irttp.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900
  1. /*********************************************************************
  2. *
  3. * Filename: irttp.c
  4. * Version: 1.2
  5. * Description: Tiny Transport Protocol (TTP) implementation
  6. * Status: Stable
  7. * Author: Dag Brattli <dagb@cs.uit.no>
  8. * Created at: Sun Aug 31 20:14:31 1997
  9. * Modified at: Wed Jan 5 11:31:27 2000
  10. * Modified by: Dag Brattli <dagb@cs.uit.no>
  11. *
  12. * Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
  13. * All Rights Reserved.
  14. * Copyright (c) 2000-2003 Jean Tourrilhes <jt@hpl.hp.com>
  15. *
  16. * This program is free software; you can redistribute it and/or
  17. * modify it under the terms of the GNU General Public License as
  18. * published by the Free Software Foundation; either version 2 of
  19. * the License, or (at your option) any later version.
  20. *
  21. * Neither Dag Brattli nor University of Tromsø admit liability nor
  22. * provide warranty for any of this software. This material is
  23. * provided "AS-IS" and at no charge.
  24. *
  25. ********************************************************************/
  26. #include <linux/skbuff.h>
  27. #include <linux/init.h>
  28. #include <linux/fs.h>
  29. #include <linux/seq_file.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/unaligned.h>
  32. #include <net/irda/irda.h>
  33. #include <net/irda/irlap.h>
  34. #include <net/irda/irlmp.h>
  35. #include <net/irda/parameters.h>
  36. #include <net/irda/irttp.h>
  37. static struct irttp_cb *irttp;
  38. static void __irttp_close_tsap(struct tsap_cb *self);
  39. static int irttp_data_indication(void *instance, void *sap,
  40. struct sk_buff *skb);
  41. static int irttp_udata_indication(void *instance, void *sap,
  42. struct sk_buff *skb);
  43. static void irttp_disconnect_indication(void *instance, void *sap,
  44. LM_REASON reason, struct sk_buff *);
  45. static void irttp_connect_indication(void *instance, void *sap,
  46. struct qos_info *qos, __u32 max_sdu_size,
  47. __u8 header_size, struct sk_buff *skb);
  48. static void irttp_connect_confirm(void *instance, void *sap,
  49. struct qos_info *qos, __u32 max_sdu_size,
  50. __u8 header_size, struct sk_buff *skb);
  51. static void irttp_run_tx_queue(struct tsap_cb *self);
  52. static void irttp_run_rx_queue(struct tsap_cb *self);
  53. static void irttp_flush_queues(struct tsap_cb *self);
  54. static void irttp_fragment_skb(struct tsap_cb *self, struct sk_buff *skb);
  55. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self);
  56. static void irttp_todo_expired(unsigned long data);
  57. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  58. int get);
  59. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow);
  60. static void irttp_status_indication(void *instance,
  61. LINK_STATUS link, LOCK_STATUS lock);
  62. /* Information for parsing parameters in IrTTP */
  63. static pi_minor_info_t pi_minor_call_table[] = {
  64. { NULL, 0 }, /* 0x00 */
  65. { irttp_param_max_sdu_size, PV_INTEGER | PV_BIG_ENDIAN } /* 0x01 */
  66. };
  67. static pi_major_info_t pi_major_call_table[] = {{ pi_minor_call_table, 2 }};
  68. static pi_param_info_t param_info = { pi_major_call_table, 1, 0x0f, 4 };
  69. /************************ GLOBAL PROCEDURES ************************/
  70. /*
  71. * Function irttp_init (void)
  72. *
  73. * Initialize the IrTTP layer. Called by module initialization code
  74. *
  75. */
  76. int __init irttp_init(void)
  77. {
  78. irttp = kzalloc(sizeof(struct irttp_cb), GFP_KERNEL);
  79. if (irttp == NULL)
  80. return -ENOMEM;
  81. irttp->magic = TTP_MAGIC;
  82. irttp->tsaps = hashbin_new(HB_LOCK);
  83. if (!irttp->tsaps) {
  84. IRDA_ERROR("%s: can't allocate IrTTP hashbin!\n",
  85. __func__);
  86. kfree(irttp);
  87. return -ENOMEM;
  88. }
  89. return 0;
  90. }
  91. /*
  92. * Function irttp_cleanup (void)
  93. *
  94. * Called by module destruction/cleanup code
  95. *
  96. */
  97. void irttp_cleanup(void)
  98. {
  99. /* Check for main structure */
  100. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return;);
  101. /*
  102. * Delete hashbin and close all TSAP instances in it
  103. */
  104. hashbin_delete(irttp->tsaps, (FREE_FUNC) __irttp_close_tsap);
  105. irttp->magic = 0;
  106. /* De-allocate main structure */
  107. kfree(irttp);
  108. irttp = NULL;
  109. }
  110. /*************************** SUBROUTINES ***************************/
  111. /*
  112. * Function irttp_start_todo_timer (self, timeout)
  113. *
  114. * Start todo timer.
  115. *
  116. * Made it more effient and unsensitive to race conditions - Jean II
  117. */
  118. static inline void irttp_start_todo_timer(struct tsap_cb *self, int timeout)
  119. {
  120. /* Set new value for timer */
  121. mod_timer(&self->todo_timer, jiffies + timeout);
  122. }
  123. /*
  124. * Function irttp_todo_expired (data)
  125. *
  126. * Todo timer has expired!
  127. *
  128. * One of the restriction of the timer is that it is run only on the timer
  129. * interrupt which run every 10ms. This mean that even if you set the timer
  130. * with a delay of 0, it may take up to 10ms before it's run.
  131. * So, to minimise latency and keep cache fresh, we try to avoid using
  132. * it as much as possible.
  133. * Note : we can't use tasklets, because they can't be asynchronously
  134. * killed (need user context), and we can't guarantee that here...
  135. * Jean II
  136. */
  137. static void irttp_todo_expired(unsigned long data)
  138. {
  139. struct tsap_cb *self = (struct tsap_cb *) data;
  140. /* Check that we still exist */
  141. if (!self || self->magic != TTP_TSAP_MAGIC)
  142. return;
  143. IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
  144. /* Try to make some progress, especially on Tx side - Jean II */
  145. irttp_run_rx_queue(self);
  146. irttp_run_tx_queue(self);
  147. /* Check if time for disconnect */
  148. if (test_bit(0, &self->disconnect_pend)) {
  149. /* Check if it's possible to disconnect yet */
  150. if (skb_queue_empty(&self->tx_queue)) {
  151. /* Make sure disconnect is not pending anymore */
  152. clear_bit(0, &self->disconnect_pend); /* FALSE */
  153. /* Note : self->disconnect_skb may be NULL */
  154. irttp_disconnect_request(self, self->disconnect_skb,
  155. P_NORMAL);
  156. self->disconnect_skb = NULL;
  157. } else {
  158. /* Try again later */
  159. irttp_start_todo_timer(self, HZ/10);
  160. /* No reason to try and close now */
  161. return;
  162. }
  163. }
  164. /* Check if it's closing time */
  165. if (self->close_pend)
  166. /* Finish cleanup */
  167. irttp_close_tsap(self);
  168. }
  169. /*
  170. * Function irttp_flush_queues (self)
  171. *
  172. * Flushes (removes all frames) in transitt-buffer (tx_list)
  173. */
  174. static void irttp_flush_queues(struct tsap_cb *self)
  175. {
  176. struct sk_buff* skb;
  177. IRDA_DEBUG(4, "%s()\n", __func__);
  178. IRDA_ASSERT(self != NULL, return;);
  179. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  180. /* Deallocate frames waiting to be sent */
  181. while ((skb = skb_dequeue(&self->tx_queue)) != NULL)
  182. dev_kfree_skb(skb);
  183. /* Deallocate received frames */
  184. while ((skb = skb_dequeue(&self->rx_queue)) != NULL)
  185. dev_kfree_skb(skb);
  186. /* Deallocate received fragments */
  187. while ((skb = skb_dequeue(&self->rx_fragments)) != NULL)
  188. dev_kfree_skb(skb);
  189. }
  190. /*
  191. * Function irttp_reassemble (self)
  192. *
  193. * Makes a new (continuous) skb of all the fragments in the fragment
  194. * queue
  195. *
  196. */
  197. static struct sk_buff *irttp_reassemble_skb(struct tsap_cb *self)
  198. {
  199. struct sk_buff *skb, *frag;
  200. int n = 0; /* Fragment index */
  201. IRDA_ASSERT(self != NULL, return NULL;);
  202. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return NULL;);
  203. IRDA_DEBUG(2, "%s(), self->rx_sdu_size=%d\n", __func__,
  204. self->rx_sdu_size);
  205. skb = dev_alloc_skb(TTP_HEADER + self->rx_sdu_size);
  206. if (!skb)
  207. return NULL;
  208. /*
  209. * Need to reserve space for TTP header in case this skb needs to
  210. * be requeued in case delivery failes
  211. */
  212. skb_reserve(skb, TTP_HEADER);
  213. skb_put(skb, self->rx_sdu_size);
  214. /*
  215. * Copy all fragments to a new buffer
  216. */
  217. while ((frag = skb_dequeue(&self->rx_fragments)) != NULL) {
  218. skb_copy_to_linear_data_offset(skb, n, frag->data, frag->len);
  219. n += frag->len;
  220. dev_kfree_skb(frag);
  221. }
  222. IRDA_DEBUG(2,
  223. "%s(), frame len=%d, rx_sdu_size=%d, rx_max_sdu_size=%d\n",
  224. __func__, n, self->rx_sdu_size, self->rx_max_sdu_size);
  225. /* Note : irttp_run_rx_queue() calculate self->rx_sdu_size
  226. * by summing the size of all fragments, so we should always
  227. * have n == self->rx_sdu_size, except in cases where we
  228. * droped the last fragment (when self->rx_sdu_size exceed
  229. * self->rx_max_sdu_size), where n < self->rx_sdu_size.
