. sds->power_savings_balance = 0;
  2942. /*
  2943. * If a group is already running at full capacity or idle,
  2944. * don't include that group in power savings calculations
  2945. */
  2946. if (!sds->power_savings_balance ||
  2947. sgs->sum_nr_running >= sgs->group_capacity ||
  2948. !sgs->sum_nr_running)
  2949. return;
  2950. /*
  2951. * Calculate the group which has the least non-idle load.
  2952. * This is the group from where we need to pick up the load
  2953. * for saving power
  2954. */
  2955. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2956. (sgs->sum_nr_running == sds->min_nr_running &&
  2957. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2958. sds->group_min = group;
  2959. sds->min_nr_running = sgs->sum_nr_running;
  2960. sds->min_load_per_task = sgs->sum_weighted_load /
  2961. sgs->sum_nr_running;
  2962. }
  2963. /*
  2964. * Calculate the group which is almost near its
  2965. * capacity but still has some space to pick up some load
  2966. * from other group and save more power
  2967. */
  2968. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  2969. return;
  2970. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2971. (sgs->sum_nr_running == sds->leader_nr_running &&
  2972. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2973. sds->group_leader = group;
  2974. sds->leader_nr_running = sgs->sum_nr_running;
  2975. }
  2976. }
  2977. /**
  2978. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2979. * @sds: Variable containing the statistics of the sched_domain
  2980. * under consideration.
  2981. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2982. * @imbalance: Variable to store the imbalance.
  2983. *
  2984. * Description:
  2985. * Check if we have potential to perform some power-savings balance.
  2986. * If yes, set the busiest group to be the least loaded group in the
  2987. * sched_domain, so that it's CPUs can be put to idle.
  2988. *
  2989. * Returns 1 if there is potential to perform power-savings balance.
  2990. * Else returns 0.
  2991. */
  2992. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2993. int this_cpu, unsigned long *imbalance)
  2994. {
  2995. if (!sds->power_savings_balance)
  2996. return 0;
  2997. if (sds->this != sds->group_leader ||
  2998. sds->group_leader == sds->group_min)
  2999. return 0;
  3000. *imbalance = sds->min_load_per_task;
  3001. sds->busiest = sds->group_min;
  3002. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3003. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3004. group_first_cpu(sds->group_leader);
  3005. }
  3006. return 1;
  3007. }
  3008. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3009. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3010. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3011. {
  3012. return;
  3013. }
  3014. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3015. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3016. {
  3017. return;
  3018. }
  3019. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3020. int this_cpu, unsigned long *imbalance)
  3021. {
  3022. return 0;
  3023. }
  3024. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3025. /**
  3026. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3027. * @group: sched_group whose statistics are to be updated.
  3028. * @this_cpu: Cpu for which load balance is currently performed.
  3029. * @idle: Idle status of this_cpu
  3030. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3031. * @sd_idle: Idle status of the sched_domain containing group.
  3032. * @local_group: Does group contain this_cpu.
  3033. * @cpus: Set of cpus considered for load balancing.
  3034. * @balance: Should we balance.
  3035. * @sgs: variable to hold the statistics for this group.
  3036. */
  3037. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3038. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3039. int local_group, const struct cpumask *cpus,
  3040. int *balance, struct sg_lb_stats *sgs)
  3041. {
  3042. unsigned long load, max_cpu_load, min_cpu_load;
  3043. int i;
  3044. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3045. unsigned long sum_avg_load_per_task;
  3046. unsigned long avg_load_per_task;
  3047. if (local_group)
  3048. balance_cpu = group_first_cpu(group);
  3049. /* Tally up the load of all CPUs in the group */
  3050. sum_avg_load_per_task = avg_load_per_task = 0;
  3051. max_cpu_load = 0;
  3052. min_cpu_load = ~0UL;
  3053. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3054. struct rq *rq = cpu_rq(i);
  3055. if (*sd_idle && rq->nr_running)
  3056. *sd_idle = 0;
  3057. /* Bias balancing toward cpus of our domain */
  3058. if (local_group) {
  3059. if (idle_cpu(i) && !first_idle_cpu) {
  3060. first_idle_cpu = 1;
  3061. balance_cpu = i;
  3062. }
  3063. load = target_load(i, load_idx);
  3064. } else {
  3065. load = source_load(i, load_idx);
  3066. if (load > max_cpu_load)
  3067. max_cpu_load = load;
  3068. if (min_cpu_load > load)
  3069. min_cpu_load = load;
  3070. }
  3071. sgs->group_load += load;
  3072. sgs->sum_nr_running += rq->nr_running;
  3073. sgs->sum_weighted_load += weighted_cpuload(i);
  3074. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3075. }
  3076. /*
  3077. * First idle cpu or the first cpu(busiest) in this sched group
  3078. * is eligible for doing load balancing at this and above
  3079. * domains. In the newly idle case, we will allow all the cpu's
  3080. * to do the newly idle load balance.
  3081. */
  3082. if (idle != CPU_NEWLY_IDLE && local_group &&
  3083. balance_cpu != this_cpu && balance) {
  3084. *balance = 0;
  3085. return;
  3086. }
  3087. /* Adjust by relative CPU power of the group */
  3088. sgs->avg_load = sg_div_cpu_power(group,
  3089. sgs->group_load * SCHED_LOAD_SCALE);
  3090. /*
  3091. * Consider the group unbalanced when the imbalance is larger
  3092. * than the average weight of two tasks.
  3093. *
  3094. * APZ: with cgroup the avg task weight can vary wildly and
  3095. * might not be a suitable number - should we keep a
  3096. * normalized nr_running number somewhere that negates
  3097. * the hierarchy?
  3098. */
  3099. avg_load_per_task = sg_div_cpu_power(group,
  3100. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3101. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3102. sgs->group_imb = 1;
  3103. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3104. }
  3105. /**
  3106. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3107. * @sd: sched_domain whose statistics are to be updated.
  3108. * @this_cpu: Cpu for which load balance is currently performed.
  3109. * @idle: Idle status of this_cpu
  3110. * @sd_idle: Idle status of the sched_domain containing group.
  3111. * @cpus: Set of cpus considered for load balancing.
  3112. * @balance: Should we balance.
  3113. * @sds: variable to hold the statistics for this sched_domain.
  3114. */
  3115. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3116. enum cpu_idle_type idle, int *sd_idle,
  3117. const struct cpumask *cpus, int *balance,
  3118. struct sd_lb_stats *sds)
  3119. {
  3120. struct sched_group *group = sd->groups;
  3121. struct sg_lb_stats sgs;
  3122. int load_idx;
  3123. init_sd_power_savings_stats(sd, sds, idle);
  3124. load_idx = get_sd_load_idx(sd, idle);
  3125. do {
  3126. int local_group;
  3127. local_group = cpumask_test_cpu(this_cpu,
  3128. sched_group_cpus(group));
  3129. memset(&sgs, 0, sizeof(sgs));
  3130. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3131. local_group, cpus, balance, &sgs);
  3132. if (local_group && balance && !(*balance))
  3133. return;
  3134. sds->total_load += sgs.group_load;
  3135. sds->total_pwr += group->__cpu_power;
  3136. if (local_group) {
  3137. sds->this_load = sgs.avg_load;
  3138. sds->this = group;
  3139. sds->this_nr_running = sgs.sum_nr_running;
  3140. sds->this_load_per_task = sgs.sum_weighted_load;
  3141. } else if (sgs.avg_load > sds->max_load &&
  3142. (sgs.sum_nr_running > sgs.group_capacity ||
  3143. sgs.group_imb)) {
  3144. sds->max_load = sgs.avg_load;
  3145. sds->busiest = group;
  3146. sds->busiest_nr_running = sgs.sum_nr_running;
  3147. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3148. sds->group_imb = sgs.group_imb;
  3149. }
  3150. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3151. group = group->next;
  3152. } while (group != sd->groups);
  3153. }
  3154. /**
  3155. * fix_small_imbalance - Calculate the minor imbalance that exists
  3156. * amongst the groups of a sched_domain, during
  3157. * load balancing.
  3158. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3159. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3160. * @imbalance: Variable to store the imbalance.
  3161. */
  3162. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3163. int this_cpu, unsigned long *imbalance)
  3164. {
  3165. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3166. unsigned int imbn = 2;
  3167. if (sds->this_nr_running) {
  3168. sds->this_load_per_task /= sds->this_nr_running;
  3169. if (sds->busiest_load_per_task >
  3170. sds->this_load_per_task)
  3171. imbn = 1;
  3172. } else
  3173. sds->this_load_per_task =
  3174. cpu_avg_load_per_task(this_cpu);
  3175. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3176. sds->busiest_load_per_task * imbn) {
  3177. *imbalance = sds->busiest_load_per_task;
  3178. return;
  3179. }
  3180. /*
  3181. * OK, we don't have enough imbalance to justify moving tasks,
  3182. * however we may be able to increase total CPU power used by
  3183. * moving them.
  3184. */
  3185. pwr_now += sds->busiest->__cpu_power *
  3186. min(sds->busiest_load_per_task, sds->max_load);
  3187. pwr_now += sds->this->__cpu_power *
  3188. min(sds->this_load_per_task, sds->this_load);
  3189. pwr_now /= SCHED_LOAD_SCALE;
  3190. /* Amount of load we'd subtract */
  3191. tmp = sg_div_cpu_power(sds->busiest,
  3192. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3193. if (sds->max_load > tmp)
  3194. pwr_move += sds->busiest->__cpu_power *
  3195. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3196. /* Amount of load we'd add */
  3197. if (sds->max_load * sds->busiest->__cpu_power <
  3198. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3199. tmp = sg_div_cpu_power(sds->this,
  3200. sds->max_load * sds->busiest->__cpu_power);
  3201. else
  3202. tmp = sg_div_cpu_power(sds->this,
  3203. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3204. pwr_move += sds->this->__cpu_power *
  3205. min(sds->this_load_per_task, sds->this_load + tmp);
  3206. pwr_move /= SCHED_LOAD_SCALE;
  3207. /* Move if we gain throughput */
  3208. if (pwr_move > pwr_now)
  3209. *imbalance = sds->busiest_load_per_task;
  3210. }
  3211. /**
  3212. * calculate_imbalance - Calculate the amount of imbalance present within the
  3213. * groups of a given sched_domain during load balance.
  3214. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3215. * @this_cpu: Cpu for which currently load balance is being performed.
  3216. * @imbalance: The variable to store the imbalance.
  3217. */
  3218. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3219. unsigned long *imbalance)
  3220. {
  3221. unsigned long max_pull;
  3222. /*
  3223. * In the presence of smp nice balancing, certain scenarios can have
  3224. * max load less than avg load(as we skip the groups at or below
  3225. * its cpu_power, while calculating max_load..)
  3226. */
  3227. if (sds->max_load < sds->avg_load) {
  3228. *imbalance = 0;
  3229. return fix_small_imbalance(sds, this_cpu, imbalance);
  3230. }
  3231. /* Don't want to pull so many tasks that a group would go idle */
  3232. max_pull = min(sds->max_load - sds->avg_load,
  3233. sds->max_load - sds->busiest_load_per_task);
  3234. /* How much load to actually move to equalise the imbalance */
  3235. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3236. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3237. / SCHED_LOAD_SCALE;
  3238. /*
  3239. * if *imbalance is less than the average load per runnable task
  3240. * there is no gaurantee that any tasks will be moved so we'll have
  3241. * a think about bumping its value to force at least one task to be
  3242. * moved
  3243. */
  3244. if (*imbalance < sds->busiest_load_per_task)
  3245. return fix_small_imbalance(sds, this_cpu, imbalance);
  3246. }
  3247. /******* find_busiest_group() helpers end here *********************/
  3248. /**
  3249. * find_busiest_group - Returns the busiest group within the sched_domain
  3250. * if there is an imbalance. If there isn't an imbalance, and
  3251. * the user has opted for power-savings, it returns a group whose
  3252. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3253. * such a group exists.
  3254. *
  3255. * Also calculates the amount of weighted load which should be moved
  3256. * to restore balance.
  3257. *
  3258. * @sd: The sched_domain whose busiest group is to be returned.
  3259. * @this_cpu: The cpu for which load balancing is currently being performed.
  3260. * @imbalance: Variable which stores amount of weighted load which should
  3261. * be moved to restore balance/put a group to idle.
  3262. * @idle: The idle status of this_cpu.
  3263. * @sd_idle: The idleness of sd
  3264. * @cpus: The set of CPUs under consideration for load-balancing.
  3265. * @balance: Pointer to a variable indicating if this_cpu
  3266. * is the appropriate cpu to perform load balancing at this_level.
  3267. *
  3268. * Returns: - the busiest group if imbalance exists.
  3269. * - If no imbalance and user has opted for power-savings balance,
  3270. * return the least loaded group whose CPUs can be
  3271. * put to idle by rebalancing its tasks onto our group.
  3272. */
  3273. static struct sched_group *
  3274. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3275. unsigned long *imbalance, enum cpu_idle_type idle,
  3276. int *sd_idle, const struct cpumask *cpus, int *balance)
  3277. {
  3278. struct sd_lb_stats sds;
  3279. memset(&sds, 0, sizeof(sds));
  3280. /*
  3281. * Compute the various statistics relavent for load balancing at
  3282. * this level.
  3283. */
  3284. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3285. balance, &sds);
  3286. /* Cases where imbalance does not exist from POV of this_cpu */
  3287. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3288. * at this level.
  3289. * 2) There is no busy sibling group to pull from.
  3290. * 3) This group is the busiest group.
  3291. * 4) This group is more busy than the avg busieness at this
  3292. * sched_domain.
  3293. * 5) The imbalance is within the specified limit.
  3294. * 6) Any rebalance would lead to ping-pong
  3295. */
  3296. if (balance && !(*balance))
  3297. goto ret;
  3298. if (!sds.busiest || sds.busiest_nr_running == 0)
  3299. goto out_balanced;
  3300. if (sds.this_load >= sds.max_load)
  3301. goto out_balanced;
  3302. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3303. if (sds.this_load >= sds.avg_load)
  3304. goto out_balanced;
  3305. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3306. goto out_balanced;
  3307. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3308. if (sds.group_imb)
  3309. sds.busiest_load_per_task =
  3310. min(sds.busiest_load_per_task, sds.avg_load);
  3311. /*
  3312. * We're trying to get all the cpus to the average_load, so we don't
  3313. * want to push ourselves above the average load, nor do we wish to
  3314. * reduce the max loaded cpu below the average load, as either of these
  3315. * actions would just result in more rebalancing later, and ping-pong
  3316. * tasks around. Thus we look for the minimum possible imbalance.
  3317. * Negative imbalances (*we* are more loaded than anyone else) will
  3318. * be counted as no imbalance for these purposes -- we can't fix that
  3319. * by pulling tasks to us. Be careful of negative numbers as they'll
  3320. * appear as very large values with unsigned longs.
  3321. */
  3322. if (sds.max_load <= sds.busiest_load_per_task)
  3323. goto out_balanced;
  3324. /* Looks like there is an imbalance. Compute it */
  3325. calculate_imbalance(&sds, this_cpu, imbalance);
  3326. return sds.busiest;
  3327. out_balanced:
  3328. /*
  3329. * There is no obvious imbalance. But check if we can do some balancing
  3330. * to save power.
  3331. */
  3332. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3333. return sds.busiest;
  3334. ret:
  3335. *imbalance = 0;
  3336. return NULL;
  3337. }
  3338. /*
  3339. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3340. */
  3341. static struct rq *
  3342. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3343. unsigned long imbalance, const struct cpumask *cpus)
  3344. {
  3345. struct rq *busiest = NULL, *rq;
  3346. unsigned long max_load = 0;
  3347. int i;
  3348. for_each_cpu(i, sched_group_cpus(group)) {
  3349. unsigned long wl;
  3350. if (!cpumask_test_cpu(i, cpus))
  3351. continue;
  3352. rq = cpu_rq(i);
  3353. wl = weighted_cpuload(i);
  3354. if (rq->nr_running == 1 && wl > imbalance)
  3355. continue;
  3356. if (wl > max_load) {
  3357. max_load = wl;
  3358. busiest = rq;
  3359. }
  3360. }
  3361. return busiest;
  3362. }
  3363. /*
  3364. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3365. * so long as it is large enough.
  3366. */
  3367. #define MAX_PINNED_INTERVAL 512
  3368. /* Working cpumask for load_balance and load_balance_newidle. */
  3369. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3370. /*
  3371. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3372. * tasks if there is an imbalance.
  3373. */
  3374. static int load_balance(int this_cpu, struct rq *this_rq,
  3375. struct sched_domain *sd, enum cpu_idle_type idle,
  3376. int *balance)
  3377. {
  3378. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3379. struct sched_group *group;
  3380. unsigned long imbalance;
  3381. struct rq *busiest;
  3382. unsigned long flags;
  3383. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3384. cpumask_setall(cpus);
  3385. /*
  3386. * When power savings policy is enabled for the parent domain, idle
  3387. * sibling can pick up load irrespective of busy siblings. In this case,
  3388. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3389. * portraying it as CPU_NOT_IDLE.
  3390. */
  3391. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3392. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3393. sd_idle = 1;
  3394. schedstat_inc(sd, lb_count[idle]);
  3395. redo:
  3396. update_shares(sd);
  3397. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3398. cpus, balance);
  3399. if (*balance == 0)
  3400. goto out_balanced;
  3401. if (!group) {
  3402. schedstat_inc(sd, lb_nobusyg[idle]);
  3403. goto out_balanced;
  3404. }
  3405. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3406. if (!busiest) {
  3407. schedstat_inc(sd, lb_nobusyq[idle]);
  3408. goto out_balanced;
  3409. }
  3410. BUG_ON(busiest == this_rq);
  3411. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3412. ld_moved = 0;
  3413. if (busiest->nr_running > 1) {
  3414. /*
  3415. * Attempt to move tasks. If find_busiest_group has found
  3416. * an imbalance but busiest->nr_running <= 1, the group is
  3417. * still unbalanced. ld_moved simply stays zero, so it is
  3418. * correctly treated as an imbalance.
  3419. */
  3420. local_irq_save(flags);
  3421. double_rq_lock(this_rq, busiest);
  3422. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3423. imbalance, sd, idle, &all_pinned);
  3424. double_rq_unlock(this_rq, busiest);
  3425. local_irq_restore(flags);
  3426. /*
  3427. * some other cpu did the load balance for us.
  3428. */
  3429. if (ld_moved && this_cpu != smp_processor_id())
  3430. resched_cpu(this_cpu);
  3431. /* All tasks on this runqueue were pinned by CPU affinity */
  3432. if (unlikely(all_pinned)) {
  3433. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3434. if (!cpumask_empty(cpus))
  3435. goto redo;
  3436. goto out_balanced;
  3437. }
  3438. }
  3439. if (!ld_moved) {
  3440. schedstat_inc(sd, lb_failed[idle]);
  3441. sd->nr_balance_failed++;
  3442. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3443. spin_lock_irqsave(&busiest->lock, flags);
  3444. /* don't kick the migration_thread, if the curr
  3445. * task on busiest cpu can't be moved to this_cpu
  3446. */
  3447. if (!cpumask_test_cpu(this_cpu,
  3448. &busiest->curr->cpus_allowed)) {
  3449. spin_unlock_irqrestore(&busiest->lock, flags);
  3450. all_pinned = 1;
  3451. goto out_one_pinned;
  3452. }
  3453. if (!busiest->active_balance) {
  3454. busiest->active_balance = 1;
  3455. busiest->push_cpu = this_cpu;
  3456. active_balance = 1;
  3457. }
  3458. spin_unlock_irqrestore(&busiest->lock, flags);
  3459. if (active_balance)
  3460. wake_up_process(busiest->migration_thread);
  3461. /*
  3462. * We've kicked active balancing, reset the failure
  3463. * counter.
  3464. */
  3465. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3466. }
  3467. } else
  3468. sd->nr_balance_failed = 0;
  3469. if (likely(!active_balance)) {
  3470. /* We were unbalanced, so reset the balancing interval */
  3471. sd->balance_interval = sd->min_interval;
  3472. } else {
  3473. /*
  3474. * If we've begun active balancing, start to back off. This
  3475. * case may not be covered by the all_pinned logic if there
  3476. * is only 1 task on the busy runqueue (because we don't call
  3477. * move_tasks).
  3478. */
  3479. if (sd->balance_interval < sd->max_interval)
  3480. sd->balance_interval *= 2;
  3481. }
  3482. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3483. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3484. ld_moved = -1;
  3485. goto out;
  3486. out_balanced:
  3487. schedstat_inc(sd, lb_balanced[idle]);
  3488. sd->nr_balance_failed = 0;
  3489. out_one_pinned:
  3490. /* tune up the balancing interval */
  3491. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3492. (sd->balance_interval < sd->max_interval))
  3493. sd->balance_interval *= 2;
  3494. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3495. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3496. ld_moved = -1;
  3497. else
  3498. ld_moved = 0;
  3499. out:
  3500. if (ld_moved)
  3501. update_shares(sd);
  3502. return ld_moved;
  3503. }
  3504. /*
  3505. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3506. * tasks if there is an imbalance.
  3507. *
  3508. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3509. * this_rq is locked.
  3510. */
  3511. static int
  3512. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3513. {
  3514. struct sched_group *group;
  3515. struct rq *busiest = NULL;
  3516. unsigned long imbalance;
  3517. int ld_moved = 0;
  3518. int sd_idle = 0;
  3519. int all_pinned = 0;
  3520. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3521. cpumask_setall(cpus);
  3522. /*
  3523. * When power savings policy is enabled for the parent domain, idle
  3524. * sibling can pick up load irrespective of busy siblings. In this case,
  3525. * let the state of idle sibling percolate up as IDLE, instead of
  3526. * portraying it as CPU_NOT_IDLE.
  3527. */
  3528. if (sd->flags & SD_SHARE_CPUPOWER &&
  3529. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3530. sd_idle = 1;
  3531. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3532. redo:
  3533. update_shares_locked(this_rq, sd);
  3534. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3535. &sd_idle, cpus, NULL);
  3536. if (!group) {
  3537. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3538. goto out_balanced;
  3539. }
  3540. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3541. if (!busiest) {
  3542. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3543. goto out_balanced;
  3544. }
  3545. BUG_ON(busiest == this_rq);
  3546. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3547. ld_moved = 0;
  3548. if (busiest->nr_running > 1) {
  3549. /* Attempt to move tasks */
  3550. double_lock_balance(this_rq, busiest);
  3551. /* this_rq->clock is already updated */
  3552. update_rq_clock(busiest);
  3553. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3554. imbalance, sd, CPU_NEWLY_IDLE,
  3555. &all_pinned);
  3556. double_unlock_balance(this_rq, busiest);
  3557. if (unlikely(all_pinned)) {
  3558. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3559. if (!cpumask_empty(cpus))
  3560. goto redo;
  3561. }
  3562. }
  3563. if (!ld_moved) {
  3564. int active_balance = 0;
  3565. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3566. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3567. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3568. return -1;
  3569. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3570. return -1;
  3571. if (sd->nr_balance_failed++ < 2)
  3572. return -1;
  3573. /*
  3574. * The only task running in a non-idle cpu can be moved to this
  3575. * cpu in an attempt to completely freeup the other CPU
  3576. * package. The same method used to move task in load_balance()
  3577. * have been extended for load_balance_newidle() to speedup
  3578. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3579. *
  3580. * The package power saving logic comes from
  3581. * find_busiest_group(). If there are no imbalance, then
  3582. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3583. * f_b_g() will select a group from which a running task may be
  3584. * pulled to this cpu in order to make the other package idle.
  3585. * If there is no opportunity to make a package idle and if
  3586. * there are no imbalance, then f_b_g() will return NULL and no
  3587. * action will be taken in load_balance_newidle().
  3588. *
  3589. * Under normal task pull operation due to imbalance, there
  3590. * will be more than one task in the source run queue and
  3591. * move_tasks() will succeed. ld_moved will be true and this
  3592. * active balance code will not be triggered.
  3593. */
  3594. /* Lock busiest in correct order while this_rq is held */
  3595. double_lock_balance(this_rq, busiest);
  3596. /*
  3597. * don't kick the migration_thread, if the curr
  3598. * task on busiest cpu can't be moved to this_cpu
  3599. */
  3600. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3601. double_unlock_balance(this_rq, busiest);
  3602. all_pinned = 1;
  3603. return ld_moved;
  3604. }
  3605. if (!busiest->active_balance) {
  3606. busiest->active_balance = 1;
  3607. busiest->push_cpu = this_cpu;
  3608. active_balance = 1;
  3609. }
  3610. double_unlock_balance(this_rq, busiest);
  3611. /*
  3612. * Should not call ttwu while holding a rq->lock
  3613. */
  3614. spin_unlock(&this_rq->lock);
  3615. if (active_balance)
  3616. wake_up_process(busiest->migration_thread);
  3617. spin_lock(&this_rq->lock);
  3618. } else
  3619. sd->nr_balance_failed = 0;
  3620. update_shares_locked(this_rq, sd);
  3621. return ld_moved;
  3622. out_balanced:
  3623. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3624. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3625. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3626. return -1;
  3627. sd->nr_balance_failed = 0;
  3628. return 0;
  3629. }
  3630. /*
  3631. * idle_balance is called by schedule() if this_cpu is about to become
  3632. * idle. Attempts to pull tasks from other CPUs.
  3633. */
  3634. static void idle_balance(int this_cpu, struct rq *this_rq)
  3635. {
  3636. struct sched_domain *sd;
  3637. int pulled_task = 0;
  3638. unsigned long next_balance = jiffies + HZ;
  3639. for_each_domain(this_cpu, sd) {
  3640. unsigned long interval;
  3641. if (!(sd->flags & SD_LOAD_BALANCE))
  3642. continue;
  3643. if (sd->flags & SD_BALANCE_NEWIDLE)
  3644. /* If we've pulled tasks over stop searching: */
  3645. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3646. sd);
  3647. interval = msecs_to_jiffies(sd->balance_interval);
  3648. if (time_after(next_balance, sd->last_balance + interval))
  3649. next_balance = sd->last_balance + interval;
  3650. if (pulled_task)
  3651. break;
  3652. }
  3653. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3654. /*
  3655. * We are going idle. next_balance may be set based on
  3656. * a busy processor. So reset next_balance.
