vxge-traffic.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530
  1. /******************************************************************************
  2. * This software may be used and distributed according to the terms of
  3. * the GNU General Public License (GPL), incorporated herein by reference.
  4. * Drivers based on or derived from this code fall under the GPL and must
  5. * retain the authorship, copyright and license notice. This file is not
  6. * a complete program and may only be used when the entire operating
  7. * system is licensed under the GPL.
  8. * See the file COPYING in this distribution for more information.
  9. *
  10. * vxge-traffic.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
  11. * Virtualized Server Adapter.
  12. * Copyright(c) 2002-2009 Neterion Inc.
  13. ******************************************************************************/
  14. #include <linux/etherdevice.h>
  15. #include "vxge-traffic.h"
  16. #include "vxge-config.h"
  17. #include "vxge-main.h"
  18. /*
  19. * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
  20. * @vp: Virtual Path handle.
  21. *
  22. * Enable vpath interrupts. The function is to be executed the last in
  23. * vpath initialization sequence.
  24. *
  25. * See also: vxge_hw_vpath_intr_disable()
  26. */
  27. enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
  28. {
  29. u64 val64;
  30. struct __vxge_hw_virtualpath *vpath;
  31. struct vxge_hw_vpath_reg __iomem *vp_reg;
  32. enum vxge_hw_status status = VXGE_HW_OK;
  33. if (vp == NULL) {
  34. status = VXGE_HW_ERR_INVALID_HANDLE;
  35. goto exit;
  36. }
  37. vpath = vp->vpath;
  38. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  39. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  40. goto exit;
  41. }
  42. vp_reg = vpath->vp_reg;
  43. writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
  44. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  45. &vp_reg->general_errors_reg);
  46. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  47. &vp_reg->pci_config_errors_reg);
  48. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  49. &vp_reg->mrpcim_to_vpath_alarm_reg);
  50. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  51. &vp_reg->srpcim_to_vpath_alarm_reg);
  52. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  53. &vp_reg->vpath_ppif_int_status);
  54. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  55. &vp_reg->srpcim_msg_to_vpath_reg);
  56. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  57. &vp_reg->vpath_pcipif_int_status);
  58. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  59. &vp_reg->prc_alarm_reg);
  60. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  61. &vp_reg->wrdma_alarm_status);
  62. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  63. &vp_reg->asic_ntwk_vp_err_reg);
  64. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  65. &vp_reg->xgmac_vp_int_status);
  66. val64 = readq(&vp_reg->vpath_general_int_status);
  67. /* Mask unwanted interrupts */
  68. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  69. &vp_reg->vpath_pcipif_int_mask);
  70. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  71. &vp_reg->srpcim_msg_to_vpath_mask);
  72. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  73. &vp_reg->srpcim_to_vpath_alarm_mask);
  74. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  75. &vp_reg->mrpcim_to_vpath_alarm_mask);
  76. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  77. &vp_reg->pci_config_errors_mask);
  78. /* Unmask the individual interrupts */
  79. writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
  80. VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
  81. VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
  82. VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
  83. &vp_reg->general_errors_mask);
  84. __vxge_hw_pio_mem_write32_upper(
  85. (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
  86. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
  87. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
  88. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
  89. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
  90. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
  91. &vp_reg->kdfcctl_errors_mask);
  92. __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
  93. __vxge_hw_pio_mem_write32_upper(
  94. (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
  95. &vp_reg->prc_alarm_mask);
  96. __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
  97. __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
  98. if (vpath->hldev->first_vp_id != vpath->vp_id)
  99. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  100. &vp_reg->asic_ntwk_vp_err_mask);
  101. else
  102. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
  103. VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
  104. VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
  105. &vp_reg->asic_ntwk_vp_err_mask);
  106. __vxge_hw_pio_mem_write32_upper(0,
  107. &vp_reg->vpath_general_int_mask);
  108. exit:
  109. return status;
  110. }
  111. /*
  112. * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
  113. * @vp: Virtual Path handle.
  114. *
  115. * Disable vpath interrupts. The function is to be executed the last in
  116. * vpath initialization sequence.
  117. *
  118. * See also: vxge_hw_vpath_intr_enable()
  119. */
  120. enum vxge_hw_status vxge_hw_vpath_intr_disable(
  121. struct __vxge_hw_vpath_handle *vp)
  122. {
  123. u64 val64;
  124. struct __vxge_hw_virtualpath *vpath;
  125. enum vxge_hw_status status = VXGE_HW_OK;
  126. struct vxge_hw_vpath_reg __iomem *vp_reg;
  127. if (vp == NULL) {
  128. status = VXGE_HW_ERR_INVALID_HANDLE;
  129. goto exit;
  130. }
  131. vpath = vp->vpath;
  132. if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
  133. status = VXGE_HW_ERR_VPATH_NOT_OPEN;
  134. goto exit;
  135. }
  136. vp_reg = vpath->vp_reg;
  137. __vxge_hw_pio_mem_write32_upper(
  138. (u32)VXGE_HW_INTR_MASK_ALL,
  139. &vp_reg->vpath_general_int_mask);
  140. val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
  141. writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
  142. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  143. &vp_reg->general_errors_mask);
  144. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  145. &vp_reg->pci_config_errors_mask);
  146. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  147. &vp_reg->mrpcim_to_vpath_alarm_mask);
  148. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  149. &vp_reg->srpcim_to_vpath_alarm_mask);
  150. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  151. &vp_reg->vpath_ppif_int_mask);
  152. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  153. &vp_reg->srpcim_msg_to_vpath_mask);
  154. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  155. &vp_reg->vpath_pcipif_int_mask);
  156. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  157. &vp_reg->wrdma_alarm_mask);
  158. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  159. &vp_reg->prc_alarm_mask);
  160. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  161. &vp_reg->xgmac_vp_int_mask);
  162. __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
  163. &vp_reg->asic_ntwk_vp_err_mask);
  164. exit:
  165. return status;
  166. }
  167. /**
  168. * vxge_hw_channel_msix_mask - Mask MSIX Vector.
  169. * @channeh: Channel for rx or tx handle
  170. * @msix_id: MSIX ID
  171. *
  172. * The function masks the msix interrupt for the given msix_id
  173. *
  174. * Returns: 0
  175. */
  176. void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
  177. {
  178. __vxge_hw_pio_mem_write32_upper(
  179. (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
  180. 0, 32),
  181. &channel->common_reg->set_msix_mask_vect[msix_id%4]);
  182. return;
  183. }
  184. /**
  185. * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
  186. * @channeh: Channel for rx or tx handle
  187. * @msix_id: MSI ID
  188. *
  189. * The function unmasks the msix interrupt for the given msix_id
  190. *
  191. * Returns: 0
  192. */
  193. void
  194. vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
  195. {
  196. __vxge_hw_pio_mem_write32_upper(
  197. (u32)vxge_bVALn(vxge_mBIT(channel->first_vp_id+(msix_id/4)),
  198. 0, 32),
  199. &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
  200. return;
  201. }
  202. /**
  203. * vxge_hw_device_set_intr_type - Updates the configuration
  204. * with new interrupt type.
  205. * @hldev: HW device handle.
  206. * @intr_mode: New interrupt type
  207. */
  208. u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
  209. {
  210. if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
  211. (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
  212. (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
  213. (intr_mode != VXGE_HW_INTR_MODE_DEF))
  214. intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
  215. hldev->config.intr_mode = intr_mode;
  216. return intr_mode;
  217. }
  218. /**
  219. * vxge_hw_device_intr_enable - Enable interrupts.
  220. * @hldev: HW device handle.
  221. * @op: One of the enum vxge_hw_device_intr enumerated values specifying
  222. * the type(s) of interrupts to enable.
  223. *
  224. * Enable Titan interrupts. The function is to be executed the last in
  225. * Titan initialization sequence.
  226. *
  227. * See also: vxge_hw_device_intr_disable()
  228. */
  229. void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
  230. {
  231. u32 i;
  232. u64 val64;
  233. u32 val32;
  234. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  235. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  236. continue;
  237. vxge_hw_vpath_intr_enable(
  238. VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
  239. }
  240. if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
  241. val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  242. hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
  243. if (val64 != 0) {
  244. writeq(val64, &hldev->common_reg->tim_int_status0);
  245. writeq(~val64, &hldev->common_reg->tim_int_mask0);
  246. }
  247. val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  248. hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
  249. if (val32 != 0) {
  250. __vxge_hw_pio_mem_write32_upper(val32,
  251. &hldev->common_reg->tim_int_status1);
  252. __vxge_hw_pio_mem_write32_upper(~val32,
  253. &hldev->common_reg->tim_int_mask1);
  254. }
  255. }
  256. val64 = readq(&hldev->common_reg->titan_general_int_status);
  257. vxge_hw_device_unmask_all(hldev);
  258. return;
  259. }
  260. /**
  261. * vxge_hw_device_intr_disable - Disable Titan interrupts.
  262. * @hldev: HW device handle.
  263. * @op: One of the enum vxge_hw_device_intr enumerated values specifying
  264. * the type(s) of interrupts to disable.
  265. *
  266. * Disable Titan interrupts.
  267. *
  268. * See also: vxge_hw_device_intr_enable()
  269. */
  270. void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
  271. {
  272. u32 i;
  273. vxge_hw_device_mask_all(hldev);
  274. /* mask all the tim interrupts */
  275. writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
  276. __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
  277. &hldev->common_reg->tim_int_mask1);
  278. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  279. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  280. continue;
  281. vxge_hw_vpath_intr_disable(
  282. VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
  283. }
  284. return;
  285. }
  286. /**
  287. * vxge_hw_device_mask_all - Mask all device interrupts.