  230. * Jean II */
  231. IRDA_ASSERT(n <= self->rx_sdu_size, n = self->rx_sdu_size;);
  232. /* Set the new length */
  233. skb_trim(skb, n);
  234. self->rx_sdu_size = 0;
  235. return skb;
  236. }
  237. /*
  238. * Function irttp_fragment_skb (skb)
  239. *
  240. * Fragments a frame and queues all the fragments for transmission
  241. *
  242. */
  243. static inline void irttp_fragment_skb(struct tsap_cb *self,
  244. struct sk_buff *skb)
  245. {
  246. struct sk_buff *frag;
  247. __u8 *frame;
  248. IRDA_DEBUG(2, "%s()\n", __func__);
  249. IRDA_ASSERT(self != NULL, return;);
  250. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  251. IRDA_ASSERT(skb != NULL, return;);
  252. /*
  253. * Split frame into a number of segments
  254. */
  255. while (skb->len > self->max_seg_size) {
  256. IRDA_DEBUG(2, "%s(), fragmenting ...\n", __func__);
  257. /* Make new segment */
  258. frag = alloc_skb(self->max_seg_size+self->max_header_size,
  259. GFP_ATOMIC);
  260. if (!frag)
  261. return;
  262. skb_reserve(frag, self->max_header_size);
  263. /* Copy data from the original skb into this fragment. */
  264. skb_copy_from_linear_data(skb, skb_put(frag, self->max_seg_size),
  265. self->max_seg_size);
  266. /* Insert TTP header, with the more bit set */
  267. frame = skb_push(frag, TTP_HEADER);
  268. frame[0] = TTP_MORE;
  269. /* Hide the copied data from the original skb */
  270. skb_pull(skb, self->max_seg_size);
  271. /* Queue fragment */
  272. skb_queue_tail(&self->tx_queue, frag);
  273. }
  274. /* Queue what is left of the original skb */
  275. IRDA_DEBUG(2, "%s(), queuing last segment\n", __func__);
  276. frame = skb_push(skb, TTP_HEADER);
  277. frame[0] = 0x00; /* Clear more bit */
  278. /* Queue fragment */
  279. skb_queue_tail(&self->tx_queue, skb);
  280. }
  281. /*
  282. * Function irttp_param_max_sdu_size (self, param)
  283. *
  284. * Handle the MaxSduSize parameter in the connect frames, this function
  285. * will be called both when this parameter needs to be inserted into, and
  286. * extracted from the connect frames
  287. */
  288. static int irttp_param_max_sdu_size(void *instance, irda_param_t *param,
  289. int get)
  290. {
  291. struct tsap_cb *self;
  292. self = (struct tsap_cb *) instance;
  293. IRDA_ASSERT(self != NULL, return -1;);
  294. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  295. if (get)
  296. param->pv.i = self->tx_max_sdu_size;
  297. else
  298. self->tx_max_sdu_size = param->pv.i;
  299. IRDA_DEBUG(1, "%s(), MaxSduSize=%d\n", __func__, param->pv.i);
  300. return 0;
  301. }
  302. /*************************** CLIENT CALLS ***************************/
  303. /************************** LMP CALLBACKS **************************/
  304. /* Everything is happily mixed up. Waiting for next clean up - Jean II */
  305. /*
  306. * Initialization, that has to be done on new tsap
  307. * instance allocation and on duplication
  308. */
  309. static void irttp_init_tsap(struct tsap_cb *tsap)
  310. {
  311. spin_lock_init(&tsap->lock);
  312. init_timer(&tsap->todo_timer);
  313. skb_queue_head_init(&tsap->rx_queue);
  314. skb_queue_head_init(&tsap->tx_queue);
  315. skb_queue_head_init(&tsap->rx_fragments);
  316. }
  317. /*
  318. * Function irttp_open_tsap (stsap, notify)
  319. *
  320. * Create TSAP connection endpoint,
  321. */
  322. struct tsap_cb *irttp_open_tsap(__u8 stsap_sel, int credit, notify_t *notify)
  323. {
  324. struct tsap_cb *self;
  325. struct lsap_cb *lsap;
  326. notify_t ttp_notify;
  327. IRDA_ASSERT(irttp->magic == TTP_MAGIC, return NULL;);
  328. /* The IrLMP spec (IrLMP 1.1 p10) says that we have the right to
  329. * use only 0x01-0x6F. Of course, we can use LSAP_ANY as well.
  330. * JeanII */
  331. if((stsap_sel != LSAP_ANY) &&
  332. ((stsap_sel < 0x01) || (stsap_sel >= 0x70))) {
  333. IRDA_DEBUG(0, "%s(), invalid tsap!\n", __func__);
  334. return NULL;
  335. }
  336. self = kzalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  337. if (self == NULL) {
  338. IRDA_DEBUG(0, "%s(), unable to kmalloc!\n", __func__);
  339. return NULL;
  340. }
  341. /* Initialize internal objects */
  342. irttp_init_tsap(self);
  343. /* Initialise todo timer */
  344. self->todo_timer.data = (unsigned long) self;
  345. self->todo_timer.function = &irttp_todo_expired;
  346. /* Initialize callbacks for IrLMP to use */
  347. irda_notify_init(&ttp_notify);
  348. ttp_notify.connect_confirm = irttp_connect_confirm;
  349. ttp_notify.connect_indication = irttp_connect_indication;
  350. ttp_notify.disconnect_indication = irttp_disconnect_indication;
  351. ttp_notify.data_indication = irttp_data_indication;
  352. ttp_notify.udata_indication = irttp_udata_indication;
  353. ttp_notify.flow_indication = irttp_flow_indication;
  354. if(notify->status_indication != NULL)
  355. ttp_notify.status_indication = irttp_status_indication;
  356. ttp_notify.instance = self;
  357. strncpy(ttp_notify.name, notify->name, NOTIFY_MAX_NAME);
  358. self->magic = TTP_TSAP_MAGIC;
  359. self->connected = FALSE;
  360. /*
  361. * Create LSAP at IrLMP layer
  362. */
  363. lsap = irlmp_open_lsap(stsap_sel, &ttp_notify, 0);
  364. if (lsap == NULL) {
  365. IRDA_WARNING("%s: unable to allocate LSAP!!\n", __func__);
  366. return NULL;
  367. }
  368. /*
  369. * If user specified LSAP_ANY as source TSAP selector, then IrLMP
  370. * will replace it with whatever source selector which is free, so
  371. * the stsap_sel we have might not be valid anymore
  372. */
  373. self->stsap_sel = lsap->slsap_sel;
  374. IRDA_DEBUG(4, "%s(), stsap_sel=%02x\n", __func__, self->stsap_sel);
  375. self->notify = *notify;
  376. self->lsap = lsap;
  377. hashbin_insert(irttp->tsaps, (irda_queue_t *) self, (long) self, NULL);
  378. if (credit > TTP_RX_MAX_CREDIT)
  379. self->initial_credit = TTP_RX_MAX_CREDIT;
  380. else
  381. self->initial_credit = credit;
  382. return self;
  383. }
  384. EXPORT_SYMBOL(irttp_open_tsap);
  385. /*
  386. * Function irttp_close (handle)
  387. *
  388. * Remove an instance of a TSAP. This function should only deal with the
  389. * deallocation of the TSAP, and resetting of the TSAPs values;
  390. *
  391. */
  392. static void __irttp_close_tsap(struct tsap_cb *self)
  393. {
  394. /* First make sure we're connected. */
  395. IRDA_ASSERT(self != NULL, return;);
  396. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  397. irttp_flush_queues(self);
  398. del_timer(&self->todo_timer);
  399. /* This one won't be cleaned up if we are disconnect_pend + close_pend
  400. * and we receive a disconnect_indication */
  401. if (self->disconnect_skb)
  402. dev_kfree_skb(self->disconnect_skb);
  403. self->connected = FALSE;
  404. self->magic = ~TTP_TSAP_MAGIC;
  405. kfree(self);
  406. }
  407. /*
  408. * Function irttp_close (self)
  409. *
