sungem.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call napi_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/types.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/ioport.h>
  39. #include <linux/in.h>
  40. #include <linux/sched.h>
  41. #include <linux/slab.h>
  42. #include <linux/string.h>
  43. #include <linux/delay.h>
  44. #include <linux/init.h>
  45. #include <linux/errno.h>
  46. #include <linux/pci.h>
  47. #include <linux/dma-mapping.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/skbuff.h>
  51. #include <linux/mii.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/crc32.h>
  54. #include <linux/random.h>
  55. #include <linux/workqueue.h>
  56. #include <linux/if_vlan.h>
  57. #include <linux/bitops.h>
  58. #include <linux/mutex.h>
  59. #include <linux/mm.h>
  60. #include <asm/system.h>
  61. #include <asm/io.h>
  62. #include <asm/byteorder.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/irq.h>
  65. #ifdef CONFIG_SPARC
  66. #include <asm/idprom.h>
  67. #include <asm/prom.h>
  68. #endif
  69. #ifdef CONFIG_PPC_PMAC
  70. #include <asm/pci-bridge.h>
  71. #include <asm/prom.h>
  72. #include <asm/machdep.h>
  73. #include <asm/pmac_feature.h>
  74. #endif
  75. #include "sungem_phy.h"
  76. #include "sungem.h"
  77. /* Stripping FCS is causing problems, disabled for now */
  78. #undef STRIP_FCS
  79. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  80. NETIF_MSG_PROBE | \
  81. NETIF_MSG_LINK)
  82. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  83. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  84. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  85. SUPPORTED_Pause | SUPPORTED_Autoneg)
  86. #define DRV_NAME "sungem"
  87. #define DRV_VERSION "0.98"
  88. #define DRV_RELDATE "8/24/03"
  89. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  90. static char version[] __devinitdata =
  91. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  92. MODULE_AUTHOR(DRV_AUTHOR);
  93. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  94. MODULE_LICENSE("GPL");
  95. #define GEM_MODULE_NAME "gem"
  96. #define PFX GEM_MODULE_NAME ": "
  97. static struct pci_device_id gem_pci_tbl[] = {
  98. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  99. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  100. /* These models only differ from the original GEM in
  101. * that their tx/rx fifos are of a different size and
  102. * they only support 10/100 speeds. -DaveM
  103. *
  104. * Apple's GMAC does support gigabit on machines with
  105. * the BCM54xx PHYs. -BenH
  106. */
  107. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  109. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  111. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  112. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  113. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  115. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  117. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  119. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  121. {0, }
  122. };
  123. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  124. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  125. {
  126. u32 cmd;
  127. int limit = 10000;
  128. cmd = (1 << 30);
  129. cmd |= (2 << 28);
  130. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  131. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  132. cmd |= (MIF_FRAME_TAMSB);
  133. writel(cmd, gp->regs + MIF_FRAME);
  134. while (--limit) {
  135. cmd = readl(gp->regs + MIF_FRAME);
  136. if (cmd & MIF_FRAME_TALSB)
  137. break;
  138. udelay(10);
  139. }
  140. if (!limit)
  141. cmd = 0xffff;
  142. return cmd & MIF_FRAME_DATA;
  143. }
  144. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  145. {
  146. struct gem *gp = netdev_priv(dev);
  147. return __phy_read(gp, mii_id, reg);
  148. }
  149. static inline u16 phy_read(struct gem *gp, int reg)
  150. {
  151. return __phy_read(gp, gp->mii_phy_addr, reg);
  152. }
  153. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  154. {
  155. u32 cmd;
  156. int limit = 10000;
  157. cmd = (1 << 30);
  158. cmd |= (1 << 28);
  159. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  160. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  161. cmd |= (MIF_FRAME_TAMSB);
  162. cmd |= (val & MIF_FRAME_DATA);
  163. writel(cmd, gp->regs + MIF_FRAME);
  164. while (limit--) {
  165. cmd = readl(gp->regs + MIF_FRAME);
  166. if (cmd & MIF_FRAME_TALSB)
  167. break;
  168. udelay(10);
  169. }
  170. }
  171. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  172. {
  173. struct gem *gp = netdev_priv(dev);
  174. __phy_write(gp, mii_id, reg, val & 0xffff);
  175. }
  176. static inline void phy_write(struct gem *gp, int reg, u16 val)
  177. {
  178. __phy_write(gp, gp->mii_phy_addr, reg, val);
  179. }
  180. static inline void gem_enable_ints(struct gem *gp)
  181. {
  182. /* Enable all interrupts but TXDONE */
  183. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  184. }
  185. static inline void gem_disable_ints(struct gem *gp)
  186. {
  187. /* Disable all interrupts, including TXDONE */
  188. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  189. }
  190. static void gem_get_cell(struct gem *gp)
  191. {
  192. BUG_ON(gp->cell_enabled < 0);
  193. gp->cell_enabled++;
  194. #ifdef CONFIG_PPC_PMAC
  195. if (gp->cell_enabled == 1) {
  196. mb();
  197. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  198. udelay(10);
  199. }
  200. #endif /* CONFIG_PPC_PMAC */
  201. }
  202. /* Turn off the chip's clock */
  203. static void gem_put_cell(struct gem *gp)
  204. {
  205. BUG_ON(gp->cell_enabled <= 0);
  206. gp->cell_enabled--;
  207. #ifdef CONFIG_PPC_PMAC
  208. if (gp->cell_enabled == 0) {
  209. mb();
  210. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  211. udelay(10);
  212. }
  213. #endif /* CONFIG_PPC_PMAC */
  214. }
  215. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  216. {
  217. if (netif_msg_intr(gp))
  218. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  219. }
  220. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  221. {
  222. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  223. u32 pcs_miistat;
  224. if (netif_msg_intr(gp))
  225. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  226. gp->dev->name, pcs_istat);
  227. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  228. printk(KERN_ERR "%s: PCS irq but no link status change???\n",
  229. dev->name);
  230. return 0;
  231. }
  232. /* The link status bit latches on zero, so you must
  233. * read it twice in such a case to see a transition
  234. * to the link being up.
  235. */
  236. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  237. if (!(pcs_miistat & PCS_MIISTAT_LS))
  238. pcs_miistat |=
  239. (readl(gp->regs + PCS_MIISTAT) &
  240. PCS_MIISTAT_LS);
  241. if (pcs_miistat & PCS_MIISTAT_ANC) {
  242. /* The remote-fault indication is only valid
  243. * when autoneg has completed.
  244. */
  245. if (pcs_miistat & PCS_MIISTAT_RF)
  246. printk(KERN_INFO "%s: PCS AutoNEG complete, "
  247. "RemoteFault\n", dev->name);
  248. else
  249. printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
  250. dev->name);
  251. }
  252. if (pcs_miistat & PCS_MIISTAT_LS) {
  253. printk(KERN_INFO "%s: PCS link is now up.\n",
  254. dev->name);
  255. netif_carrier_on(gp->dev);
  256. } else {
  257. printk(KERN_INFO "%s: PCS link is now down.\n",
  258. dev->name);
  259. netif_carrier_off(gp->dev);
  260. /* If this happens and the link timer is not running,
  261. * reset so we re-negotiate.
  262. */
  263. if (!timer_pending(&gp->link_timer))
  264. return 1;
  265. }
  266. return 0;
  267. }
  268. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  269. {
  270. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  271. if (netif_msg_intr(gp))
  272. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  273. gp->dev->name, txmac_stat);
  274. /* Defer timer expiration is quite normal,
  275. * don't even log the event.
  276. */
  277. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  278. !(txmac_stat & ~MAC_TXSTAT_DTE))
  279. return 0;
  280. if (txmac_stat & MAC_TXSTAT_URUN) {
  281. printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
  282. dev->name);
  283. gp->net_stats.tx_fifo_errors++;
  284. }
  285. if (txmac_stat & MAC_TXSTAT_MPE) {
  286. printk(KERN_ERR "%s: TX MAC max packet size error.\n",
  287. dev->name);
  288. gp->net_stats.tx_errors++;
  289. }
  290. /* The rest are all cases of one of the 16-bit TX
  291. * counters expiring.
  292. */
  293. if (txmac_stat & MAC_TXSTAT_NCE)
  294. gp->net_stats.collisions += 0x10000;
  295. if (txmac_stat & MAC_TXSTAT_ECE) {
  296. gp->net_stats.tx_aborted_errors += 0x10000;
  297. gp->net_stats.collisions += 0x10000;
  298. }
  299. if (txmac_stat & MAC_TXSTAT_LCE) {
  300. gp->net_stats.tx_aborted_errors += 0x10000;
  301. gp->net_stats.collisions += 0x10000;
  302. }
  303. /* We do not keep track of MAC_TXSTAT_FCE and
  304. * MAC_TXSTAT_PCE events.
  305. */
  306. return 0;
  307. }
  308. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  309. * so we do the following.
  310. *
  311. * If any part of the reset goes wrong, we return 1 and that causes the
  312. * whole chip to be reset.
