cpuset.c 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/memory.h>
  39. #include <linux/module.h>
  40. #include <linux/mount.h>
  41. #include <linux/namei.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/rcupdate.h>
  45. #include <linux/sched.h>
  46. #include <linux/seq_file.h>
  47. #include <linux/security.h>
  48. #include <linux/slab.h>
  49. #include <linux/spinlock.h>
  50. #include <linux/stat.h>
  51. #include <linux/string.h>
  52. #include <linux/time.h>
  53. #include <linux/backing-dev.h>
  54. #include <linux/sort.h>
  55. #include <asm/uaccess.h>
  56. #include <asm/atomic.h>
  57. #include <linux/mutex.h>
  58. #include <linux/workqueue.h>
  59. #include <linux/cgroup.h>
  60. /*
  61. * Workqueue for cpuset related tasks.
  62. *
  63. * Using kevent workqueue may cause deadlock when memory_migrate
  64. * is set. So we create a separate workqueue thread for cpuset.
  65. */
  66. static struct workqueue_struct *cpuset_wq;
  67. /*
  68. * Tracks how many cpusets are currently defined in system.
  69. * When there is only one cpuset (the root cpuset) we can
  70. * short circuit some hooks.
  71. */
  72. int number_of_cpusets __read_mostly;
  73. /* Forward declare cgroup structures */
  74. struct cgroup_subsys cpuset_subsys;
  75. struct cpuset;
  76. /* See "Frequency meter" comments, below. */
  77. struct fmeter {
  78. int cnt; /* unprocessed events count */
  79. int val; /* most recent output value */
  80. time_t time; /* clock (secs) when val computed */
  81. spinlock_t lock; /* guards read or write of above */
  82. };
  83. struct cpuset {
  84. struct cgroup_subsys_state css;
  85. unsigned long flags; /* "unsigned long" so bitops work */
  86. cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  87. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  88. struct cpuset *parent; /* my parent */
  89. struct fmeter fmeter; /* memory_pressure filter */
  90. /* partition number for rebuild_sched_domains() */
  91. int pn;
  92. /* for custom sched domain */
  93. int relax_domain_level;
  94. /* used for walking a cpuset heirarchy */
  95. struct list_head stack_list;
  96. };
  97. /* Retrieve the cpuset for a cgroup */
  98. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  99. {
  100. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  101. struct cpuset, css);
  102. }
  103. /* Retrieve the cpuset for a task */
  104. static inline struct cpuset *task_cs(struct task_struct *task)
  105. {
  106. return container_of(task_subsys_state(task, cpuset_subsys_id),
  107. struct cpuset, css);
  108. }
  109. /* bits in struct cpuset flags field */
  110. typedef enum {
  111. CS_CPU_EXCLUSIVE,
  112. CS_MEM_EXCLUSIVE,
  113. CS_MEM_HARDWALL,
  114. CS_MEMORY_MIGRATE,
  115. CS_SCHED_LOAD_BALANCE,
  116. CS_SPREAD_PAGE,
  117. CS_SPREAD_SLAB,
  118. } cpuset_flagbits_t;
  119. /* convenient tests for these bits */
  120. static inline int is_cpu_exclusive(const struct cpuset *cs)
  121. {
  122. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  123. }
  124. static inline int is_mem_exclusive(const struct cpuset *cs)
  125. {
  126. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  127. }
  128. static inline int is_mem_hardwall(const struct cpuset *cs)
  129. {
  130. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  131. }
  132. static inline int is_sched_load_balance(const struct cpuset *cs)
  133. {
  134. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  135. }
  136. static inline int is_memory_migrate(const struct cpuset *cs)
  137. {
  138. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  139. }
  140. static inline int is_spread_page(const struct cpuset *cs)
  141. {
  142. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  143. }
  144. static inline int is_spread_slab(const struct cpuset *cs)
  145. {
  146. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  147. }
  148. static struct cpuset top_cpuset = {
  149. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  150. };
  151. /*
  152. * There are two global mutexes guarding cpuset structures. The first
  153. * is the main control groups cgroup_mutex, accessed via
  154. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  155. * callback_mutex, below. They can nest. It is ok to first take
  156. * cgroup_mutex, then nest callback_mutex. We also require taking
  157. * task_lock() when dereferencing a task's cpuset pointer. See "The
  158. * task_lock() exception", at the end of this comment.
  159. *
  160. * A task must hold both mutexes to modify cpusets. If a task
  161. * holds cgroup_mutex, then it blocks others wanting that mutex,
  162. * ensuring that it is the only task able to also acquire callback_mutex
  163. * and be able to modify cpusets. It can perform various checks on
  164. * the cpuset structure first, knowing nothing will change. It can
  165. * also allocate memory while just holding cgroup_mutex. While it is
  166. * performing these checks, various callback routines can briefly
  167. * acquire callback_mutex to query cpusets. Once it is ready to make
  168. * the changes, it takes callback_mutex, blocking everyone else.
  169. *
  170. * Calls to the kernel memory allocator can not be made while holding
  171. * callback_mutex, as that would risk double tripping on callback_mutex
  172. * from one of the callbacks into the cpuset code from within
  173. * __alloc_pages().
  174. *
  175. * If a task is only holding callback_mutex, then it has read-only
  176. * access to cpusets.
  177. *
  178. * Now, the task_struct fields mems_allowed and mempolicy may be changed
  179. * by other task, we use alloc_lock in the task_struct fields to protect
  180. * them.
  181. *
  182. * The cpuset_common_file_read() handlers only hold callback_mutex across
  183. * small pieces of code, such as when reading out possibly multi-word
  184. * cpumasks and nodemasks.
  185. *
  186. * Accessing a task's cpuset should be done in accordance with the
  187. * guidelines for accessing subsystem state in kernel/cgroup.c
  188. */
  189. static DEFINE_MUTEX(callback_mutex);
  190. /*
  191. * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
  192. * buffers. They are statically allocated to prevent using excess stack
  193. * when calling cpuset_print_task_mems_allowed().
  194. */
  195. #define CPUSET_NAME_LEN (128)
  196. #define CPUSET_NODELIST_LEN (256)
  197. static char cpuset_name[CPUSET_NAME_LEN];
  198. static char cpuset_nodelist[CPUSET_NODELIST_LEN];
  199. static DEFINE_SPINLOCK(cpuset_buffer_lock);
  200. /*
  201. * This is ugly, but preserves the userspace API for existing cpuset
  202. * users. If someone tries to mount the "cpuset" filesystem, we
  203. * silently switch it to mount "cgroup" instead
  204. */
  205. static int cpuset_get_sb(struct file_system_type *fs_type,
  206. int flags, const char *unused_dev_name,
  207. void *data, struct vfsmount *mnt)
  208. {
  209. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  210. int ret = -ENODEV;
  211. if (cgroup_fs) {
  212. char mountopts[] =
  213. "cpuset,noprefix,"
  214. "release_agent=/sbin/cpuset_release_agent";
  215. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  216. unused_dev_name, mountopts, mnt);
  217. put_filesystem(cgroup_fs);
  218. }
  219. return ret;
  220. }
  221. static struct file_system_type cpuset_fs_type = {
  222. .name = "cpuset",
  223. .get_sb = cpuset_get_sb,
  224. };
  225. /*
  226. * Return in pmask the portion of a cpusets's cpus_allowed that
  227. * are online. If none are online, walk up the cpuset hierarchy
  228. * until we find one that does have some online cpus. If we get
  229. * all the way to the top and still haven't found any online cpus,
  230. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  231. * task, return cpu_online_map.
  232. *
  233. * One way or another, we guarantee to return some non-empty subset
  234. * of cpu_online_map.
  235. *
  236. * Call with callback_mutex held.
  237. */
  238. static void guarantee_online_cpus(const struct cpuset *cs,
  239. struct cpumask *pmask)
  240. {
  241. while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
  242. cs = cs->parent;
  243. if (cs)
  244. cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
  245. else
  246. cpumask_copy(pmask, cpu_online_mask);
  247. BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
  248. }
  249. /*
  250. * Return in *pmask the portion of a cpusets's mems_allowed that
  251. * are online, with memory. If none are online with memory, walk
  252. * up the cpuset hierarchy until we find one that does have some
  253. * online mems. If we get all the way to the top and still haven't
  254. * found any online mems, return node_states[N_HIGH_MEMORY].
  255. *
  256. * One way or another, we guarantee to return some non-empty subset
  257. * of node_states[N_HIGH_MEMORY].
  258. *
  259. * Call with callback_mutex held.
  260. */
  261. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  262. {
  263. while (cs && !nodes_intersects(cs->mems_allowed,
  264. node_states[N_HIGH_MEMORY]))
  265. cs = cs->parent;
  266. if (cs)
  267. nodes_and(*pmask, cs->mems_allowed,
  268. node_states[N_HIGH_MEMORY]);
  269. else
  270. *pmask = node_states[N_HIGH_MEMORY];
  271. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  272. }
  273. /*
  274. * update task's spread flag if cpuset's page/slab spread flag is set
  275. *
  276. * Called with callback_mutex/cgroup_mutex held
  277. */
  278. static void cpuset_update_task_spread_flag(struct cpuset *cs,
  279. struct task_struct *tsk)
  280. {
  281. if (is_spread_page(cs))
  282. tsk->flags |= PF_SPREAD_PAGE;
  283. else
  284. tsk->flags &= ~PF_SPREAD_PAGE;
  285. if (is_spread_slab(cs))
  286. tsk->flags |= PF_SPREAD_SLAB;
  287. else
  288. tsk->flags &= ~PF_SPREAD_SLAB;
  289. }
  290. /*
  291. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  292. *
  293. * One cpuset is a subset of another if all its allowed CPUs and
  294. * Memory Nodes are a subset of the other, and its exclusive flags
  295. * are only set if the other's are set. Call holding cgroup_mutex.