  410. * Remove TSAP from list of all TSAPs and then deallocate all resources
  411. * associated with this TSAP
  412. *
  413. * Note : because we *free* the tsap structure, it is the responsibility
  414. * of the caller to make sure we are called only once and to deal with
  415. * possible race conditions. - Jean II
  416. */
  417. int irttp_close_tsap(struct tsap_cb *self)
  418. {
  419. struct tsap_cb *tsap;
  420. IRDA_DEBUG(4, "%s()\n", __func__);
  421. IRDA_ASSERT(self != NULL, return -1;);
  422. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  423. /* Make sure tsap has been disconnected */
  424. if (self->connected) {
  425. /* Check if disconnect is not pending */
  426. if (!test_bit(0, &self->disconnect_pend)) {
  427. IRDA_WARNING("%s: TSAP still connected!\n",
  428. __func__);
  429. irttp_disconnect_request(self, NULL, P_NORMAL);
  430. }
  431. self->close_pend = TRUE;
  432. irttp_start_todo_timer(self, HZ/10);
  433. return 0; /* Will be back! */
  434. }
  435. tsap = hashbin_remove(irttp->tsaps, (long) self, NULL);
  436. IRDA_ASSERT(tsap == self, return -1;);
  437. /* Close corresponding LSAP */
  438. if (self->lsap) {
  439. irlmp_close_lsap(self->lsap);
  440. self->lsap = NULL;
  441. }
  442. __irttp_close_tsap(self);
  443. return 0;
  444. }
  445. EXPORT_SYMBOL(irttp_close_tsap);
  446. /*
  447. * Function irttp_udata_request (self, skb)
  448. *
  449. * Send unreliable data on this TSAP
  450. *
  451. */
  452. int irttp_udata_request(struct tsap_cb *self, struct sk_buff *skb)
  453. {
  454. IRDA_ASSERT(self != NULL, return -1;);
  455. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  456. IRDA_ASSERT(skb != NULL, return -1;);
  457. IRDA_DEBUG(4, "%s()\n", __func__);
  458. /* Check that nothing bad happens */
  459. if ((skb->len == 0) || (!self->connected)) {
  460. IRDA_DEBUG(1, "%s(), No data, or not connected\n",
  461. __func__);
  462. goto err;
  463. }
  464. if (skb->len > self->max_seg_size) {
  465. IRDA_DEBUG(1, "%s(), UData is too large for IrLAP!\n",
  466. __func__);
  467. goto err;
  468. }
  469. irlmp_udata_request(self->lsap, skb);
  470. self->stats.tx_packets++;
  471. return 0;
  472. err:
  473. dev_kfree_skb(skb);
  474. return -1;
  475. }
  476. EXPORT_SYMBOL(irttp_udata_request);
  477. /*
  478. * Function irttp_data_request (handle, skb)
  479. *
  480. * Queue frame for transmission. If SAR is enabled, fragement the frame
  481. * and queue the fragments for transmission
  482. */
  483. int irttp_data_request(struct tsap_cb *self, struct sk_buff *skb)
  484. {
  485. __u8 *frame;
  486. int ret;
  487. IRDA_ASSERT(self != NULL, return -1;);
  488. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  489. IRDA_ASSERT(skb != NULL, return -1;);
  490. IRDA_DEBUG(2, "%s() : queue len = %d\n", __func__,
  491. skb_queue_len(&self->tx_queue));
  492. /* Check that nothing bad happens */
  493. if ((skb->len == 0) || (!self->connected)) {
  494. IRDA_WARNING("%s: No data, or not connected\n", __func__);
  495. ret = -ENOTCONN;
  496. goto err;
  497. }
  498. /*
  499. * Check if SAR is disabled, and the frame is larger than what fits
  500. * inside an IrLAP frame
  501. */
  502. if ((self->tx_max_sdu_size == 0) && (skb->len > self->max_seg_size)) {
  503. IRDA_ERROR("%s: SAR disabled, and data is too large for IrLAP!\n",
  504. __func__);
  505. ret = -EMSGSIZE;
  506. goto err;
  507. }
  508. /*
  509. * Check if SAR is enabled, and the frame is larger than the
  510. * TxMaxSduSize
  511. */
  512. if ((self->tx_max_sdu_size != 0) &&
  513. (self->tx_max_sdu_size != TTP_SAR_UNBOUND) &&
  514. (skb->len > self->tx_max_sdu_size))
  515. {
  516. IRDA_ERROR("%s: SAR enabled, but data is larger than TxMaxSduSize!\n",
  517. __func__);
  518. ret = -EMSGSIZE;
  519. goto err;
  520. }
  521. /*
  522. * Check if transmit queue is full
  523. */
  524. if (skb_queue_len(&self->tx_queue) >= TTP_TX_MAX_QUEUE) {
  525. /*
  526. * Give it a chance to empty itself
  527. */
  528. irttp_run_tx_queue(self);
  529. /* Drop packet. This error code should trigger the caller
  530. * to resend the data in the client code - Jean II */
  531. ret = -ENOBUFS;
  532. goto err;
  533. }
  534. /* Queue frame, or queue frame segments */
  535. if ((self->tx_max_sdu_size == 0) || (skb->len < self->max_seg_size)) {
  536. /* Queue frame */
  537. IRDA_ASSERT(skb_headroom(skb) >= TTP_HEADER, return -1;);
  538. frame = skb_push(skb, TTP_HEADER);
  539. frame[0] = 0x00; /* Clear more bit */
  540. skb_queue_tail(&self->tx_queue, skb);
  541. } else {
  542. /*
  543. * Fragment the frame, this function will also queue the
  544. * fragments, we don't care about the fact the transmit
  545. * queue may be overfilled by all the segments for a little
  546. * while
  547. */
  548. irttp_fragment_skb(self, skb);
  549. }
  550. /* Check if we can accept more data from client */
  551. if ((!self->tx_sdu_busy) &&
  552. (skb_queue_len(&self->tx_queue) > TTP_TX_HIGH_THRESHOLD)) {
  553. /* Tx queue filling up, so stop client. */
  554. if (self->notify.flow_indication) {
  555. self->notify.flow_indication(self->notify.instance,
  556. self, FLOW_STOP);
  557. }
  558. /* self->tx_sdu_busy is the state of the client.
  559. * Update state after notifying client to avoid
  560. * race condition with irttp_flow_indication().
  561. * If the queue empty itself after our test but before
  562. * we set the flag, we will fix ourselves below in
  563. * irttp_run_tx_queue().
  564. * Jean II */
  565. self->tx_sdu_busy = TRUE;
  566. }
  567. /* Try to make some progress */
  568. irttp_run_tx_queue(self);
  569. return 0;
  570. err:
  571. dev_kfree_skb(skb);
  572. return ret;
  573. }
  574. EXPORT_SYMBOL(irttp_data_request);
  575. /*
  576. * Function irttp_run_tx_queue (self)
  577. *
  578. * Transmit packets queued for transmission (if possible)
  579. *
  580. */
  581. static void irttp_run_tx_queue(struct tsap_cb *self)
  582. {
  583. struct sk_buff *skb;
  584. unsigned long flags;
  585. int n;
  586. IRDA_DEBUG(2, "%s() : send_credit = %d, queue_len = %d\n",
  587. __func__,
  588. self->send_credit, skb_queue_len(&self->tx_queue));
  589. /* Get exclusive access to the tx queue, otherwise don't touch it */
  590. if (irda_lock(&self->tx_queue_lock) == FALSE)
  591. return;
  592. /* Try to send out frames as long as we have credits
  593. * and as long as LAP is not full. If LAP is full, it will
  594. * poll us through irttp_flow_indication() - Jean II */
  595. while ((self->send_credit > 0) &&
  596. (!irlmp_lap_tx_queue_full(self->lsap)) &&
  597. (skb = skb_dequeue(&self->tx_queue)))
  598. {
  599. /*
  600. * Since we can transmit and receive frames concurrently,
  601. * the code below is a critical region and we must assure that
  602. * nobody messes with the credits while we update them.
