i915_gem.c 132 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. return 0;
  164. }
  165. int
  166. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file_priv)
  168. {
  169. struct drm_i915_gem_init *args = data;
  170. int ret;
  171. mutex_lock(&dev->struct_mutex);
  172. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  173. mutex_unlock(&dev->struct_mutex);
  174. return ret;
  175. }
  176. int
  177. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  178. struct drm_file *file_priv)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. struct drm_i915_gem_get_aperture *args = data;
  182. if (!(dev->driver->driver_features & DRIVER_GEM))
  183. return -ENODEV;
  184. mutex_lock(&dev->struct_mutex);
  185. args->aper_size = dev_priv->mm.gtt_total;
  186. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  187. mutex_unlock(&dev->struct_mutex);
  188. return 0;
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file_priv)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. struct drm_gem_object *obj;
  199. int ret;
  200. u32 handle;
  201. args->size = roundup(args->size, PAGE_SIZE);
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, args->size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file_priv, obj, &handle);
  207. if (ret) {
  208. drm_gem_object_release(obj);
  209. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  210. kfree(obj);
  211. return ret;
  212. }
  213. /* drop reference from allocate - handle holds it now */
  214. drm_gem_object_unreference(obj);
  215. trace_i915_gem_object_create(obj);
  216. args->handle = handle;
  217. return 0;
  218. }
  219. static inline int
  220. fast_shmem_read(struct page **pages,
  221. loff_t page_base, int page_offset,
  222. char __user *data,
  223. int length)
  224. {
  225. int unwritten;
  226. char *vaddr;
  227. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  228. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  229. kunmap_atomic(vaddr, KM_USER0);
  230. return unwritten ? -EFAULT : 0;
  231. }
  232. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  233. {
  234. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  236. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  237. obj_priv->tiling_mode != I915_TILING_NONE;
  238. }
  239. static inline void
  240. slow_shmem_copy(struct page *dst_page,
  241. int dst_offset,
  242. struct page *src_page,
  243. int src_offset,
  244. int length)
  245. {
  246. char *dst_vaddr, *src_vaddr;
  247. dst_vaddr = kmap(dst_page);
  248. src_vaddr = kmap(src_page);
  249. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  250. kunmap(src_page);
  251. kunmap(dst_page);
  252. }
  253. static inline void
  254. slow_shmem_bit17_copy(struct page *gpu_page,
  255. int gpu_offset,
  256. struct page *cpu_page,
  257. int cpu_offset,
  258. int length,
  259. int is_read)
  260. {
  261. char *gpu_vaddr, *cpu_vaddr;
  262. /* Use the unswizzled path if this page isn't affected. */
  263. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  264. if (is_read)
  265. return slow_shmem_copy(cpu_page, cpu_offset,
  266. gpu_page, gpu_offset, length);
  267. else
  268. return slow_shmem_copy(gpu_page, gpu_offset,
  269. cpu_page, cpu_offset, length);
  270. }
  271. gpu_vaddr = kmap(gpu_page);
  272. cpu_vaddr = kmap(cpu_page);
  273. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  274. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  275. */
  276. while (length > 0) {
  277. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  278. int this_length = min(cacheline_end - gpu_offset, length);
  279. int swizzled_gpu_offset = gpu_offset ^ 64;
  280. if (is_read) {
  281. memcpy(cpu_vaddr + cpu_offset,
  282. gpu_vaddr + swizzled_gpu_offset,
  283. this_length);
  284. } else {
  285. memcpy(gpu_vaddr + swizzled_gpu_offset,
  286. cpu_vaddr + cpu_offset,
  287. this_length);
  288. }
  289. cpu_offset += this_length;
  290. gpu_offset += this_length;
  291. length -= this_length;
  292. }
  293. kunmap(cpu_page);
  294. kunmap(gpu_page);
  295. }
  296. /**
  297. * This is the fast shmem pread path, which attempts to copy_from_user directly
  298. * from the backing pages of the object to the user's address space. On a
  299. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  300. */
  301. static int
  302. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  303. struct drm_i915_gem_pread *args,
  304. struct drm_file *file_priv)
  305. {
  306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  307. ssize_t remain;
  308. loff_t offset, page_base;
  309. char __user *user_data;
  310. int page_offset, page_length;
  311. int ret;
  312. user_data = (char __user *) (uintptr_t) args->data_ptr;
  313. remain = args->size;
  314. ret = i915_mutex_lock_interruptible(dev);
  315. if (ret)
  316. return ret;
  317. ret = i915_gem_object_get_pages(obj, 0);
  318. if (ret != 0)
  319. goto fail_unlock;
  320. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  321. args->size);
  322. if (ret != 0)
  323. goto fail_put_pages;
  324. obj_priv = to_intel_bo(obj);
  325. offset = args->offset;
  326. while (remain > 0) {
  327. /* Operation in this page
  328. *
  329. * page_base = page offset within aperture
  330. * page_offset = offset within page
  331. * page_length = bytes to copy for this page
  332. */
  333. page_base = (offset & ~(PAGE_SIZE-1));
  334. page_offset = offset & (PAGE_SIZE-1);
  335. page_length = remain;
  336. if ((page_offset + remain) > PAGE_SIZE)
  337. page_length = PAGE_SIZE - page_offset;
  338. ret = fast_shmem_read(obj_priv->pages,
  339. page_base, page_offset,
  340. user_data, page_length);
  341. if (ret)
  342. goto fail_put_pages;
  343. remain -= page_length;
  344. user_data += page_length;
  345. offset += page_length;
  346. }
  347. fail_put_pages:
  348. i915_gem_object_put_pages(obj);
  349. fail_unlock:
  350. mutex_unlock(&dev->struct_mutex);
  351. return ret;
  352. }
  353. static int
  354. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  355. {
  356. int ret;
  357. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  358. /* If we've insufficient memory to map in the pages, attempt
  359. * to make some space by throwing out some old buffers.
  360. */
  361. if (ret == -ENOMEM) {
  362. struct drm_device *dev = obj->dev;
  363. ret = i915_gem_evict_something(dev, obj->size,
  364. i915_gem_get_gtt_alignment(obj));
  365. if (ret)
  366. return ret;
  367. ret = i915_gem_object_get_pages(obj, 0);
  368. }
  369. return ret;
  370. }
  371. /**
  372. * This is the fallback shmem pread path, which allocates temporary storage
  373. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  374. * can copy out of the object's backing pages while holding the struct mutex
  375. * and not take page faults.
  376. */
  377. static int
  378. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  379. struct drm_i915_gem_pread *args,
  380. struct drm_file *file_priv)
  381. {
  382. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  383. struct mm_struct *mm = current->mm;
  384. struct page **user_pages;
  385. ssize_t remain;
  386. loff_t offset, pinned_pages, i;
  387. loff_t first_data_page, last_data_page, num_pages;
  388. int shmem_page_index, shmem_page_offset;
  389. int data_page_index, data_page_offset;
  390. int page_length;
  391. int ret;
  392. uint64_t data_ptr = args->data_ptr;
  393. int do_bit17_swizzling;
  394. remain = args->size;
  395. /* Pin the user pages containing the data. We can't fault while
  396. * holding the struct mutex, yet we want to hold it while
  397. * dereferencing the user data.
  398. */
  399. first_data_page = data_ptr / PAGE_SIZE;
  400. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  401. num_pages = last_data_page - first_data_page + 1;
  402. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  403. if (user_pages == NULL)
  404. return -ENOMEM;
  405. down_read(&mm->mmap_sem);
  406. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  407. num_pages, 1, 0, user_pages, NULL);
  408. up_read(&mm->mmap_sem);
  409. if (pinned_pages < num_pages) {
  410. ret = -EFAULT;
  411. goto fail_put_user_pages;
  412. }
  413. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  414. ret = i915_mutex_lock_interruptible(dev);
  415. if (ret)
  416. goto fail_put_user_pages;
  417. ret = i915_gem_object_get_pages_or_evict(obj);
  418. if (ret)
  419. goto fail_unlock;
  420. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  421. args->size);
  422. if (ret != 0)
  423. goto fail_put_pages;
  424. obj_priv = to_intel_bo(obj);
  425. offset = args->offset;
  426. while (remain > 0) {
  427. /* Operation in this page
  428. *
  429. * shmem_page_index = page number within shmem file
  430. * shmem_page_offset = offset within page in shmem file
  431. * data_page_index = page number in get_user_pages return
  432. * data_page_offset = offset with data_page_index page.
  433. * page_length = bytes to copy for this page
  434. */
  435. shmem_page_index = offset / PAGE_SIZE;
  436. shmem_page_offset = offset & ~PAGE_MASK;
  437. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  438. data_page_offset = data_ptr & ~PAGE_MASK;
  439. page_length = remain;
  440. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  441. page_length = PAGE_SIZE - shmem_page_offset;
  442. if ((data_page_offset + page_length) > PAGE_SIZE)
  443. page_length = PAGE_SIZE - data_page_offset;
  444. if (do_bit17_swizzling) {
  445. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  446. shmem_page_offset,
  447. user_pages[data_page_index],
  448. data_page_offset,
  449. page_length,
  450. 1);
  451. } else {
  452. slow_shmem_copy(user_pages[data_page_index],
  453. data_page_offset,
  454. obj_priv->pages[shmem_page_index],
  455. shmem_page_offset,
  456. page_length);
  457. }
  458. remain -= page_length;
  459. data_ptr += page_length;
  460. offset += page_length;
  461. }
  462. fail_put_pages:
  463. i915_gem_object_put_pages(obj);
  464. fail_unlock:
  465. mutex_unlock(&dev->struct_mutex);
  466. fail_put_user_pages:
  467. for (i = 0; i < pinned_pages; i++) {
  468. SetPageDirty(user_pages[i]);
  469. page_cache_release(user_pages[i]);
  470. }
  471. drm_free_large(user_pages);
  472. return ret;
  473. }
  474. /**
  475. * Reads data from the object referenced by handle.
  476. *
  477. * On error, the contents of *data are undefined.
  478. */
  479. int
  480. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  481. struct drm_file *file_priv)
  482. {
  483. struct drm_i915_gem_pread *args = data;
  484. struct drm_gem_object *obj;
  485. struct drm_i915_gem_object *obj_priv;
  486. int ret = 0;
  487. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  488. if (obj == NULL)
  489. return -ENOENT;
  490. obj_priv = to_intel_bo(obj);
  491. /* Bounds check source. */
  492. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  493. ret = -EINVAL;
  494. goto out;
  495. }
  496. if (args->size == 0)
  497. goto out;
  498. if (!access_ok(VERIFY_WRITE,
  499. (char __user *)(uintptr_t)args->data_ptr,
  500. args->size)) {
  501. ret = -EFAULT;
  502. goto out;
  503. }
  504. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  505. args->size);
  506. if (ret) {
  507. ret = -EFAULT;
  508. goto out;
  509. }
  510. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  511. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  512. } else {
  513. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  514. if (ret != 0)
  515. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  516. file_priv);
  517. }
  518. out:
  519. drm_gem_object_unreference_unlocked(obj);
  520. return ret;
  521. }
  522. /* This is the fast write path which cannot handle
  523. * page faults in the source data
  524. */
  525. static inline int
  526. fast_user_write(struct io_mapping *mapping,
  527. loff_t page_base, int page_offset,
  528. char __user *user_data,
  529. int length)
  530. {
  531. char *vaddr_atomic;
  532. unsigned long unwritten;
  533. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
  534. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  535. user_data, length);
  536. io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
  537. if (unwritten)
  538. return -EFAULT;
  539. return 0;
  540. }
  541. /* Here's the write path which can sleep for
  542. * page faults
  543. */
  544. static inline void
  545. slow_kernel_write(struct io_mapping *mapping,
  546. loff_t gtt_base, int gtt_offset,
  547. struct page *user_page, int user_offset,
  548. int length)
  549. {
  550. char __iomem *dst_vaddr;
  551. char *src_vaddr;
  552. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  553. src_vaddr = kmap(user_page);
  554. memcpy_toio(dst_vaddr + gtt_offset,
  555. src_vaddr + user_offset,
  556. length);
  557. kunmap(user_page);
  558. io_mapping_unmap(dst_vaddr);
  559. }
  560. static inline int
  561. fast_shmem_write(struct page **pages,
  562. loff_t page_base, int page_offset,
  563. char __user *data,
  564. int length)
  565. {
  566. int unwritten;
  567. char *vaddr;
  568. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  569. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  570. kunmap_atomic(vaddr, KM_USER0);
  571. return unwritten ? -EFAULT : 0;
  572. }
  573. /**
  574. * This is the fast pwrite path, where we copy the data directly from the
  575. * user into the GTT, uncached.
  576. */
  577. static int
  578. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  579. struct drm_i915_gem_pwrite *args,
  580. struct drm_file *file_priv)
  581. {
  582. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  583. drm_i915_private_t *dev_priv = dev->dev_private;
  584. ssize_t remain;
  585. loff_t offset, page_base;
  586. char __user *user_data;
  587. int page_offset, page_length;
  588. int ret;
  589. user_data = (char __user *) (uintptr_t) args->data_ptr;
  590. remain = args->size;
  591. ret = i915_mutex_lock_interruptible(dev);
  592. if (ret)
  593. return ret;
  594. ret = i915_gem_object_pin(obj, 0);
  595. if (ret) {
  596. mutex_unlock(&dev->struct_mutex);
  597. return ret;
  598. }
  599. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  600. if (ret)
  601. goto fail;
  602. obj_priv = to_intel_bo(obj);
  603. offset = obj_priv->gtt_offset + args->offset;
  604. while (remain > 0) {
  605. /* Operation in this page
  606. *
  607. * page_base = page offset within aperture
  608. * page_offset = offset within page
  609. * page_length = bytes to copy for this page
  610. */
  611. page_base = (offset & ~(PAGE_SIZE-1));
  612. page_offset = offset & (PAGE_SIZE-1);
  613. page_length = remain;
  614. if ((page_offset + remain) > PAGE_SIZE)
  615. page_length = PAGE_SIZE - page_offset;
  616. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  617. page_offset, user_data, page_length);
  618. /* If we get a fault while copying data, then (presumably) our
  619. * source page isn't available. Return the error and we'll
  620. * retry in the slow path.
  621. */
  622. if (ret)
  623. goto fail;
  624. remain -= page_length;
  625. user_data += page_length;
  626. offset += page_length;
  627. }
  628. fail:
  629. i915_gem_object_unpin(obj);
  630. mutex_unlock(&dev->struct_mutex);
  631. return ret;
  632. }
  633. /**
  634. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  635. * the memory and maps it using kmap_atomic for copying.
  636. *
  637. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  638. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  639. */
  640. static int
  641. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  642. struct drm_i915_gem_pwrite *args,
  643. struct drm_file *file_priv)
  644. {
  645. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  646. drm_i915_private_t *dev_priv = dev->dev_private;
  647. ssize_t remain;
  648. loff_t gtt_page_base, offset;
  649. loff_t first_data_page, last_data_page, num_pages;
  650. loff_t pinned_pages, i;
  651. struct page **user_pages;
  652. struct mm_struct *mm = current->mm;
  653. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  654. int ret;
  655. uint64_t data_ptr = args->data_ptr;
  656. remain = args->size;
  657. /* Pin the user pages containing the data. We can't fault while
  658. * holding the struct mutex, and all of the pwrite implementations
  659. * want to hold it while dereferencing the user data.
  660. */
  661. first_data_page = data_ptr / PAGE_SIZE;
  662. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  663. num_pages = last_data_page - first_data_page + 1;
  664. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  665. if (user_pages == NULL)
  666. return -ENOMEM;
  667. down_read(&mm->mmap_sem);
  668. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  669. num_pages, 0, 0, user_pages, NULL);
  670. up_read(&mm->mmap_sem);
  671. if (pinned_pages < num_pages) {
  672. ret = -EFAULT;
  673. goto out_unpin_pages;
  674. }
  675. ret = i915_mutex_lock_interruptible(dev);
  676. if (ret)
  677. goto out_unpin_pages;
  678. ret = i915_gem_object_pin(obj, 0);
  679. if (ret)
  680. goto out_unlock;
  681. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  682. if (ret)
  683. goto out_unpin_object;
  684. obj_priv = to_intel_bo(obj);
  685. offset = obj_priv->gtt_offset + args->offset;
  686. while (remain > 0) {
  687. /* Operation in this page
  688. *
  689. * gtt_page_base = page offset within aperture
  690. * gtt_page_offset = offset within page in aperture
  691. * data_page_index = page number in get_user_pages return
  692. * data_page_offset = offset with data_page_index page.
  693. * page_length = bytes to copy for this page
  694. */
  695. gtt_page_base = offset & PAGE_MASK;
  696. gtt_page_offset = offset & ~PAGE_MASK;
  697. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  698. data_page_offset = data_ptr & ~PAGE_MASK;
  699. page_length = remain;
  700. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  701. page_length = PAGE_SIZE - gtt_page_offset;
  702. if ((data_page_offset + page_length) > PAGE_SIZE)
  703. page_length = PAGE_SIZE - data_page_offset;
  704. slow_kernel_write(dev_priv->mm.gtt_mapping,
  705. gtt_page_base, gtt_page_offset,
  706. user_pages[data_page_index],
  707. data_page_offset,
  708. page_length);
  709. remain -= page_length;
  710. offset += page_length;
  711. data_ptr += page_length;
  712. }
  713. out_unpin_object:
  714. i915_gem_object_unpin(obj);
  715. out_unlock:
  716. mutex_unlock(&dev->struct_mutex);
  717. out_unpin_pages:
  718. for (i = 0; i < pinned_pages; i++)
  719. page_cache_release(user_pages[i]);
  720. drm_free_large(user_pages);
  721. return ret;
  722. }
  723. /**
  724. * This is the fast shmem pwrite path, which attempts to directly
  725. * copy_from_user into the kmapped pages backing the object.