  3657. */
  3658. this_rq->next_balance = next_balance;
  3659. }
  3660. }
  3661. /*
  3662. * active_load_balance is run by migration threads. It pushes running tasks
  3663. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3664. * running on each physical CPU where possible, and avoids physical /
  3665. * logical imbalances.
  3666. *
  3667. * Called with busiest_rq locked.
  3668. */
  3669. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3670. {
  3671. int target_cpu = busiest_rq->push_cpu;
  3672. struct sched_domain *sd;
  3673. struct rq *target_rq;
  3674. /* Is there any task to move? */
  3675. if (busiest_rq->nr_running <= 1)
  3676. return;
  3677. target_rq = cpu_rq(target_cpu);
  3678. /*
  3679. * This condition is "impossible", if it occurs
  3680. * we need to fix it. Originally reported by
  3681. * Bjorn Helgaas on a 128-cpu setup.
  3682. */
  3683. BUG_ON(busiest_rq == target_rq);
  3684. /* move a task from busiest_rq to target_rq */
  3685. double_lock_balance(busiest_rq, target_rq);
  3686. update_rq_clock(busiest_rq);
  3687. update_rq_clock(target_rq);
  3688. /* Search for an sd spanning us and the target CPU. */
  3689. for_each_domain(target_cpu, sd) {
  3690. if ((sd->flags & SD_LOAD_BALANCE) &&
  3691. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3692. break;
  3693. }
  3694. if (likely(sd)) {
  3695. schedstat_inc(sd, alb_count);
  3696. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3697. sd, CPU_IDLE))
  3698. schedstat_inc(sd, alb_pushed);
  3699. else
  3700. schedstat_inc(sd, alb_failed);
  3701. }
  3702. double_unlock_balance(busiest_rq, target_rq);
  3703. }
  3704. #ifdef CONFIG_NO_HZ
  3705. static struct {
  3706. atomic_t load_balancer;
  3707. cpumask_var_t cpu_mask;
  3708. cpumask_var_t ilb_grp_nohz_mask;
  3709. } nohz ____cacheline_aligned = {
  3710. .load_balancer = ATOMIC_INIT(-1),
  3711. };
  3712. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3713. /**
  3714. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3715. * @cpu: The cpu whose lowest level of sched domain is to
  3716. * be returned.
  3717. * @flag: The flag to check for the lowest sched_domain
  3718. * for the given cpu.
  3719. *
  3720. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3721. */
  3722. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3723. {
  3724. struct sched_domain *sd;
  3725. for_each_domain(cpu, sd)
  3726. if (sd && (sd->flags & flag))
  3727. break;
  3728. return sd;
  3729. }
  3730. /**
  3731. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3732. * @cpu: The cpu whose domains we're iterating over.
  3733. * @sd: variable holding the value of the power_savings_sd
  3734. * for cpu.
  3735. * @flag: The flag to filter the sched_domains to be iterated.
  3736. *
  3737. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3738. * set, starting from the lowest sched_domain to the highest.
  3739. */
  3740. #define for_each_flag_domain(cpu, sd, flag) \
  3741. for (sd = lowest_flag_domain(cpu, flag); \
  3742. (sd && (sd->flags & flag)); sd = sd->parent)
  3743. /**
  3744. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3745. * @ilb_group: group to be checked for semi-idleness
  3746. *
  3747. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3748. *
  3749. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3750. * and atleast one non-idle CPU. This helper function checks if the given
  3751. * sched_group is semi-idle or not.
  3752. */
  3753. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3754. {
  3755. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3756. sched_group_cpus(ilb_group));
  3757. /*
  3758. * A sched_group is semi-idle when it has atleast one busy cpu
  3759. * and atleast one idle cpu.
  3760. */
  3761. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3762. return 0;
  3763. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3764. return 0;
  3765. return 1;
  3766. }
  3767. /**
  3768. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3769. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3770. *
  3771. * Returns: Returns the id of the idle load balancer if it exists,
  3772. * Else, returns >= nr_cpu_ids.
  3773. *
  3774. * This algorithm picks the idle load balancer such that it belongs to a
  3775. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3776. * completely idle packages/cores just for the purpose of idle load balancing
  3777. * when there are other idle cpu's which are better suited for that job.
  3778. */
  3779. static int find_new_ilb(int cpu)
  3780. {
  3781. struct sched_domain *sd;
  3782. struct sched_group *ilb_group;
  3783. /*
  3784. * Have idle load balancer selection from semi-idle packages only
  3785. * when power-aware load balancing is enabled
  3786. */
  3787. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3788. goto out_done;
  3789. /*
  3790. * Optimize for the case when we have no idle CPUs or only one
  3791. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3792. */
  3793. if (cpumask_weight(nohz.cpu_mask) < 2)
  3794. goto out_done;
  3795. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3796. ilb_group = sd->groups;
  3797. do {
  3798. if (is_semi_idle_group(ilb_group))
  3799. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3800. ilb_group = ilb_group->next;
  3801. } while (ilb_group != sd->groups);
  3802. }
  3803. out_done:
  3804. return cpumask_first(nohz.cpu_mask);
  3805. }
  3806. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3807. static inline int find_new_ilb(int call_cpu)
  3808. {
  3809. return cpumask_first(nohz.cpu_mask);
  3810. }
  3811. #endif
  3812. /*
  3813. * This routine will try to nominate the ilb (idle load balancing)
  3814. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3815. * load balancing on behalf of all those cpus. If all the cpus in the system
  3816. * go into this tickless mode, then there will be no ilb owner (as there is
  3817. * no need for one) and all the cpus will sleep till the next wakeup event
  3818. * arrives...
  3819. *
  3820. * For the ilb owner, tick is not stopped. And this tick will be used
  3821. * for idle load balancing. ilb owner will still be part of
  3822. * nohz.cpu_mask..
  3823. *
  3824. * While stopping the tick, this cpu will become the ilb owner if there
  3825. * is no other owner. And will be the owner till that cpu becomes busy
  3826. * or if all cpus in the system stop their ticks at which point
  3827. * there is no need for ilb owner.
  3828. *
  3829. * When the ilb owner becomes busy, it nominates another owner, during the
  3830. * next busy scheduler_tick()
  3831. */
  3832. int select_nohz_load_balancer(int stop_tick)
  3833. {
  3834. int cpu = smp_processor_id();
  3835. if (stop_tick) {
  3836. cpu_rq(cpu)->in_nohz_recently = 1;
  3837. if (!cpu_active(cpu)) {
  3838. if (atomic_read(&nohz.load_balancer) != cpu)
  3839. return 0;
  3840. /*
  3841. * If we are going offline and still the leader,
  3842. * give up!
  3843. */
  3844. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3845. BUG();
  3846. return 0;
  3847. }
  3848. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3849. /* time for ilb owner also to sleep */
  3850. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3851. if (atomic_read(&nohz.load_balancer) == cpu)
  3852. atomic_set(&nohz.load_balancer, -1);
  3853. return 0;
  3854. }
  3855. if (atomic_read(&nohz.load_balancer) == -1) {
  3856. /* make me the ilb owner */
  3857. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3858. return 1;
  3859. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3860. int new_ilb;
  3861. if (!(sched_smt_power_savings ||
  3862. sched_mc_power_savings))
  3863. return 1;
  3864. /*
  3865. * Check to see if there is a more power-efficient
  3866. * ilb.
  3867. */
  3868. new_ilb = find_new_ilb(cpu);
  3869. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3870. atomic_set(&nohz.load_balancer, -1);
  3871. resched_cpu(new_ilb);
  3872. return 0;
  3873. }
  3874. return 1;
  3875. }
  3876. } else {
  3877. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3878. return 0;
  3879. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3880. if (atomic_read(&nohz.load_balancer) == cpu)
  3881. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3882. BUG();
  3883. }
  3884. return 0;
  3885. }
  3886. #endif
  3887. static DEFINE_SPINLOCK(balancing);
  3888. /*
  3889. * It checks each scheduling domain to see if it is due to be balanced,
  3890. * and initiates a balancing operation if so.
  3891. *
  3892. * Balancing parameters are set up in arch_init_sched_domains.
  3893. */
  3894. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3895. {
  3896. int balance = 1;
  3897. struct rq *rq = cpu_rq(cpu);
  3898. unsigned long interval;
  3899. struct sched_domain *sd;
  3900. /* Earliest time when we have to do rebalance again */
  3901. unsigned long next_balance = jiffies + 60*HZ;
  3902. int update_next_balance = 0;
  3903. int need_serialize;
  3904. for_each_domain(cpu, sd) {
  3905. if (!(sd->flags & SD_LOAD_BALANCE))
  3906. continue;
  3907. interval = sd->balance_interval;
  3908. if (idle != CPU_IDLE)
  3909. interval *= sd->busy_factor;
  3910. /* scale ms to jiffies */
  3911. interval = msecs_to_jiffies(interval);
  3912. if (unlikely(!interval))
  3913. interval = 1;
  3914. if (interval > HZ*NR_CPUS/10)
  3915. interval = HZ*NR_CPUS/10;
  3916. need_serialize = sd->flags & SD_SERIALIZE;
  3917. if (need_serialize) {
  3918. if (!spin_trylock(&balancing))
  3919. goto out;
  3920. }
  3921. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3922. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3923. /*
  3924. * We've pulled tasks over so either we're no
  3925. * longer idle, or one of our SMT siblings is
  3926. * not idle.
  3927. */
  3928. idle = CPU_NOT_IDLE;
  3929. }
  3930. sd->last_balance = jiffies;
  3931. }
  3932. if (need_serialize)
  3933. spin_unlock(&balancing);
  3934. out:
  3935. if (time_after(next_balance, sd->last_balance + interval)) {
  3936. next_balance = sd->last_balance + interval;
  3937. update_next_balance = 1;
  3938. }
  3939. /*
  3940. * Stop the load balance at this level. There is another
  3941. * CPU in our sched group which is doing load balancing more
  3942. * actively.
  3943. */
  3944. if (!balance)
  3945. break;
  3946. }
  3947. /*
  3948. * next_balance will be updated only when there is a need.
  3949. * When the cpu is attached to null domain for ex, it will not be
  3950. * updated.
  3951. */
  3952. if (likely(update_next_balance))
  3953. rq->next_balance = next_balance;
  3954. }
  3955. /*
  3956. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3957. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3958. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3959. */
  3960. static void run_rebalance_domains(struct softirq_action *h)
  3961. {
  3962. int this_cpu = smp_processor_id();
  3963. struct rq *this_rq = cpu_rq(this_cpu);
  3964. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3965. CPU_IDLE : CPU_NOT_IDLE;
  3966. rebalance_domains(this_cpu, idle);
  3967. #ifdef CONFIG_NO_HZ
  3968. /*
  3969. * If this cpu is the owner for idle load balancing, then do the
  3970. * balancing on behalf of the other idle cpus whose ticks are
  3971. * stopped.
  3972. */
  3973. if (this_rq->idle_at_tick &&
  3974. atomic_read(&nohz.load_balancer) == this_cpu) {
  3975. struct rq *rq;
  3976. int balance_cpu;
  3977. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  3978. if (balance_cpu == this_cpu)
  3979. continue;
  3980. /*
  3981. * If this cpu gets work to do, stop the load balancing
  3982. * work being done for other cpus. Next load
  3983. * balancing owner will pick it up.
  3984. */
  3985. if (need_resched())
  3986. break;
  3987. rebalance_domains(balance_cpu, CPU_IDLE);
  3988. rq = cpu_rq(balance_cpu);
  3989. if (time_after(this_rq->next_balance, rq->next_balance))
  3990. this_rq->next_balance = rq->next_balance;
  3991. }
  3992. }
  3993. #endif
  3994. }
  3995. static inline int on_null_domain(int cpu)
  3996. {
  3997. return !rcu_dereference(cpu_rq(cpu)->sd);
  3998. }
  3999. /*
  4000. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4001. *
  4002. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4003. * idle load balancing owner or decide to stop the periodic load balancing,
  4004. * if the whole system is idle.
  4005. */
  4006. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4007. {
  4008. #ifdef CONFIG_NO_HZ
  4009. /*
  4010. * If we were in the nohz mode recently and busy at the current
  4011. * scheduler tick, then check if we need to nominate new idle
  4012. * load balancer.
  4013. */
  4014. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4015. rq->in_nohz_recently = 0;
  4016. if (atomic_read(&nohz.load_balancer) == cpu) {
  4017. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4018. atomic_set(&nohz.load_balancer, -1);
  4019. }
  4020. if (atomic_read(&nohz.load_balancer) == -1) {
  4021. int ilb = find_new_ilb(cpu);
  4022. if (ilb < nr_cpu_ids)
  4023. resched_cpu(ilb);
  4024. }
  4025. }
  4026. /*
  4027. * If this cpu is idle and doing idle load balancing for all the
  4028. * cpus with ticks stopped, is it time for that to stop?
  4029. */
  4030. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4031. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4032. resched_cpu(cpu);
  4033. return;
  4034. }
  4035. /*
  4036. * If this cpu is idle and the idle load balancing is done by
  4037. * someone else, then no need raise the SCHED_SOFTIRQ
  4038. */
  4039. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4040. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4041. return;
  4042. #endif
  4043. /* Don't need to rebalance while attached to NULL domain */
  4044. if (time_after_eq(jiffies, rq->next_balance) &&
  4045. likely(!on_null_domain(cpu)))
  4046. raise_softirq(SCHED_SOFTIRQ);
  4047. }
  4048. #else /* CONFIG_SMP */
  4049. /*
  4050. * on UP we do not need to balance between CPUs:
  4051. */
  4052. static inline void idle_balance(int cpu, struct rq *rq)
  4053. {
  4054. }
  4055. #endif
  4056. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4057. EXPORT_PER_CPU_SYMBOL(kstat);
  4058. /*
  4059. * Return any ns on the sched_clock that have not yet been accounted in
  4060. * @p in case that task is currently running.
  4061. *
  4062. * Called with task_rq_lock() held on @rq.
  4063. */
  4064. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4065. {
  4066. u64 ns = 0;
  4067. if (task_current(rq, p)) {
  4068. update_rq_clock(rq);
  4069. ns = rq->clock - p->se.exec_start;
  4070. if ((s64)ns < 0)
  4071. ns = 0;
  4072. }
  4073. return ns;
  4074. }
  4075. unsigned long long task_delta_exec(struct task_struct *p)
  4076. {
  4077. unsigned long flags;
  4078. struct rq *rq;
  4079. u64 ns = 0;
  4080. rq = task_rq_lock(p, &flags);
  4081. ns = do_task_delta_exec(p, rq);
  4082. task_rq_unlock(rq, &flags);
  4083. return ns;
  4084. }
  4085. /*
  4086. * Return accounted runtime for the task.
  4087. * In case the task is currently running, return the runtime plus current's
  4088. * pending runtime that have not been accounted yet.
  4089. */
  4090. unsigned long long task_sched_runtime(struct task_struct *p)
  4091. {
  4092. unsigned long flags;
  4093. struct rq *rq;
  4094. u64 ns = 0;
  4095. rq = task_rq_lock(p, &flags);
  4096. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4097. task_rq_unlock(rq, &flags);
  4098. return ns;
  4099. }
  4100. /*
  4101. * Return sum_exec_runtime for the thread group.
  4102. * In case the task is currently running, return the sum plus current's
  4103. * pending runtime that have not been accounted yet.
  4104. *
  4105. * Note that the thread group might have other running tasks as well,
  4106. * so the return value not includes other pending runtime that other
  4107. * running tasks might have.
  4108. */
  4109. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4110. {
  4111. struct task_cputime totals;
  4112. unsigned long flags;
  4113. struct rq *rq;
  4114. u64 ns;
  4115. rq = task_rq_lock(p, &flags);
  4116. thread_group_cputime(p, &totals);
  4117. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4118. task_rq_unlock(rq, &flags);
  4119. return ns;
  4120. }
  4121. /*
  4122. * Account user cpu time to a process.
  4123. * @p: the process that the cpu time gets accounted to
  4124. * @cputime: the cpu time spent in user space since the last update
  4125. * @cputime_scaled: cputime scaled by cpu frequency
  4126. */
  4127. void account_user_time(struct task_struct *p, cputime_t cputime,
  4128. cputime_t cputime_scaled)
  4129. {
  4130. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4131. cputime64_t tmp;
  4132. /* Add user time to process. */
  4133. p->utime = cputime_add(p->utime, cputime);
  4134. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4135. account_group_user_time(p, cputime);
  4136. /* Add user time to cpustat. */
  4137. tmp = cputime_to_cputime64(cputime);
  4138. if (TASK_NICE(p) > 0)
  4139. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4140. else
  4141. cpustat->user = cputime64_add(cpustat->user, tmp);
  4142. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4143. /* Account for user time used */
  4144. acct_update_integrals(p);
  4145. }
  4146. /*
  4147. * Account guest cpu time to a process.
  4148. * @p: the process that the cpu time gets accounted to
  4149. * @cputime: the cpu time spent in virtual machine since the last update
  4150. * @cputime_scaled: cputime scaled by cpu frequency
  4151. */
  4152. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4153. cputime_t cputime_scaled)
  4154. {
  4155. cputime64_t tmp;
  4156. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4157. tmp = cputime_to_cputime64(cputime);
  4158. /* Add guest time to process. */
  4159. p->utime = cputime_add(p->utime, cputime);
  4160. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4161. account_group_user_time(p, cputime);
  4162. p->gtime = cputime_add(p->gtime, cputime);
  4163. /* Add guest time to cpustat. */
  4164. cpustat->user = cputime64_add(cpustat->user, tmp);
  4165. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4166. }
  4167. /*
  4168. * Account system cpu time to a process.
  4169. * @p: the process that the cpu time gets accounted to
  4170. * @hardirq_offset: the offset to subtract from hardirq_count()
  4171. * @cputime: the cpu time spent in kernel space since the last update
  4172. * @cputime_scaled: cputime scaled by cpu frequency
  4173. */
  4174. void account_system_time(struct task_struct *p, int hardirq_offset,
  4175. cputime_t cputime, cputime_t cputime_scaled)
  4176. {
  4177. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4178. cputime64_t tmp;
  4179. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4180. account_guest_time(p, cputime, cputime_scaled);
  4181. return;
  4182. }
  4183. /* Add system time to process. */
  4184. p->stime = cputime_add(p->stime, cputime);
  4185. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4186. account_group_system_time(p, cputime);
  4187. /* Add system time to cpustat. */
  4188. tmp = cputime_to_cputime64(cputime);
  4189. if (hardirq_count() - hardirq_offset)
  4190. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4191. else if (softirq_count())
  4192. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4193. else
  4194. cpustat->system = cputime64_add(cpustat->system, tmp);
  4195. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4196. /* Account for system time used */
  4197. acct_update_integrals(p);
  4198. }
  4199. /*
  4200. * Account for involuntary wait time.
  4201. * @steal: the cpu time spent in involuntary wait
  4202. */
  4203. void account_steal_time(cputime_t cputime)
  4204. {
  4205. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4206. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4207. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4208. }
  4209. /*
  4210. * Account for idle time.
  4211. * @cputime: the cpu time spent in idle wait
  4212. */
  4213. void account_idle_time(cputime_t cputime)
  4214. {
  4215. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4216. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4217. struct rq *rq = this_rq();
  4218. if (atomic_read(&rq->nr_iowait) > 0)
  4219. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4220. else
  4221. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4222. }
  4223. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4224. /*
  4225. * Account a single tick of cpu time.
  4226. * @p: the process that the cpu time gets accounted to
  4227. * @user_tick: indicates if the tick is a user or a system tick
  4228. */
  4229. void account_process_tick(struct task_struct *p, int user_tick)
  4230. {
  4231. cputime_t one_jiffy = jiffies_to_cputime(1);
  4232. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4233. struct rq *rq = this_rq();
  4234. if (user_tick)
  4235. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4236. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4237. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4238. one_jiffy_scaled);
  4239. else
  4240. account_idle_time(one_jiffy);
  4241. }
  4242. /*
  4243. * Account multiple ticks of steal time.
  4244. * @p: the process from which the cpu time has been stolen
  4245. * @ticks: number of stolen ticks
  4246. */
  4247. void account_steal_ticks(unsigned long ticks)
  4248. {
  4249. account_steal_time(jiffies_to_cputime(ticks));
  4250. }
  4251. /*
  4252. * Account multiple ticks of idle time.
  4253. * @ticks: number of stolen ticks
  4254. */
  4255. void account_idle_ticks(unsigned long ticks)
  4256. {
  4257. account_idle_time(jiffies_to_cputime(ticks));
  4258. }
  4259. #endif
  4260. /*
  4261. * Use precise platform statistics if available:
  4262. */
  4263. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4264. cputime_t task_utime(struct task_struct *p)
  4265. {
  4266. return p->utime;
  4267. }
  4268. cputime_t task_stime(struct task_struct *p)
  4269. {
  4270. return p->stime;
  4271. }
  4272. #else
  4273. cputime_t task_utime(struct task_struct *p)
  4274. {
  4275. clock_t utime = cputime_to_clock_t(p->utime),
  4276. total = utime + cputime_to_clock_t(p->stime);
  4277. u64 temp;
  4278. /*
  4279. * Use CFS's precise accounting:
  4280. */
  4281. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4282. if (total) {
  4283. temp *= utime;
  4284. do_div(temp, total);
  4285. }
  4286. utime = (clock_t)temp;
  4287. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4288. return p->prev_utime;
  4289. }
  4290. cputime_t task_stime(struct task_struct *p)
  4291. {
  4292. clock_t stime;
  4293. /*
  4294. * Use CFS's precise accounting. (we subtract utime from
  4295. * the total, to make sure the total observed by userspace
  4296. * grows monotonically - apps rely on that):
  4297. */
  4298. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4299. cputime_to_clock_t(task_utime(p));
  4300. if (stime >= 0)
  4301. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4302. return p->prev_stime;
  4303. }
  4304. #endif
  4305. inline cputime_t task_gtime(struct task_struct *p)
  4306. {
  4307. return p->gtime;
  4308. }
  4309. /*
  4310. * This function gets called by the timer code, with HZ frequency.
  4311. * We call it with interrupts disabled.
  4312. *
  4313. * It also gets called by the fork code, when changing the parent's
  4314. * timeslices.
  4315. */
  4316. void scheduler_tick(void)
  4317. {
  4318. int cpu = smp_processor_id();
  4319. struct rq *rq = cpu_rq(cpu);
  4320. struct task_struct *curr = rq->curr;
  4321. sched_clock_tick();
  4322. spin_lock(&rq->lock);
  4323. update_rq_clock(rq);
  4324. update_cpu_load(rq);
  4325. curr->sched_class->task_tick(rq, curr, 0);
  4326. spin_unlock(&rq->lock);
  4327. #ifdef CONFIG_SMP
  4328. rq->idle_at_tick = idle_cpu(cpu);
  4329. trigger_load_balance(rq, cpu);
  4330. #endif
  4331. }
  4332. notrace unsigned long get_parent_ip(unsigned long addr)
  4333. {
  4334. if (in_lock_functions(addr)) {
  4335. addr = CALLER_ADDR2;
  4336. if (in_lock_functions(addr))
  4337. addr = CALLER_ADDR3;
  4338. }
  4339. return addr;
  4340. }
  4341. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4342. defined(CONFIG_PREEMPT_TRACER))
  4343. void __kprobes add_preempt_count(int val)
  4344. {
  4345. #ifdef CONFIG_DEBUG_PREEMPT
  4346. /*
  4347. * Underflow?
  4348. */
  4349. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4350. return;
  4351. #endif
  4352. preempt_count() += val;
  4353. #ifdef CONFIG_DEBUG_PREEMPT
  4354. /*
  4355. * Spinlock count overflowing soon?
  4356. */
  4357. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4358. PREEMPT_MASK - 10);
  4359. #endif
  4360. if (preempt_count() == val)
  4361. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4362. }
  4363. EXPORT_SYMBOL(add_preempt_count);
  4364. void __kprobes sub_preempt_count(int val)
  4365. {
  4366. #ifdef CONFIG_DEBUG_PREEMPT
  4367. /*
  4368. * Underflow?
  4369. */
  4370. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4371. return;
  4372. /*
  4373. * Is the spinlock portion underflowing?
  4374. */
  4375. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4376. !(preempt_count() & PREEMPT_MASK)))
  4377. return;
  4378. #endif
  4379. if (preempt_count() == val)
  4380. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4381. preempt_count() -= val;
  4382. }
  4383. EXPORT_SYMBOL(sub_preempt_count);
  4384. #endif
  4385. /*
  4386. * Print scheduling while atomic bug:
  4387. */
  4388. static noinline void __schedule_bug(struct task_struct *prev)
  4389. {
  4390. struct pt_regs *regs = get_irq_regs();
  4391. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4392. prev->comm, prev->pid, preempt_count());
  4393. debug_show_held_locks(prev);
  4394. print_modules();
  4395. if (irqs_disabled())
  4396. print_irqtrace_events(prev);
  4397. if (regs)
  4398. show_regs(regs);
  4399. else
  4400. dump_stack();
  4401. }
  4402. /*
  4403. * Various schedule()-time debugging checks and statistics:
  4404. */
  4405. static inline void schedule_debug(struct task_struct *prev)
  4406. {
  4407. /*
  4408. * Test if we are atomic. Since do_exit() needs to call into
  4409. * schedule() atomically, we ignore that path for now.
  4410. * Otherwise, whine if we are scheduling when we should not be.