  603. */
  604. spin_lock_irqsave(&self->lock, flags);
  605. n = self->avail_credit;
  606. self->avail_credit = 0;
  607. /* Only room for 127 credits in frame */
  608. if (n > 127) {
  609. self->avail_credit = n-127;
  610. n = 127;
  611. }
  612. self->remote_credit += n;
  613. self->send_credit--;
  614. spin_unlock_irqrestore(&self->lock, flags);
  615. /*
  616. * More bit must be set by the data_request() or fragment()
  617. * functions
  618. */
  619. skb->data[0] |= (n & 0x7f);
  620. /* Detach from socket.
  621. * The current skb has a reference to the socket that sent
  622. * it (skb->sk). When we pass it to IrLMP, the skb will be
  623. * stored in in IrLAP (self->wx_list). When we are within
  624. * IrLAP, we lose the notion of socket, so we should not
  625. * have a reference to a socket. So, we drop it here.
  626. *
  627. * Why does it matter ?
  628. * When the skb is freed (kfree_skb), if it is associated
  629. * with a socket, it release buffer space on the socket
  630. * (through sock_wfree() and sock_def_write_space()).
  631. * If the socket no longer exist, we may crash. Hard.
  632. * When we close a socket, we make sure that associated packets
  633. * in IrTTP are freed. However, we have no way to cancel
  634. * the packet that we have passed to IrLAP. So, if a packet
  635. * remains in IrLAP (retry on the link or else) after we
  636. * close the socket, we are dead !
  637. * Jean II */
  638. if (skb->sk != NULL) {
  639. /* IrSOCK application, IrOBEX, ... */
  640. skb_orphan(skb);
  641. }
  642. /* IrCOMM over IrTTP, IrLAN, ... */
  643. /* Pass the skb to IrLMP - done */
  644. irlmp_data_request(self->lsap, skb);
  645. self->stats.tx_packets++;
  646. }
  647. /* Check if we can accept more frames from client.
  648. * We don't want to wait until the todo timer to do that, and we
  649. * can't use tasklets (grr...), so we are obliged to give control
  650. * to client. That's ok, this test will be true not too often
  651. * (max once per LAP window) and we are called from places
  652. * where we can spend a bit of time doing stuff. - Jean II */
  653. if ((self->tx_sdu_busy) &&
  654. (skb_queue_len(&self->tx_queue) < TTP_TX_LOW_THRESHOLD) &&
  655. (!self->close_pend))
  656. {
  657. if (self->notify.flow_indication)
  658. self->notify.flow_indication(self->notify.instance,
  659. self, FLOW_START);
  660. /* self->tx_sdu_busy is the state of the client.
  661. * We don't really have a race here, but it's always safer
  662. * to update our state after the client - Jean II */
  663. self->tx_sdu_busy = FALSE;
  664. }
  665. /* Reset lock */
  666. self->tx_queue_lock = 0;
  667. }
  668. /*
  669. * Function irttp_give_credit (self)
  670. *
  671. * Send a dataless flowdata TTP-PDU and give available credit to peer
  672. * TSAP
  673. */
  674. static inline void irttp_give_credit(struct tsap_cb *self)
  675. {
  676. struct sk_buff *tx_skb = NULL;
  677. unsigned long flags;
  678. int n;
  679. IRDA_ASSERT(self != NULL, return;);
  680. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  681. IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n",
  682. __func__,
  683. self->send_credit, self->avail_credit, self->remote_credit);
  684. /* Give credit to peer */
  685. tx_skb = alloc_skb(TTP_MAX_HEADER, GFP_ATOMIC);
  686. if (!tx_skb)
  687. return;
  688. /* Reserve space for LMP, and LAP header */
  689. skb_reserve(tx_skb, LMP_MAX_HEADER);
  690. /*
  691. * Since we can transmit and receive frames concurrently,
  692. * the code below is a critical region and we must assure that
  693. * nobody messes with the credits while we update them.
  694. */
  695. spin_lock_irqsave(&self->lock, flags);
  696. n = self->avail_credit;
  697. self->avail_credit = 0;
  698. /* Only space for 127 credits in frame */
  699. if (n > 127) {
  700. self->avail_credit = n - 127;
  701. n = 127;
  702. }
  703. self->remote_credit += n;
  704. spin_unlock_irqrestore(&self->lock, flags);
  705. skb_put(tx_skb, 1);
  706. tx_skb->data[0] = (__u8) (n & 0x7f);
  707. irlmp_data_request(self->lsap, tx_skb);
  708. self->stats.tx_packets++;
  709. }
  710. /*
  711. * Function irttp_udata_indication (instance, sap, skb)
  712. *
  713. * Received some unit-data (unreliable)
  714. *
  715. */
  716. static int irttp_udata_indication(void *instance, void *sap,
  717. struct sk_buff *skb)
  718. {
  719. struct tsap_cb *self;
  720. int err;
  721. IRDA_DEBUG(4, "%s()\n", __func__);
  722. self = (struct tsap_cb *) instance;
  723. IRDA_ASSERT(self != NULL, return -1;);
  724. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  725. IRDA_ASSERT(skb != NULL, return -1;);
  726. self->stats.rx_packets++;
  727. /* Just pass data to layer above */
  728. if (self->notify.udata_indication) {
  729. err = self->notify.udata_indication(self->notify.instance,
  730. self,skb);
  731. /* Same comment as in irttp_do_data_indication() */
  732. if (!err)
  733. return 0;
  734. }
  735. /* Either no handler, or handler returns an error */
  736. dev_kfree_skb(skb);
  737. return 0;
  738. }
  739. /*
  740. * Function irttp_data_indication (instance, sap, skb)
  741. *
  742. * Receive segment from IrLMP.
  743. *
  744. */
  745. static int irttp_data_indication(void *instance, void *sap,
  746. struct sk_buff *skb)
  747. {
  748. struct tsap_cb *self;
  749. unsigned long flags;
  750. int n;
  751. self = (struct tsap_cb *) instance;
  752. n = skb->data[0] & 0x7f; /* Extract the credits */
  753. self->stats.rx_packets++;
  754. /* Deal with inbound credit
  755. * Since we can transmit and receive frames concurrently,
  756. * the code below is a critical region and we must assure that
  757. * nobody messes with the credits while we update them.
  758. */
  759. spin_lock_irqsave(&self->lock, flags);
  760. self->send_credit += n;
  761. if (skb->len > 1)
  762. self->remote_credit--;
  763. spin_unlock_irqrestore(&self->lock, flags);
  764. /*
  765. * Data or dataless packet? Dataless frames contains only the
  766. * TTP_HEADER.
  767. */
  768. if (skb->len > 1) {
  769. /*
  770. * We don't remove the TTP header, since we must preserve the
  771. * more bit, so the defragment routing knows what to do
  772. */
  773. skb_queue_tail(&self->rx_queue, skb);
  774. } else {
  775. /* Dataless flowdata TTP-PDU */
  776. dev_kfree_skb(skb);
  777. }
  778. /* Push data to the higher layer.
  779. * We do it synchronously because running the todo timer for each
  780. * receive packet would be too much overhead and latency.
  781. * By passing control to the higher layer, we run the risk that
  782. * it may take time or grab a lock. Most often, the higher layer
  783. * will only put packet in a queue.
  784. * Anyway, packets are only dripping through the IrDA, so we can
  785. * have time before the next packet.
  786. * Further, we are run from NET_BH, so the worse that can happen is
  787. * us missing the optimal time to send back the PF bit in LAP.
  788. * Jean II */
  789. irttp_run_rx_queue(self);
  790. /* We now give credits to peer in irttp_run_rx_queue().
  791. * We need to send credit *NOW*, otherwise we are going
  792. * to miss the next Tx window. The todo timer may take
  793. * a while before it's run... - Jean II */
  794. /*
  795. * If the peer device has given us some credits and we didn't have
  796. * anyone from before, then we need to shedule the tx queue.