  313. */
  314. static int gem_rxmac_reset(struct gem *gp)
  315. {
  316. struct net_device *dev = gp->dev;
  317. int limit, i;
  318. u64 desc_dma;
  319. u32 val;
  320. /* First, reset & disable MAC RX. */
  321. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  322. for (limit = 0; limit < 5000; limit++) {
  323. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  324. break;
  325. udelay(10);
  326. }
  327. if (limit == 5000) {
  328. printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
  329. "chip.\n", dev->name);
  330. return 1;
  331. }
  332. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  333. gp->regs + MAC_RXCFG);
  334. for (limit = 0; limit < 5000; limit++) {
  335. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  336. break;
  337. udelay(10);
  338. }
  339. if (limit == 5000) {
  340. printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
  341. "chip.\n", dev->name);
  342. return 1;
  343. }
  344. /* Second, disable RX DMA. */
  345. writel(0, gp->regs + RXDMA_CFG);
  346. for (limit = 0; limit < 5000; limit++) {
  347. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  348. break;
  349. udelay(10);
  350. }
  351. if (limit == 5000) {
  352. printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
  353. "chip.\n", dev->name);
  354. return 1;
  355. }
  356. udelay(5000);
  357. /* Execute RX reset command. */
  358. writel(gp->swrst_base | GREG_SWRST_RXRST,
  359. gp->regs + GREG_SWRST);
  360. for (limit = 0; limit < 5000; limit++) {
  361. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  362. break;
  363. udelay(10);
  364. }
  365. if (limit == 5000) {
  366. printk(KERN_ERR "%s: RX reset command will not execute, resetting "
  367. "whole chip.\n", dev->name);
  368. return 1;
  369. }
  370. /* Refresh the RX ring. */
  371. for (i = 0; i < RX_RING_SIZE; i++) {
  372. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  373. if (gp->rx_skbs[i] == NULL) {
  374. printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
  375. "whole chip.\n", dev->name);
  376. return 1;
  377. }
  378. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  379. }
  380. gp->rx_new = gp->rx_old = 0;
  381. /* Now we must reprogram the rest of RX unit. */
  382. desc_dma = (u64) gp->gblock_dvma;
  383. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  384. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  385. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  386. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  387. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  388. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  389. writel(val, gp->regs + RXDMA_CFG);
  390. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  391. writel(((5 & RXDMA_BLANK_IPKTS) |
  392. ((8 << 12) & RXDMA_BLANK_ITIME)),
  393. gp->regs + RXDMA_BLANK);
  394. else
  395. writel(((5 & RXDMA_BLANK_IPKTS) |
  396. ((4 << 12) & RXDMA_BLANK_ITIME)),
  397. gp->regs + RXDMA_BLANK);
  398. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  399. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  400. writel(val, gp->regs + RXDMA_PTHRESH);
  401. val = readl(gp->regs + RXDMA_CFG);
  402. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  403. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  404. val = readl(gp->regs + MAC_RXCFG);
  405. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  406. return 0;
  407. }
  408. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  409. {
  410. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  411. int ret = 0;
  412. if (netif_msg_intr(gp))
  413. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  414. gp->dev->name, rxmac_stat);
  415. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  416. u32 smac = readl(gp->regs + MAC_SMACHINE);
  417. printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
  418. dev->name, smac);
  419. gp->net_stats.rx_over_errors++;
  420. gp->net_stats.rx_fifo_errors++;
  421. ret = gem_rxmac_reset(gp);
  422. }
  423. if (rxmac_stat & MAC_RXSTAT_ACE)
  424. gp->net_stats.rx_frame_errors += 0x10000;
  425. if (rxmac_stat & MAC_RXSTAT_CCE)
  426. gp->net_stats.rx_crc_errors += 0x10000;
  427. if (rxmac_stat & MAC_RXSTAT_LCE)
  428. gp->net_stats.rx_length_errors += 0x10000;
  429. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  430. * events.
  431. */
  432. return ret;
  433. }
  434. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  435. {
  436. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  437. if (netif_msg_intr(gp))
  438. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  439. gp->dev->name, mac_cstat);
  440. /* This interrupt is just for pause frame and pause
  441. * tracking. It is useful for diagnostics and debug
  442. * but probably by default we will mask these events.
  443. */
  444. if (mac_cstat & MAC_CSTAT_PS)
  445. gp->pause_entered++;
  446. if (mac_cstat & MAC_CSTAT_PRCV)
  447. gp->pause_last_time_recvd = (mac_cstat >> 16);
  448. return 0;
  449. }
  450. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  451. {
  452. u32 mif_status = readl(gp->regs + MIF_STATUS);
  453. u32 reg_val, changed_bits;
  454. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  455. changed_bits = (mif_status & MIF_STATUS_STAT);
  456. gem_handle_mif_event(gp, reg_val, changed_bits);
  457. return 0;
  458. }
  459. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  460. {
  461. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  462. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  463. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  464. printk(KERN_ERR "%s: PCI error [%04x] ",
  465. dev->name, pci_estat);
  466. if (pci_estat & GREG_PCIESTAT_BADACK)
  467. printk("<No ACK64# during ABS64 cycle> ");
  468. if (pci_estat & GREG_PCIESTAT_DTRTO)
  469. printk("<Delayed transaction timeout> ");
  470. if (pci_estat & GREG_PCIESTAT_OTHER)
  471. printk("<other>");
  472. printk("\n");
  473. } else {
  474. pci_estat |= GREG_PCIESTAT_OTHER;
  475. printk(KERN_ERR "%s: PCI error\n", dev->name);
  476. }
  477. if (pci_estat & GREG_PCIESTAT_OTHER) {
  478. u16 pci_cfg_stat;
  479. /* Interrogate PCI config space for the
  480. * true cause.
  481. */
  482. pci_read_config_word(gp->pdev, PCI_STATUS,
  483. &pci_cfg_stat);
  484. printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
  485. dev->name, pci_cfg_stat);
  486. if (pci_cfg_stat & PCI_STATUS_PARITY)
  487. printk(KERN_ERR "%s: PCI parity error detected.\n",
  488. dev->name);
  489. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  490. printk(KERN_ERR "%s: PCI target abort.\n",
  491. dev->name);
  492. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  493. printk(KERN_ERR "%s: PCI master acks target abort.\n",
  494. dev->name);
  495. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  496. printk(KERN_ERR "%s: PCI master abort.\n",
  497. dev->name);
  498. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  499. printk(KERN_ERR "%s: PCI system error SERR#.\n",
  500. dev->name);
  501. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  502. printk(KERN_ERR "%s: PCI parity error.\n",
  503. dev->name);
  504. /* Write the error bits back to clear them. */
  505. pci_cfg_stat &= (PCI_STATUS_PARITY |
  506. PCI_STATUS_SIG_TARGET_ABORT |
  507. PCI_STATUS_REC_TARGET_ABORT |
  508. PCI_STATUS_REC_MASTER_ABORT |
  509. PCI_STATUS_SIG_SYSTEM_ERROR |
  510. PCI_STATUS_DETECTED_PARITY);
  511. pci_write_config_word(gp->pdev,
  512. PCI_STATUS, pci_cfg_stat);
  513. }
  514. /* For all PCI errors, we should reset the chip. */
  515. return 1;
  516. }
  517. /* All non-normal interrupt conditions get serviced here.
  518. * Returns non-zero if we should just exit the interrupt
  519. * handler right now (ie. if we reset the card which invalidates
  520. * all of the other original irq status bits).
  521. */
  522. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  523. {
  524. if (gem_status & GREG_STAT_RXNOBUF) {
  525. /* Frame arrived, no free RX buffers available. */
  526. if (netif_msg_rx_err(gp))
  527. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  528. gp->dev->name);
  529. gp->net_stats.rx_dropped++;
  530. }
  531. if (gem_status & GREG_STAT_RXTAGERR) {
  532. /* corrupt RX tag framing */
  533. if (netif_msg_rx_err(gp))
  534. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  535. gp->dev->name);
  536. gp->net_stats.rx_errors++;
  537. goto do_reset;
  538. }
  539. if (gem_status & GREG_STAT_PCS) {
  540. if (gem_pcs_interrupt(dev, gp, gem_status))
  541. goto do_reset;
  542. }
  543. if (gem_status & GREG_STAT_TXMAC) {
  544. if (gem_txmac_interrupt(dev, gp, gem_status))
  545. goto do_reset;
  546. }
  547. if (gem_status & GREG_STAT_RXMAC) {
  548. if (gem_rxmac_interrupt(dev, gp, gem_status))
  549. goto do_reset;
  550. }
  551. if (gem_status & GREG_STAT_MAC) {
  552. if (gem_mac_interrupt(dev, gp, gem_status))
  553. goto do_reset;
  554. }
  555. if (gem_status & GREG_STAT_MIF) {
  556. if (gem_mif_interrupt(dev, gp, gem_status))
  557. goto do_reset;
  558. }
  559. if (gem_status & GREG_STAT_PCIERR) {
  560. if (gem_pci_interrupt(dev, gp, gem_status))
  561. goto do_reset;
  562. }
  563. return 0;
  564. do_reset:
  565. gp->reset_task_pending = 1;
  566. schedule_work(&gp->reset_task);
  567. return 1;
  568. }
  569. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  570. {
  571. int entry, limit;
  572. if (netif_msg_intr(gp))
  573. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  574. gp->dev->name, gem_status);
  575. entry = gp->tx_old;
  576. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  577. while (entry != limit) {
  578. struct sk_buff *skb;
  579. struct gem_txd *txd;
  580. dma_addr_t dma_addr;
  581. u32 dma_len;
  582. int frag;
  583. if (netif_msg_tx_done(gp))
  584. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  585. gp->dev->name, entry);
  586. skb = gp->tx_skbs[entry];
  587. if (skb_shinfo(skb)->nr_frags) {
  588. int last = entry + skb_shinfo(skb)->nr_frags;
  589. int walk = entry;
  590. int incomplete = 0;
  591. last &= (TX_RING_SIZE - 1);
  592. for (;;) {
  593. walk = NEXT_TX(walk);
  594. if (walk == limit)
  595. incomplete = 1;
  596. if (walk == last)
  597. break;
  598. }
  599. if (incomplete)
  600. break;
  601. }
  602. gp->tx_skbs[entry] = NULL;
  603. gp->net_stats.tx_bytes += skb->len;
  604. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  605. txd = &gp->init_block->txd[entry];
  606. dma_addr = le64_to_cpu(txd->buffer);
  607. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  608. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  609. entry = NEXT_TX(entry);
  610. }
  611. gp->net_stats.tx_packets++;
  612. dev_kfree_skb_irq(skb);
  613. }
  614. gp->tx_old = entry;
  615. if (netif_queue_stopped(dev) &&
  616. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  617. netif_wake_queue(dev);
  618. }
  619. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  620. {
  621. int cluster_start, curr, count, kick;
  622. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  623. count = 0;
  624. kick = -1;
  625. wmb();
  626. while (curr != limit) {
  627. curr = NEXT_RX(curr);
  628. if (++count == 4) {
  629. struct gem_rxd *rxd =
  630. &gp->init_block->rxd[cluster_start];
  631. for (;;) {
  632. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  633. rxd++;
  634. cluster_start = NEXT_RX(cluster_start);
  635. if (cluster_start == curr)
  636. break;
  637. }
  638. kick = curr;
  639. count = 0;
  640. }
  641. }
  642. if (kick >= 0) {
  643. mb();
  644. writel(kick, gp->regs + RXDMA_KICK);
  645. }
  646. }
  647. static int gem_rx(struct gem *gp, int work_to_do)
  648. {
  649. int entry, drops, work_done = 0;
  650. u32 done;
  651. __sum16 csum;
  652. if (netif_msg_rx_status(gp))
  653. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  654. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  655. entry = gp->rx_new;
  656. drops = 0;
  657. done = readl(gp->regs + RXDMA_DONE);
  658. for (;;) {
  659. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  660. struct sk_buff *skb;
  661. u64 status = le64_to_cpu(rxd->status_word);
  662. dma_addr_t dma_addr;
  663. int len;
  664. if ((status & RXDCTRL_OWN) != 0)
  665. break;
  666. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  667. break;
  668. /* When writing back RX descriptor, GEM writes status
  669. * then buffer address, possibly in seperate transactions.
