transport.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812
  1. /*
  2. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the BSD-type
  8. * license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. *
  14. * Redistributions of source code must retain the above copyright
  15. * notice, this list of conditions and the following disclaimer.
  16. *
  17. * Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials provided
  20. * with the distribution.
  21. *
  22. * Neither the name of the Network Appliance, Inc. nor the names of
  23. * its contributors may be used to endorse or promote products
  24. * derived from this software without specific prior written
  25. * permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. */
  39. /*
  40. * transport.c
  41. *
  42. * This file contains the top-level implementation of an RPC RDMA
  43. * transport.
  44. *
  45. * Naming convention: functions beginning with xprt_ are part of the
  46. * transport switch. All others are RPC RDMA internal.
  47. */
  48. #include <linux/module.h>
  49. #include <linux/init.h>
  50. #include <linux/seq_file.h>
  51. #include "xprt_rdma.h"
  52. #ifdef RPC_DEBUG
  53. # define RPCDBG_FACILITY RPCDBG_TRANS
  54. #endif
  55. MODULE_LICENSE("Dual BSD/GPL");
  56. MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
  57. MODULE_AUTHOR("Network Appliance, Inc.");
  58. /*
  59. * tunables
  60. */
  61. static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
  62. static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
  63. static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
  64. static unsigned int xprt_rdma_inline_write_padding;
  65. static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
  66. int xprt_rdma_pad_optimize = 0;
  67. #ifdef RPC_DEBUG
  68. static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
  69. static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
  70. static unsigned int zero;
  71. static unsigned int max_padding = PAGE_SIZE;
  72. static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
  73. static unsigned int max_memreg = RPCRDMA_LAST - 1;
  74. static struct ctl_table_header *sunrpc_table_header;
  75. static ctl_table xr_tunables_table[] = {
  76. {
  77. .ctl_name = CTL_UNNUMBERED,
  78. .procname = "rdma_slot_table_entries",
  79. .data = &xprt_rdma_slot_table_entries,
  80. .maxlen = sizeof(unsigned int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec_minmax,
  83. .strategy = &sysctl_intvec,
  84. .extra1 = &min_slot_table_size,
  85. .extra2 = &max_slot_table_size
  86. },
  87. {
  88. .ctl_name = CTL_UNNUMBERED,
  89. .procname = "rdma_max_inline_read",
  90. .data = &xprt_rdma_max_inline_read,
  91. .maxlen = sizeof(unsigned int),
  92. .mode = 0644,
  93. .proc_handler = &proc_dointvec,
  94. .strategy = &sysctl_intvec,
  95. },
  96. {
  97. .ctl_name = CTL_UNNUMBERED,
  98. .procname = "rdma_max_inline_write",
  99. .data = &xprt_rdma_max_inline_write,
  100. .maxlen = sizeof(unsigned int),
  101. .mode = 0644,
  102. .proc_handler = &proc_dointvec,
  103. .strategy = &sysctl_intvec,
  104. },
  105. {
  106. .ctl_name = CTL_UNNUMBERED,
  107. .procname = "rdma_inline_write_padding",
  108. .data = &xprt_rdma_inline_write_padding,
  109. .maxlen = sizeof(unsigned int),
  110. .mode = 0644,
  111. .proc_handler = &proc_dointvec_minmax,
  112. .strategy = &sysctl_intvec,
  113. .extra1 = &zero,
  114. .extra2 = &max_padding,
  115. },
  116. {
  117. .ctl_name = CTL_UNNUMBERED,
  118. .procname = "rdma_memreg_strategy",
  119. .data = &xprt_rdma_memreg_strategy,
  120. .maxlen = sizeof(unsigned int),
  121. .mode = 0644,
  122. .proc_handler = &proc_dointvec_minmax,
  123. .strategy = &sysctl_intvec,
  124. .extra1 = &min_memreg,
  125. .extra2 = &max_memreg,
  126. },
  127. {
  128. .ctl_name = CTL_UNNUMBERED,
  129. .procname = "rdma_pad_optimize",