  726. */
  727. static int
  728. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  729. struct drm_i915_gem_pwrite *args,
  730. struct drm_file *file_priv)
  731. {
  732. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  733. ssize_t remain;
  734. loff_t offset, page_base;
  735. char __user *user_data;
  736. int page_offset, page_length;
  737. int ret;
  738. user_data = (char __user *) (uintptr_t) args->data_ptr;
  739. remain = args->size;
  740. ret = i915_mutex_lock_interruptible(dev);
  741. if (ret)
  742. return ret;
  743. ret = i915_gem_object_get_pages(obj, 0);
  744. if (ret != 0)
  745. goto fail_unlock;
  746. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  747. if (ret != 0)
  748. goto fail_put_pages;
  749. obj_priv = to_intel_bo(obj);
  750. offset = args->offset;
  751. obj_priv->dirty = 1;
  752. while (remain > 0) {
  753. /* Operation in this page
  754. *
  755. * page_base = page offset within aperture
  756. * page_offset = offset within page
  757. * page_length = bytes to copy for this page
  758. */
  759. page_base = (offset & ~(PAGE_SIZE-1));
  760. page_offset = offset & (PAGE_SIZE-1);
  761. page_length = remain;
  762. if ((page_offset + remain) > PAGE_SIZE)
  763. page_length = PAGE_SIZE - page_offset;
  764. ret = fast_shmem_write(obj_priv->pages,
  765. page_base, page_offset,
  766. user_data, page_length);
  767. if (ret)
  768. goto fail_put_pages;
  769. remain -= page_length;
  770. user_data += page_length;
  771. offset += page_length;
  772. }
  773. fail_put_pages:
  774. i915_gem_object_put_pages(obj);
  775. fail_unlock:
  776. mutex_unlock(&dev->struct_mutex);
  777. return ret;
  778. }
  779. /**
  780. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  781. * the memory and maps it using kmap_atomic for copying.
  782. *
  783. * This avoids taking mmap_sem for faulting on the user's address while the
  784. * struct_mutex is held.
  785. */
  786. static int
  787. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  788. struct drm_i915_gem_pwrite *args,
  789. struct drm_file *file_priv)
  790. {
  791. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  792. struct mm_struct *mm = current->mm;
  793. struct page **user_pages;
  794. ssize_t remain;
  795. loff_t offset, pinned_pages, i;
  796. loff_t first_data_page, last_data_page, num_pages;
  797. int shmem_page_index, shmem_page_offset;
  798. int data_page_index, data_page_offset;
  799. int page_length;
  800. int ret;
  801. uint64_t data_ptr = args->data_ptr;
  802. int do_bit17_swizzling;
  803. remain = args->size;
  804. /* Pin the user pages containing the data. We can't fault while
  805. * holding the struct mutex, and all of the pwrite implementations
  806. * want to hold it while dereferencing the user data.
  807. */
  808. first_data_page = data_ptr / PAGE_SIZE;
  809. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  810. num_pages = last_data_page - first_data_page + 1;
  811. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  812. if (user_pages == NULL)
  813. return -ENOMEM;
  814. down_read(&mm->mmap_sem);
  815. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  816. num_pages, 0, 0, user_pages, NULL);
  817. up_read(&mm->mmap_sem);
  818. if (pinned_pages < num_pages) {
  819. ret = -EFAULT;
  820. goto fail_put_user_pages;
  821. }
  822. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  823. ret = i915_mutex_lock_interruptible(dev);
  824. if (ret)
  825. goto fail_put_user_pages;
  826. ret = i915_gem_object_get_pages_or_evict(obj);
  827. if (ret)
  828. goto fail_unlock;
  829. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  830. if (ret != 0)
  831. goto fail_put_pages;
  832. obj_priv = to_intel_bo(obj);
  833. offset = args->offset;
  834. obj_priv->dirty = 1;
  835. while (remain > 0) {
  836. /* Operation in this page
  837. *
  838. * shmem_page_index = page number within shmem file
  839. * shmem_page_offset = offset within page in shmem file
  840. * data_page_index = page number in get_user_pages return
  841. * data_page_offset = offset with data_page_index page.
  842. * page_length = bytes to copy for this page
  843. */
  844. shmem_page_index = offset / PAGE_SIZE;
  845. shmem_page_offset = offset & ~PAGE_MASK;
  846. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  847. data_page_offset = data_ptr & ~PAGE_MASK;
  848. page_length = remain;
  849. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  850. page_length = PAGE_SIZE - shmem_page_offset;
  851. if ((data_page_offset + page_length) > PAGE_SIZE)
  852. page_length = PAGE_SIZE - data_page_offset;
  853. if (do_bit17_swizzling) {
  854. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  855. shmem_page_offset,
  856. user_pages[data_page_index],
  857. data_page_offset,
  858. page_length,
  859. 0);
  860. } else {
  861. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  862. shmem_page_offset,
  863. user_pages[data_page_index],
  864. data_page_offset,
  865. page_length);
  866. }
  867. remain -= page_length;
  868. data_ptr += page_length;
  869. offset += page_length;
  870. }
  871. fail_put_pages:
  872. i915_gem_object_put_pages(obj);
  873. fail_unlock:
  874. mutex_unlock(&dev->struct_mutex);
  875. fail_put_user_pages:
  876. for (i = 0; i < pinned_pages; i++)
  877. page_cache_release(user_pages[i]);
  878. drm_free_large(user_pages);
  879. return ret;
  880. }
  881. /**
  882. * Writes data to the object referenced by handle.
  883. *
  884. * On error, the contents of the buffer that were to be modified are undefined.
  885. */
  886. int
  887. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  888. struct drm_file *file_priv)
  889. {
  890. struct drm_i915_gem_pwrite *args = data;
  891. struct drm_gem_object *obj;
  892. struct drm_i915_gem_object *obj_priv;
  893. int ret = 0;
  894. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  895. if (obj == NULL)
  896. return -ENOENT;
  897. obj_priv = to_intel_bo(obj);
  898. /* Bounds check destination. */
  899. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  900. ret = -EINVAL;
  901. goto out;
  902. }
  903. if (args->size == 0)
  904. goto out;
  905. if (!access_ok(VERIFY_READ,
  906. (char __user *)(uintptr_t)args->data_ptr,
  907. args->size)) {
  908. ret = -EFAULT;
  909. goto out;
  910. }
  911. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  912. args->size);
  913. if (ret) {
  914. ret = -EFAULT;
  915. goto out;
  916. }
  917. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  918. * it would end up going through the fenced access, and we'll get
  919. * different detiling behavior between reading and writing.
  920. * pread/pwrite currently are reading and writing from the CPU
  921. * perspective, requiring manual detiling by the client.
  922. */
  923. if (obj_priv->phys_obj)
  924. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  925. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  926. obj_priv->gtt_space &&
  927. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  928. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  929. if (ret == -EFAULT) {
  930. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  931. file_priv);
  932. }
  933. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  934. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  935. } else {
  936. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  937. if (ret == -EFAULT) {
  938. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  939. file_priv);
  940. }
  941. }
  942. #if WATCH_PWRITE
  943. if (ret)
  944. DRM_INFO("pwrite failed %d\n", ret);
  945. #endif
  946. out:
  947. drm_gem_object_unreference_unlocked(obj);
  948. return ret;
  949. }
  950. /**
  951. * Called when user space prepares to use an object with the CPU, either
  952. * through the mmap ioctl's mapping or a GTT mapping.
  953. */
  954. int
  955. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  956. struct drm_file *file_priv)
  957. {
  958. struct drm_i915_private *dev_priv = dev->dev_private;
  959. struct drm_i915_gem_set_domain *args = data;
  960. struct drm_gem_object *obj;
  961. struct drm_i915_gem_object *obj_priv;
  962. uint32_t read_domains = args->read_domains;
  963. uint32_t write_domain = args->write_domain;
  964. int ret;
  965. if (!(dev->driver->driver_features & DRIVER_GEM))
  966. return -ENODEV;
  967. /* Only handle setting domains to types used by the CPU. */
  968. if (write_domain & I915_GEM_GPU_DOMAINS)
  969. return -EINVAL;
  970. if (read_domains & I915_GEM_GPU_DOMAINS)
  971. return -EINVAL;
  972. /* Having something in the write domain implies it's in the read
  973. * domain, and only that read domain. Enforce that in the request.
  974. */
  975. if (write_domain != 0 && read_domains != write_domain)
  976. return -EINVAL;
  977. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  978. if (obj == NULL)
  979. return -ENOENT;
  980. obj_priv = to_intel_bo(obj);
  981. ret = i915_mutex_lock_interruptible(dev);
  982. if (ret) {
  983. drm_gem_object_unreference_unlocked(obj);
  984. return ret;
  985. }
  986. intel_mark_busy(dev, obj);
  987. if (read_domains & I915_GEM_DOMAIN_GTT) {
  988. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  989. /* Update the LRU on the fence for the CPU access that's
  990. * about to occur.
  991. */
  992. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  993. struct drm_i915_fence_reg *reg =
  994. &dev_priv->fence_regs[obj_priv->fence_reg];
  995. list_move_tail(&reg->lru_list,
  996. &dev_priv->mm.fence_list);
  997. }
  998. /* Silently promote "you're not bound, there was nothing to do"
  999. * to success, since the client was just asking us to
  1000. * make sure everything was done.
  1001. */
  1002. if (ret == -EINVAL)
  1003. ret = 0;
  1004. } else {
  1005. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  1006. }
  1007. /* Maintain LRU order of "inactive" objects */
  1008. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  1009. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1010. drm_gem_object_unreference(obj);
  1011. mutex_unlock(&dev->struct_mutex);
  1012. return ret;
  1013. }
  1014. /**
  1015. * Called when user space has done writes to this buffer
  1016. */
  1017. int
  1018. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  1019. struct drm_file *file_priv)
  1020. {
  1021. struct drm_i915_gem_sw_finish *args = data;
  1022. struct drm_gem_object *obj;
  1023. int ret = 0;
  1024. if (!(dev->driver->driver_features & DRIVER_GEM))
  1025. return -ENODEV;
  1026. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1027. if (obj == NULL)
  1028. return -ENOENT;
  1029. ret = i915_mutex_lock_interruptible(dev);
  1030. if (ret) {
  1031. drm_gem_object_unreference_unlocked(obj);
  1032. return ret;
  1033. }
  1034. /* Pinned buffers may be scanout, so flush the cache */
  1035. if (to_intel_bo(obj)->pin_count)
  1036. i915_gem_object_flush_cpu_write_domain(obj);
  1037. drm_gem_object_unreference(obj);
  1038. mutex_unlock(&dev->struct_mutex);
  1039. return ret;
  1040. }
  1041. /**
  1042. * Maps the contents of an object, returning the address it is mapped
  1043. * into.
  1044. *
  1045. * While the mapping holds a reference on the contents of the object, it doesn't
  1046. * imply a ref on the object itself.
  1047. */
  1048. int
  1049. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1050. struct drm_file *file_priv)
  1051. {
  1052. struct drm_i915_gem_mmap *args = data;
  1053. struct drm_gem_object *obj;
  1054. loff_t offset;
  1055. unsigned long addr;
  1056. if (!(dev->driver->driver_features & DRIVER_GEM))
  1057. return -ENODEV;
  1058. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1059. if (obj == NULL)
  1060. return -ENOENT;
  1061. offset = args->offset;
  1062. down_write(&current->mm->mmap_sem);
  1063. addr = do_mmap(obj->filp, 0, args->size,
  1064. PROT_READ | PROT_WRITE, MAP_SHARED,
  1065. args->offset);
  1066. up_write(&current->mm->mmap_sem);
  1067. drm_gem_object_unreference_unlocked(obj);
  1068. if (IS_ERR((void *)addr))
  1069. return addr;
  1070. args->addr_ptr = (uint64_t) addr;
  1071. return 0;
  1072. }
  1073. /**
  1074. * i915_gem_fault - fault a page into the GTT
  1075. * vma: VMA in question
  1076. * vmf: fault info
  1077. *
  1078. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1079. * from userspace. The fault handler takes care of binding the object to
  1080. * the GTT (if needed), allocating and programming a fence register (again,
  1081. * only if needed based on whether the old reg is still valid or the object
  1082. * is tiled) and inserting a new PTE into the faulting process.
  1083. *
  1084. * Note that the faulting process may involve evicting existing objects
  1085. * from the GTT and/or fence registers to make room. So performance may
  1086. * suffer if the GTT working set is large or there are few fence registers
  1087. * left.
  1088. */
  1089. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1090. {
  1091. struct drm_gem_object *obj = vma->vm_private_data;
  1092. struct drm_device *dev = obj->dev;
  1093. drm_i915_private_t *dev_priv = dev->dev_private;
  1094. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1095. pgoff_t page_offset;
  1096. unsigned long pfn;
  1097. int ret = 0;
  1098. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1099. /* We don't use vmf->pgoff since that has the fake offset */
  1100. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1101. PAGE_SHIFT;
  1102. /* Now bind it into the GTT if needed */
  1103. mutex_lock(&dev->struct_mutex);
  1104. if (!obj_priv->gtt_space) {
  1105. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1106. if (ret)
  1107. goto unlock;
  1108. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1109. if (ret)
  1110. goto unlock;
  1111. }
  1112. /* Need a new fence register? */
  1113. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1114. ret = i915_gem_object_get_fence_reg(obj, true);
  1115. if (ret)
  1116. goto unlock;
  1117. }
  1118. if (i915_gem_object_is_inactive(obj_priv))
  1119. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1120. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1121. page_offset;
  1122. /* Finally, remap it using the new GTT offset */
  1123. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1124. unlock:
  1125. mutex_unlock(&dev->struct_mutex);
  1126. switch (ret) {
  1127. case 0:
  1128. case -ERESTARTSYS:
  1129. return VM_FAULT_NOPAGE;
  1130. case -ENOMEM:
  1131. case -EAGAIN:
  1132. return VM_FAULT_OOM;
  1133. default:
  1134. return VM_FAULT_SIGBUS;
  1135. }
  1136. }
  1137. /**
  1138. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1139. * @obj: obj in question
  1140. *
  1141. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1142. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1143. * up the object based on the offset and sets up the various memory mapping
  1144. * structures.
  1145. *
  1146. * This routine allocates and attaches a fake offset for @obj.
  1147. */
  1148. static int
  1149. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1150. {
  1151. struct drm_device *dev = obj->dev;
  1152. struct drm_gem_mm *mm = dev->mm_private;
  1153. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1154. struct drm_map_list *list;
  1155. struct drm_local_map *map;
  1156. int ret = 0;
  1157. /* Set the object up for mmap'ing */
  1158. list = &obj->map_list;
  1159. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1160. if (!list->map)
  1161. return -ENOMEM;
  1162. map = list->map;
  1163. map->type = _DRM_GEM;
  1164. map->size = obj->size;
  1165. map->handle = obj;
  1166. /* Get a DRM GEM mmap offset allocated... */
  1167. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1168. obj->size / PAGE_SIZE, 0, 0);
  1169. if (!list->file_offset_node) {
  1170. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1171. ret = -ENOSPC;
  1172. goto out_free_list;
  1173. }
  1174. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1175. obj->size / PAGE_SIZE, 0);
  1176. if (!list->file_offset_node) {
  1177. ret = -ENOMEM;
  1178. goto out_free_list;
  1179. }
  1180. list->hash.key = list->file_offset_node->start;
  1181. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1182. if (ret) {
  1183. DRM_ERROR("failed to add to map hash\n");
  1184. goto out_free_mm;
  1185. }
  1186. /* By now we should be all set, any drm_mmap request on the offset
  1187. * below will get to our mmap & fault handler */
  1188. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1189. return 0;
  1190. out_free_mm:
  1191. drm_mm_put_block(list->file_offset_node);
  1192. out_free_list:
  1193. kfree(list->map);
  1194. return ret;
  1195. }
  1196. /**
  1197. * i915_gem_release_mmap - remove physical page mappings
  1198. * @obj: obj in question
  1199. *
  1200. * Preserve the reservation of the mmapping with the DRM core code, but
  1201. * relinquish ownership of the pages back to the system.
  1202. *
  1203. * It is vital that we remove the page mapping if we have mapped a tiled
  1204. * object through the GTT and then lose the fence register due to
  1205. * resource pressure. Similarly if the object has been moved out of the
  1206. * aperture, than pages mapped into userspace must be revoked. Removing the
  1207. * mapping will then trigger a page fault on the next user access, allowing
  1208. * fixup by i915_gem_fault().
  1209. */
  1210. void
  1211. i915_gem_release_mmap(struct drm_gem_object *obj)
  1212. {
  1213. struct drm_device *dev = obj->dev;
  1214. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1215. if (dev->dev_mapping)
  1216. unmap_mapping_range(dev->dev_mapping,
  1217. obj_priv->mmap_offset, obj->size, 1);
  1218. }
  1219. static void
  1220. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1221. {
  1222. struct drm_device *dev = obj->dev;
  1223. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1224. struct drm_gem_mm *mm = dev->mm_private;
  1225. struct drm_map_list *list;
  1226. list = &obj->map_list;
  1227. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1228. if (list->file_offset_node) {
  1229. drm_mm_put_block(list->file_offset_node);
  1230. list->file_offset_node = NULL;
  1231. }
  1232. if (list->map) {
  1233. kfree(list->map);
  1234. list->map = NULL;
  1235. }
  1236. obj_priv->mmap_offset = 0;
  1237. }
  1238. /**
  1239. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1240. * @obj: object to check
  1241. *
  1242. * Return the required GTT alignment for an object, taking into account
  1243. * potential fence register mapping if needed.
  1244. */
  1245. static uint32_t
  1246. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1247. {
  1248. struct drm_device *dev = obj->dev;
  1249. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1250. int start, i;
  1251. /*
  1252. * Minimum alignment is 4k (GTT page size), but might be greater
  1253. * if a fence register is needed for the object.
  1254. */
  1255. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1256. return 4096;
  1257. /*
  1258. * Previous chips need to be aligned to the size of the smallest
  1259. * fence register that can contain the object.
  1260. */
  1261. if (INTEL_INFO(dev)->gen == 3)
  1262. start = 1024*1024;
  1263. else
  1264. start = 512*1024;
  1265. for (i = start; i < obj->size; i <<= 1)
  1266. ;
  1267. return i;
  1268. }
  1269. /**
  1270. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1271. * @dev: DRM device
  1272. * @data: GTT mapping ioctl data
  1273. * @file_priv: GEM object info
  1274. *
  1275. * Simply returns the fake offset to userspace so it can mmap it.
  1276. * The mmap call will end up in drm_gem_mmap(), which will set things
  1277. * up so we can get faults in the handler above.