  296. */
  297. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  298. {
  299. return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
  300. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  301. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  302. is_mem_exclusive(p) <= is_mem_exclusive(q);
  303. }
  304. /**
  305. * alloc_trial_cpuset - allocate a trial cpuset
  306. * @cs: the cpuset that the trial cpuset duplicates
  307. */
  308. static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
  309. {
  310. struct cpuset *trial;
  311. trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
  312. if (!trial)
  313. return NULL;
  314. if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
  315. kfree(trial);
  316. return NULL;
  317. }
  318. cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
  319. return trial;
  320. }
  321. /**
  322. * free_trial_cpuset - free the trial cpuset
  323. * @trial: the trial cpuset to be freed
  324. */
  325. static void free_trial_cpuset(struct cpuset *trial)
  326. {
  327. free_cpumask_var(trial->cpus_allowed);
  328. kfree(trial);
  329. }
  330. /*
  331. * validate_change() - Used to validate that any proposed cpuset change
  332. * follows the structural rules for cpusets.
  333. *
  334. * If we replaced the flag and mask values of the current cpuset
  335. * (cur) with those values in the trial cpuset (trial), would
  336. * our various subset and exclusive rules still be valid? Presumes
  337. * cgroup_mutex held.
  338. *
  339. * 'cur' is the address of an actual, in-use cpuset. Operations
  340. * such as list traversal that depend on the actual address of the
  341. * cpuset in the list must use cur below, not trial.
  342. *
  343. * 'trial' is the address of bulk structure copy of cur, with
  344. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  345. * or flags changed to new, trial values.
  346. *
  347. * Return 0 if valid, -errno if not.
  348. */
  349. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  350. {
  351. struct cgroup *cont;
  352. struct cpuset *c, *par;
  353. /* Each of our child cpusets must be a subset of us */
  354. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  355. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  356. return -EBUSY;
  357. }
  358. /* Remaining checks don't apply to root cpuset */
  359. if (cur == &top_cpuset)
  360. return 0;
  361. par = cur->parent;
  362. /* We must be a subset of our parent cpuset */
  363. if (!is_cpuset_subset(trial, par))
  364. return -EACCES;
  365. /*
  366. * If either I or some sibling (!= me) is exclusive, we can't
  367. * overlap
  368. */
  369. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  370. c = cgroup_cs(cont);
  371. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  372. c != cur &&
  373. cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
  374. return -EINVAL;
  375. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  376. c != cur &&
  377. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  378. return -EINVAL;
  379. }
  380. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  381. if (cgroup_task_count(cur->css.cgroup)) {
  382. if (cpumask_empty(trial->cpus_allowed) ||
  383. nodes_empty(trial->mems_allowed)) {
  384. return -ENOSPC;
  385. }
  386. }
  387. return 0;
  388. }
  389. #ifdef CONFIG_SMP
  390. /*
  391. * Helper routine for generate_sched_domains().
  392. * Do cpusets a, b have overlapping cpus_allowed masks?
  393. */
  394. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  395. {
  396. return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
  397. }
  398. static void
  399. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  400. {
  401. if (dattr->relax_domain_level < c->relax_domain_level)
  402. dattr->relax_domain_level = c->relax_domain_level;
  403. return;
  404. }
  405. static void
  406. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  407. {
  408. LIST_HEAD(q);
  409. list_add(&c->stack_list, &q);
  410. while (!list_empty(&q)) {
  411. struct cpuset *cp;
  412. struct cgroup *cont;
  413. struct cpuset *child;
  414. cp = list_first_entry(&q, struct cpuset, stack_list);
  415. list_del(q.next);
  416. if (cpumask_empty(cp->cpus_allowed))
  417. continue;
  418. if (is_sched_load_balance(cp))
  419. update_domain_attr(dattr, cp);
  420. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  421. child = cgroup_cs(cont);
  422. list_add_tail(&child->stack_list, &q);
  423. }
  424. }
  425. }
  426. /*
  427. * generate_sched_domains()
  428. *
  429. * This function builds a partial partition of the systems CPUs
  430. * A 'partial partition' is a set of non-overlapping subsets whose
  431. * union is a subset of that set.
  432. * The output of this function needs to be passed to kernel/sched.c
  433. * partition_sched_domains() routine, which will rebuild the scheduler's
  434. * load balancing domains (sched domains) as specified by that partial
  435. * partition.
  436. *
  437. * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
  438. * for a background explanation of this.
  439. *
  440. * Does not return errors, on the theory that the callers of this
  441. * routine would rather not worry about failures to rebuild sched
  442. * domains when operating in the severe memory shortage situations
  443. * that could cause allocation failures below.
  444. *
  445. * Must be called with cgroup_lock held.
  446. *
  447. * The three key local variables below are:
  448. * q - a linked-list queue of cpuset pointers, used to implement a
  449. * top-down scan of all cpusets. This scan loads a pointer
  450. * to each cpuset marked is_sched_load_balance into the
  451. * array 'csa'. For our purposes, rebuilding the schedulers
  452. * sched domains, we can ignore !is_sched_load_balance cpusets.
  453. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  454. * that need to be load balanced, for convenient iterative
  455. * access by the subsequent code that finds the best partition,
  456. * i.e the set of domains (subsets) of CPUs such that the
  457. * cpus_allowed of every cpuset marked is_sched_load_balance
  458. * is a subset of one of these domains, while there are as
  459. * many such domains as possible, each as small as possible.
  460. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  461. * the kernel/sched.c routine partition_sched_domains() in a
  462. * convenient format, that can be easily compared to the prior
  463. * value to determine what partition elements (sched domains)
  464. * were changed (added or removed.)
  465. *
  466. * Finding the best partition (set of domains):
  467. * The triple nested loops below over i, j, k scan over the
  468. * load balanced cpusets (using the array of cpuset pointers in
  469. * csa[]) looking for pairs of cpusets that have overlapping
  470. * cpus_allowed, but which don't have the same 'pn' partition
  471. * number and gives them in the same partition number. It keeps
  472. * looping on the 'restart' label until it can no longer find
  473. * any such pairs.
  474. *
  475. * The union of the cpus_allowed masks from the set of
  476. * all cpusets having the same 'pn' value then form the one
  477. * element of the partition (one sched domain) to be passed to
  478. * partition_sched_domains().
  479. */
  480. /* FIXME: see the FIXME in partition_sched_domains() */
  481. static int generate_sched_domains(struct cpumask **domains,
  482. struct sched_domain_attr **attributes)
  483. {
  484. LIST_HEAD(q); /* queue of cpusets to be scanned */
  485. struct cpuset *cp; /* scans q */
  486. struct cpuset **csa; /* array of all cpuset ptrs */
  487. int csn; /* how many cpuset ptrs in csa so far */
  488. int i, j, k; /* indices for partition finding loops */
  489. struct cpumask *doms; /* resulting partition; i.e. sched domains */
  490. struct sched_domain_attr *dattr; /* attributes for custom domains */
  491. int ndoms = 0; /* number of sched domains in result */
  492. int nslot; /* next empty doms[] struct cpumask slot */
  493. doms = NULL;
  494. dattr = NULL;
  495. csa = NULL;
  496. /* Special case for the 99% of systems with one, full, sched domain */
  497. if (is_sched_load_balance(&top_cpuset)) {
  498. doms = kmalloc(cpumask_size(), GFP_KERNEL);
  499. if (!doms)
  500. goto done;
  501. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  502. if (dattr) {
  503. *dattr = SD_ATTR_INIT;
  504. update_domain_attr_tree(dattr, &top_cpuset);
  505. }
  506. cpumask_copy(doms, top_cpuset.cpus_allowed);
  507. ndoms = 1;
  508. goto done;
  509. }
  510. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  511. if (!csa)
  512. goto done;
  513. csn = 0;
  514. list_add(&top_cpuset.stack_list, &q);
  515. while (!list_empty(&q)) {
  516. struct cgroup *cont;
  517. struct cpuset *child; /* scans child cpusets of cp */
  518. cp = list_first_entry(&q, struct cpuset, stack_list);
  519. list_del(q.next);
  520. if (cpumask_empty(cp->cpus_allowed))
  521. continue;
  522. /*
  523. * All child cpusets contain a subset of the parent's cpus, so
  524. * just skip them, and then we call update_domain_attr_tree()
  525. * to calc relax_domain_level of the corresponding sched
  526. * domain.
  527. */
  528. if (is_sched_load_balance(cp)) {
  529. csa[csn++] = cp;
  530. continue;
  531. }
  532. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  533. child = cgroup_cs(cont);
  534. list_add_tail(&child->stack_list, &q);
  535. }
  536. }
  537. for (i = 0; i < csn; i++)
  538. csa[i]->pn = i;
  539. ndoms = csn;
  540. restart:
  541. /* Find the best partition (set of sched domains) */
  542. for (i = 0; i < csn; i++) {
  543. struct cpuset *a = csa[i];
  544. int apn = a->pn;
  545. for (j = 0; j < csn; j++) {
  546. struct cpuset *b = csa[j];
  547. int bpn = b->pn;
  548. if (apn != bpn && cpusets_overlap(a, b)) {
  549. for (k = 0; k < csn; k++) {
  550. struct cpuset *c = csa[k];
  551. if (c->pn == bpn)
  552. c->pn = apn;
  553. }
  554. ndoms--; /* one less element */
  555. goto restart;
  556. }
  557. }
  558. }
  559. /*
  560. * Now we know how many domains to create.
  561. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  562. */
  563. doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
  564. if (!doms)
  565. goto done;
  566. /*
  567. * The rest of the code, including the scheduler, can deal with
  568. * dattr==NULL case. No need to abort if alloc fails.
