txrx.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <net/ieee80211_radiotap.h>
  18. #include <linux/if_arp.h>
  19. #include <linux/moduleparam.h>
  20. #include "wil6210.h"
  21. #include "wmi.h"
  22. #include "txrx.h"
  23. static bool rtap_include_phy_info;
  24. module_param(rtap_include_phy_info, bool, S_IRUGO);
  25. MODULE_PARM_DESC(rtap_include_phy_info,
  26. " Include PHY info in the radiotap header, default - no");
  27. static inline int wil_vring_is_empty(struct vring *vring)
  28. {
  29. return vring->swhead == vring->swtail;
  30. }
  31. static inline u32 wil_vring_next_tail(struct vring *vring)
  32. {
  33. return (vring->swtail + 1) % vring->size;
  34. }
  35. static inline void wil_vring_advance_head(struct vring *vring, int n)
  36. {
  37. vring->swhead = (vring->swhead + n) % vring->size;
  38. }
  39. static inline int wil_vring_is_full(struct vring *vring)
  40. {
  41. return wil_vring_next_tail(vring) == vring->swhead;
  42. }
  43. /*
  44. * Available space in Tx Vring
  45. */
  46. static inline int wil_vring_avail_tx(struct vring *vring)
  47. {
  48. u32 swhead = vring->swhead;
  49. u32 swtail = vring->swtail;
  50. int used = (vring->size + swhead - swtail) % vring->size;
  51. return vring->size - used - 1;
  52. }
  53. static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
  54. {
  55. struct device *dev = wil_to_dev(wil);
  56. size_t sz = vring->size * sizeof(vring->va[0]);
  57. uint i;
  58. BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
  59. vring->swhead = 0;
  60. vring->swtail = 0;
  61. vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
  62. if (!vring->ctx) {
  63. vring->va = NULL;
  64. return -ENOMEM;
  65. }
  66. /*
  67. * vring->va should be aligned on its size rounded up to power of 2
  68. * This is granted by the dma_alloc_coherent
  69. */
  70. vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
  71. if (!vring->va) {
  72. wil_err(wil, "vring_alloc [%d] failed to alloc DMA mem\n",
  73. vring->size);
  74. kfree(vring->ctx);
  75. vring->ctx = NULL;
  76. return -ENOMEM;
  77. }
  78. /* initially, all descriptors are SW owned
  79. * For Tx and Rx, ownership bit is at the same location, thus
  80. * we can use any
  81. */
  82. for (i = 0; i < vring->size; i++) {
  83. volatile struct vring_tx_desc *d = &(vring->va[i].tx);
  84. d->dma.status = TX_DMA_STATUS_DU;
  85. }
  86. wil_dbg_misc(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
  87. vring->va, (unsigned long long)vring->pa, vring->ctx);
  88. return 0;
  89. }
  90. static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
  91. int tx)
  92. {
  93. struct device *dev = wil_to_dev(wil);
  94. size_t sz = vring->size * sizeof(vring->va[0]);
  95. while (!wil_vring_is_empty(vring)) {
  96. if (tx) {
  97. volatile struct vring_tx_desc *d =
  98. &vring->va[vring->swtail].tx;
  99. dma_addr_t pa = d->dma.addr_low |
  100. ((u64)d->dma.addr_high << 32);
  101. struct sk_buff *skb = vring->ctx[vring->swtail];
  102. if (skb) {
  103. dma_unmap_single(dev, pa, d->dma.length,
  104. DMA_TO_DEVICE);
  105. dev_kfree_skb_any(skb);
  106. vring->ctx[vring->swtail] = NULL;
  107. } else {
  108. dma_unmap_page(dev, pa, d->dma.length,
  109. DMA_TO_DEVICE);
  110. }
  111. vring->swtail = wil_vring_next_tail(vring);
  112. } else { /* rx */