  797. * We need to do that because our Tx have stopped (so we may not
  798. * get any LAP flow indication) and the user may be stopped as
  799. * well. - Jean II
  800. */
  801. if (self->send_credit == n) {
  802. /* Restart pushing stuff to LAP */
  803. irttp_run_tx_queue(self);
  804. /* Note : we don't want to schedule the todo timer
  805. * because it has horrible latency. No tasklets
  806. * because the tasklet API is broken. - Jean II */
  807. }
  808. return 0;
  809. }
  810. /*
  811. * Function irttp_status_indication (self, reason)
  812. *
  813. * Status_indication, just pass to the higher layer...
  814. *
  815. */
  816. static void irttp_status_indication(void *instance,
  817. LINK_STATUS link, LOCK_STATUS lock)
  818. {
  819. struct tsap_cb *self;
  820. IRDA_DEBUG(4, "%s()\n", __func__);
  821. self = (struct tsap_cb *) instance;
  822. IRDA_ASSERT(self != NULL, return;);
  823. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  824. /* Check if client has already closed the TSAP and gone away */
  825. if (self->close_pend)
  826. return;
  827. /*
  828. * Inform service user if he has requested it
  829. */
  830. if (self->notify.status_indication != NULL)
  831. self->notify.status_indication(self->notify.instance,
  832. link, lock);
  833. else
  834. IRDA_DEBUG(2, "%s(), no handler\n", __func__);
  835. }
  836. /*
  837. * Function irttp_flow_indication (self, reason)
  838. *
  839. * Flow_indication : IrLAP tells us to send more data.
  840. *
  841. */
  842. static void irttp_flow_indication(void *instance, void *sap, LOCAL_FLOW flow)
  843. {
  844. struct tsap_cb *self;
  845. self = (struct tsap_cb *) instance;
  846. IRDA_ASSERT(self != NULL, return;);
  847. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  848. IRDA_DEBUG(4, "%s(instance=%p)\n", __func__, self);
  849. /* We are "polled" directly from LAP, and the LAP want to fill
  850. * its Tx window. We want to do our best to send it data, so that
  851. * we maximise the window. On the other hand, we want to limit the
  852. * amount of work here so that LAP doesn't hang forever waiting
  853. * for packets. - Jean II */
  854. /* Try to send some packets. Currently, LAP calls us every time
  855. * there is one free slot, so we will send only one packet.
  856. * This allow the scheduler to do its round robin - Jean II */
  857. irttp_run_tx_queue(self);
  858. /* Note regarding the interraction with higher layer.
  859. * irttp_run_tx_queue() may call the client when its queue
  860. * start to empty, via notify.flow_indication(). Initially.
  861. * I wanted this to happen in a tasklet, to avoid client
  862. * grabbing the CPU, but we can't use tasklets safely. And timer
  863. * is definitely too slow.
  864. * This will happen only once per LAP window, and usually at
  865. * the third packet (unless window is smaller). LAP is still
  866. * doing mtt and sending first packet so it's sort of OK
  867. * to do that. Jean II */
  868. /* If we need to send disconnect. try to do it now */
  869. if(self->disconnect_pend)
  870. irttp_start_todo_timer(self, 0);
  871. }
  872. /*
  873. * Function irttp_flow_request (self, command)
  874. *
  875. * This function could be used by the upper layers to tell IrTTP to stop
  876. * delivering frames if the receive queues are starting to get full, or
  877. * to tell IrTTP to start delivering frames again.
  878. */
  879. void irttp_flow_request(struct tsap_cb *self, LOCAL_FLOW flow)
  880. {
  881. IRDA_DEBUG(1, "%s()\n", __func__);
  882. IRDA_ASSERT(self != NULL, return;);
  883. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  884. switch (flow) {
  885. case FLOW_STOP:
  886. IRDA_DEBUG(1, "%s(), flow stop\n", __func__);
  887. self->rx_sdu_busy = TRUE;
  888. break;
  889. case FLOW_START:
  890. IRDA_DEBUG(1, "%s(), flow start\n", __func__);
  891. self->rx_sdu_busy = FALSE;
  892. /* Client say he can accept more data, try to free our
  893. * queues ASAP - Jean II */
  894. irttp_run_rx_queue(self);
  895. break;
  896. default:
  897. IRDA_DEBUG(1, "%s(), Unknown flow command!\n", __func__);
  898. }
  899. }
  900. EXPORT_SYMBOL(irttp_flow_request);
  901. /*
  902. * Function irttp_connect_request (self, dtsap_sel, daddr, qos)
  903. *
  904. * Try to connect to remote destination TSAP selector
  905. *
  906. */
  907. int irttp_connect_request(struct tsap_cb *self, __u8 dtsap_sel,
  908. __u32 saddr, __u32 daddr,
  909. struct qos_info *qos, __u32 max_sdu_size,
  910. struct sk_buff *userdata)
  911. {
  912. struct sk_buff *tx_skb;
  913. __u8 *frame;
  914. __u8 n;
  915. IRDA_DEBUG(4, "%s(), max_sdu_size=%d\n", __func__, max_sdu_size);
  916. IRDA_ASSERT(self != NULL, return -EBADR;);
  917. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -EBADR;);
  918. if (self->connected) {
  919. if(userdata)
  920. dev_kfree_skb(userdata);
  921. return -EISCONN;
  922. }
  923. /* Any userdata supplied? */
  924. if (userdata == NULL) {
  925. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  926. GFP_ATOMIC);
  927. if (!tx_skb)
  928. return -ENOMEM;
  929. /* Reserve space for MUX_CONTROL and LAP header */
  930. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  931. } else {
  932. tx_skb = userdata;
  933. /*
  934. * Check that the client has reserved enough space for
  935. * headers
  936. */
  937. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  938. { dev_kfree_skb(userdata); return -1; } );
  939. }
  940. /* Initialize connection parameters */
  941. self->connected = FALSE;
  942. self->avail_credit = 0;
  943. self->rx_max_sdu_size = max_sdu_size;
  944. self->rx_sdu_size = 0;
  945. self->rx_sdu_busy = FALSE;
  946. self->dtsap_sel = dtsap_sel;
  947. n = self->initial_credit;
  948. self->remote_credit = 0;
  949. self->send_credit = 0;
  950. /*
  951. * Give away max 127 credits for now
  952. */
  953. if (n > 127) {
  954. self->avail_credit=n-127;
  955. n = 127;
  956. }
  957. self->remote_credit = n;
  958. /* SAR enabled? */
  959. if (max_sdu_size > 0) {
  960. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  961. { dev_kfree_skb(tx_skb); return -1; } );
  962. /* Insert SAR parameters */
  963. frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
  964. frame[0] = TTP_PARAMETERS | n;
  965. frame[1] = 0x04; /* Length */
  966. frame[2] = 0x01; /* MaxSduSize */
  967. frame[3] = 0x02; /* Value length */
  968. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  969. (__be16 *)(frame+4));
  970. } else {
  971. /* Insert plain TTP header */
  972. frame = skb_push(tx_skb, TTP_HEADER);
  973. /* Insert initial credit in frame */
  974. frame[0] = n & 0x7f;
  975. }
  976. /* Connect with IrLMP. No QoS parameters for now */
  977. return irlmp_connect_request(self->lsap, dtsap_sel, saddr, daddr, qos,
  978. tx_skb);
  979. }
  980. EXPORT_SYMBOL(irttp_connect_request);
  981. /*
  982. * Function irttp_connect_confirm (handle, qos, skb)
  983. *
  984. * Sevice user confirms TSAP connection with peer.
  985. *
  986. */
  987. static void irttp_connect_confirm(void *instance, void *sap,
  988. struct qos_info *qos, __u32 max_seg_size,
  989. __u8 max_header_size, struct sk_buff *skb)
  990. {
  991. struct tsap_cb *self;
  992. int parameters;
  993. int ret;
  994. __u8 plen;
  995. __u8 n;
  996. IRDA_DEBUG(4, "%s()\n", __func__);
  997. self = (struct tsap_cb *) instance;
  998. IRDA_ASSERT(self != NULL, return;);
  999. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1000. IRDA_ASSERT(skb != NULL, return;);
  1001. self->max_seg_size = max_seg_size - TTP_HEADER;
  1002. self->max_header_size = max_header_size + TTP_HEADER;
  1003. /*
  1004. * Check if we have got some QoS parameters back! This should be the
  1005. * negotiated QoS for the link.
