rt2800pci.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #ifdef CONFIG_RT2800PCI_SOC
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. }
  78. #else
  79. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  80. {
  81. }
  82. #endif /* CONFIG_RT2800PCI_SOC */
  83. #ifdef CONFIG_RT2800PCI_PCI
  84. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  85. {
  86. struct rt2x00_dev *rt2x00dev = eeprom->data;
  87. u32 reg;
  88. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  89. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  90. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  91. eeprom->reg_data_clock =
  92. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  93. eeprom->reg_chip_select =
  94. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  95. }
  96. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  97. {
  98. struct rt2x00_dev *rt2x00dev = eeprom->data;
  99. u32 reg = 0;
  100. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  103. !!eeprom->reg_data_clock);
  104. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  105. !!eeprom->reg_chip_select);
  106. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  107. }
  108. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  109. {
  110. struct eeprom_93cx6 eeprom;
  111. u32 reg;
  112. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  113. eeprom.data = rt2x00dev;
  114. eeprom.register_read = rt2800pci_eepromregister_read;
  115. eeprom.register_write = rt2800pci_eepromregister_write;
  116. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  117. {
  118. case 0:
  119. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  120. break;
  121. case 1:
  122. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  123. break;
  124. default:
  125. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  126. break;
  127. }
  128. eeprom.reg_data_in = 0;
  129. eeprom.reg_data_out = 0;
  130. eeprom.reg_data_clock = 0;
  131. eeprom.reg_chip_select = 0;
  132. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  133. EEPROM_SIZE / sizeof(u16));
  134. }
  135. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  136. {
  137. return rt2800_efuse_detect(rt2x00dev);
  138. }
  139. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  140. {
  141. rt2800_read_eeprom_efuse(rt2x00dev);
  142. }
  143. #else
  144. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  145. {
  146. }
  147. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  148. {
  149. return 0;
  150. }
  151. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  152. {
  153. }
  154. #endif /* CONFIG_RT2800PCI_PCI */
  155. /*
  156. * Firmware functions
  157. */
  158. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return FIRMWARE_RT2860;
  161. }
  162. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  163. const u8 *data, const size_t len)
  164. {
  165. u32 reg;
  166. /*
  167. * enable Host program ram write selection
  168. */
  169. reg = 0;
  170. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  171. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  172. /*
  173. * Write firmware to device.
  174. */
  175. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  176. data, len);
  177. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  178. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  179. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  180. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  181. return 0;
  182. }
  183. /*
  184. * Initialization functions.
  185. */
  186. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  187. {
  188. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  189. u32 word;
  190. if (entry->queue->qid == QID_RX) {
  191. rt2x00_desc_read(entry_priv->desc, 1, &word);
  192. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  193. } else {
  194. rt2x00_desc_read(entry_priv->desc, 1, &word);
  195. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  196. }
  197. }
  198. static void rt2800pci_clear_entry(struct queue_entry *entry)
  199. {
  200. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  201. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  202. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  203. u32 word;
  204. if (entry->queue->qid == QID_RX) {
  205. rt2x00_desc_read(entry_priv->desc, 0, &word);
  206. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  207. rt2x00_desc_write(entry_priv->desc, 0, word);
  208. rt2x00_desc_read(entry_priv->desc, 1, &word);
  209. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  210. rt2x00_desc_write(entry_priv->desc, 1, word);
  211. /*
  212. * Set RX IDX in register to inform hardware that we have
  213. * handled this entry and it is available for reuse again.
  214. */
  215. rt2800_register_write(rt2x00dev, RX_CRX_IDX,
  216. entry->entry_idx);
  217. } else {
  218. rt2x00_desc_read(entry_priv->desc, 1, &word);
  219. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  220. rt2x00_desc_write(entry_priv->desc, 1, word);
  221. }
  222. }
  223. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  224. {
  225. struct queue_entry_priv_pci *entry_priv;
  226. u32 reg;
  227. /*
  228. * Initialize registers.