  113. volatile struct vring_rx_desc *d =
  114. &vring->va[vring->swtail].rx;
  115. dma_addr_t pa = d->dma.addr_low |
  116. ((u64)d->dma.addr_high << 32);
  117. struct sk_buff *skb = vring->ctx[vring->swhead];
  118. dma_unmap_single(dev, pa, d->dma.length,
  119. DMA_FROM_DEVICE);
  120. kfree_skb(skb);
  121. wil_vring_advance_head(vring, 1);
  122. }
  123. }
  124. dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
  125. kfree(vring->ctx);
  126. vring->pa = 0;
  127. vring->va = NULL;
  128. vring->ctx = NULL;
  129. }
  130. /**
  131. * Allocate one skb for Rx VRING
  132. *
  133. * Safe to call from IRQ
  134. */
  135. static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
  136. u32 i, int headroom)
  137. {
  138. struct device *dev = wil_to_dev(wil);
  139. unsigned int sz = RX_BUF_LEN;
  140. volatile struct vring_rx_desc *d = &(vring->va[i].rx);
  141. dma_addr_t pa;
  142. /* TODO align */
  143. struct sk_buff *skb = dev_alloc_skb(sz + headroom);
  144. if (unlikely(!skb))
  145. return -ENOMEM;
  146. skb_reserve(skb, headroom);
  147. skb_put(skb, sz);
  148. pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
  149. if (unlikely(dma_mapping_error(dev, pa))) {
  150. kfree_skb(skb);
  151. return -ENOMEM;
  152. }
  153. d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
  154. d->dma.addr_low = lower_32_bits(pa);
  155. d->dma.addr_high = (u16)upper_32_bits(pa);
  156. /* ip_length don't care */
  157. /* b11 don't care */
  158. /* error don't care */
  159. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  160. d->dma.length = sz;
  161. vring->ctx[i] = skb;
  162. return 0;
  163. }
  164. /**
  165. * Adds radiotap header
  166. *
  167. * Any error indicated as "Bad FCS"
  168. *
  169. * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
  170. * - Rx descriptor: 32 bytes
  171. * - Phy info
  172. */
  173. static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
  174. struct sk_buff *skb)
  175. {
  176. struct wireless_dev *wdev = wil->wdev;
  177. struct wil6210_rtap {
  178. struct ieee80211_radiotap_header rthdr;
  179. /* fields should be in the order of bits in rthdr.it_present */
  180. /* flags */
  181. u8 flags;
  182. /* channel */
  183. __le16 chnl_freq __aligned(2);
  184. __le16 chnl_flags;
  185. /* MCS */
  186. u8 mcs_present;
  187. u8 mcs_flags;
  188. u8 mcs_index;
  189. } __packed;
  190. struct wil6210_rtap_vendor {
  191. struct wil6210_rtap rtap;
  192. /* vendor */
  193. u8 vendor_oui[3] __aligned(2);
  194. u8 vendor_ns;
  195. __le16 vendor_skip;
  196. u8 vendor_data[0];
  197. } __packed;
  198. struct vring_rx_desc *d = wil_skb_rxdesc(skb);
  199. struct wil6210_rtap_vendor *rtap_vendor;
  200. int rtap_len = sizeof(struct wil6210_rtap);
  201. int phy_length = 0; /* phy info header size, bytes */
  202. static char phy_data[128];
  203. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  204. if (rtap_include_phy_info) {
  205. rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
  206. /* calculate additional length */
  207. if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
  208. /**
  209. * PHY info starts from 8-byte boundary
  210. * there are 8-byte lines, last line may be partially
  211. * written (HW bug), thus FW configures for last line
  212. * to be excessive. Driver skips this last line.