  4411. */
  4412. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4413. __schedule_bug(prev);
  4414. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4415. schedstat_inc(this_rq(), sched_count);
  4416. #ifdef CONFIG_SCHEDSTATS
  4417. if (unlikely(prev->lock_depth >= 0)) {
  4418. schedstat_inc(this_rq(), bkl_count);
  4419. schedstat_inc(prev, sched_info.bkl_count);
  4420. }
  4421. #endif
  4422. }
  4423. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4424. {
  4425. if (prev->state == TASK_RUNNING) {
  4426. u64 runtime = prev->se.sum_exec_runtime;
  4427. runtime -= prev->se.prev_sum_exec_runtime;
  4428. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4429. /*
  4430. * In order to avoid avg_overlap growing stale when we are
  4431. * indeed overlapping and hence not getting put to sleep, grow
  4432. * the avg_overlap on preemption.
  4433. *
  4434. * We use the average preemption runtime because that
  4435. * correlates to the amount of cache footprint a task can
  4436. * build up.
  4437. */
  4438. update_avg(&prev->se.avg_overlap, runtime);
  4439. }
  4440. prev->sched_class->put_prev_task(rq, prev);
  4441. }
  4442. /*
  4443. * Pick up the highest-prio task:
  4444. */
  4445. static inline struct task_struct *
  4446. pick_next_task(struct rq *rq)
  4447. {
  4448. const struct sched_class *class;
  4449. struct task_struct *p;
  4450. /*
  4451. * Optimization: we know that if all tasks are in
  4452. * the fair class we can call that function directly:
  4453. */
  4454. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4455. p = fair_sched_class.pick_next_task(rq);
  4456. if (likely(p))
  4457. return p;
  4458. }
  4459. class = sched_class_highest;
  4460. for ( ; ; ) {
  4461. p = class->pick_next_task(rq);
  4462. if (p)
  4463. return p;
  4464. /*
  4465. * Will never be NULL as the idle class always
  4466. * returns a non-NULL p:
  4467. */
  4468. class = class->next;
  4469. }
  4470. }
  4471. /*
  4472. * schedule() is the main scheduler function.
  4473. */
  4474. asmlinkage void __sched schedule(void)
  4475. {
  4476. struct task_struct *prev, *next;
  4477. unsigned long *switch_count;
  4478. struct rq *rq;
  4479. int cpu;
  4480. need_resched:
  4481. preempt_disable();
  4482. cpu = smp_processor_id();
  4483. rq = cpu_rq(cpu);
  4484. rcu_qsctr_inc(cpu);
  4485. prev = rq->curr;
  4486. switch_count = &prev->nivcsw;
  4487. release_kernel_lock(prev);
  4488. need_resched_nonpreemptible:
  4489. schedule_debug(prev);
  4490. if (sched_feat(HRTICK))
  4491. hrtick_clear(rq);
  4492. spin_lock_irq(&rq->lock);
  4493. update_rq_clock(rq);
  4494. clear_tsk_need_resched(prev);
  4495. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4496. if (unlikely(signal_pending_state(prev->state, prev)))
  4497. prev->state = TASK_RUNNING;
  4498. else
  4499. deactivate_task(rq, prev, 1);
  4500. switch_count = &prev->nvcsw;
  4501. }
  4502. #ifdef CONFIG_SMP
  4503. if (prev->sched_class->pre_schedule)
  4504. prev->sched_class->pre_schedule(rq, prev);
  4505. #endif
  4506. if (unlikely(!rq->nr_running))
  4507. idle_balance(cpu, rq);
  4508. put_prev_task(rq, prev);
  4509. next = pick_next_task(rq);
  4510. if (likely(prev != next)) {
  4511. sched_info_switch(prev, next);
  4512. rq->nr_switches++;
  4513. rq->curr = next;
  4514. ++*switch_count;
  4515. context_switch(rq, prev, next); /* unlocks the rq */
  4516. /*
  4517. * the context switch might have flipped the stack from under
  4518. * us, hence refresh the local variables.
  4519. */
  4520. cpu = smp_processor_id();
  4521. rq = cpu_rq(cpu);
  4522. } else
  4523. spin_unlock_irq(&rq->lock);
  4524. if (unlikely(reacquire_kernel_lock(current) < 0))
  4525. goto need_resched_nonpreemptible;
  4526. preempt_enable_no_resched();
  4527. if (need_resched())
  4528. goto need_resched;
  4529. }
  4530. EXPORT_SYMBOL(schedule);
  4531. #ifdef CONFIG_SMP
  4532. /*
  4533. * Look out! "owner" is an entirely speculative pointer
  4534. * access and not reliable.
  4535. */
  4536. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4537. {
  4538. unsigned int cpu;
  4539. struct rq *rq;
  4540. if (!sched_feat(OWNER_SPIN))
  4541. return 0;
  4542. #ifdef CONFIG_DEBUG_PAGEALLOC
  4543. /*
  4544. * Need to access the cpu field knowing that
  4545. * DEBUG_PAGEALLOC could have unmapped it if
  4546. * the mutex owner just released it and exited.
  4547. */
  4548. if (probe_kernel_address(&owner->cpu, cpu))
  4549. goto out;
  4550. #else
  4551. cpu = owner->cpu;
  4552. #endif
  4553. /*
  4554. * Even if the access succeeded (likely case),
  4555. * the cpu field may no longer be valid.
  4556. */
  4557. if (cpu >= nr_cpumask_bits)
  4558. goto out;
  4559. /*
  4560. * We need to validate that we can do a
  4561. * get_cpu() and that we have the percpu area.
  4562. */
  4563. if (!cpu_online(cpu))
  4564. goto out;
  4565. rq = cpu_rq(cpu);
  4566. for (;;) {
  4567. /*
  4568. * Owner changed, break to re-assess state.
  4569. */
  4570. if (lock->owner != owner)
  4571. break;
  4572. /*
  4573. * Is that owner really running on that cpu?
  4574. */
  4575. if (task_thread_info(rq->curr) != owner || need_resched())
  4576. return 0;
  4577. cpu_relax();
  4578. }
  4579. out:
  4580. return 1;
  4581. }
  4582. #endif
  4583. #ifdef CONFIG_PREEMPT
  4584. /*
  4585. * this is the entry point to schedule() from in-kernel preemption
  4586. * off of preempt_enable. Kernel preemptions off return from interrupt
  4587. * occur there and call schedule directly.
  4588. */
  4589. asmlinkage void __sched preempt_schedule(void)
  4590. {
  4591. struct thread_info *ti = current_thread_info();
  4592. /*
  4593. * If there is a non-zero preempt_count or interrupts are disabled,
  4594. * we do not want to preempt the current task. Just return..
  4595. */
  4596. if (likely(ti->preempt_count || irqs_disabled()))
  4597. return;
  4598. do {
  4599. add_preempt_count(PREEMPT_ACTIVE);
  4600. schedule();
  4601. sub_preempt_count(PREEMPT_ACTIVE);
  4602. /*
  4603. * Check again in case we missed a preemption opportunity
  4604. * between schedule and now.
  4605. */
  4606. barrier();
  4607. } while (need_resched());
  4608. }
  4609. EXPORT_SYMBOL(preempt_schedule);
  4610. /*
  4611. * this is the entry point to schedule() from kernel preemption
  4612. * off of irq context.
  4613. * Note, that this is called and return with irqs disabled. This will
  4614. * protect us against recursive calling from irq.
  4615. */
  4616. asmlinkage void __sched preempt_schedule_irq(void)
  4617. {
  4618. struct thread_info *ti = current_thread_info();
  4619. /* Catch callers which need to be fixed */
  4620. BUG_ON(ti->preempt_count || !irqs_disabled());
  4621. do {
  4622. add_preempt_count(PREEMPT_ACTIVE);
  4623. local_irq_enable();
  4624. schedule();
  4625. local_irq_disable();
  4626. sub_preempt_count(PREEMPT_ACTIVE);
  4627. /*
  4628. * Check again in case we missed a preemption opportunity
  4629. * between schedule and now.
  4630. */
  4631. barrier();
  4632. } while (need_resched());
  4633. }
  4634. #endif /* CONFIG_PREEMPT */
  4635. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4636. void *key)
  4637. {
  4638. return try_to_wake_up(curr->private, mode, sync);
  4639. }
  4640. EXPORT_SYMBOL(default_wake_function);
  4641. /*
  4642. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4643. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4644. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4645. *
  4646. * There are circumstances in which we can try to wake a task which has already
  4647. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4648. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4649. */
  4650. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4651. int nr_exclusive, int sync, void *key)
  4652. {
  4653. wait_queue_t *curr, *next;
  4654. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4655. unsigned flags = curr->flags;
  4656. if (curr->func(curr, mode, sync, key) &&
  4657. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4658. break;
  4659. }
  4660. }
  4661. /**
  4662. * __wake_up - wake up threads blocked on a waitqueue.
  4663. * @q: the waitqueue
  4664. * @mode: which threads
  4665. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4666. * @key: is directly passed to the wakeup function
  4667. *
  4668. * It may be assumed that this function implies a write memory barrier before
  4669. * changing the task state if and only if any tasks are woken up.
  4670. */
  4671. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4672. int nr_exclusive, void *key)
  4673. {
  4674. unsigned long flags;
  4675. spin_lock_irqsave(&q->lock, flags);
  4676. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4677. spin_unlock_irqrestore(&q->lock, flags);
  4678. }
  4679. EXPORT_SYMBOL(__wake_up);
  4680. /*
  4681. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4682. */
  4683. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4684. {
  4685. __wake_up_common(q, mode, 1, 0, NULL);
  4686. }
  4687. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4688. {
  4689. __wake_up_common(q, mode, 1, 0, key);
  4690. }
  4691. /**
  4692. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4693. * @q: the waitqueue
  4694. * @mode: which threads
  4695. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4696. * @key: opaque value to be passed to wakeup targets
  4697. *
  4698. * The sync wakeup differs that the waker knows that it will schedule
  4699. * away soon, so while the target thread will be woken up, it will not
  4700. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4701. * with each other. This can prevent needless bouncing between CPUs.
  4702. *
  4703. * On UP it can prevent extra preemption.
  4704. *
  4705. * It may be assumed that this function implies a write memory barrier before
  4706. * changing the task state if and only if any tasks are woken up.
  4707. */
  4708. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4709. int nr_exclusive, void *key)
  4710. {
  4711. unsigned long flags;
  4712. int sync = 1;
  4713. if (unlikely(!q))
  4714. return;
  4715. if (unlikely(!nr_exclusive))
  4716. sync = 0;
  4717. spin_lock_irqsave(&q->lock, flags);
  4718. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4719. spin_unlock_irqrestore(&q->lock, flags);
  4720. }
  4721. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4722. /*
  4723. * __wake_up_sync - see __wake_up_sync_key()
  4724. */
  4725. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4726. {
  4727. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4728. }
  4729. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4730. /**
  4731. * complete: - signals a single thread waiting on this completion
  4732. * @x: holds the state of this particular completion
  4733. *
  4734. * This will wake up a single thread waiting on this completion. Threads will be
  4735. * awakened in the same order in which they were queued.
  4736. *
  4737. * See also complete_all(), wait_for_completion() and related routines.
  4738. *
  4739. * It may be assumed that this function implies a write memory barrier before
  4740. * changing the task state if and only if any tasks are woken up.
  4741. */
  4742. void complete(struct completion *x)
  4743. {
  4744. unsigned long flags;
  4745. spin_lock_irqsave(&x->wait.lock, flags);
  4746. x->done++;
  4747. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4748. spin_unlock_irqrestore(&x->wait.lock, flags);
  4749. }
  4750. EXPORT_SYMBOL(complete);
  4751. /**
  4752. * complete_all: - signals all threads waiting on this completion
  4753. * @x: holds the state of this particular completion
  4754. *
  4755. * This will wake up all threads waiting on this particular completion event.
  4756. *
  4757. * It may be assumed that this function implies a write memory barrier before
  4758. * changing the task state if and only if any tasks are woken up.
  4759. */
  4760. void complete_all(struct completion *x)
  4761. {
  4762. unsigned long flags;
  4763. spin_lock_irqsave(&x->wait.lock, flags);
  4764. x->done += UINT_MAX/2;
  4765. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4766. spin_unlock_irqrestore(&x->wait.lock, flags);
  4767. }
  4768. EXPORT_SYMBOL(complete_all);
  4769. static inline long __sched
  4770. do_wait_for_common(struct completion *x, long timeout, int state)
  4771. {
  4772. if (!x->done) {
  4773. DECLARE_WAITQUEUE(wait, current);
  4774. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4775. __add_wait_queue_tail(&x->wait, &wait);
  4776. do {
  4777. if (signal_pending_state(state, current)) {
  4778. timeout = -ERESTARTSYS;
  4779. break;
  4780. }
  4781. __set_current_state(state);
  4782. spin_unlock_irq(&x->wait.lock);
  4783. timeout = schedule_timeout(timeout);
  4784. spin_lock_irq(&x->wait.lock);
  4785. } while (!x->done && timeout);
  4786. __remove_wait_queue(&x->wait, &wait);
  4787. if (!x->done)
  4788. return timeout;
  4789. }
  4790. x->done--;
  4791. return timeout ?: 1;
  4792. }
  4793. static long __sched
  4794. wait_for_common(struct completion *x, long timeout, int state)
  4795. {
  4796. might_sleep();
  4797. spin_lock_irq(&x->wait.lock);
  4798. timeout = do_wait_for_common(x, timeout, state);
  4799. spin_unlock_irq(&x->wait.lock);
  4800. return timeout;
  4801. }
  4802. /**
  4803. * wait_for_completion: - waits for completion of a task
  4804. * @x: holds the state of this particular completion
  4805. *
  4806. * This waits to be signaled for completion of a specific task. It is NOT
  4807. * interruptible and there is no timeout.
  4808. *
  4809. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4810. * and interrupt capability. Also see complete().
  4811. */
  4812. void __sched wait_for_completion(struct completion *x)
  4813. {
  4814. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4815. }
  4816. EXPORT_SYMBOL(wait_for_completion);
  4817. /**
  4818. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4819. * @x: holds the state of this particular completion
  4820. * @timeout: timeout value in jiffies
  4821. *
  4822. * This waits for either a completion of a specific task to be signaled or for a
  4823. * specified timeout to expire. The timeout is in jiffies. It is not
  4824. * interruptible.
  4825. */
  4826. unsigned long __sched
  4827. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4828. {
  4829. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4830. }
  4831. EXPORT_SYMBOL(wait_for_completion_timeout);
  4832. /**
  4833. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4834. * @x: holds the state of this particular completion
  4835. *
  4836. * This waits for completion of a specific task to be signaled. It is
  4837. * interruptible.
  4838. */
  4839. int __sched wait_for_completion_interruptible(struct completion *x)
  4840. {
  4841. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4842. if (t == -ERESTARTSYS)
  4843. return t;
  4844. return 0;
  4845. }
  4846. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4847. /**
  4848. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4849. * @x: holds the state of this particular completion
  4850. * @timeout: timeout value in jiffies
  4851. *
  4852. * This waits for either a completion of a specific task to be signaled or for a
  4853. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4854. */
  4855. unsigned long __sched
  4856. wait_for_completion_interruptible_timeout(struct completion *x,
  4857. unsigned long timeout)
  4858. {
  4859. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4860. }
  4861. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4862. /**
  4863. * wait_for_completion_killable: - waits for completion of a task (killable)
  4864. * @x: holds the state of this particular completion
  4865. *
  4866. * This waits to be signaled for completion of a specific task. It can be
  4867. * interrupted by a kill signal.
  4868. */
  4869. int __sched wait_for_completion_killable(struct completion *x)
  4870. {
  4871. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4872. if (t == -ERESTARTSYS)
  4873. return t;
  4874. return 0;
  4875. }
  4876. EXPORT_SYMBOL(wait_for_completion_killable);
  4877. /**
  4878. * try_wait_for_completion - try to decrement a completion without blocking
  4879. * @x: completion structure
  4880. *
  4881. * Returns: 0 if a decrement cannot be done without blocking
  4882. * 1 if a decrement succeeded.
  4883. *
  4884. * If a completion is being used as a counting completion,
  4885. * attempt to decrement the counter without blocking. This
  4886. * enables us to avoid waiting if the resource the completion
  4887. * is protecting is not available.
  4888. */
  4889. bool try_wait_for_completion(struct completion *x)
  4890. {
  4891. int ret = 1;
  4892. spin_lock_irq(&x->wait.lock);
  4893. if (!x->done)
  4894. ret = 0;
  4895. else
  4896. x->done--;
  4897. spin_unlock_irq(&x->wait.lock);
  4898. return ret;
  4899. }
  4900. EXPORT_SYMBOL(try_wait_for_completion);
  4901. /**
  4902. * completion_done - Test to see if a completion has any waiters
  4903. * @x: completion structure
  4904. *
  4905. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4906. * 1 if there are no waiters.
  4907. *
  4908. */
  4909. bool completion_done(struct completion *x)
  4910. {
  4911. int ret = 1;
  4912. spin_lock_irq(&x->wait.lock);
  4913. if (!x->done)
  4914. ret = 0;
  4915. spin_unlock_irq(&x->wait.lock);
  4916. return ret;
  4917. }
  4918. EXPORT_SYMBOL(completion_done);
  4919. static long __sched
  4920. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4921. {
  4922. unsigned long flags;
  4923. wait_queue_t wait;
  4924. init_waitqueue_entry(&wait, current);
  4925. __set_current_state(state);
  4926. spin_lock_irqsave(&q->lock, flags);
  4927. __add_wait_queue(q, &wait);
  4928. spin_unlock(&q->lock);
  4929. timeout = schedule_timeout(timeout);
  4930. spin_lock_irq(&q->lock);
  4931. __remove_wait_queue(q, &wait);
  4932. spin_unlock_irqrestore(&q->lock, flags);
  4933. return timeout;
  4934. }
  4935. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4936. {
  4937. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4938. }
  4939. EXPORT_SYMBOL(interruptible_sleep_on);
  4940. long __sched
  4941. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4942. {
  4943. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4944. }
  4945. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4946. void __sched sleep_on(wait_queue_head_t *q)
  4947. {
  4948. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4949. }
  4950. EXPORT_SYMBOL(sleep_on);
  4951. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4952. {
  4953. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4954. }
  4955. EXPORT_SYMBOL(sleep_on_timeout);
  4956. #ifdef CONFIG_RT_MUTEXES
  4957. /*
  4958. * rt_mutex_setprio - set the current priority of a task
  4959. * @p: task
  4960. * @prio: prio value (kernel-internal form)
  4961. *
  4962. * This function changes the 'effective' priority of a task. It does
  4963. * not touch ->normal_prio like __setscheduler().
  4964. *
  4965. * Used by the rt_mutex code to implement priority inheritance logic.
  4966. */
  4967. void rt_mutex_setprio(struct task_struct *p, int prio)
  4968. {
  4969. unsigned long flags;
  4970. int oldprio, on_rq, running;
  4971. struct rq *rq;
  4972. const struct sched_class *prev_class = p->sched_class;
  4973. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4974. rq = task_rq_lock(p, &flags);
  4975. update_rq_clock(rq);
  4976. oldprio = p->prio;
  4977. on_rq = p->se.on_rq;
  4978. running = task_current(rq, p);
  4979. if (on_rq)
  4980. dequeue_task(rq, p, 0);
  4981. if (running)
  4982. p->sched_class->put_prev_task(rq, p);
  4983. if (rt_prio(prio))
  4984. p->sched_class = &rt_sched_class;
  4985. else
  4986. p->sched_class = &fair_sched_class;
  4987. p->prio = prio;
  4988. if (running)
  4989. p->sched_class->set_curr_task(rq);
  4990. if (on_rq) {
  4991. enqueue_task(rq, p, 0);
  4992. check_class_changed(rq, p, prev_class, oldprio, running);
  4993. }
  4994. task_rq_unlock(rq, &flags);
  4995. }
  4996. #endif
  4997. void set_user_nice(struct task_struct *p, long nice)
  4998. {
  4999. int old_prio, delta, on_rq;
  5000. unsigned long flags;
  5001. struct rq *rq;
  5002. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5003. return;
  5004. /*
  5005. * We have to be careful, if called from sys_setpriority(),
  5006. * the task might be in the middle of scheduling on another CPU.
  5007. */
  5008. rq = task_rq_lock(p, &flags);
  5009. update_rq_clock(rq);
  5010. /*
  5011. * The RT priorities are set via sched_setscheduler(), but we still
  5012. * allow the 'normal' nice value to be set - but as expected
  5013. * it wont have any effect on scheduling until the task is
  5014. * SCHED_FIFO/SCHED_RR:
  5015. */
  5016. if (task_has_rt_policy(p)) {
  5017. p->static_prio = NICE_TO_PRIO(nice);
  5018. goto out_unlock;
  5019. }
  5020. on_rq = p->se.on_rq;
  5021. if (on_rq)
  5022. dequeue_task(rq, p, 0);
  5023. p->static_prio = NICE_TO_PRIO(nice);
  5024. set_load_weight(p);
  5025. old_prio = p->prio;
  5026. p->prio = effective_prio(p);
  5027. delta = p->prio - old_prio;
  5028. if (on_rq) {
  5029. enqueue_task(rq, p, 0);
  5030. /*
  5031. * If the task increased its priority or is running and
  5032. * lowered its priority, then reschedule its CPU:
  5033. */
  5034. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5035. resched_task(rq->curr);
  5036. }
  5037. out_unlock:
  5038. task_rq_unlock(rq, &flags);
  5039. }
  5040. EXPORT_SYMBOL(set_user_nice);
  5041. /*
  5042. * can_nice - check if a task can reduce its nice value
  5043. * @p: task
  5044. * @nice: nice value
  5045. */
  5046. int can_nice(const struct task_struct *p, const int nice)
  5047. {
  5048. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5049. int nice_rlim = 20 - nice;
  5050. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5051. capable(CAP_SYS_NICE));
  5052. }
  5053. #ifdef __ARCH_WANT_SYS_NICE
  5054. /*
  5055. * sys_nice - change the priority of the current process.
  5056. * @increment: priority increment
  5057. *
  5058. * sys_setpriority is a more generic, but much slower function that
  5059. * does similar things.
  5060. */
  5061. SYSCALL_DEFINE1(nice, int, increment)
  5062. {
  5063. long nice, retval;
  5064. /*
  5065. * Setpriority might change our priority at the same moment.
  5066. * We don't have to worry. Conceptually one call occurs first
  5067. * and we have a single winner.
  5068. */
  5069. if (increment < -40)
  5070. increment = -40;
  5071. if (increment > 40)
  5072. increment = 40;
  5073. nice = TASK_NICE(current) + increment;
  5074. if (nice < -20)
  5075. nice = -20;
  5076. if (nice > 19)
  5077. nice = 19;
  5078. if (increment < 0 && !can_nice(current, nice))
  5079. return -EPERM;
  5080. retval = security_task_setnice(current, nice);
  5081. if (retval)
  5082. return retval;
  5083. set_user_nice(current, nice);
  5084. return 0;
  5085. }
  5086. #endif
  5087. /**
  5088. * task_prio - return the priority value of a given task.
  5089. * @p: the task in question.
  5090. *
  5091. * This is the priority value as seen by users in /proc.
  5092. * RT tasks are offset by -200. Normal tasks are centered
  5093. * around 0, value goes from -16 to +15.
  5094. */
  5095. int task_prio(const struct task_struct *p)
  5096. {
  5097. return p->prio - MAX_RT_PRIO;
  5098. }
  5099. /**
  5100. * task_nice - return the nice value of a given task.
  5101. * @p: the task in question.
  5102. */
  5103. int task_nice(const struct task_struct *p)
  5104. {
  5105. return TASK_NICE(p);
  5106. }
  5107. EXPORT_SYMBOL(task_nice);
  5108. /**
  5109. * idle_cpu - is a given cpu idle currently?
  5110. * @cpu: the processor in question.
  5111. */
  5112. int idle_cpu(int cpu)
  5113. {
  5114. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5115. }
  5116. /**
  5117. * idle_task - return the idle task for a given cpu.
  5118. * @cpu: the processor in question.
  5119. */
  5120. struct task_struct *idle_task(int cpu)
  5121. {
  5122. return cpu_rq(cpu)->idle;
  5123. }
  5124. /**
  5125. * find_process_by_pid - find a process with a matching PID value.
  5126. * @pid: the pid in question.
  5127. */
  5128. static struct task_struct *find_process_by_pid(pid_t pid)
  5129. {
  5130. return pid ? find_task_by_vpid(pid) : current;
  5131. }
  5132. /* Actually do priority change: must hold rq lock. */
  5133. static void
  5134. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5135. {
  5136. BUG_ON(p->se.on_rq);
  5137. p->policy = policy;
  5138. switch (p->policy) {
  5139. case SCHED_NORMAL:
  5140. case SCHED_BATCH:
  5141. case SCHED_IDLE:
  5142. p->sched_class = &fair_sched_class;
  5143. break;
  5144. case SCHED_FIFO:
  5145. case SCHED_RR:
  5146. p->sched_class = &rt_sched_class;
  5147. break;
  5148. }
  5149. p->rt_priority = prio;
  5150. p->normal_prio = normal_prio(p);
  5151. /* we are holding p->pi_lock already */
  5152. p->prio = rt_mutex_getprio(p);
  5153. set_load_weight(p);
  5154. }
  5155. /*
  5156. * check the target process has a UID that matches the current process's
  5157. */
  5158. static bool check_same_owner(struct task_struct *p)
  5159. {
  5160. const struct cred *cred = current_cred(), *pcred;
  5161. bool match;
  5162. rcu_read_lock();
  5163. pcred = __task_cred(p);
  5164. match = (cred->euid == pcred->euid ||
  5165. cred->euid == pcred->uid);
  5166. rcu_read_unlock();
  5167. return match;
  5168. }
  5169. static int __sched_setscheduler(struct task_struct *p, int policy,
  5170. struct sched_param *param, bool user)
  5171. {
  5172. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5173. unsigned long flags;
  5174. const struct sched_class *prev_class = p->sched_class;
  5175. struct rq *rq;
  5176. /* may grab non-irq protected spin_locks */
  5177. BUG_ON(in_interrupt());
  5178. recheck:
  5179. /* double check policy once rq lock held */
  5180. if (policy < 0)
  5181. policy = oldpolicy = p->policy;
  5182. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5183. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5184. policy != SCHED_IDLE)
  5185. return -EINVAL;
  5186. /*
  5187. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5188. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5189. * SCHED_BATCH and SCHED_IDLE is 0.