  229. */
  230. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  231. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  232. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  233. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  234. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  235. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  236. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  237. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  238. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  239. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  240. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  241. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  242. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  243. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  244. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  245. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  246. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  247. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  248. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  249. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  250. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  251. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  252. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  253. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  254. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  255. /*
  256. * Enable global DMA configuration
  257. */
  258. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  259. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  260. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  261. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  262. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  263. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  264. return 0;
  265. }
  266. /*
  267. * Device state switch handlers.
  268. */
  269. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  270. enum dev_state state)
  271. {
  272. u32 reg;
  273. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  274. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  275. (state == STATE_RADIO_RX_ON));
  276. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  277. }
  278. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  279. enum dev_state state)
  280. {
  281. int mask = (state == STATE_RADIO_IRQ_ON) ||
  282. (state == STATE_RADIO_IRQ_ON_ISR);
  283. u32 reg;
  284. /*
  285. * When interrupts are being enabled, the interrupt registers
  286. * should clear the register to assure a clean state.
  287. */
  288. if (state == STATE_RADIO_IRQ_ON) {
  289. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  290. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  291. }
  292. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  293. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
  294. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
  295. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  296. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
  297. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
  298. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
  299. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
  300. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
  301. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
  302. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
  303. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
  304. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  305. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  306. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  307. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  308. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
  309. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
  310. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
  311. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  312. }
  313. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  314. {
  315. u32 reg;
  316. /*
  317. * Reset DMA indexes
  318. */
  319. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  320. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  321. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  322. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  323. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  324. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  325. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  326. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  327. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  328. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  329. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  330. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  331. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  332. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  333. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  334. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  335. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  336. return 0;
  337. }
  338. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  339. {
  340. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  341. rt2800pci_init_queues(rt2x00dev)))
  342. return -EIO;
  343. return rt2800_enable_radio(rt2x00dev);
  344. }
  345. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  346. {
  347. u32 reg;
  348. rt2800_disable_radio(rt2x00dev);
  349. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  350. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  351. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  352. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  353. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  354. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  355. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  356. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  357. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  358. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  359. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  360. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  361. }
  362. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  363. enum dev_state state)
  364. {
  365. /*
  366. * Always put the device to sleep (even when we intend to wakeup!)
  367. * if the device is booting and wasn't asleep it will return
  368. * failure when attempting to wakeup.
  369. */
  370. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0xff, 2);
  371. if (state == STATE_AWAKE) {
  372. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  373. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  374. }
  375. return 0;
  376. }
  377. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  378. enum dev_state state)
  379. {
  380. int retval = 0;
  381. switch (state) {
  382. case STATE_RADIO_ON:
  383. /*
  384. * Before the radio can be enabled, the device first has
  385. * to be woken up. After that it needs a bit of time
  386. * to be fully awake and then the radio can be enabled.
  387. */
  388. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  389. msleep(1);
  390. retval = rt2800pci_enable_radio(rt2x00dev);
  391. break;
  392. case STATE_RADIO_OFF:
  393. /*
  394. * After the radio has been disabled, the device should
  395. * be put to sleep for powersaving.