  1006. */
  1007. if (qos) {
  1008. IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %02x\n",
  1009. qos->baud_rate.bits);
  1010. IRDA_DEBUG(4, "IrTTP, Negotiated BAUD_RATE: %d bps.\n",
  1011. qos->baud_rate.value);
  1012. }
  1013. n = skb->data[0] & 0x7f;
  1014. IRDA_DEBUG(4, "%s(), Initial send_credit=%d\n", __func__, n);
  1015. self->send_credit = n;
  1016. self->tx_max_sdu_size = 0;
  1017. self->connected = TRUE;
  1018. parameters = skb->data[0] & 0x80;
  1019. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1020. skb_pull(skb, TTP_HEADER);
  1021. if (parameters) {
  1022. plen = skb->data[0];
  1023. ret = irda_param_extract_all(self, skb->data+1,
  1024. IRDA_MIN(skb->len-1, plen),
  1025. &param_info);
  1026. /* Any errors in the parameter list? */
  1027. if (ret < 0) {
  1028. IRDA_WARNING("%s: error extracting parameters\n",
  1029. __func__);
  1030. dev_kfree_skb(skb);
  1031. /* Do not accept this connection attempt */
  1032. return;
  1033. }
  1034. /* Remove parameters */
  1035. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1036. }
  1037. IRDA_DEBUG(4, "%s() send=%d,avail=%d,remote=%d\n", __func__,
  1038. self->send_credit, self->avail_credit, self->remote_credit);
  1039. IRDA_DEBUG(2, "%s(), MaxSduSize=%d\n", __func__,
  1040. self->tx_max_sdu_size);
  1041. if (self->notify.connect_confirm) {
  1042. self->notify.connect_confirm(self->notify.instance, self, qos,
  1043. self->tx_max_sdu_size,
  1044. self->max_header_size, skb);
  1045. } else
  1046. dev_kfree_skb(skb);
  1047. }
  1048. /*
  1049. * Function irttp_connect_indication (handle, skb)
  1050. *
  1051. * Some other device is connecting to this TSAP
  1052. *
  1053. */
  1054. static void irttp_connect_indication(void *instance, void *sap,
  1055. struct qos_info *qos, __u32 max_seg_size, __u8 max_header_size,
  1056. struct sk_buff *skb)
  1057. {
  1058. struct tsap_cb *self;
  1059. struct lsap_cb *lsap;
  1060. int parameters;
  1061. int ret;
  1062. __u8 plen;
  1063. __u8 n;
  1064. self = (struct tsap_cb *) instance;
  1065. IRDA_ASSERT(self != NULL, return;);
  1066. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1067. IRDA_ASSERT(skb != NULL, return;);
  1068. lsap = (struct lsap_cb *) sap;
  1069. self->max_seg_size = max_seg_size - TTP_HEADER;
  1070. self->max_header_size = max_header_size+TTP_HEADER;
  1071. IRDA_DEBUG(4, "%s(), TSAP sel=%02x\n", __func__, self->stsap_sel);
  1072. /* Need to update dtsap_sel if its equal to LSAP_ANY */
  1073. self->dtsap_sel = lsap->dlsap_sel;
  1074. n = skb->data[0] & 0x7f;
  1075. self->send_credit = n;
  1076. self->tx_max_sdu_size = 0;
  1077. parameters = skb->data[0] & 0x80;
  1078. IRDA_ASSERT(skb->len >= TTP_HEADER, return;);
  1079. skb_pull(skb, TTP_HEADER);
  1080. if (parameters) {
  1081. plen = skb->data[0];
  1082. ret = irda_param_extract_all(self, skb->data+1,
  1083. IRDA_MIN(skb->len-1, plen),
  1084. &param_info);
  1085. /* Any errors in the parameter list? */
  1086. if (ret < 0) {
  1087. IRDA_WARNING("%s: error extracting parameters\n",
  1088. __func__);
  1089. dev_kfree_skb(skb);
  1090. /* Do not accept this connection attempt */
  1091. return;
  1092. }
  1093. /* Remove parameters */
  1094. skb_pull(skb, IRDA_MIN(skb->len, plen+1));
  1095. }
  1096. if (self->notify.connect_indication) {
  1097. self->notify.connect_indication(self->notify.instance, self,
  1098. qos, self->tx_max_sdu_size,
  1099. self->max_header_size, skb);
  1100. } else
  1101. dev_kfree_skb(skb);
  1102. }
  1103. /*
  1104. * Function irttp_connect_response (handle, userdata)
  1105. *
  1106. * Service user is accepting the connection, just pass it down to
  1107. * IrLMP!
  1108. *
  1109. */
  1110. int irttp_connect_response(struct tsap_cb *self, __u32 max_sdu_size,
  1111. struct sk_buff *userdata)
  1112. {
  1113. struct sk_buff *tx_skb;
  1114. __u8 *frame;
  1115. int ret;
  1116. __u8 n;
  1117. IRDA_ASSERT(self != NULL, return -1;);
  1118. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1119. IRDA_DEBUG(4, "%s(), Source TSAP selector=%02x\n", __func__,
  1120. self->stsap_sel);
  1121. /* Any userdata supplied? */
  1122. if (userdata == NULL) {
  1123. tx_skb = alloc_skb(TTP_MAX_HEADER + TTP_SAR_HEADER,
  1124. GFP_ATOMIC);
  1125. if (!tx_skb)
  1126. return -ENOMEM;
  1127. /* Reserve space for MUX_CONTROL and LAP header */
  1128. skb_reserve(tx_skb, TTP_MAX_HEADER + TTP_SAR_HEADER);
  1129. } else {
  1130. tx_skb = userdata;
  1131. /*
  1132. * Check that the client has reserved enough space for
  1133. * headers
  1134. */
  1135. IRDA_ASSERT(skb_headroom(userdata) >= TTP_MAX_HEADER,
  1136. { dev_kfree_skb(userdata); return -1; } );
  1137. }
  1138. self->avail_credit = 0;
  1139. self->remote_credit = 0;
  1140. self->rx_max_sdu_size = max_sdu_size;
  1141. self->rx_sdu_size = 0;
  1142. self->rx_sdu_busy = FALSE;
  1143. n = self->initial_credit;
  1144. /* Frame has only space for max 127 credits (7 bits) */
  1145. if (n > 127) {
  1146. self->avail_credit = n - 127;
  1147. n = 127;
  1148. }
  1149. self->remote_credit = n;
  1150. self->connected = TRUE;
  1151. /* SAR enabled? */
  1152. if (max_sdu_size > 0) {
  1153. IRDA_ASSERT(skb_headroom(tx_skb) >= (TTP_MAX_HEADER + TTP_SAR_HEADER),
  1154. { dev_kfree_skb(tx_skb); return -1; } );
  1155. /* Insert TTP header with SAR parameters */
  1156. frame = skb_push(tx_skb, TTP_HEADER+TTP_SAR_HEADER);
  1157. frame[0] = TTP_PARAMETERS | n;
  1158. frame[1] = 0x04; /* Length */
  1159. /* irda_param_insert(self, IRTTP_MAX_SDU_SIZE, frame+1, */
  1160. /* TTP_SAR_HEADER, &param_info) */
  1161. frame[2] = 0x01; /* MaxSduSize */
  1162. frame[3] = 0x02; /* Value length */
  1163. put_unaligned(cpu_to_be16((__u16) max_sdu_size),
  1164. (__be16 *)(frame+4));
  1165. } else {
  1166. /* Insert TTP header */
  1167. frame = skb_push(tx_skb, TTP_HEADER);
  1168. frame[0] = n & 0x7f;
  1169. }
  1170. ret = irlmp_connect_response(self->lsap, tx_skb);
  1171. return ret;
  1172. }
  1173. EXPORT_SYMBOL(irttp_connect_response);
  1174. /*
  1175. * Function irttp_dup (self, instance)
  1176. *
  1177. * Duplicate TSAP, can be used by servers to confirm a connection on a
  1178. * new TSAP so it can keep listening on the old one.
