slab.c 101 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same intializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/config.h>
  89. #include <linux/slab.h>
  90. #include <linux/mm.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/seq_file.h>
  97. #include <linux/notifier.h>
  98. #include <linux/kallsyms.h>
  99. #include <linux/cpu.h>
  100. #include <linux/sysctl.h>
  101. #include <linux/module.h>
  102. #include <linux/rcupdate.h>
  103. #include <linux/string.h>
  104. #include <linux/nodemask.h>
  105. #include <linux/mempolicy.h>
  106. #include <linux/mutex.h>
  107. #include <asm/uaccess.h>
  108. #include <asm/cacheflush.h>
  109. #include <asm/tlbflush.h>
  110. #include <asm/page.h>
  111. /*
  112. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
  113. * SLAB_RED_ZONE & SLAB_POISON.
  114. * 0 for faster, smaller code (especially in the critical paths).
  115. *
  116. * STATS - 1 to collect stats for /proc/slabinfo.
  117. * 0 for faster, smaller code (especially in the critical paths).
  118. *
  119. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  120. */
  121. #ifdef CONFIG_DEBUG_SLAB
  122. #define DEBUG 1
  123. #define STATS 1
  124. #define FORCED_DEBUG 1
  125. #else
  126. #define DEBUG 0
  127. #define STATS 0
  128. #define FORCED_DEBUG 0
  129. #endif
  130. /* Shouldn't this be in a header file somewhere? */
  131. #define BYTES_PER_WORD sizeof(void *)
  132. #ifndef cache_line_size
  133. #define cache_line_size() L1_CACHE_BYTES
  134. #endif
  135. #ifndef ARCH_KMALLOC_MINALIGN
  136. /*
  137. * Enforce a minimum alignment for the kmalloc caches.
  138. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  139. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  140. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  141. * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
  142. * Note that this flag disables some debug features.
  143. */
  144. #define ARCH_KMALLOC_MINALIGN 0
  145. #endif
  146. #ifndef ARCH_SLAB_MINALIGN
  147. /*
  148. * Enforce a minimum alignment for all caches.
  149. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  150. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  151. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  152. * some debug features.
  153. */
  154. #define ARCH_SLAB_MINALIGN 0
  155. #endif
  156. #ifndef ARCH_KMALLOC_FLAGS
  157. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  158. #endif
  159. /* Legal flag mask for kmem_cache_create(). */
  160. #if DEBUG
  161. # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
  162. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  163. SLAB_NO_REAP | SLAB_CACHE_DMA | \
  164. SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
  165. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  166. SLAB_DESTROY_BY_RCU)
  167. #else
  168. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
  169. SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
  170. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  171. SLAB_DESTROY_BY_RCU)
  172. #endif
  173. /*
  174. * kmem_bufctl_t:
  175. *
  176. * Bufctl's are used for linking objs within a slab
  177. * linked offsets.
  178. *
  179. * This implementation relies on "struct page" for locating the cache &
  180. * slab an object belongs to.
  181. * This allows the bufctl structure to be small (one int), but limits
  182. * the number of objects a slab (not a cache) can contain when off-slab
  183. * bufctls are used. The limit is the size of the largest general cache
  184. * that does not use off-slab slabs.
  185. * For 32bit archs with 4 kB pages, is this 56.
  186. * This is not serious, as it is only for large objects, when it is unwise
  187. * to have too many per slab.
  188. * Note: This limit can be raised by introducing a general cache whose size
  189. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  190. */
  191. typedef unsigned int kmem_bufctl_t;
  192. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  193. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  194. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
  195. /* Max number of objs-per-slab for caches which use off-slab slabs.
  196. * Needed to avoid a possible looping condition in cache_grow().
  197. */
  198. static unsigned long offslab_limit;
  199. /*
  200. * struct slab
  201. *
  202. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  203. * for a slab, or allocated from an general cache.
  204. * Slabs are chained into three list: fully used, partial, fully free slabs.
  205. */
  206. struct slab {
  207. struct list_head list;
  208. unsigned long colouroff;
  209. void *s_mem; /* including colour offset */
  210. unsigned int inuse; /* num of objs active in slab */
  211. kmem_bufctl_t free;
  212. unsigned short nodeid;
  213. };
  214. /*
  215. * struct slab_rcu
  216. *
  217. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  218. * arrange for kmem_freepages to be called via RCU. This is useful if
  219. * we need to approach a kernel structure obliquely, from its address
  220. * obtained without the usual locking. We can lock the structure to
  221. * stabilize it and check it's still at the given address, only if we
  222. * can be sure that the memory has not been meanwhile reused for some
  223. * other kind of object (which our subsystem's lock might corrupt).
  224. *
  225. * rcu_read_lock before reading the address, then rcu_read_unlock after
  226. * taking the spinlock within the structure expected at that address.
  227. *
  228. * We assume struct slab_rcu can overlay struct slab when destroying.
  229. */
  230. struct slab_rcu {
  231. struct rcu_head head;
  232. struct kmem_cache *cachep;
  233. void *addr;
  234. };
  235. /*
  236. * struct array_cache
  237. *
  238. * Purpose:
  239. * - LIFO ordering, to hand out cache-warm objects from _alloc
  240. * - reduce the number of linked list operations
  241. * - reduce spinlock operations
  242. *
  243. * The limit is stored in the per-cpu structure to reduce the data cache
  244. * footprint.
  245. *
  246. */
  247. struct array_cache {
  248. unsigned int avail;
  249. unsigned int limit;
  250. unsigned int batchcount;
  251. unsigned int touched;
  252. spinlock_t lock;
  253. void *entry[0]; /*
  254. * Must have this definition in here for the proper
  255. * alignment of array_cache. Also simplifies accessing
  256. * the entries.
  257. * [0] is for gcc 2.95. It should really be [].
  258. */
  259. };
  260. /*
  261. * bootstrap: The caches do not work without cpuarrays anymore, but the
  262. * cpuarrays are allocated from the generic caches...
  263. */
  264. #define BOOT_CPUCACHE_ENTRIES 1
  265. struct arraycache_init {
  266. struct array_cache cache;
  267. void *entries[BOOT_CPUCACHE_ENTRIES];
  268. };
  269. /*
  270. * The slab lists for all objects.
  271. */
  272. struct kmem_list3 {
  273. struct list_head slabs_partial; /* partial list first, better asm code */
  274. struct list_head slabs_full;
  275. struct list_head slabs_free;
  276. unsigned long free_objects;
  277. unsigned long next_reap;
  278. int free_touched;
  279. unsigned int free_limit;
  280. unsigned int colour_next; /* Per-node cache coloring */
  281. spinlock_t list_lock;
  282. struct array_cache *shared; /* shared per node */
  283. struct array_cache **alien; /* on other nodes */
  284. };
  285. /*
  286. * Need this for bootstrapping a per node allocator.
  287. */
  288. #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
  289. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  290. #define CACHE_CACHE 0
  291. #define SIZE_AC 1
  292. #define SIZE_L3 (1 + MAX_NUMNODES)
  293. /*
  294. * This function must be completely optimized away if a constant is passed to
  295. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  296. */
  297. static __always_inline int index_of(const size_t size)
  298. {
  299. extern void __bad_size(void);
  300. if (__builtin_constant_p(size)) {
  301. int i = 0;
  302. #define CACHE(x) \
  303. if (size <=x) \
  304. return i; \
  305. else \
  306. i++;
  307. #include "linux/kmalloc_sizes.h"
  308. #undef CACHE
  309. __bad_size();
  310. } else
  311. __bad_size();
  312. return 0;
  313. }
  314. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  315. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  316. static void kmem_list3_init(struct kmem_list3 *parent)
  317. {
  318. INIT_LIST_HEAD(&parent->slabs_full);
  319. INIT_LIST_HEAD(&parent->slabs_partial);
  320. INIT_LIST_HEAD(&parent->slabs_free);
  321. parent->shared = NULL;
  322. parent->alien = NULL;
  323. parent->colour_next = 0;
  324. spin_lock_init(&parent->list_lock);
  325. parent->free_objects = 0;
  326. parent->free_touched = 0;
  327. }
  328. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  329. do { \
  330. INIT_LIST_HEAD(listp); \
  331. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  332. } while (0)
  333. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  334. do { \
  335. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  336. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  337. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  338. } while (0)
  339. /*
  340. * struct kmem_cache
  341. *
  342. * manages a cache.
  343. */
  344. struct kmem_cache {
  345. /* 1) per-cpu data, touched during every alloc/free */
  346. struct array_cache *array[NR_CPUS];
  347. /* 2) Cache tunables. Protected by cache_chain_mutex */
  348. unsigned int batchcount;
  349. unsigned int limit;
  350. unsigned int shared;
  351. unsigned int buffer_size;
  352. /* 3) touched by every alloc & free from the backend */
  353. struct kmem_list3 *nodelists[MAX_NUMNODES];
  354. unsigned int flags; /* constant flags */
  355. unsigned int num; /* # of objs per slab */
  356. /* 4) cache_grow/shrink */
  357. /* order of pgs per slab (2^n) */
  358. unsigned int gfporder;
  359. /* force GFP flags, e.g. GFP_DMA */
  360. gfp_t gfpflags;
  361. size_t colour; /* cache colouring range */
  362. unsigned int colour_off; /* colour offset */
  363. struct kmem_cache *slabp_cache;
  364. unsigned int slab_size;
  365. unsigned int dflags; /* dynamic flags */
  366. /* constructor func */
  367. void (*ctor) (void *, struct kmem_cache *, unsigned long);
  368. /* de-constructor func */
  369. void (*dtor) (void *, struct kmem_cache *, unsigned long);
  370. /* 5) cache creation/removal */
  371. const char *name;
  372. struct list_head next;
  373. /* 6) statistics */
  374. #if STATS
  375. unsigned long num_active;
  376. unsigned long num_allocations;
  377. unsigned long high_mark;
  378. unsigned long grown;
  379. unsigned long reaped;
  380. unsigned long errors;
  381. unsigned long max_freeable;
  382. unsigned long node_allocs;
  383. unsigned long node_frees;
  384. atomic_t allochit;
  385. atomic_t allocmiss;
  386. atomic_t freehit;
  387. atomic_t freemiss;
  388. #endif
  389. #if DEBUG
  390. /*
  391. * If debugging is enabled, then the allocator can add additional
  392. * fields and/or padding to every object. buffer_size contains the total
  393. * object size including these internal fields, the following two
  394. * variables contain the offset to the user object and its size.
  395. */
  396. int obj_offset;
  397. int obj_size;
  398. #endif
  399. };
  400. #define CFLGS_OFF_SLAB (0x80000000UL)
  401. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  402. #define BATCHREFILL_LIMIT 16
  403. /*
  404. * Optimization question: fewer reaps means less probability for unnessary
  405. * cpucache drain/refill cycles.
  406. *
  407. * OTOH the cpuarrays can contain lots of objects,
  408. * which could lock up otherwise freeable slabs.
  409. */
  410. #define REAPTIMEOUT_CPUC (2*HZ)
  411. #define REAPTIMEOUT_LIST3 (4*HZ)
  412. #if STATS
  413. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  414. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  415. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  416. #define STATS_INC_GROWN(x) ((x)->grown++)
  417. #define STATS_INC_REAPED(x) ((x)->reaped++)
  418. #define STATS_SET_HIGH(x) \
  419. do { \
  420. if ((x)->num_active > (x)->high_mark) \
  421. (x)->high_mark = (x)->num_active; \
  422. } while (0)
  423. #define STATS_INC_ERR(x) ((x)->errors++)
  424. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  425. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  426. #define STATS_SET_FREEABLE(x, i) \
  427. do { \
  428. if ((x)->max_freeable < i) \
  429. (x)->max_freeable = i; \
  430. } while (0)
  431. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  432. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  433. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  434. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  435. #else
  436. #define STATS_INC_ACTIVE(x) do { } while (0)
  437. #define STATS_DEC_ACTIVE(x) do { } while (0)
  438. #define STATS_INC_ALLOCED(x) do { } while (0)
  439. #define STATS_INC_GROWN(x) do { } while (0)
  440. #define STATS_INC_REAPED(x) do { } while (0)
  441. #define STATS_SET_HIGH(x) do { } while (0)
  442. #define STATS_INC_ERR(x) do { } while (0)
  443. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  444. #define STATS_INC_NODEFREES(x) do { } while (0)
  445. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  446. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  447. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  448. #define STATS_INC_FREEHIT(x) do { } while (0)
  449. #define STATS_INC_FREEMISS(x) do { } while (0)
  450. #endif
  451. #if DEBUG
  452. /*
  453. * Magic nums for obj red zoning.
  454. * Placed in the first word before and the first word after an obj.
  455. */
  456. #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
  457. #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
  458. /* ...and for poisoning */
  459. #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
  460. #define POISON_FREE 0x6b /* for use-after-free poisoning */
  461. #define POISON_END 0xa5 /* end-byte of poisoning */
  462. /*
  463. * memory layout of objects:
  464. * 0 : objp
  465. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  466. * the end of an object is aligned with the end of the real
  467. * allocation. Catches writes behind the end of the allocation.
  468. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  469. * redzone word.
  470. * cachep->obj_offset: The real object.
  471. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  472. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  473. * [BYTES_PER_WORD long]
  474. */
  475. static int obj_offset(struct kmem_cache *cachep)
  476. {
  477. return cachep->obj_offset;
  478. }
  479. static int obj_size(struct kmem_cache *cachep)
  480. {
  481. return cachep->obj_size;
  482. }
  483. static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  484. {
  485. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  486. return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
  487. }
  488. static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  489. {
  490. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  491. if (cachep->flags & SLAB_STORE_USER)
  492. return (unsigned long *)(objp + cachep->buffer_size -
  493. 2 * BYTES_PER_WORD);
  494. return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
  495. }
  496. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  497. {
  498. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  499. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  500. }
  501. #else
  502. #define obj_offset(x) 0
  503. #define obj_size(cachep) (cachep->buffer_size)
  504. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  505. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
  506. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  507. #endif
  508. /*
  509. * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
  510. * order.
  511. */
  512. #if defined(CONFIG_LARGE_ALLOCS)
  513. #define MAX_OBJ_ORDER 13 /* up to 32Mb */
  514. #define MAX_GFP_ORDER 13 /* up to 32Mb */
  515. #elif defined(CONFIG_MMU)
  516. #define MAX_OBJ_ORDER 5 /* 32 pages */
  517. #define MAX_GFP_ORDER 5 /* 32 pages */
  518. #else
  519. #define MAX_OBJ_ORDER 8 /* up to 1Mb */
  520. #define MAX_GFP_ORDER 8 /* up to 1Mb */
  521. #endif
  522. /*
  523. * Do not go above this order unless 0 objects fit into the slab.
  524. */
  525. #define BREAK_GFP_ORDER_HI 1
  526. #define BREAK_GFP_ORDER_LO 0
  527. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  528. /*
  529. * Functions for storing/retrieving the cachep and or slab from the page
  530. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  531. * these are used to find the cache which an obj belongs to.