  1278. *
  1279. * The fault handler will take care of binding the object into the GTT
  1280. * (since it may have been evicted to make room for something), allocating
  1281. * a fence register, and mapping the appropriate aperture address into
  1282. * userspace.
  1283. */
  1284. int
  1285. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1286. struct drm_file *file_priv)
  1287. {
  1288. struct drm_i915_gem_mmap_gtt *args = data;
  1289. struct drm_gem_object *obj;
  1290. struct drm_i915_gem_object *obj_priv;
  1291. int ret;
  1292. if (!(dev->driver->driver_features & DRIVER_GEM))
  1293. return -ENODEV;
  1294. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1295. if (obj == NULL)
  1296. return -ENOENT;
  1297. ret = i915_mutex_lock_interruptible(dev);
  1298. if (ret) {
  1299. drm_gem_object_unreference_unlocked(obj);
  1300. return ret;
  1301. }
  1302. obj_priv = to_intel_bo(obj);
  1303. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1304. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1305. drm_gem_object_unreference(obj);
  1306. mutex_unlock(&dev->struct_mutex);
  1307. return -EINVAL;
  1308. }
  1309. if (!obj_priv->mmap_offset) {
  1310. ret = i915_gem_create_mmap_offset(obj);
  1311. if (ret) {
  1312. drm_gem_object_unreference(obj);
  1313. mutex_unlock(&dev->struct_mutex);
  1314. return ret;
  1315. }
  1316. }
  1317. args->offset = obj_priv->mmap_offset;
  1318. /*
  1319. * Pull it into the GTT so that we have a page list (makes the
  1320. * initial fault faster and any subsequent flushing possible).
  1321. */
  1322. if (!obj_priv->agp_mem) {
  1323. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1324. if (ret) {
  1325. drm_gem_object_unreference(obj);
  1326. mutex_unlock(&dev->struct_mutex);
  1327. return ret;
  1328. }
  1329. }
  1330. drm_gem_object_unreference(obj);
  1331. mutex_unlock(&dev->struct_mutex);
  1332. return 0;
  1333. }
  1334. static void
  1335. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1336. {
  1337. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1338. int page_count = obj->size / PAGE_SIZE;
  1339. int i;
  1340. BUG_ON(obj_priv->pages_refcount == 0);
  1341. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1342. if (--obj_priv->pages_refcount != 0)
  1343. return;
  1344. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1345. i915_gem_object_save_bit_17_swizzle(obj);
  1346. if (obj_priv->madv == I915_MADV_DONTNEED)
  1347. obj_priv->dirty = 0;
  1348. for (i = 0; i < page_count; i++) {
  1349. if (obj_priv->dirty)
  1350. set_page_dirty(obj_priv->pages[i]);
  1351. if (obj_priv->madv == I915_MADV_WILLNEED)
  1352. mark_page_accessed(obj_priv->pages[i]);
  1353. page_cache_release(obj_priv->pages[i]);
  1354. }
  1355. obj_priv->dirty = 0;
  1356. drm_free_large(obj_priv->pages);
  1357. obj_priv->pages = NULL;
  1358. }
  1359. static uint32_t
  1360. i915_gem_next_request_seqno(struct drm_device *dev,
  1361. struct intel_ring_buffer *ring)
  1362. {
  1363. drm_i915_private_t *dev_priv = dev->dev_private;
  1364. ring->outstanding_lazy_request = true;
  1365. return dev_priv->next_seqno;
  1366. }
  1367. static void
  1368. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1369. struct intel_ring_buffer *ring)
  1370. {
  1371. struct drm_device *dev = obj->dev;
  1372. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1373. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1374. BUG_ON(ring == NULL);
  1375. obj_priv->ring = ring;
  1376. /* Add a reference if we're newly entering the active list. */
  1377. if (!obj_priv->active) {
  1378. drm_gem_object_reference(obj);
  1379. obj_priv->active = 1;
  1380. }
  1381. /* Move from whatever list we were on to the tail of execution. */
  1382. list_move_tail(&obj_priv->list, &ring->active_list);
  1383. obj_priv->last_rendering_seqno = seqno;
  1384. }
  1385. static void
  1386. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1387. {
  1388. struct drm_device *dev = obj->dev;
  1389. drm_i915_private_t *dev_priv = dev->dev_private;
  1390. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1391. BUG_ON(!obj_priv->active);
  1392. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1393. obj_priv->last_rendering_seqno = 0;
  1394. }
  1395. /* Immediately discard the backing storage */
  1396. static void
  1397. i915_gem_object_truncate(struct drm_gem_object *obj)
  1398. {
  1399. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1400. struct inode *inode;
  1401. /* Our goal here is to return as much of the memory as
  1402. * is possible back to the system as we are called from OOM.
  1403. * To do this we must instruct the shmfs to drop all of its
  1404. * backing pages, *now*. Here we mirror the actions taken
  1405. * when by shmem_delete_inode() to release the backing store.
  1406. */
  1407. inode = obj->filp->f_path.dentry->d_inode;
  1408. truncate_inode_pages(inode->i_mapping, 0);
  1409. if (inode->i_op->truncate_range)
  1410. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1411. obj_priv->madv = __I915_MADV_PURGED;
  1412. }
  1413. static inline int
  1414. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1415. {
  1416. return obj_priv->madv == I915_MADV_DONTNEED;
  1417. }
  1418. static void
  1419. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1420. {
  1421. struct drm_device *dev = obj->dev;
  1422. drm_i915_private_t *dev_priv = dev->dev_private;
  1423. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1424. if (obj_priv->pin_count != 0)
  1425. list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
  1426. else
  1427. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1428. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1429. obj_priv->last_rendering_seqno = 0;
  1430. obj_priv->ring = NULL;
  1431. if (obj_priv->active) {
  1432. obj_priv->active = 0;
  1433. drm_gem_object_unreference(obj);
  1434. }
  1435. WARN_ON(i915_verify_lists(dev));
  1436. }
  1437. static void
  1438. i915_gem_process_flushing_list(struct drm_device *dev,
  1439. uint32_t flush_domains,
  1440. struct intel_ring_buffer *ring)
  1441. {
  1442. drm_i915_private_t *dev_priv = dev->dev_private;
  1443. struct drm_i915_gem_object *obj_priv, *next;
  1444. list_for_each_entry_safe(obj_priv, next,
  1445. &dev_priv->mm.gpu_write_list,
  1446. gpu_write_list) {
  1447. struct drm_gem_object *obj = &obj_priv->base;
  1448. if (obj->write_domain & flush_domains &&
  1449. obj_priv->ring == ring) {
  1450. uint32_t old_write_domain = obj->write_domain;
  1451. obj->write_domain = 0;
  1452. list_del_init(&obj_priv->gpu_write_list);
  1453. i915_gem_object_move_to_active(obj, ring);
  1454. /* update the fence lru list */
  1455. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1456. struct drm_i915_fence_reg *reg =
  1457. &dev_priv->fence_regs[obj_priv->fence_reg];
  1458. list_move_tail(&reg->lru_list,
  1459. &dev_priv->mm.fence_list);
  1460. }
  1461. trace_i915_gem_object_change_domain(obj,
  1462. obj->read_domains,
  1463. old_write_domain);
  1464. }
  1465. }
  1466. }
  1467. uint32_t
  1468. i915_add_request(struct drm_device *dev,
  1469. struct drm_file *file,
  1470. struct drm_i915_gem_request *request,
  1471. struct intel_ring_buffer *ring)
  1472. {
  1473. drm_i915_private_t *dev_priv = dev->dev_private;
  1474. struct drm_i915_file_private *file_priv = NULL;
  1475. uint32_t seqno;
  1476. int was_empty;
  1477. if (file != NULL)
  1478. file_priv = file->driver_priv;
  1479. if (request == NULL) {
  1480. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1481. if (request == NULL)
  1482. return 0;
  1483. }
  1484. seqno = ring->add_request(dev, ring, 0);
  1485. ring->outstanding_lazy_request = false;
  1486. request->seqno = seqno;
  1487. request->ring = ring;
  1488. request->emitted_jiffies = jiffies;
  1489. was_empty = list_empty(&ring->request_list);
  1490. list_add_tail(&request->list, &ring->request_list);
  1491. if (file_priv) {
  1492. spin_lock(&file_priv->mm.lock);
  1493. request->file_priv = file_priv;
  1494. list_add_tail(&request->client_list,
  1495. &file_priv->mm.request_list);
  1496. spin_unlock(&file_priv->mm.lock);
  1497. }
  1498. if (!dev_priv->mm.suspended) {
  1499. mod_timer(&dev_priv->hangcheck_timer,
  1500. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1501. if (was_empty)
  1502. queue_delayed_work(dev_priv->wq,
  1503. &dev_priv->mm.retire_work, HZ);
  1504. }
  1505. return seqno;
  1506. }
  1507. /**
  1508. * Command execution barrier
  1509. *
  1510. * Ensures that all commands in the ring are finished
  1511. * before signalling the CPU
  1512. */
  1513. static void
  1514. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1515. {
  1516. uint32_t flush_domains = 0;
  1517. /* The sampler always gets flushed on i965 (sigh) */
  1518. if (INTEL_INFO(dev)->gen >= 4)
  1519. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1520. ring->flush(dev, ring,
  1521. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1522. }
  1523. static inline void
  1524. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1525. {
  1526. struct drm_i915_file_private *file_priv = request->file_priv;
  1527. if (!file_priv)
  1528. return;
  1529. spin_lock(&file_priv->mm.lock);
  1530. list_del(&request->client_list);
  1531. request->file_priv = NULL;
  1532. spin_unlock(&file_priv->mm.lock);
  1533. }
  1534. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1535. struct intel_ring_buffer *ring)
  1536. {
  1537. while (!list_empty(&ring->request_list)) {
  1538. struct drm_i915_gem_request *request;
  1539. request = list_first_entry(&ring->request_list,
  1540. struct drm_i915_gem_request,
  1541. list);
  1542. list_del(&request->list);
  1543. i915_gem_request_remove_from_client(request);
  1544. kfree(request);
  1545. }
  1546. while (!list_empty(&ring->active_list)) {
  1547. struct drm_i915_gem_object *obj_priv;
  1548. obj_priv = list_first_entry(&ring->active_list,
  1549. struct drm_i915_gem_object,
  1550. list);
  1551. obj_priv->base.write_domain = 0;
  1552. list_del_init(&obj_priv->gpu_write_list);
  1553. i915_gem_object_move_to_inactive(&obj_priv->base);
  1554. }
  1555. }
  1556. void i915_gem_reset(struct drm_device *dev)
  1557. {
  1558. struct drm_i915_private *dev_priv = dev->dev_private;
  1559. struct drm_i915_gem_object *obj_priv;
  1560. int i;
  1561. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1562. if (HAS_BSD(dev))
  1563. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1564. /* Remove anything from the flushing lists. The GPU cache is likely
  1565. * to be lost on reset along with the data, so simply move the
  1566. * lost bo to the inactive list.
  1567. */
  1568. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1569. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1570. struct drm_i915_gem_object,
  1571. list);
  1572. obj_priv->base.write_domain = 0;
  1573. list_del_init(&obj_priv->gpu_write_list);
  1574. i915_gem_object_move_to_inactive(&obj_priv->base);
  1575. }
  1576. /* Move everything out of the GPU domains to ensure we do any
  1577. * necessary invalidation upon reuse.
  1578. */
  1579. list_for_each_entry(obj_priv,
  1580. &dev_priv->mm.inactive_list,
  1581. list)
  1582. {
  1583. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1584. }
  1585. /* The fence registers are invalidated so clear them out */
  1586. for (i = 0; i < 16; i++) {
  1587. struct drm_i915_fence_reg *reg;
  1588. reg = &dev_priv->fence_regs[i];
  1589. if (!reg->obj)
  1590. continue;
  1591. i915_gem_clear_fence_reg(reg->obj);
  1592. }
  1593. }
  1594. /**
  1595. * This function clears the request list as sequence numbers are passed.
  1596. */
  1597. static void
  1598. i915_gem_retire_requests_ring(struct drm_device *dev,
  1599. struct intel_ring_buffer *ring)
  1600. {
  1601. drm_i915_private_t *dev_priv = dev->dev_private;
  1602. uint32_t seqno;
  1603. if (!ring->status_page.page_addr ||
  1604. list_empty(&ring->request_list))
  1605. return;
  1606. WARN_ON(i915_verify_lists(dev));
  1607. seqno = ring->get_seqno(dev, ring);
  1608. while (!list_empty(&ring->request_list)) {
  1609. struct drm_i915_gem_request *request;
  1610. request = list_first_entry(&ring->request_list,
  1611. struct drm_i915_gem_request,
  1612. list);
  1613. if (!i915_seqno_passed(seqno, request->seqno))
  1614. break;
  1615. trace_i915_gem_request_retire(dev, request->seqno);
  1616. list_del(&request->list);
  1617. i915_gem_request_remove_from_client(request);
  1618. kfree(request);
  1619. }
  1620. /* Move any buffers on the active list that are no longer referenced
  1621. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1622. */
  1623. while (!list_empty(&ring->active_list)) {
  1624. struct drm_gem_object *obj;
  1625. struct drm_i915_gem_object *obj_priv;
  1626. obj_priv = list_first_entry(&ring->active_list,
  1627. struct drm_i915_gem_object,
  1628. list);
  1629. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1630. break;
  1631. obj = &obj_priv->base;
  1632. if (obj->write_domain != 0)
  1633. i915_gem_object_move_to_flushing(obj);
  1634. else
  1635. i915_gem_object_move_to_inactive(obj);
  1636. }
  1637. if (unlikely (dev_priv->trace_irq_seqno &&
  1638. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1639. ring->user_irq_put(dev, ring);
  1640. dev_priv->trace_irq_seqno = 0;
  1641. }
  1642. WARN_ON(i915_verify_lists(dev));
  1643. }
  1644. void
  1645. i915_gem_retire_requests(struct drm_device *dev)
  1646. {
  1647. drm_i915_private_t *dev_priv = dev->dev_private;
  1648. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1649. struct drm_i915_gem_object *obj_priv, *tmp;
  1650. /* We must be careful that during unbind() we do not
  1651. * accidentally infinitely recurse into retire requests.
  1652. * Currently:
  1653. * retire -> free -> unbind -> wait -> retire_ring
  1654. */
  1655. list_for_each_entry_safe(obj_priv, tmp,
  1656. &dev_priv->mm.deferred_free_list,
  1657. list)
  1658. i915_gem_free_object_tail(&obj_priv->base);
  1659. }
  1660. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1661. if (HAS_BSD(dev))
  1662. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1663. }
  1664. static void
  1665. i915_gem_retire_work_handler(struct work_struct *work)
  1666. {
  1667. drm_i915_private_t *dev_priv;
  1668. struct drm_device *dev;
  1669. dev_priv = container_of(work, drm_i915_private_t,
  1670. mm.retire_work.work);
  1671. dev = dev_priv->dev;
  1672. /* Come back later if the device is busy... */
  1673. if (!mutex_trylock(&dev->struct_mutex)) {
  1674. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1675. return;
  1676. }
  1677. i915_gem_retire_requests(dev);
  1678. if (!dev_priv->mm.suspended &&
  1679. (!list_empty(&dev_priv->render_ring.request_list) ||
  1680. (HAS_BSD(dev) &&
  1681. !list_empty(&dev_priv->bsd_ring.request_list))))
  1682. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1683. mutex_unlock(&dev->struct_mutex);
  1684. }
  1685. int
  1686. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1687. bool interruptible, struct intel_ring_buffer *ring)
  1688. {
  1689. drm_i915_private_t *dev_priv = dev->dev_private;
  1690. u32 ier;
  1691. int ret = 0;
  1692. BUG_ON(seqno == 0);
  1693. if (atomic_read(&dev_priv->mm.wedged))
  1694. return -EAGAIN;
  1695. if (ring->outstanding_lazy_request) {
  1696. seqno = i915_add_request(dev, NULL, NULL, ring);
  1697. if (seqno == 0)
  1698. return -ENOMEM;
  1699. }
  1700. BUG_ON(seqno == dev_priv->next_seqno);
  1701. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1702. if (HAS_PCH_SPLIT(dev))
  1703. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1704. else
  1705. ier = I915_READ(IER);
  1706. if (!ier) {
  1707. DRM_ERROR("something (likely vbetool) disabled "
  1708. "interrupts, re-enabling\n");
  1709. i915_driver_irq_preinstall(dev);
  1710. i915_driver_irq_postinstall(dev);
  1711. }
  1712. trace_i915_gem_request_wait_begin(dev, seqno);
  1713. ring->waiting_gem_seqno = seqno;
  1714. ring->user_irq_get(dev, ring);
  1715. if (interruptible)
  1716. ret = wait_event_interruptible(ring->irq_queue,
  1717. i915_seqno_passed(
  1718. ring->get_seqno(dev, ring), seqno)
  1719. || atomic_read(&dev_priv->mm.wedged));
  1720. else
  1721. wait_event(ring->irq_queue,
  1722. i915_seqno_passed(
  1723. ring->get_seqno(dev, ring), seqno)
  1724. || atomic_read(&dev_priv->mm.wedged));
  1725. ring->user_irq_put(dev, ring);
  1726. ring->waiting_gem_seqno = 0;
  1727. trace_i915_gem_request_wait_end(dev, seqno);
  1728. }
  1729. if (atomic_read(&dev_priv->mm.wedged))
  1730. ret = -EAGAIN;
  1731. if (ret && ret != -ERESTARTSYS)
  1732. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1733. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1734. dev_priv->next_seqno);
  1735. /* Directly dispatch request retiring. While we have the work queue
  1736. * to handle this, the waiter on a request often wants an associated
  1737. * buffer to have made it to the inactive list, and we would need
  1738. * a separate wait queue to handle that.
  1739. */
  1740. if (ret == 0)
  1741. i915_gem_retire_requests_ring(dev, ring);
  1742. return ret;
  1743. }
  1744. /**
  1745. * Waits for a sequence number to be signaled, and cleans up the
  1746. * request and object lists appropriately for that event.