  396. */
  397. rt2800pci_disable_radio(rt2x00dev);
  398. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  399. break;
  400. case STATE_RADIO_RX_ON:
  401. case STATE_RADIO_RX_OFF:
  402. rt2800pci_toggle_rx(rt2x00dev, state);
  403. break;
  404. case STATE_RADIO_IRQ_ON:
  405. case STATE_RADIO_IRQ_ON_ISR:
  406. case STATE_RADIO_IRQ_OFF:
  407. case STATE_RADIO_IRQ_OFF_ISR:
  408. rt2800pci_toggle_irq(rt2x00dev, state);
  409. break;
  410. case STATE_DEEP_SLEEP:
  411. case STATE_SLEEP:
  412. case STATE_STANDBY:
  413. case STATE_AWAKE:
  414. retval = rt2800pci_set_state(rt2x00dev, state);
  415. break;
  416. default:
  417. retval = -ENOTSUPP;
  418. break;
  419. }
  420. if (unlikely(retval))
  421. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  422. state, retval);
  423. return retval;
  424. }
  425. /*
  426. * TX descriptor initialization
  427. */
  428. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  429. {
  430. return (__le32 *) entry->skb->data;
  431. }
  432. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  433. struct txentry_desc *txdesc)
  434. {
  435. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  436. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  437. __le32 *txd = entry_priv->desc;
  438. u32 word;
  439. /*
  440. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  441. * must contains a TXWI structure + 802.11 header + padding + 802.11
  442. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  443. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  444. * data. It means that LAST_SEC0 is always 0.
  445. */
  446. /*
  447. * Initialize TX descriptor
  448. */
  449. rt2x00_desc_read(txd, 0, &word);
  450. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  451. rt2x00_desc_write(txd, 0, word);
  452. rt2x00_desc_read(txd, 1, &word);
  453. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  454. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  455. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  456. rt2x00_set_field32(&word, TXD_W1_BURST,
  457. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  458. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  459. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  460. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  461. rt2x00_desc_write(txd, 1, word);
  462. rt2x00_desc_read(txd, 2, &word);
  463. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  464. skbdesc->skb_dma + TXWI_DESC_SIZE);
  465. rt2x00_desc_write(txd, 2, word);
  466. rt2x00_desc_read(txd, 3, &word);
  467. rt2x00_set_field32(&word, TXD_W3_WIV,
  468. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  469. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  470. rt2x00_desc_write(txd, 3, word);
  471. /*
  472. * Register descriptor details in skb frame descriptor.
  473. */
  474. skbdesc->desc = txd;
  475. skbdesc->desc_len = TXD_DESC_SIZE;
  476. }
  477. /*
  478. * TX data initialization
  479. */
  480. static void rt2800pci_kick_tx_queue(struct data_queue *queue)
  481. {
  482. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  483. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  484. unsigned int qidx;
  485. if (queue->qid == QID_MGMT)
  486. qidx = 5;
  487. else
  488. qidx = queue->qid;
  489. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
  490. }
  491. static void rt2800pci_kill_tx_queue(struct data_queue *queue)
  492. {
  493. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  494. u32 reg;
  495. if (queue->qid == QID_BEACON) {
  496. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  497. return;
  498. }
  499. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  500. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
  501. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
  502. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
  503. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
  504. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  505. }
  506. /*
  507. * RX control handlers
  508. */
  509. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  510. struct rxdone_entry_desc *rxdesc)
  511. {
  512. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  513. __le32 *rxd = entry_priv->desc;
  514. u32 word;
  515. rt2x00_desc_read(rxd, 3, &word);
  516. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  517. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  518. /*
  519. * Unfortunately we don't know the cipher type used during
  520. * decryption. This prevents us from correct providing
  521. * correct statistics through debugfs.
  522. */
  523. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  524. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  525. /*
  526. * Hardware has stripped IV/EIV data from 802.11 frame during
  527. * decryption. Unfortunately the descriptor doesn't contain
  528. * any fields with the EIV/IV data either, so they can't
  529. * be restored by rt2x00lib.
  530. */
  531. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  532. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  533. rxdesc->flags |= RX_FLAG_DECRYPTED;
  534. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  535. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  536. }
  537. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  538. rxdesc->dev_flags |= RXDONE_MY_BSS;
  539. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  540. rxdesc->dev_flags |= RXDONE_L2PAD;
  541. /*
  542. * Process the RXWI structure that is at the start of the buffer.
  543. */
  544. rt2800_process_rxwi(entry, rxdesc);
  545. }
  546. /*
  547. * Interrupt functions.