  213. */
  214. int len = min_t(int, 8 + sizeof(phy_data),
  215. wil_rxdesc_phy_length(d));
  216. if (len > 8) {
  217. void *p = skb_tail_pointer(skb);
  218. void *pa = PTR_ALIGN(p, 8);
  219. if (skb_tailroom(skb) >= len + (pa - p)) {
  220. phy_length = len - 8;
  221. memcpy(phy_data, pa, phy_length);
  222. }
  223. }
  224. }
  225. rtap_len += phy_length;
  226. }
  227. if (skb_headroom(skb) < rtap_len &&
  228. pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
  229. wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
  230. return;
  231. }
  232. rtap_vendor = (void *)skb_push(skb, rtap_len);
  233. memset(rtap_vendor, 0, rtap_len);
  234. rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
  235. rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
  236. rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
  237. (1 << IEEE80211_RADIOTAP_FLAGS) |
  238. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  239. (1 << IEEE80211_RADIOTAP_MCS));
  240. if (d->dma.status & RX_DMA_STATUS_ERROR)
  241. rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
  242. rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
  243. rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
  244. rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
  245. rtap_vendor->rtap.mcs_flags = 0;
  246. rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
  247. if (rtap_include_phy_info) {
  248. rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
  249. IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
  250. /* OUI for Wilocity 04:ce:14 */
  251. rtap_vendor->vendor_oui[0] = 0x04;
  252. rtap_vendor->vendor_oui[1] = 0xce;
  253. rtap_vendor->vendor_oui[2] = 0x14;
  254. rtap_vendor->vendor_ns = 1;
  255. /* Rx descriptor + PHY data */
  256. rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
  257. phy_length);
  258. memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
  259. memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
  260. phy_length);
  261. }
  262. }
  263. /*
  264. * Fast swap in place between 2 registers
  265. */
  266. static void wil_swap_u16(u16 *a, u16 *b)
  267. {
  268. *a ^= *b;
  269. *b ^= *a;
  270. *a ^= *b;
  271. }
  272. static void wil_swap_ethaddr(void *data)
  273. {
  274. struct ethhdr *eth = data;
  275. u16 *s = (u16 *)eth->h_source;
  276. u16 *d = (u16 *)eth->h_dest;
  277. wil_swap_u16(s++, d++);
  278. wil_swap_u16(s++, d++);
  279. wil_swap_u16(s, d);
  280. }
  281. /**
  282. * reap 1 frame from @swhead
  283. *
  284. * Rx descriptor copied to skb->cb
  285. *
  286. * Safe to call from IRQ
  287. */
  288. static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
  289. struct vring *vring)
  290. {
  291. struct device *dev = wil_to_dev(wil);
  292. struct net_device *ndev = wil_to_ndev(wil);
  293. volatile struct vring_rx_desc *d;
  294. struct vring_rx_desc *d1;
  295. struct sk_buff *skb;
  296. dma_addr_t pa;
  297. unsigned int sz = RX_BUF_LEN;
  298. u8 ftype;
  299. u8 ds_bits;
  300. BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
  301. if (wil_vring_is_empty(vring))
  302. return NULL;
  303. d = &(vring->va[vring->swhead].rx);
  304. if (!(d->dma.status & RX_DMA_STATUS_DU)) {
  305. /* it is not error, we just reached end of Rx done area */
  306. return NULL;
  307. }
  308. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  309. skb = vring->ctx[vring->swhead];
  310. dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
  311. skb_trim(skb, d->dma.length);
  312. d1 = wil_skb_rxdesc(skb);
  313. *d1 = *d;
  314. wil->stats.last_mcs_rx = wil_rxdesc_mcs(d1);
  315. /* use radiotap header only if required */
  316. if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
  317. wil_rx_add_radiotap_header(wil, skb);
  318. wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length);
  319. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4,
  320. (const void *)d, sizeof(*d), false);
  321. wil_vring_advance_head(vring, 1);
  322. /* no extra checks if in sniffer mode */
  323. if (ndev->type != ARPHRD_ETHER)
  324. return skb;
  325. /*
  326. * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
  327. * Driver should recognize it by frame type, that is found
  328. * in Rx descriptor. If type is not data, it is 802.11 frame as is
  329. */
  330. ftype = wil_rxdesc_ftype(d1) << 2;
  331. if (ftype != IEEE80211_FTYPE_DATA) {
  332. wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype);
  333. /* TODO: process it */
  334. kfree_skb(skb);
  335. return NULL;
  336. }
  337. if (skb->len < ETH_HLEN) {
  338. wil_err(wil, "Short frame, len = %d\n", skb->len);
  339. /* TODO: process it (i.e. BAR) */
  340. kfree_skb(skb);
  341. return NULL;
  342. }
  343. ds_bits = wil_rxdesc_ds_bits(d1);
  344. if (ds_bits == 1) {
  345. /*
  346. * HW bug - in ToDS mode, i.e. Rx on AP side,
  347. * addresses get swapped
  348. */
  349. wil_swap_ethaddr(skb->data);
  350. }
  351. return skb;
  352. }
  353. /**
  354. * allocate and fill up to @count buffers in rx ring
  355. * buffers posted at @swtail
  356. */
  357. static int wil_rx_refill(struct wil6210_priv *wil, int count)
  358. {
  359. struct net_device *ndev = wil_to_ndev(wil);
  360. struct vring *v = &wil->vring_rx;
  361. u32 next_tail;
  362. int rc = 0;
  363. int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
  364. WIL6210_RTAP_SIZE : 0;
  365. for (; next_tail = wil_vring_next_tail(v),
  366. (next_tail != v->swhead) && (count-- > 0);
  367. v->swtail = next_tail) {
  368. rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
  369. if (rc) {
  370. wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
  371. rc, v->swtail);
  372. break;
  373. }
  374. }
  375. iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
  376. return rc;
  377. }
  378. /*
  379. * Pass Rx packet to the netif. Update statistics.