  288. * @hldev: HW device handle.
  289. *
  290. * Mask all device interrupts.
  291. *
  292. * See also: vxge_hw_device_unmask_all()
  293. */
  294. void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
  295. {
  296. u64 val64;
  297. val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
  298. VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
  299. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  300. &hldev->common_reg->titan_mask_all_int);
  301. return;
  302. }
  303. /**
  304. * vxge_hw_device_unmask_all - Unmask all device interrupts.
  305. * @hldev: HW device handle.
  306. *
  307. * Unmask all device interrupts.
  308. *
  309. * See also: vxge_hw_device_mask_all()
  310. */
  311. void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
  312. {
  313. u64 val64 = 0;
  314. if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
  315. val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
  316. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
  317. &hldev->common_reg->titan_mask_all_int);
  318. return;
  319. }
  320. /**
  321. * vxge_hw_device_flush_io - Flush io writes.
  322. * @hldev: HW device handle.
  323. *
  324. * The function performs a read operation to flush io writes.
  325. *
  326. * Returns: void
  327. */
  328. void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
  329. {
  330. u32 val32;
  331. val32 = readl(&hldev->common_reg->titan_general_int_status);
  332. }
  333. /**
  334. * vxge_hw_device_begin_irq - Begin IRQ processing.
  335. * @hldev: HW device handle.
  336. * @skip_alarms: Do not clear the alarms
  337. * @reason: "Reason" for the interrupt, the value of Titan's
  338. * general_int_status register.
  339. *
  340. * The function performs two actions, It first checks whether (shared IRQ) the
  341. * interrupt was raised by the device. Next, it masks the device interrupts.
  342. *
  343. * Note:
  344. * vxge_hw_device_begin_irq() does not flush MMIO writes through the
  345. * bridge. Therefore, two back-to-back interrupts are potentially possible.
  346. *
  347. * Returns: 0, if the interrupt is not "ours" (note that in this case the
  348. * device remain enabled).
  349. * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
  350. * status.
  351. */
  352. enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
  353. u32 skip_alarms, u64 *reason)
  354. {
  355. u32 i;
  356. u64 val64;
  357. u64 adapter_status;
  358. u64 vpath_mask;
  359. enum vxge_hw_status ret = VXGE_HW_OK;
  360. val64 = readq(&hldev->common_reg->titan_general_int_status);
  361. if (unlikely(!val64)) {
  362. /* not Titan interrupt */
  363. *reason = 0;
  364. ret = VXGE_HW_ERR_WRONG_IRQ;
  365. goto exit;
  366. }
  367. if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
  368. adapter_status = readq(&hldev->common_reg->adapter_status);
  369. if (adapter_status == VXGE_HW_ALL_FOXES) {
  370. __vxge_hw_device_handle_error(hldev,
  371. NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
  372. *reason = 0;
  373. ret = VXGE_HW_ERR_SLOT_FREEZE;
  374. goto exit;
  375. }
  376. }
  377. hldev->stats.sw_dev_info_stats.total_intr_cnt++;
  378. *reason = val64;
  379. vpath_mask = hldev->vpaths_deployed >>
  380. (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
  381. if (val64 &
  382. VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
  383. hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
  384. return VXGE_HW_OK;
  385. }
  386. hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
  387. if (unlikely(val64 &
  388. VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
  389. enum vxge_hw_status error_level = VXGE_HW_OK;
  390. hldev->stats.sw_dev_err_stats.vpath_alarms++;
  391. for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
  392. if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
  393. continue;
  394. ret = __vxge_hw_vpath_alarm_process(
  395. &hldev->virtual_paths[i], skip_alarms);
  396. error_level = VXGE_HW_SET_LEVEL(ret, error_level);
  397. if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
  398. (ret == VXGE_HW_ERR_SLOT_FREEZE)))
  399. break;
  400. }
  401. ret = error_level;
  402. }
  403. exit:
  404. return ret;
  405. }
  406. /*
  407. * __vxge_hw_device_handle_link_up_ind
  408. * @hldev: HW device handle.
  409. *
  410. * Link up indication handler. The function is invoked by HW when
  411. * Titan indicates that the link is up for programmable amount of time.
  412. */
  413. enum vxge_hw_status
  414. __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
  415. {
  416. /*
  417. * If the previous link state is not down, return.
  418. */
  419. if (hldev->link_state == VXGE_HW_LINK_UP)
  420. goto exit;
  421. hldev->link_state = VXGE_HW_LINK_UP;
  422. /* notify driver */
  423. if (hldev->uld_callbacks.link_up)
  424. hldev->uld_callbacks.link_up(hldev);
  425. exit:
  426. return VXGE_HW_OK;
  427. }
  428. /*
  429. * __vxge_hw_device_handle_link_down_ind
  430. * @hldev: HW device handle.
  431. *
  432. * Link down indication handler. The function is invoked by HW when
  433. * Titan indicates that the link is down.
  434. */
  435. enum vxge_hw_status
  436. __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
  437. {
  438. /*
  439. * If the previous link state is not down, return.
  440. */
  441. if (hldev->link_state == VXGE_HW_LINK_DOWN)
  442. goto exit;
  443. hldev->link_state = VXGE_HW_LINK_DOWN;
  444. /* notify driver */
  445. if (hldev->uld_callbacks.link_down)
  446. hldev->uld_callbacks.link_down(hldev);
  447. exit:
  448. return VXGE_HW_OK;
  449. }
  450. /**
  451. * __vxge_hw_device_handle_error - Handle error
  452. * @hldev: HW device
  453. * @vp_id: Vpath Id
  454. * @type: Error type. Please see enum vxge_hw_event{}
  455. *
  456. * Handle error.
  457. */
  458. enum vxge_hw_status
  459. __vxge_hw_device_handle_error(
  460. struct __vxge_hw_device *hldev,
  461. u32 vp_id,
  462. enum vxge_hw_event type)
  463. {
  464. switch (type) {
  465. case VXGE_HW_EVENT_UNKNOWN:
  466. break;
  467. case VXGE_HW_EVENT_RESET_START:
  468. case VXGE_HW_EVENT_RESET_COMPLETE:
  469. case VXGE_HW_EVENT_LINK_DOWN:
  470. case VXGE_HW_EVENT_LINK_UP:
  471. goto out;
  472. case VXGE_HW_EVENT_ALARM_CLEARED:
  473. goto out;
  474. case VXGE_HW_EVENT_ECCERR:
  475. case VXGE_HW_EVENT_MRPCIM_ECCERR:
  476. goto out;
  477. case VXGE_HW_EVENT_FIFO_ERR:
  478. case VXGE_HW_EVENT_VPATH_ERR:
  479. case VXGE_HW_EVENT_CRITICAL_ERR:
  480. case VXGE_HW_EVENT_SERR:
  481. break;
  482. case VXGE_HW_EVENT_SRPCIM_SERR:
  483. case VXGE_HW_EVENT_MRPCIM_SERR:
  484. goto out;
  485. case VXGE_HW_EVENT_SLOT_FREEZE:
  486. break;
  487. default:
  488. vxge_assert(0);
  489. goto out;
  490. }
  491. /* notify driver */
  492. if (hldev->uld_callbacks.crit_err)
  493. hldev->uld_callbacks.crit_err(
  494. (struct __vxge_hw_device *)hldev,
  495. type, vp_id);
  496. out:
  497. return VXGE_HW_OK;
  498. }
  499. /**
  500. * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
  501. * condition that has caused the Tx and RX interrupt.
  502. * @hldev: HW device.
  503. *
  504. * Acknowledge (that is, clear) the condition that has caused
  505. * the Tx and Rx interrupt.
  506. * See also: vxge_hw_device_begin_irq(),
  507. * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
  508. */
  509. void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
  510. {
  511. if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
  512. (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
  513. writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  514. hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
  515. &hldev->common_reg->tim_int_status0);
  516. }
  517. if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
  518. (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
  519. __vxge_hw_pio_mem_write32_upper(
  520. (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  521. hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
  522. &hldev->common_reg->tim_int_status1);
  523. }
  524. return;
  525. }
  526. /*
  527. * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
  528. * @channel: Channel
  529. * @dtrh: Buffer to return the DTR pointer
  530. *
  531. * Allocates a dtr from the reserve array. If the reserve array is empty,
  532. * it swaps the reserve and free arrays.
  533. *
  534. */
  535. enum vxge_hw_status
  536. vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
  537. {
  538. void **tmp_arr;
  539. if (channel->reserve_ptr - channel->reserve_top > 0) {
  540. _alloc_after_swap:
  541. *dtrh = channel->reserve_arr[--channel->reserve_ptr];
  542. return VXGE_HW_OK;
  543. }
  544. /* switch between empty and full arrays */
  545. /* the idea behind such a design is that by having free and reserved
  546. * arrays separated we basically separated irq and non-irq parts.