  569. */
  570. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  571. for (nslot = 0, i = 0; i < csn; i++) {
  572. struct cpuset *a = csa[i];
  573. struct cpumask *dp;
  574. int apn = a->pn;
  575. if (apn < 0) {
  576. /* Skip completed partitions */
  577. continue;
  578. }
  579. dp = doms + nslot;
  580. if (nslot == ndoms) {
  581. static int warnings = 10;
  582. if (warnings) {
  583. printk(KERN_WARNING
  584. "rebuild_sched_domains confused:"
  585. " nslot %d, ndoms %d, csn %d, i %d,"
  586. " apn %d\n",
  587. nslot, ndoms, csn, i, apn);
  588. warnings--;
  589. }
  590. continue;
  591. }
  592. cpumask_clear(dp);
  593. if (dattr)
  594. *(dattr + nslot) = SD_ATTR_INIT;
  595. for (j = i; j < csn; j++) {
  596. struct cpuset *b = csa[j];
  597. if (apn == b->pn) {
  598. cpumask_or(dp, dp, b->cpus_allowed);
  599. if (dattr)
  600. update_domain_attr_tree(dattr + nslot, b);
  601. /* Done with this partition */
  602. b->pn = -1;
  603. }
  604. }
  605. nslot++;
  606. }
  607. BUG_ON(nslot != ndoms);
  608. done:
  609. kfree(csa);
  610. /*
  611. * Fallback to the default domain if kmalloc() failed.
  612. * See comments in partition_sched_domains().
  613. */
  614. if (doms == NULL)
  615. ndoms = 1;
  616. *domains = doms;
  617. *attributes = dattr;
  618. return ndoms;
  619. }
  620. /*
  621. * Rebuild scheduler domains.
  622. *
  623. * Call with neither cgroup_mutex held nor within get_online_cpus().
  624. * Takes both cgroup_mutex and get_online_cpus().
  625. *
  626. * Cannot be directly called from cpuset code handling changes
  627. * to the cpuset pseudo-filesystem, because it cannot be called
  628. * from code that already holds cgroup_mutex.
  629. */
  630. static void do_rebuild_sched_domains(struct work_struct *unused)
  631. {
  632. struct sched_domain_attr *attr;
  633. struct cpumask *doms;
  634. int ndoms;
  635. get_online_cpus();
  636. /* Generate domain masks and attrs */
  637. cgroup_lock();
  638. ndoms = generate_sched_domains(&doms, &attr);
  639. cgroup_unlock();
  640. /* Have scheduler rebuild the domains */
  641. partition_sched_domains(ndoms, doms, attr);
  642. put_online_cpus();
  643. }
  644. #else /* !CONFIG_SMP */
  645. static void do_rebuild_sched_domains(struct work_struct *unused)
  646. {
  647. }
  648. static int generate_sched_domains(struct cpumask **domains,
  649. struct sched_domain_attr **attributes)
  650. {
  651. *domains = NULL;
  652. return 1;
  653. }
  654. #endif /* CONFIG_SMP */
  655. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  656. /*
  657. * Rebuild scheduler domains, asynchronously via workqueue.
  658. *
  659. * If the flag 'sched_load_balance' of any cpuset with non-empty
  660. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  661. * which has that flag enabled, or if any cpuset with a non-empty
  662. * 'cpus' is removed, then call this routine to rebuild the
  663. * scheduler's dynamic sched domains.
  664. *
  665. * The rebuild_sched_domains() and partition_sched_domains()
  666. * routines must nest cgroup_lock() inside get_online_cpus(),
  667. * but such cpuset changes as these must nest that locking the
  668. * other way, holding cgroup_lock() for much of the code.
  669. *
  670. * So in order to avoid an ABBA deadlock, the cpuset code handling
  671. * these user changes delegates the actual sched domain rebuilding
  672. * to a separate workqueue thread, which ends up processing the
  673. * above do_rebuild_sched_domains() function.
  674. */
  675. static void async_rebuild_sched_domains(void)
  676. {
  677. queue_work(cpuset_wq, &rebuild_sched_domains_work);
  678. }
  679. /*
  680. * Accomplishes the same scheduler domain rebuild as the above
  681. * async_rebuild_sched_domains(), however it directly calls the
  682. * rebuild routine synchronously rather than calling it via an
  683. * asynchronous work thread.
  684. *
  685. * This can only be called from code that is not holding
  686. * cgroup_mutex (not nested in a cgroup_lock() call.)
  687. */
  688. void rebuild_sched_domains(void)
  689. {
  690. do_rebuild_sched_domains(NULL);
  691. }
  692. /**
  693. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  694. * @tsk: task to test
  695. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  696. *
  697. * Call with cgroup_mutex held. May take callback_mutex during call.
  698. * Called for each task in a cgroup by cgroup_scan_tasks().
  699. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  700. * words, if its mask is not equal to its cpuset's mask).
  701. */
  702. static int cpuset_test_cpumask(struct task_struct *tsk,
  703. struct cgroup_scanner *scan)
  704. {
  705. return !cpumask_equal(&tsk->cpus_allowed,
  706. (cgroup_cs(scan->cg))->cpus_allowed);
  707. }
  708. /**
  709. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  710. * @tsk: task to test
  711. * @scan: struct cgroup_scanner containing the cgroup of the task
  712. *
  713. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  714. * cpus_allowed mask needs to be changed.
  715. *
  716. * We don't need to re-check for the cgroup/cpuset membership, since we're
  717. * holding cgroup_lock() at this point.
  718. */
  719. static void cpuset_change_cpumask(struct task_struct *tsk,
  720. struct cgroup_scanner *scan)
  721. {
  722. set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
  723. }
  724. /**
  725. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  726. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  727. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  728. *
  729. * Called with cgroup_mutex held
  730. *
  731. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  732. * calling callback functions for each.
  733. *
  734. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  735. * if @heap != NULL.
  736. */
  737. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  738. {
  739. struct cgroup_scanner scan;
  740. scan.cg = cs->css.cgroup;
  741. scan.test_task = cpuset_test_cpumask;
  742. scan.process_task = cpuset_change_cpumask;
  743. scan.heap = heap;
  744. cgroup_scan_tasks(&scan);
  745. }
  746. /**
  747. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  748. * @cs: the cpuset to consider
  749. * @buf: buffer of cpu numbers written to this cpuset
  750. */
  751. static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
  752. const char *buf)
  753. {
  754. struct ptr_heap heap;
  755. int retval;
  756. int is_load_balanced;
  757. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  758. if (cs == &top_cpuset)
  759. return -EACCES;
  760. /*
  761. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  762. * Since cpulist_parse() fails on an empty mask, we special case
  763. * that parsing. The validate_change() call ensures that cpusets
  764. * with tasks have cpus.
  765. */
  766. if (!*buf) {
  767. cpumask_clear(trialcs->cpus_allowed);
  768. } else {
  769. retval = cpulist_parse(buf, trialcs->cpus_allowed);
  770. if (retval < 0)
  771. return retval;
  772. if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
  773. return -EINVAL;
  774. }
  775. retval = validate_change(cs, trialcs);
  776. if (retval < 0)
  777. return retval;
  778. /* Nothing to do if the cpus didn't change */
  779. if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
  780. return 0;
  781. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  782. if (retval)
  783. return retval;
  784. is_load_balanced = is_sched_load_balance(trialcs);
  785. mutex_lock(&callback_mutex);
  786. cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
  787. mutex_unlock(&callback_mutex);
  788. /*
  789. * Scan tasks in the cpuset, and update the cpumasks of any
  790. * that need an update.
  791. */
  792. update_tasks_cpumask(cs, &heap);
  793. heap_free(&heap);
  794. if (is_load_balanced)
  795. async_rebuild_sched_domains();
  796. return 0;
  797. }
  798. /*
  799. * cpuset_migrate_mm
  800. *
  801. * Migrate memory region from one set of nodes to another.
  802. *
  803. * Temporarilly set tasks mems_allowed to target nodes of migration,
  804. * so that the migration code can allocate pages on these nodes.
  805. *
  806. * Call holding cgroup_mutex, so current's cpuset won't change
  807. * during this call, as manage_mutex holds off any cpuset_attach()
  808. * calls. Therefore we don't need to take task_lock around the
  809. * call to guarantee_online_mems(), as we know no one is changing
  810. * our task's cpuset.
  811. *
  812. * Hold callback_mutex around the two modifications of our tasks
  813. * mems_allowed to synchronize with cpuset_mems_allowed().
  814. *
  815. * While the mm_struct we are migrating is typically from some
  816. * other task, the task_struct mems_allowed that we are hacking
  817. * is for our current task, which must allocate new pages for that
  818. * migrating memory region.
  819. */
  820. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  821. const nodemask_t *to)
  822. {
  823. struct task_struct *tsk = current;
  824. tsk->mems_allowed = *to;
  825. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  826. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  827. }
  828. /*
  829. * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
  830. * @tsk: the task to change
  831. * @newmems: new nodes that the task will be set
  832. *
  833. * In order to avoid seeing no nodes if the old and new nodes are disjoint,
  834. * we structure updates as setting all new allowed nodes, then clearing newly
  835. * disallowed ones.
  836. *
  837. * Called with task's alloc_lock held
  838. */
  839. static void cpuset_change_task_nodemask(struct task_struct *tsk,
  840. nodemask_t *newmems)
  841. {
  842. nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
  843. mpol_rebind_task(tsk, &tsk->mems_allowed);
  844. mpol_rebind_task(tsk, newmems);
  845. tsk->mems_allowed = *newmems;
  846. }
  847. /*
  848. * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
  849. * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
  850. * memory_migrate flag is set. Called with cgroup_mutex held.
  851. */
  852. static void cpuset_change_nodemask(struct task_struct *p,
  853. struct cgroup_scanner *scan)
  854. {
  855. struct mm_struct *mm;
  856. struct cpuset *cs;
  857. int migrate;
  858. const nodemask_t *oldmem = scan->data;
  859. nodemask_t newmems;
  860. cs = cgroup_cs(scan->cg);
  861. guarantee_online_mems(cs, &newmems);
  862. task_lock(p);
  863. cpuset_change_task_nodemask(p, &newmems);
  864. task_unlock(p);
  865. mm = get_task_mm(p);
  866. if (!mm)
  867. return;
  868. migrate = is_memory_migrate(cs);
  869. mpol_rebind_mm(mm, &cs->mems_allowed);
  870. if (migrate)
  871. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  872. mmput(mm);
  873. }
  874. static void *cpuset_being_rebound;
  875. /**
  876. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  877. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  878. * @oldmem: old mems_allowed of cpuset cs
  879. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  880. *
  881. * Called with cgroup_mutex held
  882. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  883. * if @heap != NULL.