  532. */
  533. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  534. {
  535. page->lru.next = (struct list_head *)cache;
  536. }
  537. static inline struct kmem_cache *page_get_cache(struct page *page)
  538. {
  539. return (struct kmem_cache *)page->lru.next;
  540. }
  541. static inline void page_set_slab(struct page *page, struct slab *slab)
  542. {
  543. page->lru.prev = (struct list_head *)slab;
  544. }
  545. static inline struct slab *page_get_slab(struct page *page)
  546. {
  547. return (struct slab *)page->lru.prev;
  548. }
  549. static inline struct kmem_cache *virt_to_cache(const void *obj)
  550. {
  551. struct page *page = virt_to_page(obj);
  552. return page_get_cache(page);
  553. }
  554. static inline struct slab *virt_to_slab(const void *obj)
  555. {
  556. struct page *page = virt_to_page(obj);
  557. return page_get_slab(page);
  558. }
  559. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  560. unsigned int idx)
  561. {
  562. return slab->s_mem + cache->buffer_size * idx;
  563. }
  564. static inline unsigned int obj_to_index(struct kmem_cache *cache,
  565. struct slab *slab, void *obj)
  566. {
  567. return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
  568. }
  569. /*
  570. * These are the default caches for kmalloc. Custom caches can have other sizes.
  571. */
  572. struct cache_sizes malloc_sizes[] = {
  573. #define CACHE(x) { .cs_size = (x) },
  574. #include <linux/kmalloc_sizes.h>
  575. CACHE(ULONG_MAX)
  576. #undef CACHE
  577. };
  578. EXPORT_SYMBOL(malloc_sizes);
  579. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  580. struct cache_names {
  581. char *name;
  582. char *name_dma;
  583. };
  584. static struct cache_names __initdata cache_names[] = {
  585. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  586. #include <linux/kmalloc_sizes.h>
  587. {NULL,}
  588. #undef CACHE
  589. };
  590. static struct arraycache_init initarray_cache __initdata =
  591. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  592. static struct arraycache_init initarray_generic =
  593. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  594. /* internal cache of cache description objs */
  595. static struct kmem_cache cache_cache = {
  596. .batchcount = 1,
  597. .limit = BOOT_CPUCACHE_ENTRIES,
  598. .shared = 1,
  599. .buffer_size = sizeof(struct kmem_cache),
  600. .flags = SLAB_NO_REAP,
  601. .name = "kmem_cache",
  602. #if DEBUG
  603. .obj_size = sizeof(struct kmem_cache),
  604. #endif
  605. };
  606. /* Guard access to the cache-chain. */
  607. static DEFINE_MUTEX(cache_chain_mutex);
  608. static struct list_head cache_chain;
  609. /*
  610. * vm_enough_memory() looks at this to determine how many slab-allocated pages
  611. * are possibly freeable under pressure
  612. *
  613. * SLAB_RECLAIM_ACCOUNT turns this on per-slab
  614. */
  615. atomic_t slab_reclaim_pages;
  616. /*
  617. * chicken and egg problem: delay the per-cpu array allocation
  618. * until the general caches are up.
  619. */
  620. static enum {
  621. NONE,
  622. PARTIAL_AC,
  623. PARTIAL_L3,
  624. FULL
  625. } g_cpucache_up;
  626. static DEFINE_PER_CPU(struct work_struct, reap_work);
  627. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  628. int node);
  629. static void enable_cpucache(struct kmem_cache *cachep);
  630. static void cache_reap(void *unused);
  631. static int __node_shrink(struct kmem_cache *cachep, int node);
  632. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  633. {
  634. return cachep->array[smp_processor_id()];
  635. }
  636. static inline struct kmem_cache *__find_general_cachep(size_t size,
  637. gfp_t gfpflags)
  638. {
  639. struct cache_sizes *csizep = malloc_sizes;
  640. #if DEBUG
  641. /* This happens if someone tries to call
  642. * kmem_cache_create(), or __kmalloc(), before
  643. * the generic caches are initialized.
  644. */
  645. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  646. #endif
  647. while (size > csizep->cs_size)
  648. csizep++;
  649. /*
  650. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  651. * has cs_{dma,}cachep==NULL. Thus no special case
  652. * for large kmalloc calls required.
  653. */
  654. if (unlikely(gfpflags & GFP_DMA))
  655. return csizep->cs_dmacachep;
  656. return csizep->cs_cachep;
  657. }
  658. struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  659. {
  660. return __find_general_cachep(size, gfpflags);
  661. }
  662. EXPORT_SYMBOL(kmem_find_general_cachep);
  663. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  664. {
  665. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  666. }
  667. /*
  668. * Calculate the number of objects and left-over bytes for a given buffer size.
  669. */
  670. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  671. size_t align, int flags, size_t *left_over,
  672. unsigned int *num)
  673. {
  674. int nr_objs;
  675. size_t mgmt_size;
  676. size_t slab_size = PAGE_SIZE << gfporder;
  677. /*
  678. * The slab management structure can be either off the slab or
  679. * on it. For the latter case, the memory allocated for a
  680. * slab is used for:
  681. *
  682. * - The struct slab
  683. * - One kmem_bufctl_t for each object
  684. * - Padding to respect alignment of @align
  685. * - @buffer_size bytes for each object
  686. *
  687. * If the slab management structure is off the slab, then the
  688. * alignment will already be calculated into the size. Because
  689. * the slabs are all pages aligned, the objects will be at the
  690. * correct alignment when allocated.
  691. */
  692. if (flags & CFLGS_OFF_SLAB) {
  693. mgmt_size = 0;
  694. nr_objs = slab_size / buffer_size;
  695. if (nr_objs > SLAB_LIMIT)
  696. nr_objs = SLAB_LIMIT;
  697. } else {
  698. /*
  699. * Ignore padding for the initial guess. The padding
  700. * is at most @align-1 bytes, and @buffer_size is at
  701. * least @align. In the worst case, this result will
  702. * be one greater than the number of objects that fit
  703. * into the memory allocation when taking the padding
  704. * into account.
  705. */
  706. nr_objs = (slab_size - sizeof(struct slab)) /
  707. (buffer_size + sizeof(kmem_bufctl_t));
  708. /*
  709. * This calculated number will be either the right
  710. * amount, or one greater than what we want.
  711. */
  712. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  713. > slab_size)
  714. nr_objs--;
  715. if (nr_objs > SLAB_LIMIT)
  716. nr_objs = SLAB_LIMIT;
  717. mgmt_size = slab_mgmt_size(nr_objs, align);
  718. }
  719. *num = nr_objs;
  720. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  721. }
  722. #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
  723. static void __slab_error(const char *function, struct kmem_cache *cachep,
  724. char *msg)
  725. {
  726. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  727. function, cachep->name, msg);
  728. dump_stack();
  729. }
  730. #ifdef CONFIG_NUMA
  731. /*
  732. * Special reaping functions for NUMA systems called from cache_reap().
  733. * These take care of doing round robin flushing of alien caches (containing
  734. * objects freed on different nodes from which they were allocated) and the
  735. * flushing of remote pcps by calling drain_node_pages.
  736. */
  737. static DEFINE_PER_CPU(unsigned long, reap_node);
  738. static void init_reap_node(int cpu)
  739. {
  740. int node;
  741. node = next_node(cpu_to_node(cpu), node_online_map);
  742. if (node == MAX_NUMNODES)
  743. node = 0;
  744. __get_cpu_var(reap_node) = node;
  745. }
  746. static void next_reap_node(void)
  747. {
  748. int node = __get_cpu_var(reap_node);
  749. /*
  750. * Also drain per cpu pages on remote zones
  751. */
  752. if (node != numa_node_id())
  753. drain_node_pages(node);
  754. node = next_node(node, node_online_map);
  755. if (unlikely(node >= MAX_NUMNODES))
  756. node = first_node(node_online_map);
  757. __get_cpu_var(reap_node) = node;
  758. }
  759. #else
  760. #define init_reap_node(cpu) do { } while (0)
  761. #define next_reap_node(void) do { } while (0)
  762. #endif
  763. /*
  764. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  765. * via the workqueue/eventd.
  766. * Add the CPU number into the expiration time to minimize the possibility of
  767. * the CPUs getting into lockstep and contending for the global cache chain
  768. * lock.
  769. */
  770. static void __devinit start_cpu_timer(int cpu)
  771. {
  772. struct work_struct *reap_work = &per_cpu(reap_work, cpu);
  773. /*
  774. * When this gets called from do_initcalls via cpucache_init(),
  775. * init_workqueues() has already run, so keventd will be setup
  776. * at that time.
  777. */
  778. if (keventd_up() && reap_work->func == NULL) {
  779. init_reap_node(cpu);
  780. INIT_WORK(reap_work, cache_reap, NULL);
  781. schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
  782. }
  783. }
  784. static struct array_cache *alloc_arraycache(int node, int entries,
  785. int batchcount)
  786. {
  787. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  788. struct array_cache *nc = NULL;
  789. nc = kmalloc_node(memsize, GFP_KERNEL, node);
  790. if (nc) {
  791. nc->avail = 0;
  792. nc->limit = entries;
  793. nc->batchcount = batchcount;
  794. nc->touched = 0;
  795. spin_lock_init(&nc->lock);
  796. }
  797. return nc;
  798. }
  799. #ifdef CONFIG_NUMA
  800. static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
  801. static struct array_cache **alloc_alien_cache(int node, int limit)
  802. {
  803. struct array_cache **ac_ptr;
  804. int memsize = sizeof(void *) * MAX_NUMNODES;
  805. int i;
  806. if (limit > 1)
  807. limit = 12;
  808. ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
  809. if (ac_ptr) {
  810. for_each_node(i) {
  811. if (i == node || !node_online(i)) {
  812. ac_ptr[i] = NULL;
  813. continue;
  814. }
  815. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
  816. if (!ac_ptr[i]) {
  817. for (i--; i <= 0; i--)
  818. kfree(ac_ptr[i]);
  819. kfree(ac_ptr);
  820. return NULL;
  821. }
  822. }
  823. }
  824. return ac_ptr;
  825. }
  826. static void free_alien_cache(struct array_cache **ac_ptr)
  827. {
  828. int i;
  829. if (!ac_ptr)
  830. return;
  831. for_each_node(i)
  832. kfree(ac_ptr[i]);
  833. kfree(ac_ptr);
  834. }
  835. static void __drain_alien_cache(struct kmem_cache *cachep,
  836. struct array_cache *ac, int node)
  837. {
  838. struct kmem_list3 *rl3 = cachep->nodelists[node];
  839. if (ac->avail) {
  840. spin_lock(&rl3->list_lock);
  841. free_block(cachep, ac->entry, ac->avail, node);
  842. ac->avail = 0;
  843. spin_unlock(&rl3->list_lock);
  844. }
  845. }
  846. /*
  847. * Called from cache_reap() to regularly drain alien caches round robin.
  848. */
  849. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  850. {
  851. int node = __get_cpu_var(reap_node);
  852. if (l3->alien) {
  853. struct array_cache *ac = l3->alien[node];
  854. if (ac && ac->avail) {
  855. spin_lock_irq(&ac->lock);
  856. __drain_alien_cache(cachep, ac, node);
  857. spin_unlock_irq(&ac->lock);
  858. }
  859. }
  860. }
  861. static void drain_alien_cache(struct kmem_cache *cachep,
  862. struct array_cache **alien)
  863. {
  864. int i = 0;
  865. struct array_cache *ac;
  866. unsigned long flags;
  867. for_each_online_node(i) {
  868. ac = alien[i];
  869. if (ac) {
  870. spin_lock_irqsave(&ac->lock, flags);
  871. __drain_alien_cache(cachep, ac, i);
  872. spin_unlock_irqrestore(&ac->lock, flags);
  873. }
  874. }
  875. }
  876. #else
  877. #define drain_alien_cache(cachep, alien) do { } while (0)
  878. #define reap_alien(cachep, l3) do { } while (0)
  879. static inline struct array_cache **alloc_alien_cache(int node, int limit)
  880. {
  881. return (struct array_cache **) 0x01020304ul;
  882. }
  883. static inline void free_alien_cache(struct array_cache **ac_ptr)
  884. {
  885. }
  886. #endif
  887. static int __devinit cpuup_callback(struct notifier_block *nfb,
  888. unsigned long action, void *hcpu)
  889. {
  890. long cpu = (long)hcpu;
  891. struct kmem_cache *cachep;
  892. struct kmem_list3 *l3 = NULL;
  893. int node = cpu_to_node(cpu);
  894. int memsize = sizeof(struct kmem_list3);
  895. switch (action) {
  896. case CPU_UP_PREPARE:
  897. mutex_lock(&cache_chain_mutex);
  898. /*
  899. * We need to do this right in the beginning since
  900. * alloc_arraycache's are going to use this list.
  901. * kmalloc_node allows us to add the slab to the right
  902. * kmem_list3 and not this cpu's kmem_list3
  903. */
  904. list_for_each_entry(cachep, &cache_chain, next) {
  905. /*
  906. * Set up the size64 kmemlist for cpu before we can
  907. * begin anything. Make sure some other cpu on this
  908. * node has not already allocated this
  909. */
  910. if (!cachep->nodelists[node]) {
  911. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  912. if (!l3)
  913. goto bad;
  914. kmem_list3_init(l3);
  915. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  916. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  917. /*
  918. * The l3s don't come and go as CPUs come and
  919. * go. cache_chain_mutex is sufficient
  920. * protection here.
  921. */
  922. cachep->nodelists[node] = l3;
  923. }
  924. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  925. cachep->nodelists[node]->free_limit =
  926. (1 + nr_cpus_node(node)) *
  927. cachep->batchcount + cachep->num;
  928. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  929. }
  930. /*
  931. * Now we can go ahead with allocating the shared arrays and
  932. * array caches
  933. */
  934. list_for_each_entry(cachep, &cache_chain, next) {
  935. struct array_cache *nc;
  936. struct array_cache *shared;
  937. struct array_cache **alien;
  938. nc = alloc_arraycache(node, cachep->limit,
  939. cachep->batchcount);
  940. if (!nc)
  941. goto bad;
  942. shared = alloc_arraycache(node,
  943. cachep->shared * cachep->batchcount,
  944. 0xbaadf00d);
  945. if (!shared)
  946. goto bad;
  947. alien = alloc_alien_cache(node, cachep->limit);
  948. if (!alien)
  949. goto bad;
  950. cachep->array[cpu] = nc;
  951. l3 = cachep->nodelists[node];
  952. BUG_ON(!l3);
  953. spin_lock_irq(&l3->list_lock);
  954. if (!l3->shared) {
  955. /*
  956. * We are serialised from CPU_DEAD or
  957. * CPU_UP_CANCELLED by the cpucontrol lock
  958. */
  959. l3->shared = shared;
  960. shared = NULL;
  961. }
  962. #ifdef CONFIG_NUMA
  963. if (!l3->alien) {
  964. l3->alien = alien;
  965. alien = NULL;
  966. }
  967. #endif
  968. spin_unlock_irq(&l3->list_lock);
  969. kfree(shared);
  970. free_alien_cache(alien);
  971. }
  972. mutex_unlock(&cache_chain_mutex);
  973. break;
  974. case CPU_ONLINE:
  975. start_cpu_timer(cpu);
  976. break;
  977. #ifdef CONFIG_HOTPLUG_CPU
  978. case CPU_DEAD:
  979. /*
  980. * Even if all the cpus of a node are down, we don't free the
  981. * kmem_list3 of any cache. This to avoid a race between
  982. * cpu_down, and a kmalloc allocation from another cpu for
  983. * memory from the node of the cpu going down. The list3
  984. * structure is usually allocated from kmem_cache_create() and
  985. * gets destroyed at kmem_cache_destroy().