  547. * i.e. no additional lock need to be done when we free a resource */
  548. if (channel->length - channel->free_ptr > 0) {
  549. tmp_arr = channel->reserve_arr;
  550. channel->reserve_arr = channel->free_arr;
  551. channel->free_arr = tmp_arr;
  552. channel->reserve_ptr = channel->length;
  553. channel->reserve_top = channel->free_ptr;
  554. channel->free_ptr = channel->length;
  555. channel->stats->reserve_free_swaps_cnt++;
  556. goto _alloc_after_swap;
  557. }
  558. channel->stats->full_cnt++;
  559. *dtrh = NULL;
  560. return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
  561. }
  562. /*
  563. * vxge_hw_channel_dtr_post - Post a dtr to the channel
  564. * @channelh: Channel
  565. * @dtrh: DTR pointer
  566. *
  567. * Posts a dtr to work array.
  568. *
  569. */
  570. void vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
  571. {
  572. vxge_assert(channel->work_arr[channel->post_index] == NULL);
  573. channel->work_arr[channel->post_index++] = dtrh;
  574. /* wrap-around */
  575. if (channel->post_index == channel->length)
  576. channel->post_index = 0;
  577. }
  578. /*
  579. * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
  580. * @channel: Channel
  581. * @dtr: Buffer to return the next completed DTR pointer
  582. *
  583. * Returns the next completed dtr with out removing it from work array
  584. *
  585. */
  586. void
  587. vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
  588. {
  589. vxge_assert(channel->compl_index < channel->length);
  590. *dtrh = channel->work_arr[channel->compl_index];
  591. prefetch(*dtrh);
  592. }
  593. /*
  594. * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
  595. * @channel: Channel handle
  596. *
  597. * Removes the next completed dtr from work array
  598. *
  599. */
  600. void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
  601. {
  602. channel->work_arr[channel->compl_index] = NULL;
  603. /* wrap-around */
  604. if (++channel->compl_index == channel->length)
  605. channel->compl_index = 0;
  606. channel->stats->total_compl_cnt++;
  607. }
  608. /*
  609. * vxge_hw_channel_dtr_free - Frees a dtr
  610. * @channel: Channel handle
  611. * @dtr: DTR pointer
  612. *
  613. * Returns the dtr to free array
  614. *
  615. */
  616. void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
  617. {
  618. channel->free_arr[--channel->free_ptr] = dtrh;
  619. }
  620. /*
  621. * vxge_hw_channel_dtr_count
  622. * @channel: Channel handle. Obtained via vxge_hw_channel_open().
  623. *
  624. * Retreive number of DTRs available. This function can not be called
  625. * from data path. ring_initial_replenishi() is the only user.
  626. */
  627. int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
  628. {
  629. return (channel->reserve_ptr - channel->reserve_top) +
  630. (channel->length - channel->free_ptr);
  631. }
  632. /**
  633. * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
  634. * @ring: Handle to the ring object used for receive
  635. * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
  636. * with a valid handle.
  637. *
  638. * Reserve Rx descriptor for the subsequent filling-in driver
  639. * and posting on the corresponding channel (@channelh)
  640. * via vxge_hw_ring_rxd_post().
  641. *
  642. * Returns: VXGE_HW_OK - success.
  643. * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
  644. *
  645. */
  646. enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
  647. void **rxdh)
  648. {
  649. enum vxge_hw_status status;
  650. struct __vxge_hw_channel *channel;
  651. channel = &ring->channel;
  652. status = vxge_hw_channel_dtr_alloc(channel, rxdh);
  653. if (status == VXGE_HW_OK) {
  654. struct vxge_hw_ring_rxd_1 *rxdp =
  655. (struct vxge_hw_ring_rxd_1 *)*rxdh;
  656. rxdp->control_0 = rxdp->control_1 = 0;
  657. }
  658. return status;
  659. }
  660. /**
  661. * vxge_hw_ring_rxd_free - Free descriptor.
  662. * @ring: Handle to the ring object used for receive
  663. * @rxdh: Descriptor handle.
  664. *
  665. * Free the reserved descriptor. This operation is "symmetrical" to
  666. * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
  667. * lifecycle.
  668. *
  669. * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
  670. * be:
  671. *
  672. * - reserved (vxge_hw_ring_rxd_reserve);
  673. *
  674. * - posted (vxge_hw_ring_rxd_post);
  675. *
  676. * - completed (vxge_hw_ring_rxd_next_completed);
  677. *
  678. * - and recycled again (vxge_hw_ring_rxd_free).
  679. *
  680. * For alternative state transitions and more details please refer to
  681. * the design doc.
  682. *
  683. */
  684. void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
  685. {
  686. struct __vxge_hw_channel *channel;
  687. channel = &ring->channel;
  688. vxge_hw_channel_dtr_free(channel, rxdh);
  689. }
  690. /**
  691. * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
  692. * @ring: Handle to the ring object used for receive
  693. * @rxdh: Descriptor handle.
  694. *
  695. * This routine prepares a rxd and posts
  696. */
  697. void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
  698. {
  699. struct __vxge_hw_channel *channel;
  700. channel = &ring->channel;
  701. vxge_hw_channel_dtr_post(channel, rxdh);
  702. }
  703. /**
  704. * vxge_hw_ring_rxd_post_post - Process rxd after post.
  705. * @ring: Handle to the ring object used for receive
  706. * @rxdh: Descriptor handle.
  707. *
  708. * Processes rxd after post
  709. */
  710. void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
  711. {
  712. struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
  713. struct __vxge_hw_channel *channel;
  714. channel = &ring->channel;
  715. rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
  716. if (ring->stats->common_stats.usage_cnt > 0)
  717. ring->stats->common_stats.usage_cnt--;
  718. }
  719. /**
  720. * vxge_hw_ring_rxd_post - Post descriptor on the ring.
  721. * @ring: Handle to the ring object used for receive
  722. * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
  723. *
  724. * Post descriptor on the ring.
  725. * Prior to posting the descriptor should be filled in accordance with
  726. * Host/Titan interface specification for a given service (LL, etc.).
  727. *
  728. */
  729. void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
  730. {
  731. struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
  732. struct __vxge_hw_channel *channel;
  733. channel = &ring->channel;
  734. wmb();
  735. rxdp->control_0 |= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
  736. vxge_hw_channel_dtr_post(channel, rxdh);
  737. if (ring->stats->common_stats.usage_cnt > 0)
  738. ring->stats->common_stats.usage_cnt--;
  739. }
  740. /**
  741. * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
  742. * @ring: Handle to the ring object used for receive
  743. * @rxdh: Descriptor handle.
  744. *
  745. * Processes rxd after post with memory barrier.
  746. */
  747. void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
  748. {
  749. struct __vxge_hw_channel *channel;
  750. channel = &ring->channel;
  751. wmb();
  752. vxge_hw_ring_rxd_post_post(ring, rxdh);
  753. }
  754. /**
  755. * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
  756. * @ring: Handle to the ring object used for receive
  757. * @rxdh: Descriptor handle. Returned by HW.
  758. * @t_code: Transfer code, as per Titan User Guide,
  759. * Receive Descriptor Format. Returned by HW.
  760. *
  761. * Retrieve the _next_ completed descriptor.
  762. * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
  763. * driver of new completed descriptors. After that
  764. * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
  765. * completions (the very first completion is passed by HW via
  766. * vxge_hw_ring_callback_f).
  767. *
  768. * Implementation-wise, the driver is free to call
  769. * vxge_hw_ring_rxd_next_completed either immediately from inside the
  770. * ring callback, or in a deferred fashion and separate (from HW)
  771. * context.
  772. *
  773. * Non-zero @t_code means failure to fill-in receive buffer(s)
  774. * of the descriptor.
  775. * For instance, parity error detected during the data transfer.
  776. * In this case Titan will complete the descriptor and indicate
  777. * for the host that the received data is not to be used.
  778. * For details please refer to Titan User Guide.
  779. *
  780. * Returns: VXGE_HW_OK - success.
  781. * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
  782. * are currently available for processing.
  783. *
  784. * See also: vxge_hw_ring_callback_f{},
  785. * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
  786. */
  787. enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
  788. struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
  789. {
  790. struct __vxge_hw_channel *channel;
  791. struct vxge_hw_ring_rxd_1 *rxdp;
  792. enum vxge_hw_status status = VXGE_HW_OK;
  793. channel = &ring->channel;
  794. vxge_hw_channel_dtr_try_complete(channel, rxdh);
  795. rxdp = (struct vxge_hw_ring_rxd_1 *)*rxdh;
  796. if (rxdp == NULL) {
  797. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  798. goto exit;
  799. }
  800. /* check whether it is not the end */
  801. if (!(rxdp->control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER)) {
  802. vxge_assert(((struct vxge_hw_ring_rxd_1 *)rxdp)->host_control !=
  803. 0);
  804. ++ring->cmpl_cnt;
  805. vxge_hw_channel_dtr_complete(channel);
  806. *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(rxdp->control_0);
  807. vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
  808. ring->stats->common_stats.usage_cnt++;
  809. if (ring->stats->common_stats.usage_max <
  810. ring->stats->common_stats.usage_cnt)
  811. ring->stats->common_stats.usage_max =
  812. ring->stats->common_stats.usage_cnt;
  813. status = VXGE_HW_OK;
  814. goto exit;
  815. }
  816. /* reset it. since we don't want to return
  817. * garbage to the driver */
  818. *rxdh = NULL;
  819. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  820. exit:
  821. return status;
  822. }
  823. /**
  824. * vxge_hw_ring_handle_tcode - Handle transfer code.
  825. * @ring: Handle to the ring object used for receive
  826. * @rxdh: Descriptor handle.
  827. * @t_code: One of the enumerated (and documented in the Titan user guide)
  828. * "transfer codes".
  829. *
  830. * Handle descriptor's transfer code. The latter comes with each completed
  831. * descriptor.