  884. */
  885. static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
  886. struct ptr_heap *heap)
  887. {
  888. struct cgroup_scanner scan;
  889. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  890. scan.cg = cs->css.cgroup;
  891. scan.test_task = NULL;
  892. scan.process_task = cpuset_change_nodemask;
  893. scan.heap = heap;
  894. scan.data = (nodemask_t *)oldmem;
  895. /*
  896. * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
  897. * take while holding tasklist_lock. Forks can happen - the
  898. * mpol_dup() cpuset_being_rebound check will catch such forks,
  899. * and rebind their vma mempolicies too. Because we still hold
  900. * the global cgroup_mutex, we know that no other rebind effort
  901. * will be contending for the global variable cpuset_being_rebound.
  902. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  903. * is idempotent. Also migrate pages in each mm to new nodes.
  904. */
  905. cgroup_scan_tasks(&scan);
  906. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  907. cpuset_being_rebound = NULL;
  908. }
  909. /*
  910. * Handle user request to change the 'mems' memory placement
  911. * of a cpuset. Needs to validate the request, update the
  912. * cpusets mems_allowed, and for each task in the cpuset,
  913. * update mems_allowed and rebind task's mempolicy and any vma
  914. * mempolicies and if the cpuset is marked 'memory_migrate',
  915. * migrate the tasks pages to the new memory.
  916. *
  917. * Call with cgroup_mutex held. May take callback_mutex during call.
  918. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  919. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  920. * their mempolicies to the cpusets new mems_allowed.
  921. */
  922. static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
  923. const char *buf)
  924. {
  925. nodemask_t oldmem;
  926. int retval;
  927. struct ptr_heap heap;
  928. /*
  929. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  930. * it's read-only
  931. */
  932. if (cs == &top_cpuset)
  933. return -EACCES;
  934. /*
  935. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  936. * Since nodelist_parse() fails on an empty mask, we special case
  937. * that parsing. The validate_change() call ensures that cpusets
  938. * with tasks have memory.
  939. */
  940. if (!*buf) {
  941. nodes_clear(trialcs->mems_allowed);
  942. } else {
  943. retval = nodelist_parse(buf, trialcs->mems_allowed);
  944. if (retval < 0)
  945. goto done;
  946. if (!nodes_subset(trialcs->mems_allowed,
  947. node_states[N_HIGH_MEMORY]))
  948. return -EINVAL;
  949. }
  950. oldmem = cs->mems_allowed;
  951. if (nodes_equal(oldmem, trialcs->mems_allowed)) {
  952. retval = 0; /* Too easy - nothing to do */
  953. goto done;
  954. }
  955. retval = validate_change(cs, trialcs);
  956. if (retval < 0)
  957. goto done;
  958. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  959. if (retval < 0)
  960. goto done;
  961. mutex_lock(&callback_mutex);
  962. cs->mems_allowed = trialcs->mems_allowed;
  963. mutex_unlock(&callback_mutex);
  964. update_tasks_nodemask(cs, &oldmem, &heap);
  965. heap_free(&heap);
  966. done:
  967. return retval;
  968. }
  969. int current_cpuset_is_being_rebound(void)
  970. {
  971. return task_cs(current) == cpuset_being_rebound;
  972. }
  973. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  974. {
  975. #ifdef CONFIG_SMP
  976. if (val < -1 || val >= SD_LV_MAX)
  977. return -EINVAL;
  978. #endif
  979. if (val != cs->relax_domain_level) {
  980. cs->relax_domain_level = val;
  981. if (!cpumask_empty(cs->cpus_allowed) &&
  982. is_sched_load_balance(cs))
  983. async_rebuild_sched_domains();
  984. }
  985. return 0;
  986. }
  987. /*
  988. * cpuset_change_flag - make a task's spread flags the same as its cpuset's
  989. * @tsk: task to be updated
  990. * @scan: struct cgroup_scanner containing the cgroup of the task
  991. *
  992. * Called by cgroup_scan_tasks() for each task in a cgroup.
  993. *
  994. * We don't need to re-check for the cgroup/cpuset membership, since we're
  995. * holding cgroup_lock() at this point.
  996. */
  997. static void cpuset_change_flag(struct task_struct *tsk,
  998. struct cgroup_scanner *scan)
  999. {
  1000. cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
  1001. }
  1002. /*
  1003. * update_tasks_flags - update the spread flags of tasks in the cpuset.
  1004. * @cs: the cpuset in which each task's spread flags needs to be changed
  1005. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  1006. *
  1007. * Called with cgroup_mutex held
  1008. *
  1009. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1010. * calling callback functions for each.
  1011. *
  1012. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  1013. * if @heap != NULL.
  1014. */
  1015. static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
  1016. {
  1017. struct cgroup_scanner scan;
  1018. scan.cg = cs->css.cgroup;
  1019. scan.test_task = NULL;
  1020. scan.process_task = cpuset_change_flag;
  1021. scan.heap = heap;
  1022. cgroup_scan_tasks(&scan);
  1023. }
  1024. /*
  1025. * update_flag - read a 0 or a 1 in a file and update associated flag
  1026. * bit: the bit to update (see cpuset_flagbits_t)
  1027. * cs: the cpuset to update
  1028. * turning_on: whether the flag is being set or cleared
  1029. *
  1030. * Call with cgroup_mutex held.
  1031. */
  1032. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1033. int turning_on)
  1034. {
  1035. struct cpuset *trialcs;
  1036. int balance_flag_changed;
  1037. int spread_flag_changed;
  1038. struct ptr_heap heap;
  1039. int err;
  1040. trialcs = alloc_trial_cpuset(cs);
  1041. if (!trialcs)
  1042. return -ENOMEM;
  1043. if (turning_on)
  1044. set_bit(bit, &trialcs->flags);
  1045. else
  1046. clear_bit(bit, &trialcs->flags);
  1047. err = validate_change(cs, trialcs);
  1048. if (err < 0)
  1049. goto out;
  1050. err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  1051. if (err < 0)
  1052. goto out;
  1053. balance_flag_changed = (is_sched_load_balance(cs) !=
  1054. is_sched_load_balance(trialcs));
  1055. spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
  1056. || (is_spread_page(cs) != is_spread_page(trialcs)));
  1057. mutex_lock(&callback_mutex);
  1058. cs->flags = trialcs->flags;
  1059. mutex_unlock(&callback_mutex);
  1060. if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
  1061. async_rebuild_sched_domains();
  1062. if (spread_flag_changed)
  1063. update_tasks_flags(cs, &heap);
  1064. heap_free(&heap);
  1065. out:
  1066. free_trial_cpuset(trialcs);
  1067. return err;
  1068. }
  1069. /*
  1070. * Frequency meter - How fast is some event occurring?
  1071. *
  1072. * These routines manage a digitally filtered, constant time based,
  1073. * event frequency meter. There are four routines:
  1074. * fmeter_init() - initialize a frequency meter.
  1075. * fmeter_markevent() - called each time the event happens.
  1076. * fmeter_getrate() - returns the recent rate of such events.
  1077. * fmeter_update() - internal routine used to update fmeter.
  1078. *
  1079. * A common data structure is passed to each of these routines,
  1080. * which is used to keep track of the state required to manage the
  1081. * frequency meter and its digital filter.
  1082. *
  1083. * The filter works on the number of events marked per unit time.
  1084. * The filter is single-pole low-pass recursive (IIR). The time unit
  1085. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1086. * simulate 3 decimal digits of precision (multiplied by 1000).
  1087. *
  1088. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1089. * has a half-life of 10 seconds, meaning that if the events quit
  1090. * happening, then the rate returned from the fmeter_getrate()
  1091. * will be cut in half each 10 seconds, until it converges to zero.
  1092. *
  1093. * It is not worth doing a real infinitely recursive filter. If more
  1094. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1095. * just compute FM_MAXTICKS ticks worth, by which point the level
  1096. * will be stable.
  1097. *
  1098. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1099. * arithmetic overflow in the fmeter_update() routine.
  1100. *
  1101. * Given the simple 32 bit integer arithmetic used, this meter works
  1102. * best for reporting rates between one per millisecond (msec) and
  1103. * one per 32 (approx) seconds. At constant rates faster than one
  1104. * per msec it maxes out at values just under 1,000,000. At constant
  1105. * rates between one per msec, and one per second it will stabilize
  1106. * to a value N*1000, where N is the rate of events per second.
  1107. * At constant rates between one per second and one per 32 seconds,
  1108. * it will be choppy, moving up on the seconds that have an event,
  1109. * and then decaying until the next event. At rates slower than
  1110. * about one in 32 seconds, it decays all the way back to zero between
  1111. * each event.
  1112. */
  1113. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1114. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1115. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1116. #define FM_SCALE 1000 /* faux fixed point scale */
  1117. /* Initialize a frequency meter */
  1118. static void fmeter_init(struct fmeter *fmp)
  1119. {
  1120. fmp->cnt = 0;
  1121. fmp->val = 0;
  1122. fmp->time = 0;
  1123. spin_lock_init(&fmp->lock);
  1124. }
  1125. /* Internal meter update - process cnt events and update value */
  1126. static void fmeter_update(struct fmeter *fmp)
  1127. {
  1128. time_t now = get_seconds();
  1129. time_t ticks = now - fmp->time;
  1130. if (ticks == 0)
  1131. return;
  1132. ticks = min(FM_MAXTICKS, ticks);
  1133. while (ticks-- > 0)
  1134. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1135. fmp->time = now;
  1136. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1137. fmp->cnt = 0;
  1138. }
  1139. /* Process any previous ticks, then bump cnt by one (times scale). */
  1140. static void fmeter_markevent(struct fmeter *fmp)
  1141. {
  1142. spin_lock(&fmp->lock);
  1143. fmeter_update(fmp);
  1144. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1145. spin_unlock(&fmp->lock);
  1146. }
  1147. /* Process any previous ticks, then return current value. */
  1148. static int fmeter_getrate(struct fmeter *fmp)
  1149. {
  1150. int val;
  1151. spin_lock(&fmp->lock);
  1152. fmeter_update(fmp);
  1153. val = fmp->val;
  1154. spin_unlock(&fmp->lock);
  1155. return val;
  1156. }
  1157. /* Protected by cgroup_lock */
  1158. static cpumask_var_t cpus_attach;
  1159. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1160. static int cpuset_can_attach(struct cgroup_subsys *ss, struct cgroup *cont,
  1161. struct task_struct *tsk, bool threadgroup)
  1162. {
  1163. int ret;
  1164. struct cpuset *cs = cgroup_cs(cont);
  1165. if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1166. return -ENOSPC;
  1167. /*
  1168. * Kthreads bound to specific cpus cannot be moved to a new cpuset; we
  1169. * cannot change their cpu affinity and isolating such threads by their
  1170. * set of allowed nodes is unnecessary. Thus, cpusets are not
  1171. * applicable for such threads. This prevents checking for success of
  1172. * set_cpus_allowed_ptr() on all attached tasks before cpus_allowed may
  1173. * be changed.