  1747. */
  1748. static int
  1749. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1750. struct intel_ring_buffer *ring)
  1751. {
  1752. return i915_do_wait_request(dev, seqno, 1, ring);
  1753. }
  1754. static void
  1755. i915_gem_flush_ring(struct drm_device *dev,
  1756. struct drm_file *file_priv,
  1757. struct intel_ring_buffer *ring,
  1758. uint32_t invalidate_domains,
  1759. uint32_t flush_domains)
  1760. {
  1761. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1762. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1763. }
  1764. static void
  1765. i915_gem_flush(struct drm_device *dev,
  1766. struct drm_file *file_priv,
  1767. uint32_t invalidate_domains,
  1768. uint32_t flush_domains,
  1769. uint32_t flush_rings)
  1770. {
  1771. drm_i915_private_t *dev_priv = dev->dev_private;
  1772. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1773. drm_agp_chipset_flush(dev);
  1774. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1775. if (flush_rings & RING_RENDER)
  1776. i915_gem_flush_ring(dev, file_priv,
  1777. &dev_priv->render_ring,
  1778. invalidate_domains, flush_domains);
  1779. if (flush_rings & RING_BSD)
  1780. i915_gem_flush_ring(dev, file_priv,
  1781. &dev_priv->bsd_ring,
  1782. invalidate_domains, flush_domains);
  1783. }
  1784. }
  1785. /**
  1786. * Ensures that all rendering to the object has completed and the object is
  1787. * safe to unbind from the GTT or access from the CPU.
  1788. */
  1789. static int
  1790. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1791. bool interruptible)
  1792. {
  1793. struct drm_device *dev = obj->dev;
  1794. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1795. int ret;
  1796. /* This function only exists to support waiting for existing rendering,
  1797. * not for emitting required flushes.
  1798. */
  1799. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1800. /* If there is rendering queued on the buffer being evicted, wait for
  1801. * it.
  1802. */
  1803. if (obj_priv->active) {
  1804. ret = i915_do_wait_request(dev,
  1805. obj_priv->last_rendering_seqno,
  1806. interruptible,
  1807. obj_priv->ring);
  1808. if (ret)
  1809. return ret;
  1810. }
  1811. return 0;
  1812. }
  1813. /**
  1814. * Unbinds an object from the GTT aperture.
  1815. */
  1816. int
  1817. i915_gem_object_unbind(struct drm_gem_object *obj)
  1818. {
  1819. struct drm_device *dev = obj->dev;
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1822. int ret = 0;
  1823. if (obj_priv->gtt_space == NULL)
  1824. return 0;
  1825. if (obj_priv->pin_count != 0) {
  1826. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1827. return -EINVAL;
  1828. }
  1829. /* blow away mappings if mapped through GTT */
  1830. i915_gem_release_mmap(obj);
  1831. /* Move the object to the CPU domain to ensure that
  1832. * any possible CPU writes while it's not in the GTT
  1833. * are flushed when we go to remap it. This will
  1834. * also ensure that all pending GPU writes are finished
  1835. * before we unbind.
  1836. */
  1837. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1838. if (ret == -ERESTARTSYS)
  1839. return ret;
  1840. /* Continue on if we fail due to EIO, the GPU is hung so we
  1841. * should be safe and we need to cleanup or else we might
  1842. * cause memory corruption through use-after-free.
  1843. */
  1844. if (ret) {
  1845. i915_gem_clflush_object(obj);
  1846. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1847. }
  1848. /* release the fence reg _after_ flushing */
  1849. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1850. i915_gem_clear_fence_reg(obj);
  1851. drm_unbind_agp(obj_priv->agp_mem);
  1852. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1853. i915_gem_object_put_pages(obj);
  1854. BUG_ON(obj_priv->pages_refcount);
  1855. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1856. list_del_init(&obj_priv->list);
  1857. drm_mm_put_block(obj_priv->gtt_space);
  1858. obj_priv->gtt_space = NULL;
  1859. if (i915_gem_object_is_purgeable(obj_priv))
  1860. i915_gem_object_truncate(obj);
  1861. trace_i915_gem_object_unbind(obj);
  1862. return ret;
  1863. }
  1864. static int i915_ring_idle(struct drm_device *dev,
  1865. struct intel_ring_buffer *ring)
  1866. {
  1867. i915_gem_flush_ring(dev, NULL, ring,
  1868. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1869. return i915_wait_request(dev,
  1870. i915_gem_next_request_seqno(dev, ring),
  1871. ring);
  1872. }
  1873. int
  1874. i915_gpu_idle(struct drm_device *dev)
  1875. {
  1876. drm_i915_private_t *dev_priv = dev->dev_private;
  1877. bool lists_empty;
  1878. int ret;
  1879. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1880. list_empty(&dev_priv->render_ring.active_list) &&
  1881. (!HAS_BSD(dev) ||
  1882. list_empty(&dev_priv->bsd_ring.active_list)));
  1883. if (lists_empty)
  1884. return 0;
  1885. /* Flush everything onto the inactive list. */
  1886. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1887. if (ret)
  1888. return ret;
  1889. if (HAS_BSD(dev)) {
  1890. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1891. if (ret)
  1892. return ret;
  1893. }
  1894. return 0;
  1895. }
  1896. static int
  1897. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1898. gfp_t gfpmask)
  1899. {
  1900. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1901. int page_count, i;
  1902. struct address_space *mapping;
  1903. struct inode *inode;
  1904. struct page *page;
  1905. BUG_ON(obj_priv->pages_refcount
  1906. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1907. if (obj_priv->pages_refcount++ != 0)
  1908. return 0;
  1909. /* Get the list of pages out of our struct file. They'll be pinned
  1910. * at this point until we release them.
  1911. */
  1912. page_count = obj->size / PAGE_SIZE;
  1913. BUG_ON(obj_priv->pages != NULL);
  1914. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1915. if (obj_priv->pages == NULL) {
  1916. obj_priv->pages_refcount--;
  1917. return -ENOMEM;
  1918. }
  1919. inode = obj->filp->f_path.dentry->d_inode;
  1920. mapping = inode->i_mapping;
  1921. for (i = 0; i < page_count; i++) {
  1922. page = read_cache_page_gfp(mapping, i,
  1923. GFP_HIGHUSER |
  1924. __GFP_COLD |
  1925. __GFP_RECLAIMABLE |
  1926. gfpmask);
  1927. if (IS_ERR(page))
  1928. goto err_pages;
  1929. obj_priv->pages[i] = page;
  1930. }
  1931. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1932. i915_gem_object_do_bit_17_swizzle(obj);
  1933. return 0;
  1934. err_pages:
  1935. while (i--)
  1936. page_cache_release(obj_priv->pages[i]);
  1937. drm_free_large(obj_priv->pages);
  1938. obj_priv->pages = NULL;
  1939. obj_priv->pages_refcount--;
  1940. return PTR_ERR(page);
  1941. }
  1942. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1943. {
  1944. struct drm_gem_object *obj = reg->obj;
  1945. struct drm_device *dev = obj->dev;
  1946. drm_i915_private_t *dev_priv = dev->dev_private;
  1947. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1948. int regnum = obj_priv->fence_reg;
  1949. uint64_t val;
  1950. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1951. 0xfffff000) << 32;
  1952. val |= obj_priv->gtt_offset & 0xfffff000;
  1953. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1954. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1955. if (obj_priv->tiling_mode == I915_TILING_Y)
  1956. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1957. val |= I965_FENCE_REG_VALID;
  1958. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1959. }
  1960. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1961. {
  1962. struct drm_gem_object *obj = reg->obj;
  1963. struct drm_device *dev = obj->dev;
  1964. drm_i915_private_t *dev_priv = dev->dev_private;
  1965. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1966. int regnum = obj_priv->fence_reg;
  1967. uint64_t val;
  1968. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1969. 0xfffff000) << 32;
  1970. val |= obj_priv->gtt_offset & 0xfffff000;
  1971. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1972. if (obj_priv->tiling_mode == I915_TILING_Y)
  1973. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1974. val |= I965_FENCE_REG_VALID;
  1975. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1976. }
  1977. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1978. {
  1979. struct drm_gem_object *obj = reg->obj;
  1980. struct drm_device *dev = obj->dev;
  1981. drm_i915_private_t *dev_priv = dev->dev_private;
  1982. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1983. int regnum = obj_priv->fence_reg;
  1984. int tile_width;
  1985. uint32_t fence_reg, val;
  1986. uint32_t pitch_val;
  1987. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1988. (obj_priv->gtt_offset & (obj->size - 1))) {
  1989. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1990. __func__, obj_priv->gtt_offset, obj->size);
  1991. return;
  1992. }
  1993. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1994. HAS_128_BYTE_Y_TILING(dev))
  1995. tile_width = 128;
  1996. else
  1997. tile_width = 512;
  1998. /* Note: pitch better be a power of two tile widths */
  1999. pitch_val = obj_priv->stride / tile_width;
  2000. pitch_val = ffs(pitch_val) - 1;
  2001. if (obj_priv->tiling_mode == I915_TILING_Y &&
  2002. HAS_128_BYTE_Y_TILING(dev))
  2003. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2004. else
  2005. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  2006. val = obj_priv->gtt_offset;
  2007. if (obj_priv->tiling_mode == I915_TILING_Y)
  2008. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2009. val |= I915_FENCE_SIZE_BITS(obj->size);
  2010. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2011. val |= I830_FENCE_REG_VALID;
  2012. if (regnum < 8)
  2013. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  2014. else
  2015. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  2016. I915_WRITE(fence_reg, val);
  2017. }
  2018. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  2019. {
  2020. struct drm_gem_object *obj = reg->obj;
  2021. struct drm_device *dev = obj->dev;
  2022. drm_i915_private_t *dev_priv = dev->dev_private;
  2023. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2024. int regnum = obj_priv->fence_reg;
  2025. uint32_t val;
  2026. uint32_t pitch_val;
  2027. uint32_t fence_size_bits;
  2028. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  2029. (obj_priv->gtt_offset & (obj->size - 1))) {
  2030. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  2031. __func__, obj_priv->gtt_offset);
  2032. return;
  2033. }
  2034. pitch_val = obj_priv->stride / 128;
  2035. pitch_val = ffs(pitch_val) - 1;
  2036. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2037. val = obj_priv->gtt_offset;
  2038. if (obj_priv->tiling_mode == I915_TILING_Y)
  2039. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2040. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2041. WARN_ON(fence_size_bits & ~0x00000f00);
  2042. val |= fence_size_bits;
  2043. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2044. val |= I830_FENCE_REG_VALID;
  2045. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2046. }
  2047. static int i915_find_fence_reg(struct drm_device *dev,
  2048. bool interruptible)
  2049. {
  2050. struct drm_i915_fence_reg *reg = NULL;
  2051. struct drm_i915_gem_object *obj_priv = NULL;
  2052. struct drm_i915_private *dev_priv = dev->dev_private;
  2053. struct drm_gem_object *obj = NULL;
  2054. int i, avail, ret;
  2055. /* First try to find a free reg */
  2056. avail = 0;
  2057. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2058. reg = &dev_priv->fence_regs[i];
  2059. if (!reg->obj)
  2060. return i;
  2061. obj_priv = to_intel_bo(reg->obj);
  2062. if (!obj_priv->pin_count)
  2063. avail++;
  2064. }
  2065. if (avail == 0)
  2066. return -ENOSPC;
  2067. /* None available, try to steal one or wait for a user to finish */
  2068. i = I915_FENCE_REG_NONE;
  2069. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2070. lru_list) {
  2071. obj = reg->obj;
  2072. obj_priv = to_intel_bo(obj);
  2073. if (obj_priv->pin_count)
  2074. continue;
  2075. /* found one! */
  2076. i = obj_priv->fence_reg;
  2077. break;
  2078. }
  2079. BUG_ON(i == I915_FENCE_REG_NONE);
  2080. /* We only have a reference on obj from the active list. put_fence_reg
  2081. * might drop that one, causing a use-after-free in it. So hold a
  2082. * private reference to obj like the other callers of put_fence_reg
  2083. * (set_tiling ioctl) do. */
  2084. drm_gem_object_reference(obj);
  2085. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2086. drm_gem_object_unreference(obj);
  2087. if (ret != 0)
  2088. return ret;
  2089. return i;
  2090. }
  2091. /**
  2092. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2093. * @obj: object to map through a fence reg
  2094. *
  2095. * When mapping objects through the GTT, userspace wants to be able to write
  2096. * to them without having to worry about swizzling if the object is tiled.
  2097. *
  2098. * This function walks the fence regs looking for a free one for @obj,
  2099. * stealing one if it can't find any.
  2100. *
  2101. * It then sets up the reg based on the object's properties: address, pitch
  2102. * and tiling format.
  2103. */
  2104. int
  2105. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2106. bool interruptible)
  2107. {
  2108. struct drm_device *dev = obj->dev;
  2109. struct drm_i915_private *dev_priv = dev->dev_private;
  2110. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2111. struct drm_i915_fence_reg *reg = NULL;
  2112. int ret;
  2113. /* Just update our place in the LRU if our fence is getting used. */
  2114. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2115. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2116. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2117. return 0;
  2118. }
  2119. switch (obj_priv->tiling_mode) {
  2120. case I915_TILING_NONE:
  2121. WARN(1, "allocating a fence for non-tiled object?\n");
  2122. break;
  2123. case I915_TILING_X:
  2124. if (!obj_priv->stride)
  2125. return -EINVAL;
  2126. WARN((obj_priv->stride & (512 - 1)),
  2127. "object 0x%08x is X tiled but has non-512B pitch\n",
  2128. obj_priv->gtt_offset);
  2129. break;
  2130. case I915_TILING_Y:
  2131. if (!obj_priv->stride)
  2132. return -EINVAL;
  2133. WARN((obj_priv->stride & (128 - 1)),
  2134. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2135. obj_priv->gtt_offset);
  2136. break;
  2137. }
  2138. ret = i915_find_fence_reg(dev, interruptible);
  2139. if (ret < 0)
  2140. return ret;
  2141. obj_priv->fence_reg = ret;
  2142. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2143. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2144. reg->obj = obj;
  2145. switch (INTEL_INFO(dev)->gen) {
  2146. case 6:
  2147. sandybridge_write_fence_reg(reg);
  2148. break;
  2149. case 5:
  2150. case 4:
  2151. i965_write_fence_reg(reg);
  2152. break;
  2153. case 3:
  2154. i915_write_fence_reg(reg);
  2155. break;
  2156. case 2:
  2157. i830_write_fence_reg(reg);
  2158. break;
  2159. }
  2160. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2161. obj_priv->tiling_mode);
  2162. return 0;
  2163. }
  2164. /**
  2165. * i915_gem_clear_fence_reg - clear out fence register info
  2166. * @obj: object to clear
  2167. *
  2168. * Zeroes out the fence register itself and clears out the associated
  2169. * data structures in dev_priv and obj_priv.
  2170. */
  2171. static void
  2172. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2173. {
  2174. struct drm_device *dev = obj->dev;
  2175. drm_i915_private_t *dev_priv = dev->dev_private;
  2176. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2177. struct drm_i915_fence_reg *reg =
  2178. &dev_priv->fence_regs[obj_priv->fence_reg];
  2179. uint32_t fence_reg;
  2180. switch (INTEL_INFO(dev)->gen) {
  2181. case 6:
  2182. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2183. (obj_priv->fence_reg * 8), 0);
  2184. break;
  2185. case 5:
  2186. case 4:
  2187. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2188. break;
  2189. case 3:
  2190. if (obj_priv->fence_reg >= 8)
  2191. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2192. else
  2193. case 2:
  2194. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2195. I915_WRITE(fence_reg, 0);
  2196. break;
  2197. }
  2198. reg->obj = NULL;
  2199. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2200. list_del_init(&reg->lru_list);
  2201. }
  2202. /**
  2203. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2204. * to the buffer to finish, and then resets the fence register.
  2205. * @obj: tiled object holding a fence register.
  2206. * @bool: whether the wait upon the fence is interruptible
  2207. *
  2208. * Zeroes out the fence register itself and clears out the associated
  2209. * data structures in dev_priv and obj_priv.
  2210. */
  2211. int
  2212. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2213. bool interruptible)
  2214. {
  2215. struct drm_device *dev = obj->dev;
  2216. struct drm_i915_private *dev_priv = dev->dev_private;
  2217. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2218. struct drm_i915_fence_reg *reg;
  2219. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2220. return 0;
  2221. /* If we've changed tiling, GTT-mappings of the object
  2222. * need to re-fault to ensure that the correct fence register
  2223. * setup is in place.
  2224. */
  2225. i915_gem_release_mmap(obj);
  2226. /* On the i915, GPU access to tiled buffers is via a fence,
  2227. * therefore we must wait for any outstanding access to complete
  2228. * before clearing the fence.
  2229. */
  2230. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2231. if (reg->gpu) {
  2232. int ret;
  2233. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2234. if (ret)
  2235. return ret;
  2236. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2237. if (ret)
  2238. return ret;
  2239. reg->gpu = false;
  2240. }
  2241. i915_gem_object_flush_gtt_write_domain(obj);
  2242. i915_gem_clear_fence_reg(obj);
  2243. return 0;
  2244. }
  2245. /**
  2246. * Finds free space in the GTT aperture and binds the object there.
  2247. */
  2248. static int
  2249. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2250. {
  2251. struct drm_device *dev = obj->dev;
  2252. drm_i915_private_t *dev_priv = dev->dev_private;
  2253. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2254. struct drm_mm_node *free_space;
  2255. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2256. int ret;
  2257. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2258. DRM_ERROR("Attempting to bind a purgeable object\n");
  2259. return -EINVAL;
  2260. }
  2261. if (alignment == 0)
  2262. alignment = i915_gem_get_gtt_alignment(obj);
  2263. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2264. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2265. return -EINVAL;
  2266. }
  2267. /* If the object is bigger than the entire aperture, reject it early
  2268. * before evicting everything in a vain attempt to find space.
  2269. */
  2270. if (obj->size > dev_priv->mm.gtt_total) {
  2271. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2272. return -E2BIG;
  2273. }
  2274. search_free:
  2275. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2276. obj->size, alignment, 0);
  2277. if (free_space != NULL) {
  2278. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2279. alignment);
  2280. if (obj_priv->gtt_space != NULL)
  2281. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2282. }
  2283. if (obj_priv->gtt_space == NULL) {
  2284. /* If the gtt is empty and we're still having trouble
  2285. * fitting our object in, we're out of memory.