  380. */
  381. static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
  382. {
  383. int rc;
  384. unsigned int len = skb->len;
  385. skb_orphan(skb);
  386. if (in_interrupt())
  387. rc = netif_rx(skb);
  388. else
  389. rc = netif_rx_ni(skb);
  390. if (likely(rc == NET_RX_SUCCESS)) {
  391. ndev->stats.rx_packets++;
  392. ndev->stats.rx_bytes += len;
  393. } else {
  394. ndev->stats.rx_dropped++;
  395. }
  396. }
  397. /**
  398. * Proceed all completed skb's from Rx VRING
  399. *
  400. * Safe to call from IRQ
  401. */
  402. void wil_rx_handle(struct wil6210_priv *wil)
  403. {
  404. struct net_device *ndev = wil_to_ndev(wil);
  405. struct vring *v = &wil->vring_rx;
  406. struct sk_buff *skb;
  407. if (!v->va) {
  408. wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
  409. return;
  410. }
  411. wil_dbg_txrx(wil, "%s()\n", __func__);
  412. while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
  413. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
  414. skb->data, skb_headlen(skb), false);
  415. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  416. skb->dev = ndev;
  417. skb_reset_mac_header(skb);
  418. skb->ip_summed = CHECKSUM_UNNECESSARY;
  419. skb->pkt_type = PACKET_OTHERHOST;
  420. skb->protocol = htons(ETH_P_802_2);
  421. } else {
  422. skb->protocol = eth_type_trans(skb, ndev);
  423. }
  424. wil_netif_rx_any(skb, ndev);
  425. }
  426. wil_rx_refill(wil, v->size);
  427. }
  428. int wil_rx_init(struct wil6210_priv *wil)
  429. {
  430. struct vring *vring = &wil->vring_rx;
  431. int rc;
  432. vring->size = WIL6210_RX_RING_SIZE;
  433. rc = wil_vring_alloc(wil, vring);
  434. if (rc)
  435. return rc;
  436. rc = wmi_rx_chain_add(wil, vring);
  437. if (rc)
  438. goto err_free;
  439. rc = wil_rx_refill(wil, vring->size);
  440. if (rc)
  441. goto err_free;
  442. return 0;
  443. err_free:
  444. wil_vring_free(wil, vring, 0);
  445. return rc;
  446. }
  447. void wil_rx_fini(struct wil6210_priv *wil)
  448. {
  449. struct vring *vring = &wil->vring_rx;
  450. if (vring->va)
  451. wil_vring_free(wil, vring, 0);
  452. }
  453. int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
  454. int cid, int tid)
  455. {
  456. int rc;
  457. struct wmi_vring_cfg_cmd cmd = {
  458. .action = cpu_to_le32(WMI_VRING_CMD_ADD),
  459. .vring_cfg = {
  460. .tx_sw_ring = {
  461. .max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
  462. .ring_size = cpu_to_le16(size),
  463. },
  464. .ringid = id,
  465. .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
  466. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  467. .mac_ctrl = 0,
  468. .to_resolution = 0,
  469. .agg_max_wsize = 16,
  470. .schd_params = {
  471. .priority = cpu_to_le16(0),
  472. .timeslot_us = cpu_to_le16(0xfff),
  473. },
  474. },
  475. };
  476. struct {
  477. struct wil6210_mbox_hdr_wmi wmi;
  478. struct wmi_vring_cfg_done_event cmd;
  479. } __packed reply;
  480. struct vring *vring = &wil->vring_tx[id];
  481. if (vring->va) {
  482. wil_err(wil, "Tx ring [%d] already allocated\n", id);
  483. rc = -EINVAL;
  484. goto out;
  485. }
  486. vring->size = size;
  487. rc = wil_vring_alloc(wil, vring);
  488. if (rc)
  489. goto out;
  490. cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  491. rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
  492. WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
  493. if (rc)
  494. goto out_free;
  495. if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
  496. wil_err(wil, "Tx config failed, status 0x%02x\n",
  497. reply.cmd.status);
  498. rc = -EINVAL;
  499. goto out_free;
  500. }
  501. vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
  502. return 0;
  503. out_free:
  504. wil_vring_free(wil, vring, 1);
  505. out:
  506. return rc;
  507. }