  1174. */
  1175. if (tsk->flags & PF_THREAD_BOUND)
  1176. return -EINVAL;
  1177. ret = security_task_setscheduler(tsk, 0, NULL);
  1178. if (ret)
  1179. return ret;
  1180. if (threadgroup) {
  1181. struct task_struct *c;
  1182. rcu_read_lock();
  1183. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  1184. ret = security_task_setscheduler(c, 0, NULL);
  1185. if (ret) {
  1186. rcu_read_unlock();
  1187. return ret;
  1188. }
  1189. }
  1190. rcu_read_unlock();
  1191. }
  1192. return 0;
  1193. }
  1194. static void cpuset_attach_task(struct task_struct *tsk, nodemask_t *to,
  1195. struct cpuset *cs)
  1196. {
  1197. int err;
  1198. /*
  1199. * can_attach beforehand should guarantee that this doesn't fail.
  1200. * TODO: have a better way to handle failure here
  1201. */
  1202. err = set_cpus_allowed_ptr(tsk, cpus_attach);
  1203. WARN_ON_ONCE(err);
  1204. task_lock(tsk);
  1205. cpuset_change_task_nodemask(tsk, to);
  1206. task_unlock(tsk);
  1207. cpuset_update_task_spread_flag(cs, tsk);
  1208. }
  1209. static void cpuset_attach(struct cgroup_subsys *ss, struct cgroup *cont,
  1210. struct cgroup *oldcont, struct task_struct *tsk,
  1211. bool threadgroup)
  1212. {
  1213. nodemask_t from, to;
  1214. struct mm_struct *mm;
  1215. struct cpuset *cs = cgroup_cs(cont);
  1216. struct cpuset *oldcs = cgroup_cs(oldcont);
  1217. if (cs == &top_cpuset) {
  1218. cpumask_copy(cpus_attach, cpu_possible_mask);
  1219. to = node_possible_map;
  1220. } else {
  1221. guarantee_online_cpus(cs, cpus_attach);
  1222. guarantee_online_mems(cs, &to);
  1223. }
  1224. /* do per-task migration stuff possibly for each in the threadgroup */
  1225. cpuset_attach_task(tsk, &to, cs);
  1226. if (threadgroup) {
  1227. struct task_struct *c;
  1228. rcu_read_lock();
  1229. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  1230. cpuset_attach_task(c, &to, cs);
  1231. }
  1232. rcu_read_unlock();
  1233. }
  1234. /* change mm; only needs to be done once even if threadgroup */
  1235. from = oldcs->mems_allowed;
  1236. to = cs->mems_allowed;
  1237. mm = get_task_mm(tsk);
  1238. if (mm) {
  1239. mpol_rebind_mm(mm, &to);
  1240. if (is_memory_migrate(cs))
  1241. cpuset_migrate_mm(mm, &from, &to);
  1242. mmput(mm);
  1243. }
  1244. }
  1245. /* The various types of files and directories in a cpuset file system */
  1246. typedef enum {
  1247. FILE_MEMORY_MIGRATE,
  1248. FILE_CPULIST,
  1249. FILE_MEMLIST,
  1250. FILE_CPU_EXCLUSIVE,
  1251. FILE_MEM_EXCLUSIVE,
  1252. FILE_MEM_HARDWALL,
  1253. FILE_SCHED_LOAD_BALANCE,
  1254. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1255. FILE_MEMORY_PRESSURE_ENABLED,
  1256. FILE_MEMORY_PRESSURE,
  1257. FILE_SPREAD_PAGE,
  1258. FILE_SPREAD_SLAB,
  1259. } cpuset_filetype_t;
  1260. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1261. {
  1262. int retval = 0;
  1263. struct cpuset *cs = cgroup_cs(cgrp);
  1264. cpuset_filetype_t type = cft->private;
  1265. if (!cgroup_lock_live_group(cgrp))
  1266. return -ENODEV;
  1267. switch (type) {
  1268. case FILE_CPU_EXCLUSIVE:
  1269. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1270. break;
  1271. case FILE_MEM_EXCLUSIVE:
  1272. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1273. break;
  1274. case FILE_MEM_HARDWALL:
  1275. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1276. break;
  1277. case FILE_SCHED_LOAD_BALANCE:
  1278. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1279. break;
  1280. case FILE_MEMORY_MIGRATE:
  1281. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1282. break;
  1283. case FILE_MEMORY_PRESSURE_ENABLED:
  1284. cpuset_memory_pressure_enabled = !!val;
  1285. break;
  1286. case FILE_MEMORY_PRESSURE:
  1287. retval = -EACCES;
  1288. break;
  1289. case FILE_SPREAD_PAGE:
  1290. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1291. break;
  1292. case FILE_SPREAD_SLAB:
  1293. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1294. break;
  1295. default:
  1296. retval = -EINVAL;
  1297. break;
  1298. }
  1299. cgroup_unlock();
  1300. return retval;
  1301. }
  1302. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1303. {
  1304. int retval = 0;
  1305. struct cpuset *cs = cgroup_cs(cgrp);
  1306. cpuset_filetype_t type = cft->private;
  1307. if (!cgroup_lock_live_group(cgrp))
  1308. return -ENODEV;
  1309. switch (type) {
  1310. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1311. retval = update_relax_domain_level(cs, val);
  1312. break;
  1313. default:
  1314. retval = -EINVAL;
  1315. break;
  1316. }
  1317. cgroup_unlock();
  1318. return retval;
  1319. }
  1320. /*
  1321. * Common handling for a write to a "cpus" or "mems" file.
  1322. */
  1323. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1324. const char *buf)
  1325. {
  1326. int retval = 0;
  1327. struct cpuset *cs = cgroup_cs(cgrp);
  1328. struct cpuset *trialcs;
  1329. if (!cgroup_lock_live_group(cgrp))
  1330. return -ENODEV;
  1331. trialcs = alloc_trial_cpuset(cs);
  1332. if (!trialcs)
  1333. return -ENOMEM;
  1334. switch (cft->private) {
  1335. case FILE_CPULIST:
  1336. retval = update_cpumask(cs, trialcs, buf);
  1337. break;
  1338. case FILE_MEMLIST:
  1339. retval = update_nodemask(cs, trialcs, buf);
  1340. break;
  1341. default:
  1342. retval = -EINVAL;
  1343. break;
  1344. }
  1345. free_trial_cpuset(trialcs);
  1346. cgroup_unlock();
  1347. return retval;
  1348. }
  1349. /*
  1350. * These ascii lists should be read in a single call, by using a user
  1351. * buffer large enough to hold the entire map. If read in smaller
  1352. * chunks, there is no guarantee of atomicity. Since the display format
  1353. * used, list of ranges of sequential numbers, is variable length,
  1354. * and since these maps can change value dynamically, one could read
  1355. * gibberish by doing partial reads while a list was changing.
  1356. * A single large read to a buffer that crosses a page boundary is
  1357. * ok, because the result being copied to user land is not recomputed
  1358. * across a page fault.