  832. *
  833. * Returns: one of the enum vxge_hw_status{} enumerated types.
  834. * VXGE_HW_OK - for success.
  835. * VXGE_HW_ERR_CRITICAL - when encounters critical error.
  836. */
  837. enum vxge_hw_status vxge_hw_ring_handle_tcode(
  838. struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
  839. {
  840. struct __vxge_hw_channel *channel;
  841. enum vxge_hw_status status = VXGE_HW_OK;
  842. channel = &ring->channel;
  843. /* If the t_code is not supported and if the
  844. * t_code is other than 0x5 (unparseable packet
  845. * such as unknown UPV6 header), Drop it !!!
  846. */
  847. if (t_code == 0 || t_code == 5) {
  848. status = VXGE_HW_OK;
  849. goto exit;
  850. }
  851. if (t_code > 0xF) {
  852. status = VXGE_HW_ERR_INVALID_TCODE;
  853. goto exit;
  854. }
  855. ring->stats->rxd_t_code_err_cnt[t_code]++;
  856. exit:
  857. return status;
  858. }
  859. /**
  860. * __vxge_hw_non_offload_db_post - Post non offload doorbell
  861. *
  862. * @fifo: fifohandle
  863. * @txdl_ptr: The starting location of the TxDL in host memory
  864. * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
  865. * @no_snoop: No snoop flags
  866. *
  867. * This function posts a non-offload doorbell to doorbell FIFO
  868. *
  869. */
  870. static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
  871. u64 txdl_ptr, u32 num_txds, u32 no_snoop)
  872. {
  873. struct __vxge_hw_channel *channel;
  874. channel = &fifo->channel;
  875. writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
  876. VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
  877. VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
  878. &fifo->nofl_db->control_0);
  879. mmiowb();
  880. writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
  881. mmiowb();
  882. }
  883. /**
  884. * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
  885. * the fifo
  886. * @fifoh: Handle to the fifo object used for non offload send
  887. */
  888. u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
  889. {
  890. return vxge_hw_channel_dtr_count(&fifoh->channel);
  891. }
  892. /**
  893. * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
  894. * @fifoh: Handle to the fifo object used for non offload send
  895. * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
  896. * with a valid handle.
  897. * @txdl_priv: Buffer to return the pointer to per txdl space
  898. *
  899. * Reserve a single TxDL (that is, fifo descriptor)
  900. * for the subsequent filling-in by driver)
  901. * and posting on the corresponding channel (@channelh)
  902. * via vxge_hw_fifo_txdl_post().
  903. *
  904. * Note: it is the responsibility of driver to reserve multiple descriptors
  905. * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
  906. * carries up to configured number (fifo.max_frags) of contiguous buffers.
  907. *
  908. * Returns: VXGE_HW_OK - success;
  909. * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
  910. *
  911. */
  912. enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
  913. struct __vxge_hw_fifo *fifo,
  914. void **txdlh, void **txdl_priv)
  915. {
  916. struct __vxge_hw_channel *channel;
  917. enum vxge_hw_status status;
  918. int i;
  919. channel = &fifo->channel;
  920. status = vxge_hw_channel_dtr_alloc(channel, txdlh);
  921. if (status == VXGE_HW_OK) {
  922. struct vxge_hw_fifo_txd *txdp =
  923. (struct vxge_hw_fifo_txd *)*txdlh;
  924. struct __vxge_hw_fifo_txdl_priv *priv;
  925. priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
  926. /* reset the TxDL's private */
  927. priv->align_dma_offset = 0;
  928. priv->align_vaddr_start = priv->align_vaddr;
  929. priv->align_used_frags = 0;
  930. priv->frags = 0;
  931. priv->alloc_frags = fifo->config->max_frags;
  932. priv->next_txdl_priv = NULL;
  933. *txdl_priv = (void *)(size_t)txdp->host_control;
  934. for (i = 0; i < fifo->config->max_frags; i++) {
  935. txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
  936. txdp->control_0 = txdp->control_1 = 0;
  937. }
  938. }
  939. return status;
  940. }
  941. /**
  942. * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
  943. * descriptor.
  944. * @fifo: Handle to the fifo object used for non offload send
  945. * @txdlh: Descriptor handle.
  946. * @frag_idx: Index of the data buffer in the caller's scatter-gather list
  947. * (of buffers).
  948. * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
  949. * @size: Size of the data buffer (in bytes).
  950. *
  951. * This API is part of the preparation of the transmit descriptor for posting
  952. * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
  953. * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
  954. * All three APIs fill in the fields of the fifo descriptor,
  955. * in accordance with the Titan specification.
  956. *
  957. */
  958. void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
  959. void *txdlh, u32 frag_idx,
  960. dma_addr_t dma_pointer, u32 size)
  961. {
  962. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  963. struct vxge_hw_fifo_txd *txdp, *txdp_last;
  964. struct __vxge_hw_channel *channel;
  965. channel = &fifo->channel;
  966. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
  967. txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
  968. if (frag_idx != 0)
  969. txdp->control_0 = txdp->control_1 = 0;
  970. else {
  971. txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
  972. VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
  973. txdp->control_1 |= fifo->interrupt_type;
  974. txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
  975. fifo->tx_intr_num);
  976. if (txdl_priv->frags) {
  977. txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
  978. (txdl_priv->frags - 1);
  979. txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
  980. VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
  981. }
  982. }
  983. vxge_assert(frag_idx < txdl_priv->alloc_frags);
  984. txdp->buffer_pointer = (u64)dma_pointer;
  985. txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
  986. fifo->stats->total_buffers++;
  987. txdl_priv->frags++;
  988. }
  989. /**
  990. * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
  991. * @fifo: Handle to the fifo object used for non offload send
  992. * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
  993. * @frags: Number of contiguous buffers that are part of a single
  994. * transmit operation.
  995. *
  996. * Post descriptor on the 'fifo' type channel for transmission.
  997. * Prior to posting the descriptor should be filled in accordance with
  998. * Host/Titan interface specification for a given service (LL, etc.).
  999. *
  1000. */
  1001. void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
  1002. {
  1003. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  1004. struct vxge_hw_fifo_txd *txdp_last;
  1005. struct vxge_hw_fifo_txd *txdp_first;
  1006. struct __vxge_hw_channel *channel;
  1007. channel = &fifo->channel;
  1008. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
  1009. txdp_first = (struct vxge_hw_fifo_txd *)txdlh;
  1010. txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
  1011. txdp_last->control_0 |=
  1012. VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
  1013. txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
  1014. vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
  1015. __vxge_hw_non_offload_db_post(fifo,
  1016. (u64)(size_t)txdl_priv->dma_addr,
  1017. txdl_priv->frags - 1,
  1018. fifo->no_snoop_bits);
  1019. fifo->stats->total_posts++;
  1020. fifo->stats->common_stats.usage_cnt++;
  1021. if (fifo->stats->common_stats.usage_max <
  1022. fifo->stats->common_stats.usage_cnt)
  1023. fifo->stats->common_stats.usage_max =
  1024. fifo->stats->common_stats.usage_cnt;
  1025. }
  1026. /**
  1027. * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
  1028. * @fifo: Handle to the fifo object used for non offload send
  1029. * @txdlh: Descriptor handle. Returned by HW.
  1030. * @t_code: Transfer code, as per Titan User Guide,
  1031. * Transmit Descriptor Format.
  1032. * Returned by HW.
  1033. *
  1034. * Retrieve the _next_ completed descriptor.
  1035. * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
  1036. * driver of new completed descriptors. After that
  1037. * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
  1038. * completions (the very first completion is passed by HW via
  1039. * vxge_hw_channel_callback_f).
  1040. *
  1041. * Implementation-wise, the driver is free to call
  1042. * vxge_hw_fifo_txdl_next_completed either immediately from inside the
  1043. * channel callback, or in a deferred fashion and separate (from HW)
  1044. * context.
  1045. *
  1046. * Non-zero @t_code means failure to process the descriptor.
  1047. * The failure could happen, for instance, when the link is
  1048. * down, in which case Titan completes the descriptor because it
  1049. * is not able to send the data out.
  1050. *
  1051. * For details please refer to Titan User Guide.
  1052. *
  1053. * Returns: VXGE_HW_OK - success.
  1054. * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
  1055. * are currently available for processing.
  1056. *
  1057. */
  1058. enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
  1059. struct __vxge_hw_fifo *fifo, void **txdlh,
  1060. enum vxge_hw_fifo_tcode *t_code)
  1061. {
  1062. struct __vxge_hw_channel *channel;
  1063. struct vxge_hw_fifo_txd *txdp;
  1064. enum vxge_hw_status status = VXGE_HW_OK;
  1065. channel = &fifo->channel;
  1066. vxge_hw_channel_dtr_try_complete(channel, txdlh);
  1067. txdp = (struct vxge_hw_fifo_txd *)*txdlh;
  1068. if (txdp == NULL) {
  1069. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  1070. goto exit;
  1071. }
  1072. /* check whether host owns it */
  1073. if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
  1074. vxge_assert(txdp->host_control != 0);
  1075. vxge_hw_channel_dtr_complete(channel);
  1076. *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
  1077. if (fifo->stats->common_stats.usage_cnt > 0)
  1078. fifo->stats->common_stats.usage_cnt--;
  1079. status = VXGE_HW_OK;
  1080. goto exit;
  1081. }
  1082. /* no more completions */
  1083. *txdlh = NULL;
  1084. status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
  1085. exit:
  1086. return status;
  1087. }
  1088. /**
  1089. * vxge_hw_fifo_handle_tcode - Handle transfer code.