  5190. */
  5191. if (param->sched_priority < 0 ||
  5192. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5193. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5194. return -EINVAL;
  5195. if (rt_policy(policy) != (param->sched_priority != 0))
  5196. return -EINVAL;
  5197. /*
  5198. * Allow unprivileged RT tasks to decrease priority:
  5199. */
  5200. if (user && !capable(CAP_SYS_NICE)) {
  5201. if (rt_policy(policy)) {
  5202. unsigned long rlim_rtprio;
  5203. if (!lock_task_sighand(p, &flags))
  5204. return -ESRCH;
  5205. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5206. unlock_task_sighand(p, &flags);
  5207. /* can't set/change the rt policy */
  5208. if (policy != p->policy && !rlim_rtprio)
  5209. return -EPERM;
  5210. /* can't increase priority */
  5211. if (param->sched_priority > p->rt_priority &&
  5212. param->sched_priority > rlim_rtprio)
  5213. return -EPERM;
  5214. }
  5215. /*
  5216. * Like positive nice levels, dont allow tasks to
  5217. * move out of SCHED_IDLE either:
  5218. */
  5219. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5220. return -EPERM;
  5221. /* can't change other user's priorities */
  5222. if (!check_same_owner(p))
  5223. return -EPERM;
  5224. }
  5225. if (user) {
  5226. #ifdef CONFIG_RT_GROUP_SCHED
  5227. /*
  5228. * Do not allow realtime tasks into groups that have no runtime
  5229. * assigned.
  5230. */
  5231. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5232. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5233. return -EPERM;
  5234. #endif
  5235. retval = security_task_setscheduler(p, policy, param);
  5236. if (retval)
  5237. return retval;
  5238. }
  5239. /*
  5240. * make sure no PI-waiters arrive (or leave) while we are
  5241. * changing the priority of the task:
  5242. */
  5243. spin_lock_irqsave(&p->pi_lock, flags);
  5244. /*
  5245. * To be able to change p->policy safely, the apropriate
  5246. * runqueue lock must be held.
  5247. */
  5248. rq = __task_rq_lock(p);
  5249. /* recheck policy now with rq lock held */
  5250. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5251. policy = oldpolicy = -1;
  5252. __task_rq_unlock(rq);
  5253. spin_unlock_irqrestore(&p->pi_lock, flags);
  5254. goto recheck;
  5255. }
  5256. update_rq_clock(rq);
  5257. on_rq = p->se.on_rq;
  5258. running = task_current(rq, p);
  5259. if (on_rq)
  5260. deactivate_task(rq, p, 0);
  5261. if (running)
  5262. p->sched_class->put_prev_task(rq, p);
  5263. oldprio = p->prio;
  5264. __setscheduler(rq, p, policy, param->sched_priority);
  5265. if (running)
  5266. p->sched_class->set_curr_task(rq);
  5267. if (on_rq) {
  5268. activate_task(rq, p, 0);
  5269. check_class_changed(rq, p, prev_class, oldprio, running);
  5270. }
  5271. __task_rq_unlock(rq);
  5272. spin_unlock_irqrestore(&p->pi_lock, flags);
  5273. rt_mutex_adjust_pi(p);
  5274. return 0;
  5275. }
  5276. /**
  5277. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5278. * @p: the task in question.
  5279. * @policy: new policy.
  5280. * @param: structure containing the new RT priority.
  5281. *
  5282. * NOTE that the task may be already dead.
  5283. */
  5284. int sched_setscheduler(struct task_struct *p, int policy,
  5285. struct sched_param *param)
  5286. {
  5287. return __sched_setscheduler(p, policy, param, true);
  5288. }
  5289. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5290. /**
  5291. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5292. * @p: the task in question.
  5293. * @policy: new policy.
  5294. * @param: structure containing the new RT priority.
  5295. *
  5296. * Just like sched_setscheduler, only don't bother checking if the
  5297. * current context has permission. For example, this is needed in
  5298. * stop_machine(): we create temporary high priority worker threads,
  5299. * but our caller might not have that capability.
  5300. */
  5301. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5302. struct sched_param *param)
  5303. {
  5304. return __sched_setscheduler(p, policy, param, false);
  5305. }
  5306. static int
  5307. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5308. {
  5309. struct sched_param lparam;
  5310. struct task_struct *p;
  5311. int retval;
  5312. if (!param || pid < 0)
  5313. return -EINVAL;
  5314. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5315. return -EFAULT;
  5316. rcu_read_lock();
  5317. retval = -ESRCH;
  5318. p = find_process_by_pid(pid);
  5319. if (p != NULL)
  5320. retval = sched_setscheduler(p, policy, &lparam);
  5321. rcu_read_unlock();
  5322. return retval;
  5323. }
  5324. /**
  5325. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5326. * @pid: the pid in question.
  5327. * @policy: new policy.
  5328. * @param: structure containing the new RT priority.
  5329. */
  5330. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5331. struct sched_param __user *, param)
  5332. {
  5333. /* negative values for policy are not valid */
  5334. if (policy < 0)
  5335. return -EINVAL;
  5336. return do_sched_setscheduler(pid, policy, param);
  5337. }
  5338. /**
  5339. * sys_sched_setparam - set/change the RT priority of a thread
  5340. * @pid: the pid in question.
  5341. * @param: structure containing the new RT priority.
  5342. */
  5343. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5344. {
  5345. return do_sched_setscheduler(pid, -1, param);
  5346. }
  5347. /**
  5348. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5349. * @pid: the pid in question.
  5350. */
  5351. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5352. {
  5353. struct task_struct *p;
  5354. int retval;
  5355. if (pid < 0)
  5356. return -EINVAL;
  5357. retval = -ESRCH;
  5358. read_lock(&tasklist_lock);
  5359. p = find_process_by_pid(pid);
  5360. if (p) {
  5361. retval = security_task_getscheduler(p);
  5362. if (!retval)
  5363. retval = p->policy;
  5364. }
  5365. read_unlock(&tasklist_lock);
  5366. return retval;
  5367. }
  5368. /**
  5369. * sys_sched_getscheduler - get the RT priority of a thread
  5370. * @pid: the pid in question.
  5371. * @param: structure containing the RT priority.
  5372. */
  5373. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5374. {
  5375. struct sched_param lp;
  5376. struct task_struct *p;
  5377. int retval;
  5378. if (!param || pid < 0)
  5379. return -EINVAL;
  5380. read_lock(&tasklist_lock);
  5381. p = find_process_by_pid(pid);
  5382. retval = -ESRCH;
  5383. if (!p)
  5384. goto out_unlock;
  5385. retval = security_task_getscheduler(p);
  5386. if (retval)
  5387. goto out_unlock;
  5388. lp.sched_priority = p->rt_priority;
  5389. read_unlock(&tasklist_lock);
  5390. /*
  5391. * This one might sleep, we cannot do it with a spinlock held ...
  5392. */
  5393. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5394. return retval;
  5395. out_unlock:
  5396. read_unlock(&tasklist_lock);
  5397. return retval;
  5398. }
  5399. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5400. {
  5401. cpumask_var_t cpus_allowed, new_mask;
  5402. struct task_struct *p;
  5403. int retval;
  5404. get_online_cpus();
  5405. read_lock(&tasklist_lock);
  5406. p = find_process_by_pid(pid);
  5407. if (!p) {
  5408. read_unlock(&tasklist_lock);
  5409. put_online_cpus();
  5410. return -ESRCH;
  5411. }
  5412. /*
  5413. * It is not safe to call set_cpus_allowed with the
  5414. * tasklist_lock held. We will bump the task_struct's
  5415. * usage count and then drop tasklist_lock.
  5416. */
  5417. get_task_struct(p);
  5418. read_unlock(&tasklist_lock);
  5419. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5420. retval = -ENOMEM;
  5421. goto out_put_task;
  5422. }
  5423. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5424. retval = -ENOMEM;
  5425. goto out_free_cpus_allowed;
  5426. }
  5427. retval = -EPERM;
  5428. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5429. goto out_unlock;
  5430. retval = security_task_setscheduler(p, 0, NULL);
  5431. if (retval)
  5432. goto out_unlock;
  5433. cpuset_cpus_allowed(p, cpus_allowed);
  5434. cpumask_and(new_mask, in_mask, cpus_allowed);
  5435. again:
  5436. retval = set_cpus_allowed_ptr(p, new_mask);
  5437. if (!retval) {
  5438. cpuset_cpus_allowed(p, cpus_allowed);
  5439. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5440. /*
  5441. * We must have raced with a concurrent cpuset
  5442. * update. Just reset the cpus_allowed to the
  5443. * cpuset's cpus_allowed
  5444. */
  5445. cpumask_copy(new_mask, cpus_allowed);
  5446. goto again;
  5447. }
  5448. }
  5449. out_unlock:
  5450. free_cpumask_var(new_mask);
  5451. out_free_cpus_allowed:
  5452. free_cpumask_var(cpus_allowed);
  5453. out_put_task:
  5454. put_task_struct(p);
  5455. put_online_cpus();
  5456. return retval;
  5457. }
  5458. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5459. struct cpumask *new_mask)
  5460. {
  5461. if (len < cpumask_size())
  5462. cpumask_clear(new_mask);
  5463. else if (len > cpumask_size())
  5464. len = cpumask_size();
  5465. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5466. }
  5467. /**
  5468. * sys_sched_setaffinity - set the cpu affinity of a process
  5469. * @pid: pid of the process
  5470. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5471. * @user_mask_ptr: user-space pointer to the new cpu mask
  5472. */
  5473. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5474. unsigned long __user *, user_mask_ptr)
  5475. {
  5476. cpumask_var_t new_mask;
  5477. int retval;
  5478. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5479. return -ENOMEM;
  5480. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5481. if (retval == 0)
  5482. retval = sched_setaffinity(pid, new_mask);
  5483. free_cpumask_var(new_mask);
  5484. return retval;
  5485. }
  5486. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5487. {
  5488. struct task_struct *p;
  5489. int retval;
  5490. get_online_cpus();
  5491. read_lock(&tasklist_lock);
  5492. retval = -ESRCH;
  5493. p = find_process_by_pid(pid);
  5494. if (!p)
  5495. goto out_unlock;
  5496. retval = security_task_getscheduler(p);
  5497. if (retval)
  5498. goto out_unlock;
  5499. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5500. out_unlock:
  5501. read_unlock(&tasklist_lock);
  5502. put_online_cpus();
  5503. return retval;
  5504. }
  5505. /**
  5506. * sys_sched_getaffinity - get the cpu affinity of a process
  5507. * @pid: pid of the process
  5508. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5509. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5510. */
  5511. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5512. unsigned long __user *, user_mask_ptr)
  5513. {
  5514. int ret;
  5515. cpumask_var_t mask;
  5516. if (len < cpumask_size())
  5517. return -EINVAL;
  5518. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5519. return -ENOMEM;
  5520. ret = sched_getaffinity(pid, mask);
  5521. if (ret == 0) {
  5522. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5523. ret = -EFAULT;
  5524. else
  5525. ret = cpumask_size();
  5526. }
  5527. free_cpumask_var(mask);
  5528. return ret;
  5529. }
  5530. /**
  5531. * sys_sched_yield - yield the current processor to other threads.
  5532. *
  5533. * This function yields the current CPU to other tasks. If there are no
  5534. * other threads running on this CPU then this function will return.
  5535. */
  5536. SYSCALL_DEFINE0(sched_yield)
  5537. {
  5538. struct rq *rq = this_rq_lock();
  5539. schedstat_inc(rq, yld_count);
  5540. current->sched_class->yield_task(rq);
  5541. /*
  5542. * Since we are going to call schedule() anyway, there's
  5543. * no need to preempt or enable interrupts:
  5544. */
  5545. __release(rq->lock);
  5546. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5547. _raw_spin_unlock(&rq->lock);
  5548. preempt_enable_no_resched();
  5549. schedule();
  5550. return 0;
  5551. }
  5552. static void __cond_resched(void)
  5553. {
  5554. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5555. __might_sleep(__FILE__, __LINE__);
  5556. #endif
  5557. /*
  5558. * The BKS might be reacquired before we have dropped
  5559. * PREEMPT_ACTIVE, which could trigger a second
  5560. * cond_resched() call.
  5561. */
  5562. do {
  5563. add_preempt_count(PREEMPT_ACTIVE);
  5564. schedule();
  5565. sub_preempt_count(PREEMPT_ACTIVE);
  5566. } while (need_resched());
  5567. }
  5568. int __sched _cond_resched(void)
  5569. {
  5570. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5571. system_state == SYSTEM_RUNNING) {
  5572. __cond_resched();
  5573. return 1;
  5574. }
  5575. return 0;
  5576. }
  5577. EXPORT_SYMBOL(_cond_resched);
  5578. /*
  5579. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5580. * call schedule, and on return reacquire the lock.
  5581. *
  5582. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5583. * operations here to prevent schedule() from being called twice (once via
  5584. * spin_unlock(), once by hand).
  5585. */
  5586. int cond_resched_lock(spinlock_t *lock)
  5587. {
  5588. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5589. int ret = 0;
  5590. if (spin_needbreak(lock) || resched) {
  5591. spin_unlock(lock);
  5592. if (resched && need_resched())
  5593. __cond_resched();
  5594. else
  5595. cpu_relax();
  5596. ret = 1;
  5597. spin_lock(lock);
  5598. }
  5599. return ret;
  5600. }
  5601. EXPORT_SYMBOL(cond_resched_lock);
  5602. int __sched cond_resched_softirq(void)
  5603. {
  5604. BUG_ON(!in_softirq());
  5605. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5606. local_bh_enable();
  5607. __cond_resched();
  5608. local_bh_disable();
  5609. return 1;
  5610. }
  5611. return 0;
  5612. }
  5613. EXPORT_SYMBOL(cond_resched_softirq);
  5614. /**
  5615. * yield - yield the current processor to other threads.
  5616. *
  5617. * This is a shortcut for kernel-space yielding - it marks the
  5618. * thread runnable and calls sys_sched_yield().
  5619. */
  5620. void __sched yield(void)
  5621. {
  5622. set_current_state(TASK_RUNNING);
  5623. sys_sched_yield();
  5624. }
  5625. EXPORT_SYMBOL(yield);
  5626. /*
  5627. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5628. * that process accounting knows that this is a task in IO wait state.
  5629. *
  5630. * But don't do that if it is a deliberate, throttling IO wait (this task
  5631. * has set its backing_dev_info: the queue against which it should throttle)
  5632. */
  5633. void __sched io_schedule(void)
  5634. {
  5635. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5636. delayacct_blkio_start();
  5637. atomic_inc(&rq->nr_iowait);
  5638. schedule();
  5639. atomic_dec(&rq->nr_iowait);
  5640. delayacct_blkio_end();
  5641. }
  5642. EXPORT_SYMBOL(io_schedule);
  5643. long __sched io_schedule_timeout(long timeout)
  5644. {
  5645. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5646. long ret;
  5647. delayacct_blkio_start();
  5648. atomic_inc(&rq->nr_iowait);
  5649. ret = schedule_timeout(timeout);
  5650. atomic_dec(&rq->nr_iowait);
  5651. delayacct_blkio_end();
  5652. return ret;
  5653. }
  5654. /**
  5655. * sys_sched_get_priority_max - return maximum RT priority.
  5656. * @policy: scheduling class.
  5657. *
  5658. * this syscall returns the maximum rt_priority that can be used
  5659. * by a given scheduling class.
  5660. */
  5661. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5662. {
  5663. int ret = -EINVAL;
  5664. switch (policy) {
  5665. case SCHED_FIFO:
  5666. case SCHED_RR:
  5667. ret = MAX_USER_RT_PRIO-1;
  5668. break;
  5669. case SCHED_NORMAL:
  5670. case SCHED_BATCH:
  5671. case SCHED_IDLE:
  5672. ret = 0;
  5673. break;
  5674. }
  5675. return ret;
  5676. }
  5677. /**
  5678. * sys_sched_get_priority_min - return minimum RT priority.
  5679. * @policy: scheduling class.
  5680. *
  5681. * this syscall returns the minimum rt_priority that can be used
  5682. * by a given scheduling class.
  5683. */
  5684. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5685. {
  5686. int ret = -EINVAL;
  5687. switch (policy) {
  5688. case SCHED_FIFO:
  5689. case SCHED_RR:
  5690. ret = 1;
  5691. break;
  5692. case SCHED_NORMAL:
  5693. case SCHED_BATCH:
  5694. case SCHED_IDLE:
  5695. ret = 0;
  5696. }
  5697. return ret;
  5698. }
  5699. /**
  5700. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5701. * @pid: pid of the process.
  5702. * @interval: userspace pointer to the timeslice value.
  5703. *
  5704. * this syscall writes the default timeslice value of a given process
  5705. * into the user-space timespec buffer. A value of '0' means infinity.
  5706. */
  5707. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5708. struct timespec __user *, interval)
  5709. {
  5710. struct task_struct *p;
  5711. unsigned int time_slice;
  5712. int retval;
  5713. struct timespec t;
  5714. if (pid < 0)
  5715. return -EINVAL;
  5716. retval = -ESRCH;
  5717. read_lock(&tasklist_lock);
  5718. p = find_process_by_pid(pid);
  5719. if (!p)
  5720. goto out_unlock;
  5721. retval = security_task_getscheduler(p);
  5722. if (retval)
  5723. goto out_unlock;
  5724. /*
  5725. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5726. * tasks that are on an otherwise idle runqueue:
  5727. */
  5728. time_slice = 0;
  5729. if (p->policy == SCHED_RR) {
  5730. time_slice = DEF_TIMESLICE;
  5731. } else if (p->policy != SCHED_FIFO) {
  5732. struct sched_entity *se = &p->se;
  5733. unsigned long flags;
  5734. struct rq *rq;
  5735. rq = task_rq_lock(p, &flags);
  5736. if (rq->cfs.load.weight)
  5737. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5738. task_rq_unlock(rq, &flags);
  5739. }
  5740. read_unlock(&tasklist_lock);
  5741. jiffies_to_timespec(time_slice, &t);
  5742. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5743. return retval;
  5744. out_unlock:
  5745. read_unlock(&tasklist_lock);
  5746. return retval;
  5747. }
  5748. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5749. void sched_show_task(struct task_struct *p)
  5750. {
  5751. unsigned long free = 0;
  5752. unsigned state;
  5753. state = p->state ? __ffs(p->state) + 1 : 0;
  5754. printk(KERN_INFO "%-13.13s %c", p->comm,
  5755. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5756. #if BITS_PER_LONG == 32
  5757. if (state == TASK_RUNNING)
  5758. printk(KERN_CONT " running ");
  5759. else
  5760. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5761. #else
  5762. if (state == TASK_RUNNING)
  5763. printk(KERN_CONT " running task ");
  5764. else
  5765. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5766. #endif
  5767. #ifdef CONFIG_DEBUG_STACK_USAGE
  5768. free = stack_not_used(p);
  5769. #endif
  5770. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5771. task_pid_nr(p), task_pid_nr(p->real_parent),
  5772. (unsigned long)task_thread_info(p)->flags);
  5773. show_stack(p, NULL);
  5774. }
  5775. void show_state_filter(unsigned long state_filter)
  5776. {
  5777. struct task_struct *g, *p;
  5778. #if BITS_PER_LONG == 32
  5779. printk(KERN_INFO
  5780. " task PC stack pid father\n");
  5781. #else
  5782. printk(KERN_INFO
  5783. " task PC stack pid father\n");
  5784. #endif
  5785. read_lock(&tasklist_lock);
  5786. do_each_thread(g, p) {
  5787. /*
  5788. * reset the NMI-timeout, listing all files on a slow
  5789. * console might take alot of time:
  5790. */
  5791. touch_nmi_watchdog();
  5792. if (!state_filter || (p->state & state_filter))
  5793. sched_show_task(p);
  5794. } while_each_thread(g, p);
  5795. touch_all_softlockup_watchdogs();
  5796. #ifdef CONFIG_SCHED_DEBUG
  5797. sysrq_sched_debug_show();
  5798. #endif
  5799. read_unlock(&tasklist_lock);
  5800. /*
  5801. * Only show locks if all tasks are dumped:
  5802. */
  5803. if (state_filter == -1)
  5804. debug_show_all_locks();
  5805. }
  5806. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5807. {
  5808. idle->sched_class = &idle_sched_class;
  5809. }
  5810. /**
  5811. * init_idle - set up an idle thread for a given CPU
  5812. * @idle: task in question
  5813. * @cpu: cpu the idle task belongs to
  5814. *
  5815. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5816. * flag, to make booting more robust.
  5817. */
  5818. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5819. {
  5820. struct rq *rq = cpu_rq(cpu);
  5821. unsigned long flags;
  5822. spin_lock_irqsave(&rq->lock, flags);
  5823. __sched_fork(idle);
  5824. idle->se.exec_start = sched_clock();
  5825. idle->prio = idle->normal_prio = MAX_PRIO;
  5826. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5827. __set_task_cpu(idle, cpu);
  5828. rq->curr = rq->idle = idle;
  5829. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5830. idle->oncpu = 1;
  5831. #endif
  5832. spin_unlock_irqrestore(&rq->lock, flags);
  5833. /* Set the preempt count _outside_ the spinlocks! */
  5834. #if defined(CONFIG_PREEMPT)
  5835. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5836. #else
  5837. task_thread_info(idle)->preempt_count = 0;
  5838. #endif
  5839. /*
  5840. * The idle tasks have their own, simple scheduling class:
  5841. */
  5842. idle->sched_class = &idle_sched_class;
  5843. ftrace_graph_init_task(idle);
  5844. }
  5845. /*
  5846. * In a system that switches off the HZ timer nohz_cpu_mask
  5847. * indicates which cpus entered this state. This is used
  5848. * in the rcu update to wait only for active cpus. For system
  5849. * which do not switch off the HZ timer nohz_cpu_mask should
  5850. * always be CPU_BITS_NONE.
  5851. */
  5852. cpumask_var_t nohz_cpu_mask;
  5853. /*
  5854. * Increase the granularity value when there are more CPUs,
  5855. * because with more CPUs the 'effective latency' as visible
  5856. * to users decreases. But the relationship is not linear,
  5857. * so pick a second-best guess by going with the log2 of the
  5858. * number of CPUs.
  5859. *
  5860. * This idea comes from the SD scheduler of Con Kolivas:
  5861. */
  5862. static inline void sched_init_granularity(void)
  5863. {
  5864. unsigned int factor = 1 + ilog2(num_online_cpus());
  5865. const unsigned long limit = 200000000;
  5866. sysctl_sched_min_granularity *= factor;
  5867. if (sysctl_sched_min_granularity > limit)
  5868. sysctl_sched_min_granularity = limit;
  5869. sysctl_sched_latency *= factor;
  5870. if (sysctl_sched_latency > limit)
  5871. sysctl_sched_latency = limit;
  5872. sysctl_sched_wakeup_granularity *= factor;
  5873. sysctl_sched_shares_ratelimit *= factor;
  5874. }
  5875. #ifdef CONFIG_SMP
  5876. /*
  5877. * This is how migration works:
  5878. *
  5879. * 1) we queue a struct migration_req structure in the source CPU's
  5880. * runqueue and wake up that CPU's migration thread.
  5881. * 2) we down() the locked semaphore => thread blocks.
  5882. * 3) migration thread wakes up (implicitly it forces the migrated
  5883. * thread off the CPU)
  5884. * 4) it gets the migration request and checks whether the migrated
  5885. * task is still in the wrong runqueue.
  5886. * 5) if it's in the wrong runqueue then the migration thread removes
  5887. * it and puts it into the right queue.
  5888. * 6) migration thread up()s the semaphore.
  5889. * 7) we wake up and the migration is done.
  5890. */
  5891. /*
  5892. * Change a given task's CPU affinity. Migrate the thread to a
  5893. * proper CPU and schedule it away if the CPU it's executing on
  5894. * is removed from the allowed bitmask.
  5895. *
  5896. * NOTE: the caller must have a valid reference to the task, the
  5897. * task must not exit() & deallocate itself prematurely. The
  5898. * call is not atomic; no spinlocks may be held.
  5899. */
  5900. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5901. {
  5902. struct migration_req req;
  5903. unsigned long flags;
  5904. struct rq *rq;
  5905. int ret = 0;
  5906. rq = task_rq_lock(p, &flags);
  5907. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5908. ret = -EINVAL;
  5909. goto out;
  5910. }
  5911. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5912. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5913. ret = -EINVAL;
  5914. goto out;
  5915. }
  5916. if (p->sched_class->set_cpus_allowed)
  5917. p->sched_class->set_cpus_allowed(p, new_mask);
  5918. else {
  5919. cpumask_copy(&p->cpus_allowed, new_mask);
  5920. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5921. }
  5922. /* Can the task run on the task's current CPU? If so, we're done */
  5923. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5924. goto out;
  5925. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5926. /* Need help from migration thread: drop lock and wait. */
  5927. task_rq_unlock(rq, &flags);
  5928. wake_up_process(rq->migration_thread);
  5929. wait_for_completion(&req.done);
  5930. tlb_migrate_finish(p->mm);
  5931. return 0;
  5932. }
  5933. out:
  5934. task_rq_unlock(rq, &flags);
  5935. return ret;
  5936. }
  5937. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5938. /*
  5939. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5940. * this because either it can't run here any more (set_cpus_allowed()
  5941. * away from this CPU, or CPU going down), or because we're
  5942. * attempting to rebalance this task on exec (sched_exec).
  5943. *
  5944. * So we race with normal scheduler movements, but that's OK, as long
  5945. * as the task is no longer on this CPU.
  5946. *
  5947. * Returns non-zero if task was successfully migrated.