  670. * If we don't wait for the chip to write both, we could
  671. * post a new buffer to this descriptor then have GEM spam
  672. * on the buffer address. We sync on the RX completion
  673. * register to prevent this from happening.
  674. */
  675. if (entry == done) {
  676. done = readl(gp->regs + RXDMA_DONE);
  677. if (entry == done)
  678. break;
  679. }
  680. /* We can now account for the work we're about to do */
  681. work_done++;
  682. skb = gp->rx_skbs[entry];
  683. len = (status & RXDCTRL_BUFSZ) >> 16;
  684. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  685. gp->net_stats.rx_errors++;
  686. if (len < ETH_ZLEN)
  687. gp->net_stats.rx_length_errors++;
  688. if (len & RXDCTRL_BAD)
  689. gp->net_stats.rx_crc_errors++;
  690. /* We'll just return it to GEM. */
  691. drop_it:
  692. gp->net_stats.rx_dropped++;
  693. goto next;
  694. }
  695. dma_addr = le64_to_cpu(rxd->buffer);
  696. if (len > RX_COPY_THRESHOLD) {
  697. struct sk_buff *new_skb;
  698. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  699. if (new_skb == NULL) {
  700. drops++;
  701. goto drop_it;
  702. }
  703. pci_unmap_page(gp->pdev, dma_addr,
  704. RX_BUF_ALLOC_SIZE(gp),
  705. PCI_DMA_FROMDEVICE);
  706. gp->rx_skbs[entry] = new_skb;
  707. new_skb->dev = gp->dev;
  708. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  709. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  710. virt_to_page(new_skb->data),
  711. offset_in_page(new_skb->data),
  712. RX_BUF_ALLOC_SIZE(gp),
  713. PCI_DMA_FROMDEVICE));
  714. skb_reserve(new_skb, RX_OFFSET);
  715. /* Trim the original skb for the netif. */
  716. skb_trim(skb, len);
  717. } else {
  718. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  719. if (copy_skb == NULL) {
  720. drops++;
  721. goto drop_it;
  722. }
  723. skb_reserve(copy_skb, 2);
  724. skb_put(copy_skb, len);
  725. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  726. skb_copy_from_linear_data(skb, copy_skb->data, len);
  727. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  728. /* We'll reuse the original ring buffer. */
  729. skb = copy_skb;
  730. }
  731. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  732. skb->csum = csum_unfold(csum);
  733. skb->ip_summed = CHECKSUM_COMPLETE;
  734. skb->protocol = eth_type_trans(skb, gp->dev);
  735. netif_receive_skb(skb);
  736. gp->net_stats.rx_packets++;
  737. gp->net_stats.rx_bytes += len;
  738. next:
  739. entry = NEXT_RX(entry);
  740. }
  741. gem_post_rxds(gp, entry);
  742. gp->rx_new = entry;
  743. if (drops)
  744. printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
  745. gp->dev->name);
  746. return work_done;
  747. }
  748. static int gem_poll(struct napi_struct *napi, int budget)
  749. {
  750. struct gem *gp = container_of(napi, struct gem, napi);
  751. struct net_device *dev = gp->dev;
  752. unsigned long flags;
  753. int work_done;
  754. /*
  755. * NAPI locking nightmare: See comment at head of driver
  756. */
  757. spin_lock_irqsave(&gp->lock, flags);
  758. work_done = 0;
  759. do {
  760. /* Handle anomalies */
  761. if (gp->status & GREG_STAT_ABNORMAL) {
  762. if (gem_abnormal_irq(dev, gp, gp->status))
  763. break;
  764. }
  765. /* Run TX completion thread */
  766. spin_lock(&gp->tx_lock);
  767. gem_tx(dev, gp, gp->status);
  768. spin_unlock(&gp->tx_lock);
  769. spin_unlock_irqrestore(&gp->lock, flags);
  770. /* Run RX thread. We don't use any locking here,
  771. * code willing to do bad things - like cleaning the
  772. * rx ring - must call napi_disable(), which
  773. * schedule_timeout()'s if polling is already disabled.
  774. */
  775. work_done += gem_rx(gp, budget - work_done);
  776. if (work_done >= budget)
  777. return work_done;
  778. spin_lock_irqsave(&gp->lock, flags);
  779. gp->status = readl(gp->regs + GREG_STAT);
  780. } while (gp->status & GREG_STAT_NAPI);
  781. __napi_complete(napi);
  782. gem_enable_ints(gp);
  783. spin_unlock_irqrestore(&gp->lock, flags);
  784. return work_done;
  785. }
  786. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  787. {
  788. struct net_device *dev = dev_id;
  789. struct gem *gp = netdev_priv(dev);
  790. unsigned long flags;
  791. /* Swallow interrupts when shutting the chip down, though
  792. * that shouldn't happen, we should have done free_irq() at
  793. * this point...
  794. */
  795. if (!gp->running)
  796. return IRQ_HANDLED;
  797. spin_lock_irqsave(&gp->lock, flags);
  798. if (napi_schedule_prep(&gp->napi)) {
  799. u32 gem_status = readl(gp->regs + GREG_STAT);
  800. if (gem_status == 0) {
  801. napi_enable(&gp->napi);
  802. spin_unlock_irqrestore(&gp->lock, flags);
  803. return IRQ_NONE;
  804. }
  805. gp->status = gem_status;
  806. gem_disable_ints(gp);
  807. __napi_schedule(&gp->napi);
  808. }
  809. spin_unlock_irqrestore(&gp->lock, flags);
  810. /* If polling was disabled at the time we received that
  811. * interrupt, we may return IRQ_HANDLED here while we
  812. * should return IRQ_NONE. No big deal...
  813. */
  814. return IRQ_HANDLED;
  815. }
  816. #ifdef CONFIG_NET_POLL_CONTROLLER
  817. static void gem_poll_controller(struct net_device *dev)
  818. {
  819. /* gem_interrupt is safe to reentrance so no need
  820. * to disable_irq here.
  821. */
  822. gem_interrupt(dev->irq, dev);
  823. }
  824. #endif
  825. static void gem_tx_timeout(struct net_device *dev)
  826. {
  827. struct gem *gp = netdev_priv(dev);
  828. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  829. if (!gp->running) {
  830. printk("%s: hrm.. hw not running !\n", dev->name);
  831. return;
  832. }
  833. printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
  834. dev->name,
  835. readl(gp->regs + TXDMA_CFG),
  836. readl(gp->regs + MAC_TXSTAT),
  837. readl(gp->regs + MAC_TXCFG));
  838. printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
  839. dev->name,
  840. readl(gp->regs + RXDMA_CFG),
  841. readl(gp->regs + MAC_RXSTAT),
  842. readl(gp->regs + MAC_RXCFG));
  843. spin_lock_irq(&gp->lock);
  844. spin_lock(&gp->tx_lock);
  845. gp->reset_task_pending = 1;
  846. schedule_work(&gp->reset_task);
  847. spin_unlock(&gp->tx_lock);
  848. spin_unlock_irq(&gp->lock);
  849. }
  850. static __inline__ int gem_intme(int entry)
  851. {
  852. /* Algorithm: IRQ every 1/2 of descriptors. */
  853. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  854. return 1;
  855. return 0;
  856. }
  857. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  858. struct net_device *dev)
  859. {
  860. struct gem *gp = netdev_priv(dev);
  861. int entry;
  862. u64 ctrl;
  863. unsigned long flags;
  864. ctrl = 0;
  865. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  866. const u64 csum_start_off = skb_transport_offset(skb);
  867. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  868. ctrl = (TXDCTRL_CENAB |
  869. (csum_start_off << 15) |
  870. (csum_stuff_off << 21));
  871. }
  872. local_irq_save(flags);
  873. if (!spin_trylock(&gp->tx_lock)) {
  874. /* Tell upper layer to requeue */
  875. local_irq_restore(flags);
  876. return NETDEV_TX_LOCKED;
  877. }
  878. /* We raced with gem_do_stop() */
  879. if (!gp->running) {
  880. spin_unlock_irqrestore(&gp->tx_lock, flags);
  881. return NETDEV_TX_BUSY;
  882. }
  883. /* This is a hard error, log it. */
  884. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  885. netif_stop_queue(dev);
  886. spin_unlock_irqrestore(&gp->tx_lock, flags);
  887. printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
  888. dev->name);
  889. return NETDEV_TX_BUSY;
  890. }
  891. entry = gp->tx_new;
  892. gp->tx_skbs[entry] = skb;
  893. if (skb_shinfo(skb)->nr_frags == 0) {
  894. struct gem_txd *txd = &gp->init_block->txd[entry];
  895. dma_addr_t mapping;
  896. u32 len;
  897. len = skb->len;
  898. mapping = pci_map_page(gp->pdev,
  899. virt_to_page(skb->data),
  900. offset_in_page(skb->data),
  901. len, PCI_DMA_TODEVICE);
  902. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  903. if (gem_intme(entry))
  904. ctrl |= TXDCTRL_INTME;
  905. txd->buffer = cpu_to_le64(mapping);
  906. wmb();
  907. txd->control_word = cpu_to_le64(ctrl);
  908. entry = NEXT_TX(entry);
  909. } else {
  910. struct gem_txd *txd;
  911. u32 first_len;
  912. u64 intme;
  913. dma_addr_t first_mapping;
  914. int frag, first_entry = entry;
  915. intme = 0;
  916. if (gem_intme(entry))
  917. intme |= TXDCTRL_INTME;
  918. /* We must give this initial chunk to the device last.