  508. void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
  509. {
  510. struct vring *vring = &wil->vring_tx[id];
  511. if (!vring->va)
  512. return;
  513. wil_vring_free(wil, vring, 1);
  514. }
  515. static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
  516. struct sk_buff *skb)
  517. {
  518. struct vring *v = &wil->vring_tx[0];
  519. if (v->va)
  520. return v;
  521. return NULL;
  522. }
  523. static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
  524. dma_addr_t pa, u32 len)
  525. {
  526. d->dma.addr_low = lower_32_bits(pa);
  527. d->dma.addr_high = (u16)upper_32_bits(pa);
  528. d->dma.ip_length = 0;
  529. /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
  530. d->dma.b11 = 0/*14 | BIT(7)*/;
  531. d->dma.error = 0;
  532. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  533. d->dma.length = len;
  534. d->dma.d0 = 0;
  535. d->mac.d[0] = 0;
  536. d->mac.d[1] = 0;
  537. d->mac.d[2] = 0;
  538. d->mac.ucode_cmd = 0;
  539. /* use dst index 0 */
  540. d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
  541. (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
  542. /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
  543. d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
  544. (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
  545. return 0;
  546. }
  547. static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
  548. struct sk_buff *skb)
  549. {
  550. struct device *dev = wil_to_dev(wil);
  551. volatile struct vring_tx_desc *d;
  552. u32 swhead = vring->swhead;
  553. int avail = wil_vring_avail_tx(vring);
  554. int nr_frags = skb_shinfo(skb)->nr_frags;
  555. uint f;
  556. int vring_index = vring - wil->vring_tx;
  557. uint i = swhead;
  558. dma_addr_t pa;
  559. wil_dbg_txrx(wil, "%s()\n", __func__);
  560. if (avail < vring->size/8)
  561. netif_tx_stop_all_queues(wil_to_ndev(wil));
  562. if (avail < 1 + nr_frags) {
  563. wil_err(wil, "Tx ring full. No space for %d fragments\n",
  564. 1 + nr_frags);
  565. return -ENOMEM;
  566. }
  567. d = &(vring->va[i].tx);
  568. /* FIXME FW can accept only unicast frames for the peer */
  569. memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
  570. pa = dma_map_single(dev, skb->data,
  571. skb_headlen(skb), DMA_TO_DEVICE);
  572. wil_dbg_txrx(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
  573. skb->data, (unsigned long long)pa);
  574. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
  575. skb->data, skb_headlen(skb), false);
  576. if (unlikely(dma_mapping_error(dev, pa)))
  577. return -EINVAL;
  578. /* 1-st segment */
  579. wil_tx_desc_map(d, pa, skb_headlen(skb));
  580. d->mac.d[2] |= ((nr_frags + 1) <<
  581. MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
  582. /* middle segments */
  583. for (f = 0; f < nr_frags; f++) {
  584. const struct skb_frag_struct *frag =
  585. &skb_shinfo(skb)->frags[f];
  586. int len = skb_frag_size(frag);
  587. i = (swhead + f + 1) % vring->size;
  588. d = &(vring->va[i].tx);
  589. pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
  590. DMA_TO_DEVICE);
  591. if (unlikely(dma_mapping_error(dev, pa)))
  592. goto dma_error;
  593. wil_tx_desc_map(d, pa, len);
  594. vring->ctx[i] = NULL;
  595. }
  596. /* for the last seg only */
  597. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
  598. d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
  599. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
  600. d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
  601. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_NONE, 32, 4,
  602. (const void *)d, sizeof(*d), false);
  603. /* advance swhead */
  604. wil_vring_advance_head(vring, nr_frags + 1);
  605. wil_dbg_txrx(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
  606. iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
  607. /* hold reference to skb