  130. .data = &xprt_rdma_pad_optimize,
  131. .maxlen = sizeof(unsigned int),
  132. .mode = 0644,
  133. .proc_handler = &proc_dointvec,
  134. },
  135. {
  136. .ctl_name = 0,
  137. },
  138. };
  139. static ctl_table sunrpc_table[] = {
  140. {
  141. .ctl_name = CTL_SUNRPC,
  142. .procname = "sunrpc",
  143. .mode = 0555,
  144. .child = xr_tunables_table
  145. },
  146. {
  147. .ctl_name = 0,
  148. },
  149. };
  150. #endif
  151. static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
  152. static void
  153. xprt_rdma_format_addresses(struct rpc_xprt *xprt)
  154. {
  155. struct sockaddr *sap = (struct sockaddr *)
  156. &rpcx_to_rdmad(xprt).addr;
  157. struct sockaddr_in *sin = (struct sockaddr_in *)sap;
  158. char buf[64];
  159. (void)rpc_ntop(sap, buf, sizeof(buf));
  160. xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
  161. (void)snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
  162. xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
  163. xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
  164. (void)snprintf(buf, sizeof(buf), "%02x%02x%02x%02x",
  165. NIPQUAD(sin->sin_addr.s_addr));
  166. xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
  167. (void)snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
  168. xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
  169. /* netid */
  170. xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
  171. }
  172. static void
  173. xprt_rdma_free_addresses(struct rpc_xprt *xprt)
  174. {
  175. unsigned int i;
  176. for (i = 0; i < RPC_DISPLAY_MAX; i++)
  177. switch (i) {
  178. case RPC_DISPLAY_PROTO:
  179. case RPC_DISPLAY_NETID:
  180. continue;
  181. default:
  182. kfree(xprt->address_strings[i]);
  183. }
  184. }
  185. static void
  186. xprt_rdma_connect_worker(struct work_struct *work)
  187. {
  188. struct rpcrdma_xprt *r_xprt =
  189. container_of(work, struct rpcrdma_xprt, rdma_connect.work);
  190. struct rpc_xprt *xprt = &r_xprt->xprt;
  191. int rc = 0;
  192. if (!xprt->shutdown) {
  193. xprt_clear_connected(xprt);
  194. dprintk("RPC: %s: %sconnect\n", __func__,
  195. r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
  196. rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
  197. if (rc)
  198. goto out;
  199. }
  200. goto out_clear;
  201. out:
  202. xprt_wake_pending_tasks(xprt, rc);
  203. out_clear:
  204. dprintk("RPC: %s: exit\n", __func__);
  205. xprt_clear_connecting(xprt);
  206. }
  207. /*
  208. * xprt_rdma_destroy
  209. *
  210. * Destroy the xprt.
  211. * Free all memory associated with the object, including its own.
  212. * NOTE: none of the *destroy methods free memory for their top-level
  213. * objects, even though they may have allocated it (they do free
  214. * private memory). It's up to the caller to handle it. In this
  215. * case (RDMA transport), all structure memory is inlined with the
  216. * struct rpcrdma_xprt.
  217. */
  218. static void
  219. xprt_rdma_destroy(struct rpc_xprt *xprt)
  220. {
  221. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  222. int rc;
  223. dprintk("RPC: %s: called\n", __func__);
  224. cancel_delayed_work(&r_xprt->rdma_connect);
  225. flush_scheduled_work();
  226. xprt_clear_connected(xprt);
  227. rpcrdma_buffer_destroy(&r_xprt->rx_buf);
  228. rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
  229. if (rc)
  230. dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
  231. __func__, rc);
  232. rpcrdma_ia_close(&r_xprt->rx_ia);
  233. xprt_rdma_free_addresses(xprt);
  234. kfree(xprt->slot);
  235. xprt->slot = NULL;
  236. kfree(xprt);
  237. dprintk("RPC: %s: returning\n", __func__);
  238. module_put(THIS_MODULE);
  239. }
  240. static const struct rpc_timeout xprt_rdma_default_timeout = {
  241. .to_initval = 60 * HZ,
  242. .to_maxval = 60 * HZ,
  243. };
  244. /**