  919. * Otherwise we could race with the device.
  920. */
  921. first_len = skb_headlen(skb);
  922. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  923. offset_in_page(skb->data),
  924. first_len, PCI_DMA_TODEVICE);
  925. entry = NEXT_TX(entry);
  926. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  927. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  928. u32 len;
  929. dma_addr_t mapping;
  930. u64 this_ctrl;
  931. len = this_frag->size;
  932. mapping = pci_map_page(gp->pdev,
  933. this_frag->page,
  934. this_frag->page_offset,
  935. len, PCI_DMA_TODEVICE);
  936. this_ctrl = ctrl;
  937. if (frag == skb_shinfo(skb)->nr_frags - 1)
  938. this_ctrl |= TXDCTRL_EOF;
  939. txd = &gp->init_block->txd[entry];
  940. txd->buffer = cpu_to_le64(mapping);
  941. wmb();
  942. txd->control_word = cpu_to_le64(this_ctrl | len);
  943. if (gem_intme(entry))
  944. intme |= TXDCTRL_INTME;
  945. entry = NEXT_TX(entry);
  946. }
  947. txd = &gp->init_block->txd[first_entry];
  948. txd->buffer = cpu_to_le64(first_mapping);
  949. wmb();
  950. txd->control_word =
  951. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  952. }
  953. gp->tx_new = entry;
  954. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  955. netif_stop_queue(dev);
  956. if (netif_msg_tx_queued(gp))
  957. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  958. dev->name, entry, skb->len);
  959. mb();
  960. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  961. spin_unlock_irqrestore(&gp->tx_lock, flags);
  962. dev->trans_start = jiffies;
  963. return NETDEV_TX_OK;
  964. }
  965. static void gem_pcs_reset(struct gem *gp)
  966. {
  967. int limit;
  968. u32 val;
  969. /* Reset PCS unit. */
  970. val = readl(gp->regs + PCS_MIICTRL);
  971. val |= PCS_MIICTRL_RST;
  972. writel(val, gp->regs + PCS_MIICTRL);
  973. limit = 32;
  974. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  975. udelay(100);
  976. if (limit-- <= 0)
  977. break;
  978. }
  979. if (limit < 0)
  980. printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
  981. gp->dev->name);
  982. }
  983. static void gem_pcs_reinit_adv(struct gem *gp)
  984. {
  985. u32 val;
  986. /* Make sure PCS is disabled while changing advertisement
  987. * configuration.
  988. */
  989. val = readl(gp->regs + PCS_CFG);
  990. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  991. writel(val, gp->regs + PCS_CFG);
  992. /* Advertise all capabilities except assymetric
  993. * pause.
  994. */
  995. val = readl(gp->regs + PCS_MIIADV);
  996. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  997. PCS_MIIADV_SP | PCS_MIIADV_AP);
  998. writel(val, gp->regs + PCS_MIIADV);
  999. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  1000. * and re-enable PCS.
  1001. */
  1002. val = readl(gp->regs + PCS_MIICTRL);
  1003. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  1004. val &= ~PCS_MIICTRL_WB;
  1005. writel(val, gp->regs + PCS_MIICTRL);
  1006. val = readl(gp->regs + PCS_CFG);
  1007. val |= PCS_CFG_ENABLE;
  1008. writel(val, gp->regs + PCS_CFG);
  1009. /* Make sure serialink loopback is off. The meaning
  1010. * of this bit is logically inverted based upon whether
  1011. * you are in Serialink or SERDES mode.
  1012. */
  1013. val = readl(gp->regs + PCS_SCTRL);
  1014. if (gp->phy_type == phy_serialink)
  1015. val &= ~PCS_SCTRL_LOOP;
  1016. else
  1017. val |= PCS_SCTRL_LOOP;
  1018. writel(val, gp->regs + PCS_SCTRL);
  1019. }
  1020. #define STOP_TRIES 32
  1021. /* Must be invoked under gp->lock and gp->tx_lock. */
  1022. static void gem_reset(struct gem *gp)
  1023. {
  1024. int limit;
  1025. u32 val;
  1026. /* Make sure we won't get any more interrupts */
  1027. writel(0xffffffff, gp->regs + GREG_IMASK);
  1028. /* Reset the chip */
  1029. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1030. gp->regs + GREG_SWRST);
  1031. limit = STOP_TRIES;
  1032. do {
  1033. udelay(20);
  1034. val = readl(gp->regs + GREG_SWRST);
  1035. if (limit-- <= 0)
  1036. break;
  1037. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1038. if (limit < 0)
  1039. printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
  1040. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1041. gem_pcs_reinit_adv(gp);
  1042. }
  1043. /* Must be invoked under gp->lock and gp->tx_lock. */
  1044. static void gem_start_dma(struct gem *gp)
  1045. {
  1046. u32 val;
  1047. /* We are ready to rock, turn everything on. */
  1048. val = readl(gp->regs + TXDMA_CFG);
  1049. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1050. val = readl(gp->regs + RXDMA_CFG);
  1051. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1052. val = readl(gp->regs + MAC_TXCFG);
  1053. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1054. val = readl(gp->regs + MAC_RXCFG);
  1055. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1056. (void) readl(gp->regs + MAC_RXCFG);
  1057. udelay(100);
  1058. gem_enable_ints(gp);
  1059. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1060. }
  1061. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1062. * actually stopped before about 4ms tho ...
  1063. */
  1064. static void gem_stop_dma(struct gem *gp)
  1065. {
  1066. u32 val;
  1067. /* We are done rocking, turn everything off. */
  1068. val = readl(gp->regs + TXDMA_CFG);
  1069. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1070. val = readl(gp->regs + RXDMA_CFG);
  1071. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1072. val = readl(gp->regs + MAC_TXCFG);
  1073. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1074. val = readl(gp->regs + MAC_RXCFG);
  1075. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1076. (void) readl(gp->regs + MAC_RXCFG);
  1077. /* Need to wait a bit ... done by the caller */
  1078. }
  1079. /* Must be invoked under gp->lock and gp->tx_lock. */
  1080. // XXX dbl check what that function should do when called on PCS PHY
  1081. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1082. {
  1083. u32 advertise, features;
  1084. int autoneg;
  1085. int speed;
  1086. int duplex;
  1087. if (gp->phy_type != phy_mii_mdio0 &&
  1088. gp->phy_type != phy_mii_mdio1)
  1089. goto non_mii;
  1090. /* Setup advertise */
  1091. if (found_mii_phy(gp))
  1092. features = gp->phy_mii.def->features;
  1093. else
  1094. features = 0;
  1095. advertise = features & ADVERTISE_MASK;
  1096. if (gp->phy_mii.advertising != 0)
  1097. advertise &= gp->phy_mii.advertising;
  1098. autoneg = gp->want_autoneg;
  1099. speed = gp->phy_mii.speed;
  1100. duplex = gp->phy_mii.duplex;
  1101. /* Setup link parameters */
  1102. if (!ep)
  1103. goto start_aneg;
  1104. if (ep->autoneg == AUTONEG_ENABLE) {
  1105. advertise = ep->advertising;
  1106. autoneg = 1;
  1107. } else {
  1108. autoneg = 0;
  1109. speed = ep->speed;
  1110. duplex = ep->duplex;
  1111. }
  1112. start_aneg:
  1113. /* Sanitize settings based on PHY capabilities */
  1114. if ((features & SUPPORTED_Autoneg) == 0)
  1115. autoneg = 0;
  1116. if (speed == SPEED_1000 &&
  1117. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1118. speed = SPEED_100;
  1119. if (speed == SPEED_100 &&
  1120. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1121. speed = SPEED_10;
  1122. if (duplex == DUPLEX_FULL &&
  1123. !(features & (SUPPORTED_1000baseT_Full |
  1124. SUPPORTED_100baseT_Full |
  1125. SUPPORTED_10baseT_Full)))
  1126. duplex = DUPLEX_HALF;
  1127. if (speed == 0)
  1128. speed = SPEED_10;
  1129. /* If we are asleep, we don't try to actually setup the PHY, we
  1130. * just store the settings
  1131. */
  1132. if (gp->asleep) {
  1133. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1134. gp->phy_mii.speed = speed;
  1135. gp->phy_mii.duplex = duplex;
  1136. return;
  1137. }
  1138. /* Configure PHY & start aneg */
  1139. gp->want_autoneg = autoneg;
  1140. if (autoneg) {
  1141. if (found_mii_phy(gp))
  1142. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1143. gp->lstate = link_aneg;
  1144. } else {
  1145. if (found_mii_phy(gp))
  1146. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1147. gp->lstate = link_force_ok;
  1148. }
  1149. non_mii:
  1150. gp->timer_ticks = 0;
  1151. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1152. }
  1153. /* A link-up condition has occurred, initialize and enable the
  1154. * rest of the chip.