  986. */
  987. /* fall thru */
  988. case CPU_UP_CANCELED:
  989. mutex_lock(&cache_chain_mutex);
  990. list_for_each_entry(cachep, &cache_chain, next) {
  991. struct array_cache *nc;
  992. struct array_cache *shared;
  993. struct array_cache **alien;
  994. cpumask_t mask;
  995. mask = node_to_cpumask(node);
  996. /* cpu is dead; no one can alloc from it. */
  997. nc = cachep->array[cpu];
  998. cachep->array[cpu] = NULL;
  999. l3 = cachep->nodelists[node];
  1000. if (!l3)
  1001. goto free_array_cache;
  1002. spin_lock_irq(&l3->list_lock);
  1003. /* Free limit for this kmem_list3 */
  1004. l3->free_limit -= cachep->batchcount;
  1005. if (nc)
  1006. free_block(cachep, nc->entry, nc->avail, node);
  1007. if (!cpus_empty(mask)) {
  1008. spin_unlock_irq(&l3->list_lock);
  1009. goto free_array_cache;
  1010. }
  1011. shared = l3->shared;
  1012. if (shared) {
  1013. free_block(cachep, l3->shared->entry,
  1014. l3->shared->avail, node);
  1015. l3->shared = NULL;
  1016. }
  1017. alien = l3->alien;
  1018. l3->alien = NULL;
  1019. spin_unlock_irq(&l3->list_lock);
  1020. kfree(shared);
  1021. if (alien) {
  1022. drain_alien_cache(cachep, alien);
  1023. free_alien_cache(alien);
  1024. }
  1025. free_array_cache:
  1026. kfree(nc);
  1027. }
  1028. /*
  1029. * In the previous loop, all the objects were freed to
  1030. * the respective cache's slabs, now we can go ahead and
  1031. * shrink each nodelist to its limit.
  1032. */
  1033. list_for_each_entry(cachep, &cache_chain, next) {
  1034. l3 = cachep->nodelists[node];
  1035. if (!l3)
  1036. continue;
  1037. spin_lock_irq(&l3->list_lock);
  1038. /* free slabs belonging to this node */
  1039. __node_shrink(cachep, node);
  1040. spin_unlock_irq(&l3->list_lock);
  1041. }
  1042. mutex_unlock(&cache_chain_mutex);
  1043. break;
  1044. #endif
  1045. }
  1046. return NOTIFY_OK;
  1047. bad:
  1048. mutex_unlock(&cache_chain_mutex);
  1049. return NOTIFY_BAD;
  1050. }
  1051. static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
  1052. /*
  1053. * swap the static kmem_list3 with kmalloced memory
  1054. */
  1055. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1056. int nodeid)
  1057. {
  1058. struct kmem_list3 *ptr;
  1059. BUG_ON(cachep->nodelists[nodeid] != list);
  1060. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
  1061. BUG_ON(!ptr);
  1062. local_irq_disable();
  1063. memcpy(ptr, list, sizeof(struct kmem_list3));
  1064. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1065. cachep->nodelists[nodeid] = ptr;
  1066. local_irq_enable();
  1067. }
  1068. /*
  1069. * Initialisation. Called after the page allocator have been initialised and
  1070. * before smp_init().
  1071. */
  1072. void __init kmem_cache_init(void)
  1073. {
  1074. size_t left_over;
  1075. struct cache_sizes *sizes;
  1076. struct cache_names *names;
  1077. int i;
  1078. int order;
  1079. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1080. kmem_list3_init(&initkmem_list3[i]);
  1081. if (i < MAX_NUMNODES)
  1082. cache_cache.nodelists[i] = NULL;
  1083. }
  1084. /*
  1085. * Fragmentation resistance on low memory - only use bigger
  1086. * page orders on machines with more than 32MB of memory.
  1087. */
  1088. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1089. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1090. /* Bootstrap is tricky, because several objects are allocated
  1091. * from caches that do not exist yet:
  1092. * 1) initialize the cache_cache cache: it contains the struct
  1093. * kmem_cache structures of all caches, except cache_cache itself:
  1094. * cache_cache is statically allocated.
  1095. * Initially an __init data area is used for the head array and the
  1096. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1097. * array at the end of the bootstrap.
  1098. * 2) Create the first kmalloc cache.
  1099. * The struct kmem_cache for the new cache is allocated normally.
  1100. * An __init data area is used for the head array.
  1101. * 3) Create the remaining kmalloc caches, with minimally sized
  1102. * head arrays.
  1103. * 4) Replace the __init data head arrays for cache_cache and the first
  1104. * kmalloc cache with kmalloc allocated arrays.
  1105. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1106. * the other cache's with kmalloc allocated memory.
  1107. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1108. */
  1109. /* 1) create the cache_cache */
  1110. INIT_LIST_HEAD(&cache_chain);
  1111. list_add(&cache_cache.next, &cache_chain);
  1112. cache_cache.colour_off = cache_line_size();
  1113. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1114. cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
  1115. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1116. cache_line_size());
  1117. for (order = 0; order < MAX_ORDER; order++) {
  1118. cache_estimate(order, cache_cache.buffer_size,
  1119. cache_line_size(), 0, &left_over, &cache_cache.num);
  1120. if (cache_cache.num)
  1121. break;
  1122. }
  1123. if (!cache_cache.num)
  1124. BUG();
  1125. cache_cache.gfporder = order;
  1126. cache_cache.colour = left_over / cache_cache.colour_off;
  1127. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1128. sizeof(struct slab), cache_line_size());
  1129. /* 2+3) create the kmalloc caches */
  1130. sizes = malloc_sizes;
  1131. names = cache_names;
  1132. /*
  1133. * Initialize the caches that provide memory for the array cache and the
  1134. * kmem_list3 structures first. Without this, further allocations will
  1135. * bug.
  1136. */
  1137. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1138. sizes[INDEX_AC].cs_size,
  1139. ARCH_KMALLOC_MINALIGN,
  1140. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1141. NULL, NULL);
  1142. if (INDEX_AC != INDEX_L3) {
  1143. sizes[INDEX_L3].cs_cachep =
  1144. kmem_cache_create(names[INDEX_L3].name,
  1145. sizes[INDEX_L3].cs_size,
  1146. ARCH_KMALLOC_MINALIGN,
  1147. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1148. NULL, NULL);
  1149. }
  1150. while (sizes->cs_size != ULONG_MAX) {
  1151. /*
  1152. * For performance, all the general caches are L1 aligned.
  1153. * This should be particularly beneficial on SMP boxes, as it
  1154. * eliminates "false sharing".
  1155. * Note for systems short on memory removing the alignment will
  1156. * allow tighter packing of the smaller caches.
  1157. */
  1158. if (!sizes->cs_cachep) {
  1159. sizes->cs_cachep = kmem_cache_create(names->name,
  1160. sizes->cs_size,
  1161. ARCH_KMALLOC_MINALIGN,
  1162. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1163. NULL, NULL);
  1164. }
  1165. /* Inc off-slab bufctl limit until the ceiling is hit. */
  1166. if (!(OFF_SLAB(sizes->cs_cachep))) {
  1167. offslab_limit = sizes->cs_size - sizeof(struct slab);
  1168. offslab_limit /= sizeof(kmem_bufctl_t);
  1169. }
  1170. sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
  1171. sizes->cs_size,
  1172. ARCH_KMALLOC_MINALIGN,
  1173. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1174. SLAB_PANIC,
  1175. NULL, NULL);
  1176. sizes++;
  1177. names++;
  1178. }
  1179. /* 4) Replace the bootstrap head arrays */
  1180. {
  1181. void *ptr;
  1182. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1183. local_irq_disable();
  1184. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1185. memcpy(ptr, cpu_cache_get(&cache_cache),
  1186. sizeof(struct arraycache_init));
  1187. cache_cache.array[smp_processor_id()] = ptr;
  1188. local_irq_enable();
  1189. ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1190. local_irq_disable();
  1191. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1192. != &initarray_generic.cache);
  1193. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1194. sizeof(struct arraycache_init));
  1195. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1196. ptr;
  1197. local_irq_enable();
  1198. }
  1199. /* 5) Replace the bootstrap kmem_list3's */
  1200. {
  1201. int node;
  1202. /* Replace the static kmem_list3 structures for the boot cpu */
  1203. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
  1204. numa_node_id());
  1205. for_each_online_node(node) {
  1206. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1207. &initkmem_list3[SIZE_AC + node], node);
  1208. if (INDEX_AC != INDEX_L3) {
  1209. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1210. &initkmem_list3[SIZE_L3 + node],
  1211. node);
  1212. }
  1213. }
  1214. }
  1215. /* 6) resize the head arrays to their final sizes */
  1216. {
  1217. struct kmem_cache *cachep;
  1218. mutex_lock(&cache_chain_mutex);
  1219. list_for_each_entry(cachep, &cache_chain, next)
  1220. enable_cpucache(cachep);
  1221. mutex_unlock(&cache_chain_mutex);
  1222. }
  1223. /* Done! */
  1224. g_cpucache_up = FULL;
  1225. /*
  1226. * Register a cpu startup notifier callback that initializes
  1227. * cpu_cache_get for all new cpus
  1228. */
  1229. register_cpu_notifier(&cpucache_notifier);
  1230. /*
  1231. * The reap timers are started later, with a module init call: That part
  1232. * of the kernel is not yet operational.
  1233. */
  1234. }
  1235. static int __init cpucache_init(void)
  1236. {
  1237. int cpu;
  1238. /*
  1239. * Register the timers that return unneeded pages to the page allocator
  1240. */
  1241. for_each_online_cpu(cpu)
  1242. start_cpu_timer(cpu);
  1243. return 0;
  1244. }
  1245. __initcall(cpucache_init);
  1246. /*
  1247. * Interface to system's page allocator. No need to hold the cache-lock.
  1248. *
  1249. * If we requested dmaable memory, we will get it. Even if we
  1250. * did not request dmaable memory, we might get it, but that
  1251. * would be relatively rare and ignorable.
  1252. */
  1253. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1254. {
  1255. struct page *page;
  1256. void *addr;
  1257. int i;
  1258. flags |= cachep->gfpflags;
  1259. page = alloc_pages_node(nodeid, flags, cachep->gfporder);
  1260. if (!page)
  1261. return NULL;
  1262. addr = page_address(page);
  1263. i = (1 << cachep->gfporder);
  1264. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1265. atomic_add(i, &slab_reclaim_pages);
  1266. add_page_state(nr_slab, i);
  1267. while (i--) {
  1268. __SetPageSlab(page);
  1269. page++;
  1270. }
  1271. return addr;
  1272. }
  1273. /*
  1274. * Interface to system's page release.
  1275. */
  1276. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1277. {
  1278. unsigned long i = (1 << cachep->gfporder);
  1279. struct page *page = virt_to_page(addr);
  1280. const unsigned long nr_freed = i;
  1281. while (i--) {
  1282. BUG_ON(!PageSlab(page));
  1283. __ClearPageSlab(page);
  1284. page++;
  1285. }
  1286. sub_page_state(nr_slab, nr_freed);
  1287. if (current->reclaim_state)
  1288. current->reclaim_state->reclaimed_slab += nr_freed;
  1289. free_pages((unsigned long)addr, cachep->gfporder);
  1290. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1291. atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
  1292. }
  1293. static void kmem_rcu_free(struct rcu_head *head)
  1294. {
  1295. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1296. struct kmem_cache *cachep = slab_rcu->cachep;
  1297. kmem_freepages(cachep, slab_rcu->addr);
  1298. if (OFF_SLAB(cachep))
  1299. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1300. }
  1301. #if DEBUG
  1302. #ifdef CONFIG_DEBUG_PAGEALLOC
  1303. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1304. unsigned long caller)
  1305. {
  1306. int size = obj_size(cachep);
  1307. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1308. if (size < 5 * sizeof(unsigned long))
  1309. return;
  1310. *addr++ = 0x12345678;
  1311. *addr++ = caller;
  1312. *addr++ = smp_processor_id();
  1313. size -= 3 * sizeof(unsigned long);
  1314. {
  1315. unsigned long *sptr = &caller;
  1316. unsigned long svalue;
  1317. while (!kstack_end(sptr)) {
  1318. svalue = *sptr++;
  1319. if (kernel_text_address(svalue)) {
  1320. *addr++ = svalue;
  1321. size -= sizeof(unsigned long);
  1322. if (size <= sizeof(unsigned long))
  1323. break;
  1324. }
  1325. }
  1326. }
  1327. *addr++ = 0x87654321;
  1328. }
  1329. #endif
  1330. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1331. {
  1332. int size = obj_size(cachep);
  1333. addr = &((char *)addr)[obj_offset(cachep)];
  1334. memset(addr, val, size);
  1335. *(unsigned char *)(addr + size - 1) = POISON_END;
  1336. }
  1337. static void dump_line(char *data, int offset, int limit)
  1338. {
  1339. int i;
  1340. printk(KERN_ERR "%03x:", offset);
  1341. for (i = 0; i < limit; i++)
  1342. printk(" %02x", (unsigned char)data[offset + i]);
  1343. printk("\n");
  1344. }
  1345. #endif
  1346. #if DEBUG
  1347. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1348. {
  1349. int i, size;
  1350. char *realobj;
  1351. if (cachep->flags & SLAB_RED_ZONE) {
  1352. printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
  1353. *dbg_redzone1(cachep, objp),
  1354. *dbg_redzone2(cachep, objp));
  1355. }
  1356. if (cachep->flags & SLAB_STORE_USER) {
  1357. printk(KERN_ERR "Last user: [<%p>]",
  1358. *dbg_userword(cachep, objp));
  1359. print_symbol("(%s)",
  1360. (unsigned long)*dbg_userword(cachep, objp));
  1361. printk("\n");
  1362. }
  1363. realobj = (char *)objp + obj_offset(cachep);
  1364. size = obj_size(cachep);
  1365. for (i = 0; i < size && lines; i += 16, lines--) {
  1366. int limit;
  1367. limit = 16;
  1368. if (i + limit > size)
  1369. limit = size - i;
  1370. dump_line(realobj, i, limit);
  1371. }
  1372. }
  1373. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1374. {
  1375. char *realobj;
  1376. int size, i;
  1377. int lines = 0;
  1378. realobj = (char *)objp + obj_offset(cachep);
  1379. size = obj_size(cachep);
  1380. for (i = 0; i < size; i++) {
  1381. char exp = POISON_FREE;
  1382. if (i == size - 1)
  1383. exp = POISON_END;
  1384. if (realobj[i] != exp) {
  1385. int limit;
  1386. /* Mismatch ! */
  1387. /* Print header */
  1388. if (lines == 0) {
  1389. printk(KERN_ERR
  1390. "Slab corruption: start=%p, len=%d\n",
  1391. realobj, size);
  1392. print_objinfo(cachep, objp, 0);
  1393. }
  1394. /* Hexdump the affected line */
  1395. i = (i / 16) * 16;
  1396. limit = 16;
  1397. if (i + limit > size)
  1398. limit = size - i;
  1399. dump_line(realobj, i, limit);
  1400. i += 16;
  1401. lines++;
  1402. /* Limit to 5 lines */
  1403. if (lines > 5)
  1404. break;
  1405. }
  1406. }
  1407. if (lines != 0) {
  1408. /* Print some data about the neighboring objects, if they
  1409. * exist:
  1410. */
  1411. struct slab *slabp = virt_to_slab(objp);
  1412. unsigned int objnr;
  1413. objnr = obj_to_index(cachep, slabp, objp);
  1414. if (objnr) {
  1415. objp = index_to_obj(cachep, slabp, objnr - 1);
  1416. realobj = (char *)objp + obj_offset(cachep);
  1417. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1418. realobj, size);
  1419. print_objinfo(cachep, objp, 2);
  1420. }
  1421. if (objnr + 1 < cachep->num) {
  1422. objp = index_to_obj(cachep, slabp, objnr + 1);
  1423. realobj = (char *)objp + obj_offset(cachep);
  1424. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1425. realobj, size);
  1426. print_objinfo(cachep, objp, 2);
  1427. }
  1428. }
  1429. }
  1430. #endif
  1431. #if DEBUG
  1432. /**
  1433. * slab_destroy_objs - call the registered destructor for each object in
  1434. * a slab that is to be destroyed.