  5948. */
  5949. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5950. {
  5951. struct rq *rq_dest, *rq_src;
  5952. int ret = 0, on_rq;
  5953. if (unlikely(!cpu_active(dest_cpu)))
  5954. return ret;
  5955. rq_src = cpu_rq(src_cpu);
  5956. rq_dest = cpu_rq(dest_cpu);
  5957. double_rq_lock(rq_src, rq_dest);
  5958. /* Already moved. */
  5959. if (task_cpu(p) != src_cpu)
  5960. goto done;
  5961. /* Affinity changed (again). */
  5962. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  5963. goto fail;
  5964. on_rq = p->se.on_rq;
  5965. if (on_rq)
  5966. deactivate_task(rq_src, p, 0);
  5967. set_task_cpu(p, dest_cpu);
  5968. if (on_rq) {
  5969. activate_task(rq_dest, p, 0);
  5970. check_preempt_curr(rq_dest, p, 0);
  5971. }
  5972. done:
  5973. ret = 1;
  5974. fail:
  5975. double_rq_unlock(rq_src, rq_dest);
  5976. return ret;
  5977. }
  5978. /*
  5979. * migration_thread - this is a highprio system thread that performs
  5980. * thread migration by bumping thread off CPU then 'pushing' onto
  5981. * another runqueue.
  5982. */
  5983. static int migration_thread(void *data)
  5984. {
  5985. int cpu = (long)data;
  5986. struct rq *rq;
  5987. rq = cpu_rq(cpu);
  5988. BUG_ON(rq->migration_thread != current);
  5989. set_current_state(TASK_INTERRUPTIBLE);
  5990. while (!kthread_should_stop()) {
  5991. struct migration_req *req;
  5992. struct list_head *head;
  5993. spin_lock_irq(&rq->lock);
  5994. if (cpu_is_offline(cpu)) {
  5995. spin_unlock_irq(&rq->lock);
  5996. goto wait_to_die;
  5997. }
  5998. if (rq->active_balance) {
  5999. active_load_balance(rq, cpu);
  6000. rq->active_balance = 0;
  6001. }
  6002. head = &rq->migration_queue;
  6003. if (list_empty(head)) {
  6004. spin_unlock_irq(&rq->lock);
  6005. schedule();
  6006. set_current_state(TASK_INTERRUPTIBLE);
  6007. continue;
  6008. }
  6009. req = list_entry(head->next, struct migration_req, list);
  6010. list_del_init(head->next);
  6011. spin_unlock(&rq->lock);
  6012. __migrate_task(req->task, cpu, req->dest_cpu);
  6013. local_irq_enable();
  6014. complete(&req->done);
  6015. }
  6016. __set_current_state(TASK_RUNNING);
  6017. return 0;
  6018. wait_to_die:
  6019. /* Wait for kthread_stop */
  6020. set_current_state(TASK_INTERRUPTIBLE);
  6021. while (!kthread_should_stop()) {
  6022. schedule();
  6023. set_current_state(TASK_INTERRUPTIBLE);
  6024. }
  6025. __set_current_state(TASK_RUNNING);
  6026. return 0;
  6027. }
  6028. #ifdef CONFIG_HOTPLUG_CPU
  6029. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6030. {
  6031. int ret;
  6032. local_irq_disable();
  6033. ret = __migrate_task(p, src_cpu, dest_cpu);
  6034. local_irq_enable();
  6035. return ret;
  6036. }
  6037. /*
  6038. * Figure out where task on dead CPU should go, use force if necessary.
  6039. */
  6040. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6041. {
  6042. int dest_cpu;
  6043. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6044. again:
  6045. /* Look for allowed, online CPU in same node. */
  6046. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6047. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6048. goto move;
  6049. /* Any allowed, online CPU? */
  6050. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6051. if (dest_cpu < nr_cpu_ids)
  6052. goto move;
  6053. /* No more Mr. Nice Guy. */
  6054. if (dest_cpu >= nr_cpu_ids) {
  6055. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6056. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6057. /*
  6058. * Don't tell them about moving exiting tasks or
  6059. * kernel threads (both mm NULL), since they never
  6060. * leave kernel.
  6061. */
  6062. if (p->mm && printk_ratelimit()) {
  6063. printk(KERN_INFO "process %d (%s) no "
  6064. "longer affine to cpu%d\n",
  6065. task_pid_nr(p), p->comm, dead_cpu);
  6066. }
  6067. }
  6068. move:
  6069. /* It can have affinity changed while we were choosing. */
  6070. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6071. goto again;
  6072. }
  6073. /*
  6074. * While a dead CPU has no uninterruptible tasks queued at this point,
  6075. * it might still have a nonzero ->nr_uninterruptible counter, because
  6076. * for performance reasons the counter is not stricly tracking tasks to
  6077. * their home CPUs. So we just add the counter to another CPU's counter,
  6078. * to keep the global sum constant after CPU-down:
  6079. */
  6080. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6081. {
  6082. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6083. unsigned long flags;
  6084. local_irq_save(flags);
  6085. double_rq_lock(rq_src, rq_dest);
  6086. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6087. rq_src->nr_uninterruptible = 0;
  6088. double_rq_unlock(rq_src, rq_dest);
  6089. local_irq_restore(flags);
  6090. }
  6091. /* Run through task list and migrate tasks from the dead cpu. */
  6092. static void migrate_live_tasks(int src_cpu)
  6093. {
  6094. struct task_struct *p, *t;
  6095. read_lock(&tasklist_lock);
  6096. do_each_thread(t, p) {
  6097. if (p == current)
  6098. continue;
  6099. if (task_cpu(p) == src_cpu)
  6100. move_task_off_dead_cpu(src_cpu, p);
  6101. } while_each_thread(t, p);
  6102. read_unlock(&tasklist_lock);
  6103. }
  6104. /*
  6105. * Schedules idle task to be the next runnable task on current CPU.
  6106. * It does so by boosting its priority to highest possible.
  6107. * Used by CPU offline code.
  6108. */
  6109. void sched_idle_next(void)
  6110. {
  6111. int this_cpu = smp_processor_id();
  6112. struct rq *rq = cpu_rq(this_cpu);
  6113. struct task_struct *p = rq->idle;
  6114. unsigned long flags;
  6115. /* cpu has to be offline */
  6116. BUG_ON(cpu_online(this_cpu));
  6117. /*
  6118. * Strictly not necessary since rest of the CPUs are stopped by now
  6119. * and interrupts disabled on the current cpu.
  6120. */
  6121. spin_lock_irqsave(&rq->lock, flags);
  6122. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6123. update_rq_clock(rq);
  6124. activate_task(rq, p, 0);
  6125. spin_unlock_irqrestore(&rq->lock, flags);
  6126. }
  6127. /*
  6128. * Ensures that the idle task is using init_mm right before its cpu goes
  6129. * offline.
  6130. */
  6131. void idle_task_exit(void)
  6132. {
  6133. struct mm_struct *mm = current->active_mm;
  6134. BUG_ON(cpu_online(smp_processor_id()));
  6135. if (mm != &init_mm)
  6136. switch_mm(mm, &init_mm, current);
  6137. mmdrop(mm);
  6138. }
  6139. /* called under rq->lock with disabled interrupts */
  6140. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6141. {
  6142. struct rq *rq = cpu_rq(dead_cpu);
  6143. /* Must be exiting, otherwise would be on tasklist. */
  6144. BUG_ON(!p->exit_state);
  6145. /* Cannot have done final schedule yet: would have vanished. */
  6146. BUG_ON(p->state == TASK_DEAD);
  6147. get_task_struct(p);
  6148. /*
  6149. * Drop lock around migration; if someone else moves it,
  6150. * that's OK. No task can be added to this CPU, so iteration is
  6151. * fine.
  6152. */
  6153. spin_unlock_irq(&rq->lock);
  6154. move_task_off_dead_cpu(dead_cpu, p);
  6155. spin_lock_irq(&rq->lock);
  6156. put_task_struct(p);
  6157. }
  6158. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6159. static void migrate_dead_tasks(unsigned int dead_cpu)
  6160. {
  6161. struct rq *rq = cpu_rq(dead_cpu);
  6162. struct task_struct *next;
  6163. for ( ; ; ) {
  6164. if (!rq->nr_running)
  6165. break;
  6166. update_rq_clock(rq);
  6167. next = pick_next_task(rq);
  6168. if (!next)
  6169. break;
  6170. next->sched_class->put_prev_task(rq, next);
  6171. migrate_dead(dead_cpu, next);
  6172. }
  6173. }
  6174. /*
  6175. * remove the tasks which were accounted by rq from calc_load_tasks.
  6176. */
  6177. static void calc_global_load_remove(struct rq *rq)
  6178. {
  6179. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6180. }
  6181. #endif /* CONFIG_HOTPLUG_CPU */
  6182. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6183. static struct ctl_table sd_ctl_dir[] = {
  6184. {
  6185. .procname = "sched_domain",
  6186. .mode = 0555,
  6187. },
  6188. {0, },
  6189. };
  6190. static struct ctl_table sd_ctl_root[] = {
  6191. {
  6192. .ctl_name = CTL_KERN,
  6193. .procname = "kernel",
  6194. .mode = 0555,
  6195. .child = sd_ctl_dir,
  6196. },
  6197. {0, },
  6198. };
  6199. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6200. {
  6201. struct ctl_table *entry =
  6202. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6203. return entry;
  6204. }
  6205. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6206. {
  6207. struct ctl_table *entry;
  6208. /*
  6209. * In the intermediate directories, both the child directory and
  6210. * procname are dynamically allocated and could fail but the mode
  6211. * will always be set. In the lowest directory the names are
  6212. * static strings and all have proc handlers.
  6213. */
  6214. for (entry = *tablep; entry->mode; entry++) {
  6215. if (entry->child)
  6216. sd_free_ctl_entry(&entry->child);
  6217. if (entry->proc_handler == NULL)
  6218. kfree(entry->procname);
  6219. }
  6220. kfree(*tablep);
  6221. *tablep = NULL;
  6222. }
  6223. static void
  6224. set_table_entry(struct ctl_table *entry,
  6225. const char *procname, void *data, int maxlen,
  6226. mode_t mode, proc_handler *proc_handler)
  6227. {
  6228. entry->procname = procname;
  6229. entry->data = data;
  6230. entry->maxlen = maxlen;
  6231. entry->mode = mode;
  6232. entry->proc_handler = proc_handler;
  6233. }
  6234. static struct ctl_table *
  6235. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6236. {
  6237. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6238. if (table == NULL)
  6239. return NULL;
  6240. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6241. sizeof(long), 0644, proc_doulongvec_minmax);
  6242. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6243. sizeof(long), 0644, proc_doulongvec_minmax);
  6244. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6245. sizeof(int), 0644, proc_dointvec_minmax);
  6246. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6247. sizeof(int), 0644, proc_dointvec_minmax);
  6248. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6249. sizeof(int), 0644, proc_dointvec_minmax);
  6250. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6251. sizeof(int), 0644, proc_dointvec_minmax);
  6252. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6253. sizeof(int), 0644, proc_dointvec_minmax);
  6254. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6255. sizeof(int), 0644, proc_dointvec_minmax);
  6256. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6257. sizeof(int), 0644, proc_dointvec_minmax);
  6258. set_table_entry(&table[9], "cache_nice_tries",
  6259. &sd->cache_nice_tries,
  6260. sizeof(int), 0644, proc_dointvec_minmax);
  6261. set_table_entry(&table[10], "flags", &sd->flags,
  6262. sizeof(int), 0644, proc_dointvec_minmax);
  6263. set_table_entry(&table[11], "name", sd->name,
  6264. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6265. /* &table[12] is terminator */
  6266. return table;
  6267. }
  6268. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6269. {
  6270. struct ctl_table *entry, *table;
  6271. struct sched_domain *sd;
  6272. int domain_num = 0, i;
  6273. char buf[32];
  6274. for_each_domain(cpu, sd)
  6275. domain_num++;
  6276. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6277. if (table == NULL)
  6278. return NULL;
  6279. i = 0;
  6280. for_each_domain(cpu, sd) {
  6281. snprintf(buf, 32, "domain%d", i);
  6282. entry->procname = kstrdup(buf, GFP_KERNEL);
  6283. entry->mode = 0555;
  6284. entry->child = sd_alloc_ctl_domain_table(sd);
  6285. entry++;
  6286. i++;
  6287. }
  6288. return table;
  6289. }
  6290. static struct ctl_table_header *sd_sysctl_header;
  6291. static void register_sched_domain_sysctl(void)
  6292. {
  6293. int i, cpu_num = num_online_cpus();
  6294. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6295. char buf[32];
  6296. WARN_ON(sd_ctl_dir[0].child);
  6297. sd_ctl_dir[0].child = entry;
  6298. if (entry == NULL)
  6299. return;
  6300. for_each_online_cpu(i) {
  6301. snprintf(buf, 32, "cpu%d", i);
  6302. entry->procname = kstrdup(buf, GFP_KERNEL);
  6303. entry->mode = 0555;
  6304. entry->child = sd_alloc_ctl_cpu_table(i);
  6305. entry++;
  6306. }
  6307. WARN_ON(sd_sysctl_header);
  6308. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6309. }
  6310. /* may be called multiple times per register */
  6311. static void unregister_sched_domain_sysctl(void)
  6312. {
  6313. if (sd_sysctl_header)
  6314. unregister_sysctl_table(sd_sysctl_header);
  6315. sd_sysctl_header = NULL;
  6316. if (sd_ctl_dir[0].child)
  6317. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6318. }
  6319. #else
  6320. static void register_sched_domain_sysctl(void)
  6321. {
  6322. }
  6323. static void unregister_sched_domain_sysctl(void)
  6324. {
  6325. }
  6326. #endif
  6327. static void set_rq_online(struct rq *rq)
  6328. {
  6329. if (!rq->online) {
  6330. const struct sched_class *class;
  6331. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6332. rq->online = 1;
  6333. for_each_class(class) {
  6334. if (class->rq_online)
  6335. class->rq_online(rq);
  6336. }
  6337. }
  6338. }
  6339. static void set_rq_offline(struct rq *rq)
  6340. {
  6341. if (rq->online) {
  6342. const struct sched_class *class;
  6343. for_each_class(class) {
  6344. if (class->rq_offline)
  6345. class->rq_offline(rq);
  6346. }
  6347. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6348. rq->online = 0;
  6349. }
  6350. }
  6351. /*
  6352. * migration_call - callback that gets triggered when a CPU is added.
  6353. * Here we can start up the necessary migration thread for the new CPU.
  6354. */
  6355. static int __cpuinit
  6356. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6357. {
  6358. struct task_struct *p;
  6359. int cpu = (long)hcpu;
  6360. unsigned long flags;
  6361. struct rq *rq;
  6362. switch (action) {
  6363. case CPU_UP_PREPARE:
  6364. case CPU_UP_PREPARE_FROZEN:
  6365. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6366. if (IS_ERR(p))
  6367. return NOTIFY_BAD;
  6368. kthread_bind(p, cpu);
  6369. /* Must be high prio: stop_machine expects to yield to it. */
  6370. rq = task_rq_lock(p, &flags);
  6371. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6372. task_rq_unlock(rq, &flags);
  6373. cpu_rq(cpu)->migration_thread = p;
  6374. break;
  6375. case CPU_ONLINE:
  6376. case CPU_ONLINE_FROZEN:
  6377. /* Strictly unnecessary, as first user will wake it. */
  6378. wake_up_process(cpu_rq(cpu)->migration_thread);
  6379. /* Update our root-domain */
  6380. rq = cpu_rq(cpu);
  6381. spin_lock_irqsave(&rq->lock, flags);
  6382. rq->calc_load_update = calc_load_update;
  6383. rq->calc_load_active = 0;
  6384. if (rq->rd) {
  6385. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6386. set_rq_online(rq);
  6387. }
  6388. spin_unlock_irqrestore(&rq->lock, flags);
  6389. break;
  6390. #ifdef CONFIG_HOTPLUG_CPU
  6391. case CPU_UP_CANCELED:
  6392. case CPU_UP_CANCELED_FROZEN:
  6393. if (!cpu_rq(cpu)->migration_thread)
  6394. break;
  6395. /* Unbind it from offline cpu so it can run. Fall thru. */
  6396. kthread_bind(cpu_rq(cpu)->migration_thread,
  6397. cpumask_any(cpu_online_mask));
  6398. kthread_stop(cpu_rq(cpu)->migration_thread);
  6399. cpu_rq(cpu)->migration_thread = NULL;
  6400. break;
  6401. case CPU_DEAD:
  6402. case CPU_DEAD_FROZEN:
  6403. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6404. migrate_live_tasks(cpu);
  6405. rq = cpu_rq(cpu);
  6406. kthread_stop(rq->migration_thread);
  6407. rq->migration_thread = NULL;
  6408. /* Idle task back to normal (off runqueue, low prio) */
  6409. spin_lock_irq(&rq->lock);
  6410. update_rq_clock(rq);
  6411. deactivate_task(rq, rq->idle, 0);
  6412. rq->idle->static_prio = MAX_PRIO;
  6413. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6414. rq->idle->sched_class = &idle_sched_class;
  6415. migrate_dead_tasks(cpu);
  6416. spin_unlock_irq(&rq->lock);
  6417. cpuset_unlock();
  6418. migrate_nr_uninterruptible(rq);
  6419. BUG_ON(rq->nr_running != 0);
  6420. calc_global_load_remove(rq);
  6421. /*
  6422. * No need to migrate the tasks: it was best-effort if
  6423. * they didn't take sched_hotcpu_mutex. Just wake up
  6424. * the requestors.
  6425. */
  6426. spin_lock_irq(&rq->lock);
  6427. while (!list_empty(&rq->migration_queue)) {
  6428. struct migration_req *req;
  6429. req = list_entry(rq->migration_queue.next,
  6430. struct migration_req, list);
  6431. list_del_init(&req->list);
  6432. spin_unlock_irq(&rq->lock);
  6433. complete(&req->done);
  6434. spin_lock_irq(&rq->lock);
  6435. }
  6436. spin_unlock_irq(&rq->lock);
  6437. break;
  6438. case CPU_DYING:
  6439. case CPU_DYING_FROZEN:
  6440. /* Update our root-domain */
  6441. rq = cpu_rq(cpu);
  6442. spin_lock_irqsave(&rq->lock, flags);
  6443. if (rq->rd) {
  6444. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6445. set_rq_offline(rq);
  6446. }
  6447. spin_unlock_irqrestore(&rq->lock, flags);
  6448. break;
  6449. #endif
  6450. }
  6451. return NOTIFY_OK;
  6452. }
  6453. /* Register at highest priority so that task migration (migrate_all_tasks)
  6454. * happens before everything else.
  6455. */
  6456. static struct notifier_block __cpuinitdata migration_notifier = {
  6457. .notifier_call = migration_call,
  6458. .priority = 10
  6459. };
  6460. static int __init migration_init(void)
  6461. {
  6462. void *cpu = (void *)(long)smp_processor_id();
  6463. int err;
  6464. /* Start one for the boot CPU: */
  6465. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6466. BUG_ON(err == NOTIFY_BAD);
  6467. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6468. register_cpu_notifier(&migration_notifier);
  6469. return err;
  6470. }
  6471. early_initcall(migration_init);
  6472. #endif
  6473. #ifdef CONFIG_SMP
  6474. #ifdef CONFIG_SCHED_DEBUG
  6475. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6476. struct cpumask *groupmask)
  6477. {
  6478. struct sched_group *group = sd->groups;
  6479. char str[256];
  6480. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6481. cpumask_clear(groupmask);
  6482. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6483. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6484. printk("does not load-balance\n");
  6485. if (sd->parent)
  6486. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6487. " has parent");
  6488. return -1;
  6489. }
  6490. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6491. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6492. printk(KERN_ERR "ERROR: domain->span does not contain "
  6493. "CPU%d\n", cpu);
  6494. }
  6495. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6496. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6497. " CPU%d\n", cpu);
  6498. }
  6499. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6500. do {
  6501. if (!group) {
  6502. printk("\n");
  6503. printk(KERN_ERR "ERROR: group is NULL\n");
  6504. break;
  6505. }
  6506. if (!group->__cpu_power) {
  6507. printk(KERN_CONT "\n");
  6508. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6509. "set\n");
  6510. break;
  6511. }
  6512. if (!cpumask_weight(sched_group_cpus(group))) {
  6513. printk(KERN_CONT "\n");
  6514. printk(KERN_ERR "ERROR: empty group\n");
  6515. break;
  6516. }
  6517. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6518. printk(KERN_CONT "\n");
  6519. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6520. break;
  6521. }
  6522. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6523. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6524. printk(KERN_CONT " %s", str);
  6525. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6526. printk(KERN_CONT " (__cpu_power = %d)",
  6527. group->__cpu_power);
  6528. }
  6529. group = group->next;
  6530. } while (group != sd->groups);
  6531. printk(KERN_CONT "\n");
  6532. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6533. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6534. if (sd->parent &&
  6535. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6536. printk(KERN_ERR "ERROR: parent span is not a superset "
  6537. "of domain->span\n");
  6538. return 0;
  6539. }
  6540. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6541. {
  6542. cpumask_var_t groupmask;
  6543. int level = 0;
  6544. if (!sd) {
  6545. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6546. return;
  6547. }
  6548. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6549. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6550. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6551. return;
  6552. }
  6553. for (;;) {
  6554. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6555. break;
  6556. level++;
  6557. sd = sd->parent;
  6558. if (!sd)
  6559. break;
  6560. }
  6561. free_cpumask_var(groupmask);
  6562. }
  6563. #else /* !CONFIG_SCHED_DEBUG */
  6564. # define sched_domain_debug(sd, cpu) do { } while (0)
  6565. #endif /* CONFIG_SCHED_DEBUG */
  6566. static int sd_degenerate(struct sched_domain *sd)
  6567. {
  6568. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6569. return 1;
  6570. /* Following flags need at least 2 groups */
  6571. if (sd->flags & (SD_LOAD_BALANCE |
  6572. SD_BALANCE_NEWIDLE |
  6573. SD_BALANCE_FORK |
  6574. SD_BALANCE_EXEC |
  6575. SD_SHARE_CPUPOWER |
  6576. SD_SHARE_PKG_RESOURCES)) {
  6577. if (sd->groups != sd->groups->next)
  6578. return 0;
  6579. }
  6580. /* Following flags don't use groups */
  6581. if (sd->flags & (SD_WAKE_IDLE |
  6582. SD_WAKE_AFFINE |
  6583. SD_WAKE_BALANCE))
  6584. return 0;
  6585. return 1;
  6586. }
  6587. static int
  6588. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6589. {
  6590. unsigned long cflags = sd->flags, pflags = parent->flags;
  6591. if (sd_degenerate(parent))
  6592. return 1;
  6593. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6594. return 0;
  6595. /* Does parent contain flags not in child? */
  6596. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6597. if (cflags & SD_WAKE_AFFINE)
  6598. pflags &= ~SD_WAKE_BALANCE;
  6599. /* Flags needing groups don't count if only 1 group in parent */
  6600. if (parent->groups == parent->groups->next) {
  6601. pflags &= ~(SD_LOAD_BALANCE |
  6602. SD_BALANCE_NEWIDLE |
  6603. SD_BALANCE_FORK |
  6604. SD_BALANCE_EXEC |
  6605. SD_SHARE_CPUPOWER |
  6606. SD_SHARE_PKG_RESOURCES);
  6607. if (nr_node_ids == 1)
  6608. pflags &= ~SD_SERIALIZE;
  6609. }
  6610. if (~cflags & pflags)
  6611. return 0;
  6612. return 1;
  6613. }
  6614. static void free_rootdomain(struct root_domain *rd)
  6615. {
  6616. cpupri_cleanup(&rd->cpupri);
  6617. free_cpumask_var(rd->rto_mask);
  6618. free_cpumask_var(rd->online);
  6619. free_cpumask_var(rd->span);
  6620. kfree(rd);
  6621. }
  6622. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6623. {
  6624. struct root_domain *old_rd = NULL;
  6625. unsigned long flags;
  6626. spin_lock_irqsave(&rq->lock, flags);
  6627. if (rq->rd) {
  6628. old_rd = rq->rd;
  6629. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6630. set_rq_offline(rq);
  6631. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6632. /*
  6633. * If we dont want to free the old_rt yet then
  6634. * set old_rd to NULL to skip the freeing later
  6635. * in this function:
  6636. */
  6637. if (!atomic_dec_and_test(&old_rd->refcount))
  6638. old_rd = NULL;
  6639. }
  6640. atomic_inc(&rd->refcount);
  6641. rq->rd = rd;
  6642. cpumask_set_cpu(rq->cpu, rd->span);
  6643. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6644. set_rq_online(rq);
  6645. spin_unlock_irqrestore(&rq->lock, flags);
  6646. if (old_rd)
  6647. free_rootdomain(old_rd);
  6648. }
  6649. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6650. {
  6651. gfp_t gfp = GFP_KERNEL;
  6652. memset(rd, 0, sizeof(*rd));
  6653. if (bootmem)
  6654. gfp = GFP_NOWAIT;
  6655. if (!alloc_cpumask_var(&rd->span, gfp))
  6656. goto out;
  6657. if (!alloc_cpumask_var(&rd->online, gfp))
  6658. goto free_span;
  6659. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6660. goto free_online;
  6661. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6662. goto free_rto_mask;
  6663. return 0;
  6664. free_rto_mask:
  6665. free_cpumask_var(rd->rto_mask);
  6666. free_online:
  6667. free_cpumask_var(rd->online);
  6668. free_span:
  6669. free_cpumask_var(rd->span);
  6670. out:
  6671. return -ENOMEM;
  6672. }
  6673. static void init_defrootdomain(void)
  6674. {
  6675. init_rootdomain(&def_root_domain, true);
  6676. atomic_set(&def_root_domain.refcount, 1);
  6677. }
  6678. static struct root_domain *alloc_rootdomain(void)
  6679. {
  6680. struct root_domain *rd;
  6681. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6682. if (!rd)
  6683. return NULL;
  6684. if (init_rootdomain(rd, false) != 0) {
  6685. kfree(rd);
  6686. return NULL;
  6687. }
  6688. return rd;
  6689. }
  6690. /*
  6691. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6692. * hold the hotplug lock.