  1090. * @fifo: Handle to the fifo object used for non offload send
  1091. * @txdlh: Descriptor handle.
  1092. * @t_code: One of the enumerated (and documented in the Titan user guide)
  1093. * "transfer codes".
  1094. *
  1095. * Handle descriptor's transfer code. The latter comes with each completed
  1096. * descriptor.
  1097. *
  1098. * Returns: one of the enum vxge_hw_status{} enumerated types.
  1099. * VXGE_HW_OK - for success.
  1100. * VXGE_HW_ERR_CRITICAL - when encounters critical error.
  1101. */
  1102. enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
  1103. void *txdlh,
  1104. enum vxge_hw_fifo_tcode t_code)
  1105. {
  1106. struct __vxge_hw_channel *channel;
  1107. enum vxge_hw_status status = VXGE_HW_OK;
  1108. channel = &fifo->channel;
  1109. if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
  1110. status = VXGE_HW_ERR_INVALID_TCODE;
  1111. goto exit;
  1112. }
  1113. fifo->stats->txd_t_code_err_cnt[t_code]++;
  1114. exit:
  1115. return status;
  1116. }
  1117. /**
  1118. * vxge_hw_fifo_txdl_free - Free descriptor.
  1119. * @fifo: Handle to the fifo object used for non offload send
  1120. * @txdlh: Descriptor handle.
  1121. *
  1122. * Free the reserved descriptor. This operation is "symmetrical" to
  1123. * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
  1124. * lifecycle.
  1125. *
  1126. * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
  1127. * be:
  1128. *
  1129. * - reserved (vxge_hw_fifo_txdl_reserve);
  1130. *
  1131. * - posted (vxge_hw_fifo_txdl_post);
  1132. *
  1133. * - completed (vxge_hw_fifo_txdl_next_completed);
  1134. *
  1135. * - and recycled again (vxge_hw_fifo_txdl_free).
  1136. *
  1137. * For alternative state transitions and more details please refer to
  1138. * the design doc.
  1139. *
  1140. */
  1141. void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
  1142. {
  1143. struct __vxge_hw_fifo_txdl_priv *txdl_priv;
  1144. u32 max_frags;
  1145. struct __vxge_hw_channel *channel;
  1146. channel = &fifo->channel;
  1147. txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
  1148. (struct vxge_hw_fifo_txd *)txdlh);
  1149. max_frags = fifo->config->max_frags;
  1150. vxge_hw_channel_dtr_free(channel, txdlh);
  1151. }
  1152. /**
  1153. * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
  1154. * to MAC address table.
  1155. * @vp: Vpath handle.
  1156. * @macaddr: MAC address to be added for this vpath into the list
  1157. * @macaddr_mask: MAC address mask for macaddr
  1158. * @duplicate_mode: Duplicate MAC address add mode. Please see
  1159. * enum vxge_hw_vpath_mac_addr_add_mode{}
  1160. *
  1161. * Adds the given mac address and mac address mask into the list for this
  1162. * vpath.
  1163. * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
  1164. * vxge_hw_vpath_mac_addr_get_next
  1165. *
  1166. */
  1167. enum vxge_hw_status
  1168. vxge_hw_vpath_mac_addr_add(
  1169. struct __vxge_hw_vpath_handle *vp,
  1170. u8 (macaddr)[ETH_ALEN],
  1171. u8 (macaddr_mask)[ETH_ALEN],
  1172. enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
  1173. {
  1174. u32 i;
  1175. u64 data1 = 0ULL;
  1176. u64 data2 = 0ULL;
  1177. enum vxge_hw_status status = VXGE_HW_OK;
  1178. if (vp == NULL) {
  1179. status = VXGE_HW_ERR_INVALID_HANDLE;
  1180. goto exit;
  1181. }
  1182. for (i = 0; i < ETH_ALEN; i++) {
  1183. data1 <<= 8;
  1184. data1 |= (u8)macaddr[i];
  1185. data2 <<= 8;
  1186. data2 |= (u8)macaddr_mask[i];
  1187. }
  1188. switch (duplicate_mode) {
  1189. case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
  1190. i = 0;
  1191. break;
  1192. case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
  1193. i = 1;
  1194. break;
  1195. case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
  1196. i = 2;
  1197. break;
  1198. default:
  1199. i = 0;
  1200. break;
  1201. }
  1202. status = __vxge_hw_vpath_rts_table_set(vp,
  1203. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
  1204. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1205. 0,
  1206. VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
  1207. VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
  1208. VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
  1209. exit:
  1210. return status;
  1211. }
  1212. /**
  1213. * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
  1214. * from MAC address table.
  1215. * @vp: Vpath handle.
  1216. * @macaddr: First MAC address entry for this vpath in the list
  1217. * @macaddr_mask: MAC address mask for macaddr
  1218. *
  1219. * Returns the first mac address and mac address mask in the list for this
  1220. * vpath.
  1221. * see also: vxge_hw_vpath_mac_addr_get_next
  1222. *
  1223. */
  1224. enum vxge_hw_status
  1225. vxge_hw_vpath_mac_addr_get(
  1226. struct __vxge_hw_vpath_handle *vp,
  1227. u8 (macaddr)[ETH_ALEN],
  1228. u8 (macaddr_mask)[ETH_ALEN])
  1229. {
  1230. u32 i;
  1231. u64 data1 = 0ULL;
  1232. u64 data2 = 0ULL;
  1233. enum vxge_hw_status status = VXGE_HW_OK;
  1234. if (vp == NULL) {
  1235. status = VXGE_HW_ERR_INVALID_HANDLE;
  1236. goto exit;
  1237. }
  1238. status = __vxge_hw_vpath_rts_table_get(vp,
  1239. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
  1240. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1241. 0, &data1, &data2);
  1242. if (status != VXGE_HW_OK)
  1243. goto exit;
  1244. data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
  1245. data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
  1246. for (i = ETH_ALEN; i > 0; i--) {
  1247. macaddr[i-1] = (u8)(data1 & 0xFF);
  1248. data1 >>= 8;
  1249. macaddr_mask[i-1] = (u8)(data2 & 0xFF);
  1250. data2 >>= 8;
  1251. }
  1252. exit:
  1253. return status;
  1254. }
  1255. /**
  1256. * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
  1257. * vpath
  1258. * from MAC address table.
  1259. * @vp: Vpath handle.
  1260. * @macaddr: Next MAC address entry for this vpath in the list
  1261. * @macaddr_mask: MAC address mask for macaddr
  1262. *
  1263. * Returns the next mac address and mac address mask in the list for this
  1264. * vpath.
  1265. * see also: vxge_hw_vpath_mac_addr_get
  1266. *
  1267. */
  1268. enum vxge_hw_status
  1269. vxge_hw_vpath_mac_addr_get_next(
  1270. struct __vxge_hw_vpath_handle *vp,
  1271. u8 (macaddr)[ETH_ALEN],
  1272. u8 (macaddr_mask)[ETH_ALEN])
  1273. {
  1274. u32 i;
  1275. u64 data1 = 0ULL;
  1276. u64 data2 = 0ULL;
  1277. enum vxge_hw_status status = VXGE_HW_OK;
  1278. if (vp == NULL) {
  1279. status = VXGE_HW_ERR_INVALID_HANDLE;
  1280. goto exit;
  1281. }
  1282. status = __vxge_hw_vpath_rts_table_get(vp,
  1283. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
  1284. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1285. 0, &data1, &data2);
  1286. if (status != VXGE_HW_OK)
  1287. goto exit;
  1288. data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
  1289. data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
  1290. for (i = ETH_ALEN; i > 0; i--) {
  1291. macaddr[i-1] = (u8)(data1 & 0xFF);
  1292. data1 >>= 8;
  1293. macaddr_mask[i-1] = (u8)(data2 & 0xFF);
  1294. data2 >>= 8;
  1295. }
  1296. exit:
  1297. return status;
  1298. }
  1299. /**
  1300. * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
  1301. * to MAC address table.
  1302. * @vp: Vpath handle.
  1303. * @macaddr: MAC address to be added for this vpath into the list
  1304. * @macaddr_mask: MAC address mask for macaddr
  1305. *
  1306. * Delete the given mac address and mac address mask into the list for this
  1307. * vpath.
  1308. * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
  1309. * vxge_hw_vpath_mac_addr_get_next
  1310. *
  1311. */
  1312. enum vxge_hw_status
  1313. vxge_hw_vpath_mac_addr_delete(
  1314. struct __vxge_hw_vpath_handle *vp,
  1315. u8 (macaddr)[ETH_ALEN],
  1316. u8 (macaddr_mask)[ETH_ALEN])
  1317. {
  1318. u32 i;
  1319. u64 data1 = 0ULL;
  1320. u64 data2 = 0ULL;
  1321. enum vxge_hw_status status = VXGE_HW_OK;
  1322. if (vp == NULL) {
  1323. status = VXGE_HW_ERR_INVALID_HANDLE;
  1324. goto exit;
  1325. }
  1326. for (i = 0; i < ETH_ALEN; i++) {
  1327. data1 <<= 8;
  1328. data1 |= (u8)macaddr[i];
  1329. data2 <<= 8;
  1330. data2 |= (u8)macaddr_mask[i];
  1331. }
  1332. status = __vxge_hw_vpath_rts_table_set(vp,
  1333. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
  1334. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
  1335. 0,
  1336. VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
  1337. VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
  1338. exit:
  1339. return status;
  1340. }
  1341. /**
  1342. * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
  1343. * to vlan id table.