  1435. */
  1436. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1437. {
  1438. int i;
  1439. for (i = 0; i < cachep->num; i++) {
  1440. void *objp = index_to_obj(cachep, slabp, i);
  1441. if (cachep->flags & SLAB_POISON) {
  1442. #ifdef CONFIG_DEBUG_PAGEALLOC
  1443. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1444. OFF_SLAB(cachep))
  1445. kernel_map_pages(virt_to_page(objp),
  1446. cachep->buffer_size / PAGE_SIZE, 1);
  1447. else
  1448. check_poison_obj(cachep, objp);
  1449. #else
  1450. check_poison_obj(cachep, objp);
  1451. #endif
  1452. }
  1453. if (cachep->flags & SLAB_RED_ZONE) {
  1454. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1455. slab_error(cachep, "start of a freed object "
  1456. "was overwritten");
  1457. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1458. slab_error(cachep, "end of a freed object "
  1459. "was overwritten");
  1460. }
  1461. if (cachep->dtor && !(cachep->flags & SLAB_POISON))
  1462. (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
  1463. }
  1464. }
  1465. #else
  1466. static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
  1467. {
  1468. if (cachep->dtor) {
  1469. int i;
  1470. for (i = 0; i < cachep->num; i++) {
  1471. void *objp = index_to_obj(cachep, slabp, i);
  1472. (cachep->dtor) (objp, cachep, 0);
  1473. }
  1474. }
  1475. }
  1476. #endif
  1477. /*
  1478. * Destroy all the objs in a slab, and release the mem back to the system.
  1479. * Before calling the slab must have been unlinked from the cache. The
  1480. * cache-lock is not held/needed.
  1481. */
  1482. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1483. {
  1484. void *addr = slabp->s_mem - slabp->colouroff;
  1485. slab_destroy_objs(cachep, slabp);
  1486. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1487. struct slab_rcu *slab_rcu;
  1488. slab_rcu = (struct slab_rcu *)slabp;
  1489. slab_rcu->cachep = cachep;
  1490. slab_rcu->addr = addr;
  1491. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1492. } else {
  1493. kmem_freepages(cachep, addr);
  1494. if (OFF_SLAB(cachep))
  1495. kmem_cache_free(cachep->slabp_cache, slabp);
  1496. }
  1497. }
  1498. /*
  1499. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1500. * size of kmem_list3.
  1501. */
  1502. static void set_up_list3s(struct kmem_cache *cachep, int index)
  1503. {
  1504. int node;
  1505. for_each_online_node(node) {
  1506. cachep->nodelists[node] = &initkmem_list3[index + node];
  1507. cachep->nodelists[node]->next_reap = jiffies +
  1508. REAPTIMEOUT_LIST3 +
  1509. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1510. }
  1511. }
  1512. /**
  1513. * calculate_slab_order - calculate size (page order) of slabs
  1514. * @cachep: pointer to the cache that is being created
  1515. * @size: size of objects to be created in this cache.
  1516. * @align: required alignment for the objects.
  1517. * @flags: slab allocation flags
  1518. *
  1519. * Also calculates the number of objects per slab.
  1520. *
  1521. * This could be made much more intelligent. For now, try to avoid using
  1522. * high order pages for slabs. When the gfp() functions are more friendly
  1523. * towards high-order requests, this should be changed.
  1524. */
  1525. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1526. size_t size, size_t align, unsigned long flags)
  1527. {
  1528. size_t left_over = 0;
  1529. int gfporder;
  1530. for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
  1531. unsigned int num;
  1532. size_t remainder;
  1533. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1534. if (!num)
  1535. continue;
  1536. /* More than offslab_limit objects will cause problems */
  1537. if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
  1538. break;
  1539. /* Found something acceptable - save it away */
  1540. cachep->num = num;
  1541. cachep->gfporder = gfporder;
  1542. left_over = remainder;
  1543. /*
  1544. * A VFS-reclaimable slab tends to have most allocations
  1545. * as GFP_NOFS and we really don't want to have to be allocating
  1546. * higher-order pages when we are unable to shrink dcache.
  1547. */
  1548. if (flags & SLAB_RECLAIM_ACCOUNT)
  1549. break;
  1550. /*
  1551. * Large number of objects is good, but very large slabs are
  1552. * currently bad for the gfp()s.
  1553. */
  1554. if (gfporder >= slab_break_gfp_order)
  1555. break;
  1556. /*
  1557. * Acceptable internal fragmentation?
  1558. */
  1559. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1560. break;
  1561. }
  1562. return left_over;
  1563. }
  1564. static void setup_cpu_cache(struct kmem_cache *cachep)
  1565. {
  1566. if (g_cpucache_up == FULL) {
  1567. enable_cpucache(cachep);
  1568. return;
  1569. }
  1570. if (g_cpucache_up == NONE) {
  1571. /*
  1572. * Note: the first kmem_cache_create must create the cache
  1573. * that's used by kmalloc(24), otherwise the creation of
  1574. * further caches will BUG().
  1575. */
  1576. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1577. /*
  1578. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1579. * the first cache, then we need to set up all its list3s,
  1580. * otherwise the creation of further caches will BUG().
  1581. */
  1582. set_up_list3s(cachep, SIZE_AC);
  1583. if (INDEX_AC == INDEX_L3)
  1584. g_cpucache_up = PARTIAL_L3;
  1585. else
  1586. g_cpucache_up = PARTIAL_AC;
  1587. } else {
  1588. cachep->array[smp_processor_id()] =
  1589. kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
  1590. if (g_cpucache_up == PARTIAL_AC) {
  1591. set_up_list3s(cachep, SIZE_L3);
  1592. g_cpucache_up = PARTIAL_L3;
  1593. } else {
  1594. int node;
  1595. for_each_online_node(node) {
  1596. cachep->nodelists[node] =
  1597. kmalloc_node(sizeof(struct kmem_list3),
  1598. GFP_KERNEL, node);
  1599. BUG_ON(!cachep->nodelists[node]);
  1600. kmem_list3_init(cachep->nodelists[node]);
  1601. }
  1602. }
  1603. }
  1604. cachep->nodelists[numa_node_id()]->next_reap =
  1605. jiffies + REAPTIMEOUT_LIST3 +
  1606. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1607. cpu_cache_get(cachep)->avail = 0;
  1608. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1609. cpu_cache_get(cachep)->batchcount = 1;
  1610. cpu_cache_get(cachep)->touched = 0;
  1611. cachep->batchcount = 1;
  1612. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1613. }
  1614. /**
  1615. * kmem_cache_create - Create a cache.
  1616. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1617. * @size: The size of objects to be created in this cache.
  1618. * @align: The required alignment for the objects.
  1619. * @flags: SLAB flags
  1620. * @ctor: A constructor for the objects.
  1621. * @dtor: A destructor for the objects.
  1622. *
  1623. * Returns a ptr to the cache on success, NULL on failure.
  1624. * Cannot be called within a int, but can be interrupted.
  1625. * The @ctor is run when new pages are allocated by the cache
  1626. * and the @dtor is run before the pages are handed back.
  1627. *
  1628. * @name must be valid until the cache is destroyed. This implies that
  1629. * the module calling this has to destroy the cache before getting unloaded.
  1630. *
  1631. * The flags are
  1632. *
  1633. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1634. * to catch references to uninitialised memory.
  1635. *
  1636. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1637. * for buffer overruns.
  1638. *
  1639. * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
  1640. * memory pressure.
  1641. *
  1642. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1643. * cacheline. This can be beneficial if you're counting cycles as closely
  1644. * as davem.
  1645. */
  1646. struct kmem_cache *
  1647. kmem_cache_create (const char *name, size_t size, size_t align,
  1648. unsigned long flags,
  1649. void (*ctor)(void*, struct kmem_cache *, unsigned long),
  1650. void (*dtor)(void*, struct kmem_cache *, unsigned long))
  1651. {
  1652. size_t left_over, slab_size, ralign;
  1653. struct kmem_cache *cachep = NULL;
  1654. struct list_head *p;
  1655. /*
  1656. * Sanity checks... these are all serious usage bugs.
  1657. */
  1658. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1659. (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
  1660. printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
  1661. name);
  1662. BUG();
  1663. }
  1664. /*
  1665. * Prevent CPUs from coming and going.
  1666. * lock_cpu_hotplug() nests outside cache_chain_mutex
  1667. */
  1668. lock_cpu_hotplug();
  1669. mutex_lock(&cache_chain_mutex);
  1670. list_for_each(p, &cache_chain) {
  1671. struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
  1672. mm_segment_t old_fs = get_fs();
  1673. char tmp;
  1674. int res;
  1675. /*
  1676. * This happens when the module gets unloaded and doesn't
  1677. * destroy its slab cache and no-one else reuses the vmalloc
  1678. * area of the module. Print a warning.
  1679. */
  1680. set_fs(KERNEL_DS);
  1681. res = __get_user(tmp, pc->name);
  1682. set_fs(old_fs);
  1683. if (res) {
  1684. printk("SLAB: cache with size %d has lost its name\n",
  1685. pc->buffer_size);
  1686. continue;
  1687. }
  1688. if (!strcmp(pc->name, name)) {
  1689. printk("kmem_cache_create: duplicate cache %s\n", name);
  1690. dump_stack();
  1691. goto oops;
  1692. }
  1693. }
  1694. #if DEBUG
  1695. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1696. if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
  1697. /* No constructor, but inital state check requested */
  1698. printk(KERN_ERR "%s: No con, but init state check "
  1699. "requested - %s\n", __FUNCTION__, name);
  1700. flags &= ~SLAB_DEBUG_INITIAL;
  1701. }
  1702. #if FORCED_DEBUG
  1703. /*
  1704. * Enable redzoning and last user accounting, except for caches with
  1705. * large objects, if the increased size would increase the object size
  1706. * above the next power of two: caches with object sizes just above a
  1707. * power of two have a significant amount of internal fragmentation.
  1708. */
  1709. if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
  1710. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1711. if (!(flags & SLAB_DESTROY_BY_RCU))
  1712. flags |= SLAB_POISON;
  1713. #endif
  1714. if (flags & SLAB_DESTROY_BY_RCU)
  1715. BUG_ON(flags & SLAB_POISON);
  1716. #endif
  1717. if (flags & SLAB_DESTROY_BY_RCU)
  1718. BUG_ON(dtor);
  1719. /*
  1720. * Always checks flags, a caller might be expecting debug support which
  1721. * isn't available.
  1722. */
  1723. if (flags & ~CREATE_MASK)
  1724. BUG();
  1725. /*
  1726. * Check that size is in terms of words. This is needed to avoid
  1727. * unaligned accesses for some archs when redzoning is used, and makes
  1728. * sure any on-slab bufctl's are also correctly aligned.
  1729. */
  1730. if (size & (BYTES_PER_WORD - 1)) {
  1731. size += (BYTES_PER_WORD - 1);
  1732. size &= ~(BYTES_PER_WORD - 1);
  1733. }
  1734. /* calculate the final buffer alignment: */
  1735. /* 1) arch recommendation: can be overridden for debug */
  1736. if (flags & SLAB_HWCACHE_ALIGN) {
  1737. /*
  1738. * Default alignment: as specified by the arch code. Except if
  1739. * an object is really small, then squeeze multiple objects into
  1740. * one cacheline.
  1741. */
  1742. ralign = cache_line_size();
  1743. while (size <= ralign / 2)
  1744. ralign /= 2;
  1745. } else {
  1746. ralign = BYTES_PER_WORD;
  1747. }
  1748. /* 2) arch mandated alignment: disables debug if necessary */
  1749. if (ralign < ARCH_SLAB_MINALIGN) {
  1750. ralign = ARCH_SLAB_MINALIGN;
  1751. if (ralign > BYTES_PER_WORD)
  1752. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1753. }
  1754. /* 3) caller mandated alignment: disables debug if necessary */
  1755. if (ralign < align) {
  1756. ralign = align;
  1757. if (ralign > BYTES_PER_WORD)
  1758. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  1759. }
  1760. /*
  1761. * 4) Store it. Note that the debug code below can reduce
  1762. * the alignment to BYTES_PER_WORD.
  1763. */
  1764. align = ralign;
  1765. /* Get cache's description obj. */
  1766. cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
  1767. if (!cachep)
  1768. goto oops;
  1769. memset(cachep, 0, sizeof(struct kmem_cache));
  1770. #if DEBUG
  1771. cachep->obj_size = size;
  1772. if (flags & SLAB_RED_ZONE) {
  1773. /* redzoning only works with word aligned caches */
  1774. align = BYTES_PER_WORD;
  1775. /* add space for red zone words */
  1776. cachep->obj_offset += BYTES_PER_WORD;
  1777. size += 2 * BYTES_PER_WORD;
  1778. }
  1779. if (flags & SLAB_STORE_USER) {
  1780. /* user store requires word alignment and
  1781. * one word storage behind the end of the real
  1782. * object.
  1783. */
  1784. align = BYTES_PER_WORD;
  1785. size += BYTES_PER_WORD;
  1786. }
  1787. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  1788. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  1789. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  1790. cachep->obj_offset += PAGE_SIZE - size;
  1791. size = PAGE_SIZE;
  1792. }
  1793. #endif
  1794. #endif
  1795. /* Determine if the slab management is 'on' or 'off' slab. */
  1796. if (size >= (PAGE_SIZE >> 3))
  1797. /*
  1798. * Size is large, assume best to place the slab management obj
  1799. * off-slab (should allow better packing of objs).