  6693. */
  6694. static void
  6695. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6696. {
  6697. struct rq *rq = cpu_rq(cpu);
  6698. struct sched_domain *tmp;
  6699. /* Remove the sched domains which do not contribute to scheduling. */
  6700. for (tmp = sd; tmp; ) {
  6701. struct sched_domain *parent = tmp->parent;
  6702. if (!parent)
  6703. break;
  6704. if (sd_parent_degenerate(tmp, parent)) {
  6705. tmp->parent = parent->parent;
  6706. if (parent->parent)
  6707. parent->parent->child = tmp;
  6708. } else
  6709. tmp = tmp->parent;
  6710. }
  6711. if (sd && sd_degenerate(sd)) {
  6712. sd = sd->parent;
  6713. if (sd)
  6714. sd->child = NULL;
  6715. }
  6716. sched_domain_debug(sd, cpu);
  6717. rq_attach_root(rq, rd);
  6718. rcu_assign_pointer(rq->sd, sd);
  6719. }
  6720. /* cpus with isolated domains */
  6721. static cpumask_var_t cpu_isolated_map;
  6722. /* Setup the mask of cpus configured for isolated domains */
  6723. static int __init isolated_cpu_setup(char *str)
  6724. {
  6725. cpulist_parse(str, cpu_isolated_map);
  6726. return 1;
  6727. }
  6728. __setup("isolcpus=", isolated_cpu_setup);
  6729. /*
  6730. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6731. * to a function which identifies what group(along with sched group) a CPU
  6732. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6733. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6734. *
  6735. * init_sched_build_groups will build a circular linked list of the groups
  6736. * covered by the given span, and will set each group's ->cpumask correctly,
  6737. * and ->cpu_power to 0.
  6738. */
  6739. static void
  6740. init_sched_build_groups(const struct cpumask *span,
  6741. const struct cpumask *cpu_map,
  6742. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6743. struct sched_group **sg,
  6744. struct cpumask *tmpmask),
  6745. struct cpumask *covered, struct cpumask *tmpmask)
  6746. {
  6747. struct sched_group *first = NULL, *last = NULL;
  6748. int i;
  6749. cpumask_clear(covered);
  6750. for_each_cpu(i, span) {
  6751. struct sched_group *sg;
  6752. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6753. int j;
  6754. if (cpumask_test_cpu(i, covered))
  6755. continue;
  6756. cpumask_clear(sched_group_cpus(sg));
  6757. sg->__cpu_power = 0;
  6758. for_each_cpu(j, span) {
  6759. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6760. continue;
  6761. cpumask_set_cpu(j, covered);
  6762. cpumask_set_cpu(j, sched_group_cpus(sg));
  6763. }
  6764. if (!first)
  6765. first = sg;
  6766. if (last)
  6767. last->next = sg;
  6768. last = sg;
  6769. }
  6770. last->next = first;
  6771. }
  6772. #define SD_NODES_PER_DOMAIN 16
  6773. #ifdef CONFIG_NUMA
  6774. /**
  6775. * find_next_best_node - find the next node to include in a sched_domain
  6776. * @node: node whose sched_domain we're building
  6777. * @used_nodes: nodes already in the sched_domain
  6778. *
  6779. * Find the next node to include in a given scheduling domain. Simply
  6780. * finds the closest node not already in the @used_nodes map.
  6781. *
  6782. * Should use nodemask_t.
  6783. */
  6784. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6785. {
  6786. int i, n, val, min_val, best_node = 0;
  6787. min_val = INT_MAX;
  6788. for (i = 0; i < nr_node_ids; i++) {
  6789. /* Start at @node */
  6790. n = (node + i) % nr_node_ids;
  6791. if (!nr_cpus_node(n))
  6792. continue;
  6793. /* Skip already used nodes */
  6794. if (node_isset(n, *used_nodes))
  6795. continue;
  6796. /* Simple min distance search */
  6797. val = node_distance(node, n);
  6798. if (val < min_val) {
  6799. min_val = val;
  6800. best_node = n;
  6801. }
  6802. }
  6803. node_set(best_node, *used_nodes);
  6804. return best_node;
  6805. }
  6806. /**
  6807. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6808. * @node: node whose cpumask we're constructing
  6809. * @span: resulting cpumask
  6810. *
  6811. * Given a node, construct a good cpumask for its sched_domain to span. It
  6812. * should be one that prevents unnecessary balancing, but also spreads tasks
  6813. * out optimally.
  6814. */
  6815. static void sched_domain_node_span(int node, struct cpumask *span)
  6816. {
  6817. nodemask_t used_nodes;
  6818. int i;
  6819. cpumask_clear(span);
  6820. nodes_clear(used_nodes);
  6821. cpumask_or(span, span, cpumask_of_node(node));
  6822. node_set(node, used_nodes);
  6823. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6824. int next_node = find_next_best_node(node, &used_nodes);
  6825. cpumask_or(span, span, cpumask_of_node(next_node));
  6826. }
  6827. }
  6828. #endif /* CONFIG_NUMA */
  6829. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6830. /*
  6831. * The cpus mask in sched_group and sched_domain hangs off the end.
  6832. *
  6833. * ( See the the comments in include/linux/sched.h:struct sched_group
  6834. * and struct sched_domain. )
  6835. */
  6836. struct static_sched_group {
  6837. struct sched_group sg;
  6838. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6839. };
  6840. struct static_sched_domain {
  6841. struct sched_domain sd;
  6842. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6843. };
  6844. /*
  6845. * SMT sched-domains:
  6846. */
  6847. #ifdef CONFIG_SCHED_SMT
  6848. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6849. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6850. static int
  6851. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6852. struct sched_group **sg, struct cpumask *unused)
  6853. {
  6854. if (sg)
  6855. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6856. return cpu;
  6857. }
  6858. #endif /* CONFIG_SCHED_SMT */
  6859. /*
  6860. * multi-core sched-domains:
  6861. */
  6862. #ifdef CONFIG_SCHED_MC
  6863. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6864. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6865. #endif /* CONFIG_SCHED_MC */
  6866. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6867. static int
  6868. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6869. struct sched_group **sg, struct cpumask *mask)
  6870. {
  6871. int group;
  6872. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6873. group = cpumask_first(mask);
  6874. if (sg)
  6875. *sg = &per_cpu(sched_group_core, group).sg;
  6876. return group;
  6877. }
  6878. #elif defined(CONFIG_SCHED_MC)
  6879. static int
  6880. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6881. struct sched_group **sg, struct cpumask *unused)
  6882. {
  6883. if (sg)
  6884. *sg = &per_cpu(sched_group_core, cpu).sg;
  6885. return cpu;
  6886. }
  6887. #endif
  6888. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6889. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6890. static int
  6891. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6892. struct sched_group **sg, struct cpumask *mask)
  6893. {
  6894. int group;
  6895. #ifdef CONFIG_SCHED_MC
  6896. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6897. group = cpumask_first(mask);
  6898. #elif defined(CONFIG_SCHED_SMT)
  6899. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6900. group = cpumask_first(mask);
  6901. #else
  6902. group = cpu;
  6903. #endif
  6904. if (sg)
  6905. *sg = &per_cpu(sched_group_phys, group).sg;
  6906. return group;
  6907. }
  6908. #ifdef CONFIG_NUMA
  6909. /*
  6910. * The init_sched_build_groups can't handle what we want to do with node
  6911. * groups, so roll our own. Now each node has its own list of groups which
  6912. * gets dynamically allocated.
  6913. */
  6914. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6915. static struct sched_group ***sched_group_nodes_bycpu;
  6916. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6917. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6918. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6919. struct sched_group **sg,
  6920. struct cpumask *nodemask)
  6921. {
  6922. int group;
  6923. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6924. group = cpumask_first(nodemask);
  6925. if (sg)
  6926. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6927. return group;
  6928. }
  6929. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6930. {
  6931. struct sched_group *sg = group_head;
  6932. int j;
  6933. if (!sg)
  6934. return;
  6935. do {
  6936. for_each_cpu(j, sched_group_cpus(sg)) {
  6937. struct sched_domain *sd;
  6938. sd = &per_cpu(phys_domains, j).sd;
  6939. if (j != group_first_cpu(sd->groups)) {
  6940. /*
  6941. * Only add "power" once for each
  6942. * physical package.
  6943. */
  6944. continue;
  6945. }
  6946. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6947. }
  6948. sg = sg->next;
  6949. } while (sg != group_head);
  6950. }
  6951. #endif /* CONFIG_NUMA */
  6952. #ifdef CONFIG_NUMA
  6953. /* Free memory allocated for various sched_group structures */
  6954. static void free_sched_groups(const struct cpumask *cpu_map,
  6955. struct cpumask *nodemask)
  6956. {
  6957. int cpu, i;
  6958. for_each_cpu(cpu, cpu_map) {
  6959. struct sched_group **sched_group_nodes
  6960. = sched_group_nodes_bycpu[cpu];
  6961. if (!sched_group_nodes)
  6962. continue;
  6963. for (i = 0; i < nr_node_ids; i++) {
  6964. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6965. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  6966. if (cpumask_empty(nodemask))
  6967. continue;
  6968. if (sg == NULL)
  6969. continue;
  6970. sg = sg->next;
  6971. next_sg:
  6972. oldsg = sg;
  6973. sg = sg->next;
  6974. kfree(oldsg);
  6975. if (oldsg != sched_group_nodes[i])
  6976. goto next_sg;
  6977. }
  6978. kfree(sched_group_nodes);
  6979. sched_group_nodes_bycpu[cpu] = NULL;
  6980. }
  6981. }
  6982. #else /* !CONFIG_NUMA */
  6983. static void free_sched_groups(const struct cpumask *cpu_map,
  6984. struct cpumask *nodemask)
  6985. {
  6986. }
  6987. #endif /* CONFIG_NUMA */
  6988. /*
  6989. * Initialize sched groups cpu_power.
  6990. *
  6991. * cpu_power indicates the capacity of sched group, which is used while
  6992. * distributing the load between different sched groups in a sched domain.
  6993. * Typically cpu_power for all the groups in a sched domain will be same unless
  6994. * there are asymmetries in the topology. If there are asymmetries, group
  6995. * having more cpu_power will pickup more load compared to the group having
  6996. * less cpu_power.
  6997. *
  6998. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6999. * the maximum number of tasks a group can handle in the presence of other idle
  7000. * or lightly loaded groups in the same sched domain.
  7001. */
  7002. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7003. {
  7004. struct sched_domain *child;
  7005. struct sched_group *group;
  7006. WARN_ON(!sd || !sd->groups);
  7007. if (cpu != group_first_cpu(sd->groups))
  7008. return;
  7009. child = sd->child;
  7010. sd->groups->__cpu_power = 0;
  7011. /*
  7012. * For perf policy, if the groups in child domain share resources
  7013. * (for example cores sharing some portions of the cache hierarchy
  7014. * or SMT), then set this domain groups cpu_power such that each group
  7015. * can handle only one task, when there are other idle groups in the
  7016. * same sched domain.
  7017. */
  7018. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7019. (child->flags &
  7020. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7021. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7022. return;
  7023. }
  7024. /*
  7025. * add cpu_power of each child group to this groups cpu_power
  7026. */
  7027. group = child->groups;
  7028. do {
  7029. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7030. group = group->next;
  7031. } while (group != child->groups);
  7032. }
  7033. /*
  7034. * Initializers for schedule domains
  7035. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7036. */
  7037. #ifdef CONFIG_SCHED_DEBUG
  7038. # define SD_INIT_NAME(sd, type) sd->name = #type
  7039. #else
  7040. # define SD_INIT_NAME(sd, type) do { } while (0)
  7041. #endif
  7042. #define SD_INIT(sd, type) sd_init_##type(sd)
  7043. #define SD_INIT_FUNC(type) \
  7044. static noinline void sd_init_##type(struct sched_domain *sd) \
  7045. { \
  7046. memset(sd, 0, sizeof(*sd)); \
  7047. *sd = SD_##type##_INIT; \
  7048. sd->level = SD_LV_##type; \
  7049. SD_INIT_NAME(sd, type); \
  7050. }
  7051. SD_INIT_FUNC(CPU)
  7052. #ifdef CONFIG_NUMA
  7053. SD_INIT_FUNC(ALLNODES)
  7054. SD_INIT_FUNC(NODE)
  7055. #endif
  7056. #ifdef CONFIG_SCHED_SMT
  7057. SD_INIT_FUNC(SIBLING)
  7058. #endif
  7059. #ifdef CONFIG_SCHED_MC
  7060. SD_INIT_FUNC(MC)
  7061. #endif
  7062. static int default_relax_domain_level = -1;
  7063. static int __init setup_relax_domain_level(char *str)
  7064. {
  7065. unsigned long val;
  7066. val = simple_strtoul(str, NULL, 0);
  7067. if (val < SD_LV_MAX)
  7068. default_relax_domain_level = val;
  7069. return 1;
  7070. }
  7071. __setup("relax_domain_level=", setup_relax_domain_level);
  7072. static void set_domain_attribute(struct sched_domain *sd,
  7073. struct sched_domain_attr *attr)
  7074. {
  7075. int request;
  7076. if (!attr || attr->relax_domain_level < 0) {
  7077. if (default_relax_domain_level < 0)
  7078. return;
  7079. else
  7080. request = default_relax_domain_level;
  7081. } else
  7082. request = attr->relax_domain_level;
  7083. if (request < sd->level) {
  7084. /* turn off idle balance on this domain */
  7085. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7086. } else {
  7087. /* turn on idle balance on this domain */
  7088. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7089. }
  7090. }
  7091. /*
  7092. * Build sched domains for a given set of cpus and attach the sched domains
  7093. * to the individual cpus
  7094. */
  7095. static int __build_sched_domains(const struct cpumask *cpu_map,
  7096. struct sched_domain_attr *attr)
  7097. {
  7098. int i, err = -ENOMEM;
  7099. struct root_domain *rd;
  7100. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7101. tmpmask;
  7102. #ifdef CONFIG_NUMA
  7103. cpumask_var_t domainspan, covered, notcovered;
  7104. struct sched_group **sched_group_nodes = NULL;
  7105. int sd_allnodes = 0;
  7106. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7107. goto out;
  7108. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7109. goto free_domainspan;
  7110. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7111. goto free_covered;
  7112. #endif
  7113. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7114. goto free_notcovered;
  7115. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7116. goto free_nodemask;
  7117. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7118. goto free_this_sibling_map;
  7119. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7120. goto free_this_core_map;
  7121. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7122. goto free_send_covered;
  7123. #ifdef CONFIG_NUMA
  7124. /*
  7125. * Allocate the per-node list of sched groups
  7126. */
  7127. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7128. GFP_KERNEL);
  7129. if (!sched_group_nodes) {
  7130. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7131. goto free_tmpmask;
  7132. }
  7133. #endif
  7134. rd = alloc_rootdomain();
  7135. if (!rd) {
  7136. printk(KERN_WARNING "Cannot alloc root domain\n");
  7137. goto free_sched_groups;
  7138. }
  7139. #ifdef CONFIG_NUMA
  7140. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7141. #endif
  7142. /*
  7143. * Set up domains for cpus specified by the cpu_map.
  7144. */
  7145. for_each_cpu(i, cpu_map) {
  7146. struct sched_domain *sd = NULL, *p;
  7147. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7148. #ifdef CONFIG_NUMA
  7149. if (cpumask_weight(cpu_map) >
  7150. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7151. sd = &per_cpu(allnodes_domains, i).sd;
  7152. SD_INIT(sd, ALLNODES);
  7153. set_domain_attribute(sd, attr);
  7154. cpumask_copy(sched_domain_span(sd), cpu_map);
  7155. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7156. p = sd;
  7157. sd_allnodes = 1;
  7158. } else
  7159. p = NULL;
  7160. sd = &per_cpu(node_domains, i).sd;
  7161. SD_INIT(sd, NODE);
  7162. set_domain_attribute(sd, attr);
  7163. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7164. sd->parent = p;
  7165. if (p)
  7166. p->child = sd;
  7167. cpumask_and(sched_domain_span(sd),
  7168. sched_domain_span(sd), cpu_map);
  7169. #endif
  7170. p = sd;
  7171. sd = &per_cpu(phys_domains, i).sd;
  7172. SD_INIT(sd, CPU);
  7173. set_domain_attribute(sd, attr);
  7174. cpumask_copy(sched_domain_span(sd), nodemask);
  7175. sd->parent = p;
  7176. if (p)
  7177. p->child = sd;
  7178. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7179. #ifdef CONFIG_SCHED_MC
  7180. p = sd;
  7181. sd = &per_cpu(core_domains, i).sd;
  7182. SD_INIT(sd, MC);
  7183. set_domain_attribute(sd, attr);
  7184. cpumask_and(sched_domain_span(sd), cpu_map,
  7185. cpu_coregroup_mask(i));
  7186. sd->parent = p;
  7187. p->child = sd;
  7188. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7189. #endif
  7190. #ifdef CONFIG_SCHED_SMT
  7191. p = sd;
  7192. sd = &per_cpu(cpu_domains, i).sd;
  7193. SD_INIT(sd, SIBLING);
  7194. set_domain_attribute(sd, attr);
  7195. cpumask_and(sched_domain_span(sd),
  7196. topology_thread_cpumask(i), cpu_map);
  7197. sd->parent = p;
  7198. p->child = sd;
  7199. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7200. #endif
  7201. }
  7202. #ifdef CONFIG_SCHED_SMT
  7203. /* Set up CPU (sibling) groups */
  7204. for_each_cpu(i, cpu_map) {
  7205. cpumask_and(this_sibling_map,
  7206. topology_thread_cpumask(i), cpu_map);
  7207. if (i != cpumask_first(this_sibling_map))
  7208. continue;
  7209. init_sched_build_groups(this_sibling_map, cpu_map,
  7210. &cpu_to_cpu_group,
  7211. send_covered, tmpmask);
  7212. }
  7213. #endif
  7214. #ifdef CONFIG_SCHED_MC
  7215. /* Set up multi-core groups */
  7216. for_each_cpu(i, cpu_map) {
  7217. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7218. if (i != cpumask_first(this_core_map))
  7219. continue;
  7220. init_sched_build_groups(this_core_map, cpu_map,
  7221. &cpu_to_core_group,
  7222. send_covered, tmpmask);
  7223. }
  7224. #endif
  7225. /* Set up physical groups */
  7226. for (i = 0; i < nr_node_ids; i++) {
  7227. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7228. if (cpumask_empty(nodemask))
  7229. continue;
  7230. init_sched_build_groups(nodemask, cpu_map,
  7231. &cpu_to_phys_group,
  7232. send_covered, tmpmask);
  7233. }
  7234. #ifdef CONFIG_NUMA
  7235. /* Set up node groups */
  7236. if (sd_allnodes) {
  7237. init_sched_build_groups(cpu_map, cpu_map,
  7238. &cpu_to_allnodes_group,
  7239. send_covered, tmpmask);
  7240. }
  7241. for (i = 0; i < nr_node_ids; i++) {
  7242. /* Set up node groups */
  7243. struct sched_group *sg, *prev;
  7244. int j;
  7245. cpumask_clear(covered);
  7246. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7247. if (cpumask_empty(nodemask)) {
  7248. sched_group_nodes[i] = NULL;
  7249. continue;
  7250. }
  7251. sched_domain_node_span(i, domainspan);
  7252. cpumask_and(domainspan, domainspan, cpu_map);
  7253. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7254. GFP_KERNEL, i);
  7255. if (!sg) {
  7256. printk(KERN_WARNING "Can not alloc domain group for "
  7257. "node %d\n", i);
  7258. goto error;
  7259. }
  7260. sched_group_nodes[i] = sg;
  7261. for_each_cpu(j, nodemask) {
  7262. struct sched_domain *sd;
  7263. sd = &per_cpu(node_domains, j).sd;
  7264. sd->groups = sg;
  7265. }
  7266. sg->__cpu_power = 0;
  7267. cpumask_copy(sched_group_cpus(sg), nodemask);
  7268. sg->next = sg;
  7269. cpumask_or(covered, covered, nodemask);
  7270. prev = sg;
  7271. for (j = 0; j < nr_node_ids; j++) {
  7272. int n = (i + j) % nr_node_ids;
  7273. cpumask_complement(notcovered, covered);
  7274. cpumask_and(tmpmask, notcovered, cpu_map);
  7275. cpumask_and(tmpmask, tmpmask, domainspan);
  7276. if (cpumask_empty(tmpmask))
  7277. break;
  7278. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7279. if (cpumask_empty(tmpmask))
  7280. continue;
  7281. sg = kmalloc_node(sizeof(struct sched_group) +
  7282. cpumask_size(),
  7283. GFP_KERNEL, i);
  7284. if (!sg) {
  7285. printk(KERN_WARNING
  7286. "Can not alloc domain group for node %d\n", j);
  7287. goto error;
  7288. }
  7289. sg->__cpu_power = 0;
  7290. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7291. sg->next = prev->next;
  7292. cpumask_or(covered, covered, tmpmask);
  7293. prev->next = sg;
  7294. prev = sg;
  7295. }
  7296. }
  7297. #endif
  7298. /* Calculate CPU power for physical packages and nodes */
  7299. #ifdef CONFIG_SCHED_SMT
  7300. for_each_cpu(i, cpu_map) {
  7301. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7302. init_sched_groups_power(i, sd);
  7303. }
  7304. #endif
  7305. #ifdef CONFIG_SCHED_MC
  7306. for_each_cpu(i, cpu_map) {
  7307. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7308. init_sched_groups_power(i, sd);
  7309. }
  7310. #endif
  7311. for_each_cpu(i, cpu_map) {
  7312. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7313. init_sched_groups_power(i, sd);
  7314. }
  7315. #ifdef CONFIG_NUMA
  7316. for (i = 0; i < nr_node_ids; i++)
  7317. init_numa_sched_groups_power(sched_group_nodes[i]);
  7318. if (sd_allnodes) {
  7319. struct sched_group *sg;
  7320. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7321. tmpmask);
  7322. init_numa_sched_groups_power(sg);
  7323. }
  7324. #endif
  7325. /* Attach the domains */
  7326. for_each_cpu(i, cpu_map) {
  7327. struct sched_domain *sd;
  7328. #ifdef CONFIG_SCHED_SMT
  7329. sd = &per_cpu(cpu_domains, i).sd;
  7330. #elif defined(CONFIG_SCHED_MC)
  7331. sd = &per_cpu(core_domains, i).sd;
  7332. #else
  7333. sd = &per_cpu(phys_domains, i).sd;
  7334. #endif
  7335. cpu_attach_domain(sd, rd, i);
  7336. }
  7337. err = 0;
  7338. free_tmpmask:
  7339. free_cpumask_var(tmpmask);
  7340. free_send_covered:
  7341. free_cpumask_var(send_covered);
  7342. free_this_core_map:
  7343. free_cpumask_var(this_core_map);
  7344. free_this_sibling_map:
  7345. free_cpumask_var(this_sibling_map);
  7346. free_nodemask:
  7347. free_cpumask_var(nodemask);
  7348. free_notcovered:
  7349. #ifdef CONFIG_NUMA
  7350. free_cpumask_var(notcovered);
  7351. free_covered:
  7352. free_cpumask_var(covered);
  7353. free_domainspan:
  7354. free_cpumask_var(domainspan);
  7355. out:
  7356. #endif
  7357. return err;
  7358. free_sched_groups:
  7359. #ifdef CONFIG_NUMA
  7360. kfree(sched_group_nodes);
  7361. #endif
  7362. goto free_tmpmask;
  7363. #ifdef CONFIG_NUMA
  7364. error:
  7365. free_sched_groups(cpu_map, tmpmask);
  7366. free_rootdomain(rd);
  7367. goto free_tmpmask;
  7368. #endif
  7369. }
  7370. static int build_sched_domains(const struct cpumask *cpu_map)
  7371. {
  7372. return __build_sched_domains(cpu_map, NULL);
  7373. }
  7374. static struct cpumask *doms_cur; /* current sched domains */
  7375. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7376. static struct sched_domain_attr *dattr_cur;
  7377. /* attribues of custom domains in 'doms_cur' */
  7378. /*
  7379. * Special case: If a kmalloc of a doms_cur partition (array of
  7380. * cpumask) fails, then fallback to a single sched domain,
  7381. * as determined by the single cpumask fallback_doms.
  7382. */
  7383. static cpumask_var_t fallback_doms;
  7384. /*
  7385. * arch_update_cpu_topology lets virtualized architectures update the
  7386. * cpu core maps. It is supposed to return 1 if the topology changed
  7387. * or 0 if it stayed the same.
  7388. */
  7389. int __attribute__((weak)) arch_update_cpu_topology(void)
  7390. {
  7391. return 0;
  7392. }
  7393. /*
  7394. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7395. * For now this just excludes isolated cpus, but could be used to
  7396. * exclude other special cases in the future.
  7397. */
  7398. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7399. {
  7400. int err;
  7401. arch_update_cpu_topology();
  7402. ndoms_cur = 1;
  7403. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7404. if (!doms_cur)
  7405. doms_cur = fallback_doms;
  7406. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7407. dattr_cur = NULL;
  7408. err = build_sched_domains(doms_cur);
  7409. register_sched_domain_sysctl();
  7410. return err;
  7411. }
  7412. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7413. struct cpumask *tmpmask)
  7414. {
  7415. free_sched_groups(cpu_map, tmpmask);
  7416. }
  7417. /*
  7418. * Detach sched domains from a group of cpus specified in cpu_map
  7419. * These cpus will now be attached to the NULL domain
  7420. */
  7421. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7422. {
  7423. /* Save because hotplug lock held. */
  7424. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7425. int i;
  7426. for_each_cpu(i, cpu_map)
  7427. cpu_attach_domain(NULL, &def_root_domain, i);
  7428. synchronize_sched();
  7429. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7430. }
  7431. /* handle null as "default" */
  7432. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7433. struct sched_domain_attr *new, int idx_new)
  7434. {
  7435. struct sched_domain_attr tmp;
  7436. /* fast path */
  7437. if (!new && !cur)
  7438. return 1;
  7439. tmp = SD_ATTR_INIT;
  7440. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7441. new ? (new + idx_new) : &tmp,
  7442. sizeof(struct sched_domain_attr));
  7443. }
  7444. /*
  7445. * Partition sched domains as specified by the 'ndoms_new'
  7446. * cpumasks in the array doms_new[] of cpumasks. This compares
  7447. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7448. * It destroys each deleted domain and builds each new domain.