  548. */
  549. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  550. {
  551. struct ieee80211_conf conf = { .flags = 0 };
  552. struct rt2x00lib_conf libconf = { .conf = &conf };
  553. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  554. }
  555. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  556. {
  557. struct data_queue *queue;
  558. struct queue_entry *entry;
  559. u32 status;
  560. u8 qid;
  561. while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
  562. /* Now remove the tx status from the FIFO */
  563. if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
  564. sizeof(status)) != sizeof(status)) {
  565. WARN_ON(1);
  566. break;
  567. }
  568. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
  569. if (qid >= QID_RX) {
  570. /*
  571. * Unknown queue, this shouldn't happen. Just drop
  572. * this tx status.
  573. */
  574. WARNING(rt2x00dev, "Got TX status report with "
  575. "unexpected pid %u, dropping", qid);
  576. break;
  577. }
  578. queue = rt2x00queue_get_queue(rt2x00dev, qid);
  579. if (unlikely(queue == NULL)) {
  580. /*
  581. * The queue is NULL, this shouldn't happen. Stop
  582. * processing here and drop the tx status
  583. */
  584. WARNING(rt2x00dev, "Got TX status for an unavailable "
  585. "queue %u, dropping", qid);
  586. break;
  587. }
  588. if (rt2x00queue_empty(queue)) {
  589. /*
  590. * The queue is empty. Stop processing here
  591. * and drop the tx status.
  592. */
  593. WARNING(rt2x00dev, "Got TX status for an empty "
  594. "queue %u, dropping", qid);
  595. break;
  596. }
  597. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  598. rt2800_txdone_entry(entry, status);
  599. }
  600. }
  601. static void rt2800pci_txstatus_tasklet(unsigned long data)
  602. {
  603. rt2800pci_txdone((struct rt2x00_dev *)data);
  604. }
  605. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  606. {
  607. struct rt2x00_dev *rt2x00dev = dev_instance;
  608. u32 reg = rt2x00dev->irqvalue[0];
  609. /*
  610. * 1 - Pre TBTT interrupt.
  611. */
  612. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  613. rt2x00lib_pretbtt(rt2x00dev);
  614. /*
  615. * 2 - Beacondone interrupt.
  616. */
  617. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  618. rt2x00lib_beacondone(rt2x00dev);
  619. /*
  620. * 3 - Rx ring done interrupt.
  621. */
  622. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  623. rt2x00pci_rxdone(rt2x00dev);
  624. /*
  625. * 4 - Auto wakeup interrupt.
  626. */
  627. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  628. rt2800pci_wakeup(rt2x00dev);
  629. /* Enable interrupts again. */
  630. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  631. STATE_RADIO_IRQ_ON_ISR);
  632. return IRQ_HANDLED;
  633. }
  634. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  635. {
  636. u32 status;
  637. int i;
  638. /*
  639. * The TX_FIFO_STATUS interrupt needs special care. We should
  640. * read TX_STA_FIFO but we should do it immediately as otherwise
  641. * the register can overflow and we would lose status reports.
  642. *
  643. * Hence, read the TX_STA_FIFO register and copy all tx status
  644. * reports into a kernel FIFO which is handled in the txstatus
  645. * tasklet. We use a tasklet to process the tx status reports
  646. * because we can schedule the tasklet multiple times (when the
  647. * interrupt fires again during tx status processing).
  648. *
  649. * Furthermore we don't disable the TX_FIFO_STATUS
  650. * interrupt here but leave it enabled so that the TX_STA_FIFO
  651. * can also be read while the interrupt thread gets executed.
  652. *
  653. * Since we have only one producer and one consumer we don't
  654. * need to lock the kfifo.