  245. * xprt_setup_rdma - Set up transport to use RDMA
  246. *
  247. * @args: rpc transport arguments
  248. */
  249. static struct rpc_xprt *
  250. xprt_setup_rdma(struct xprt_create *args)
  251. {
  252. struct rpcrdma_create_data_internal cdata;
  253. struct rpc_xprt *xprt;
  254. struct rpcrdma_xprt *new_xprt;
  255. struct rpcrdma_ep *new_ep;
  256. struct sockaddr_in *sin;
  257. int rc;
  258. if (args->addrlen > sizeof(xprt->addr)) {
  259. dprintk("RPC: %s: address too large\n", __func__);
  260. return ERR_PTR(-EBADF);
  261. }
  262. xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
  263. if (xprt == NULL) {
  264. dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
  265. __func__);
  266. return ERR_PTR(-ENOMEM);
  267. }
  268. xprt->max_reqs = xprt_rdma_slot_table_entries;
  269. xprt->slot = kcalloc(xprt->max_reqs,
  270. sizeof(struct rpc_rqst), GFP_KERNEL);
  271. if (xprt->slot == NULL) {
  272. dprintk("RPC: %s: couldn't allocate %d slots\n",
  273. __func__, xprt->max_reqs);
  274. kfree(xprt);
  275. return ERR_PTR(-ENOMEM);
  276. }
  277. /* 60 second timeout, no retries */
  278. xprt->timeout = &xprt_rdma_default_timeout;
  279. xprt->bind_timeout = (60U * HZ);
  280. xprt->connect_timeout = (60U * HZ);
  281. xprt->reestablish_timeout = (5U * HZ);
  282. xprt->idle_timeout = (5U * 60 * HZ);
  283. xprt->resvport = 0; /* privileged port not needed */
  284. xprt->tsh_size = 0; /* RPC-RDMA handles framing */
  285. xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
  286. xprt->ops = &xprt_rdma_procs;
  287. /*
  288. * Set up RDMA-specific connect data.
  289. */
  290. /* Put server RDMA address in local cdata */
  291. memcpy(&cdata.addr, args->dstaddr, args->addrlen);
  292. /* Ensure xprt->addr holds valid server TCP (not RDMA)
  293. * address, for any side protocols which peek at it */
  294. xprt->prot = IPPROTO_TCP;
  295. xprt->addrlen = args->addrlen;
  296. memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
  297. sin = (struct sockaddr_in *)&cdata.addr;
  298. if (ntohs(sin->sin_port) != 0)
  299. xprt_set_bound(xprt);
  300. dprintk("RPC: %s: %pI4:%u\n",
  301. __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
  302. /* Set max requests */
  303. cdata.max_requests = xprt->max_reqs;
  304. /* Set some length limits */
  305. cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
  306. cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
  307. cdata.inline_wsize = xprt_rdma_max_inline_write;
  308. if (cdata.inline_wsize > cdata.wsize)
  309. cdata.inline_wsize = cdata.wsize;
  310. cdata.inline_rsize = xprt_rdma_max_inline_read;
  311. if (cdata.inline_rsize > cdata.rsize)
  312. cdata.inline_rsize = cdata.rsize;
  313. cdata.padding = xprt_rdma_inline_write_padding;
  314. /*
  315. * Create new transport instance, which includes initialized
  316. * o ia
  317. * o endpoint
  318. * o buffers
  319. */
  320. new_xprt = rpcx_to_rdmax(xprt);
  321. rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
  322. xprt_rdma_memreg_strategy);
  323. if (rc)
  324. goto out1;
  325. /*
  326. * initialize and create ep
  327. */
  328. new_xprt->rx_data = cdata;
  329. new_ep = &new_xprt->rx_ep;
  330. new_ep->rep_remote_addr = cdata.addr;
  331. rc = rpcrdma_ep_create(&new_xprt->rx_ep,
  332. &new_xprt->rx_ia, &new_xprt->rx_data);
  333. if (rc)
  334. goto out2;
  335. /*
  336. * Allocate pre-registered send and receive buffers for headers and
  337. * any inline data. Also specify any padding which will be provided
  338. * from a preregistered zero buffer.
  339. */
  340. rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
  341. &new_xprt->rx_data);
  342. if (rc)
  343. goto out3;
  344. /*
  345. * Register a callback for connection events. This is necessary because
  346. * connection loss notification is async. We also catch connection loss
  347. * when reaping receives.