  1155. *
  1156. * Must be invoked under gp->lock and gp->tx_lock.
  1157. */
  1158. static int gem_set_link_modes(struct gem *gp)
  1159. {
  1160. u32 val;
  1161. int full_duplex, speed, pause;
  1162. full_duplex = 0;
  1163. speed = SPEED_10;
  1164. pause = 0;
  1165. if (found_mii_phy(gp)) {
  1166. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1167. return 1;
  1168. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1169. speed = gp->phy_mii.speed;
  1170. pause = gp->phy_mii.pause;
  1171. } else if (gp->phy_type == phy_serialink ||
  1172. gp->phy_type == phy_serdes) {
  1173. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1174. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1175. full_duplex = 1;
  1176. speed = SPEED_1000;
  1177. }
  1178. if (netif_msg_link(gp))
  1179. printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
  1180. gp->dev->name, speed, (full_duplex ? "full" : "half"));
  1181. if (!gp->running)
  1182. return 0;
  1183. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1184. if (full_duplex) {
  1185. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1186. } else {
  1187. /* MAC_TXCFG_NBO must be zero. */
  1188. }
  1189. writel(val, gp->regs + MAC_TXCFG);
  1190. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1191. if (!full_duplex &&
  1192. (gp->phy_type == phy_mii_mdio0 ||
  1193. gp->phy_type == phy_mii_mdio1)) {
  1194. val |= MAC_XIFCFG_DISE;
  1195. } else if (full_duplex) {
  1196. val |= MAC_XIFCFG_FLED;
  1197. }
  1198. if (speed == SPEED_1000)
  1199. val |= (MAC_XIFCFG_GMII);
  1200. writel(val, gp->regs + MAC_XIFCFG);
  1201. /* If gigabit and half-duplex, enable carrier extension
  1202. * mode. Else, disable it.
  1203. */
  1204. if (speed == SPEED_1000 && !full_duplex) {
  1205. val = readl(gp->regs + MAC_TXCFG);
  1206. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1207. val = readl(gp->regs + MAC_RXCFG);
  1208. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1209. } else {
  1210. val = readl(gp->regs + MAC_TXCFG);
  1211. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1212. val = readl(gp->regs + MAC_RXCFG);
  1213. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1214. }
  1215. if (gp->phy_type == phy_serialink ||
  1216. gp->phy_type == phy_serdes) {
  1217. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1218. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1219. pause = 1;
  1220. }
  1221. if (netif_msg_link(gp)) {
  1222. if (pause) {
  1223. printk(KERN_INFO "%s: Pause is enabled "
  1224. "(rxfifo: %d off: %d on: %d)\n",
  1225. gp->dev->name,
  1226. gp->rx_fifo_sz,
  1227. gp->rx_pause_off,
  1228. gp->rx_pause_on);
  1229. } else {
  1230. printk(KERN_INFO "%s: Pause is disabled\n",
  1231. gp->dev->name);
  1232. }
  1233. }
  1234. if (!full_duplex)
  1235. writel(512, gp->regs + MAC_STIME);
  1236. else
  1237. writel(64, gp->regs + MAC_STIME);
  1238. val = readl(gp->regs + MAC_MCCFG);
  1239. if (pause)
  1240. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1241. else
  1242. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1243. writel(val, gp->regs + MAC_MCCFG);
  1244. gem_start_dma(gp);
  1245. return 0;
  1246. }
  1247. /* Must be invoked under gp->lock and gp->tx_lock. */
  1248. static int gem_mdio_link_not_up(struct gem *gp)
  1249. {
  1250. switch (gp->lstate) {
  1251. case link_force_ret:
  1252. if (netif_msg_link(gp))
  1253. printk(KERN_INFO "%s: Autoneg failed again, keeping"
  1254. " forced mode\n", gp->dev->name);
  1255. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1256. gp->last_forced_speed, DUPLEX_HALF);
  1257. gp->timer_ticks = 5;
  1258. gp->lstate = link_force_ok;
  1259. return 0;
  1260. case link_aneg:
  1261. /* We try forced modes after a failed aneg only on PHYs that don't
  1262. * have "magic_aneg" bit set, which means they internally do the
  1263. * while forced-mode thingy. On these, we just restart aneg
  1264. */
  1265. if (gp->phy_mii.def->magic_aneg)
  1266. return 1;
  1267. if (netif_msg_link(gp))
  1268. printk(KERN_INFO "%s: switching to forced 100bt\n",
  1269. gp->dev->name);
  1270. /* Try forced modes. */
  1271. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1272. DUPLEX_HALF);
  1273. gp->timer_ticks = 5;
  1274. gp->lstate = link_force_try;
  1275. return 0;
  1276. case link_force_try:
  1277. /* Downgrade from 100 to 10 Mbps if necessary.
  1278. * If already at 10Mbps, warn user about the
  1279. * situation every 10 ticks.
  1280. */
  1281. if (gp->phy_mii.speed == SPEED_100) {
  1282. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1283. DUPLEX_HALF);
  1284. gp->timer_ticks = 5;
  1285. if (netif_msg_link(gp))
  1286. printk(KERN_INFO "%s: switching to forced 10bt\n",
  1287. gp->dev->name);
  1288. return 0;
  1289. } else
  1290. return 1;
  1291. default:
  1292. return 0;
  1293. }
  1294. }
  1295. static void gem_link_timer(unsigned long data)
  1296. {
  1297. struct gem *gp = (struct gem *) data;
  1298. int restart_aneg = 0;
  1299. if (gp->asleep)
  1300. return;
  1301. spin_lock_irq(&gp->lock);
  1302. spin_lock(&gp->tx_lock);
  1303. gem_get_cell(gp);
  1304. /* If the reset task is still pending, we just
  1305. * reschedule the link timer
  1306. */
  1307. if (gp->reset_task_pending)
  1308. goto restart;
  1309. if (gp->phy_type == phy_serialink ||
  1310. gp->phy_type == phy_serdes) {
  1311. u32 val = readl(gp->regs + PCS_MIISTAT);
  1312. if (!(val & PCS_MIISTAT_LS))
  1313. val = readl(gp->regs + PCS_MIISTAT);
  1314. if ((val & PCS_MIISTAT_LS) != 0) {
  1315. if (gp->lstate == link_up)
  1316. goto restart;
  1317. gp->lstate = link_up;
  1318. netif_carrier_on(gp->dev);
  1319. (void)gem_set_link_modes(gp);
  1320. }
  1321. goto restart;
  1322. }
  1323. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1324. /* Ok, here we got a link. If we had it due to a forced
  1325. * fallback, and we were configured for autoneg, we do
  1326. * retry a short autoneg pass. If you know your hub is
  1327. * broken, use ethtool ;)
  1328. */
  1329. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1330. gp->lstate = link_force_ret;
  1331. gp->last_forced_speed = gp->phy_mii.speed;
  1332. gp->timer_ticks = 5;
  1333. if (netif_msg_link(gp))
  1334. printk(KERN_INFO "%s: Got link after fallback, retrying"
  1335. " autoneg once...\n", gp->dev->name);
  1336. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1337. } else if (gp->lstate != link_up) {
  1338. gp->lstate = link_up;
  1339. netif_carrier_on(gp->dev);
  1340. if (gem_set_link_modes(gp))
  1341. restart_aneg = 1;
  1342. }
  1343. } else {
  1344. /* If the link was previously up, we restart the
  1345. * whole process
  1346. */
  1347. if (gp->lstate == link_up) {
  1348. gp->lstate = link_down;
  1349. if (netif_msg_link(gp))
  1350. printk(KERN_INFO "%s: Link down\n",
  1351. gp->dev->name);
  1352. netif_carrier_off(gp->dev);
  1353. gp->reset_task_pending = 1;
  1354. schedule_work(&gp->reset_task);
  1355. restart_aneg = 1;
  1356. } else if (++gp->timer_ticks > 10) {
  1357. if (found_mii_phy(gp))
  1358. restart_aneg = gem_mdio_link_not_up(gp);
  1359. else
  1360. restart_aneg = 1;
  1361. }
  1362. }
  1363. if (restart_aneg) {
  1364. gem_begin_auto_negotiation(gp, NULL);
  1365. goto out_unlock;
  1366. }
  1367. restart:
  1368. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1369. out_unlock:
  1370. gem_put_cell(gp);
  1371. spin_unlock(&gp->tx_lock);
  1372. spin_unlock_irq(&gp->lock);
  1373. }
  1374. /* Must be invoked under gp->lock and gp->tx_lock. */
  1375. static void gem_clean_rings(struct gem *gp)
  1376. {
  1377. struct gem_init_block *gb = gp->init_block;
  1378. struct sk_buff *skb;
  1379. int i;
  1380. dma_addr_t dma_addr;
  1381. for (i = 0; i < RX_RING_SIZE; i++) {
  1382. struct gem_rxd *rxd;
  1383. rxd = &gb->rxd[i];
  1384. if (gp->rx_skbs[i] != NULL) {
  1385. skb = gp->rx_skbs[i];
  1386. dma_addr = le64_to_cpu(rxd->buffer);
  1387. pci_unmap_page(gp->pdev, dma_addr,
  1388. RX_BUF_ALLOC_SIZE(gp),
  1389. PCI_DMA_FROMDEVICE);
  1390. dev_kfree_skb_any(skb);
  1391. gp->rx_skbs[i] = NULL;
  1392. }
  1393. rxd->status_word = 0;
  1394. wmb();
  1395. rxd->buffer = 0;
  1396. }
  1397. for (i = 0; i < TX_RING_SIZE; i++) {
  1398. if (gp->tx_skbs[i] != NULL) {
  1399. struct gem_txd *txd;
  1400. int frag;
  1401. skb = gp->tx_skbs[i];
  1402. gp->tx_skbs[i] = NULL;
  1403. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1404. int ent = i & (TX_RING_SIZE - 1);
  1405. txd = &gb->txd[ent];
  1406. dma_addr = le64_to_cpu(txd->buffer);
  1407. pci_unmap_page(gp->pdev, dma_addr,
  1408. le64_to_cpu(txd->control_word) &
  1409. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1410. if (frag != skb_shinfo(skb)->nr_frags)
  1411. i++;
  1412. }
  1413. dev_kfree_skb_any(skb);
  1414. }
  1415. }
  1416. }