  655. */
  656. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  657. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
  658. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  659. break;
  660. if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
  661. WARNING(rt2x00dev, "TX status FIFO overrun,"
  662. " drop tx status report.\n");
  663. break;
  664. }
  665. if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
  666. sizeof(status)) != sizeof(status)) {
  667. WARNING(rt2x00dev, "TX status FIFO overrun,"
  668. "drop tx status report.\n");
  669. break;
  670. }
  671. }
  672. /* Schedule the tasklet for processing the tx status. */
  673. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  674. }
  675. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  676. {
  677. struct rt2x00_dev *rt2x00dev = dev_instance;
  678. u32 reg;
  679. irqreturn_t ret = IRQ_HANDLED;
  680. /* Read status and ACK all interrupts */
  681. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  682. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  683. if (!reg)
  684. return IRQ_NONE;
  685. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  686. return IRQ_HANDLED;
  687. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  688. rt2800pci_txstatus_interrupt(rt2x00dev);
  689. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
  690. rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
  691. rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
  692. rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
  693. /*
  694. * All other interrupts are handled in the interrupt thread.
  695. * Store irqvalue for use in the interrupt thread.
  696. */
  697. rt2x00dev->irqvalue[0] = reg;
  698. /*
  699. * Disable interrupts, will be enabled again in the
  700. * interrupt thread.
  701. */
  702. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  703. STATE_RADIO_IRQ_OFF_ISR);
  704. /*
  705. * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
  706. * tx status reports.
  707. */
  708. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  709. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  710. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  711. ret = IRQ_WAKE_THREAD;
  712. }
  713. return ret;
  714. }
  715. /*
  716. * Device probe functions.
  717. */
  718. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  719. {
  720. /*
  721. * Read EEPROM into buffer
  722. */
  723. if (rt2x00_is_soc(rt2x00dev))
  724. rt2800pci_read_eeprom_soc(rt2x00dev);
  725. else if (rt2800pci_efuse_detect(rt2x00dev))
  726. rt2800pci_read_eeprom_efuse(rt2x00dev);
  727. else
  728. rt2800pci_read_eeprom_pci(rt2x00dev);
  729. return rt2800_validate_eeprom(rt2x00dev);
  730. }
  731. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  732. {
  733. int retval;
  734. /*
  735. * Allocate eeprom data.
  736. */
  737. retval = rt2800pci_validate_eeprom(rt2x00dev);
  738. if (retval)
  739. return retval;
  740. retval = rt2800_init_eeprom(rt2x00dev);
  741. if (retval)
  742. return retval;
  743. /*
  744. * Initialize hw specifications.
  745. */
  746. retval = rt2800_probe_hw_mode(rt2x00dev);
  747. if (retval)
  748. return retval;
  749. /*
  750. * This device has multiple filters for control frames
  751. * and has a separate filter for PS Poll frames.
  752. */
  753. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  754. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  755. /*
  756. * This device has a pre tbtt interrupt and thus fetches
  757. * a new beacon directly prior to transmission.
  758. */
  759. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  760. /*
  761. * This device requires firmware.
  762. */
  763. if (!rt2x00_is_soc(rt2x00dev))
  764. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  765. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  766. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  767. __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
  768. if (!modparam_nohwcrypt)
  769. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  770. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  771. /*
  772. * Set the rssi offset.