  2286. */
  2287. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2288. if (ret)
  2289. return ret;
  2290. goto search_free;
  2291. }
  2292. ret = i915_gem_object_get_pages(obj, gfpmask);
  2293. if (ret) {
  2294. drm_mm_put_block(obj_priv->gtt_space);
  2295. obj_priv->gtt_space = NULL;
  2296. if (ret == -ENOMEM) {
  2297. /* first try to clear up some space from the GTT */
  2298. ret = i915_gem_evict_something(dev, obj->size,
  2299. alignment);
  2300. if (ret) {
  2301. /* now try to shrink everyone else */
  2302. if (gfpmask) {
  2303. gfpmask = 0;
  2304. goto search_free;
  2305. }
  2306. return ret;
  2307. }
  2308. goto search_free;
  2309. }
  2310. return ret;
  2311. }
  2312. /* Create an AGP memory structure pointing at our pages, and bind it
  2313. * into the GTT.
  2314. */
  2315. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2316. obj_priv->pages,
  2317. obj->size >> PAGE_SHIFT,
  2318. obj_priv->gtt_offset,
  2319. obj_priv->agp_type);
  2320. if (obj_priv->agp_mem == NULL) {
  2321. i915_gem_object_put_pages(obj);
  2322. drm_mm_put_block(obj_priv->gtt_space);
  2323. obj_priv->gtt_space = NULL;
  2324. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2325. if (ret)
  2326. return ret;
  2327. goto search_free;
  2328. }
  2329. /* keep track of bounds object by adding it to the inactive list */
  2330. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  2331. i915_gem_info_add_gtt(dev_priv, obj->size);
  2332. /* Assert that the object is not currently in any GPU domain. As it
  2333. * wasn't in the GTT, there shouldn't be any way it could have been in
  2334. * a GPU cache
  2335. */
  2336. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2337. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2338. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2339. return 0;
  2340. }
  2341. void
  2342. i915_gem_clflush_object(struct drm_gem_object *obj)
  2343. {
  2344. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2345. /* If we don't have a page list set up, then we're not pinned
  2346. * to GPU, and we can ignore the cache flush because it'll happen
  2347. * again at bind time.
  2348. */
  2349. if (obj_priv->pages == NULL)
  2350. return;
  2351. trace_i915_gem_object_clflush(obj);
  2352. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2353. }
  2354. /** Flushes any GPU write domain for the object if it's dirty. */
  2355. static int
  2356. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2357. bool pipelined)
  2358. {
  2359. struct drm_device *dev = obj->dev;
  2360. uint32_t old_write_domain;
  2361. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2362. return 0;
  2363. /* Queue the GPU write cache flushing we need. */
  2364. old_write_domain = obj->write_domain;
  2365. i915_gem_flush_ring(dev, NULL,
  2366. to_intel_bo(obj)->ring,
  2367. 0, obj->write_domain);
  2368. BUG_ON(obj->write_domain);
  2369. trace_i915_gem_object_change_domain(obj,
  2370. obj->read_domains,
  2371. old_write_domain);
  2372. if (pipelined)
  2373. return 0;
  2374. return i915_gem_object_wait_rendering(obj, true);
  2375. }
  2376. /** Flushes the GTT write domain for the object if it's dirty. */
  2377. static void
  2378. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2379. {
  2380. uint32_t old_write_domain;
  2381. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2382. return;
  2383. /* No actual flushing is required for the GTT write domain. Writes
  2384. * to it immediately go to main memory as far as we know, so there's
  2385. * no chipset flush. It also doesn't land in render cache.
  2386. */
  2387. old_write_domain = obj->write_domain;
  2388. obj->write_domain = 0;
  2389. trace_i915_gem_object_change_domain(obj,
  2390. obj->read_domains,
  2391. old_write_domain);
  2392. }
  2393. /** Flushes the CPU write domain for the object if it's dirty. */
  2394. static void
  2395. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2396. {
  2397. struct drm_device *dev = obj->dev;
  2398. uint32_t old_write_domain;
  2399. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2400. return;
  2401. i915_gem_clflush_object(obj);
  2402. drm_agp_chipset_flush(dev);
  2403. old_write_domain = obj->write_domain;
  2404. obj->write_domain = 0;
  2405. trace_i915_gem_object_change_domain(obj,
  2406. obj->read_domains,
  2407. old_write_domain);
  2408. }
  2409. /**
  2410. * Moves a single object to the GTT read, and possibly write domain.
  2411. *
  2412. * This function returns when the move is complete, including waiting on
  2413. * flushes to occur.
  2414. */
  2415. int
  2416. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2417. {
  2418. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2419. uint32_t old_write_domain, old_read_domains;
  2420. int ret;
  2421. /* Not valid to be called on unbound objects. */
  2422. if (obj_priv->gtt_space == NULL)
  2423. return -EINVAL;
  2424. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2425. if (ret != 0)
  2426. return ret;
  2427. i915_gem_object_flush_cpu_write_domain(obj);
  2428. if (write) {
  2429. ret = i915_gem_object_wait_rendering(obj, true);
  2430. if (ret)
  2431. return ret;
  2432. }
  2433. old_write_domain = obj->write_domain;
  2434. old_read_domains = obj->read_domains;
  2435. /* It should now be out of any other write domains, and we can update
  2436. * the domain values for our changes.
  2437. */
  2438. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2439. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2440. if (write) {
  2441. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2442. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2443. obj_priv->dirty = 1;
  2444. }
  2445. trace_i915_gem_object_change_domain(obj,
  2446. old_read_domains,
  2447. old_write_domain);
  2448. return 0;
  2449. }
  2450. /*
  2451. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2452. * wait, as in modesetting process we're not supposed to be interrupted.
  2453. */
  2454. int
  2455. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2456. bool pipelined)
  2457. {
  2458. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2459. uint32_t old_read_domains;
  2460. int ret;
  2461. /* Not valid to be called on unbound objects. */
  2462. if (obj_priv->gtt_space == NULL)
  2463. return -EINVAL;
  2464. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2465. if (ret)
  2466. return ret;
  2467. /* Currently, we are always called from an non-interruptible context. */
  2468. if (!pipelined) {
  2469. ret = i915_gem_object_wait_rendering(obj, false);
  2470. if (ret)
  2471. return ret;
  2472. }
  2473. i915_gem_object_flush_cpu_write_domain(obj);
  2474. old_read_domains = obj->read_domains;
  2475. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2476. trace_i915_gem_object_change_domain(obj,
  2477. old_read_domains,
  2478. obj->write_domain);
  2479. return 0;
  2480. }
  2481. /**
  2482. * Moves a single object to the CPU read, and possibly write domain.
  2483. *
  2484. * This function returns when the move is complete, including waiting on
  2485. * flushes to occur.
  2486. */
  2487. static int
  2488. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2489. {
  2490. uint32_t old_write_domain, old_read_domains;
  2491. int ret;
  2492. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2493. if (ret != 0)
  2494. return ret;
  2495. i915_gem_object_flush_gtt_write_domain(obj);
  2496. /* If we have a partially-valid cache of the object in the CPU,
  2497. * finish invalidating it and free the per-page flags.
  2498. */
  2499. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2500. if (write) {
  2501. ret = i915_gem_object_wait_rendering(obj, true);
  2502. if (ret)
  2503. return ret;
  2504. }
  2505. old_write_domain = obj->write_domain;
  2506. old_read_domains = obj->read_domains;
  2507. /* Flush the CPU cache if it's still invalid. */
  2508. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2509. i915_gem_clflush_object(obj);
  2510. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2511. }
  2512. /* It should now be out of any other write domains, and we can update
  2513. * the domain values for our changes.
  2514. */
  2515. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2516. /* If we're writing through the CPU, then the GPU read domains will
  2517. * need to be invalidated at next use.
  2518. */
  2519. if (write) {
  2520. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2521. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2522. }
  2523. trace_i915_gem_object_change_domain(obj,
  2524. old_read_domains,
  2525. old_write_domain);
  2526. return 0;
  2527. }
  2528. /*
  2529. * Set the next domain for the specified object. This
  2530. * may not actually perform the necessary flushing/invaliding though,
  2531. * as that may want to be batched with other set_domain operations
  2532. *
  2533. * This is (we hope) the only really tricky part of gem. The goal
  2534. * is fairly simple -- track which caches hold bits of the object
  2535. * and make sure they remain coherent. A few concrete examples may
  2536. * help to explain how it works. For shorthand, we use the notation
  2537. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2538. * a pair of read and write domain masks.
  2539. *
  2540. * Case 1: the batch buffer
  2541. *
  2542. * 1. Allocated
  2543. * 2. Written by CPU
  2544. * 3. Mapped to GTT
  2545. * 4. Read by GPU
  2546. * 5. Unmapped from GTT
  2547. * 6. Freed
  2548. *
  2549. * Let's take these a step at a time
  2550. *
  2551. * 1. Allocated
  2552. * Pages allocated from the kernel may still have
  2553. * cache contents, so we set them to (CPU, CPU) always.
  2554. * 2. Written by CPU (using pwrite)
  2555. * The pwrite function calls set_domain (CPU, CPU) and
  2556. * this function does nothing (as nothing changes)
  2557. * 3. Mapped by GTT
  2558. * This function asserts that the object is not
  2559. * currently in any GPU-based read or write domains
  2560. * 4. Read by GPU
  2561. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2562. * As write_domain is zero, this function adds in the
  2563. * current read domains (CPU+COMMAND, 0).
  2564. * flush_domains is set to CPU.
  2565. * invalidate_domains is set to COMMAND
  2566. * clflush is run to get data out of the CPU caches
  2567. * then i915_dev_set_domain calls i915_gem_flush to
  2568. * emit an MI_FLUSH and drm_agp_chipset_flush
  2569. * 5. Unmapped from GTT
  2570. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2571. * flush_domains and invalidate_domains end up both zero
  2572. * so no flushing/invalidating happens
  2573. * 6. Freed
  2574. * yay, done
  2575. *
  2576. * Case 2: The shared render buffer
  2577. *
  2578. * 1. Allocated
  2579. * 2. Mapped to GTT
  2580. * 3. Read/written by GPU
  2581. * 4. set_domain to (CPU,CPU)
  2582. * 5. Read/written by CPU
  2583. * 6. Read/written by GPU
  2584. *
  2585. * 1. Allocated
  2586. * Same as last example, (CPU, CPU)
  2587. * 2. Mapped to GTT
  2588. * Nothing changes (assertions find that it is not in the GPU)
  2589. * 3. Read/written by GPU
  2590. * execbuffer calls set_domain (RENDER, RENDER)
  2591. * flush_domains gets CPU
  2592. * invalidate_domains gets GPU
  2593. * clflush (obj)
  2594. * MI_FLUSH and drm_agp_chipset_flush
  2595. * 4. set_domain (CPU, CPU)
  2596. * flush_domains gets GPU
  2597. * invalidate_domains gets CPU
  2598. * wait_rendering (obj) to make sure all drawing is complete.
  2599. * This will include an MI_FLUSH to get the data from GPU
  2600. * to memory
  2601. * clflush (obj) to invalidate the CPU cache
  2602. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2603. * 5. Read/written by CPU
  2604. * cache lines are loaded and dirtied
  2605. * 6. Read written by GPU
  2606. * Same as last GPU access
  2607. *
  2608. * Case 3: The constant buffer
  2609. *
  2610. * 1. Allocated
  2611. * 2. Written by CPU
  2612. * 3. Read by GPU
  2613. * 4. Updated (written) by CPU again
  2614. * 5. Read by GPU
  2615. *
  2616. * 1. Allocated
  2617. * (CPU, CPU)
  2618. * 2. Written by CPU
  2619. * (CPU, CPU)
  2620. * 3. Read by GPU
  2621. * (CPU+RENDER, 0)
  2622. * flush_domains = CPU
  2623. * invalidate_domains = RENDER
  2624. * clflush (obj)
  2625. * MI_FLUSH
  2626. * drm_agp_chipset_flush
  2627. * 4. Updated (written) by CPU again
  2628. * (CPU, CPU)
  2629. * flush_domains = 0 (no previous write domain)
  2630. * invalidate_domains = 0 (no new read domains)
  2631. * 5. Read by GPU
  2632. * (CPU+RENDER, 0)
  2633. * flush_domains = CPU
  2634. * invalidate_domains = RENDER
  2635. * clflush (obj)
  2636. * MI_FLUSH
  2637. * drm_agp_chipset_flush
  2638. */
  2639. static void
  2640. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2641. {
  2642. struct drm_device *dev = obj->dev;
  2643. struct drm_i915_private *dev_priv = dev->dev_private;
  2644. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2645. uint32_t invalidate_domains = 0;
  2646. uint32_t flush_domains = 0;
  2647. uint32_t old_read_domains;
  2648. intel_mark_busy(dev, obj);
  2649. /*
  2650. * If the object isn't moving to a new write domain,
  2651. * let the object stay in multiple read domains
  2652. */
  2653. if (obj->pending_write_domain == 0)
  2654. obj->pending_read_domains |= obj->read_domains;
  2655. else
  2656. obj_priv->dirty = 1;
  2657. /*
  2658. * Flush the current write domain if
  2659. * the new read domains don't match. Invalidate
  2660. * any read domains which differ from the old
  2661. * write domain
  2662. */
  2663. if (obj->write_domain &&
  2664. obj->write_domain != obj->pending_read_domains) {
  2665. flush_domains |= obj->write_domain;
  2666. invalidate_domains |=
  2667. obj->pending_read_domains & ~obj->write_domain;
  2668. }
  2669. /*
  2670. * Invalidate any read caches which may have
  2671. * stale data. That is, any new read domains.
  2672. */
  2673. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2674. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2675. i915_gem_clflush_object(obj);
  2676. old_read_domains = obj->read_domains;
  2677. /* The actual obj->write_domain will be updated with
  2678. * pending_write_domain after we emit the accumulated flush for all
  2679. * of our domain changes in execbuffers (which clears objects'
  2680. * write_domains). So if we have a current write domain that we
  2681. * aren't changing, set pending_write_domain to that.
  2682. */
  2683. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2684. obj->pending_write_domain = obj->write_domain;
  2685. obj->read_domains = obj->pending_read_domains;
  2686. dev->invalidate_domains |= invalidate_domains;
  2687. dev->flush_domains |= flush_domains;
  2688. if (obj_priv->ring)
  2689. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2690. trace_i915_gem_object_change_domain(obj,
  2691. old_read_domains,
  2692. obj->write_domain);
  2693. }
  2694. /**
  2695. * Moves the object from a partially CPU read to a full one.
  2696. *
  2697. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2698. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2699. */
  2700. static void
  2701. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2702. {
  2703. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2704. if (!obj_priv->page_cpu_valid)
  2705. return;
  2706. /* If we're partially in the CPU read domain, finish moving it in.
  2707. */
  2708. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2709. int i;
  2710. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2711. if (obj_priv->page_cpu_valid[i])
  2712. continue;
  2713. drm_clflush_pages(obj_priv->pages + i, 1);
  2714. }
  2715. }
  2716. /* Free the page_cpu_valid mappings which are now stale, whether
  2717. * or not we've got I915_GEM_DOMAIN_CPU.
  2718. */
  2719. kfree(obj_priv->page_cpu_valid);
  2720. obj_priv->page_cpu_valid = NULL;
  2721. }
  2722. /**
  2723. * Set the CPU read domain on a range of the object.
  2724. *
  2725. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2726. * not entirely valid. The page_cpu_valid member of the object flags which
  2727. * pages have been flushed, and will be respected by
  2728. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2729. * of the whole object.
  2730. *
  2731. * This function returns when the move is complete, including waiting on
  2732. * flushes to occur.
  2733. */
  2734. static int
  2735. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2736. uint64_t offset, uint64_t size)
  2737. {
  2738. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2739. uint32_t old_read_domains;
  2740. int i, ret;
  2741. if (offset == 0 && size == obj->size)
  2742. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2743. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2744. if (ret != 0)
  2745. return ret;
  2746. i915_gem_object_flush_gtt_write_domain(obj);
  2747. /* If we're already fully in the CPU read domain, we're done. */
  2748. if (obj_priv->page_cpu_valid == NULL &&
  2749. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2750. return 0;
  2751. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2752. * newly adding I915_GEM_DOMAIN_CPU
  2753. */
  2754. if (obj_priv->page_cpu_valid == NULL) {
  2755. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2756. GFP_KERNEL);
  2757. if (obj_priv->page_cpu_valid == NULL)
  2758. return -ENOMEM;
  2759. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2760. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2761. /* Flush the cache on any pages that are still invalid from the CPU's
  2762. * perspective.
  2763. */
  2764. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2765. i++) {
  2766. if (obj_priv->page_cpu_valid[i])
  2767. continue;
  2768. drm_clflush_pages(obj_priv->pages + i, 1);
  2769. obj_priv->page_cpu_valid[i] = 1;
  2770. }
  2771. /* It should now be out of any other write domains, and we can update
  2772. * the domain values for our changes.
  2773. */
  2774. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2775. old_read_domains = obj->read_domains;
  2776. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2777. trace_i915_gem_object_change_domain(obj,
  2778. old_read_domains,
  2779. obj->write_domain);
  2780. return 0;
  2781. }
  2782. /**
  2783. * Pin an object to the GTT and evaluate the relocations landing in it.
  2784. */
  2785. static int
  2786. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2787. struct drm_file *file_priv,
  2788. struct drm_i915_gem_exec_object2 *entry)
  2789. {
  2790. struct drm_device *dev = obj->dev;
  2791. drm_i915_private_t *dev_priv = dev->dev_private;
  2792. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2793. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2794. int i, ret;
  2795. bool need_fence;
  2796. need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2797. obj_priv->tiling_mode != I915_TILING_NONE;
  2798. /* Check fence reg constraints and rebind if necessary */
  2799. if (need_fence &&
  2800. !i915_gem_object_fence_offset_ok(obj,
  2801. obj_priv->tiling_mode)) {
  2802. ret = i915_gem_object_unbind(obj);
  2803. if (ret)
  2804. return ret;
  2805. }
  2806. /* Choose the GTT offset for our buffer and put it there. */
  2807. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2808. if (ret)
  2809. return ret;
  2810. /*
  2811. * Pre-965 chips need a fence register set up in order to
  2812. * properly handle blits to/from tiled surfaces.