  1417. /* Must be invoked under gp->lock and gp->tx_lock. */
  1418. static void gem_init_rings(struct gem *gp)
  1419. {
  1420. struct gem_init_block *gb = gp->init_block;
  1421. struct net_device *dev = gp->dev;
  1422. int i;
  1423. dma_addr_t dma_addr;
  1424. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1425. gem_clean_rings(gp);
  1426. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1427. (unsigned)VLAN_ETH_FRAME_LEN);
  1428. for (i = 0; i < RX_RING_SIZE; i++) {
  1429. struct sk_buff *skb;
  1430. struct gem_rxd *rxd = &gb->rxd[i];
  1431. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1432. if (!skb) {
  1433. rxd->buffer = 0;
  1434. rxd->status_word = 0;
  1435. continue;
  1436. }
  1437. gp->rx_skbs[i] = skb;
  1438. skb->dev = dev;
  1439. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1440. dma_addr = pci_map_page(gp->pdev,
  1441. virt_to_page(skb->data),
  1442. offset_in_page(skb->data),
  1443. RX_BUF_ALLOC_SIZE(gp),
  1444. PCI_DMA_FROMDEVICE);
  1445. rxd->buffer = cpu_to_le64(dma_addr);
  1446. wmb();
  1447. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1448. skb_reserve(skb, RX_OFFSET);
  1449. }
  1450. for (i = 0; i < TX_RING_SIZE; i++) {
  1451. struct gem_txd *txd = &gb->txd[i];
  1452. txd->control_word = 0;
  1453. wmb();
  1454. txd->buffer = 0;
  1455. }
  1456. wmb();
  1457. }
  1458. /* Init PHY interface and start link poll state machine */
  1459. static void gem_init_phy(struct gem *gp)
  1460. {
  1461. u32 mifcfg;
  1462. /* Revert MIF CFG setting done on stop_phy */
  1463. mifcfg = readl(gp->regs + MIF_CFG);
  1464. mifcfg &= ~MIF_CFG_BBMODE;
  1465. writel(mifcfg, gp->regs + MIF_CFG);
  1466. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1467. int i;
  1468. /* Those delay sucks, the HW seem to love them though, I'll
  1469. * serisouly consider breaking some locks here to be able
  1470. * to schedule instead
  1471. */
  1472. for (i = 0; i < 3; i++) {
  1473. #ifdef CONFIG_PPC_PMAC
  1474. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1475. msleep(20);
  1476. #endif
  1477. /* Some PHYs used by apple have problem getting back to us,
  1478. * we do an additional reset here
  1479. */
  1480. phy_write(gp, MII_BMCR, BMCR_RESET);
  1481. msleep(20);
  1482. if (phy_read(gp, MII_BMCR) != 0xffff)
  1483. break;
  1484. if (i == 2)
  1485. printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
  1486. gp->dev->name);
  1487. }
  1488. }
  1489. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1490. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1491. u32 val;
  1492. /* Init datapath mode register. */
  1493. if (gp->phy_type == phy_mii_mdio0 ||
  1494. gp->phy_type == phy_mii_mdio1) {
  1495. val = PCS_DMODE_MGM;
  1496. } else if (gp->phy_type == phy_serialink) {
  1497. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1498. } else {
  1499. val = PCS_DMODE_ESM;
  1500. }
  1501. writel(val, gp->regs + PCS_DMODE);
  1502. }
  1503. if (gp->phy_type == phy_mii_mdio0 ||
  1504. gp->phy_type == phy_mii_mdio1) {
  1505. // XXX check for errors
  1506. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1507. /* Init PHY */
  1508. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1509. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1510. } else {
  1511. gem_pcs_reset(gp);
  1512. gem_pcs_reinit_adv(gp);
  1513. }
  1514. /* Default aneg parameters */
  1515. gp->timer_ticks = 0;
  1516. gp->lstate = link_down;
  1517. netif_carrier_off(gp->dev);
  1518. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1519. spin_lock_irq(&gp->lock);
  1520. gem_begin_auto_negotiation(gp, NULL);
  1521. spin_unlock_irq(&gp->lock);
  1522. }
  1523. /* Must be invoked under gp->lock and gp->tx_lock. */
  1524. static void gem_init_dma(struct gem *gp)
  1525. {
  1526. u64 desc_dma = (u64) gp->gblock_dvma;
  1527. u32 val;
  1528. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1529. writel(val, gp->regs + TXDMA_CFG);
  1530. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1531. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1532. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1533. writel(0, gp->regs + TXDMA_KICK);
  1534. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1535. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1536. writel(val, gp->regs + RXDMA_CFG);
  1537. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1538. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1539. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1540. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1541. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1542. writel(val, gp->regs + RXDMA_PTHRESH);
  1543. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1544. writel(((5 & RXDMA_BLANK_IPKTS) |
  1545. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1546. gp->regs + RXDMA_BLANK);
  1547. else
  1548. writel(((5 & RXDMA_BLANK_IPKTS) |
  1549. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1550. gp->regs + RXDMA_BLANK);
  1551. }
  1552. /* Must be invoked under gp->lock and gp->tx_lock. */
  1553. static u32 gem_setup_multicast(struct gem *gp)
  1554. {
  1555. u32 rxcfg = 0;
  1556. int i;
  1557. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1558. (gp->dev->mc_count > 256)) {
  1559. for (i=0; i<16; i++)
  1560. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1561. rxcfg |= MAC_RXCFG_HFE;
  1562. } else if (gp->dev->flags & IFF_PROMISC) {
  1563. rxcfg |= MAC_RXCFG_PROM;
  1564. } else {
  1565. u16 hash_table[16];
  1566. u32 crc;
  1567. struct dev_mc_list *dmi = gp->dev->mc_list;
  1568. int i;
  1569. for (i = 0; i < 16; i++)
  1570. hash_table[i] = 0;
  1571. for (i = 0; i < gp->dev->mc_count; i++) {
  1572. char *addrs = dmi->dmi_addr;
  1573. dmi = dmi->next;
  1574. if (!(*addrs & 1))
  1575. continue;
  1576. crc = ether_crc_le(6, addrs);
  1577. crc >>= 24;
  1578. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1579. }
  1580. for (i=0; i<16; i++)
  1581. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1582. rxcfg |= MAC_RXCFG_HFE;
  1583. }
  1584. return rxcfg;
  1585. }
  1586. /* Must be invoked under gp->lock and gp->tx_lock. */
  1587. static void gem_init_mac(struct gem *gp)
  1588. {
  1589. unsigned char *e = &gp->dev->dev_addr[0];
  1590. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1591. writel(0x00, gp->regs + MAC_IPG0);
  1592. writel(0x08, gp->regs + MAC_IPG1);
  1593. writel(0x04, gp->regs + MAC_IPG2);
  1594. writel(0x40, gp->regs + MAC_STIME);
  1595. writel(0x40, gp->regs + MAC_MINFSZ);
  1596. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1597. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1598. writel(0x07, gp->regs + MAC_PASIZE);
  1599. writel(0x04, gp->regs + MAC_JAMSIZE);
  1600. writel(0x10, gp->regs + MAC_ATTLIM);
  1601. writel(0x8808, gp->regs + MAC_MCTYPE);
  1602. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1603. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1604. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1605. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1606. writel(0, gp->regs + MAC_ADDR3);
  1607. writel(0, gp->regs + MAC_ADDR4);
  1608. writel(0, gp->regs + MAC_ADDR5);
  1609. writel(0x0001, gp->regs + MAC_ADDR6);
  1610. writel(0xc200, gp->regs + MAC_ADDR7);
  1611. writel(0x0180, gp->regs + MAC_ADDR8);
  1612. writel(0, gp->regs + MAC_AFILT0);
  1613. writel(0, gp->regs + MAC_AFILT1);
  1614. writel(0, gp->regs + MAC_AFILT2);
  1615. writel(0, gp->regs + MAC_AF21MSK);
  1616. writel(0, gp->regs + MAC_AF0MSK);
  1617. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1618. #ifdef STRIP_FCS
  1619. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1620. #endif
  1621. writel(0, gp->regs + MAC_NCOLL);
  1622. writel(0, gp->regs + MAC_FASUCC);
  1623. writel(0, gp->regs + MAC_ECOLL);
  1624. writel(0, gp->regs + MAC_LCOLL);
  1625. writel(0, gp->regs + MAC_DTIMER);
  1626. writel(0, gp->regs + MAC_PATMPS);
  1627. writel(0, gp->regs + MAC_RFCTR);
  1628. writel(0, gp->regs + MAC_LERR);
  1629. writel(0, gp->regs + MAC_AERR);
  1630. writel(0, gp->regs + MAC_FCSERR);
  1631. writel(0, gp->regs + MAC_RXCVERR);
  1632. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1633. * them once a link is established.
  1634. */
  1635. writel(0, gp->regs + MAC_TXCFG);
  1636. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1637. writel(0, gp->regs + MAC_MCCFG);
  1638. writel(0, gp->regs + MAC_XIFCFG);
  1639. /* Setup MAC interrupts. We want to get all of the interesting
  1640. * counter expiration events, but we do not want to hear about
  1641. * normal rx/tx as the DMA engine tells us that.
  1642. */
  1643. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1644. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1645. /* Don't enable even the PAUSE interrupts for now, we
  1646. * make no use of those events other than to record them.