  348. */
  349. INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
  350. new_ep->rep_func = rpcrdma_conn_func;
  351. new_ep->rep_xprt = xprt;
  352. xprt_rdma_format_addresses(xprt);
  353. if (!try_module_get(THIS_MODULE))
  354. goto out4;
  355. return xprt;
  356. out4:
  357. xprt_rdma_free_addresses(xprt);
  358. rc = -EINVAL;
  359. out3:
  360. (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
  361. out2:
  362. rpcrdma_ia_close(&new_xprt->rx_ia);
  363. out1:
  364. kfree(xprt->slot);
  365. kfree(xprt);
  366. return ERR_PTR(rc);
  367. }
  368. /*
  369. * Close a connection, during shutdown or timeout/reconnect
  370. */
  371. static void
  372. xprt_rdma_close(struct rpc_xprt *xprt)
  373. {
  374. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  375. dprintk("RPC: %s: closing\n", __func__);
  376. if (r_xprt->rx_ep.rep_connected > 0)
  377. xprt->reestablish_timeout = 0;
  378. xprt_disconnect_done(xprt);
  379. (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
  380. }
  381. static void
  382. xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
  383. {
  384. struct sockaddr_in *sap;
  385. sap = (struct sockaddr_in *)&xprt->addr;
  386. sap->sin_port = htons(port);
  387. sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
  388. sap->sin_port = htons(port);
  389. dprintk("RPC: %s: %u\n", __func__, port);
  390. }
  391. static void
  392. xprt_rdma_connect(struct rpc_task *task)
  393. {
  394. struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
  395. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  396. if (!xprt_test_and_set_connecting(xprt)) {
  397. if (r_xprt->rx_ep.rep_connected != 0) {
  398. /* Reconnect */
  399. schedule_delayed_work(&r_xprt->rdma_connect,
  400. xprt->reestablish_timeout);
  401. xprt->reestablish_timeout <<= 1;
  402. if (xprt->reestablish_timeout > (30 * HZ))
  403. xprt->reestablish_timeout = (30 * HZ);
  404. else if (xprt->reestablish_timeout < (5 * HZ))
  405. xprt->reestablish_timeout = (5 * HZ);
  406. } else {
  407. schedule_delayed_work(&r_xprt->rdma_connect, 0);
  408. if (!RPC_IS_ASYNC(task))
  409. flush_scheduled_work();
  410. }
  411. }
  412. }
  413. static int
  414. xprt_rdma_reserve_xprt(struct rpc_task *task)
  415. {
  416. struct rpc_xprt *xprt = task->tk_xprt;
  417. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  418. int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
  419. /* == RPC_CWNDSCALE @ init, but *after* setup */
  420. if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
  421. r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
  422. dprintk("RPC: %s: cwndscale %lu\n", __func__,
  423. r_xprt->rx_buf.rb_cwndscale);
  424. BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
  425. }
  426. xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
  427. return xprt_reserve_xprt_cong(task);
  428. }
  429. /*
  430. * The RDMA allocate/free functions need the task structure as a place
  431. * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
  432. * sequence. For this reason, the recv buffers are attached to send
  433. * buffers for portions of the RPC. Note that the RPC layer allocates
  434. * both send and receive buffers in the same call. We may register
  435. * the receive buffer portion when using reply chunks.
  436. */
  437. static void *
  438. xprt_rdma_allocate(struct rpc_task *task, size_t size)
  439. {
  440. struct rpc_xprt *xprt = task->tk_xprt;
  441. struct rpcrdma_req *req, *nreq;
  442. req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
  443. BUG_ON(NULL == req);
  444. if (size > req->rl_size) {
  445. dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
  446. "prog %d vers %d proc %d\n",
  447. __func__, size, req->rl_size,
  448. task->tk_client->cl_prog, task->tk_client->cl_vers,
  449. task->tk_msg.rpc_proc->p_proc);
  450. /*
  451. * Outgoing length shortage. Our inline write max must have
  452. * been configured to perform direct i/o.
  453. *
  454. * This is therefore a large metadata operation, and the
  455. * allocate call was made on the maximum possible message,
  456. * e.g. containing long filename(s) or symlink data. In
  457. * fact, while these metadata operations *might* carry
  458. * large outgoing payloads, they rarely *do*. However, we
  459. * have to commit to the request here, so reallocate and
  460. * register it now. The data path will never require this
  461. * reallocation.
  462. *
  463. * If the allocation or registration fails, the RPC framework
  464. * will (doggedly) retry.