  1344. * @vp: Vpath handle.
  1345. * @vid: vlan id to be added for this vpath into the list
  1346. *
  1347. * Adds the given vlan id into the list for this vpath.
  1348. * see also: vxge_hw_vpath_vid_delete, vxge_hw_vpath_vid_get and
  1349. * vxge_hw_vpath_vid_get_next
  1350. *
  1351. */
  1352. enum vxge_hw_status
  1353. vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
  1354. {
  1355. enum vxge_hw_status status = VXGE_HW_OK;
  1356. if (vp == NULL) {
  1357. status = VXGE_HW_ERR_INVALID_HANDLE;
  1358. goto exit;
  1359. }
  1360. status = __vxge_hw_vpath_rts_table_set(vp,
  1361. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
  1362. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1363. 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
  1364. exit:
  1365. return status;
  1366. }
  1367. /**
  1368. * vxge_hw_vpath_vid_get - Get the first vid entry for this vpath
  1369. * from vlan id table.
  1370. * @vp: Vpath handle.
  1371. * @vid: Buffer to return vlan id
  1372. *
  1373. * Returns the first vlan id in the list for this vpath.
  1374. * see also: vxge_hw_vpath_vid_get_next
  1375. *
  1376. */
  1377. enum vxge_hw_status
  1378. vxge_hw_vpath_vid_get(struct __vxge_hw_vpath_handle *vp, u64 *vid)
  1379. {
  1380. u64 data;
  1381. enum vxge_hw_status status = VXGE_HW_OK;
  1382. if (vp == NULL) {
  1383. status = VXGE_HW_ERR_INVALID_HANDLE;
  1384. goto exit;
  1385. }
  1386. status = __vxge_hw_vpath_rts_table_get(vp,
  1387. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
  1388. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1389. 0, vid, &data);
  1390. *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
  1391. exit:
  1392. return status;
  1393. }
  1394. /**
  1395. * vxge_hw_vpath_vid_get_next - Get the next vid entry for this vpath
  1396. * from vlan id table.
  1397. * @vp: Vpath handle.
  1398. * @vid: Buffer to return vlan id
  1399. *
  1400. * Returns the next vlan id in the list for this vpath.
  1401. * see also: vxge_hw_vpath_vid_get
  1402. *
  1403. */
  1404. enum vxge_hw_status
  1405. vxge_hw_vpath_vid_get_next(struct __vxge_hw_vpath_handle *vp, u64 *vid)
  1406. {
  1407. u64 data;
  1408. enum vxge_hw_status status = VXGE_HW_OK;
  1409. if (vp == NULL) {
  1410. status = VXGE_HW_ERR_INVALID_HANDLE;
  1411. goto exit;
  1412. }
  1413. status = __vxge_hw_vpath_rts_table_get(vp,
  1414. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
  1415. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1416. 0, vid, &data);
  1417. *vid = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_VLAN_ID(*vid);
  1418. exit:
  1419. return status;
  1420. }
  1421. /**
  1422. * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
  1423. * to vlan id table.
  1424. * @vp: Vpath handle.
  1425. * @vid: vlan id to be added for this vpath into the list
  1426. *
  1427. * Adds the given vlan id into the list for this vpath.
  1428. * see also: vxge_hw_vpath_vid_add, vxge_hw_vpath_vid_get and
  1429. * vxge_hw_vpath_vid_get_next
  1430. *
  1431. */
  1432. enum vxge_hw_status
  1433. vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
  1434. {
  1435. enum vxge_hw_status status = VXGE_HW_OK;
  1436. if (vp == NULL) {
  1437. status = VXGE_HW_ERR_INVALID_HANDLE;
  1438. goto exit;
  1439. }
  1440. status = __vxge_hw_vpath_rts_table_set(vp,
  1441. VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
  1442. VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
  1443. 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
  1444. exit:
  1445. return status;
  1446. }
  1447. /**
  1448. * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
  1449. * @vp: Vpath handle.
  1450. *
  1451. * Enable promiscuous mode of Titan-e operation.
  1452. *
  1453. * See also: vxge_hw_vpath_promisc_disable().
  1454. */
  1455. enum vxge_hw_status vxge_hw_vpath_promisc_enable(
  1456. struct __vxge_hw_vpath_handle *vp)
  1457. {
  1458. u64 val64;
  1459. struct __vxge_hw_virtualpath *vpath;
  1460. enum vxge_hw_status status = VXGE_HW_OK;
  1461. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1462. status = VXGE_HW_ERR_INVALID_HANDLE;
  1463. goto exit;
  1464. }
  1465. vpath = vp->vpath;
  1466. /* Enable promiscous mode for function 0 only */
  1467. if (!(vpath->hldev->access_rights &
  1468. VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
  1469. return VXGE_HW_OK;
  1470. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1471. if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
  1472. val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
  1473. VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
  1474. VXGE_HW_RXMAC_VCFG0_BCAST_EN |
  1475. VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
  1476. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1477. }
  1478. exit:
  1479. return status;
  1480. }
  1481. /**
  1482. * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
  1483. * @vp: Vpath handle.
  1484. *
  1485. * Disable promiscuous mode of Titan-e operation.
  1486. *
  1487. * See also: vxge_hw_vpath_promisc_enable().
  1488. */
  1489. enum vxge_hw_status vxge_hw_vpath_promisc_disable(
  1490. struct __vxge_hw_vpath_handle *vp)
  1491. {
  1492. u64 val64;
  1493. struct __vxge_hw_virtualpath *vpath;
  1494. enum vxge_hw_status status = VXGE_HW_OK;
  1495. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1496. status = VXGE_HW_ERR_INVALID_HANDLE;
  1497. goto exit;
  1498. }
  1499. vpath = vp->vpath;
  1500. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1501. if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
  1502. val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
  1503. VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
  1504. VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
  1505. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1506. }
  1507. exit:
  1508. return status;
  1509. }
  1510. /*
  1511. * vxge_hw_vpath_bcast_enable - Enable broadcast
  1512. * @vp: Vpath handle.
  1513. *
  1514. * Enable receiving broadcasts.
  1515. */
  1516. enum vxge_hw_status vxge_hw_vpath_bcast_enable(
  1517. struct __vxge_hw_vpath_handle *vp)
  1518. {
  1519. u64 val64;
  1520. struct __vxge_hw_virtualpath *vpath;
  1521. enum vxge_hw_status status = VXGE_HW_OK;
  1522. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1523. status = VXGE_HW_ERR_INVALID_HANDLE;
  1524. goto exit;
  1525. }
  1526. vpath = vp->vpath;
  1527. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1528. if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
  1529. val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
  1530. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1531. }
  1532. exit:
  1533. return status;
  1534. }
  1535. /**
  1536. * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
  1537. * @vp: Vpath handle.
  1538. *
  1539. * Enable Titan-e multicast addresses.
  1540. * Returns: VXGE_HW_OK on success.
  1541. *
  1542. */
  1543. enum vxge_hw_status vxge_hw_vpath_mcast_enable(
  1544. struct __vxge_hw_vpath_handle *vp)
  1545. {
  1546. u64 val64;
  1547. struct __vxge_hw_virtualpath *vpath;
  1548. enum vxge_hw_status status = VXGE_HW_OK;
  1549. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1550. status = VXGE_HW_ERR_INVALID_HANDLE;
  1551. goto exit;
  1552. }
  1553. vpath = vp->vpath;
  1554. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1555. if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
  1556. val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
  1557. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1558. }
  1559. exit:
  1560. return status;
  1561. }
  1562. /**
  1563. * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
  1564. * @vp: Vpath handle.
  1565. *
  1566. * Disable Titan-e multicast addresses.
  1567. * Returns: VXGE_HW_OK - success.
  1568. * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
  1569. *
  1570. */
  1571. enum vxge_hw_status
  1572. vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
  1573. {
  1574. u64 val64;
  1575. struct __vxge_hw_virtualpath *vpath;
  1576. enum vxge_hw_status status = VXGE_HW_OK;
  1577. if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
  1578. status = VXGE_HW_ERR_INVALID_HANDLE;
  1579. goto exit;
  1580. }
  1581. vpath = vp->vpath;
  1582. val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
  1583. if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
  1584. val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
  1585. writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
  1586. }
  1587. exit:
  1588. return status;
  1589. }
  1590. /*
  1591. * __vxge_hw_vpath_alarm_process - Process Alarms.
  1592. * @vpath: Virtual Path.
  1593. * @skip_alarms: Do not clear the alarms
  1594. *
  1595. * Process vpath alarms.