  773. */
  774. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  775. return 0;
  776. }
  777. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  778. .tx = rt2x00mac_tx,
  779. .start = rt2x00mac_start,
  780. .stop = rt2x00mac_stop,
  781. .add_interface = rt2x00mac_add_interface,
  782. .remove_interface = rt2x00mac_remove_interface,
  783. .config = rt2x00mac_config,
  784. .configure_filter = rt2x00mac_configure_filter,
  785. .set_key = rt2x00mac_set_key,
  786. .sw_scan_start = rt2x00mac_sw_scan_start,
  787. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  788. .get_stats = rt2x00mac_get_stats,
  789. .get_tkip_seq = rt2800_get_tkip_seq,
  790. .set_rts_threshold = rt2800_set_rts_threshold,
  791. .bss_info_changed = rt2x00mac_bss_info_changed,
  792. .conf_tx = rt2800_conf_tx,
  793. .get_tsf = rt2800_get_tsf,
  794. .rfkill_poll = rt2x00mac_rfkill_poll,
  795. .ampdu_action = rt2800_ampdu_action,
  796. .flush = rt2x00mac_flush,
  797. };
  798. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  799. .register_read = rt2x00pci_register_read,
  800. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  801. .register_write = rt2x00pci_register_write,
  802. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  803. .register_multiread = rt2x00pci_register_multiread,
  804. .register_multiwrite = rt2x00pci_register_multiwrite,
  805. .regbusy_read = rt2x00pci_regbusy_read,
  806. .drv_write_firmware = rt2800pci_write_firmware,
  807. .drv_init_registers = rt2800pci_init_registers,
  808. .drv_get_txwi = rt2800pci_get_txwi,
  809. };
  810. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  811. .irq_handler = rt2800pci_interrupt,
  812. .irq_handler_thread = rt2800pci_interrupt_thread,
  813. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  814. .probe_hw = rt2800pci_probe_hw,
  815. .get_firmware_name = rt2800pci_get_firmware_name,
  816. .check_firmware = rt2800_check_firmware,
  817. .load_firmware = rt2800_load_firmware,
  818. .initialize = rt2x00pci_initialize,
  819. .uninitialize = rt2x00pci_uninitialize,
  820. .get_entry_state = rt2800pci_get_entry_state,
  821. .clear_entry = rt2800pci_clear_entry,
  822. .set_device_state = rt2800pci_set_device_state,
  823. .rfkill_poll = rt2800_rfkill_poll,
  824. .link_stats = rt2800_link_stats,
  825. .reset_tuner = rt2800_reset_tuner,
  826. .link_tuner = rt2800_link_tuner,
  827. .write_tx_desc = rt2800pci_write_tx_desc,
  828. .write_tx_data = rt2800_write_tx_data,
  829. .write_beacon = rt2800_write_beacon,
  830. .kick_tx_queue = rt2800pci_kick_tx_queue,
  831. .kill_tx_queue = rt2800pci_kill_tx_queue,
  832. .fill_rxdone = rt2800pci_fill_rxdone,
  833. .config_shared_key = rt2800_config_shared_key,
  834. .config_pairwise_key = rt2800_config_pairwise_key,
  835. .config_filter = rt2800_config_filter,
  836. .config_intf = rt2800_config_intf,
  837. .config_erp = rt2800_config_erp,
  838. .config_ant = rt2800_config_ant,
  839. .config = rt2800_config,
  840. };
  841. static const struct data_queue_desc rt2800pci_queue_rx = {
  842. .entry_num = 128,
  843. .data_size = AGGREGATION_SIZE,
  844. .desc_size = RXD_DESC_SIZE,
  845. .priv_size = sizeof(struct queue_entry_priv_pci),
  846. };
  847. static const struct data_queue_desc rt2800pci_queue_tx = {
  848. .entry_num = 64,
  849. .data_size = AGGREGATION_SIZE,
  850. .desc_size = TXD_DESC_SIZE,
  851. .priv_size = sizeof(struct queue_entry_priv_pci),
  852. };
  853. static const struct data_queue_desc rt2800pci_queue_bcn = {
  854. .entry_num = 8,
  855. .data_size = 0, /* No DMA required for beacons */
  856. .desc_size = TXWI_DESC_SIZE,
  857. .priv_size = sizeof(struct queue_entry_priv_pci),
  858. };
  859. static const struct rt2x00_ops rt2800pci_ops = {
  860. .name = KBUILD_MODNAME,
  861. .max_sta_intf = 1,
  862. .max_ap_intf = 8,
  863. .eeprom_size = EEPROM_SIZE,
  864. .rf_size = RF_SIZE,
  865. .tx_queues = NUM_TX_QUEUES,
  866. .extra_tx_headroom = TXWI_DESC_SIZE,
  867. .rx = &rt2800pci_queue_rx,
  868. .tx = &rt2800pci_queue_tx,
  869. .bcn = &rt2800pci_queue_bcn,
  870. .lib = &rt2800pci_rt2x00_ops,
  871. .drv = &rt2800pci_rt2800_ops,
  872. .hw = &rt2800pci_mac80211_ops,
  873. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  874. .debugfs = &rt2800_rt2x00debug,
  875. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  876. };
  877. /*
  878. * RT2800pci module information.