  608. * to prevent skb release before accounting
  609. * in case of immediate "tx done"
  610. */
  611. vring->ctx[i] = skb_get(skb);
  612. return 0;
  613. dma_error:
  614. /* unmap what we have mapped */
  615. /* Note: increment @f to operate with positive index */
  616. for (f++; f > 0; f--) {
  617. i = (swhead + f) % vring->size;
  618. d = &(vring->va[i].tx);
  619. d->dma.status = TX_DMA_STATUS_DU;
  620. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  621. if (vring->ctx[i])
  622. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  623. else
  624. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  625. }
  626. return -EINVAL;
  627. }
  628. netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  629. {
  630. struct wil6210_priv *wil = ndev_to_wil(ndev);
  631. struct vring *vring;
  632. int rc;
  633. wil_dbg_txrx(wil, "%s()\n", __func__);
  634. if (!test_bit(wil_status_fwready, &wil->status)) {
  635. wil_err(wil, "FW not ready\n");
  636. goto drop;
  637. }
  638. if (!test_bit(wil_status_fwconnected, &wil->status)) {
  639. wil_err(wil, "FW not connected\n");
  640. goto drop;
  641. }
  642. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  643. wil_err(wil, "Xmit in monitor mode not supported\n");
  644. goto drop;
  645. }
  646. if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
  647. rc = wmi_tx_eapol(wil, skb);
  648. } else {
  649. /* find vring */
  650. vring = wil_find_tx_vring(wil, skb);
  651. if (!vring) {
  652. wil_err(wil, "No Tx VRING available\n");
  653. goto drop;
  654. }
  655. /* set up vring entry */
  656. rc = wil_tx_vring(wil, vring, skb);
  657. }
  658. switch (rc) {
  659. case 0:
  660. /* statistics will be updated on the tx_complete */
  661. dev_kfree_skb_any(skb);
  662. return NETDEV_TX_OK;
  663. case -ENOMEM:
  664. return NETDEV_TX_BUSY;
  665. default:
  666. break; /* goto drop; */
  667. }
  668. drop:
  669. netif_tx_stop_all_queues(ndev);
  670. ndev->stats.tx_dropped++;
  671. dev_kfree_skb_any(skb);
  672. return NET_XMIT_DROP;
  673. }
  674. /**
  675. * Clean up transmitted skb's from the Tx VRING
  676. *
  677. * Safe to call from IRQ
  678. */
  679. void wil_tx_complete(struct wil6210_priv *wil, int ringid)
  680. {
  681. struct net_device *ndev = wil_to_ndev(wil);
  682. struct device *dev = wil_to_dev(wil);
  683. struct vring *vring = &wil->vring_tx[ringid];
  684. if (!vring->va) {
  685. wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
  686. return;
  687. }
  688. wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
  689. while (!wil_vring_is_empty(vring)) {
  690. volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx;
  691. dma_addr_t pa;
  692. struct sk_buff *skb;
  693. if (!(d->dma.status & TX_DMA_STATUS_DU))
  694. break;
  695. wil_dbg_txrx(wil,
  696. "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
  697. vring->swtail, d->dma.length, d->dma.status,
  698. d->dma.error);
  699. wil_hex_dump_txrx("TxC ", DUMP_PREFIX_NONE, 32, 4,
  700. (const void *)d, sizeof(*d), false);
  701. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  702. skb = vring->ctx[vring->swtail];
  703. if (skb) {
  704. if (d->dma.error == 0) {
  705. ndev->stats.tx_packets++;
  706. ndev->stats.tx_bytes += skb->len;
  707. } else {
  708. ndev->stats.tx_errors++;
  709. }
  710. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  711. dev_kfree_skb_any(skb);
  712. vring->ctx[vring->swtail] = NULL;
  713. } else {
  714. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  715. }
  716. d->dma.addr_low = 0;
  717. d->dma.addr_high = 0;
  718. d->dma.length = 0;
  719. d->dma.status = TX_DMA_STATUS_DU;
  720. vring->swtail = wil_vring_next_tail(vring);
  721. }
  722. if (wil_vring_avail_tx(vring) > vring->size/4)
  723. netif_tx_wake_all_queues(wil_to_ndev(wil));
  724. }