  1647. */
  1648. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1649. /* Don't enable GEM's WOL in normal operations
  1650. */
  1651. if (gp->has_wol)
  1652. writel(0, gp->regs + WOL_WAKECSR);
  1653. }
  1654. /* Must be invoked under gp->lock and gp->tx_lock. */
  1655. static void gem_init_pause_thresholds(struct gem *gp)
  1656. {
  1657. u32 cfg;
  1658. /* Calculate pause thresholds. Setting the OFF threshold to the
  1659. * full RX fifo size effectively disables PAUSE generation which
  1660. * is what we do for 10/100 only GEMs which have FIFOs too small
  1661. * to make real gains from PAUSE.
  1662. */
  1663. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1664. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1665. } else {
  1666. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1667. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1668. int on = off - max_frame;
  1669. gp->rx_pause_off = off;
  1670. gp->rx_pause_on = on;
  1671. }
  1672. /* Configure the chip "burst" DMA mode & enable some
  1673. * HW bug fixes on Apple version
  1674. */
  1675. cfg = 0;
  1676. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1677. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1678. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1679. cfg |= GREG_CFG_IBURST;
  1680. #endif
  1681. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1682. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1683. writel(cfg, gp->regs + GREG_CFG);
  1684. /* If Infinite Burst didn't stick, then use different
  1685. * thresholds (and Apple bug fixes don't exist)
  1686. */
  1687. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1688. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1689. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1690. writel(cfg, gp->regs + GREG_CFG);
  1691. }
  1692. }
  1693. static int gem_check_invariants(struct gem *gp)
  1694. {
  1695. struct pci_dev *pdev = gp->pdev;
  1696. u32 mif_cfg;
  1697. /* On Apple's sungem, we can't rely on registers as the chip
  1698. * was been powered down by the firmware. The PHY is looked
  1699. * up later on.
  1700. */
  1701. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1702. gp->phy_type = phy_mii_mdio0;
  1703. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1704. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1705. gp->swrst_base = 0;
  1706. mif_cfg = readl(gp->regs + MIF_CFG);
  1707. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1708. mif_cfg |= MIF_CFG_MDI0;
  1709. writel(mif_cfg, gp->regs + MIF_CFG);
  1710. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1711. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1712. /* We hard-code the PHY address so we can properly bring it out of
  1713. * reset later on, we can't really probe it at this point, though
  1714. * that isn't an issue.
  1715. */
  1716. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1717. gp->mii_phy_addr = 1;
  1718. else
  1719. gp->mii_phy_addr = 0;
  1720. return 0;
  1721. }
  1722. mif_cfg = readl(gp->regs + MIF_CFG);
  1723. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1724. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1725. /* One of the MII PHYs _must_ be present
  1726. * as this chip has no gigabit PHY.
  1727. */
  1728. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1729. printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1730. mif_cfg);
  1731. return -1;
  1732. }
  1733. }
  1734. /* Determine initial PHY interface type guess. MDIO1 is the
  1735. * external PHY and thus takes precedence over MDIO0.
  1736. */
  1737. if (mif_cfg & MIF_CFG_MDI1) {
  1738. gp->phy_type = phy_mii_mdio1;
  1739. mif_cfg |= MIF_CFG_PSELECT;
  1740. writel(mif_cfg, gp->regs + MIF_CFG);
  1741. } else if (mif_cfg & MIF_CFG_MDI0) {
  1742. gp->phy_type = phy_mii_mdio0;
  1743. mif_cfg &= ~MIF_CFG_PSELECT;
  1744. writel(mif_cfg, gp->regs + MIF_CFG);
  1745. } else {
  1746. #ifdef CONFIG_SPARC
  1747. const char *p;
  1748. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1749. if (p && !strcmp(p, "serdes"))
  1750. gp->phy_type = phy_serdes;
  1751. else
  1752. #endif
  1753. gp->phy_type = phy_serialink;
  1754. }
  1755. if (gp->phy_type == phy_mii_mdio1 ||
  1756. gp->phy_type == phy_mii_mdio0) {
  1757. int i;
  1758. for (i = 0; i < 32; i++) {
  1759. gp->mii_phy_addr = i;
  1760. if (phy_read(gp, MII_BMCR) != 0xffff)
  1761. break;
  1762. }
  1763. if (i == 32) {
  1764. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1765. printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
  1766. return -1;
  1767. }
  1768. gp->phy_type = phy_serdes;
  1769. }
  1770. }
  1771. /* Fetch the FIFO configurations now too. */
  1772. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1773. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1774. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1775. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1776. if (gp->tx_fifo_sz != (9 * 1024) ||
  1777. gp->rx_fifo_sz != (20 * 1024)) {
  1778. printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1779. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1780. return -1;
  1781. }
  1782. gp->swrst_base = 0;
  1783. } else {
  1784. if (gp->tx_fifo_sz != (2 * 1024) ||
  1785. gp->rx_fifo_sz != (2 * 1024)) {
  1786. printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1787. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1788. return -1;
  1789. }
  1790. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1791. }
  1792. }
  1793. return 0;
  1794. }
  1795. /* Must be invoked under gp->lock and gp->tx_lock. */
  1796. static void gem_reinit_chip(struct gem *gp)
  1797. {
  1798. /* Reset the chip */
  1799. gem_reset(gp);
  1800. /* Make sure ints are disabled */
  1801. gem_disable_ints(gp);
  1802. /* Allocate & setup ring buffers */
  1803. gem_init_rings(gp);
  1804. /* Configure pause thresholds */
  1805. gem_init_pause_thresholds(gp);
  1806. /* Init DMA & MAC engines */
  1807. gem_init_dma(gp);
  1808. gem_init_mac(gp);
  1809. }
  1810. /* Must be invoked with no lock held. */
  1811. static void gem_stop_phy(struct gem *gp, int wol)
  1812. {
  1813. u32 mifcfg;
  1814. unsigned long flags;
  1815. /* Let the chip settle down a bit, it seems that helps
  1816. * for sleep mode on some models
  1817. */
  1818. msleep(10);
  1819. /* Make sure we aren't polling PHY status change. We
  1820. * don't currently use that feature though
  1821. */
  1822. mifcfg = readl(gp->regs + MIF_CFG);
  1823. mifcfg &= ~MIF_CFG_POLL;
  1824. writel(mifcfg, gp->regs + MIF_CFG);
  1825. if (wol && gp->has_wol) {
  1826. unsigned char *e = &gp->dev->dev_addr[0];
  1827. u32 csr;
  1828. /* Setup wake-on-lan for MAGIC packet */
  1829. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1830. gp->regs + MAC_RXCFG);
  1831. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1832. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1833. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1834. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1835. csr = WOL_WAKECSR_ENABLE;
  1836. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1837. csr |= WOL_WAKECSR_MII;
  1838. writel(csr, gp->regs + WOL_WAKECSR);
  1839. } else {
  1840. writel(0, gp->regs + MAC_RXCFG);
  1841. (void)readl(gp->regs + MAC_RXCFG);
  1842. /* Machine sleep will die in strange ways if we
  1843. * dont wait a bit here, looks like the chip takes
  1844. * some time to really shut down
  1845. */
  1846. msleep(10);
  1847. }
  1848. writel(0, gp->regs + MAC_TXCFG);
  1849. writel(0, gp->regs + MAC_XIFCFG);
  1850. writel(0, gp->regs + TXDMA_CFG);
  1851. writel(0, gp->regs + RXDMA_CFG);
  1852. if (!wol) {
  1853. spin_lock_irqsave(&gp->lock, flags);
  1854. spin_lock(&gp->tx_lock);
  1855. gem_reset(gp);
  1856. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1857. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1858. spin_unlock(&gp->tx_lock);
  1859. spin_unlock_irqrestore(&gp->lock, flags);
  1860. /* No need to take the lock here */
  1861. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1862. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1863. /* According to Apple, we must set the MDIO pins to this begnign
  1864. * state or we may 1) eat more current, 2) damage some PHYs
  1865. */
  1866. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1867. writel(0, gp->regs + MIF_BBCLK);
  1868. writel(0, gp->regs + MIF_BBDATA);
  1869. writel(0, gp->regs + MIF_BBOENAB);
  1870. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1871. (void) readl(gp->regs + MAC_XIFCFG);
  1872. }
  1873. }
  1874. static int gem_do_start(struct net_device *dev)
  1875. {
  1876. struct gem *gp = netdev_priv(dev);
  1877. unsigned long flags;
  1878. spin_lock_irqsave(&gp->lock, flags);
  1879. spin_lock(&gp->tx_lock);
  1880. /* Enable the cell */
  1881. gem_get_cell(gp);
  1882. /* Init & setup chip hardware */
  1883. gem_reinit_chip(gp);
  1884. gp->running = 1;
  1885. napi_enable(&gp->napi);
  1886. if (gp->lstate == link_up) {
  1887. netif_carrier_on(gp->dev);
  1888. gem_set_link_modes(gp);
  1889. }
  1890. netif_wake_queue(gp->dev);
  1891. spin_unlock(&gp->tx_lock);
  1892. spin_unlock_irqrestore(&gp->lock, flags);