  1359. */
  1360. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1361. {
  1362. int ret;
  1363. mutex_lock(&callback_mutex);
  1364. ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
  1365. mutex_unlock(&callback_mutex);
  1366. return ret;
  1367. }
  1368. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1369. {
  1370. nodemask_t mask;
  1371. mutex_lock(&callback_mutex);
  1372. mask = cs->mems_allowed;
  1373. mutex_unlock(&callback_mutex);
  1374. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1375. }
  1376. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1377. struct cftype *cft,
  1378. struct file *file,
  1379. char __user *buf,
  1380. size_t nbytes, loff_t *ppos)
  1381. {
  1382. struct cpuset *cs = cgroup_cs(cont);
  1383. cpuset_filetype_t type = cft->private;
  1384. char *page;
  1385. ssize_t retval = 0;
  1386. char *s;
  1387. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1388. return -ENOMEM;
  1389. s = page;
  1390. switch (type) {
  1391. case FILE_CPULIST:
  1392. s += cpuset_sprintf_cpulist(s, cs);
  1393. break;
  1394. case FILE_MEMLIST:
  1395. s += cpuset_sprintf_memlist(s, cs);
  1396. break;
  1397. default:
  1398. retval = -EINVAL;
  1399. goto out;
  1400. }
  1401. *s++ = '\n';
  1402. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1403. out:
  1404. free_page((unsigned long)page);
  1405. return retval;
  1406. }
  1407. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1408. {
  1409. struct cpuset *cs = cgroup_cs(cont);
  1410. cpuset_filetype_t type = cft->private;
  1411. switch (type) {
  1412. case FILE_CPU_EXCLUSIVE:
  1413. return is_cpu_exclusive(cs);
  1414. case FILE_MEM_EXCLUSIVE:
  1415. return is_mem_exclusive(cs);
  1416. case FILE_MEM_HARDWALL:
  1417. return is_mem_hardwall(cs);
  1418. case FILE_SCHED_LOAD_BALANCE:
  1419. return is_sched_load_balance(cs);
  1420. case FILE_MEMORY_MIGRATE:
  1421. return is_memory_migrate(cs);
  1422. case FILE_MEMORY_PRESSURE_ENABLED:
  1423. return cpuset_memory_pressure_enabled;
  1424. case FILE_MEMORY_PRESSURE:
  1425. return fmeter_getrate(&cs->fmeter);
  1426. case FILE_SPREAD_PAGE:
  1427. return is_spread_page(cs);
  1428. case FILE_SPREAD_SLAB:
  1429. return is_spread_slab(cs);
  1430. default:
  1431. BUG();
  1432. }
  1433. /* Unreachable but makes gcc happy */
  1434. return 0;
  1435. }
  1436. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1437. {
  1438. struct cpuset *cs = cgroup_cs(cont);
  1439. cpuset_filetype_t type = cft->private;
  1440. switch (type) {
  1441. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1442. return cs->relax_domain_level;
  1443. default:
  1444. BUG();
  1445. }
  1446. /* Unrechable but makes gcc happy */
  1447. return 0;
  1448. }
  1449. /*
  1450. * for the common functions, 'private' gives the type of file
  1451. */
  1452. static struct cftype files[] = {
  1453. {
  1454. .name = "cpus",
  1455. .read = cpuset_common_file_read,
  1456. .write_string = cpuset_write_resmask,
  1457. .max_write_len = (100U + 6 * NR_CPUS),
  1458. .private = FILE_CPULIST,
  1459. },
  1460. {
  1461. .name = "mems",
  1462. .read = cpuset_common_file_read,
  1463. .write_string = cpuset_write_resmask,
  1464. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1465. .private = FILE_MEMLIST,
  1466. },
  1467. {
  1468. .name = "cpu_exclusive",
  1469. .read_u64 = cpuset_read_u64,
  1470. .write_u64 = cpuset_write_u64,
  1471. .private = FILE_CPU_EXCLUSIVE,
  1472. },
  1473. {
  1474. .name = "mem_exclusive",
  1475. .read_u64 = cpuset_read_u64,
  1476. .write_u64 = cpuset_write_u64,
  1477. .private = FILE_MEM_EXCLUSIVE,
  1478. },
  1479. {
  1480. .name = "mem_hardwall",
  1481. .read_u64 = cpuset_read_u64,
  1482. .write_u64 = cpuset_write_u64,
  1483. .private = FILE_MEM_HARDWALL,
  1484. },
  1485. {
  1486. .name = "sched_load_balance",
  1487. .read_u64 = cpuset_read_u64,
  1488. .write_u64 = cpuset_write_u64,
  1489. .private = FILE_SCHED_LOAD_BALANCE,
  1490. },
  1491. {
  1492. .name = "sched_relax_domain_level",
  1493. .read_s64 = cpuset_read_s64,
  1494. .write_s64 = cpuset_write_s64,
  1495. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1496. },
  1497. {
  1498. .name = "memory_migrate",
  1499. .read_u64 = cpuset_read_u64,
  1500. .write_u64 = cpuset_write_u64,
  1501. .private = FILE_MEMORY_MIGRATE,
  1502. },
  1503. {
  1504. .name = "memory_pressure",
  1505. .read_u64 = cpuset_read_u64,
  1506. .write_u64 = cpuset_write_u64,
  1507. .private = FILE_MEMORY_PRESSURE,
  1508. .mode = S_IRUGO,
  1509. },
  1510. {
  1511. .name = "memory_spread_page",
  1512. .read_u64 = cpuset_read_u64,
  1513. .write_u64 = cpuset_write_u64,
  1514. .private = FILE_SPREAD_PAGE,
  1515. },
  1516. {
  1517. .name = "memory_spread_slab",
  1518. .read_u64 = cpuset_read_u64,
  1519. .write_u64 = cpuset_write_u64,
  1520. .private = FILE_SPREAD_SLAB,
  1521. },
  1522. };
  1523. static struct cftype cft_memory_pressure_enabled = {
  1524. .name = "memory_pressure_enabled",
  1525. .read_u64 = cpuset_read_u64,
  1526. .write_u64 = cpuset_write_u64,
  1527. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1528. };
  1529. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1530. {
  1531. int err;
  1532. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1533. if (err)
  1534. return err;
  1535. /* memory_pressure_enabled is in root cpuset only */
  1536. if (!cont->parent)
  1537. err = cgroup_add_file(cont, ss,
  1538. &cft_memory_pressure_enabled);
  1539. return err;
  1540. }
  1541. /*
  1542. * post_clone() is called at the end of cgroup_clone().
  1543. * 'cgroup' was just created automatically as a result of
  1544. * a cgroup_clone(), and the current task is about to
  1545. * be moved into 'cgroup'.
  1546. *
  1547. * Currently we refuse to set up the cgroup - thereby
  1548. * refusing the task to be entered, and as a result refusing
  1549. * the sys_unshare() or clone() which initiated it - if any
  1550. * sibling cpusets have exclusive cpus or mem.
  1551. *
  1552. * If this becomes a problem for some users who wish to
  1553. * allow that scenario, then cpuset_post_clone() could be
  1554. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1555. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1556. * held.
  1557. */
  1558. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1559. struct cgroup *cgroup)
  1560. {
  1561. struct cgroup *parent, *child;
  1562. struct cpuset *cs, *parent_cs;
  1563. parent = cgroup->parent;
  1564. list_for_each_entry(child, &parent->children, sibling) {
  1565. cs = cgroup_cs(child);
  1566. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1567. return;
  1568. }
  1569. cs = cgroup_cs(cgroup);
  1570. parent_cs = cgroup_cs(parent);
  1571. cs->mems_allowed = parent_cs->mems_allowed;
  1572. cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
  1573. return;
  1574. }
  1575. /*
  1576. * cpuset_create - create a cpuset
  1577. * ss: cpuset cgroup subsystem
  1578. * cont: control group that the new cpuset will be part of
  1579. */
  1580. static struct cgroup_subsys_state *cpuset_create(
  1581. struct cgroup_subsys *ss,
  1582. struct cgroup *cont)
  1583. {
  1584. struct cpuset *cs;
  1585. struct cpuset *parent;
  1586. if (!cont->parent) {
  1587. return &top_cpuset.css;
  1588. }
  1589. parent = cgroup_cs(cont->parent);
  1590. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1591. if (!cs)
  1592. return ERR_PTR(-ENOMEM);
  1593. if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
  1594. kfree(cs);
  1595. return ERR_PTR(-ENOMEM);
  1596. }
  1597. cs->flags = 0;
  1598. if (is_spread_page(parent))
  1599. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1600. if (is_spread_slab(parent))
  1601. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1602. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1603. cpumask_clear(cs->cpus_allowed);
  1604. nodes_clear(cs->mems_allowed);
  1605. fmeter_init(&cs->fmeter);
  1606. cs->relax_domain_level = -1;
  1607. cs->parent = parent;
  1608. number_of_cpusets++;
  1609. return &cs->css ;
  1610. }
  1611. /*
  1612. * If the cpuset being removed has its flag 'sched_load_balance'
  1613. * enabled, then simulate turning sched_load_balance off, which
  1614. * will call async_rebuild_sched_domains().
  1615. */
  1616. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1617. {
  1618. struct cpuset *cs = cgroup_cs(cont);
  1619. if (is_sched_load_balance(cs))
  1620. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1621. number_of_cpusets--;
  1622. free_cpumask_var(cs->cpus_allowed);
  1623. kfree(cs);
  1624. }
  1625. struct cgroup_subsys cpuset_subsys = {
  1626. .name = "cpuset",
  1627. .create = cpuset_create,
  1628. .destroy = cpuset_destroy,
  1629. .can_attach = cpuset_can_attach,
  1630. .attach = cpuset_attach,
  1631. .populate = cpuset_populate,
  1632. .post_clone = cpuset_post_clone,
  1633. .subsys_id = cpuset_subsys_id,
  1634. .early_init = 1,
  1635. };
  1636. /**
  1637. * cpuset_init - initialize cpusets at system boot
  1638. *
  1639. * Description: Initialize top_cpuset and the cpuset internal file system,
  1640. **/
  1641. int __init cpuset_init(void)
  1642. {
  1643. int err = 0;
  1644. if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
  1645. BUG();
  1646. cpumask_setall(top_cpuset.cpus_allowed);
  1647. nodes_setall(top_cpuset.mems_allowed);
  1648. fmeter_init(&top_cpuset.fmeter);
  1649. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1650. top_cpuset.relax_domain_level = -1;
  1651. err = register_filesystem(&cpuset_fs_type);
  1652. if (err < 0)
  1653. return err;
  1654. if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
  1655. BUG();
  1656. number_of_cpusets = 1;
  1657. return 0;
  1658. }
  1659. /**
  1660. * cpuset_do_move_task - move a given task to another cpuset
  1661. * @tsk: pointer to task_struct the task to move
  1662. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1663. *
  1664. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1665. * Return nonzero to stop the walk through the tasks.
  1666. */
  1667. static void cpuset_do_move_task(struct task_struct *tsk,
  1668. struct cgroup_scanner *scan)
  1669. {
  1670. struct cgroup *new_cgroup = scan->data;
  1671. cgroup_attach_task(new_cgroup, tsk);
  1672. }
  1673. /**
  1674. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1675. * @from: cpuset in which the tasks currently reside
  1676. * @to: cpuset to which the tasks will be moved
  1677. *
  1678. * Called with cgroup_mutex held
  1679. * callback_mutex must not be held, as cpuset_attach() will take it.
  1680. *
  1681. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1682. * calling callback functions for each.
  1683. */
  1684. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1685. {
  1686. struct cgroup_scanner scan;
  1687. scan.cg = from->css.cgroup;
  1688. scan.test_task = NULL; /* select all tasks in cgroup */
  1689. scan.process_task = cpuset_do_move_task;
  1690. scan.heap = NULL;
  1691. scan.data = to->css.cgroup;
  1692. if (cgroup_scan_tasks(&scan))
  1693. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1694. "cgroup_scan_tasks failed\n");
  1695. }
  1696. /*
  1697. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1698. * or memory nodes, we need to walk over the cpuset hierarchy,
  1699. * removing that CPU or node from all cpusets. If this removes the
  1700. * last CPU or node from a cpuset, then move the tasks in the empty
  1701. * cpuset to its next-highest non-empty parent.