  1800. */
  1801. flags |= CFLGS_OFF_SLAB;
  1802. size = ALIGN(size, align);
  1803. left_over = calculate_slab_order(cachep, size, align, flags);
  1804. if (!cachep->num) {
  1805. printk("kmem_cache_create: couldn't create cache %s.\n", name);
  1806. kmem_cache_free(&cache_cache, cachep);
  1807. cachep = NULL;
  1808. goto oops;
  1809. }
  1810. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  1811. + sizeof(struct slab), align);
  1812. /*
  1813. * If the slab has been placed off-slab, and we have enough space then
  1814. * move it on-slab. This is at the expense of any extra colouring.
  1815. */
  1816. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  1817. flags &= ~CFLGS_OFF_SLAB;
  1818. left_over -= slab_size;
  1819. }
  1820. if (flags & CFLGS_OFF_SLAB) {
  1821. /* really off slab. No need for manual alignment */
  1822. slab_size =
  1823. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  1824. }
  1825. cachep->colour_off = cache_line_size();
  1826. /* Offset must be a multiple of the alignment. */
  1827. if (cachep->colour_off < align)
  1828. cachep->colour_off = align;
  1829. cachep->colour = left_over / cachep->colour_off;
  1830. cachep->slab_size = slab_size;
  1831. cachep->flags = flags;
  1832. cachep->gfpflags = 0;
  1833. if (flags & SLAB_CACHE_DMA)
  1834. cachep->gfpflags |= GFP_DMA;
  1835. cachep->buffer_size = size;
  1836. if (flags & CFLGS_OFF_SLAB)
  1837. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  1838. cachep->ctor = ctor;
  1839. cachep->dtor = dtor;
  1840. cachep->name = name;
  1841. setup_cpu_cache(cachep);
  1842. /* cache setup completed, link it into the list */
  1843. list_add(&cachep->next, &cache_chain);
  1844. oops:
  1845. if (!cachep && (flags & SLAB_PANIC))
  1846. panic("kmem_cache_create(): failed to create slab `%s'\n",
  1847. name);
  1848. mutex_unlock(&cache_chain_mutex);
  1849. unlock_cpu_hotplug();
  1850. return cachep;
  1851. }
  1852. EXPORT_SYMBOL(kmem_cache_create);
  1853. #if DEBUG
  1854. static void check_irq_off(void)
  1855. {
  1856. BUG_ON(!irqs_disabled());
  1857. }
  1858. static void check_irq_on(void)
  1859. {
  1860. BUG_ON(irqs_disabled());
  1861. }
  1862. static void check_spinlock_acquired(struct kmem_cache *cachep)
  1863. {
  1864. #ifdef CONFIG_SMP
  1865. check_irq_off();
  1866. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  1867. #endif
  1868. }
  1869. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  1870. {
  1871. #ifdef CONFIG_SMP
  1872. check_irq_off();
  1873. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  1874. #endif
  1875. }
  1876. #else
  1877. #define check_irq_off() do { } while(0)
  1878. #define check_irq_on() do { } while(0)
  1879. #define check_spinlock_acquired(x) do { } while(0)
  1880. #define check_spinlock_acquired_node(x, y) do { } while(0)
  1881. #endif
  1882. /*
  1883. * Waits for all CPUs to execute func().
  1884. */
  1885. static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
  1886. {
  1887. check_irq_on();
  1888. preempt_disable();
  1889. local_irq_disable();
  1890. func(arg);
  1891. local_irq_enable();
  1892. if (smp_call_function(func, arg, 1, 1))
  1893. BUG();
  1894. preempt_enable();
  1895. }
  1896. static void drain_array_locked(struct kmem_cache *cachep,
  1897. struct array_cache *ac, int force, int node);
  1898. static void do_drain(void *arg)
  1899. {
  1900. struct kmem_cache *cachep = arg;
  1901. struct array_cache *ac;
  1902. int node = numa_node_id();
  1903. check_irq_off();
  1904. ac = cpu_cache_get(cachep);
  1905. spin_lock(&cachep->nodelists[node]->list_lock);
  1906. free_block(cachep, ac->entry, ac->avail, node);
  1907. spin_unlock(&cachep->nodelists[node]->list_lock);
  1908. ac->avail = 0;
  1909. }
  1910. static void drain_cpu_caches(struct kmem_cache *cachep)
  1911. {
  1912. struct kmem_list3 *l3;
  1913. int node;
  1914. smp_call_function_all_cpus(do_drain, cachep);
  1915. check_irq_on();
  1916. for_each_online_node(node) {
  1917. l3 = cachep->nodelists[node];
  1918. if (l3) {
  1919. spin_lock_irq(&l3->list_lock);
  1920. drain_array_locked(cachep, l3->shared, 1, node);
  1921. spin_unlock_irq(&l3->list_lock);
  1922. if (l3->alien)
  1923. drain_alien_cache(cachep, l3->alien);
  1924. }
  1925. }
  1926. }
  1927. static int __node_shrink(struct kmem_cache *cachep, int node)
  1928. {
  1929. struct slab *slabp;
  1930. struct kmem_list3 *l3 = cachep->nodelists[node];
  1931. int ret;
  1932. for (;;) {
  1933. struct list_head *p;
  1934. p = l3->slabs_free.prev;
  1935. if (p == &l3->slabs_free)
  1936. break;
  1937. slabp = list_entry(l3->slabs_free.prev, struct slab, list);
  1938. #if DEBUG
  1939. if (slabp->inuse)
  1940. BUG();
  1941. #endif
  1942. list_del(&slabp->list);
  1943. l3->free_objects -= cachep->num;
  1944. spin_unlock_irq(&l3->list_lock);
  1945. slab_destroy(cachep, slabp);
  1946. spin_lock_irq(&l3->list_lock);
  1947. }
  1948. ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
  1949. return ret;
  1950. }
  1951. static int __cache_shrink(struct kmem_cache *cachep)
  1952. {
  1953. int ret = 0, i = 0;
  1954. struct kmem_list3 *l3;
  1955. drain_cpu_caches(cachep);
  1956. check_irq_on();
  1957. for_each_online_node(i) {
  1958. l3 = cachep->nodelists[i];
  1959. if (l3) {
  1960. spin_lock_irq(&l3->list_lock);
  1961. ret += __node_shrink(cachep, i);
  1962. spin_unlock_irq(&l3->list_lock);
  1963. }
  1964. }
  1965. return (ret ? 1 : 0);
  1966. }
  1967. /**
  1968. * kmem_cache_shrink - Shrink a cache.
  1969. * @cachep: The cache to shrink.
  1970. *
  1971. * Releases as many slabs as possible for a cache.
  1972. * To help debugging, a zero exit status indicates all slabs were released.
  1973. */
  1974. int kmem_cache_shrink(struct kmem_cache *cachep)
  1975. {
  1976. if (!cachep || in_interrupt())
  1977. BUG();
  1978. return __cache_shrink(cachep);
  1979. }
  1980. EXPORT_SYMBOL(kmem_cache_shrink);
  1981. /**
  1982. * kmem_cache_destroy - delete a cache
  1983. * @cachep: the cache to destroy
  1984. *
  1985. * Remove a struct kmem_cache object from the slab cache.
  1986. * Returns 0 on success.
  1987. *
  1988. * It is expected this function will be called by a module when it is
  1989. * unloaded. This will remove the cache completely, and avoid a duplicate
  1990. * cache being allocated each time a module is loaded and unloaded, if the
  1991. * module doesn't have persistent in-kernel storage across loads and unloads.
  1992. *
  1993. * The cache must be empty before calling this function.
  1994. *
  1995. * The caller must guarantee that noone will allocate memory from the cache
  1996. * during the kmem_cache_destroy().
  1997. */
  1998. int kmem_cache_destroy(struct kmem_cache *cachep)
  1999. {
  2000. int i;
  2001. struct kmem_list3 *l3;
  2002. if (!cachep || in_interrupt())
  2003. BUG();
  2004. /* Don't let CPUs to come and go */
  2005. lock_cpu_hotplug();
  2006. /* Find the cache in the chain of caches. */
  2007. mutex_lock(&cache_chain_mutex);
  2008. /*
  2009. * the chain is never empty, cache_cache is never destroyed
  2010. */
  2011. list_del(&cachep->next);
  2012. mutex_unlock(&cache_chain_mutex);
  2013. if (__cache_shrink(cachep)) {
  2014. slab_error(cachep, "Can't free all objects");
  2015. mutex_lock(&cache_chain_mutex);
  2016. list_add(&cachep->next, &cache_chain);
  2017. mutex_unlock(&cache_chain_mutex);
  2018. unlock_cpu_hotplug();
  2019. return 1;
  2020. }
  2021. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2022. synchronize_rcu();
  2023. for_each_online_cpu(i)
  2024. kfree(cachep->array[i]);
  2025. /* NUMA: free the list3 structures */
  2026. for_each_online_node(i) {
  2027. l3 = cachep->nodelists[i];
  2028. if (l3) {
  2029. kfree(l3->shared);
  2030. free_alien_cache(l3->alien);
  2031. kfree(l3);
  2032. }
  2033. }
  2034. kmem_cache_free(&cache_cache, cachep);
  2035. unlock_cpu_hotplug();
  2036. return 0;
  2037. }
  2038. EXPORT_SYMBOL(kmem_cache_destroy);
  2039. /* Get the memory for a slab management obj. */
  2040. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2041. int colour_off, gfp_t local_flags)
  2042. {
  2043. struct slab *slabp;
  2044. if (OFF_SLAB(cachep)) {
  2045. /* Slab management obj is off-slab. */
  2046. slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
  2047. if (!slabp)
  2048. return NULL;
  2049. } else {
  2050. slabp = objp + colour_off;
  2051. colour_off += cachep->slab_size;
  2052. }
  2053. slabp->inuse = 0;
  2054. slabp->colouroff = colour_off;
  2055. slabp->s_mem = objp + colour_off;
  2056. return slabp;
  2057. }
  2058. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2059. {
  2060. return (kmem_bufctl_t *) (slabp + 1);
  2061. }
  2062. static void cache_init_objs(struct kmem_cache *cachep,
  2063. struct slab *slabp, unsigned long ctor_flags)
  2064. {
  2065. int i;
  2066. for (i = 0; i < cachep->num; i++) {
  2067. void *objp = index_to_obj(cachep, slabp, i);
  2068. #if DEBUG
  2069. /* need to poison the objs? */
  2070. if (cachep->flags & SLAB_POISON)
  2071. poison_obj(cachep, objp, POISON_FREE);
  2072. if (cachep->flags & SLAB_STORE_USER)
  2073. *dbg_userword(cachep, objp) = NULL;
  2074. if (cachep->flags & SLAB_RED_ZONE) {
  2075. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2076. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2077. }
  2078. /*
  2079. * Constructors are not allowed to allocate memory from the same
  2080. * cache which they are a constructor for. Otherwise, deadlock.
  2081. * They must also be threaded.
  2082. */
  2083. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2084. cachep->ctor(objp + obj_offset(cachep), cachep,
  2085. ctor_flags);
  2086. if (cachep->flags & SLAB_RED_ZONE) {
  2087. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2088. slab_error(cachep, "constructor overwrote the"
  2089. " end of an object");
  2090. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2091. slab_error(cachep, "constructor overwrote the"
  2092. " start of an object");
  2093. }
  2094. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2095. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2096. kernel_map_pages(virt_to_page(objp),
  2097. cachep->buffer_size / PAGE_SIZE, 0);
  2098. #else
  2099. if (cachep->ctor)
  2100. cachep->ctor(objp, cachep, ctor_flags);
  2101. #endif
  2102. slab_bufctl(slabp)[i] = i + 1;
  2103. }
  2104. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2105. slabp->free = 0;
  2106. }
  2107. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2108. {
  2109. if (flags & SLAB_DMA)
  2110. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2111. else
  2112. BUG_ON(cachep->gfpflags & GFP_DMA);
  2113. }
  2114. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2115. int nodeid)
  2116. {
  2117. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2118. kmem_bufctl_t next;
  2119. slabp->inuse++;
  2120. next = slab_bufctl(slabp)[slabp->free];
  2121. #if DEBUG
  2122. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2123. WARN_ON(slabp->nodeid != nodeid);
  2124. #endif
  2125. slabp->free = next;
  2126. return objp;
  2127. }
  2128. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2129. void *objp, int nodeid)
  2130. {
  2131. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2132. #if DEBUG
  2133. /* Verify that the slab belongs to the intended node */
  2134. WARN_ON(slabp->nodeid != nodeid);
  2135. if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
  2136. printk(KERN_ERR "slab: double free detected in cache "
  2137. "'%s', objp %p\n", cachep->name, objp);
  2138. BUG();
  2139. }
  2140. #endif
  2141. slab_bufctl(slabp)[objnr] = slabp->free;
  2142. slabp->free = objnr;
  2143. slabp->inuse--;
  2144. }
  2145. static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
  2146. void *objp)
  2147. {
  2148. int i;
  2149. struct page *page;
  2150. /* Nasty!!!!!! I hope this is OK. */
  2151. i = 1 << cachep->gfporder;
  2152. page = virt_to_page(objp);
  2153. do {
  2154. page_set_cache(page, cachep);
  2155. page_set_slab(page, slabp);
  2156. page++;
  2157. } while (--i);
  2158. }
  2159. /*
  2160. * Grow (by 1) the number of slabs within a cache. This is called by
  2161. * kmem_cache_alloc() when there are no active objs left in a cache.
  2162. */
  2163. static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2164. {
  2165. struct slab *slabp;
  2166. void *objp;
  2167. size_t offset;
  2168. gfp_t local_flags;
  2169. unsigned long ctor_flags;
  2170. struct kmem_list3 *l3;
  2171. /*
  2172. * Be lazy and only check for valid flags here, keeping it out of the
  2173. * critical path in kmem_cache_alloc().
  2174. */
  2175. if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
  2176. BUG();
  2177. if (flags & SLAB_NO_GROW)
  2178. return 0;
  2179. ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2180. local_flags = (flags & SLAB_LEVEL_MASK);
  2181. if (!(local_flags & __GFP_WAIT))
  2182. /*
  2183. * Not allowed to sleep. Need to tell a constructor about
  2184. * this - it might need to know...
  2185. */
  2186. ctor_flags |= SLAB_CTOR_ATOMIC;
  2187. /* Take the l3 list lock to change the colour_next on this node */
  2188. check_irq_off();
  2189. l3 = cachep->nodelists[nodeid];
  2190. spin_lock(&l3->list_lock);
  2191. /* Get colour for the slab, and cal the next value. */
  2192. offset = l3->colour_next;
  2193. l3->colour_next++;
  2194. if (l3->colour_next >= cachep->colour)
  2195. l3->colour_next = 0;
  2196. spin_unlock(&l3->list_lock);
  2197. offset *= cachep->colour_off;
  2198. if (local_flags & __GFP_WAIT)
  2199. local_irq_enable();
  2200. /*
  2201. * The test for missing atomic flag is performed here, rather than
  2202. * the more obvious place, simply to reduce the critical path length
  2203. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2204. * will eventually be caught here (where it matters).
  2205. */
  2206. kmem_flagcheck(cachep, flags);
  2207. /*
  2208. * Get mem for the objs. Attempt to allocate a physical page from
  2209. * 'nodeid'.