  7449. *
  7450. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7451. * The masks don't intersect (don't overlap.) We should setup one
  7452. * sched domain for each mask. CPUs not in any of the cpumasks will
  7453. * not be load balanced. If the same cpumask appears both in the
  7454. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7455. * it as it is.
  7456. *
  7457. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7458. * ownership of it and will kfree it when done with it. If the caller
  7459. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7460. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7461. * the single partition 'fallback_doms', it also forces the domains
  7462. * to be rebuilt.
  7463. *
  7464. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7465. * ndoms_new == 0 is a special case for destroying existing domains,
  7466. * and it will not create the default domain.
  7467. *
  7468. * Call with hotplug lock held
  7469. */
  7470. /* FIXME: Change to struct cpumask *doms_new[] */
  7471. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7472. struct sched_domain_attr *dattr_new)
  7473. {
  7474. int i, j, n;
  7475. int new_topology;
  7476. mutex_lock(&sched_domains_mutex);
  7477. /* always unregister in case we don't destroy any domains */
  7478. unregister_sched_domain_sysctl();
  7479. /* Let architecture update cpu core mappings. */
  7480. new_topology = arch_update_cpu_topology();
  7481. n = doms_new ? ndoms_new : 0;
  7482. /* Destroy deleted domains */
  7483. for (i = 0; i < ndoms_cur; i++) {
  7484. for (j = 0; j < n && !new_topology; j++) {
  7485. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7486. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7487. goto match1;
  7488. }
  7489. /* no match - a current sched domain not in new doms_new[] */
  7490. detach_destroy_domains(doms_cur + i);
  7491. match1:
  7492. ;
  7493. }
  7494. if (doms_new == NULL) {
  7495. ndoms_cur = 0;
  7496. doms_new = fallback_doms;
  7497. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7498. WARN_ON_ONCE(dattr_new);
  7499. }
  7500. /* Build new domains */
  7501. for (i = 0; i < ndoms_new; i++) {
  7502. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7503. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7504. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7505. goto match2;
  7506. }
  7507. /* no match - add a new doms_new */
  7508. __build_sched_domains(doms_new + i,
  7509. dattr_new ? dattr_new + i : NULL);
  7510. match2:
  7511. ;
  7512. }
  7513. /* Remember the new sched domains */
  7514. if (doms_cur != fallback_doms)
  7515. kfree(doms_cur);
  7516. kfree(dattr_cur); /* kfree(NULL) is safe */
  7517. doms_cur = doms_new;
  7518. dattr_cur = dattr_new;
  7519. ndoms_cur = ndoms_new;
  7520. register_sched_domain_sysctl();
  7521. mutex_unlock(&sched_domains_mutex);
  7522. }
  7523. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7524. static void arch_reinit_sched_domains(void)
  7525. {
  7526. get_online_cpus();
  7527. /* Destroy domains first to force the rebuild */
  7528. partition_sched_domains(0, NULL, NULL);
  7529. rebuild_sched_domains();
  7530. put_online_cpus();
  7531. }
  7532. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7533. {
  7534. unsigned int level = 0;
  7535. if (sscanf(buf, "%u", &level) != 1)
  7536. return -EINVAL;
  7537. /*
  7538. * level is always be positive so don't check for
  7539. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7540. * What happens on 0 or 1 byte write,
  7541. * need to check for count as well?
  7542. */
  7543. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7544. return -EINVAL;
  7545. if (smt)
  7546. sched_smt_power_savings = level;
  7547. else
  7548. sched_mc_power_savings = level;
  7549. arch_reinit_sched_domains();
  7550. return count;
  7551. }
  7552. #ifdef CONFIG_SCHED_MC
  7553. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7554. char *page)
  7555. {
  7556. return sprintf(page, "%u\n", sched_mc_power_savings);
  7557. }
  7558. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7559. const char *buf, size_t count)
  7560. {
  7561. return sched_power_savings_store(buf, count, 0);
  7562. }
  7563. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7564. sched_mc_power_savings_show,
  7565. sched_mc_power_savings_store);
  7566. #endif
  7567. #ifdef CONFIG_SCHED_SMT
  7568. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7569. char *page)
  7570. {
  7571. return sprintf(page, "%u\n", sched_smt_power_savings);
  7572. }
  7573. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7574. const char *buf, size_t count)
  7575. {
  7576. return sched_power_savings_store(buf, count, 1);
  7577. }
  7578. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7579. sched_smt_power_savings_show,
  7580. sched_smt_power_savings_store);
  7581. #endif
  7582. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7583. {
  7584. int err = 0;
  7585. #ifdef CONFIG_SCHED_SMT
  7586. if (smt_capable())
  7587. err = sysfs_create_file(&cls->kset.kobj,
  7588. &attr_sched_smt_power_savings.attr);
  7589. #endif
  7590. #ifdef CONFIG_SCHED_MC
  7591. if (!err && mc_capable())
  7592. err = sysfs_create_file(&cls->kset.kobj,
  7593. &attr_sched_mc_power_savings.attr);
  7594. #endif
  7595. return err;
  7596. }
  7597. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7598. #ifndef CONFIG_CPUSETS
  7599. /*
  7600. * Add online and remove offline CPUs from the scheduler domains.
  7601. * When cpusets are enabled they take over this function.
  7602. */
  7603. static int update_sched_domains(struct notifier_block *nfb,
  7604. unsigned long action, void *hcpu)
  7605. {
  7606. switch (action) {
  7607. case CPU_ONLINE:
  7608. case CPU_ONLINE_FROZEN:
  7609. case CPU_DEAD:
  7610. case CPU_DEAD_FROZEN:
  7611. partition_sched_domains(1, NULL, NULL);
  7612. return NOTIFY_OK;
  7613. default:
  7614. return NOTIFY_DONE;
  7615. }
  7616. }
  7617. #endif
  7618. static int update_runtime(struct notifier_block *nfb,
  7619. unsigned long action, void *hcpu)
  7620. {
  7621. int cpu = (int)(long)hcpu;
  7622. switch (action) {
  7623. case CPU_DOWN_PREPARE:
  7624. case CPU_DOWN_PREPARE_FROZEN:
  7625. disable_runtime(cpu_rq(cpu));
  7626. return NOTIFY_OK;
  7627. case CPU_DOWN_FAILED:
  7628. case CPU_DOWN_FAILED_FROZEN:
  7629. case CPU_ONLINE:
  7630. case CPU_ONLINE_FROZEN:
  7631. enable_runtime(cpu_rq(cpu));
  7632. return NOTIFY_OK;
  7633. default:
  7634. return NOTIFY_DONE;
  7635. }
  7636. }
  7637. void __init sched_init_smp(void)
  7638. {
  7639. cpumask_var_t non_isolated_cpus;
  7640. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7641. #if defined(CONFIG_NUMA)
  7642. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7643. GFP_KERNEL);
  7644. BUG_ON(sched_group_nodes_bycpu == NULL);
  7645. #endif
  7646. get_online_cpus();
  7647. mutex_lock(&sched_domains_mutex);
  7648. arch_init_sched_domains(cpu_online_mask);
  7649. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7650. if (cpumask_empty(non_isolated_cpus))
  7651. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7652. mutex_unlock(&sched_domains_mutex);
  7653. put_online_cpus();
  7654. #ifndef CONFIG_CPUSETS
  7655. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7656. hotcpu_notifier(update_sched_domains, 0);
  7657. #endif
  7658. /* RT runtime code needs to handle some hotplug events */
  7659. hotcpu_notifier(update_runtime, 0);
  7660. init_hrtick();
  7661. /* Move init over to a non-isolated CPU */
  7662. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7663. BUG();
  7664. sched_init_granularity();
  7665. free_cpumask_var(non_isolated_cpus);
  7666. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7667. init_sched_rt_class();
  7668. }
  7669. #else
  7670. void __init sched_init_smp(void)
  7671. {
  7672. sched_init_granularity();
  7673. }
  7674. #endif /* CONFIG_SMP */
  7675. int in_sched_functions(unsigned long addr)
  7676. {
  7677. return in_lock_functions(addr) ||
  7678. (addr >= (unsigned long)__sched_text_start
  7679. && addr < (unsigned long)__sched_text_end);
  7680. }
  7681. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7682. {
  7683. cfs_rq->tasks_timeline = RB_ROOT;
  7684. INIT_LIST_HEAD(&cfs_rq->tasks);
  7685. #ifdef CONFIG_FAIR_GROUP_SCHED
  7686. cfs_rq->rq = rq;
  7687. #endif
  7688. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7689. }
  7690. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7691. {
  7692. struct rt_prio_array *array;
  7693. int i;
  7694. array = &rt_rq->active;
  7695. for (i = 0; i < MAX_RT_PRIO; i++) {
  7696. INIT_LIST_HEAD(array->queue + i);
  7697. __clear_bit(i, array->bitmap);
  7698. }
  7699. /* delimiter for bitsearch: */
  7700. __set_bit(MAX_RT_PRIO, array->bitmap);
  7701. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7702. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7703. #ifdef CONFIG_SMP
  7704. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7705. #endif
  7706. #endif
  7707. #ifdef CONFIG_SMP
  7708. rt_rq->rt_nr_migratory = 0;
  7709. rt_rq->overloaded = 0;
  7710. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7711. #endif
  7712. rt_rq->rt_time = 0;
  7713. rt_rq->rt_throttled = 0;
  7714. rt_rq->rt_runtime = 0;
  7715. spin_lock_init(&rt_rq->rt_runtime_lock);
  7716. #ifdef CONFIG_RT_GROUP_SCHED
  7717. rt_rq->rt_nr_boosted = 0;
  7718. rt_rq->rq = rq;
  7719. #endif
  7720. }
  7721. #ifdef CONFIG_FAIR_GROUP_SCHED
  7722. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7723. struct sched_entity *se, int cpu, int add,
  7724. struct sched_entity *parent)
  7725. {
  7726. struct rq *rq = cpu_rq(cpu);
  7727. tg->cfs_rq[cpu] = cfs_rq;
  7728. init_cfs_rq(cfs_rq, rq);
  7729. cfs_rq->tg = tg;
  7730. if (add)
  7731. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7732. tg->se[cpu] = se;
  7733. /* se could be NULL for init_task_group */
  7734. if (!se)
  7735. return;
  7736. if (!parent)
  7737. se->cfs_rq = &rq->cfs;
  7738. else
  7739. se->cfs_rq = parent->my_q;
  7740. se->my_q = cfs_rq;
  7741. se->load.weight = tg->shares;
  7742. se->load.inv_weight = 0;
  7743. se->parent = parent;
  7744. }
  7745. #endif
  7746. #ifdef CONFIG_RT_GROUP_SCHED
  7747. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7748. struct sched_rt_entity *rt_se, int cpu, int add,
  7749. struct sched_rt_entity *parent)
  7750. {
  7751. struct rq *rq = cpu_rq(cpu);
  7752. tg->rt_rq[cpu] = rt_rq;
  7753. init_rt_rq(rt_rq, rq);
  7754. rt_rq->tg = tg;
  7755. rt_rq->rt_se = rt_se;
  7756. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7757. if (add)
  7758. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7759. tg->rt_se[cpu] = rt_se;
  7760. if (!rt_se)
  7761. return;
  7762. if (!parent)
  7763. rt_se->rt_rq = &rq->rt;
  7764. else
  7765. rt_se->rt_rq = parent->my_q;
  7766. rt_se->my_q = rt_rq;
  7767. rt_se->parent = parent;
  7768. INIT_LIST_HEAD(&rt_se->run_list);
  7769. }
  7770. #endif
  7771. void __init sched_init(void)
  7772. {
  7773. int i, j;
  7774. unsigned long alloc_size = 0, ptr;
  7775. #ifdef CONFIG_FAIR_GROUP_SCHED
  7776. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7777. #endif
  7778. #ifdef CONFIG_RT_GROUP_SCHED
  7779. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7780. #endif
  7781. #ifdef CONFIG_USER_SCHED
  7782. alloc_size *= 2;
  7783. #endif
  7784. #ifdef CONFIG_CPUMASK_OFFSTACK
  7785. alloc_size += num_possible_cpus() * cpumask_size();
  7786. #endif
  7787. /*
  7788. * As sched_init() is called before page_alloc is setup,
  7789. * we use alloc_bootmem().
  7790. */
  7791. if (alloc_size) {
  7792. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7793. #ifdef CONFIG_FAIR_GROUP_SCHED
  7794. init_task_group.se = (struct sched_entity **)ptr;
  7795. ptr += nr_cpu_ids * sizeof(void **);
  7796. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7797. ptr += nr_cpu_ids * sizeof(void **);
  7798. #ifdef CONFIG_USER_SCHED
  7799. root_task_group.se = (struct sched_entity **)ptr;
  7800. ptr += nr_cpu_ids * sizeof(void **);
  7801. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7802. ptr += nr_cpu_ids * sizeof(void **);
  7803. #endif /* CONFIG_USER_SCHED */
  7804. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7805. #ifdef CONFIG_RT_GROUP_SCHED
  7806. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7807. ptr += nr_cpu_ids * sizeof(void **);
  7808. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7809. ptr += nr_cpu_ids * sizeof(void **);
  7810. #ifdef CONFIG_USER_SCHED
  7811. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7812. ptr += nr_cpu_ids * sizeof(void **);
  7813. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7814. ptr += nr_cpu_ids * sizeof(void **);
  7815. #endif /* CONFIG_USER_SCHED */
  7816. #endif /* CONFIG_RT_GROUP_SCHED */
  7817. #ifdef CONFIG_CPUMASK_OFFSTACK
  7818. for_each_possible_cpu(i) {
  7819. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7820. ptr += cpumask_size();
  7821. }
  7822. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7823. }
  7824. #ifdef CONFIG_SMP
  7825. init_defrootdomain();
  7826. #endif
  7827. init_rt_bandwidth(&def_rt_bandwidth,
  7828. global_rt_period(), global_rt_runtime());
  7829. #ifdef CONFIG_RT_GROUP_SCHED
  7830. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7831. global_rt_period(), global_rt_runtime());
  7832. #ifdef CONFIG_USER_SCHED
  7833. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7834. global_rt_period(), RUNTIME_INF);
  7835. #endif /* CONFIG_USER_SCHED */
  7836. #endif /* CONFIG_RT_GROUP_SCHED */
  7837. #ifdef CONFIG_GROUP_SCHED
  7838. list_add(&init_task_group.list, &task_groups);
  7839. INIT_LIST_HEAD(&init_task_group.children);
  7840. #ifdef CONFIG_USER_SCHED
  7841. INIT_LIST_HEAD(&root_task_group.children);
  7842. init_task_group.parent = &root_task_group;
  7843. list_add(&init_task_group.siblings, &root_task_group.children);
  7844. #endif /* CONFIG_USER_SCHED */
  7845. #endif /* CONFIG_GROUP_SCHED */
  7846. for_each_possible_cpu(i) {
  7847. struct rq *rq;
  7848. rq = cpu_rq(i);
  7849. spin_lock_init(&rq->lock);
  7850. rq->nr_running = 0;
  7851. rq->calc_load_active = 0;
  7852. rq->calc_load_update = jiffies + LOAD_FREQ;
  7853. init_cfs_rq(&rq->cfs, rq);
  7854. init_rt_rq(&rq->rt, rq);
  7855. #ifdef CONFIG_FAIR_GROUP_SCHED
  7856. init_task_group.shares = init_task_group_load;
  7857. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7858. #ifdef CONFIG_CGROUP_SCHED
  7859. /*
  7860. * How much cpu bandwidth does init_task_group get?
  7861. *
  7862. * In case of task-groups formed thr' the cgroup filesystem, it
  7863. * gets 100% of the cpu resources in the system. This overall
  7864. * system cpu resource is divided among the tasks of
  7865. * init_task_group and its child task-groups in a fair manner,
  7866. * based on each entity's (task or task-group's) weight
  7867. * (se->load.weight).
  7868. *
  7869. * In other words, if init_task_group has 10 tasks of weight
  7870. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7871. * then A0's share of the cpu resource is:
  7872. *
  7873. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7874. *
  7875. * We achieve this by letting init_task_group's tasks sit
  7876. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7877. */
  7878. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7879. #elif defined CONFIG_USER_SCHED
  7880. root_task_group.shares = NICE_0_LOAD;
  7881. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7882. /*
  7883. * In case of task-groups formed thr' the user id of tasks,
  7884. * init_task_group represents tasks belonging to root user.
  7885. * Hence it forms a sibling of all subsequent groups formed.
  7886. * In this case, init_task_group gets only a fraction of overall
  7887. * system cpu resource, based on the weight assigned to root
  7888. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7889. * by letting tasks of init_task_group sit in a separate cfs_rq
  7890. * (init_cfs_rq) and having one entity represent this group of
  7891. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7892. */
  7893. init_tg_cfs_entry(&init_task_group,
  7894. &per_cpu(init_cfs_rq, i),
  7895. &per_cpu(init_sched_entity, i), i, 1,
  7896. root_task_group.se[i]);
  7897. #endif
  7898. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7899. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7900. #ifdef CONFIG_RT_GROUP_SCHED
  7901. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7902. #ifdef CONFIG_CGROUP_SCHED
  7903. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7904. #elif defined CONFIG_USER_SCHED
  7905. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7906. init_tg_rt_entry(&init_task_group,
  7907. &per_cpu(init_rt_rq, i),
  7908. &per_cpu(init_sched_rt_entity, i), i, 1,
  7909. root_task_group.rt_se[i]);
  7910. #endif
  7911. #endif
  7912. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7913. rq->cpu_load[j] = 0;
  7914. #ifdef CONFIG_SMP
  7915. rq->sd = NULL;
  7916. rq->rd = NULL;
  7917. rq->active_balance = 0;
  7918. rq->next_balance = jiffies;
  7919. rq->push_cpu = 0;
  7920. rq->cpu = i;
  7921. rq->online = 0;
  7922. rq->migration_thread = NULL;
  7923. INIT_LIST_HEAD(&rq->migration_queue);
  7924. rq_attach_root(rq, &def_root_domain);
  7925. #endif
  7926. init_rq_hrtick(rq);
  7927. atomic_set(&rq->nr_iowait, 0);
  7928. }
  7929. set_load_weight(&init_task);
  7930. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7931. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7932. #endif
  7933. #ifdef CONFIG_SMP
  7934. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7935. #endif
  7936. #ifdef CONFIG_RT_MUTEXES
  7937. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7938. #endif
  7939. /*
  7940. * The boot idle thread does lazy MMU switching as well:
  7941. */
  7942. atomic_inc(&init_mm.mm_count);
  7943. enter_lazy_tlb(&init_mm, current);
  7944. /*
  7945. * Make us the idle thread. Technically, schedule() should not be
  7946. * called from this thread, however somewhere below it might be,
  7947. * but because we are the idle thread, we just pick up running again
  7948. * when this runqueue becomes "idle".
  7949. */
  7950. init_idle(current, smp_processor_id());
  7951. calc_load_update = jiffies + LOAD_FREQ;
  7952. /*
  7953. * During early bootup we pretend to be a normal task:
  7954. */
  7955. current->sched_class = &fair_sched_class;
  7956. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  7957. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  7958. #ifdef CONFIG_SMP
  7959. #ifdef CONFIG_NO_HZ
  7960. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  7961. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  7962. #endif
  7963. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  7964. #endif /* SMP */
  7965. scheduler_running = 1;
  7966. }
  7967. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7968. void __might_sleep(char *file, int line)
  7969. {
  7970. #ifdef in_atomic
  7971. static unsigned long prev_jiffy; /* ratelimiting */
  7972. if ((!in_atomic() && !irqs_disabled()) ||
  7973. system_state != SYSTEM_RUNNING || oops_in_progress)
  7974. return;
  7975. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7976. return;
  7977. prev_jiffy = jiffies;
  7978. printk(KERN_ERR
  7979. "BUG: sleeping function called from invalid context at %s:%d\n",
  7980. file, line);
  7981. printk(KERN_ERR
  7982. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7983. in_atomic(), irqs_disabled(),
  7984. current->pid, current->comm);
  7985. debug_show_held_locks(current);
  7986. if (irqs_disabled())
  7987. print_irqtrace_events(current);
  7988. dump_stack();
  7989. #endif
  7990. }
  7991. EXPORT_SYMBOL(__might_sleep);
  7992. #endif
  7993. #ifdef CONFIG_MAGIC_SYSRQ
  7994. static void normalize_task(struct rq *rq, struct task_struct *p)
  7995. {
  7996. int on_rq;
  7997. update_rq_clock(rq);
  7998. on_rq = p->se.on_rq;
  7999. if (on_rq)
  8000. deactivate_task(rq, p, 0);
  8001. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8002. if (on_rq) {
  8003. activate_task(rq, p, 0);
  8004. resched_task(rq->curr);
  8005. }
  8006. }
  8007. void normalize_rt_tasks(void)
  8008. {
  8009. struct task_struct *g, *p;
  8010. unsigned long flags;
  8011. struct rq *rq;
  8012. read_lock_irqsave(&tasklist_lock, flags);
  8013. do_each_thread(g, p) {
  8014. /*
  8015. * Only normalize user tasks:
  8016. */
  8017. if (!p->mm)
  8018. continue;
  8019. p->se.exec_start = 0;
  8020. #ifdef CONFIG_SCHEDSTATS
  8021. p->se.wait_start = 0;
  8022. p->se.sleep_start = 0;
  8023. p->se.block_start = 0;
  8024. #endif
  8025. if (!rt_task(p)) {
  8026. /*
  8027. * Renice negative nice level userspace
  8028. * tasks back to 0:
  8029. */
  8030. if (TASK_NICE(p) < 0 && p->mm)
  8031. set_user_nice(p, 0);
  8032. continue;
  8033. }
  8034. spin_lock(&p->pi_lock);
  8035. rq = __task_rq_lock(p);
  8036. normalize_task(rq, p);
  8037. __task_rq_unlock(rq);
  8038. spin_unlock(&p->pi_lock);
  8039. } while_each_thread(g, p);
  8040. read_unlock_irqrestore(&tasklist_lock, flags);
  8041. }
  8042. #endif /* CONFIG_MAGIC_SYSRQ */
  8043. #ifdef CONFIG_IA64
  8044. /*
  8045. * These functions are only useful for the IA64 MCA handling.
  8046. *
  8047. * They can only be called when the whole system has been
  8048. * stopped - every CPU needs to be quiescent, and no scheduling
  8049. * activity can take place. Using them for anything else would
  8050. * be a serious bug, and as a result, they aren't even visible
  8051. * under any other configuration.
  8052. */
  8053. /**
  8054. * curr_task - return the current task for a given cpu.
  8055. * @cpu: the processor in question.
  8056. *
  8057. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8058. */
  8059. struct task_struct *curr_task(int cpu)
  8060. {
  8061. return cpu_curr(cpu);
  8062. }
  8063. /**
  8064. * set_curr_task - set the current task for a given cpu.
  8065. * @cpu: the processor in question.
  8066. * @p: the task pointer to set.
  8067. *
  8068. * Description: This function must only be used when non-maskable interrupts
  8069. * are serviced on a separate stack. It allows the architecture to switch the
  8070. * notion of the current task on a cpu in a non-blocking manner. This function
  8071. * must be called with all CPU's synchronized, and interrupts disabled, the
  8072. * and caller must save the original value of the current task (see
  8073. * curr_task() above) and restore that value before reenabling interrupts and
  8074. * re-starting the system.