  2813. */
  2814. if (need_fence) {
  2815. ret = i915_gem_object_get_fence_reg(obj, true);
  2816. if (ret != 0) {
  2817. i915_gem_object_unpin(obj);
  2818. return ret;
  2819. }
  2820. dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
  2821. }
  2822. entry->offset = obj_priv->gtt_offset;
  2823. /* Apply the relocations, using the GTT aperture to avoid cache
  2824. * flushing requirements.
  2825. */
  2826. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2827. for (i = 0; i < entry->relocation_count; i++) {
  2828. struct drm_i915_gem_relocation_entry reloc;
  2829. struct drm_gem_object *target_obj;
  2830. struct drm_i915_gem_object *target_obj_priv;
  2831. ret = __copy_from_user_inatomic(&reloc,
  2832. user_relocs+i,
  2833. sizeof(reloc));
  2834. if (ret) {
  2835. i915_gem_object_unpin(obj);
  2836. return -EFAULT;
  2837. }
  2838. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2839. reloc.target_handle);
  2840. if (target_obj == NULL) {
  2841. i915_gem_object_unpin(obj);
  2842. return -ENOENT;
  2843. }
  2844. target_obj_priv = to_intel_bo(target_obj);
  2845. #if WATCH_RELOC
  2846. DRM_INFO("%s: obj %p offset %08x target %d "
  2847. "read %08x write %08x gtt %08x "
  2848. "presumed %08x delta %08x\n",
  2849. __func__,
  2850. obj,
  2851. (int) reloc.offset,
  2852. (int) reloc.target_handle,
  2853. (int) reloc.read_domains,
  2854. (int) reloc.write_domain,
  2855. (int) target_obj_priv->gtt_offset,
  2856. (int) reloc.presumed_offset,
  2857. reloc.delta);
  2858. #endif
  2859. /* The target buffer should have appeared before us in the
  2860. * exec_object list, so it should have a GTT space bound by now.
  2861. */
  2862. if (target_obj_priv->gtt_space == NULL) {
  2863. DRM_ERROR("No GTT space found for object %d\n",
  2864. reloc.target_handle);
  2865. drm_gem_object_unreference(target_obj);
  2866. i915_gem_object_unpin(obj);
  2867. return -EINVAL;
  2868. }
  2869. /* Validate that the target is in a valid r/w GPU domain */
  2870. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2871. DRM_ERROR("reloc with multiple write domains: "
  2872. "obj %p target %d offset %d "
  2873. "read %08x write %08x",
  2874. obj, reloc.target_handle,
  2875. (int) reloc.offset,
  2876. reloc.read_domains,
  2877. reloc.write_domain);
  2878. drm_gem_object_unreference(target_obj);
  2879. i915_gem_object_unpin(obj);
  2880. return -EINVAL;
  2881. }
  2882. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2883. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2884. DRM_ERROR("reloc with read/write CPU domains: "
  2885. "obj %p target %d offset %d "
  2886. "read %08x write %08x",
  2887. obj, reloc.target_handle,
  2888. (int) reloc.offset,
  2889. reloc.read_domains,
  2890. reloc.write_domain);
  2891. drm_gem_object_unreference(target_obj);
  2892. i915_gem_object_unpin(obj);
  2893. return -EINVAL;
  2894. }
  2895. if (reloc.write_domain && target_obj->pending_write_domain &&
  2896. reloc.write_domain != target_obj->pending_write_domain) {
  2897. DRM_ERROR("Write domain conflict: "
  2898. "obj %p target %d offset %d "
  2899. "new %08x old %08x\n",
  2900. obj, reloc.target_handle,
  2901. (int) reloc.offset,
  2902. reloc.write_domain,
  2903. target_obj->pending_write_domain);
  2904. drm_gem_object_unreference(target_obj);
  2905. i915_gem_object_unpin(obj);
  2906. return -EINVAL;
  2907. }
  2908. target_obj->pending_read_domains |= reloc.read_domains;
  2909. target_obj->pending_write_domain |= reloc.write_domain;
  2910. /* If the relocation already has the right value in it, no
  2911. * more work needs to be done.
  2912. */
  2913. if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
  2914. drm_gem_object_unreference(target_obj);
  2915. continue;
  2916. }
  2917. /* Check that the relocation address is valid... */
  2918. if (reloc.offset > obj->size - 4) {
  2919. DRM_ERROR("Relocation beyond object bounds: "
  2920. "obj %p target %d offset %d size %d.\n",
  2921. obj, reloc.target_handle,
  2922. (int) reloc.offset, (int) obj->size);
  2923. drm_gem_object_unreference(target_obj);
  2924. i915_gem_object_unpin(obj);
  2925. return -EINVAL;
  2926. }
  2927. if (reloc.offset & 3) {
  2928. DRM_ERROR("Relocation not 4-byte aligned: "
  2929. "obj %p target %d offset %d.\n",
  2930. obj, reloc.target_handle,
  2931. (int) reloc.offset);
  2932. drm_gem_object_unreference(target_obj);
  2933. i915_gem_object_unpin(obj);
  2934. return -EINVAL;
  2935. }
  2936. /* and points to somewhere within the target object. */
  2937. if (reloc.delta >= target_obj->size) {
  2938. DRM_ERROR("Relocation beyond target object bounds: "
  2939. "obj %p target %d delta %d size %d.\n",
  2940. obj, reloc.target_handle,
  2941. (int) reloc.delta, (int) target_obj->size);
  2942. drm_gem_object_unreference(target_obj);
  2943. i915_gem_object_unpin(obj);
  2944. return -EINVAL;
  2945. }
  2946. reloc.delta += target_obj_priv->gtt_offset;
  2947. if (obj->write_domain == I915_GEM_DOMAIN_CPU) {
  2948. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2949. char *vaddr;
  2950. vaddr = kmap_atomic(obj_priv->pages[reloc.offset >> PAGE_SHIFT], KM_USER0);
  2951. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2952. kunmap_atomic(vaddr, KM_USER0);
  2953. } else {
  2954. uint32_t __iomem *reloc_entry;
  2955. void __iomem *reloc_page;
  2956. int ret;
  2957. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2958. if (ret) {
  2959. drm_gem_object_unreference(target_obj);
  2960. i915_gem_object_unpin(obj);
  2961. return ret;
  2962. }
  2963. /* Map the page containing the relocation we're going to perform. */
  2964. reloc.offset += obj_priv->gtt_offset;
  2965. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2966. reloc.offset & PAGE_MASK,
  2967. KM_USER0);
  2968. reloc_entry = (uint32_t __iomem *)
  2969. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2970. iowrite32(reloc.delta, reloc_entry);
  2971. io_mapping_unmap_atomic(reloc_page, KM_USER0);
  2972. }
  2973. drm_gem_object_unreference(target_obj);
  2974. }
  2975. return 0;
  2976. }
  2977. /* Throttle our rendering by waiting until the ring has completed our requests
  2978. * emitted over 20 msec ago.
  2979. *
  2980. * Note that if we were to use the current jiffies each time around the loop,
  2981. * we wouldn't escape the function with any frames outstanding if the time to
  2982. * render a frame was over 20ms.
  2983. *
  2984. * This should get us reasonable parallelism between CPU and GPU but also
  2985. * relatively low latency when blocking on a particular request to finish.
  2986. */
  2987. static int
  2988. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2989. {
  2990. struct drm_i915_private *dev_priv = dev->dev_private;
  2991. struct drm_i915_file_private *file_priv = file->driver_priv;
  2992. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2993. struct drm_i915_gem_request *request;
  2994. struct intel_ring_buffer *ring = NULL;
  2995. u32 seqno = 0;
  2996. int ret;
  2997. spin_lock(&file_priv->mm.lock);
  2998. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2999. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3000. break;
  3001. ring = request->ring;
  3002. seqno = request->seqno;
  3003. }
  3004. spin_unlock(&file_priv->mm.lock);
  3005. if (seqno == 0)
  3006. return 0;
  3007. ret = 0;
  3008. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  3009. /* And wait for the seqno passing without holding any locks and
  3010. * causing extra latency for others. This is safe as the irq
  3011. * generation is designed to be run atomically and so is
  3012. * lockless.
  3013. */
  3014. ring->user_irq_get(dev, ring);
  3015. ret = wait_event_interruptible(ring->irq_queue,
  3016. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  3017. || atomic_read(&dev_priv->mm.wedged));
  3018. ring->user_irq_put(dev, ring);
  3019. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3020. ret = -EIO;
  3021. }
  3022. if (ret == 0)
  3023. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3024. return ret;
  3025. }
  3026. static int
  3027. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3028. uint64_t exec_offset)
  3029. {
  3030. uint32_t exec_start, exec_len;
  3031. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3032. exec_len = (uint32_t) exec->batch_len;
  3033. if ((exec_start | exec_len) & 0x7)
  3034. return -EINVAL;
  3035. if (!exec_start)
  3036. return -EINVAL;
  3037. return 0;
  3038. }
  3039. static int
  3040. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3041. int count)
  3042. {
  3043. int i;
  3044. for (i = 0; i < count; i++) {
  3045. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3046. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3047. if (!access_ok(VERIFY_READ, ptr, length))
  3048. return -EFAULT;
  3049. if (fault_in_pages_readable(ptr, length))
  3050. return -EFAULT;
  3051. }
  3052. return 0;
  3053. }
  3054. static int
  3055. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3056. struct drm_file *file_priv,
  3057. struct drm_i915_gem_execbuffer2 *args,
  3058. struct drm_i915_gem_exec_object2 *exec_list)
  3059. {
  3060. drm_i915_private_t *dev_priv = dev->dev_private;
  3061. struct drm_gem_object **object_list = NULL;
  3062. struct drm_gem_object *batch_obj;
  3063. struct drm_i915_gem_object *obj_priv;
  3064. struct drm_clip_rect *cliprects = NULL;
  3065. struct drm_i915_gem_request *request = NULL;
  3066. int ret, i, pinned = 0;
  3067. uint64_t exec_offset;
  3068. int pin_tries, flips;
  3069. struct intel_ring_buffer *ring = NULL;
  3070. ret = i915_gem_check_is_wedged(dev);
  3071. if (ret)
  3072. return ret;
  3073. ret = validate_exec_list(exec_list, args->buffer_count);
  3074. if (ret)
  3075. return ret;
  3076. #if WATCH_EXEC
  3077. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3078. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3079. #endif
  3080. if (args->flags & I915_EXEC_BSD) {
  3081. if (!HAS_BSD(dev)) {
  3082. DRM_ERROR("execbuf with wrong flag\n");
  3083. return -EINVAL;
  3084. }
  3085. ring = &dev_priv->bsd_ring;
  3086. } else {
  3087. ring = &dev_priv->render_ring;
  3088. }
  3089. if (args->buffer_count < 1) {
  3090. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3091. return -EINVAL;
  3092. }
  3093. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3094. if (object_list == NULL) {
  3095. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3096. args->buffer_count);
  3097. ret = -ENOMEM;
  3098. goto pre_mutex_err;
  3099. }
  3100. if (args->num_cliprects != 0) {
  3101. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3102. GFP_KERNEL);
  3103. if (cliprects == NULL) {
  3104. ret = -ENOMEM;
  3105. goto pre_mutex_err;
  3106. }
  3107. ret = copy_from_user(cliprects,
  3108. (struct drm_clip_rect __user *)
  3109. (uintptr_t) args->cliprects_ptr,
  3110. sizeof(*cliprects) * args->num_cliprects);
  3111. if (ret != 0) {
  3112. DRM_ERROR("copy %d cliprects failed: %d\n",
  3113. args->num_cliprects, ret);
  3114. ret = -EFAULT;
  3115. goto pre_mutex_err;
  3116. }
  3117. }
  3118. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3119. if (request == NULL) {
  3120. ret = -ENOMEM;
  3121. goto pre_mutex_err;
  3122. }
  3123. ret = i915_mutex_lock_interruptible(dev);
  3124. if (ret)
  3125. goto pre_mutex_err;
  3126. if (dev_priv->mm.suspended) {
  3127. mutex_unlock(&dev->struct_mutex);
  3128. ret = -EBUSY;
  3129. goto pre_mutex_err;
  3130. }
  3131. /* Look up object handles */
  3132. for (i = 0; i < args->buffer_count; i++) {
  3133. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  3134. exec_list[i].handle);
  3135. if (object_list[i] == NULL) {
  3136. DRM_ERROR("Invalid object handle %d at index %d\n",
  3137. exec_list[i].handle, i);
  3138. /* prevent error path from reading uninitialized data */
  3139. args->buffer_count = i + 1;
  3140. ret = -ENOENT;
  3141. goto err;
  3142. }
  3143. obj_priv = to_intel_bo(object_list[i]);
  3144. if (obj_priv->in_execbuffer) {
  3145. DRM_ERROR("Object %p appears more than once in object list\n",
  3146. object_list[i]);
  3147. /* prevent error path from reading uninitialized data */
  3148. args->buffer_count = i + 1;
  3149. ret = -EINVAL;
  3150. goto err;
  3151. }
  3152. obj_priv->in_execbuffer = true;
  3153. }
  3154. /* Pin and relocate */
  3155. for (pin_tries = 0; ; pin_tries++) {
  3156. ret = 0;
  3157. for (i = 0; i < args->buffer_count; i++) {
  3158. object_list[i]->pending_read_domains = 0;
  3159. object_list[i]->pending_write_domain = 0;
  3160. ret = i915_gem_object_pin_and_relocate(object_list[i],
  3161. file_priv,
  3162. &exec_list[i]);
  3163. if (ret)
  3164. break;
  3165. pinned = i + 1;
  3166. }
  3167. /* success */
  3168. if (ret == 0)
  3169. break;
  3170. /* error other than GTT full, or we've already tried again */
  3171. if (ret != -ENOSPC || pin_tries >= 1) {
  3172. if (ret != -ERESTARTSYS) {
  3173. unsigned long long total_size = 0;
  3174. int num_fences = 0;
  3175. for (i = 0; i < args->buffer_count; i++) {
  3176. obj_priv = to_intel_bo(object_list[i]);
  3177. total_size += object_list[i]->size;
  3178. num_fences +=
  3179. exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
  3180. obj_priv->tiling_mode != I915_TILING_NONE;
  3181. }
  3182. DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
  3183. pinned+1, args->buffer_count,
  3184. total_size, num_fences,
  3185. ret);
  3186. DRM_ERROR("%u objects [%u pinned, %u GTT], "
  3187. "%zu object bytes [%zu pinned], "
  3188. "%zu /%zu gtt bytes\n",
  3189. dev_priv->mm.object_count,
  3190. dev_priv->mm.pin_count,
  3191. dev_priv->mm.gtt_count,
  3192. dev_priv->mm.object_memory,
  3193. dev_priv->mm.pin_memory,
  3194. dev_priv->mm.gtt_memory,
  3195. dev_priv->mm.gtt_total);
  3196. }
  3197. goto err;
  3198. }
  3199. /* unpin all of our buffers */
  3200. for (i = 0; i < pinned; i++)
  3201. i915_gem_object_unpin(object_list[i]);
  3202. pinned = 0;
  3203. /* evict everyone we can from the aperture */
  3204. ret = i915_gem_evict_everything(dev);
  3205. if (ret && ret != -ENOSPC)
  3206. goto err;
  3207. }
  3208. /* Set the pending read domains for the batch buffer to COMMAND */
  3209. batch_obj = object_list[args->buffer_count-1];
  3210. if (batch_obj->pending_write_domain) {
  3211. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3212. ret = -EINVAL;
  3213. goto err;
  3214. }
  3215. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3216. /* Sanity check the batch buffer, prior to moving objects */
  3217. exec_offset = exec_list[args->buffer_count - 1].offset;
  3218. ret = i915_gem_check_execbuffer (args, exec_offset);
  3219. if (ret != 0) {
  3220. DRM_ERROR("execbuf with invalid offset/length\n");
  3221. goto err;
  3222. }
  3223. /* Zero the global flush/invalidate flags. These
  3224. * will be modified as new domains are computed
  3225. * for each object
  3226. */
  3227. dev->invalidate_domains = 0;
  3228. dev->flush_domains = 0;
  3229. dev_priv->mm.flush_rings = 0;
  3230. for (i = 0; i < args->buffer_count; i++) {
  3231. struct drm_gem_object *obj = object_list[i];
  3232. /* Compute new gpu domains and update invalidate/flush */
  3233. i915_gem_object_set_to_gpu_domain(obj);
  3234. }
  3235. if (dev->invalidate_domains | dev->flush_domains) {
  3236. #if WATCH_EXEC
  3237. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  3238. __func__,
  3239. dev->invalidate_domains,
  3240. dev->flush_domains);
  3241. #endif
  3242. i915_gem_flush(dev, file_priv,
  3243. dev->invalidate_domains,
  3244. dev->flush_domains,
  3245. dev_priv->mm.flush_rings);
  3246. }
  3247. for (i = 0; i < args->buffer_count; i++) {
  3248. struct drm_gem_object *obj = object_list[i];
  3249. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3250. uint32_t old_write_domain = obj->write_domain;
  3251. obj->write_domain = obj->pending_write_domain;
  3252. if (obj->write_domain)
  3253. list_move_tail(&obj_priv->gpu_write_list,
  3254. &dev_priv->mm.gpu_write_list);
  3255. trace_i915_gem_object_change_domain(obj,
  3256. obj->read_domains,
  3257. old_write_domain);
  3258. }
  3259. #if WATCH_COHERENCY
  3260. for (i = 0; i < args->buffer_count; i++) {
  3261. i915_gem_object_check_coherency(object_list[i],
  3262. exec_list[i].handle);
  3263. }
  3264. #endif
  3265. #if WATCH_EXEC
  3266. i915_gem_dump_object(batch_obj,
  3267. args->batch_len,
  3268. __func__,
  3269. ~0);
  3270. #endif
  3271. /* Check for any pending flips. As we only maintain a flip queue depth
  3272. * of 1, we can simply insert a WAIT for the next display flip prior
  3273. * to executing the batch and avoid stalling the CPU.