  1702. *
  1703. * Called with cgroup_mutex held
  1704. * callback_mutex must not be held, as cpuset_attach() will take it.
  1705. */
  1706. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1707. {
  1708. struct cpuset *parent;
  1709. /*
  1710. * The cgroup's css_sets list is in use if there are tasks
  1711. * in the cpuset; the list is empty if there are none;
  1712. * the cs->css.refcnt seems always 0.
  1713. */
  1714. if (list_empty(&cs->css.cgroup->css_sets))
  1715. return;
  1716. /*
  1717. * Find its next-highest non-empty parent, (top cpuset
  1718. * has online cpus, so can't be empty).
  1719. */
  1720. parent = cs->parent;
  1721. while (cpumask_empty(parent->cpus_allowed) ||
  1722. nodes_empty(parent->mems_allowed))
  1723. parent = parent->parent;
  1724. move_member_tasks_to_cpuset(cs, parent);
  1725. }
  1726. /*
  1727. * Walk the specified cpuset subtree and look for empty cpusets.
  1728. * The tasks of such cpuset must be moved to a parent cpuset.
  1729. *
  1730. * Called with cgroup_mutex held. We take callback_mutex to modify
  1731. * cpus_allowed and mems_allowed.
  1732. *
  1733. * This walk processes the tree from top to bottom, completing one layer
  1734. * before dropping down to the next. It always processes a node before
  1735. * any of its children.
  1736. *
  1737. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1738. * that has tasks along with an empty 'mems'. But if we did see such
  1739. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1740. */
  1741. static void scan_for_empty_cpusets(struct cpuset *root)
  1742. {
  1743. LIST_HEAD(queue);
  1744. struct cpuset *cp; /* scans cpusets being updated */
  1745. struct cpuset *child; /* scans child cpusets of cp */
  1746. struct cgroup *cont;
  1747. nodemask_t oldmems;
  1748. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1749. while (!list_empty(&queue)) {
  1750. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1751. list_del(queue.next);
  1752. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1753. child = cgroup_cs(cont);
  1754. list_add_tail(&child->stack_list, &queue);
  1755. }
  1756. /* Continue past cpusets with all cpus, mems online */
  1757. if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
  1758. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1759. continue;
  1760. oldmems = cp->mems_allowed;
  1761. /* Remove offline cpus and mems from this cpuset. */
  1762. mutex_lock(&callback_mutex);
  1763. cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
  1764. cpu_online_mask);
  1765. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1766. node_states[N_HIGH_MEMORY]);
  1767. mutex_unlock(&callback_mutex);
  1768. /* Move tasks from the empty cpuset to a parent */
  1769. if (cpumask_empty(cp->cpus_allowed) ||
  1770. nodes_empty(cp->mems_allowed))
  1771. remove_tasks_in_empty_cpuset(cp);
  1772. else {
  1773. update_tasks_cpumask(cp, NULL);
  1774. update_tasks_nodemask(cp, &oldmems, NULL);
  1775. }
  1776. }
  1777. }
  1778. /*
  1779. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1780. * period. This is necessary in order to make cpusets transparent
  1781. * (of no affect) on systems that are actively using CPU hotplug
  1782. * but making no active use of cpusets.
  1783. *
  1784. * This routine ensures that top_cpuset.cpus_allowed tracks
  1785. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1786. *
  1787. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1788. * before calling generate_sched_domains().
  1789. */
  1790. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1791. unsigned long phase, void *unused_cpu)
  1792. {
  1793. struct sched_domain_attr *attr;
  1794. struct cpumask *doms;
  1795. int ndoms;
  1796. switch (phase) {
  1797. case CPU_ONLINE:
  1798. case CPU_ONLINE_FROZEN:
  1799. case CPU_DEAD:
  1800. case CPU_DEAD_FROZEN:
  1801. break;
  1802. default:
  1803. return NOTIFY_DONE;
  1804. }
  1805. cgroup_lock();
  1806. mutex_lock(&callback_mutex);
  1807. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1808. mutex_unlock(&callback_mutex);
  1809. scan_for_empty_cpusets(&top_cpuset);
  1810. ndoms = generate_sched_domains(&doms, &attr);
  1811. cgroup_unlock();
  1812. /* Have scheduler rebuild the domains */
  1813. partition_sched_domains(ndoms, doms, attr);
  1814. return NOTIFY_OK;
  1815. }
  1816. #ifdef CONFIG_MEMORY_HOTPLUG
  1817. /*
  1818. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1819. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1820. * See also the previous routine cpuset_track_online_cpus().
  1821. */
  1822. static int cpuset_track_online_nodes(struct notifier_block *self,
  1823. unsigned long action, void *arg)
  1824. {
  1825. cgroup_lock();
  1826. switch (action) {
  1827. case MEM_ONLINE:
  1828. case MEM_OFFLINE:
  1829. mutex_lock(&callback_mutex);
  1830. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1831. mutex_unlock(&callback_mutex);
  1832. if (action == MEM_OFFLINE)
  1833. scan_for_empty_cpusets(&top_cpuset);
  1834. break;
  1835. default:
  1836. break;
  1837. }
  1838. cgroup_unlock();
  1839. return NOTIFY_OK;
  1840. }
  1841. #endif
  1842. /**
  1843. * cpuset_init_smp - initialize cpus_allowed
  1844. *
  1845. * Description: Finish top cpuset after cpu, node maps are initialized
  1846. **/
  1847. void __init cpuset_init_smp(void)
  1848. {
  1849. cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
  1850. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1851. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1852. hotplug_memory_notifier(cpuset_track_online_nodes, 10);
  1853. cpuset_wq = create_singlethread_workqueue("cpuset");
  1854. BUG_ON(!cpuset_wq);
  1855. }
  1856. /**
  1857. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1858. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1859. * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
  1860. *
  1861. * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
  1862. * attached to the specified @tsk. Guaranteed to return some non-empty
  1863. * subset of cpu_online_map, even if this means going outside the
  1864. * tasks cpuset.
  1865. **/
  1866. void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
  1867. {
  1868. mutex_lock(&callback_mutex);
  1869. cpuset_cpus_allowed_locked(tsk, pmask);
  1870. mutex_unlock(&callback_mutex);
  1871. }
  1872. /**
  1873. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1874. * Must be called with callback_mutex held.
  1875. **/
  1876. void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
  1877. {
  1878. task_lock(tsk);
  1879. guarantee_online_cpus(task_cs(tsk), pmask);
  1880. task_unlock(tsk);
  1881. }
  1882. void cpuset_init_current_mems_allowed(void)
  1883. {
  1884. nodes_setall(current->mems_allowed);
  1885. }
  1886. /**
  1887. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1888. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1889. *
  1890. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1891. * attached to the specified @tsk. Guaranteed to return some non-empty
  1892. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1893. * tasks cpuset.
  1894. **/
  1895. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1896. {
  1897. nodemask_t mask;
  1898. mutex_lock(&callback_mutex);
  1899. task_lock(tsk);
  1900. guarantee_online_mems(task_cs(tsk), &mask);
  1901. task_unlock(tsk);
  1902. mutex_unlock(&callback_mutex);
  1903. return mask;
  1904. }
  1905. /**
  1906. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1907. * @nodemask: the nodemask to be checked
  1908. *
  1909. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1910. */
  1911. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1912. {
  1913. return nodes_intersects(*nodemask, current->mems_allowed);
  1914. }
  1915. /*
  1916. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1917. * mem_hardwall ancestor to the specified cpuset. Call holding
  1918. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1919. * (an unusual configuration), then returns the root cpuset.
  1920. */
  1921. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1922. {
  1923. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1924. cs = cs->parent;
  1925. return cs;
  1926. }
  1927. /**
  1928. * cpuset_node_allowed_softwall - Can we allocate on a memory node?
  1929. * @node: is this an allowed node?
  1930. * @gfp_mask: memory allocation flags
  1931. *
  1932. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  1933. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  1934. * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
  1935. * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
  1936. * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
  1937. * flag, yes.
  1938. * Otherwise, no.
  1939. *
  1940. * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
  1941. * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
  1942. * might sleep, and might allow a node from an enclosing cpuset.
  1943. *
  1944. * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
  1945. * cpusets, and never sleeps.
  1946. *
  1947. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1948. * by forcibly using a zonelist starting at a specified node, and by
  1949. * (in get_page_from_freelist()) refusing to consider the zones for
  1950. * any node on the zonelist except the first. By the time any such
  1951. * calls get to this routine, we should just shut up and say 'yes'.
  1952. *
  1953. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1954. * and do not allow allocations outside the current tasks cpuset
  1955. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1956. * GFP_KERNEL allocations are not so marked, so can escape to the
  1957. * nearest enclosing hardwalled ancestor cpuset.
  1958. *
  1959. * Scanning up parent cpusets requires callback_mutex. The
  1960. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1961. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1962. * current tasks mems_allowed came up empty on the first pass over
  1963. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1964. * cpuset are short of memory, might require taking the callback_mutex
  1965. * mutex.
  1966. *
  1967. * The first call here from mm/page_alloc:get_page_from_freelist()
  1968. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1969. * so no allocation on a node outside the cpuset is allowed (unless
  1970. * in interrupt, of course).
  1971. *
  1972. * The second pass through get_page_from_freelist() doesn't even call
  1973. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1974. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1975. * in alloc_flags. That logic and the checks below have the combined
  1976. * affect that:
  1977. * in_interrupt - any node ok (current task context irrelevant)
  1978. * GFP_ATOMIC - any node ok
  1979. * TIF_MEMDIE - any node ok
  1980. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1981. * GFP_USER - only nodes in current tasks mems allowed ok.