  2210. */
  2211. objp = kmem_getpages(cachep, flags, nodeid);
  2212. if (!objp)
  2213. goto failed;
  2214. /* Get slab management. */
  2215. slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
  2216. if (!slabp)
  2217. goto opps1;
  2218. slabp->nodeid = nodeid;
  2219. set_slab_attr(cachep, slabp, objp);
  2220. cache_init_objs(cachep, slabp, ctor_flags);
  2221. if (local_flags & __GFP_WAIT)
  2222. local_irq_disable();
  2223. check_irq_off();
  2224. spin_lock(&l3->list_lock);
  2225. /* Make slab active. */
  2226. list_add_tail(&slabp->list, &(l3->slabs_free));
  2227. STATS_INC_GROWN(cachep);
  2228. l3->free_objects += cachep->num;
  2229. spin_unlock(&l3->list_lock);
  2230. return 1;
  2231. opps1:
  2232. kmem_freepages(cachep, objp);
  2233. failed:
  2234. if (local_flags & __GFP_WAIT)
  2235. local_irq_disable();
  2236. return 0;
  2237. }
  2238. #if DEBUG
  2239. /*
  2240. * Perform extra freeing checks:
  2241. * - detect bad pointers.
  2242. * - POISON/RED_ZONE checking
  2243. * - destructor calls, for caches with POISON+dtor
  2244. */
  2245. static void kfree_debugcheck(const void *objp)
  2246. {
  2247. struct page *page;
  2248. if (!virt_addr_valid(objp)) {
  2249. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2250. (unsigned long)objp);
  2251. BUG();
  2252. }
  2253. page = virt_to_page(objp);
  2254. if (!PageSlab(page)) {
  2255. printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
  2256. (unsigned long)objp);
  2257. BUG();
  2258. }
  2259. }
  2260. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2261. void *caller)
  2262. {
  2263. struct page *page;
  2264. unsigned int objnr;
  2265. struct slab *slabp;
  2266. objp -= obj_offset(cachep);
  2267. kfree_debugcheck(objp);
  2268. page = virt_to_page(objp);
  2269. if (page_get_cache(page) != cachep) {
  2270. printk(KERN_ERR "mismatch in kmem_cache_free: expected "
  2271. "cache %p, got %p\n",
  2272. page_get_cache(page), cachep);
  2273. printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
  2274. printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
  2275. page_get_cache(page)->name);
  2276. WARN_ON(1);
  2277. }
  2278. slabp = page_get_slab(page);
  2279. if (cachep->flags & SLAB_RED_ZONE) {
  2280. if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
  2281. *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
  2282. slab_error(cachep, "double free, or memory outside"
  2283. " object was overwritten");
  2284. printk(KERN_ERR "%p: redzone 1:0x%lx, "
  2285. "redzone 2:0x%lx.\n",
  2286. objp, *dbg_redzone1(cachep, objp),
  2287. *dbg_redzone2(cachep, objp));
  2288. }
  2289. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2290. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2291. }
  2292. if (cachep->flags & SLAB_STORE_USER)
  2293. *dbg_userword(cachep, objp) = caller;
  2294. objnr = obj_to_index(cachep, slabp, objp);
  2295. BUG_ON(objnr >= cachep->num);
  2296. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2297. if (cachep->flags & SLAB_DEBUG_INITIAL) {
  2298. /*
  2299. * Need to call the slab's constructor so the caller can
  2300. * perform a verify of its state (debugging). Called without
  2301. * the cache-lock held.
  2302. */
  2303. cachep->ctor(objp + obj_offset(cachep),
  2304. cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
  2305. }
  2306. if (cachep->flags & SLAB_POISON && cachep->dtor) {
  2307. /* we want to cache poison the object,
  2308. * call the destruction callback
  2309. */
  2310. cachep->dtor(objp + obj_offset(cachep), cachep, 0);
  2311. }
  2312. if (cachep->flags & SLAB_POISON) {
  2313. #ifdef CONFIG_DEBUG_PAGEALLOC
  2314. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2315. store_stackinfo(cachep, objp, (unsigned long)caller);
  2316. kernel_map_pages(virt_to_page(objp),
  2317. cachep->buffer_size / PAGE_SIZE, 0);
  2318. } else {
  2319. poison_obj(cachep, objp, POISON_FREE);
  2320. }
  2321. #else
  2322. poison_obj(cachep, objp, POISON_FREE);
  2323. #endif
  2324. }
  2325. return objp;
  2326. }
  2327. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2328. {
  2329. kmem_bufctl_t i;
  2330. int entries = 0;
  2331. /* Check slab's freelist to see if this obj is there. */
  2332. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2333. entries++;
  2334. if (entries > cachep->num || i >= cachep->num)
  2335. goto bad;
  2336. }
  2337. if (entries != cachep->num - slabp->inuse) {
  2338. bad:
  2339. printk(KERN_ERR "slab: Internal list corruption detected in "
  2340. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2341. cachep->name, cachep->num, slabp, slabp->inuse);
  2342. for (i = 0;
  2343. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2344. i++) {
  2345. if (i % 16 == 0)
  2346. printk("\n%03x:", i);
  2347. printk(" %02x", ((unsigned char *)slabp)[i]);
  2348. }
  2349. printk("\n");
  2350. BUG();
  2351. }
  2352. }
  2353. #else
  2354. #define kfree_debugcheck(x) do { } while(0)
  2355. #define cache_free_debugcheck(x,objp,z) (objp)
  2356. #define check_slabp(x,y) do { } while(0)
  2357. #endif
  2358. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2359. {
  2360. int batchcount;
  2361. struct kmem_list3 *l3;
  2362. struct array_cache *ac;
  2363. check_irq_off();
  2364. ac = cpu_cache_get(cachep);
  2365. retry:
  2366. batchcount = ac->batchcount;
  2367. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2368. /*
  2369. * If there was little recent activity on this cache, then
  2370. * perform only a partial refill. Otherwise we could generate
  2371. * refill bouncing.
  2372. */
  2373. batchcount = BATCHREFILL_LIMIT;
  2374. }
  2375. l3 = cachep->nodelists[numa_node_id()];
  2376. BUG_ON(ac->avail > 0 || !l3);
  2377. spin_lock(&l3->list_lock);
  2378. if (l3->shared) {
  2379. struct array_cache *shared_array = l3->shared;
  2380. if (shared_array->avail) {
  2381. if (batchcount > shared_array->avail)
  2382. batchcount = shared_array->avail;
  2383. shared_array->avail -= batchcount;
  2384. ac->avail = batchcount;
  2385. memcpy(ac->entry,
  2386. &(shared_array->entry[shared_array->avail]),
  2387. sizeof(void *) * batchcount);
  2388. shared_array->touched = 1;
  2389. goto alloc_done;
  2390. }
  2391. }
  2392. while (batchcount > 0) {
  2393. struct list_head *entry;
  2394. struct slab *slabp;
  2395. /* Get slab alloc is to come from. */
  2396. entry = l3->slabs_partial.next;
  2397. if (entry == &l3->slabs_partial) {
  2398. l3->free_touched = 1;
  2399. entry = l3->slabs_free.next;
  2400. if (entry == &l3->slabs_free)
  2401. goto must_grow;
  2402. }
  2403. slabp = list_entry(entry, struct slab, list);
  2404. check_slabp(cachep, slabp);
  2405. check_spinlock_acquired(cachep);
  2406. while (slabp->inuse < cachep->num && batchcount--) {
  2407. STATS_INC_ALLOCED(cachep);
  2408. STATS_INC_ACTIVE(cachep);
  2409. STATS_SET_HIGH(cachep);
  2410. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2411. numa_node_id());
  2412. }
  2413. check_slabp(cachep, slabp);
  2414. /* move slabp to correct slabp list: */
  2415. list_del(&slabp->list);
  2416. if (slabp->free == BUFCTL_END)
  2417. list_add(&slabp->list, &l3->slabs_full);
  2418. else
  2419. list_add(&slabp->list, &l3->slabs_partial);
  2420. }
  2421. must_grow:
  2422. l3->free_objects -= ac->avail;
  2423. alloc_done:
  2424. spin_unlock(&l3->list_lock);
  2425. if (unlikely(!ac->avail)) {
  2426. int x;
  2427. x = cache_grow(cachep, flags, numa_node_id());
  2428. /* cache_grow can reenable interrupts, then ac could change. */
  2429. ac = cpu_cache_get(cachep);
  2430. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2431. return NULL;
  2432. if (!ac->avail) /* objects refilled by interrupt? */
  2433. goto retry;
  2434. }
  2435. ac->touched = 1;
  2436. return ac->entry[--ac->avail];
  2437. }
  2438. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2439. gfp_t flags)
  2440. {
  2441. might_sleep_if(flags & __GFP_WAIT);
  2442. #if DEBUG
  2443. kmem_flagcheck(cachep, flags);
  2444. #endif
  2445. }
  2446. #if DEBUG
  2447. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2448. gfp_t flags, void *objp, void *caller)
  2449. {
  2450. if (!objp)
  2451. return objp;
  2452. if (cachep->flags & SLAB_POISON) {
  2453. #ifdef CONFIG_DEBUG_PAGEALLOC
  2454. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2455. kernel_map_pages(virt_to_page(objp),
  2456. cachep->buffer_size / PAGE_SIZE, 1);
  2457. else
  2458. check_poison_obj(cachep, objp);
  2459. #else
  2460. check_poison_obj(cachep, objp);
  2461. #endif
  2462. poison_obj(cachep, objp, POISON_INUSE);
  2463. }
  2464. if (cachep->flags & SLAB_STORE_USER)
  2465. *dbg_userword(cachep, objp) = caller;
  2466. if (cachep->flags & SLAB_RED_ZONE) {
  2467. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2468. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2469. slab_error(cachep, "double free, or memory outside"
  2470. " object was overwritten");
  2471. printk(KERN_ERR
  2472. "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
  2473. objp, *dbg_redzone1(cachep, objp),
  2474. *dbg_redzone2(cachep, objp));
  2475. }
  2476. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2477. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2478. }
  2479. objp += obj_offset(cachep);
  2480. if (cachep->ctor && cachep->flags & SLAB_POISON) {
  2481. unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
  2482. if (!(flags & __GFP_WAIT))
  2483. ctor_flags |= SLAB_CTOR_ATOMIC;
  2484. cachep->ctor(objp, cachep, ctor_flags);
  2485. }
  2486. return objp;
  2487. }
  2488. #else
  2489. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2490. #endif
  2491. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2492. {
  2493. void *objp;
  2494. struct array_cache *ac;
  2495. #ifdef CONFIG_NUMA
  2496. if (unlikely(current->mempolicy && !in_interrupt())) {
  2497. int nid = slab_node(current->mempolicy);
  2498. if (nid != numa_node_id())
  2499. return __cache_alloc_node(cachep, flags, nid);
  2500. }
  2501. #endif
  2502. check_irq_off();
  2503. ac = cpu_cache_get(cachep);
  2504. if (likely(ac->avail)) {
  2505. STATS_INC_ALLOCHIT(cachep);
  2506. ac->touched = 1;
  2507. objp = ac->entry[--ac->avail];
  2508. } else {
  2509. STATS_INC_ALLOCMISS(cachep);
  2510. objp = cache_alloc_refill(cachep, flags);
  2511. }
  2512. return objp;
  2513. }
  2514. static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
  2515. gfp_t flags, void *caller)
  2516. {
  2517. unsigned long save_flags;
  2518. void *objp;
  2519. cache_alloc_debugcheck_before(cachep, flags);
  2520. local_irq_save(save_flags);
  2521. objp = ____cache_alloc(cachep, flags);
  2522. local_irq_restore(save_flags);
  2523. objp = cache_alloc_debugcheck_after(cachep, flags, objp,
  2524. caller);
  2525. prefetchw(objp);
  2526. return objp;
  2527. }
  2528. #ifdef CONFIG_NUMA
  2529. /*
  2530. * A interface to enable slab creation on nodeid
  2531. */
  2532. static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2533. int nodeid)
  2534. {
  2535. struct list_head *entry;
  2536. struct slab *slabp;
  2537. struct kmem_list3 *l3;
  2538. void *obj;
  2539. int x;
  2540. l3 = cachep->nodelists[nodeid];
  2541. BUG_ON(!l3);
  2542. retry:
  2543. check_irq_off();
  2544. spin_lock(&l3->list_lock);
  2545. entry = l3->slabs_partial.next;
  2546. if (entry == &l3->slabs_partial) {
  2547. l3->free_touched = 1;
  2548. entry = l3->slabs_free.next;
  2549. if (entry == &l3->slabs_free)
  2550. goto must_grow;
  2551. }
  2552. slabp = list_entry(entry, struct slab, list);
  2553. check_spinlock_acquired_node(cachep, nodeid);
  2554. check_slabp(cachep, slabp);
  2555. STATS_INC_NODEALLOCS(cachep);
  2556. STATS_INC_ACTIVE(cachep);
  2557. STATS_SET_HIGH(cachep);
  2558. BUG_ON(slabp->inuse == cachep->num);
  2559. obj = slab_get_obj(cachep, slabp, nodeid);
  2560. check_slabp(cachep, slabp);
  2561. l3->free_objects--;
  2562. /* move slabp to correct slabp list: */
  2563. list_del(&slabp->list);
  2564. if (slabp->free == BUFCTL_END)
  2565. list_add(&slabp->list, &l3->slabs_full);
  2566. else
  2567. list_add(&slabp->list, &l3->slabs_partial);
  2568. spin_unlock(&l3->list_lock);
  2569. goto done;
  2570. must_grow:
  2571. spin_unlock(&l3->list_lock);
  2572. x = cache_grow(cachep, flags, nodeid);
  2573. if (!x)
  2574. return NULL;
  2575. goto retry;
  2576. done:
  2577. return obj;
  2578. }
  2579. #endif
  2580. /*
  2581. * Caller needs to acquire correct kmem_list's list_lock
  2582. */
  2583. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  2584. int node)
  2585. {
  2586. int i;
  2587. struct kmem_list3 *l3;
  2588. for (i = 0; i < nr_objects; i++) {
  2589. void *objp = objpp[i];
  2590. struct slab *slabp;
  2591. slabp = virt_to_slab(objp);
  2592. l3 = cachep->nodelists[node];
  2593. list_del(&slabp->list);
  2594. check_spinlock_acquired_node(cachep, node);
  2595. check_slabp(cachep, slabp);
  2596. slab_put_obj(cachep, slabp, objp, node);
  2597. STATS_DEC_ACTIVE(cachep);
  2598. l3->free_objects++;
  2599. check_slabp(cachep, slabp);
  2600. /* fixup slab chains */
  2601. if (slabp->inuse == 0) {
  2602. if (l3->free_objects > l3->free_limit) {
  2603. l3->free_objects -= cachep->num;
  2604. slab_destroy(cachep, slabp);
  2605. } else {
  2606. list_add(&slabp->list, &l3->slabs_free);
  2607. }
  2608. } else {
  2609. /* Unconditionally move a slab to the end of the
  2610. * partial list on free - maximum time for the
  2611. * other objects to be freed, too.