  3274. */
  3275. flips = 0;
  3276. for (i = 0; i < args->buffer_count; i++) {
  3277. if (object_list[i]->write_domain)
  3278. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3279. }
  3280. if (flips) {
  3281. int plane, flip_mask;
  3282. for (plane = 0; flips >> plane; plane++) {
  3283. if (((flips >> plane) & 1) == 0)
  3284. continue;
  3285. if (plane)
  3286. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3287. else
  3288. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3289. intel_ring_begin(dev, ring, 2);
  3290. intel_ring_emit(dev, ring,
  3291. MI_WAIT_FOR_EVENT | flip_mask);
  3292. intel_ring_emit(dev, ring, MI_NOOP);
  3293. intel_ring_advance(dev, ring);
  3294. }
  3295. }
  3296. /* Exec the batchbuffer */
  3297. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3298. cliprects, exec_offset);
  3299. if (ret) {
  3300. DRM_ERROR("dispatch failed %d\n", ret);
  3301. goto err;
  3302. }
  3303. /*
  3304. * Ensure that the commands in the batch buffer are
  3305. * finished before the interrupt fires
  3306. */
  3307. i915_retire_commands(dev, ring);
  3308. for (i = 0; i < args->buffer_count; i++) {
  3309. struct drm_gem_object *obj = object_list[i];
  3310. obj_priv = to_intel_bo(obj);
  3311. i915_gem_object_move_to_active(obj, ring);
  3312. }
  3313. i915_add_request(dev, file_priv, request, ring);
  3314. request = NULL;
  3315. err:
  3316. for (i = 0; i < pinned; i++)
  3317. i915_gem_object_unpin(object_list[i]);
  3318. for (i = 0; i < args->buffer_count; i++) {
  3319. if (object_list[i]) {
  3320. obj_priv = to_intel_bo(object_list[i]);
  3321. obj_priv->in_execbuffer = false;
  3322. }
  3323. drm_gem_object_unreference(object_list[i]);
  3324. }
  3325. mutex_unlock(&dev->struct_mutex);
  3326. pre_mutex_err:
  3327. drm_free_large(object_list);
  3328. kfree(cliprects);
  3329. kfree(request);
  3330. return ret;
  3331. }
  3332. /*
  3333. * Legacy execbuffer just creates an exec2 list from the original exec object
  3334. * list array and passes it to the real function.
  3335. */
  3336. int
  3337. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3338. struct drm_file *file_priv)
  3339. {
  3340. struct drm_i915_gem_execbuffer *args = data;
  3341. struct drm_i915_gem_execbuffer2 exec2;
  3342. struct drm_i915_gem_exec_object *exec_list = NULL;
  3343. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3344. int ret, i;
  3345. #if WATCH_EXEC
  3346. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3347. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3348. #endif
  3349. if (args->buffer_count < 1) {
  3350. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3351. return -EINVAL;
  3352. }
  3353. /* Copy in the exec list from userland */
  3354. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3355. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3356. if (exec_list == NULL || exec2_list == NULL) {
  3357. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3358. args->buffer_count);
  3359. drm_free_large(exec_list);
  3360. drm_free_large(exec2_list);
  3361. return -ENOMEM;
  3362. }
  3363. ret = copy_from_user(exec_list,
  3364. (struct drm_i915_relocation_entry __user *)
  3365. (uintptr_t) args->buffers_ptr,
  3366. sizeof(*exec_list) * args->buffer_count);
  3367. if (ret != 0) {
  3368. DRM_ERROR("copy %d exec entries failed %d\n",
  3369. args->buffer_count, ret);
  3370. drm_free_large(exec_list);
  3371. drm_free_large(exec2_list);
  3372. return -EFAULT;
  3373. }
  3374. for (i = 0; i < args->buffer_count; i++) {
  3375. exec2_list[i].handle = exec_list[i].handle;
  3376. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3377. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3378. exec2_list[i].alignment = exec_list[i].alignment;
  3379. exec2_list[i].offset = exec_list[i].offset;
  3380. if (INTEL_INFO(dev)->gen < 4)
  3381. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3382. else
  3383. exec2_list[i].flags = 0;
  3384. }
  3385. exec2.buffers_ptr = args->buffers_ptr;
  3386. exec2.buffer_count = args->buffer_count;
  3387. exec2.batch_start_offset = args->batch_start_offset;
  3388. exec2.batch_len = args->batch_len;
  3389. exec2.DR1 = args->DR1;
  3390. exec2.DR4 = args->DR4;
  3391. exec2.num_cliprects = args->num_cliprects;
  3392. exec2.cliprects_ptr = args->cliprects_ptr;
  3393. exec2.flags = I915_EXEC_RENDER;
  3394. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3395. if (!ret) {
  3396. /* Copy the new buffer offsets back to the user's exec list. */
  3397. for (i = 0; i < args->buffer_count; i++)
  3398. exec_list[i].offset = exec2_list[i].offset;
  3399. /* ... and back out to userspace */
  3400. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3401. (uintptr_t) args->buffers_ptr,
  3402. exec_list,
  3403. sizeof(*exec_list) * args->buffer_count);
  3404. if (ret) {
  3405. ret = -EFAULT;
  3406. DRM_ERROR("failed to copy %d exec entries "
  3407. "back to user (%d)\n",
  3408. args->buffer_count, ret);
  3409. }
  3410. }
  3411. drm_free_large(exec_list);
  3412. drm_free_large(exec2_list);
  3413. return ret;
  3414. }
  3415. int
  3416. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3417. struct drm_file *file_priv)
  3418. {
  3419. struct drm_i915_gem_execbuffer2 *args = data;
  3420. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3421. int ret;
  3422. #if WATCH_EXEC
  3423. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3424. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3425. #endif
  3426. if (args->buffer_count < 1) {
  3427. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3428. return -EINVAL;
  3429. }
  3430. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3431. if (exec2_list == NULL) {
  3432. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3433. args->buffer_count);
  3434. return -ENOMEM;
  3435. }
  3436. ret = copy_from_user(exec2_list,
  3437. (struct drm_i915_relocation_entry __user *)
  3438. (uintptr_t) args->buffers_ptr,
  3439. sizeof(*exec2_list) * args->buffer_count);
  3440. if (ret != 0) {
  3441. DRM_ERROR("copy %d exec entries failed %d\n",
  3442. args->buffer_count, ret);
  3443. drm_free_large(exec2_list);
  3444. return -EFAULT;
  3445. }
  3446. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3447. if (!ret) {
  3448. /* Copy the new buffer offsets back to the user's exec list. */
  3449. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3450. (uintptr_t) args->buffers_ptr,
  3451. exec2_list,
  3452. sizeof(*exec2_list) * args->buffer_count);
  3453. if (ret) {
  3454. ret = -EFAULT;
  3455. DRM_ERROR("failed to copy %d exec entries "
  3456. "back to user (%d)\n",
  3457. args->buffer_count, ret);
  3458. }
  3459. }
  3460. drm_free_large(exec2_list);
  3461. return ret;
  3462. }
  3463. int
  3464. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3465. {
  3466. struct drm_device *dev = obj->dev;
  3467. struct drm_i915_private *dev_priv = dev->dev_private;
  3468. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3469. int ret;
  3470. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3471. WARN_ON(i915_verify_lists(dev));
  3472. if (obj_priv->gtt_space != NULL) {
  3473. if (alignment == 0)
  3474. alignment = i915_gem_get_gtt_alignment(obj);
  3475. if (obj_priv->gtt_offset & (alignment - 1)) {
  3476. WARN(obj_priv->pin_count,
  3477. "bo is already pinned with incorrect alignment:"
  3478. " offset=%x, req.alignment=%x\n",
  3479. obj_priv->gtt_offset, alignment);
  3480. ret = i915_gem_object_unbind(obj);
  3481. if (ret)
  3482. return ret;
  3483. }
  3484. }
  3485. if (obj_priv->gtt_space == NULL) {
  3486. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3487. if (ret)
  3488. return ret;
  3489. }
  3490. obj_priv->pin_count++;
  3491. /* If the object is not active and not pending a flush,
  3492. * remove it from the inactive list
  3493. */
  3494. if (obj_priv->pin_count == 1) {
  3495. i915_gem_info_add_pin(dev_priv, obj->size);
  3496. if (!obj_priv->active)
  3497. list_move_tail(&obj_priv->list,
  3498. &dev_priv->mm.pinned_list);
  3499. }
  3500. WARN_ON(i915_verify_lists(dev));
  3501. return 0;
  3502. }
  3503. void
  3504. i915_gem_object_unpin(struct drm_gem_object *obj)
  3505. {
  3506. struct drm_device *dev = obj->dev;
  3507. drm_i915_private_t *dev_priv = dev->dev_private;
  3508. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3509. WARN_ON(i915_verify_lists(dev));
  3510. obj_priv->pin_count--;
  3511. BUG_ON(obj_priv->pin_count < 0);
  3512. BUG_ON(obj_priv->gtt_space == NULL);
  3513. /* If the object is no longer pinned, and is
  3514. * neither active nor being flushed, then stick it on
  3515. * the inactive list
  3516. */
  3517. if (obj_priv->pin_count == 0) {
  3518. if (!obj_priv->active)
  3519. list_move_tail(&obj_priv->list,
  3520. &dev_priv->mm.inactive_list);
  3521. i915_gem_info_remove_pin(dev_priv, obj->size);
  3522. }
  3523. WARN_ON(i915_verify_lists(dev));
  3524. }
  3525. int
  3526. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3527. struct drm_file *file_priv)
  3528. {
  3529. struct drm_i915_gem_pin *args = data;
  3530. struct drm_gem_object *obj;
  3531. struct drm_i915_gem_object *obj_priv;
  3532. int ret;
  3533. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3534. if (obj == NULL) {
  3535. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3536. args->handle);
  3537. return -ENOENT;
  3538. }
  3539. obj_priv = to_intel_bo(obj);
  3540. ret = i915_mutex_lock_interruptible(dev);
  3541. if (ret) {
  3542. drm_gem_object_unreference_unlocked(obj);
  3543. return ret;
  3544. }
  3545. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3546. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3547. drm_gem_object_unreference(obj);
  3548. mutex_unlock(&dev->struct_mutex);
  3549. return -EINVAL;
  3550. }
  3551. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3552. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3553. args->handle);
  3554. drm_gem_object_unreference(obj);
  3555. mutex_unlock(&dev->struct_mutex);
  3556. return -EINVAL;
  3557. }
  3558. obj_priv->user_pin_count++;
  3559. obj_priv->pin_filp = file_priv;
  3560. if (obj_priv->user_pin_count == 1) {
  3561. ret = i915_gem_object_pin(obj, args->alignment);
  3562. if (ret != 0) {
  3563. drm_gem_object_unreference(obj);
  3564. mutex_unlock(&dev->struct_mutex);
  3565. return ret;
  3566. }
  3567. }
  3568. /* XXX - flush the CPU caches for pinned objects
  3569. * as the X server doesn't manage domains yet
  3570. */
  3571. i915_gem_object_flush_cpu_write_domain(obj);
  3572. args->offset = obj_priv->gtt_offset;
  3573. drm_gem_object_unreference(obj);
  3574. mutex_unlock(&dev->struct_mutex);
  3575. return 0;
  3576. }
  3577. int
  3578. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3579. struct drm_file *file_priv)
  3580. {
  3581. struct drm_i915_gem_pin *args = data;
  3582. struct drm_gem_object *obj;
  3583. struct drm_i915_gem_object *obj_priv;
  3584. int ret;
  3585. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3586. if (obj == NULL) {
  3587. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3588. args->handle);
  3589. return -ENOENT;
  3590. }
  3591. obj_priv = to_intel_bo(obj);
  3592. ret = i915_mutex_lock_interruptible(dev);
  3593. if (ret) {
  3594. drm_gem_object_unreference_unlocked(obj);
  3595. return ret;
  3596. }
  3597. if (obj_priv->pin_filp != file_priv) {
  3598. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3599. args->handle);
  3600. drm_gem_object_unreference(obj);
  3601. mutex_unlock(&dev->struct_mutex);
  3602. return -EINVAL;
  3603. }
  3604. obj_priv->user_pin_count--;
  3605. if (obj_priv->user_pin_count == 0) {
  3606. obj_priv->pin_filp = NULL;
  3607. i915_gem_object_unpin(obj);
  3608. }
  3609. drm_gem_object_unreference(obj);
  3610. mutex_unlock(&dev->struct_mutex);
  3611. return 0;
  3612. }
  3613. int
  3614. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3615. struct drm_file *file_priv)
  3616. {
  3617. struct drm_i915_gem_busy *args = data;
  3618. struct drm_gem_object *obj;
  3619. struct drm_i915_gem_object *obj_priv;
  3620. int ret;
  3621. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3622. if (obj == NULL) {
  3623. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3624. args->handle);
  3625. return -ENOENT;
  3626. }
  3627. ret = i915_mutex_lock_interruptible(dev);
  3628. if (ret) {
  3629. drm_gem_object_unreference_unlocked(obj);
  3630. return ret;
  3631. }
  3632. /* Count all active objects as busy, even if they are currently not used
  3633. * by the gpu. Users of this interface expect objects to eventually
  3634. * become non-busy without any further actions, therefore emit any
  3635. * necessary flushes here.
  3636. */
  3637. obj_priv = to_intel_bo(obj);
  3638. args->busy = obj_priv->active;
  3639. if (args->busy) {
  3640. /* Unconditionally flush objects, even when the gpu still uses this
  3641. * object. Userspace calling this function indicates that it wants to
  3642. * use this buffer rather sooner than later, so issuing the required
  3643. * flush earlier is beneficial.
  3644. */
  3645. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3646. i915_gem_flush_ring(dev, file_priv,
  3647. obj_priv->ring,
  3648. 0, obj->write_domain);
  3649. /* Update the active list for the hardware's current position.
  3650. * Otherwise this only updates on a delayed timer or when irqs
  3651. * are actually unmasked, and our working set ends up being
  3652. * larger than required.
  3653. */
  3654. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3655. args->busy = obj_priv->active;
  3656. }
  3657. drm_gem_object_unreference(obj);
  3658. mutex_unlock(&dev->struct_mutex);
  3659. return 0;
  3660. }
  3661. int
  3662. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3663. struct drm_file *file_priv)
  3664. {
  3665. return i915_gem_ring_throttle(dev, file_priv);
  3666. }
  3667. int
  3668. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3669. struct drm_file *file_priv)
  3670. {
  3671. struct drm_i915_gem_madvise *args = data;
  3672. struct drm_gem_object *obj;
  3673. struct drm_i915_gem_object *obj_priv;
  3674. int ret;
  3675. switch (args->madv) {
  3676. case I915_MADV_DONTNEED:
  3677. case I915_MADV_WILLNEED:
  3678. break;
  3679. default:
  3680. return -EINVAL;
  3681. }
  3682. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3683. if (obj == NULL) {
  3684. DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
  3685. args->handle);
  3686. return -ENOENT;
  3687. }
  3688. obj_priv = to_intel_bo(obj);
  3689. ret = i915_mutex_lock_interruptible(dev);
  3690. if (ret) {
  3691. drm_gem_object_unreference_unlocked(obj);
  3692. return ret;
  3693. }
  3694. if (obj_priv->pin_count) {
  3695. drm_gem_object_unreference(obj);
  3696. mutex_unlock(&dev->struct_mutex);
  3697. DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
  3698. return -EINVAL;
  3699. }
  3700. if (obj_priv->madv != __I915_MADV_PURGED)
  3701. obj_priv->madv = args->madv;
  3702. /* if the object is no longer bound, discard its backing storage */
  3703. if (i915_gem_object_is_purgeable(obj_priv) &&
  3704. obj_priv->gtt_space == NULL)
  3705. i915_gem_object_truncate(obj);
  3706. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3707. drm_gem_object_unreference(obj);
  3708. mutex_unlock(&dev->struct_mutex);
  3709. return 0;
  3710. }
  3711. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3712. size_t size)
  3713. {
  3714. struct drm_i915_private *dev_priv = dev->dev_private;
  3715. struct drm_i915_gem_object *obj;
  3716. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3717. if (obj == NULL)
  3718. return NULL;
  3719. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3720. kfree(obj);
  3721. return NULL;
  3722. }
  3723. i915_gem_info_add_obj(dev_priv, size);
  3724. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3725. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3726. obj->agp_type = AGP_USER_MEMORY;
  3727. obj->base.driver_private = NULL;
  3728. obj->fence_reg = I915_FENCE_REG_NONE;
  3729. INIT_LIST_HEAD(&obj->list);
  3730. INIT_LIST_HEAD(&obj->gpu_write_list);
  3731. obj->madv = I915_MADV_WILLNEED;
  3732. return &obj->base;
  3733. }
  3734. int i915_gem_init_object(struct drm_gem_object *obj)
  3735. {
  3736. BUG();
  3737. return 0;
  3738. }
  3739. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3740. {
  3741. struct drm_device *dev = obj->dev;
  3742. drm_i915_private_t *dev_priv = dev->dev_private;
  3743. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3744. int ret;
  3745. ret = i915_gem_object_unbind(obj);
  3746. if (ret == -ERESTARTSYS) {
  3747. list_move(&obj_priv->list,
  3748. &dev_priv->mm.deferred_free_list);
  3749. return;
  3750. }
  3751. if (obj_priv->mmap_offset)
  3752. i915_gem_free_mmap_offset(obj);
  3753. drm_gem_object_release(obj);
  3754. i915_gem_info_remove_obj(dev_priv, obj->size);
  3755. kfree(obj_priv->page_cpu_valid);
  3756. kfree(obj_priv->bit_17);
  3757. kfree(obj_priv);
  3758. }
  3759. void i915_gem_free_object(struct drm_gem_object *obj)
  3760. {
  3761. struct drm_device *dev = obj->dev;
  3762. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3763. trace_i915_gem_object_destroy(obj);
  3764. while (obj_priv->pin_count > 0)
  3765. i915_gem_object_unpin(obj);
  3766. if (obj_priv->phys_obj)
  3767. i915_gem_detach_phys_object(dev, obj);
  3768. i915_gem_free_object_tail(obj);
  3769. }
  3770. int
  3771. i915_gem_idle(struct drm_device *dev)
  3772. {
  3773. drm_i915_private_t *dev_priv = dev->dev_private;
  3774. int ret;
  3775. mutex_lock(&dev->struct_mutex);
  3776. if (dev_priv->mm.suspended ||
  3777. (dev_priv->render_ring.gem_object == NULL) ||
  3778. (HAS_BSD(dev) &&
  3779. dev_priv->bsd_ring.gem_object == NULL)) {
  3780. mutex_unlock(&dev->struct_mutex);
  3781. return 0;
  3782. }
  3783. ret = i915_gpu_idle(dev);
  3784. if (ret) {
  3785. mutex_unlock(&dev->struct_mutex);
  3786. return ret;
  3787. }
  3788. /* Under UMS, be paranoid and evict. */
  3789. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3790. ret = i915_gem_evict_inactive(dev);
  3791. if (ret) {
  3792. mutex_unlock(&dev->struct_mutex);
  3793. return ret;
  3794. }
  3795. }
  3796. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3797. * We need to replace this with a semaphore, or something.