  8075. *
  8076. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8077. */
  8078. void set_curr_task(int cpu, struct task_struct *p)
  8079. {
  8080. cpu_curr(cpu) = p;
  8081. }
  8082. #endif
  8083. #ifdef CONFIG_FAIR_GROUP_SCHED
  8084. static void free_fair_sched_group(struct task_group *tg)
  8085. {
  8086. int i;
  8087. for_each_possible_cpu(i) {
  8088. if (tg->cfs_rq)
  8089. kfree(tg->cfs_rq[i]);
  8090. if (tg->se)
  8091. kfree(tg->se[i]);
  8092. }
  8093. kfree(tg->cfs_rq);
  8094. kfree(tg->se);
  8095. }
  8096. static
  8097. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8098. {
  8099. struct cfs_rq *cfs_rq;
  8100. struct sched_entity *se;
  8101. struct rq *rq;
  8102. int i;
  8103. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8104. if (!tg->cfs_rq)
  8105. goto err;
  8106. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8107. if (!tg->se)
  8108. goto err;
  8109. tg->shares = NICE_0_LOAD;
  8110. for_each_possible_cpu(i) {
  8111. rq = cpu_rq(i);
  8112. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8113. GFP_KERNEL, cpu_to_node(i));
  8114. if (!cfs_rq)
  8115. goto err;
  8116. se = kzalloc_node(sizeof(struct sched_entity),
  8117. GFP_KERNEL, cpu_to_node(i));
  8118. if (!se)
  8119. goto err;
  8120. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8121. }
  8122. return 1;
  8123. err:
  8124. return 0;
  8125. }
  8126. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8127. {
  8128. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8129. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8130. }
  8131. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8132. {
  8133. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8134. }
  8135. #else /* !CONFG_FAIR_GROUP_SCHED */
  8136. static inline void free_fair_sched_group(struct task_group *tg)
  8137. {
  8138. }
  8139. static inline
  8140. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8141. {
  8142. return 1;
  8143. }
  8144. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8145. {
  8146. }
  8147. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8148. {
  8149. }
  8150. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8151. #ifdef CONFIG_RT_GROUP_SCHED
  8152. static void free_rt_sched_group(struct task_group *tg)
  8153. {
  8154. int i;
  8155. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8156. for_each_possible_cpu(i) {
  8157. if (tg->rt_rq)
  8158. kfree(tg->rt_rq[i]);
  8159. if (tg->rt_se)
  8160. kfree(tg->rt_se[i]);
  8161. }
  8162. kfree(tg->rt_rq);
  8163. kfree(tg->rt_se);
  8164. }
  8165. static
  8166. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8167. {
  8168. struct rt_rq *rt_rq;
  8169. struct sched_rt_entity *rt_se;
  8170. struct rq *rq;
  8171. int i;
  8172. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8173. if (!tg->rt_rq)
  8174. goto err;
  8175. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8176. if (!tg->rt_se)
  8177. goto err;
  8178. init_rt_bandwidth(&tg->rt_bandwidth,
  8179. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8180. for_each_possible_cpu(i) {
  8181. rq = cpu_rq(i);
  8182. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8183. GFP_KERNEL, cpu_to_node(i));
  8184. if (!rt_rq)
  8185. goto err;
  8186. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8187. GFP_KERNEL, cpu_to_node(i));
  8188. if (!rt_se)
  8189. goto err;
  8190. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8191. }
  8192. return 1;
  8193. err:
  8194. return 0;
  8195. }
  8196. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8197. {
  8198. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8199. &cpu_rq(cpu)->leaf_rt_rq_list);
  8200. }
  8201. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8202. {
  8203. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8204. }
  8205. #else /* !CONFIG_RT_GROUP_SCHED */
  8206. static inline void free_rt_sched_group(struct task_group *tg)
  8207. {
  8208. }
  8209. static inline
  8210. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8211. {
  8212. return 1;
  8213. }
  8214. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8215. {
  8216. }
  8217. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8218. {
  8219. }
  8220. #endif /* CONFIG_RT_GROUP_SCHED */
  8221. #ifdef CONFIG_GROUP_SCHED
  8222. static void free_sched_group(struct task_group *tg)
  8223. {
  8224. free_fair_sched_group(tg);
  8225. free_rt_sched_group(tg);
  8226. kfree(tg);
  8227. }
  8228. /* allocate runqueue etc for a new task group */
  8229. struct task_group *sched_create_group(struct task_group *parent)
  8230. {
  8231. struct task_group *tg;
  8232. unsigned long flags;
  8233. int i;
  8234. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8235. if (!tg)
  8236. return ERR_PTR(-ENOMEM);
  8237. if (!alloc_fair_sched_group(tg, parent))
  8238. goto err;
  8239. if (!alloc_rt_sched_group(tg, parent))
  8240. goto err;
  8241. spin_lock_irqsave(&task_group_lock, flags);
  8242. for_each_possible_cpu(i) {
  8243. register_fair_sched_group(tg, i);
  8244. register_rt_sched_group(tg, i);
  8245. }
  8246. list_add_rcu(&tg->list, &task_groups);
  8247. WARN_ON(!parent); /* root should already exist */
  8248. tg->parent = parent;
  8249. INIT_LIST_HEAD(&tg->children);
  8250. list_add_rcu(&tg->siblings, &parent->children);
  8251. spin_unlock_irqrestore(&task_group_lock, flags);
  8252. return tg;
  8253. err:
  8254. free_sched_group(tg);
  8255. return ERR_PTR(-ENOMEM);
  8256. }
  8257. /* rcu callback to free various structures associated with a task group */
  8258. static void free_sched_group_rcu(struct rcu_head *rhp)
  8259. {
  8260. /* now it should be safe to free those cfs_rqs */
  8261. free_sched_group(container_of(rhp, struct task_group, rcu));
  8262. }
  8263. /* Destroy runqueue etc associated with a task group */
  8264. void sched_destroy_group(struct task_group *tg)
  8265. {
  8266. unsigned long flags;
  8267. int i;
  8268. spin_lock_irqsave(&task_group_lock, flags);
  8269. for_each_possible_cpu(i) {
  8270. unregister_fair_sched_group(tg, i);
  8271. unregister_rt_sched_group(tg, i);
  8272. }
  8273. list_del_rcu(&tg->list);
  8274. list_del_rcu(&tg->siblings);
  8275. spin_unlock_irqrestore(&task_group_lock, flags);
  8276. /* wait for possible concurrent references to cfs_rqs complete */
  8277. call_rcu(&tg->rcu, free_sched_group_rcu);
  8278. }
  8279. /* change task's runqueue when it moves between groups.
  8280. * The caller of this function should have put the task in its new group
  8281. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8282. * reflect its new group.
  8283. */
  8284. void sched_move_task(struct task_struct *tsk)
  8285. {
  8286. int on_rq, running;
  8287. unsigned long flags;
  8288. struct rq *rq;
  8289. rq = task_rq_lock(tsk, &flags);
  8290. update_rq_clock(rq);
  8291. running = task_current(rq, tsk);
  8292. on_rq = tsk->se.on_rq;
  8293. if (on_rq)
  8294. dequeue_task(rq, tsk, 0);
  8295. if (unlikely(running))
  8296. tsk->sched_class->put_prev_task(rq, tsk);
  8297. set_task_rq(tsk, task_cpu(tsk));
  8298. #ifdef CONFIG_FAIR_GROUP_SCHED
  8299. if (tsk->sched_class->moved_group)
  8300. tsk->sched_class->moved_group(tsk);
  8301. #endif
  8302. if (unlikely(running))
  8303. tsk->sched_class->set_curr_task(rq);
  8304. if (on_rq)
  8305. enqueue_task(rq, tsk, 0);
  8306. task_rq_unlock(rq, &flags);
  8307. }
  8308. #endif /* CONFIG_GROUP_SCHED */
  8309. #ifdef CONFIG_FAIR_GROUP_SCHED
  8310. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8311. {
  8312. struct cfs_rq *cfs_rq = se->cfs_rq;
  8313. int on_rq;
  8314. on_rq = se->on_rq;
  8315. if (on_rq)
  8316. dequeue_entity(cfs_rq, se, 0);
  8317. se->load.weight = shares;
  8318. se->load.inv_weight = 0;
  8319. if (on_rq)
  8320. enqueue_entity(cfs_rq, se, 0);
  8321. }
  8322. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8323. {
  8324. struct cfs_rq *cfs_rq = se->cfs_rq;
  8325. struct rq *rq = cfs_rq->rq;
  8326. unsigned long flags;
  8327. spin_lock_irqsave(&rq->lock, flags);
  8328. __set_se_shares(se, shares);
  8329. spin_unlock_irqrestore(&rq->lock, flags);
  8330. }
  8331. static DEFINE_MUTEX(shares_mutex);
  8332. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8333. {
  8334. int i;
  8335. unsigned long flags;
  8336. /*
  8337. * We can't change the weight of the root cgroup.
  8338. */
  8339. if (!tg->se[0])
  8340. return -EINVAL;
  8341. if (shares < MIN_SHARES)
  8342. shares = MIN_SHARES;
  8343. else if (shares > MAX_SHARES)
  8344. shares = MAX_SHARES;
  8345. mutex_lock(&shares_mutex);
  8346. if (tg->shares == shares)
  8347. goto done;
  8348. spin_lock_irqsave(&task_group_lock, flags);
  8349. for_each_possible_cpu(i)
  8350. unregister_fair_sched_group(tg, i);
  8351. list_del_rcu(&tg->siblings);
  8352. spin_unlock_irqrestore(&task_group_lock, flags);
  8353. /* wait for any ongoing reference to this group to finish */
  8354. synchronize_sched();
  8355. /*
  8356. * Now we are free to modify the group's share on each cpu
  8357. * w/o tripping rebalance_share or load_balance_fair.
  8358. */
  8359. tg->shares = shares;
  8360. for_each_possible_cpu(i) {
  8361. /*
  8362. * force a rebalance
  8363. */
  8364. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8365. set_se_shares(tg->se[i], shares);
  8366. }
  8367. /*
  8368. * Enable load balance activity on this group, by inserting it back on
  8369. * each cpu's rq->leaf_cfs_rq_list.
  8370. */
  8371. spin_lock_irqsave(&task_group_lock, flags);
  8372. for_each_possible_cpu(i)
  8373. register_fair_sched_group(tg, i);
  8374. list_add_rcu(&tg->siblings, &tg->parent->children);
  8375. spin_unlock_irqrestore(&task_group_lock, flags);
  8376. done:
  8377. mutex_unlock(&shares_mutex);
  8378. return 0;
  8379. }
  8380. unsigned long sched_group_shares(struct task_group *tg)
  8381. {
  8382. return tg->shares;
  8383. }
  8384. #endif
  8385. #ifdef CONFIG_RT_GROUP_SCHED
  8386. /*
  8387. * Ensure that the real time constraints are schedulable.
  8388. */
  8389. static DEFINE_MUTEX(rt_constraints_mutex);
  8390. static unsigned long to_ratio(u64 period, u64 runtime)
  8391. {
  8392. if (runtime == RUNTIME_INF)
  8393. return 1ULL << 20;
  8394. return div64_u64(runtime << 20, period);
  8395. }
  8396. /* Must be called with tasklist_lock held */
  8397. static inline int tg_has_rt_tasks(struct task_group *tg)
  8398. {
  8399. struct task_struct *g, *p;
  8400. do_each_thread(g, p) {
  8401. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8402. return 1;
  8403. } while_each_thread(g, p);
  8404. return 0;
  8405. }
  8406. struct rt_schedulable_data {
  8407. struct task_group *tg;
  8408. u64 rt_period;
  8409. u64 rt_runtime;
  8410. };
  8411. static int tg_schedulable(struct task_group *tg, void *data)
  8412. {
  8413. struct rt_schedulable_data *d = data;
  8414. struct task_group *child;
  8415. unsigned long total, sum = 0;
  8416. u64 period, runtime;
  8417. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8418. runtime = tg->rt_bandwidth.rt_runtime;
  8419. if (tg == d->tg) {
  8420. period = d->rt_period;
  8421. runtime = d->rt_runtime;
  8422. }
  8423. #ifdef CONFIG_USER_SCHED
  8424. if (tg == &root_task_group) {
  8425. period = global_rt_period();
  8426. runtime = global_rt_runtime();
  8427. }
  8428. #endif
  8429. /*
  8430. * Cannot have more runtime than the period.
  8431. */
  8432. if (runtime > period && runtime != RUNTIME_INF)
  8433. return -EINVAL;
  8434. /*
  8435. * Ensure we don't starve existing RT tasks.
  8436. */
  8437. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8438. return -EBUSY;
  8439. total = to_ratio(period, runtime);
  8440. /*
  8441. * Nobody can have more than the global setting allows.
  8442. */
  8443. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8444. return -EINVAL;
  8445. /*
  8446. * The sum of our children's runtime should not exceed our own.
  8447. */
  8448. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8449. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8450. runtime = child->rt_bandwidth.rt_runtime;
  8451. if (child == d->tg) {
  8452. period = d->rt_period;
  8453. runtime = d->rt_runtime;
  8454. }
  8455. sum += to_ratio(period, runtime);
  8456. }
  8457. if (sum > total)
  8458. return -EINVAL;
  8459. return 0;
  8460. }
  8461. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8462. {
  8463. struct rt_schedulable_data data = {
  8464. .tg = tg,
  8465. .rt_period = period,
  8466. .rt_runtime = runtime,
  8467. };
  8468. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8469. }
  8470. static int tg_set_bandwidth(struct task_group *tg,
  8471. u64 rt_period, u64 rt_runtime)
  8472. {
  8473. int i, err = 0;
  8474. mutex_lock(&rt_constraints_mutex);
  8475. read_lock(&tasklist_lock);
  8476. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8477. if (err)
  8478. goto unlock;
  8479. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8480. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8481. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8482. for_each_possible_cpu(i) {
  8483. struct rt_rq *rt_rq = tg->rt_rq[i];
  8484. spin_lock(&rt_rq->rt_runtime_lock);
  8485. rt_rq->rt_runtime = rt_runtime;
  8486. spin_unlock(&rt_rq->rt_runtime_lock);
  8487. }
  8488. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8489. unlock:
  8490. read_unlock(&tasklist_lock);
  8491. mutex_unlock(&rt_constraints_mutex);
  8492. return err;
  8493. }
  8494. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8495. {
  8496. u64 rt_runtime, rt_period;
  8497. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8498. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8499. if (rt_runtime_us < 0)
  8500. rt_runtime = RUNTIME_INF;
  8501. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8502. }
  8503. long sched_group_rt_runtime(struct task_group *tg)
  8504. {
  8505. u64 rt_runtime_us;
  8506. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8507. return -1;
  8508. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8509. do_div(rt_runtime_us, NSEC_PER_USEC);
  8510. return rt_runtime_us;
  8511. }
  8512. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8513. {
  8514. u64 rt_runtime, rt_period;
  8515. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8516. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8517. if (rt_period == 0)
  8518. return -EINVAL;
  8519. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8520. }
  8521. long sched_group_rt_period(struct task_group *tg)
  8522. {
  8523. u64 rt_period_us;
  8524. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8525. do_div(rt_period_us, NSEC_PER_USEC);
  8526. return rt_period_us;
  8527. }
  8528. static int sched_rt_global_constraints(void)
  8529. {
  8530. u64 runtime, period;
  8531. int ret = 0;
  8532. if (sysctl_sched_rt_period <= 0)
  8533. return -EINVAL;
  8534. runtime = global_rt_runtime();
  8535. period = global_rt_period();
  8536. /*
  8537. * Sanity check on the sysctl variables.
  8538. */
  8539. if (runtime > period && runtime != RUNTIME_INF)
  8540. return -EINVAL;
  8541. mutex_lock(&rt_constraints_mutex);
  8542. read_lock(&tasklist_lock);
  8543. ret = __rt_schedulable(NULL, 0, 0);
  8544. read_unlock(&tasklist_lock);
  8545. mutex_unlock(&rt_constraints_mutex);
  8546. return ret;
  8547. }
  8548. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8549. {
  8550. /* Don't accept realtime tasks when there is no way for them to run */
  8551. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8552. return 0;
  8553. return 1;
  8554. }
  8555. #else /* !CONFIG_RT_GROUP_SCHED */
  8556. static int sched_rt_global_constraints(void)
  8557. {
  8558. unsigned long flags;
  8559. int i;
  8560. if (sysctl_sched_rt_period <= 0)
  8561. return -EINVAL;
  8562. /*
  8563. * There's always some RT tasks in the root group
  8564. * -- migration, kstopmachine etc..
  8565. */
  8566. if (sysctl_sched_rt_runtime == 0)
  8567. return -EBUSY;
  8568. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8569. for_each_possible_cpu(i) {
  8570. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8571. spin_lock(&rt_rq->rt_runtime_lock);
  8572. rt_rq->rt_runtime = global_rt_runtime();
  8573. spin_unlock(&rt_rq->rt_runtime_lock);
  8574. }
  8575. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8576. return 0;
  8577. }
  8578. #endif /* CONFIG_RT_GROUP_SCHED */
  8579. int sched_rt_handler(struct ctl_table *table, int write,
  8580. struct file *filp, void __user *buffer, size_t *lenp,
  8581. loff_t *ppos)
  8582. {
  8583. int ret;
  8584. int old_period, old_runtime;
  8585. static DEFINE_MUTEX(mutex);
  8586. mutex_lock(&mutex);
  8587. old_period = sysctl_sched_rt_period;
  8588. old_runtime = sysctl_sched_rt_runtime;
  8589. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8590. if (!ret && write) {
  8591. ret = sched_rt_global_constraints();
  8592. if (ret) {
  8593. sysctl_sched_rt_period = old_period;
  8594. sysctl_sched_rt_runtime = old_runtime;
  8595. } else {
  8596. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8597. def_rt_bandwidth.rt_period =
  8598. ns_to_ktime(global_rt_period());
  8599. }
  8600. }
  8601. mutex_unlock(&mutex);
  8602. return ret;
  8603. }
  8604. #ifdef CONFIG_CGROUP_SCHED
  8605. /* return corresponding task_group object of a cgroup */
  8606. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8607. {
  8608. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8609. struct task_group, css);
  8610. }
  8611. static struct cgroup_subsys_state *
  8612. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8613. {
  8614. struct task_group *tg, *parent;
  8615. if (!cgrp->parent) {
  8616. /* This is early initialization for the top cgroup */
  8617. return &init_task_group.css;
  8618. }
  8619. parent = cgroup_tg(cgrp->parent);
  8620. tg = sched_create_group(parent);
  8621. if (IS_ERR(tg))
  8622. return ERR_PTR(-ENOMEM);
  8623. return &tg->css;
  8624. }
  8625. static void
  8626. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8627. {
  8628. struct task_group *tg = cgroup_tg(cgrp);
  8629. sched_destroy_group(tg);
  8630. }
  8631. static int
  8632. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8633. struct task_struct *tsk)
  8634. {
  8635. #ifdef CONFIG_RT_GROUP_SCHED
  8636. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8637. return -EINVAL;
  8638. #else
  8639. /* We don't support RT-tasks being in separate groups */
  8640. if (tsk->sched_class != &fair_sched_class)
  8641. return -EINVAL;
  8642. #endif
  8643. return 0;
  8644. }
  8645. static void
  8646. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8647. struct cgroup *old_cont, struct task_struct *tsk)
  8648. {
  8649. sched_move_task(tsk);
  8650. }
  8651. #ifdef CONFIG_FAIR_GROUP_SCHED
  8652. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8653. u64 shareval)
  8654. {
  8655. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8656. }
  8657. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8658. {
  8659. struct task_group *tg = cgroup_tg(cgrp);
  8660. return (u64) tg->shares;
  8661. }
  8662. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8663. #ifdef CONFIG_RT_GROUP_SCHED
  8664. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8665. s64 val)
  8666. {
  8667. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8668. }
  8669. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8670. {
  8671. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8672. }
  8673. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8674. u64 rt_period_us)
  8675. {
  8676. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8677. }
  8678. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8679. {
  8680. return sched_group_rt_period(cgroup_tg(cgrp));
  8681. }
  8682. #endif /* CONFIG_RT_GROUP_SCHED */
  8683. static struct cftype cpu_files[] = {
  8684. #ifdef CONFIG_FAIR_GROUP_SCHED
  8685. {
  8686. .name = "shares",
  8687. .read_u64 = cpu_shares_read_u64,
  8688. .write_u64 = cpu_shares_write_u64,
  8689. },
  8690. #endif
  8691. #ifdef CONFIG_RT_GROUP_SCHED
  8692. {
  8693. .name = "rt_runtime_us",
  8694. .read_s64 = cpu_rt_runtime_read,
  8695. .write_s64 = cpu_rt_runtime_write,
  8696. },
  8697. {
  8698. .name = "rt_period_us",
  8699. .read_u64 = cpu_rt_period_read_uint,
  8700. .write_u64 = cpu_rt_period_write_uint,
  8701. },
  8702. #endif
  8703. };
  8704. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8705. {
  8706. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8707. }
  8708. struct cgroup_subsys cpu_cgroup_subsys = {
  8709. .name = "cpu",
  8710. .create = cpu_cgroup_create,
  8711. .destroy = cpu_cgroup_destroy,
  8712. .can_attach = cpu_cgroup_can_attach,
  8713. .attach = cpu_cgroup_attach,
  8714. .populate = cpu_cgroup_populate,
  8715. .subsys_id = cpu_cgroup_subsys_id,
  8716. .early_init = 1,
  8717. };
  8718. #endif /* CONFIG_CGROUP_SCHED */
  8719. #ifdef CONFIG_CGROUP_CPUACCT
  8720. /*
  8721. * CPU accounting code for task groups.
  8722. *
  8723. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8724. * (balbir@in.ibm.com).
  8725. */
  8726. /* track cpu usage of a group of tasks and its child groups */
  8727. struct cpuacct {
  8728. struct cgroup_subsys_state css;
  8729. /* cpuusage holds pointer to a u64-type object on every cpu */
  8730. u64 *cpuusage;
  8731. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8732. struct cpuacct *parent;
  8733. };
  8734. struct cgroup_subsys cpuacct_subsys;
  8735. /* return cpu accounting group corresponding to this container */
  8736. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8737. {
  8738. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8739. struct cpuacct, css);
  8740. }
  8741. /* return cpu accounting group to which this task belongs */
  8742. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8743. {
  8744. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8745. struct cpuacct, css);
  8746. }
  8747. /* create a new cpu accounting group */
  8748. static struct cgroup_subsys_state *cpuacct_create(
  8749. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8750. {
  8751. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8752. int i;
  8753. if (!ca)
  8754. goto out;
  8755. ca->cpuusage = alloc_percpu(u64);
  8756. if (!ca->cpuusage)
  8757. goto out_free_ca;
  8758. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8759. if (percpu_counter_init(&ca->cpustat[i], 0))
  8760. goto out_free_counters;
  8761. if (cgrp->parent)
  8762. ca->parent = cgroup_ca(cgrp->parent);
  8763. return &ca->css;
  8764. out_free_counters:
  8765. while (--i >= 0)
  8766. percpu_counter_destroy(&ca->cpustat[i]);
  8767. free_percpu(ca->cpuusage);
  8768. out_free_ca:
  8769. kfree(ca);
  8770. out:
  8771. return ERR_PTR(-ENOMEM);
  8772. }
  8773. /* destroy an existing cpu accounting group */
  8774. static void
  8775. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8776. {
  8777. struct cpuacct *ca = cgroup_ca(cgrp);
  8778. int i;
  8779. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8780. percpu_counter_destroy(&ca->cpustat[i]);
  8781. free_percpu(ca->cpuusage);
  8782. kfree(ca);
  8783. }
  8784. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8785. {
  8786. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8787. u64 data;
  8788. #ifndef CONFIG_64BIT
  8789. /*
  8790. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8791. */
  8792. spin_lock_irq(&cpu_rq(cpu)->lock);
  8793. data = *cpuusage;
  8794. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8795. #else
  8796. data = *cpuusage;
  8797. #endif
  8798. return data;
  8799. }
  8800. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8801. {
  8802. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8803. #ifndef CONFIG_64BIT
  8804. /*
  8805. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8806. */
  8807. spin_lock_irq(&cpu_rq(cpu)->lock);
  8808. *cpuusage = val;
  8809. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8810. #else
  8811. *cpuusage = val;
  8812. #endif
  8813. }
  8814. /* return total cpu usage (in nanoseconds) of a group */
  8815. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8816. {
  8817. struct cpuacct *ca = cgroup_ca(cgrp);
  8818. u64 totalcpuusage = 0;
  8819. int i;
  8820. for_each_present_cpu(i)
  8821. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8822. return totalcpuusage;
  8823. }
  8824. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8825. u64 reset)
  8826. {
  8827. struct cpuacct *ca = cgroup_ca(cgrp);
  8828. int err = 0;
  8829. int i;
  8830. if (reset) {
  8831. err = -EINVAL;
  8832. goto out;
  8833. }
  8834. for_each_present_cpu(i)
  8835. cpuacct_cpuusage_write(ca, i, 0);
  8836. out:
  8837. return err;
  8838. }
  8839. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8840. struct seq_file *m)
  8841. {
  8842. struct cpuacct *ca = cgroup_ca(cgroup);
  8843. u64 percpu;
  8844. int i;
  8845. for_each_present_cpu(i) {
  8846. percpu = cpuacct_cpuusage_read(ca, i);
  8847. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8848. }
  8849. seq_printf(m, "\n");
  8850. return 0;
  8851. }
  8852. static const char *cpuacct_stat_desc[] = {
  8853. [CPUACCT_STAT_USER] = "user",
  8854. [CPUACCT_STAT_SYSTEM] = "system",
  8855. };
  8856. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8857. struct cgroup_map_cb *cb)
  8858. {
  8859. struct cpuacct *ca = cgroup_ca(cgrp);
  8860. int i;
  8861. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8862. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8863. val = cputime64_to_clock_t(val);
  8864. cb->fill(cb, cpuacct_stat_desc[i], val);
  8865. }
  8866. return 0;
  8867. }
  8868. static struct cftype files[] = {
  8869. {
  8870. .name = "usage",
  8871. .read_u64 = cpuusage_read,
  8872. .write_u64 = cpuusage_write,
  8873. },
  8874. {
  8875. .name = "usage_percpu",
  8876. .read_seq_string = cpuacct_percpu_seq_read,
  8877. },
  8878. {
  8879. .name = "stat",
  8880. .read_map = cpuacct_stats_show,
  8881. },
  8882. };
  8883. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8884. {
  8885. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8886. }
  8887. /*
  8888. * charge this task's execution time to its accounting group.
  8889. *
  8890. * called with rq->lock held.
  8891. */
  8892. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8893. {
  8894. struct cpuacct *ca;
  8895. int cpu;
  8896. if (unlikely(!cpuacct_subsys.active))
  8897. return;
  8898. cpu = task_cpu(tsk);
  8899. rcu_read_lock();
  8900. ca = task_ca(tsk);
  8901. for (; ca; ca = ca->parent) {
  8902. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8903. *cpuusage += cputime;
  8904. }
  8905. rcu_read_unlock();
  8906. }
  8907. /*
  8908. * Charge the system/user time to the task's accounting group.
  8909. */
  8910. static void cpuacct_update_stats(struct task_struct *tsk,
  8911. enum cpuacct_stat_index idx, cputime_t val)
  8912. {
  8913. struct cpuacct *ca;
  8914. if (unlikely(!cpuacct_subsys.active))
  8915. return;
  8916. rcu_read_lock();
  8917. ca = task_ca(tsk);
  8918. do {
  8919. percpu_counter_add(&ca->cpustat[idx], val);
  8920. ca = ca->parent;
  8921. } while (ca);
  8922. rcu_read_unlock();
  8923. }
  8924. struct cgroup_subsys cpuacct_subsys = {
  8925. .name = "cpuacct",
  8926. .create = cpuacct_create,
  8927. .destroy = cpuacct_destroy,
  8928. .populate = cpuacct_populate,
  8929. .subsys_id = cpuacct_subsys_id,
  8930. };
  8931. #endif /* CONFIG_CGROUP_CPUACCT */