  465. */
  466. if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
  467. RPCRDMA_BOUNCEBUFFERS) {
  468. /* forced to "pure inline" */
  469. dprintk("RPC: %s: too much data (%zd) for inline "
  470. "(r/w max %d/%d)\n", __func__, size,
  471. rpcx_to_rdmad(xprt).inline_rsize,
  472. rpcx_to_rdmad(xprt).inline_wsize);
  473. size = req->rl_size;
  474. rpc_exit(task, -EIO); /* fail the operation */
  475. rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
  476. goto out;
  477. }
  478. if (task->tk_flags & RPC_TASK_SWAPPER)
  479. nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
  480. else
  481. nreq = kmalloc(sizeof *req + size, GFP_NOFS);
  482. if (nreq == NULL)
  483. goto outfail;
  484. if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
  485. nreq->rl_base, size + sizeof(struct rpcrdma_req)
  486. - offsetof(struct rpcrdma_req, rl_base),
  487. &nreq->rl_handle, &nreq->rl_iov)) {
  488. kfree(nreq);
  489. goto outfail;
  490. }
  491. rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
  492. nreq->rl_size = size;
  493. nreq->rl_niovs = 0;
  494. nreq->rl_nchunks = 0;
  495. nreq->rl_buffer = (struct rpcrdma_buffer *)req;
  496. nreq->rl_reply = req->rl_reply;
  497. memcpy(nreq->rl_segments,
  498. req->rl_segments, sizeof nreq->rl_segments);
  499. /* flag the swap with an unused field */
  500. nreq->rl_iov.length = 0;
  501. req->rl_reply = NULL;
  502. req = nreq;
  503. }
  504. dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
  505. out:
  506. req->rl_connect_cookie = 0; /* our reserved value */
  507. return req->rl_xdr_buf;
  508. outfail:
  509. rpcrdma_buffer_put(req);
  510. rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
  511. return NULL;
  512. }
  513. /*
  514. * This function returns all RDMA resources to the pool.
  515. */
  516. static void
  517. xprt_rdma_free(void *buffer)
  518. {
  519. struct rpcrdma_req *req;
  520. struct rpcrdma_xprt *r_xprt;
  521. struct rpcrdma_rep *rep;
  522. int i;
  523. if (buffer == NULL)
  524. return;
  525. req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
  526. if (req->rl_iov.length == 0) { /* see allocate above */
  527. r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
  528. struct rpcrdma_xprt, rx_buf);
  529. } else
  530. r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
  531. rep = req->rl_reply;
  532. dprintk("RPC: %s: called on 0x%p%s\n",
  533. __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
  534. /*
  535. * Finish the deregistration. When using mw bind, this was
  536. * begun in rpcrdma_reply_handler(). In all other modes, we
  537. * do it here, in thread context. The process is considered
  538. * complete when the rr_func vector becomes NULL - this
  539. * was put in place during rpcrdma_reply_handler() - the wait
  540. * call below will not block if the dereg is "done". If
  541. * interrupted, our framework will clean up.
  542. */
  543. for (i = 0; req->rl_nchunks;) {
  544. --req->rl_nchunks;
  545. i += rpcrdma_deregister_external(
  546. &req->rl_segments[i], r_xprt, NULL);
  547. }
  548. if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
  549. rep->rr_func = NULL; /* abandon the callback */
  550. req->rl_reply = NULL;
  551. }
  552. if (req->rl_iov.length == 0) { /* see allocate above */
  553. struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
  554. oreq->rl_reply = req->rl_reply;
  555. (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
  556. req->rl_handle,
  557. &req->rl_iov);
  558. kfree(req);
  559. req = oreq;
  560. }
  561. /* Put back request+reply buffers */
  562. rpcrdma_buffer_put(req);
  563. }
  564. /*
  565. * send_request invokes the meat of RPC RDMA. It must do the following:
  566. * 1. Marshal the RPC request into an RPC RDMA request, which means
  567. * putting a header in front of data, and creating IOVs for RDMA
  568. * from those in the request.
  569. * 2. In marshaling, detect opportunities for RDMA, and use them.
  570. * 3. Post a recv message to set up asynch completion, then send
  571. * the request (rpcrdma_ep_post).