  3798. * And not confound mm.suspended!
  3799. */
  3800. dev_priv->mm.suspended = 1;
  3801. del_timer_sync(&dev_priv->hangcheck_timer);
  3802. i915_kernel_lost_context(dev);
  3803. i915_gem_cleanup_ringbuffer(dev);
  3804. mutex_unlock(&dev->struct_mutex);
  3805. /* Cancel the retire work handler, which should be idle now. */
  3806. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3807. return 0;
  3808. }
  3809. /*
  3810. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3811. * over cache flushing.
  3812. */
  3813. static int
  3814. i915_gem_init_pipe_control(struct drm_device *dev)
  3815. {
  3816. drm_i915_private_t *dev_priv = dev->dev_private;
  3817. struct drm_gem_object *obj;
  3818. struct drm_i915_gem_object *obj_priv;
  3819. int ret;
  3820. obj = i915_gem_alloc_object(dev, 4096);
  3821. if (obj == NULL) {
  3822. DRM_ERROR("Failed to allocate seqno page\n");
  3823. ret = -ENOMEM;
  3824. goto err;
  3825. }
  3826. obj_priv = to_intel_bo(obj);
  3827. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3828. ret = i915_gem_object_pin(obj, 4096);
  3829. if (ret)
  3830. goto err_unref;
  3831. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3832. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3833. if (dev_priv->seqno_page == NULL)
  3834. goto err_unpin;
  3835. dev_priv->seqno_obj = obj;
  3836. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3837. return 0;
  3838. err_unpin:
  3839. i915_gem_object_unpin(obj);
  3840. err_unref:
  3841. drm_gem_object_unreference(obj);
  3842. err:
  3843. return ret;
  3844. }
  3845. static void
  3846. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3847. {
  3848. drm_i915_private_t *dev_priv = dev->dev_private;
  3849. struct drm_gem_object *obj;
  3850. struct drm_i915_gem_object *obj_priv;
  3851. obj = dev_priv->seqno_obj;
  3852. obj_priv = to_intel_bo(obj);
  3853. kunmap(obj_priv->pages[0]);
  3854. i915_gem_object_unpin(obj);
  3855. drm_gem_object_unreference(obj);
  3856. dev_priv->seqno_obj = NULL;
  3857. dev_priv->seqno_page = NULL;
  3858. }
  3859. int
  3860. i915_gem_init_ringbuffer(struct drm_device *dev)
  3861. {
  3862. drm_i915_private_t *dev_priv = dev->dev_private;
  3863. int ret;
  3864. if (HAS_PIPE_CONTROL(dev)) {
  3865. ret = i915_gem_init_pipe_control(dev);
  3866. if (ret)
  3867. return ret;
  3868. }
  3869. ret = intel_init_render_ring_buffer(dev);
  3870. if (ret)
  3871. goto cleanup_pipe_control;
  3872. if (HAS_BSD(dev)) {
  3873. ret = intel_init_bsd_ring_buffer(dev);
  3874. if (ret)
  3875. goto cleanup_render_ring;
  3876. }
  3877. dev_priv->next_seqno = 1;
  3878. return 0;
  3879. cleanup_render_ring:
  3880. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3881. cleanup_pipe_control:
  3882. if (HAS_PIPE_CONTROL(dev))
  3883. i915_gem_cleanup_pipe_control(dev);
  3884. return ret;
  3885. }
  3886. void
  3887. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3888. {
  3889. drm_i915_private_t *dev_priv = dev->dev_private;
  3890. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3891. if (HAS_BSD(dev))
  3892. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3893. if (HAS_PIPE_CONTROL(dev))
  3894. i915_gem_cleanup_pipe_control(dev);
  3895. }
  3896. int
  3897. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3898. struct drm_file *file_priv)
  3899. {
  3900. drm_i915_private_t *dev_priv = dev->dev_private;
  3901. int ret;
  3902. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3903. return 0;
  3904. if (atomic_read(&dev_priv->mm.wedged)) {
  3905. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3906. atomic_set(&dev_priv->mm.wedged, 0);
  3907. }
  3908. mutex_lock(&dev->struct_mutex);
  3909. dev_priv->mm.suspended = 0;
  3910. ret = i915_gem_init_ringbuffer(dev);
  3911. if (ret != 0) {
  3912. mutex_unlock(&dev->struct_mutex);
  3913. return ret;
  3914. }
  3915. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3916. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
  3917. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3918. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3919. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3920. BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
  3921. mutex_unlock(&dev->struct_mutex);
  3922. ret = drm_irq_install(dev);
  3923. if (ret)
  3924. goto cleanup_ringbuffer;
  3925. return 0;
  3926. cleanup_ringbuffer:
  3927. mutex_lock(&dev->struct_mutex);
  3928. i915_gem_cleanup_ringbuffer(dev);
  3929. dev_priv->mm.suspended = 1;
  3930. mutex_unlock(&dev->struct_mutex);
  3931. return ret;
  3932. }
  3933. int
  3934. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3935. struct drm_file *file_priv)
  3936. {
  3937. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3938. return 0;
  3939. drm_irq_uninstall(dev);
  3940. return i915_gem_idle(dev);
  3941. }
  3942. void
  3943. i915_gem_lastclose(struct drm_device *dev)
  3944. {
  3945. int ret;
  3946. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3947. return;
  3948. ret = i915_gem_idle(dev);
  3949. if (ret)
  3950. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3951. }
  3952. void
  3953. i915_gem_load(struct drm_device *dev)
  3954. {
  3955. int i;
  3956. drm_i915_private_t *dev_priv = dev->dev_private;
  3957. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3958. INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
  3959. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3960. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3961. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3962. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3963. INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
  3964. INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
  3965. if (HAS_BSD(dev)) {
  3966. INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
  3967. INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
  3968. }
  3969. for (i = 0; i < 16; i++)
  3970. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3971. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3972. i915_gem_retire_work_handler);
  3973. init_completion(&dev_priv->error_completion);
  3974. spin_lock(&shrink_list_lock);
  3975. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3976. spin_unlock(&shrink_list_lock);
  3977. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3978. if (IS_GEN3(dev)) {
  3979. u32 tmp = I915_READ(MI_ARB_STATE);
  3980. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3981. /* arb state is a masked write, so set bit + bit in mask */
  3982. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3983. I915_WRITE(MI_ARB_STATE, tmp);
  3984. }
  3985. }
  3986. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3987. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3988. dev_priv->fence_reg_start = 3;
  3989. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3990. dev_priv->num_fence_regs = 16;
  3991. else
  3992. dev_priv->num_fence_regs = 8;
  3993. /* Initialize fence registers to zero */
  3994. switch (INTEL_INFO(dev)->gen) {
  3995. case 6:
  3996. for (i = 0; i < 16; i++)
  3997. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3998. break;
  3999. case 5:
  4000. case 4:
  4001. for (i = 0; i < 16; i++)
  4002. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  4003. break;
  4004. case 3:
  4005. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  4006. for (i = 0; i < 8; i++)
  4007. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  4008. case 2:
  4009. for (i = 0; i < 8; i++)
  4010. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  4011. break;
  4012. }
  4013. i915_gem_detect_bit_6_swizzle(dev);
  4014. init_waitqueue_head(&dev_priv->pending_flip_queue);
  4015. }
  4016. /*
  4017. * Create a physically contiguous memory object for this object
  4018. * e.g. for cursor + overlay regs
  4019. */
  4020. static int i915_gem_init_phys_object(struct drm_device *dev,
  4021. int id, int size, int align)
  4022. {
  4023. drm_i915_private_t *dev_priv = dev->dev_private;
  4024. struct drm_i915_gem_phys_object *phys_obj;
  4025. int ret;
  4026. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4027. return 0;
  4028. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4029. if (!phys_obj)
  4030. return -ENOMEM;
  4031. phys_obj->id = id;
  4032. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4033. if (!phys_obj->handle) {
  4034. ret = -ENOMEM;
  4035. goto kfree_obj;
  4036. }
  4037. #ifdef CONFIG_X86
  4038. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4039. #endif
  4040. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4041. return 0;
  4042. kfree_obj:
  4043. kfree(phys_obj);
  4044. return ret;
  4045. }
  4046. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4047. {
  4048. drm_i915_private_t *dev_priv = dev->dev_private;
  4049. struct drm_i915_gem_phys_object *phys_obj;
  4050. if (!dev_priv->mm.phys_objs[id - 1])
  4051. return;
  4052. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4053. if (phys_obj->cur_obj) {
  4054. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4055. }
  4056. #ifdef CONFIG_X86
  4057. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4058. #endif
  4059. drm_pci_free(dev, phys_obj->handle);
  4060. kfree(phys_obj);
  4061. dev_priv->mm.phys_objs[id - 1] = NULL;
  4062. }
  4063. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4064. {
  4065. int i;
  4066. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4067. i915_gem_free_phys_object(dev, i);
  4068. }
  4069. void i915_gem_detach_phys_object(struct drm_device *dev,
  4070. struct drm_gem_object *obj)
  4071. {
  4072. struct drm_i915_gem_object *obj_priv;
  4073. int i;
  4074. int ret;
  4075. int page_count;
  4076. obj_priv = to_intel_bo(obj);
  4077. if (!obj_priv->phys_obj)
  4078. return;
  4079. ret = i915_gem_object_get_pages(obj, 0);
  4080. if (ret)
  4081. goto out;
  4082. page_count = obj->size / PAGE_SIZE;
  4083. for (i = 0; i < page_count; i++) {
  4084. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4085. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4086. memcpy(dst, src, PAGE_SIZE);
  4087. kunmap_atomic(dst, KM_USER0);
  4088. }
  4089. drm_clflush_pages(obj_priv->pages, page_count);
  4090. drm_agp_chipset_flush(dev);
  4091. i915_gem_object_put_pages(obj);
  4092. out:
  4093. obj_priv->phys_obj->cur_obj = NULL;
  4094. obj_priv->phys_obj = NULL;
  4095. }
  4096. int
  4097. i915_gem_attach_phys_object(struct drm_device *dev,
  4098. struct drm_gem_object *obj,
  4099. int id,
  4100. int align)
  4101. {
  4102. drm_i915_private_t *dev_priv = dev->dev_private;
  4103. struct drm_i915_gem_object *obj_priv;
  4104. int ret = 0;
  4105. int page_count;
  4106. int i;
  4107. if (id > I915_MAX_PHYS_OBJECT)
  4108. return -EINVAL;
  4109. obj_priv = to_intel_bo(obj);
  4110. if (obj_priv->phys_obj) {
  4111. if (obj_priv->phys_obj->id == id)
  4112. return 0;
  4113. i915_gem_detach_phys_object(dev, obj);
  4114. }
  4115. /* create a new object */
  4116. if (!dev_priv->mm.phys_objs[id - 1]) {
  4117. ret = i915_gem_init_phys_object(dev, id,
  4118. obj->size, align);
  4119. if (ret) {
  4120. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4121. goto out;
  4122. }
  4123. }
  4124. /* bind to the object */
  4125. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4126. obj_priv->phys_obj->cur_obj = obj;
  4127. ret = i915_gem_object_get_pages(obj, 0);
  4128. if (ret) {
  4129. DRM_ERROR("failed to get page list\n");
  4130. goto out;
  4131. }
  4132. page_count = obj->size / PAGE_SIZE;
  4133. for (i = 0; i < page_count; i++) {
  4134. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  4135. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4136. memcpy(dst, src, PAGE_SIZE);
  4137. kunmap_atomic(src, KM_USER0);
  4138. }
  4139. i915_gem_object_put_pages(obj);
  4140. return 0;
  4141. out:
  4142. return ret;
  4143. }
  4144. static int
  4145. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4146. struct drm_i915_gem_pwrite *args,
  4147. struct drm_file *file_priv)
  4148. {
  4149. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4150. void *obj_addr;
  4151. int ret;
  4152. char __user *user_data;
  4153. user_data = (char __user *) (uintptr_t) args->data_ptr;
  4154. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4155. DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
  4156. ret = copy_from_user(obj_addr, user_data, args->size);
  4157. if (ret)
  4158. return -EFAULT;
  4159. drm_agp_chipset_flush(dev);
  4160. return 0;
  4161. }
  4162. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4163. {
  4164. struct drm_i915_file_private *file_priv = file->driver_priv;
  4165. /* Clean up our request list when the client is going away, so that
  4166. * later retire_requests won't dereference our soon-to-be-gone
  4167. * file_priv.
  4168. */
  4169. spin_lock(&file_priv->mm.lock);
  4170. while (!list_empty(&file_priv->mm.request_list)) {
  4171. struct drm_i915_gem_request *request;
  4172. request = list_first_entry(&file_priv->mm.request_list,
  4173. struct drm_i915_gem_request,
  4174. client_list);
  4175. list_del(&request->client_list);
  4176. request->file_priv = NULL;
  4177. }
  4178. spin_unlock(&file_priv->mm.lock);
  4179. }
  4180. static int
  4181. i915_gpu_is_active(struct drm_device *dev)
  4182. {
  4183. drm_i915_private_t *dev_priv = dev->dev_private;
  4184. int lists_empty;
  4185. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4186. list_empty(&dev_priv->render_ring.active_list);
  4187. if (HAS_BSD(dev))
  4188. lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
  4189. return !lists_empty;
  4190. }
  4191. static int
  4192. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4193. {
  4194. drm_i915_private_t *dev_priv, *next_dev;
  4195. struct drm_i915_gem_object *obj_priv, *next_obj;
  4196. int cnt = 0;
  4197. int would_deadlock = 1;
  4198. /* "fast-path" to count number of available objects */
  4199. if (nr_to_scan == 0) {
  4200. spin_lock(&shrink_list_lock);
  4201. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4202. struct drm_device *dev = dev_priv->dev;
  4203. if (mutex_trylock(&dev->struct_mutex)) {
  4204. list_for_each_entry(obj_priv,
  4205. &dev_priv->mm.inactive_list,
  4206. list)
  4207. cnt++;
  4208. mutex_unlock(&dev->struct_mutex);
  4209. }
  4210. }
  4211. spin_unlock(&shrink_list_lock);
  4212. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4213. }
  4214. spin_lock(&shrink_list_lock);
  4215. rescan:
  4216. /* first scan for clean buffers */
  4217. list_for_each_entry_safe(dev_priv, next_dev,
  4218. &shrink_list, mm.shrink_list) {
  4219. struct drm_device *dev = dev_priv->dev;
  4220. if (! mutex_trylock(&dev->struct_mutex))
  4221. continue;
  4222. spin_unlock(&shrink_list_lock);
  4223. i915_gem_retire_requests(dev);
  4224. list_for_each_entry_safe(obj_priv, next_obj,
  4225. &dev_priv->mm.inactive_list,
  4226. list) {
  4227. if (i915_gem_object_is_purgeable(obj_priv)) {
  4228. i915_gem_object_unbind(&obj_priv->base);
  4229. if (--nr_to_scan <= 0)
  4230. break;
  4231. }
  4232. }
  4233. spin_lock(&shrink_list_lock);
  4234. mutex_unlock(&dev->struct_mutex);
  4235. would_deadlock = 0;
  4236. if (nr_to_scan <= 0)
  4237. break;
  4238. }
  4239. /* second pass, evict/count anything still on the inactive list */
  4240. list_for_each_entry_safe(dev_priv, next_dev,
  4241. &shrink_list, mm.shrink_list) {
  4242. struct drm_device *dev = dev_priv->dev;
  4243. if (! mutex_trylock(&dev->struct_mutex))
  4244. continue;
  4245. spin_unlock(&shrink_list_lock);
  4246. list_for_each_entry_safe(obj_priv, next_obj,
  4247. &dev_priv->mm.inactive_list,
  4248. list) {
  4249. if (nr_to_scan > 0) {
  4250. i915_gem_object_unbind(&obj_priv->base);
  4251. nr_to_scan--;
  4252. } else
  4253. cnt++;
  4254. }
  4255. spin_lock(&shrink_list_lock);
  4256. mutex_unlock(&dev->struct_mutex);
  4257. would_deadlock = 0;
  4258. }
  4259. if (nr_to_scan) {
  4260. int active = 0;
  4261. /*
  4262. * We are desperate for pages, so as a last resort, wait
  4263. * for the GPU to finish and discard whatever we can.
  4264. * This has a dramatic impact to reduce the number of
  4265. * OOM-killer events whilst running the GPU aggressively.
  4266. */
  4267. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4268. struct drm_device *dev = dev_priv->dev;
  4269. if (!mutex_trylock(&dev->struct_mutex))
  4270. continue;
  4271. spin_unlock(&shrink_list_lock);
  4272. if (i915_gpu_is_active(dev)) {
  4273. i915_gpu_idle(dev);
  4274. active++;
  4275. }
  4276. spin_lock(&shrink_list_lock);
  4277. mutex_unlock(&dev->struct_mutex);
  4278. }
  4279. if (active)
  4280. goto rescan;
  4281. }
  4282. spin_unlock(&shrink_list_lock);
  4283. if (would_deadlock)
  4284. return -1;
  4285. else if (cnt > 0)
  4286. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4287. else
  4288. return 0;
  4289. }
  4290. static struct shrinker shrinker = {
  4291. .shrink = i915_gem_shrink,
  4292. .seeks = DEFAULT_SEEKS,
  4293. };
  4294. __init void
  4295. i915_gem_shrinker_init(void)
  4296. {
  4297. register_shrinker(&shrinker);
  4298. }
  4299. __exit void
  4300. i915_gem_shrinker_exit(void)
  4301. {
  4302. unregister_shrinker(&shrinker);
  4303. }