  2612. */
  2613. list_add_tail(&slabp->list, &l3->slabs_partial);
  2614. }
  2615. }
  2616. }
  2617. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  2618. {
  2619. int batchcount;
  2620. struct kmem_list3 *l3;
  2621. int node = numa_node_id();
  2622. batchcount = ac->batchcount;
  2623. #if DEBUG
  2624. BUG_ON(!batchcount || batchcount > ac->avail);
  2625. #endif
  2626. check_irq_off();
  2627. l3 = cachep->nodelists[node];
  2628. spin_lock(&l3->list_lock);
  2629. if (l3->shared) {
  2630. struct array_cache *shared_array = l3->shared;
  2631. int max = shared_array->limit - shared_array->avail;
  2632. if (max) {
  2633. if (batchcount > max)
  2634. batchcount = max;
  2635. memcpy(&(shared_array->entry[shared_array->avail]),
  2636. ac->entry, sizeof(void *) * batchcount);
  2637. shared_array->avail += batchcount;
  2638. goto free_done;
  2639. }
  2640. }
  2641. free_block(cachep, ac->entry, batchcount, node);
  2642. free_done:
  2643. #if STATS
  2644. {
  2645. int i = 0;
  2646. struct list_head *p;
  2647. p = l3->slabs_free.next;
  2648. while (p != &(l3->slabs_free)) {
  2649. struct slab *slabp;
  2650. slabp = list_entry(p, struct slab, list);
  2651. BUG_ON(slabp->inuse);
  2652. i++;
  2653. p = p->next;
  2654. }
  2655. STATS_SET_FREEABLE(cachep, i);
  2656. }
  2657. #endif
  2658. spin_unlock(&l3->list_lock);
  2659. ac->avail -= batchcount;
  2660. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  2661. }
  2662. /*
  2663. * Release an obj back to its cache. If the obj has a constructed state, it must
  2664. * be in this state _before_ it is released. Called with disabled ints.
  2665. */
  2666. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  2667. {
  2668. struct array_cache *ac = cpu_cache_get(cachep);
  2669. check_irq_off();
  2670. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  2671. /* Make sure we are not freeing a object from another
  2672. * node to the array cache on this cpu.
  2673. */
  2674. #ifdef CONFIG_NUMA
  2675. {
  2676. struct slab *slabp;
  2677. slabp = virt_to_slab(objp);
  2678. if (unlikely(slabp->nodeid != numa_node_id())) {
  2679. struct array_cache *alien = NULL;
  2680. int nodeid = slabp->nodeid;
  2681. struct kmem_list3 *l3;
  2682. l3 = cachep->nodelists[numa_node_id()];
  2683. STATS_INC_NODEFREES(cachep);
  2684. if (l3->alien && l3->alien[nodeid]) {
  2685. alien = l3->alien[nodeid];
  2686. spin_lock(&alien->lock);
  2687. if (unlikely(alien->avail == alien->limit))
  2688. __drain_alien_cache(cachep,
  2689. alien, nodeid);
  2690. alien->entry[alien->avail++] = objp;
  2691. spin_unlock(&alien->lock);
  2692. } else {
  2693. spin_lock(&(cachep->nodelists[nodeid])->
  2694. list_lock);
  2695. free_block(cachep, &objp, 1, nodeid);
  2696. spin_unlock(&(cachep->nodelists[nodeid])->
  2697. list_lock);
  2698. }
  2699. return;
  2700. }
  2701. }
  2702. #endif
  2703. if (likely(ac->avail < ac->limit)) {
  2704. STATS_INC_FREEHIT(cachep);
  2705. ac->entry[ac->avail++] = objp;
  2706. return;
  2707. } else {
  2708. STATS_INC_FREEMISS(cachep);
  2709. cache_flusharray(cachep, ac);
  2710. ac->entry[ac->avail++] = objp;
  2711. }
  2712. }
  2713. /**
  2714. * kmem_cache_alloc - Allocate an object
  2715. * @cachep: The cache to allocate from.
  2716. * @flags: See kmalloc().
  2717. *
  2718. * Allocate an object from this cache. The flags are only relevant
  2719. * if the cache has no available objects.
  2720. */
  2721. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2722. {
  2723. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  2724. }
  2725. EXPORT_SYMBOL(kmem_cache_alloc);
  2726. /**
  2727. * kmem_ptr_validate - check if an untrusted pointer might
  2728. * be a slab entry.
  2729. * @cachep: the cache we're checking against
  2730. * @ptr: pointer to validate
  2731. *
  2732. * This verifies that the untrusted pointer looks sane:
  2733. * it is _not_ a guarantee that the pointer is actually
  2734. * part of the slab cache in question, but it at least
  2735. * validates that the pointer can be dereferenced and
  2736. * looks half-way sane.
  2737. *
  2738. * Currently only used for dentry validation.
  2739. */
  2740. int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
  2741. {
  2742. unsigned long addr = (unsigned long)ptr;
  2743. unsigned long min_addr = PAGE_OFFSET;
  2744. unsigned long align_mask = BYTES_PER_WORD - 1;
  2745. unsigned long size = cachep->buffer_size;
  2746. struct page *page;
  2747. if (unlikely(addr < min_addr))
  2748. goto out;
  2749. if (unlikely(addr > (unsigned long)high_memory - size))
  2750. goto out;
  2751. if (unlikely(addr & align_mask))
  2752. goto out;
  2753. if (unlikely(!kern_addr_valid(addr)))
  2754. goto out;
  2755. if (unlikely(!kern_addr_valid(addr + size - 1)))
  2756. goto out;
  2757. page = virt_to_page(ptr);
  2758. if (unlikely(!PageSlab(page)))
  2759. goto out;
  2760. if (unlikely(page_get_cache(page) != cachep))
  2761. goto out;
  2762. return 1;
  2763. out:
  2764. return 0;
  2765. }
  2766. #ifdef CONFIG_NUMA
  2767. /**
  2768. * kmem_cache_alloc_node - Allocate an object on the specified node
  2769. * @cachep: The cache to allocate from.
  2770. * @flags: See kmalloc().
  2771. * @nodeid: node number of the target node.
  2772. *
  2773. * Identical to kmem_cache_alloc, except that this function is slow
  2774. * and can sleep. And it will allocate memory on the given node, which
  2775. * can improve the performance for cpu bound structures.
  2776. * New and improved: it will now make sure that the object gets
  2777. * put on the correct node list so that there is no false sharing.
  2778. */
  2779. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  2780. {
  2781. unsigned long save_flags;
  2782. void *ptr;
  2783. cache_alloc_debugcheck_before(cachep, flags);
  2784. local_irq_save(save_flags);
  2785. if (nodeid == -1 || nodeid == numa_node_id() ||
  2786. !cachep->nodelists[nodeid])
  2787. ptr = ____cache_alloc(cachep, flags);
  2788. else
  2789. ptr = __cache_alloc_node(cachep, flags, nodeid);
  2790. local_irq_restore(save_flags);
  2791. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
  2792. __builtin_return_address(0));
  2793. return ptr;
  2794. }
  2795. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2796. void *kmalloc_node(size_t size, gfp_t flags, int node)
  2797. {
  2798. struct kmem_cache *cachep;
  2799. cachep = kmem_find_general_cachep(size, flags);
  2800. if (unlikely(cachep == NULL))
  2801. return NULL;
  2802. return kmem_cache_alloc_node(cachep, flags, node);
  2803. }
  2804. EXPORT_SYMBOL(kmalloc_node);
  2805. #endif
  2806. /**
  2807. * kmalloc - allocate memory
  2808. * @size: how many bytes of memory are required.
  2809. * @flags: the type of memory to allocate.
  2810. *
  2811. * kmalloc is the normal method of allocating memory
  2812. * in the kernel.
  2813. *
  2814. * The @flags argument may be one of:
  2815. *
  2816. * %GFP_USER - Allocate memory on behalf of user. May sleep.
  2817. *
  2818. * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
  2819. *
  2820. * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
  2821. *
  2822. * Additionally, the %GFP_DMA flag may be set to indicate the memory
  2823. * must be suitable for DMA. This can mean different things on different
  2824. * platforms. For example, on i386, it means that the memory must come
  2825. * from the first 16MB.
  2826. */
  2827. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  2828. void *caller)
  2829. {
  2830. struct kmem_cache *cachep;
  2831. /* If you want to save a few bytes .text space: replace
  2832. * __ with kmem_.
  2833. * Then kmalloc uses the uninlined functions instead of the inline
  2834. * functions.
  2835. */
  2836. cachep = __find_general_cachep(size, flags);
  2837. if (unlikely(cachep == NULL))
  2838. return NULL;
  2839. return __cache_alloc(cachep, flags, caller);
  2840. }
  2841. #ifndef CONFIG_DEBUG_SLAB
  2842. void *__kmalloc(size_t size, gfp_t flags)
  2843. {
  2844. return __do_kmalloc(size, flags, NULL);
  2845. }
  2846. EXPORT_SYMBOL(__kmalloc);
  2847. #else
  2848. void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
  2849. {
  2850. return __do_kmalloc(size, flags, caller);
  2851. }
  2852. EXPORT_SYMBOL(__kmalloc_track_caller);
  2853. #endif
  2854. #ifdef CONFIG_SMP
  2855. /**
  2856. * __alloc_percpu - allocate one copy of the object for every present
  2857. * cpu in the system, zeroing them.
  2858. * Objects should be dereferenced using the per_cpu_ptr macro only.
  2859. *
  2860. * @size: how many bytes of memory are required.
  2861. */
  2862. void *__alloc_percpu(size_t size)
  2863. {
  2864. int i;
  2865. struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
  2866. if (!pdata)
  2867. return NULL;
  2868. /*
  2869. * Cannot use for_each_online_cpu since a cpu may come online
  2870. * and we have no way of figuring out how to fix the array
  2871. * that we have allocated then....
  2872. */
  2873. for_each_cpu(i) {
  2874. int node = cpu_to_node(i);
  2875. if (node_online(node))
  2876. pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
  2877. else
  2878. pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
  2879. if (!pdata->ptrs[i])
  2880. goto unwind_oom;
  2881. memset(pdata->ptrs[i], 0, size);
  2882. }
  2883. /* Catch derefs w/o wrappers */
  2884. return (void *)(~(unsigned long)pdata);
  2885. unwind_oom:
  2886. while (--i >= 0) {
  2887. if (!cpu_possible(i))
  2888. continue;
  2889. kfree(pdata->ptrs[i]);
  2890. }
  2891. kfree(pdata);
  2892. return NULL;
  2893. }
  2894. EXPORT_SYMBOL(__alloc_percpu);
  2895. #endif
  2896. /**
  2897. * kmem_cache_free - Deallocate an object
  2898. * @cachep: The cache the allocation was from.
  2899. * @objp: The previously allocated object.
  2900. *
  2901. * Free an object which was previously allocated from this
  2902. * cache.
  2903. */
  2904. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  2905. {
  2906. unsigned long flags;
  2907. local_irq_save(flags);
  2908. __cache_free(cachep, objp);
  2909. local_irq_restore(flags);
  2910. }
  2911. EXPORT_SYMBOL(kmem_cache_free);
  2912. /**
  2913. * kfree - free previously allocated memory
  2914. * @objp: pointer returned by kmalloc.
  2915. *
  2916. * If @objp is NULL, no operation is performed.
  2917. *
  2918. * Don't free memory not originally allocated by kmalloc()
  2919. * or you will run into trouble.
  2920. */
  2921. void kfree(const void *objp)
  2922. {
  2923. struct kmem_cache *c;
  2924. unsigned long flags;
  2925. if (unlikely(!objp))
  2926. return;
  2927. local_irq_save(flags);
  2928. kfree_debugcheck(objp);
  2929. c = virt_to_cache(objp);
  2930. mutex_debug_check_no_locks_freed(objp, obj_size(c));
  2931. __cache_free(c, (void *)objp);
  2932. local_irq_restore(flags);
  2933. }
  2934. EXPORT_SYMBOL(kfree);
  2935. #ifdef CONFIG_SMP
  2936. /**
  2937. * free_percpu - free previously allocated percpu memory
  2938. * @objp: pointer returned by alloc_percpu.
  2939. *
  2940. * Don't free memory not originally allocated by alloc_percpu()
  2941. * The complemented objp is to check for that.
  2942. */
  2943. void free_percpu(const void *objp)
  2944. {
  2945. int i;
  2946. struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
  2947. /*
  2948. * We allocate for all cpus so we cannot use for online cpu here.
  2949. */
  2950. for_each_cpu(i)
  2951. kfree(p->ptrs[i]);
  2952. kfree(p);
  2953. }
  2954. EXPORT_SYMBOL(free_percpu);
  2955. #endif
  2956. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  2957. {
  2958. return obj_size(cachep);
  2959. }
  2960. EXPORT_SYMBOL(kmem_cache_size);
  2961. const char *kmem_cache_name(struct kmem_cache *cachep)
  2962. {
  2963. return cachep->name;
  2964. }
  2965. EXPORT_SYMBOL_GPL(kmem_cache_name);
  2966. /*
  2967. * This initializes kmem_list3 for all nodes.
  2968. */
  2969. static int alloc_kmemlist(struct kmem_cache *cachep)
  2970. {
  2971. int node;
  2972. struct kmem_list3 *l3;
  2973. int err = 0;
  2974. for_each_online_node(node) {
  2975. struct array_cache *nc = NULL, *new;
  2976. struct array_cache **new_alien = NULL;
  2977. #ifdef CONFIG_NUMA
  2978. new_alien = alloc_alien_cache(node, cachep->limit);
  2979. if (!new_alien)
  2980. goto fail;
  2981. #endif
  2982. new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
  2983. 0xbaadf00d);
  2984. if (!new)
  2985. goto fail;
  2986. l3 = cachep->nodelists[node];
  2987. if (l3) {
  2988. spin_lock_irq(&l3->list_lock);
  2989. nc = cachep->nodelists[node]->shared;
  2990. if (nc)
  2991. free_block(cachep, nc->entry, nc->avail, node);
  2992. l3->shared = new;
  2993. if (!cachep->nodelists[node]->alien) {
  2994. l3->alien = new_alien;
  2995. new_alien = NULL;
  2996. }
  2997. l3->free_limit = (1 + nr_cpus_node(node)) *
  2998. cachep->batchcount + cachep->num;
  2999. spin_unlock_irq(&l3->list_lock);
  3000. kfree(nc);
  3001. free_alien_cache(new_alien);
  3002. continue;
  3003. }
  3004. l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
  3005. if (!l3)
  3006. goto fail;
  3007. kmem_list3_init(l3);
  3008. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3009. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3010. l3->shared = new;
  3011. l3->alien = new_alien;
  3012. l3->free_limit = (1 + nr_cpus_node(node)) *
  3013. cachep->batchcount + cachep->num;
  3014. cachep->nodelists[node] = l3;
  3015. }
  3016. return err;
  3017. fail:
  3018. err = -ENOMEM;
  3019. return err;
  3020. }
  3021. struct ccupdate_struct {
  3022. struct kmem_cache *cachep;
  3023. struct array_cache *new[NR_CPUS];
  3024. };
  3025. static void do_ccupdate_local(void *info)
  3026. {
  3027. struct ccupdate_struct *new = info;
  3028. struct array_cache *old;
  3029. check_irq_off();
  3030. old = cpu_cache_get(new->cachep);
  3031. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3032. new->new[smp_processor_id()] = old;
  3033. }
  3034. /* Always called with the cache_chain_mutex held */
  3035. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3036. int batchcount, int shared)
  3037. {
  3038. struct ccupdate_struct new;
  3039. int i, err;
  3040. memset(&new.new, 0, sizeof(new.new));
  3041. for_each_online_cpu(i) {
  3042. new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3043. batchcount);
  3044. if (!new.new[i]) {
  3045. for (i--; i >= 0; i--)
  3046. kfree(new.new[i]);
  3047. return -ENOMEM;
  3048. }
  3049. }
  3050. new.cachep = cachep;
  3051. smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
  3052. check_irq_on();
  3053. cachep->batchcount = batchcount;
  3054. cachep->limit = limit;
  3055. cachep->shared = shared;
  3056. for_each_online_cpu(i) {
  3057. struct array_cache *ccold = new.new[i];
  3058. if (!ccold)
  3059. continue;
  3060. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3061. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3062. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3063. kfree(ccold);
  3064. }
  3065. err = alloc_kmemlist(cachep);
  3066. if (err) {
  3067. printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
  3068. cachep->name, -err);
  3069. BUG();
  3070. }
  3071. return 0;
  3072. }
  3073. /* Called with cache_chain_mutex held always */
  3074. static void enable_cpucache(struct kmem_cache *cachep)
  3075. {
  3076. int err;
  3077. int limit, shared;
  3078. /*
  3079. * The head array serves three purposes:
  3080. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3081. * - reduce the number of spinlock operations.