  879. */
  880. #ifdef CONFIG_RT2800PCI_PCI
  881. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  882. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  883. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  884. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  885. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  886. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  887. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  888. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  889. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  890. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  891. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  892. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  893. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  894. #ifdef CONFIG_RT2800PCI_RT30XX
  895. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  896. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  897. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  898. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  899. #endif
  900. #ifdef CONFIG_RT2800PCI_RT35XX
  901. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  902. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  903. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  904. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  905. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  906. #endif
  907. { 0, }
  908. };
  909. #endif /* CONFIG_RT2800PCI_PCI */
  910. MODULE_AUTHOR(DRV_PROJECT);
  911. MODULE_VERSION(DRV_VERSION);
  912. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  913. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  914. #ifdef CONFIG_RT2800PCI_PCI
  915. MODULE_FIRMWARE(FIRMWARE_RT2860);
  916. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  917. #endif /* CONFIG_RT2800PCI_PCI */
  918. MODULE_LICENSE("GPL");
  919. #ifdef CONFIG_RT2800PCI_SOC
  920. static int rt2800soc_probe(struct platform_device *pdev)
  921. {
  922. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  923. }
  924. static struct platform_driver rt2800soc_driver = {
  925. .driver = {
  926. .name = "rt2800_wmac",
  927. .owner = THIS_MODULE,
  928. .mod_name = KBUILD_MODNAME,
  929. },
  930. .probe = rt2800soc_probe,
  931. .remove = __devexit_p(rt2x00soc_remove),
  932. .suspend = rt2x00soc_suspend,
  933. .resume = rt2x00soc_resume,
  934. };
  935. #endif /* CONFIG_RT2800PCI_SOC */
  936. #ifdef CONFIG_RT2800PCI_PCI
  937. static struct pci_driver rt2800pci_driver = {
  938. .name = KBUILD_MODNAME,
  939. .id_table = rt2800pci_device_table,
  940. .probe = rt2x00pci_probe,
  941. .remove = __devexit_p(rt2x00pci_remove),
  942. .suspend = rt2x00pci_suspend,
  943. .resume = rt2x00pci_resume,
  944. };
  945. #endif /* CONFIG_RT2800PCI_PCI */
  946. static int __init rt2800pci_init(void)
  947. {
  948. int ret = 0;
  949. #ifdef CONFIG_RT2800PCI_SOC
  950. ret = platform_driver_register(&rt2800soc_driver);
  951. if (ret)
  952. return ret;
  953. #endif
  954. #ifdef CONFIG_RT2800PCI_PCI
  955. ret = pci_register_driver(&rt2800pci_driver);
  956. if (ret) {
  957. #ifdef CONFIG_RT2800PCI_SOC
  958. platform_driver_unregister(&rt2800soc_driver);
  959. #endif
  960. return ret;
  961. }
  962. #endif
  963. return ret;
  964. }
  965. static void __exit rt2800pci_exit(void)
  966. {
  967. #ifdef CONFIG_RT2800PCI_PCI
  968. pci_unregister_driver(&rt2800pci_driver);
  969. #endif
  970. #ifdef CONFIG_RT2800PCI_SOC
  971. platform_driver_unregister(&rt2800soc_driver);
  972. #endif
  973. }
  974. module_init(rt2800pci_init);
  975. module_exit(rt2800pci_exit);