  572. * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
  573. */
  574. static int
  575. xprt_rdma_send_request(struct rpc_task *task)
  576. {
  577. struct rpc_rqst *rqst = task->tk_rqstp;
  578. struct rpc_xprt *xprt = task->tk_xprt;
  579. struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
  580. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  581. /* marshal the send itself */
  582. if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
  583. r_xprt->rx_stats.failed_marshal_count++;
  584. dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
  585. __func__);
  586. return -EIO;
  587. }
  588. if (req->rl_reply == NULL) /* e.g. reconnection */
  589. rpcrdma_recv_buffer_get(req);
  590. if (req->rl_reply) {
  591. req->rl_reply->rr_func = rpcrdma_reply_handler;
  592. /* this need only be done once, but... */
  593. req->rl_reply->rr_xprt = xprt;
  594. }
  595. /* Must suppress retransmit to maintain credits */
  596. if (req->rl_connect_cookie == xprt->connect_cookie)
  597. goto drop_connection;
  598. req->rl_connect_cookie = xprt->connect_cookie;
  599. if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
  600. goto drop_connection;
  601. task->tk_bytes_sent += rqst->rq_snd_buf.len;
  602. rqst->rq_bytes_sent = 0;
  603. return 0;
  604. drop_connection:
  605. xprt_disconnect_done(xprt);
  606. return -ENOTCONN; /* implies disconnect */
  607. }
  608. static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
  609. {
  610. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  611. long idle_time = 0;
  612. if (xprt_connected(xprt))
  613. idle_time = (long)(jiffies - xprt->last_used) / HZ;
  614. seq_printf(seq,
  615. "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
  616. "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
  617. 0, /* need a local port? */
  618. xprt->stat.bind_count,
  619. xprt->stat.connect_count,
  620. xprt->stat.connect_time,
  621. idle_time,
  622. xprt->stat.sends,
  623. xprt->stat.recvs,
  624. xprt->stat.bad_xids,
  625. xprt->stat.req_u,
  626. xprt->stat.bklog_u,
  627. r_xprt->rx_stats.read_chunk_count,
  628. r_xprt->rx_stats.write_chunk_count,
  629. r_xprt->rx_stats.reply_chunk_count,
  630. r_xprt->rx_stats.total_rdma_request,
  631. r_xprt->rx_stats.total_rdma_reply,
  632. r_xprt->rx_stats.pullup_copy_count,
  633. r_xprt->rx_stats.fixup_copy_count,
  634. r_xprt->rx_stats.hardway_register_count,
  635. r_xprt->rx_stats.failed_marshal_count,
  636. r_xprt->rx_stats.bad_reply_count);
  637. }
  638. /*
  639. * Plumbing for rpc transport switch and kernel module
  640. */
  641. static struct rpc_xprt_ops xprt_rdma_procs = {
  642. .reserve_xprt = xprt_rdma_reserve_xprt,
  643. .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
  644. .release_request = xprt_release_rqst_cong, /* ditto */
  645. .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
  646. .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
  647. .set_port = xprt_rdma_set_port,
  648. .connect = xprt_rdma_connect,
  649. .buf_alloc = xprt_rdma_allocate,
  650. .buf_free = xprt_rdma_free,
  651. .send_request = xprt_rdma_send_request,
  652. .close = xprt_rdma_close,
  653. .destroy = xprt_rdma_destroy,
  654. .print_stats = xprt_rdma_print_stats
  655. };
  656. static struct xprt_class xprt_rdma = {
  657. .list = LIST_HEAD_INIT(xprt_rdma.list),
  658. .name = "rdma",
  659. .owner = THIS_MODULE,
  660. .ident = XPRT_TRANSPORT_RDMA,
  661. .setup = xprt_setup_rdma,
  662. };
  663. static void __exit xprt_rdma_cleanup(void)
  664. {
  665. int rc;
  666. dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
  667. #ifdef RPC_DEBUG
  668. if (sunrpc_table_header) {
  669. unregister_sysctl_table(sunrpc_table_header);
  670. sunrpc_table_header = NULL;
  671. }
  672. #endif
  673. rc = xprt_unregister_transport(&xprt_rdma);
  674. if (rc)
  675. dprintk("RPC: %s: xprt_unregister returned %i\n",
  676. __func__, rc);
  677. }
  678. static int __init xprt_rdma_init(void)
  679. {
  680. int rc;
  681. rc = xprt_register_transport(&xprt_rdma);
  682. if (rc)
  683. return rc;
  684. dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
  685. dprintk(KERN_INFO "Defaults:\n");
  686. dprintk(KERN_INFO "\tSlots %d\n"
  687. "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
  688. xprt_rdma_slot_table_entries,
  689. xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
  690. dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
  691. xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
  692. #ifdef RPC_DEBUG
  693. if (!sunrpc_table_header)
  694. sunrpc_table_header = register_sysctl_table(sunrpc_table);
  695. #endif
  696. return 0;
  697. }
  698. module_init(xprt_rdma_init);
  699. module_exit(xprt_rdma_cleanup);