  1982. *
  1983. * Rule:
  1984. * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
  1985. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1986. * the code that might scan up ancestor cpusets and sleep.
  1987. */
  1988. int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
  1989. {
  1990. const struct cpuset *cs; /* current cpuset ancestors */
  1991. int allowed; /* is allocation in zone z allowed? */
  1992. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1993. return 1;
  1994. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1995. if (node_isset(node, current->mems_allowed))
  1996. return 1;
  1997. /*
  1998. * Allow tasks that have access to memory reserves because they have
  1999. * been OOM killed to get memory anywhere.
  2000. */
  2001. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2002. return 1;
  2003. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  2004. return 0;
  2005. if (current->flags & PF_EXITING) /* Let dying task have memory */
  2006. return 1;
  2007. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  2008. mutex_lock(&callback_mutex);
  2009. task_lock(current);
  2010. cs = nearest_hardwall_ancestor(task_cs(current));
  2011. task_unlock(current);
  2012. allowed = node_isset(node, cs->mems_allowed);
  2013. mutex_unlock(&callback_mutex);
  2014. return allowed;
  2015. }
  2016. /*
  2017. * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
  2018. * @node: is this an allowed node?
  2019. * @gfp_mask: memory allocation flags
  2020. *
  2021. * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
  2022. * set, yes, we can always allocate. If node is in our task's mems_allowed,
  2023. * yes. If the task has been OOM killed and has access to memory reserves as
  2024. * specified by the TIF_MEMDIE flag, yes.
  2025. * Otherwise, no.
  2026. *
  2027. * The __GFP_THISNODE placement logic is really handled elsewhere,
  2028. * by forcibly using a zonelist starting at a specified node, and by
  2029. * (in get_page_from_freelist()) refusing to consider the zones for
  2030. * any node on the zonelist except the first. By the time any such
  2031. * calls get to this routine, we should just shut up and say 'yes'.
  2032. *
  2033. * Unlike the cpuset_node_allowed_softwall() variant, above,
  2034. * this variant requires that the node be in the current task's
  2035. * mems_allowed or that we're in interrupt. It does not scan up the
  2036. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  2037. * It never sleeps.
  2038. */
  2039. int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
  2040. {
  2041. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  2042. return 1;
  2043. if (node_isset(node, current->mems_allowed))
  2044. return 1;
  2045. /*
  2046. * Allow tasks that have access to memory reserves because they have
  2047. * been OOM killed to get memory anywhere.
  2048. */
  2049. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  2050. return 1;
  2051. return 0;
  2052. }
  2053. /**
  2054. * cpuset_lock - lock out any changes to cpuset structures
  2055. *
  2056. * The out of memory (oom) code needs to mutex_lock cpusets
  2057. * from being changed while it scans the tasklist looking for a
  2058. * task in an overlapping cpuset. Expose callback_mutex via this
  2059. * cpuset_lock() routine, so the oom code can lock it, before
  2060. * locking the task list. The tasklist_lock is a spinlock, so
  2061. * must be taken inside callback_mutex.
  2062. */
  2063. void cpuset_lock(void)
  2064. {
  2065. mutex_lock(&callback_mutex);
  2066. }
  2067. /**
  2068. * cpuset_unlock - release lock on cpuset changes
  2069. *
  2070. * Undo the lock taken in a previous cpuset_lock() call.
  2071. */
  2072. void cpuset_unlock(void)
  2073. {
  2074. mutex_unlock(&callback_mutex);
  2075. }
  2076. /**
  2077. * cpuset_mem_spread_node() - On which node to begin search for a page
  2078. *
  2079. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2080. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2081. * and if the memory allocation used cpuset_mem_spread_node()
  2082. * to determine on which node to start looking, as it will for
  2083. * certain page cache or slab cache pages such as used for file
  2084. * system buffers and inode caches, then instead of starting on the
  2085. * local node to look for a free page, rather spread the starting
  2086. * node around the tasks mems_allowed nodes.
  2087. *
  2088. * We don't have to worry about the returned node being offline
  2089. * because "it can't happen", and even if it did, it would be ok.
  2090. *
  2091. * The routines calling guarantee_online_mems() are careful to
  2092. * only set nodes in task->mems_allowed that are online. So it
  2093. * should not be possible for the following code to return an
  2094. * offline node. But if it did, that would be ok, as this routine
  2095. * is not returning the node where the allocation must be, only
  2096. * the node where the search should start. The zonelist passed to
  2097. * __alloc_pages() will include all nodes. If the slab allocator
  2098. * is passed an offline node, it will fall back to the local node.
  2099. * See kmem_cache_alloc_node().
  2100. */
  2101. int cpuset_mem_spread_node(void)
  2102. {
  2103. int node;
  2104. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2105. if (node == MAX_NUMNODES)
  2106. node = first_node(current->mems_allowed);
  2107. current->cpuset_mem_spread_rotor = node;
  2108. return node;
  2109. }
  2110. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2111. /**
  2112. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2113. * @tsk1: pointer to task_struct of some task.
  2114. * @tsk2: pointer to task_struct of some other task.
  2115. *
  2116. * Description: Return true if @tsk1's mems_allowed intersects the
  2117. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2118. * one of the task's memory usage might impact the memory available
  2119. * to the other.
  2120. **/
  2121. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2122. const struct task_struct *tsk2)
  2123. {
  2124. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2125. }
  2126. /**
  2127. * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
  2128. * @task: pointer to task_struct of some task.
  2129. *
  2130. * Description: Prints @task's name, cpuset name, and cached copy of its
  2131. * mems_allowed to the kernel log. Must hold task_lock(task) to allow
  2132. * dereferencing task_cs(task).
  2133. */
  2134. void cpuset_print_task_mems_allowed(struct task_struct *tsk)
  2135. {
  2136. struct dentry *dentry;
  2137. dentry = task_cs(tsk)->css.cgroup->dentry;
  2138. spin_lock(&cpuset_buffer_lock);
  2139. snprintf(cpuset_name, CPUSET_NAME_LEN,
  2140. dentry ? (const char *)dentry->d_name.name : "/");
  2141. nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
  2142. tsk->mems_allowed);
  2143. printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
  2144. tsk->comm, cpuset_name, cpuset_nodelist);
  2145. spin_unlock(&cpuset_buffer_lock);
  2146. }
  2147. /*
  2148. * Collection of memory_pressure is suppressed unless
  2149. * this flag is enabled by writing "1" to the special
  2150. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2151. */
  2152. int cpuset_memory_pressure_enabled __read_mostly;
  2153. /**
  2154. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2155. *
  2156. * Keep a running average of the rate of synchronous (direct)
  2157. * page reclaim efforts initiated by tasks in each cpuset.
  2158. *
  2159. * This represents the rate at which some task in the cpuset
  2160. * ran low on memory on all nodes it was allowed to use, and
  2161. * had to enter the kernels page reclaim code in an effort to
  2162. * create more free memory by tossing clean pages or swapping
  2163. * or writing dirty pages.
  2164. *
  2165. * Display to user space in the per-cpuset read-only file
  2166. * "memory_pressure". Value displayed is an integer
  2167. * representing the recent rate of entry into the synchronous
  2168. * (direct) page reclaim by any task attached to the cpuset.
  2169. **/
  2170. void __cpuset_memory_pressure_bump(void)
  2171. {
  2172. task_lock(current);
  2173. fmeter_markevent(&task_cs(current)->fmeter);
  2174. task_unlock(current);
  2175. }
  2176. #ifdef CONFIG_PROC_PID_CPUSET
  2177. /*
  2178. * proc_cpuset_show()
  2179. * - Print tasks cpuset path into seq_file.
  2180. * - Used for /proc/<pid>/cpuset.
  2181. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2182. * doesn't really matter if tsk->cpuset changes after we read it,
  2183. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2184. * anyway.
  2185. */
  2186. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2187. {
  2188. struct pid *pid;
  2189. struct task_struct *tsk;
  2190. char *buf;
  2191. struct cgroup_subsys_state *css;
  2192. int retval;
  2193. retval = -ENOMEM;
  2194. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2195. if (!buf)
  2196. goto out;
  2197. retval = -ESRCH;
  2198. pid = m->private;
  2199. tsk = get_pid_task(pid, PIDTYPE_PID);
  2200. if (!tsk)
  2201. goto out_free;
  2202. retval = -EINVAL;
  2203. cgroup_lock();
  2204. css = task_subsys_state(tsk, cpuset_subsys_id);
  2205. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2206. if (retval < 0)
  2207. goto out_unlock;
  2208. seq_puts(m, buf);
  2209. seq_putc(m, '\n');
  2210. out_unlock:
  2211. cgroup_unlock();
  2212. put_task_struct(tsk);
  2213. out_free:
  2214. kfree(buf);
  2215. out:
  2216. return retval;
  2217. }
  2218. static int cpuset_open(struct inode *inode, struct file *file)
  2219. {
  2220. struct pid *pid = PROC_I(inode)->pid;
  2221. return single_open(file, proc_cpuset_show, pid);
  2222. }
  2223. const struct file_operations proc_cpuset_operations = {
  2224. .open = cpuset_open,
  2225. .read = seq_read,
  2226. .llseek = seq_lseek,
  2227. .release = single_release,
  2228. };
  2229. #endif /* CONFIG_PROC_PID_CPUSET */
  2230. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2231. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2232. {
  2233. seq_printf(m, "Cpus_allowed:\t");
  2234. seq_cpumask(m, &task->cpus_allowed);
  2235. seq_printf(m, "\n");
  2236. seq_printf(m, "Cpus_allowed_list:\t");
  2237. seq_cpumask_list(m, &task->cpus_allowed);
  2238. seq_printf(m, "\n");
  2239. seq_printf(m, "Mems_allowed:\t");
  2240. seq_nodemask(m, &task->mems_allowed);
  2241. seq_printf(m, "\n");
  2242. seq_printf(m, "Mems_allowed_list:\t");
  2243. seq_nodemask_list(m, &task->mems_allowed);
  2244. seq_printf(m, "\n");
  2245. }