  1596. *
  1597. */
  1598. enum vxge_hw_status __vxge_hw_vpath_alarm_process(
  1599. struct __vxge_hw_virtualpath *vpath,
  1600. u32 skip_alarms)
  1601. {
  1602. u64 val64;
  1603. u64 alarm_status;
  1604. u64 pic_status;
  1605. struct __vxge_hw_device *hldev = NULL;
  1606. enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
  1607. u64 mask64;
  1608. struct vxge_hw_vpath_stats_sw_info *sw_stats;
  1609. struct vxge_hw_vpath_reg __iomem *vp_reg;
  1610. if (vpath == NULL) {
  1611. alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
  1612. alarm_event);
  1613. goto out2;
  1614. }
  1615. hldev = vpath->hldev;
  1616. vp_reg = vpath->vp_reg;
  1617. alarm_status = readq(&vp_reg->vpath_general_int_status);
  1618. if (alarm_status == VXGE_HW_ALL_FOXES) {
  1619. alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
  1620. alarm_event);
  1621. goto out;
  1622. }
  1623. sw_stats = vpath->sw_stats;
  1624. if (alarm_status & ~(
  1625. VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
  1626. VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
  1627. VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
  1628. VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
  1629. sw_stats->error_stats.unknown_alarms++;
  1630. alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
  1631. alarm_event);
  1632. goto out;
  1633. }
  1634. if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
  1635. val64 = readq(&vp_reg->xgmac_vp_int_status);
  1636. if (val64 &
  1637. VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
  1638. val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
  1639. if (((val64 &
  1640. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
  1641. (!(val64 &
  1642. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
  1643. ((val64 &
  1644. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
  1645. && (!(val64 &
  1646. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
  1647. ))) {
  1648. sw_stats->error_stats.network_sustained_fault++;
  1649. writeq(
  1650. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
  1651. &vp_reg->asic_ntwk_vp_err_mask);
  1652. __vxge_hw_device_handle_link_down_ind(hldev);
  1653. alarm_event = VXGE_HW_SET_LEVEL(
  1654. VXGE_HW_EVENT_LINK_DOWN, alarm_event);
  1655. }
  1656. if (((val64 &
  1657. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
  1658. (!(val64 &
  1659. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
  1660. ((val64 &
  1661. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
  1662. && (!(val64 &
  1663. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
  1664. ))) {
  1665. sw_stats->error_stats.network_sustained_ok++;
  1666. writeq(
  1667. VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
  1668. &vp_reg->asic_ntwk_vp_err_mask);
  1669. __vxge_hw_device_handle_link_up_ind(hldev);
  1670. alarm_event = VXGE_HW_SET_LEVEL(
  1671. VXGE_HW_EVENT_LINK_UP, alarm_event);
  1672. }
  1673. writeq(VXGE_HW_INTR_MASK_ALL,
  1674. &vp_reg->asic_ntwk_vp_err_reg);
  1675. alarm_event = VXGE_HW_SET_LEVEL(
  1676. VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
  1677. if (skip_alarms)
  1678. return VXGE_HW_OK;
  1679. }
  1680. }
  1681. if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
  1682. pic_status = readq(&vp_reg->vpath_ppif_int_status);
  1683. if (pic_status &
  1684. VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
  1685. val64 = readq(&vp_reg->general_errors_reg);
  1686. mask64 = readq(&vp_reg->general_errors_mask);
  1687. if ((val64 &
  1688. VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
  1689. ~mask64) {
  1690. sw_stats->error_stats.ini_serr_det++;
  1691. alarm_event = VXGE_HW_SET_LEVEL(
  1692. VXGE_HW_EVENT_SERR, alarm_event);
  1693. }
  1694. if ((val64 &
  1695. VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
  1696. ~mask64) {
  1697. sw_stats->error_stats.dblgen_fifo0_overflow++;
  1698. alarm_event = VXGE_HW_SET_LEVEL(
  1699. VXGE_HW_EVENT_FIFO_ERR, alarm_event);
  1700. }
  1701. if ((val64 &
  1702. VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
  1703. ~mask64)
  1704. sw_stats->error_stats.statsb_pif_chain_error++;
  1705. if ((val64 &
  1706. VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
  1707. ~mask64)
  1708. sw_stats->error_stats.statsb_drop_timeout++;
  1709. if ((val64 &
  1710. VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
  1711. ~mask64)
  1712. sw_stats->error_stats.target_illegal_access++;
  1713. if (!skip_alarms) {
  1714. writeq(VXGE_HW_INTR_MASK_ALL,
  1715. &vp_reg->general_errors_reg);
  1716. alarm_event = VXGE_HW_SET_LEVEL(
  1717. VXGE_HW_EVENT_ALARM_CLEARED,
  1718. alarm_event);
  1719. }
  1720. }
  1721. if (pic_status &
  1722. VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
  1723. val64 = readq(&vp_reg->kdfcctl_errors_reg);
  1724. mask64 = readq(&vp_reg->kdfcctl_errors_mask);
  1725. if ((val64 &
  1726. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
  1727. ~mask64) {
  1728. sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
  1729. alarm_event = VXGE_HW_SET_LEVEL(
  1730. VXGE_HW_EVENT_FIFO_ERR,
  1731. alarm_event);
  1732. }
  1733. if ((val64 &
  1734. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
  1735. ~mask64) {
  1736. sw_stats->error_stats.kdfcctl_fifo0_poison++;
  1737. alarm_event = VXGE_HW_SET_LEVEL(
  1738. VXGE_HW_EVENT_FIFO_ERR,
  1739. alarm_event);
  1740. }
  1741. if ((val64 &
  1742. VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
  1743. ~mask64) {
  1744. sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
  1745. alarm_event = VXGE_HW_SET_LEVEL(
  1746. VXGE_HW_EVENT_FIFO_ERR,
  1747. alarm_event);
  1748. }
  1749. if (!skip_alarms) {
  1750. writeq(VXGE_HW_INTR_MASK_ALL,
  1751. &vp_reg->kdfcctl_errors_reg);
  1752. alarm_event = VXGE_HW_SET_LEVEL(
  1753. VXGE_HW_EVENT_ALARM_CLEARED,
  1754. alarm_event);
  1755. }
  1756. }
  1757. }
  1758. if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
  1759. val64 = readq(&vp_reg->wrdma_alarm_status);
  1760. if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
  1761. val64 = readq(&vp_reg->prc_alarm_reg);
  1762. mask64 = readq(&vp_reg->prc_alarm_mask);
  1763. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
  1764. ~mask64)
  1765. sw_stats->error_stats.prc_ring_bumps++;
  1766. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
  1767. ~mask64) {
  1768. sw_stats->error_stats.prc_rxdcm_sc_err++;
  1769. alarm_event = VXGE_HW_SET_LEVEL(
  1770. VXGE_HW_EVENT_VPATH_ERR,
  1771. alarm_event);
  1772. }
  1773. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
  1774. & ~mask64) {
  1775. sw_stats->error_stats.prc_rxdcm_sc_abort++;
  1776. alarm_event = VXGE_HW_SET_LEVEL(
  1777. VXGE_HW_EVENT_VPATH_ERR,
  1778. alarm_event);
  1779. }
  1780. if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
  1781. & ~mask64) {
  1782. sw_stats->error_stats.prc_quanta_size_err++;
  1783. alarm_event = VXGE_HW_SET_LEVEL(
  1784. VXGE_HW_EVENT_VPATH_ERR,
  1785. alarm_event);
  1786. }
  1787. if (!skip_alarms) {
  1788. writeq(VXGE_HW_INTR_MASK_ALL,
  1789. &vp_reg->prc_alarm_reg);
  1790. alarm_event = VXGE_HW_SET_LEVEL(
  1791. VXGE_HW_EVENT_ALARM_CLEARED,
  1792. alarm_event);
  1793. }
  1794. }
  1795. }
  1796. out:
  1797. hldev->stats.sw_dev_err_stats.vpath_alarms++;
  1798. out2:
  1799. if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
  1800. (alarm_event == VXGE_HW_EVENT_UNKNOWN))
  1801. return VXGE_HW_OK;
  1802. __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
  1803. if (alarm_event == VXGE_HW_EVENT_SERR)
  1804. return VXGE_HW_ERR_CRITICAL;
  1805. return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
  1806. VXGE_HW_ERR_SLOT_FREEZE :
  1807. (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
  1808. VXGE_HW_ERR_VPATH;
  1809. }
  1810. /*
  1811. * vxge_hw_vpath_alarm_process - Process Alarms.
  1812. * @vpath: Virtual Path.
  1813. * @skip_alarms: Do not clear the alarms
  1814. *
  1815. * Process vpath alarms.
  1816. *
  1817. */
  1818. enum vxge_hw_status vxge_hw_vpath_alarm_process(
  1819. struct __vxge_hw_vpath_handle *vp,
  1820. u32 skip_alarms)
  1821. {
  1822. enum vxge_hw_status status = VXGE_HW_OK;
  1823. if (vp == NULL) {
  1824. status = VXGE_HW_ERR_INVALID_HANDLE;
  1825. goto exit;
  1826. }
  1827. status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
  1828. exit:
  1829. return status;
  1830. }
  1831. /**
  1832. * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
  1833. * alrms
  1834. * @vp: Virtual Path handle.
  1835. * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
  1836. * interrupts(Can be repeated). If fifo or ring are not enabled
  1837. * the MSIX vector for that should be set to 0
  1838. * @alarm_msix_id: MSIX vector for alarm.
  1839. *
  1840. * This API will associate a given MSIX vector numbers with the four TIM
  1841. * interrupts and alarm interrupt.