  3082. * - reduce the number of linked list operations on the slab and
  3083. * bufctl chains: array operations are cheaper.
  3084. * The numbers are guessed, we should auto-tune as described by
  3085. * Bonwick.
  3086. */
  3087. if (cachep->buffer_size > 131072)
  3088. limit = 1;
  3089. else if (cachep->buffer_size > PAGE_SIZE)
  3090. limit = 8;
  3091. else if (cachep->buffer_size > 1024)
  3092. limit = 24;
  3093. else if (cachep->buffer_size > 256)
  3094. limit = 54;
  3095. else
  3096. limit = 120;
  3097. /*
  3098. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3099. * allocation behaviour: Most allocs on one cpu, most free operations
  3100. * on another cpu. For these cases, an efficient object passing between
  3101. * cpus is necessary. This is provided by a shared array. The array
  3102. * replaces Bonwick's magazine layer.
  3103. * On uniprocessor, it's functionally equivalent (but less efficient)
  3104. * to a larger limit. Thus disabled by default.
  3105. */
  3106. shared = 0;
  3107. #ifdef CONFIG_SMP
  3108. if (cachep->buffer_size <= PAGE_SIZE)
  3109. shared = 8;
  3110. #endif
  3111. #if DEBUG
  3112. /*
  3113. * With debugging enabled, large batchcount lead to excessively long
  3114. * periods with disabled local interrupts. Limit the batchcount
  3115. */
  3116. if (limit > 32)
  3117. limit = 32;
  3118. #endif
  3119. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
  3120. if (err)
  3121. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3122. cachep->name, -err);
  3123. }
  3124. static void drain_array_locked(struct kmem_cache *cachep,
  3125. struct array_cache *ac, int force, int node)
  3126. {
  3127. int tofree;
  3128. check_spinlock_acquired_node(cachep, node);
  3129. if (ac->touched && !force) {
  3130. ac->touched = 0;
  3131. } else if (ac->avail) {
  3132. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3133. if (tofree > ac->avail)
  3134. tofree = (ac->avail + 1) / 2;
  3135. free_block(cachep, ac->entry, tofree, node);
  3136. ac->avail -= tofree;
  3137. memmove(ac->entry, &(ac->entry[tofree]),
  3138. sizeof(void *) * ac->avail);
  3139. }
  3140. }
  3141. /**
  3142. * cache_reap - Reclaim memory from caches.
  3143. * @unused: unused parameter
  3144. *
  3145. * Called from workqueue/eventd every few seconds.
  3146. * Purpose:
  3147. * - clear the per-cpu caches for this CPU.
  3148. * - return freeable pages to the main free memory pool.
  3149. *
  3150. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3151. * again on the next iteration.
  3152. */
  3153. static void cache_reap(void *unused)
  3154. {
  3155. struct list_head *walk;
  3156. struct kmem_list3 *l3;
  3157. if (!mutex_trylock(&cache_chain_mutex)) {
  3158. /* Give up. Setup the next iteration. */
  3159. schedule_delayed_work(&__get_cpu_var(reap_work),
  3160. REAPTIMEOUT_CPUC);
  3161. return;
  3162. }
  3163. list_for_each(walk, &cache_chain) {
  3164. struct kmem_cache *searchp;
  3165. struct list_head *p;
  3166. int tofree;
  3167. struct slab *slabp;
  3168. searchp = list_entry(walk, struct kmem_cache, next);
  3169. if (searchp->flags & SLAB_NO_REAP)
  3170. goto next;
  3171. check_irq_on();
  3172. l3 = searchp->nodelists[numa_node_id()];
  3173. reap_alien(searchp, l3);
  3174. spin_lock_irq(&l3->list_lock);
  3175. drain_array_locked(searchp, cpu_cache_get(searchp), 0,
  3176. numa_node_id());
  3177. if (time_after(l3->next_reap, jiffies))
  3178. goto next_unlock;
  3179. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3180. if (l3->shared)
  3181. drain_array_locked(searchp, l3->shared, 0,
  3182. numa_node_id());
  3183. if (l3->free_touched) {
  3184. l3->free_touched = 0;
  3185. goto next_unlock;
  3186. }
  3187. tofree = (l3->free_limit + 5 * searchp->num - 1) /
  3188. (5 * searchp->num);
  3189. do {
  3190. p = l3->slabs_free.next;
  3191. if (p == &(l3->slabs_free))
  3192. break;
  3193. slabp = list_entry(p, struct slab, list);
  3194. BUG_ON(slabp->inuse);
  3195. list_del(&slabp->list);
  3196. STATS_INC_REAPED(searchp);
  3197. /*
  3198. * Safe to drop the lock. The slab is no longer linked
  3199. * to the cache. searchp cannot disappear, we hold
  3200. * cache_chain_lock
  3201. */
  3202. l3->free_objects -= searchp->num;
  3203. spin_unlock_irq(&l3->list_lock);
  3204. slab_destroy(searchp, slabp);
  3205. spin_lock_irq(&l3->list_lock);
  3206. } while (--tofree > 0);
  3207. next_unlock:
  3208. spin_unlock_irq(&l3->list_lock);
  3209. next:
  3210. cond_resched();
  3211. }
  3212. check_irq_on();
  3213. mutex_unlock(&cache_chain_mutex);
  3214. next_reap_node();
  3215. /* Set up the next iteration */
  3216. schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
  3217. }
  3218. #ifdef CONFIG_PROC_FS
  3219. static void print_slabinfo_header(struct seq_file *m)
  3220. {
  3221. /*
  3222. * Output format version, so at least we can change it
  3223. * without _too_ many complaints.
  3224. */
  3225. #if STATS
  3226. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3227. #else
  3228. seq_puts(m, "slabinfo - version: 2.1\n");
  3229. #endif
  3230. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3231. "<objperslab> <pagesperslab>");
  3232. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3233. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3234. #if STATS
  3235. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3236. "<error> <maxfreeable> <nodeallocs> <remotefrees>");
  3237. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3238. #endif
  3239. seq_putc(m, '\n');
  3240. }
  3241. static void *s_start(struct seq_file *m, loff_t *pos)
  3242. {
  3243. loff_t n = *pos;
  3244. struct list_head *p;
  3245. mutex_lock(&cache_chain_mutex);
  3246. if (!n)
  3247. print_slabinfo_header(m);
  3248. p = cache_chain.next;
  3249. while (n--) {
  3250. p = p->next;
  3251. if (p == &cache_chain)
  3252. return NULL;
  3253. }
  3254. return list_entry(p, struct kmem_cache, next);
  3255. }
  3256. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3257. {
  3258. struct kmem_cache *cachep = p;
  3259. ++*pos;
  3260. return cachep->next.next == &cache_chain ?
  3261. NULL : list_entry(cachep->next.next, struct kmem_cache, next);
  3262. }
  3263. static void s_stop(struct seq_file *m, void *p)
  3264. {
  3265. mutex_unlock(&cache_chain_mutex);
  3266. }
  3267. static int s_show(struct seq_file *m, void *p)
  3268. {
  3269. struct kmem_cache *cachep = p;
  3270. struct list_head *q;
  3271. struct slab *slabp;
  3272. unsigned long active_objs;
  3273. unsigned long num_objs;
  3274. unsigned long active_slabs = 0;
  3275. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3276. const char *name;
  3277. char *error = NULL;
  3278. int node;
  3279. struct kmem_list3 *l3;
  3280. active_objs = 0;
  3281. num_slabs = 0;
  3282. for_each_online_node(node) {
  3283. l3 = cachep->nodelists[node];
  3284. if (!l3)
  3285. continue;
  3286. check_irq_on();
  3287. spin_lock_irq(&l3->list_lock);
  3288. list_for_each(q, &l3->slabs_full) {
  3289. slabp = list_entry(q, struct slab, list);
  3290. if (slabp->inuse != cachep->num && !error)
  3291. error = "slabs_full accounting error";
  3292. active_objs += cachep->num;
  3293. active_slabs++;
  3294. }
  3295. list_for_each(q, &l3->slabs_partial) {
  3296. slabp = list_entry(q, struct slab, list);
  3297. if (slabp->inuse == cachep->num && !error)
  3298. error = "slabs_partial inuse accounting error";
  3299. if (!slabp->inuse && !error)
  3300. error = "slabs_partial/inuse accounting error";
  3301. active_objs += slabp->inuse;
  3302. active_slabs++;
  3303. }
  3304. list_for_each(q, &l3->slabs_free) {
  3305. slabp = list_entry(q, struct slab, list);
  3306. if (slabp->inuse && !error)
  3307. error = "slabs_free/inuse accounting error";
  3308. num_slabs++;
  3309. }
  3310. free_objects += l3->free_objects;
  3311. if (l3->shared)
  3312. shared_avail += l3->shared->avail;
  3313. spin_unlock_irq(&l3->list_lock);
  3314. }
  3315. num_slabs += active_slabs;
  3316. num_objs = num_slabs * cachep->num;
  3317. if (num_objs - active_objs != free_objects && !error)
  3318. error = "free_objects accounting error";
  3319. name = cachep->name;
  3320. if (error)
  3321. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3322. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3323. name, active_objs, num_objs, cachep->buffer_size,
  3324. cachep->num, (1 << cachep->gfporder));
  3325. seq_printf(m, " : tunables %4u %4u %4u",
  3326. cachep->limit, cachep->batchcount, cachep->shared);
  3327. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3328. active_slabs, num_slabs, shared_avail);
  3329. #if STATS
  3330. { /* list3 stats */
  3331. unsigned long high = cachep->high_mark;
  3332. unsigned long allocs = cachep->num_allocations;
  3333. unsigned long grown = cachep->grown;
  3334. unsigned long reaped = cachep->reaped;
  3335. unsigned long errors = cachep->errors;
  3336. unsigned long max_freeable = cachep->max_freeable;
  3337. unsigned long node_allocs = cachep->node_allocs;
  3338. unsigned long node_frees = cachep->node_frees;
  3339. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3340. %4lu %4lu %4lu %4lu", allocs, high, grown,
  3341. reaped, errors, max_freeable, node_allocs,
  3342. node_frees);
  3343. }
  3344. /* cpu stats */
  3345. {
  3346. unsigned long allochit = atomic_read(&cachep->allochit);
  3347. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3348. unsigned long freehit = atomic_read(&cachep->freehit);
  3349. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3350. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3351. allochit, allocmiss, freehit, freemiss);
  3352. }
  3353. #endif
  3354. seq_putc(m, '\n');
  3355. return 0;
  3356. }
  3357. /*
  3358. * slabinfo_op - iterator that generates /proc/slabinfo
  3359. *
  3360. * Output layout:
  3361. * cache-name
  3362. * num-active-objs
  3363. * total-objs
  3364. * object size
  3365. * num-active-slabs
  3366. * total-slabs
  3367. * num-pages-per-slab
  3368. * + further values on SMP and with statistics enabled
  3369. */
  3370. struct seq_operations slabinfo_op = {
  3371. .start = s_start,
  3372. .next = s_next,
  3373. .stop = s_stop,
  3374. .show = s_show,
  3375. };
  3376. #define MAX_SLABINFO_WRITE 128
  3377. /**
  3378. * slabinfo_write - Tuning for the slab allocator
  3379. * @file: unused
  3380. * @buffer: user buffer
  3381. * @count: data length
  3382. * @ppos: unused
  3383. */
  3384. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3385. size_t count, loff_t *ppos)
  3386. {
  3387. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3388. int limit, batchcount, shared, res;
  3389. struct list_head *p;
  3390. if (count > MAX_SLABINFO_WRITE)
  3391. return -EINVAL;
  3392. if (copy_from_user(&kbuf, buffer, count))
  3393. return -EFAULT;
  3394. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3395. tmp = strchr(kbuf, ' ');
  3396. if (!tmp)
  3397. return -EINVAL;
  3398. *tmp = '\0';
  3399. tmp++;
  3400. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3401. return -EINVAL;
  3402. /* Find the cache in the chain of caches. */
  3403. mutex_lock(&cache_chain_mutex);
  3404. res = -EINVAL;
  3405. list_for_each(p, &cache_chain) {
  3406. struct kmem_cache *cachep;
  3407. cachep = list_entry(p, struct kmem_cache, next);
  3408. if (!strcmp(cachep->name, kbuf)) {
  3409. if (limit < 1 || batchcount < 1 ||
  3410. batchcount > limit || shared < 0) {
  3411. res = 0;
  3412. } else {
  3413. res = do_tune_cpucache(cachep, limit,
  3414. batchcount, shared);
  3415. }
  3416. break;
  3417. }
  3418. }
  3419. mutex_unlock(&cache_chain_mutex);
  3420. if (res >= 0)
  3421. res = count;
  3422. return res;
  3423. }
  3424. #endif
  3425. /**
  3426. * ksize - get the actual amount of memory allocated for a given object
  3427. * @objp: Pointer to the object
  3428. *
  3429. * kmalloc may internally round up allocations and return more memory
  3430. * than requested. ksize() can be used to determine the actual amount of
  3431. * memory allocated. The caller may use this additional memory, even though
  3432. * a smaller amount of memory was initially specified with the kmalloc call.
  3433. * The caller must guarantee that objp points to a valid object previously
  3434. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  3435. * must not be freed during the duration of the call.
  3436. */
  3437. unsigned int ksize(const void *objp)
  3438. {
  3439. if (unlikely(objp == NULL))
  3440. return 0;
  3441. return obj_size(virt_to_cache(objp));
  3442. }