  1179. */
  1180. struct tsap_cb *irttp_dup(struct tsap_cb *orig, void *instance)
  1181. {
  1182. struct tsap_cb *new;
  1183. unsigned long flags;
  1184. IRDA_DEBUG(1, "%s()\n", __func__);
  1185. /* Protect our access to the old tsap instance */
  1186. spin_lock_irqsave(&irttp->tsaps->hb_spinlock, flags);
  1187. /* Find the old instance */
  1188. if (!hashbin_find(irttp->tsaps, (long) orig, NULL)) {
  1189. IRDA_DEBUG(0, "%s(), unable to find TSAP\n", __func__);
  1190. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1191. return NULL;
  1192. }
  1193. /* Allocate a new instance */
  1194. new = kmalloc(sizeof(struct tsap_cb), GFP_ATOMIC);
  1195. if (!new) {
  1196. IRDA_DEBUG(0, "%s(), unable to kmalloc\n", __func__);
  1197. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1198. return NULL;
  1199. }
  1200. /* Dup */
  1201. memcpy(new, orig, sizeof(struct tsap_cb));
  1202. spin_lock_init(&new->lock);
  1203. /* We don't need the old instance any more */
  1204. spin_unlock_irqrestore(&irttp->tsaps->hb_spinlock, flags);
  1205. /* Try to dup the LSAP (may fail if we were too slow) */
  1206. new->lsap = irlmp_dup(orig->lsap, new);
  1207. if (!new->lsap) {
  1208. IRDA_DEBUG(0, "%s(), dup failed!\n", __func__);
  1209. kfree(new);
  1210. return NULL;
  1211. }
  1212. /* Not everything should be copied */
  1213. new->notify.instance = instance;
  1214. /* Initialize internal objects */
  1215. irttp_init_tsap(new);
  1216. /* This is locked */
  1217. hashbin_insert(irttp->tsaps, (irda_queue_t *) new, (long) new, NULL);
  1218. return new;
  1219. }
  1220. EXPORT_SYMBOL(irttp_dup);
  1221. /*
  1222. * Function irttp_disconnect_request (self)
  1223. *
  1224. * Close this connection please! If priority is high, the queued data
  1225. * segments, if any, will be deallocated first
  1226. *
  1227. */
  1228. int irttp_disconnect_request(struct tsap_cb *self, struct sk_buff *userdata,
  1229. int priority)
  1230. {
  1231. int ret;
  1232. IRDA_ASSERT(self != NULL, return -1;);
  1233. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return -1;);
  1234. /* Already disconnected? */
  1235. if (!self->connected) {
  1236. IRDA_DEBUG(4, "%s(), already disconnected!\n", __func__);
  1237. if (userdata)
  1238. dev_kfree_skb(userdata);
  1239. return -1;
  1240. }
  1241. /* Disconnect already pending ?
  1242. * We need to use an atomic operation to prevent reentry. This
  1243. * function may be called from various context, like user, timer
  1244. * for following a disconnect_indication() (i.e. net_bh).
  1245. * Jean II */
  1246. if(test_and_set_bit(0, &self->disconnect_pend)) {
  1247. IRDA_DEBUG(0, "%s(), disconnect already pending\n",
  1248. __func__);
  1249. if (userdata)
  1250. dev_kfree_skb(userdata);
  1251. /* Try to make some progress */
  1252. irttp_run_tx_queue(self);
  1253. return -1;
  1254. }
  1255. /*
  1256. * Check if there is still data segments in the transmit queue
  1257. */
  1258. if (!skb_queue_empty(&self->tx_queue)) {
  1259. if (priority == P_HIGH) {
  1260. /*
  1261. * No need to send the queued data, if we are
  1262. * disconnecting right now since the data will
  1263. * not have any usable connection to be sent on
  1264. */
  1265. IRDA_DEBUG(1, "%s(): High priority!!()\n", __func__);
  1266. irttp_flush_queues(self);
  1267. } else if (priority == P_NORMAL) {
  1268. /*
  1269. * Must delay disconnect until after all data segments
  1270. * have been sent and the tx_queue is empty
  1271. */
  1272. /* We'll reuse this one later for the disconnect */
  1273. self->disconnect_skb = userdata; /* May be NULL */
  1274. irttp_run_tx_queue(self);
  1275. irttp_start_todo_timer(self, HZ/10);
  1276. return -1;
  1277. }
  1278. }
  1279. /* Note : we don't need to check if self->rx_queue is full and the
  1280. * state of self->rx_sdu_busy because the disconnect response will
  1281. * be sent at the LMP level (so even if the peer has its Tx queue
  1282. * full of data). - Jean II */
  1283. IRDA_DEBUG(1, "%s(), Disconnecting ...\n", __func__);
  1284. self->connected = FALSE;
  1285. if (!userdata) {
  1286. struct sk_buff *tx_skb;
  1287. tx_skb = alloc_skb(LMP_MAX_HEADER, GFP_ATOMIC);
  1288. if (!tx_skb)
  1289. return -ENOMEM;
  1290. /*
  1291. * Reserve space for MUX and LAP header
  1292. */
  1293. skb_reserve(tx_skb, LMP_MAX_HEADER);
  1294. userdata = tx_skb;
  1295. }
  1296. ret = irlmp_disconnect_request(self->lsap, userdata);
  1297. /* The disconnect is no longer pending */
  1298. clear_bit(0, &self->disconnect_pend); /* FALSE */
  1299. return ret;
  1300. }
  1301. EXPORT_SYMBOL(irttp_disconnect_request);
  1302. /*
  1303. * Function irttp_disconnect_indication (self, reason)
  1304. *
  1305. * Disconnect indication, TSAP disconnected by peer?
  1306. *
  1307. */
  1308. static void irttp_disconnect_indication(void *instance, void *sap,
  1309. LM_REASON reason, struct sk_buff *skb)
  1310. {
  1311. struct tsap_cb *self;
  1312. IRDA_DEBUG(4, "%s()\n", __func__);
  1313. self = (struct tsap_cb *) instance;
  1314. IRDA_ASSERT(self != NULL, return;);
  1315. IRDA_ASSERT(self->magic == TTP_TSAP_MAGIC, return;);
  1316. /* Prevent higher layer to send more data */
  1317. self->connected = FALSE;
  1318. /* Check if client has already tried to close the TSAP */
  1319. if (self->close_pend) {
  1320. /* In this case, the higher layer is probably gone. Don't
  1321. * bother it and clean up the remains - Jean II */
  1322. if (skb)
  1323. dev_kfree_skb(skb);
  1324. irttp_close_tsap(self);
  1325. return;
  1326. }
  1327. /* If we are here, we assume that is the higher layer is still
  1328. * waiting for the disconnect notification and able to process it,
  1329. * even if he tried to disconnect. Otherwise, it would have already
  1330. * attempted to close the tsap and self->close_pend would be TRUE.
  1331. * Jean II */
  1332. /* No need to notify the client if has already tried to disconnect */
  1333. if(self->notify.disconnect_indication)
  1334. self->notify.disconnect_indication(self->notify.instance, self,
  1335. reason, skb);
  1336. else
  1337. if (skb)
  1338. dev_kfree_skb(skb);
  1339. }
  1340. /*
  1341. * Function irttp_do_data_indication (self, skb)
  1342. *
  1343. * Try to deliver reassembled skb to layer above, and requeue it if that
  1344. * for some reason should fail. We mark rx sdu as busy to apply back
  1345. * pressure is necessary.
  1346. */
  1347. static void irttp_do_data_indication(struct tsap_cb *self, struct sk_buff *skb)
  1348. {
  1349. int err;
  1350. /* Check if client has already closed the TSAP and gone away */
  1351. if (self->close_pend) {
  1352. dev_kfree_skb(skb);
  1353. return;
  1354. }
  1355. err = self->notify.data_indication(self->notify.instance, self, skb);
  1356. /* Usually the layer above will notify that it's input queue is
  1357. * starting to get filled by using the flow request, but this may
  1358. * be difficult, so it can instead just refuse to eat it and just
  1359. * give an error back
  1360. */
  1361. if (err) {
  1362. IRDA_DEBUG(0, "%s() requeueing skb!\n", __func__);
  1363. /* Make sure we take a break */
  1364. self->rx_sdu_busy = TRUE;
  1365. /* Need to push the header in again */
  1366. skb_push(skb, TTP_HEADER);
  1367. skb->data[0] = 0x00; /* Make sure MORE bit is cleared */
  1368. /* Put skb back on queue */
  1369. skb_queue_head(&self->rx_queue, skb);
  1370. }
  1371. }
  1372. /*
  1373. * Function irttp_run_rx_queue (self)
  1374. *
  1375. * Check if we have any frames to be transmitted, or if we have any
  1376. * available credit to give away.