  1842. */
  1843. enum vxge_hw_status
  1844. vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
  1845. int alarm_msix_id)
  1846. {
  1847. u64 val64;
  1848. struct __vxge_hw_virtualpath *vpath = vp->vpath;
  1849. struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
  1850. u32 first_vp_id = vpath->hldev->first_vp_id;
  1851. val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
  1852. (first_vp_id * 4) + tim_msix_id[0]) |
  1853. VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
  1854. (first_vp_id * 4) + tim_msix_id[1]) |
  1855. VXGE_HW_INTERRUPT_CFG0_GROUP2_MSIX_FOR_TXTI(
  1856. (first_vp_id * 4) + tim_msix_id[2]);
  1857. val64 |= VXGE_HW_INTERRUPT_CFG0_GROUP3_MSIX_FOR_TXTI(
  1858. (first_vp_id * 4) + tim_msix_id[3]);
  1859. writeq(val64, &vp_reg->interrupt_cfg0);
  1860. writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
  1861. (first_vp_id * 4) + alarm_msix_id),
  1862. &vp_reg->interrupt_cfg2);
  1863. if (vpath->hldev->config.intr_mode ==
  1864. VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
  1865. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
  1866. VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
  1867. 0, 32), &vp_reg->one_shot_vect1_en);
  1868. }
  1869. if (vpath->hldev->config.intr_mode ==
  1870. VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
  1871. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
  1872. VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
  1873. 0, 32), &vp_reg->one_shot_vect2_en);
  1874. __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
  1875. VXGE_HW_ONE_SHOT_VECT3_EN_ONE_SHOT_VECT3_EN,
  1876. 0, 32), &vp_reg->one_shot_vect3_en);
  1877. }
  1878. return VXGE_HW_OK;
  1879. }
  1880. /**
  1881. * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
  1882. * @vp: Virtual Path handle.
  1883. * @msix_id: MSIX ID
  1884. *
  1885. * The function masks the msix interrupt for the given msix_id
  1886. *
  1887. * Returns: 0,
  1888. * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
  1889. * status.
  1890. * See also:
  1891. */
  1892. void
  1893. vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
  1894. {
  1895. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1896. __vxge_hw_pio_mem_write32_upper(
  1897. (u32) vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
  1898. (msix_id / 4)), 0, 32),
  1899. &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
  1900. return;
  1901. }
  1902. /**
  1903. * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
  1904. * @vp: Virtual Path handle.
  1905. * @msix_id: MSI ID
  1906. *
  1907. * The function clears the msix interrupt for the given msix_id
  1908. *
  1909. * Returns: 0,
  1910. * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
  1911. * status.
  1912. * See also:
  1913. */
  1914. void
  1915. vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
  1916. {
  1917. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1918. if (hldev->config.intr_mode ==
  1919. VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
  1920. __vxge_hw_pio_mem_write32_upper(
  1921. (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
  1922. (msix_id/4)), 0, 32),
  1923. &hldev->common_reg->
  1924. clr_msix_one_shot_vec[msix_id%4]);
  1925. } else {
  1926. __vxge_hw_pio_mem_write32_upper(
  1927. (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
  1928. (msix_id/4)), 0, 32),
  1929. &hldev->common_reg->
  1930. clear_msix_mask_vect[msix_id%4]);
  1931. }
  1932. return;
  1933. }
  1934. /**
  1935. * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
  1936. * @vp: Virtual Path handle.
  1937. * @msix_id: MSI ID
  1938. *
  1939. * The function unmasks the msix interrupt for the given msix_id
  1940. *
  1941. * Returns: 0,
  1942. * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
  1943. * status.
  1944. * See also:
  1945. */
  1946. void
  1947. vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
  1948. {
  1949. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1950. __vxge_hw_pio_mem_write32_upper(
  1951. (u32)vxge_bVALn(vxge_mBIT(hldev->first_vp_id +
  1952. (msix_id/4)), 0, 32),
  1953. &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
  1954. return;
  1955. }
  1956. /**
  1957. * vxge_hw_vpath_msix_mask_all - Mask all MSIX vectors for the vpath.
  1958. * @vp: Virtual Path handle.
  1959. *
  1960. * The function masks all msix interrupt for the given vpath
  1961. *
  1962. */
  1963. void
  1964. vxge_hw_vpath_msix_mask_all(struct __vxge_hw_vpath_handle *vp)
  1965. {
  1966. __vxge_hw_pio_mem_write32_upper(
  1967. (u32)vxge_bVALn(vxge_mBIT(vp->vpath->vp_id), 0, 32),
  1968. &vp->vpath->hldev->common_reg->set_msix_mask_all_vect);
  1969. return;
  1970. }
  1971. /**
  1972. * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
  1973. * @vp: Virtual Path handle.
  1974. *
  1975. * Mask Tx and Rx vpath interrupts.
  1976. *
  1977. * See also: vxge_hw_vpath_inta_mask_tx_rx()
  1978. */
  1979. void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
  1980. {
  1981. u64 tim_int_mask0[4] = {[0 ...3] = 0};
  1982. u32 tim_int_mask1[4] = {[0 ...3] = 0};
  1983. u64 val64;
  1984. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  1985. VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
  1986. tim_int_mask1, vp->vpath->vp_id);
  1987. val64 = readq(&hldev->common_reg->tim_int_mask0);
  1988. if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
  1989. (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
  1990. writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  1991. tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
  1992. &hldev->common_reg->tim_int_mask0);
  1993. }
  1994. val64 = readl(&hldev->common_reg->tim_int_mask1);
  1995. if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
  1996. (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
  1997. __vxge_hw_pio_mem_write32_upper(
  1998. (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  1999. tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
  2000. &hldev->common_reg->tim_int_mask1);
  2001. }
  2002. return;
  2003. }
  2004. /**
  2005. * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
  2006. * @vp: Virtual Path handle.
  2007. *
  2008. * Unmask Tx and Rx vpath interrupts.
  2009. *
  2010. * See also: vxge_hw_vpath_inta_mask_tx_rx()
  2011. */
  2012. void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
  2013. {
  2014. u64 tim_int_mask0[4] = {[0 ...3] = 0};
  2015. u32 tim_int_mask1[4] = {[0 ...3] = 0};
  2016. u64 val64;
  2017. struct __vxge_hw_device *hldev = vp->vpath->hldev;
  2018. VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
  2019. tim_int_mask1, vp->vpath->vp_id);
  2020. val64 = readq(&hldev->common_reg->tim_int_mask0);
  2021. if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
  2022. (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
  2023. writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
  2024. tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
  2025. &hldev->common_reg->tim_int_mask0);
  2026. }
  2027. if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
  2028. (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
  2029. __vxge_hw_pio_mem_write32_upper(
  2030. (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
  2031. tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
  2032. &hldev->common_reg->tim_int_mask1);
  2033. }
  2034. return;
  2035. }
  2036. /**
  2037. * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
  2038. * descriptors and process the same.
  2039. * @ring: Handle to the ring object used for receive
  2040. *
  2041. * The function polls the Rx for the completed descriptors and calls
  2042. * the driver via supplied completion callback.
  2043. *
  2044. * Returns: VXGE_HW_OK, if the polling is completed successful.
  2045. * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
  2046. * descriptors available which are yet to be processed.
  2047. *
  2048. * See also: vxge_hw_vpath_poll_rx()
  2049. */
  2050. enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
  2051. {
  2052. u8 t_code;
  2053. enum vxge_hw_status status = VXGE_HW_OK;
  2054. void *first_rxdh;
  2055. u64 val64 = 0;
  2056. int new_count = 0;
  2057. ring->cmpl_cnt = 0;
  2058. status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
  2059. if (status == VXGE_HW_OK)
  2060. ring->callback(ring, first_rxdh,
  2061. t_code, ring->channel.userdata);
  2062. if (ring->cmpl_cnt != 0) {
  2063. ring->doorbell_cnt += ring->cmpl_cnt;
  2064. if (ring->doorbell_cnt >= ring->rxds_limit) {
  2065. /*
  2066. * Each RxD is of 4 qwords, update the number of
  2067. * qwords replenished
  2068. */
  2069. new_count = (ring->doorbell_cnt * 4);
  2070. /* For each block add 4 more qwords */
  2071. ring->total_db_cnt += ring->doorbell_cnt;
  2072. if (ring->total_db_cnt >= ring->rxds_per_block) {
  2073. new_count += 4;
  2074. /* Reset total count */
  2075. ring->total_db_cnt %= ring->rxds_per_block;
  2076. }
  2077. writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
  2078. &ring->vp_reg->prc_rxd_doorbell);
  2079. val64 =
  2080. readl(&ring->common_reg->titan_general_int_status);
  2081. ring->doorbell_cnt = 0;
  2082. }
  2083. }
  2084. return status;
  2085. }
  2086. /**
  2087. * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
  2088. * the same.
  2089. * @fifo: Handle to the fifo object used for non offload send
  2090. *
  2091. * The function polls the Tx for the completed descriptors and calls
  2092. * the driver via supplied completion callback.
  2093. *
  2094. * Returns: VXGE_HW_OK, if the polling is completed successful.
  2095. * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
  2096. * descriptors available which are yet to be processed.
  2097. *
  2098. * See also: vxge_hw_vpath_poll_tx().
  2099. */
  2100. enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
  2101. struct sk_buff ***skb_ptr, int nr_skb,
  2102. int *more)
  2103. {
  2104. enum vxge_hw_fifo_tcode t_code;
  2105. void *first_txdlh;
  2106. enum vxge_hw_status status = VXGE_HW_OK;
  2107. struct __vxge_hw_channel *channel;
  2108. channel = &fifo->channel;
  2109. status = vxge_hw_fifo_txdl_next_completed(fifo,
  2110. &first_txdlh, &t_code);
  2111. if (status == VXGE_HW_OK)
  2112. if (fifo->callback(fifo, first_txdlh, t_code,
  2113. channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
  2114. status = VXGE_HW_COMPLETIONS_REMAIN;
  2115. return status;
  2116. }