  1377. */
  1378. static void irttp_run_rx_queue(struct tsap_cb *self)
  1379. {
  1380. struct sk_buff *skb;
  1381. int more = 0;
  1382. IRDA_DEBUG(2, "%s() send=%d,avail=%d,remote=%d\n", __func__,
  1383. self->send_credit, self->avail_credit, self->remote_credit);
  1384. /* Get exclusive access to the rx queue, otherwise don't touch it */
  1385. if (irda_lock(&self->rx_queue_lock) == FALSE)
  1386. return;
  1387. /*
  1388. * Reassemble all frames in receive queue and deliver them
  1389. */
  1390. while (!self->rx_sdu_busy && (skb = skb_dequeue(&self->rx_queue))) {
  1391. /* This bit will tell us if it's the last fragment or not */
  1392. more = skb->data[0] & 0x80;
  1393. /* Remove TTP header */
  1394. skb_pull(skb, TTP_HEADER);
  1395. /* Add the length of the remaining data */
  1396. self->rx_sdu_size += skb->len;
  1397. /*
  1398. * If SAR is disabled, or user has requested no reassembly
  1399. * of received fragments then we just deliver them
  1400. * immediately. This can be requested by clients that
  1401. * implements byte streams without any message boundaries
  1402. */
  1403. if (self->rx_max_sdu_size == TTP_SAR_DISABLE) {
  1404. irttp_do_data_indication(self, skb);
  1405. self->rx_sdu_size = 0;
  1406. continue;
  1407. }
  1408. /* Check if this is a fragment, and not the last fragment */
  1409. if (more) {
  1410. /*
  1411. * Queue the fragment if we still are within the
  1412. * limits of the maximum size of the rx_sdu
  1413. */
  1414. if (self->rx_sdu_size <= self->rx_max_sdu_size) {
  1415. IRDA_DEBUG(4, "%s(), queueing frag\n",
  1416. __func__);
  1417. skb_queue_tail(&self->rx_fragments, skb);
  1418. } else {
  1419. /* Free the part of the SDU that is too big */
  1420. dev_kfree_skb(skb);
  1421. }
  1422. continue;
  1423. }
  1424. /*
  1425. * This is the last fragment, so time to reassemble!
  1426. */
  1427. if ((self->rx_sdu_size <= self->rx_max_sdu_size) ||
  1428. (self->rx_max_sdu_size == TTP_SAR_UNBOUND))
  1429. {
  1430. /*
  1431. * A little optimizing. Only queue the fragment if
  1432. * there are other fragments. Since if this is the
  1433. * last and only fragment, there is no need to
  1434. * reassemble :-)
  1435. */
  1436. if (!skb_queue_empty(&self->rx_fragments)) {
  1437. skb_queue_tail(&self->rx_fragments,
  1438. skb);
  1439. skb = irttp_reassemble_skb(self);
  1440. }
  1441. /* Now we can deliver the reassembled skb */
  1442. irttp_do_data_indication(self, skb);
  1443. } else {
  1444. IRDA_DEBUG(1, "%s(), Truncated frame\n", __func__);
  1445. /* Free the part of the SDU that is too big */
  1446. dev_kfree_skb(skb);
  1447. /* Deliver only the valid but truncated part of SDU */
  1448. skb = irttp_reassemble_skb(self);
  1449. irttp_do_data_indication(self, skb);
  1450. }
  1451. self->rx_sdu_size = 0;
  1452. }
  1453. /*
  1454. * It's not trivial to keep track of how many credits are available
  1455. * by incrementing at each packet, because delivery may fail
  1456. * (irttp_do_data_indication() may requeue the frame) and because
  1457. * we need to take care of fragmentation.
  1458. * We want the other side to send up to initial_credit packets.
  1459. * We have some frames in our queues, and we have already allowed it
  1460. * to send remote_credit.
  1461. * No need to spinlock, write is atomic and self correcting...
  1462. * Jean II
  1463. */
  1464. self->avail_credit = (self->initial_credit -
  1465. (self->remote_credit +
  1466. skb_queue_len(&self->rx_queue) +
  1467. skb_queue_len(&self->rx_fragments)));
  1468. /* Do we have too much credits to send to peer ? */
  1469. if ((self->remote_credit <= TTP_RX_MIN_CREDIT) &&
  1470. (self->avail_credit > 0)) {
  1471. /* Send explicit credit frame */
  1472. irttp_give_credit(self);
  1473. /* Note : do *NOT* check if tx_queue is non-empty, that
  1474. * will produce deadlocks. I repeat : send a credit frame
  1475. * even if we have something to send in our Tx queue.
  1476. * If we have credits, it means that our Tx queue is blocked.
  1477. *
  1478. * Let's suppose the peer can't keep up with our Tx. He will
  1479. * flow control us by not sending us any credits, and we
  1480. * will stop Tx and start accumulating credits here.
  1481. * Up to the point where the peer will stop its Tx queue,
  1482. * for lack of credits.
  1483. * Let's assume the peer application is single threaded.
  1484. * It will block on Tx and never consume any Rx buffer.
  1485. * Deadlock. Guaranteed. - Jean II
  1486. */
  1487. }
  1488. /* Reset lock */
  1489. self->rx_queue_lock = 0;
  1490. }
  1491. #ifdef CONFIG_PROC_FS
  1492. struct irttp_iter_state {
  1493. int id;
  1494. };
  1495. static void *irttp_seq_start(struct seq_file *seq, loff_t *pos)
  1496. {
  1497. struct irttp_iter_state *iter = seq->private;
  1498. struct tsap_cb *self;
  1499. /* Protect our access to the tsap list */
  1500. spin_lock_irq(&irttp->tsaps->hb_spinlock);
  1501. iter->id = 0;
  1502. for (self = (struct tsap_cb *) hashbin_get_first(irttp->tsaps);
  1503. self != NULL;
  1504. self = (struct tsap_cb *) hashbin_get_next(irttp->tsaps)) {
  1505. if (iter->id == *pos)
  1506. break;
  1507. ++iter->id;
  1508. }
  1509. return self;
  1510. }
  1511. static void *irttp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1512. {
  1513. struct irttp_iter_state *iter = seq->private;
  1514. ++*pos;
  1515. ++iter->id;
  1516. return (void *) hashbin_get_next(irttp->tsaps);
  1517. }
  1518. static void irttp_seq_stop(struct seq_file *seq, void *v)
  1519. {
  1520. spin_unlock_irq(&irttp->tsaps->hb_spinlock);
  1521. }
  1522. static int irttp_seq_show(struct seq_file *seq, void *v)
  1523. {
  1524. const struct irttp_iter_state *iter = seq->private;
  1525. const struct tsap_cb *self = v;
  1526. seq_printf(seq, "TSAP %d, ", iter->id);
  1527. seq_printf(seq, "stsap_sel: %02x, ",
  1528. self->stsap_sel);
  1529. seq_printf(seq, "dtsap_sel: %02x\n",
  1530. self->dtsap_sel);
  1531. seq_printf(seq, " connected: %s, ",
  1532. self->connected? "TRUE":"FALSE");
  1533. seq_printf(seq, "avail credit: %d, ",
  1534. self->avail_credit);
  1535. seq_printf(seq, "remote credit: %d, ",
  1536. self->remote_credit);
  1537. seq_printf(seq, "send credit: %d\n",
  1538. self->send_credit);
  1539. seq_printf(seq, " tx packets: %ld, ",
  1540. self->stats.tx_packets);
  1541. seq_printf(seq, "rx packets: %ld, ",
  1542. self->stats.rx_packets);
  1543. seq_printf(seq, "tx_queue len: %d ",
  1544. skb_queue_len(&self->tx_queue));
  1545. seq_printf(seq, "rx_queue len: %d\n",
  1546. skb_queue_len(&self->rx_queue));
  1547. seq_printf(seq, " tx_sdu_busy: %s, ",
  1548. self->tx_sdu_busy? "TRUE":"FALSE");
  1549. seq_printf(seq, "rx_sdu_busy: %s\n",
  1550. self->rx_sdu_busy? "TRUE":"FALSE");
  1551. seq_printf(seq, " max_seg_size: %d, ",
  1552. self->max_seg_size);
  1553. seq_printf(seq, "tx_max_sdu_size: %d, ",
  1554. self->tx_max_sdu_size);
  1555. seq_printf(seq, "rx_max_sdu_size: %d\n",
  1556. self->rx_max_sdu_size);
  1557. seq_printf(seq, " Used by (%s)\n\n",
  1558. self->notify.name);
  1559. return 0;
  1560. }
  1561. static const struct seq_operations irttp_seq_ops = {
  1562. .start = irttp_seq_start,
  1563. .next = irttp_seq_next,
  1564. .stop = irttp_seq_stop,
  1565. .show = irttp_seq_show,
  1566. };
  1567. static int irttp_seq_open(struct inode *inode, struct file *file)
  1568. {
  1569. return seq_open_private(file, &irttp_seq_ops,
  1570. sizeof(struct irttp_iter_state));
  1571. }
  1572. const struct file_operations irttp_seq_fops = {
  1573. .owner = THIS_MODULE,
  1574. .open = irttp_seq_open,
  1575. .read = seq_read,
  1576. .llseek = seq_lseek,
  1577. .release = seq_release_private,
  1578. };
  1579. #endif /* PROC_FS */