  1893. if (request_irq(gp->pdev->irq, gem_interrupt,
  1894. IRQF_SHARED, dev->name, (void *)dev)) {
  1895. printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
  1896. spin_lock_irqsave(&gp->lock, flags);
  1897. spin_lock(&gp->tx_lock);
  1898. napi_disable(&gp->napi);
  1899. gp->running = 0;
  1900. gem_reset(gp);
  1901. gem_clean_rings(gp);
  1902. gem_put_cell(gp);
  1903. spin_unlock(&gp->tx_lock);
  1904. spin_unlock_irqrestore(&gp->lock, flags);
  1905. return -EAGAIN;
  1906. }
  1907. return 0;
  1908. }
  1909. static void gem_do_stop(struct net_device *dev, int wol)
  1910. {
  1911. struct gem *gp = netdev_priv(dev);
  1912. unsigned long flags;
  1913. spin_lock_irqsave(&gp->lock, flags);
  1914. spin_lock(&gp->tx_lock);
  1915. gp->running = 0;
  1916. /* Stop netif queue */
  1917. netif_stop_queue(dev);
  1918. /* Make sure ints are disabled */
  1919. gem_disable_ints(gp);
  1920. /* We can drop the lock now */
  1921. spin_unlock(&gp->tx_lock);
  1922. spin_unlock_irqrestore(&gp->lock, flags);
  1923. /* If we are going to sleep with WOL */
  1924. gem_stop_dma(gp);
  1925. msleep(10);
  1926. if (!wol)
  1927. gem_reset(gp);
  1928. msleep(10);
  1929. /* Get rid of rings */
  1930. gem_clean_rings(gp);
  1931. /* No irq needed anymore */
  1932. free_irq(gp->pdev->irq, (void *) dev);
  1933. /* Cell not needed neither if no WOL */
  1934. if (!wol) {
  1935. spin_lock_irqsave(&gp->lock, flags);
  1936. gem_put_cell(gp);
  1937. spin_unlock_irqrestore(&gp->lock, flags);
  1938. }
  1939. }
  1940. static void gem_reset_task(struct work_struct *work)
  1941. {
  1942. struct gem *gp = container_of(work, struct gem, reset_task);
  1943. mutex_lock(&gp->pm_mutex);
  1944. if (gp->opened)
  1945. napi_disable(&gp->napi);
  1946. spin_lock_irq(&gp->lock);
  1947. spin_lock(&gp->tx_lock);
  1948. if (gp->running) {
  1949. netif_stop_queue(gp->dev);
  1950. /* Reset the chip & rings */
  1951. gem_reinit_chip(gp);
  1952. if (gp->lstate == link_up)
  1953. gem_set_link_modes(gp);
  1954. netif_wake_queue(gp->dev);
  1955. }
  1956. gp->reset_task_pending = 0;
  1957. spin_unlock(&gp->tx_lock);
  1958. spin_unlock_irq(&gp->lock);
  1959. if (gp->opened)
  1960. napi_enable(&gp->napi);
  1961. mutex_unlock(&gp->pm_mutex);
  1962. }
  1963. static int gem_open(struct net_device *dev)
  1964. {
  1965. struct gem *gp = netdev_priv(dev);
  1966. int rc = 0;
  1967. mutex_lock(&gp->pm_mutex);
  1968. /* We need the cell enabled */
  1969. if (!gp->asleep)
  1970. rc = gem_do_start(dev);
  1971. gp->opened = (rc == 0);
  1972. mutex_unlock(&gp->pm_mutex);
  1973. return rc;
  1974. }
  1975. static int gem_close(struct net_device *dev)
  1976. {
  1977. struct gem *gp = netdev_priv(dev);
  1978. mutex_lock(&gp->pm_mutex);
  1979. napi_disable(&gp->napi);
  1980. gp->opened = 0;
  1981. if (!gp->asleep)
  1982. gem_do_stop(dev, 0);
  1983. mutex_unlock(&gp->pm_mutex);
  1984. return 0;
  1985. }
  1986. #ifdef CONFIG_PM
  1987. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1988. {
  1989. struct net_device *dev = pci_get_drvdata(pdev);
  1990. struct gem *gp = netdev_priv(dev);
  1991. unsigned long flags;
  1992. mutex_lock(&gp->pm_mutex);
  1993. printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
  1994. dev->name,
  1995. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1996. /* Keep the cell enabled during the entire operation */
  1997. spin_lock_irqsave(&gp->lock, flags);
  1998. spin_lock(&gp->tx_lock);
  1999. gem_get_cell(gp);
  2000. spin_unlock(&gp->tx_lock);
  2001. spin_unlock_irqrestore(&gp->lock, flags);
  2002. /* If the driver is opened, we stop the MAC */
  2003. if (gp->opened) {
  2004. napi_disable(&gp->napi);
  2005. /* Stop traffic, mark us closed */
  2006. netif_device_detach(dev);
  2007. /* Switch off MAC, remember WOL setting */
  2008. gp->asleep_wol = gp->wake_on_lan;
  2009. gem_do_stop(dev, gp->asleep_wol);
  2010. } else
  2011. gp->asleep_wol = 0;
  2012. /* Mark us asleep */
  2013. gp->asleep = 1;
  2014. wmb();
  2015. /* Stop the link timer */
  2016. del_timer_sync(&gp->link_timer);
  2017. /* Now we release the mutex to not block the reset task who
  2018. * can take it too. We are marked asleep, so there will be no
  2019. * conflict here
  2020. */
  2021. mutex_unlock(&gp->pm_mutex);
  2022. /* Wait for a pending reset task to complete */
  2023. while (gp->reset_task_pending)
  2024. yield();
  2025. flush_scheduled_work();
  2026. /* Shut the PHY down eventually and setup WOL */
  2027. gem_stop_phy(gp, gp->asleep_wol);
  2028. /* Make sure bus master is disabled */
  2029. pci_disable_device(gp->pdev);
  2030. /* Release the cell, no need to take a lock at this point since
  2031. * nothing else can happen now
  2032. */
  2033. gem_put_cell(gp);
  2034. return 0;
  2035. }
  2036. static int gem_resume(struct pci_dev *pdev)
  2037. {
  2038. struct net_device *dev = pci_get_drvdata(pdev);
  2039. struct gem *gp = netdev_priv(dev);
  2040. unsigned long flags;
  2041. printk(KERN_INFO "%s: resuming\n", dev->name);
  2042. mutex_lock(&gp->pm_mutex);
  2043. /* Keep the cell enabled during the entire operation, no need to
  2044. * take a lock here tho since nothing else can happen while we are
  2045. * marked asleep
  2046. */
  2047. gem_get_cell(gp);
  2048. /* Make sure PCI access and bus master are enabled */
  2049. if (pci_enable_device(gp->pdev)) {
  2050. printk(KERN_ERR "%s: Can't re-enable chip !\n",
  2051. dev->name);
  2052. /* Put cell and forget it for now, it will be considered as
  2053. * still asleep, a new sleep cycle may bring it back
  2054. */
  2055. gem_put_cell(gp);
  2056. mutex_unlock(&gp->pm_mutex);
  2057. return 0;
  2058. }
  2059. pci_set_master(gp->pdev);
  2060. /* Reset everything */
  2061. gem_reset(gp);
  2062. /* Mark us woken up */
  2063. gp->asleep = 0;
  2064. wmb();
  2065. /* Bring the PHY back. Again, lock is useless at this point as
  2066. * nothing can be happening until we restart the whole thing
  2067. */
  2068. gem_init_phy(gp);
  2069. /* If we were opened, bring everything back */
  2070. if (gp->opened) {
  2071. /* Restart MAC */
  2072. gem_do_start(dev);
  2073. /* Re-attach net device */
  2074. netif_device_attach(dev);
  2075. }
  2076. spin_lock_irqsave(&gp->lock, flags);
  2077. spin_lock(&gp->tx_lock);
  2078. /* If we had WOL enabled, the cell clock was never turned off during
  2079. * sleep, so we end up beeing unbalanced. Fix that here
  2080. */
  2081. if (gp->asleep_wol)
  2082. gem_put_cell(gp);
  2083. /* This function doesn't need to hold the cell, it will be held if the
  2084. * driver is open by gem_do_start().
  2085. */
  2086. gem_put_cell(gp);
  2087. spin_unlock(&gp->tx_lock);
  2088. spin_unlock_irqrestore(&gp->lock, flags);
  2089. mutex_unlock(&gp->pm_mutex);
  2090. return 0;
  2091. }
  2092. #endif /* CONFIG_PM */
  2093. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2094. {
  2095. struct gem *gp = netdev_priv(dev);
  2096. struct net_device_stats *stats = &gp->net_stats;
  2097. spin_lock_irq(&gp->lock);
  2098. spin_lock(&gp->tx_lock);
  2099. /* I have seen this being called while the PM was in progress,
  2100. * so we shield against this
  2101. */
  2102. if (gp->running) {
  2103. stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2104. writel(0, gp->regs + MAC_FCSERR);
  2105. stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
  2106. writel(0, gp->regs + MAC_AERR);
  2107. stats->rx_length_errors += readl(gp->regs + MAC_LERR);
  2108. writel(0, gp->regs + MAC_LERR);
  2109. stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2110. stats->collisions +=
  2111. (readl(gp->regs + MAC_ECOLL) +
  2112. readl(gp->regs + MAC_LCOLL));
  2113. writel(0, gp->regs + MAC_ECOLL);
  2114. writel(0, gp->regs + MAC_LCOLL);
  2115. }
  2116. spin_unlock(&gp->tx_lock);
  2117. spin_unlock_irq(&gp->lock);
  2118. return &gp->net_stats;
  2119. }
  2120. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2121. {
  2122. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2123. struct gem *gp = netdev_priv(dev);
  2124. unsigned char *e = &dev->dev_addr[0];
  2125. if (!is_valid_ether_addr(macaddr->sa_data))
  2126. return -EADDRNOTAVAIL;
  2127. if (!netif_running(dev) || !netif_device_present(dev)) {
  2128. /* We'll just catch it later when the
  2129. * device is up'd or resumed.
  2130. */
  2131. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2132. return 0;
  2133. }
  2134. mutex_lock(&gp->pm_mutex);
  2135. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2136. if (gp->running) {
  2137. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2138. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2139. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2140. }
  2141. mutex_unlock(&gp->pm_mutex);
  2142. return 0;
  2143. }
  2144. static void gem_set_multicast(struct net_device *dev)
  2145. {
  2146. struct gem *gp = netdev_priv(dev);
  2147. u32 rxcfg, rxcfg_new;
  2148. int limit = 10000;
  2149. spin_lock_irq(&gp->lock);
  2150. spin_lock(&gp->tx_lock);
  2151. if (!gp->running)
  2152. goto bail;
  2153. netif_stop_queue(dev);
  2154. rxcfg = readl(gp->regs + MAC_RXCFG);
  2155. rxcfg_new = gem_setup_multicast(gp);
  2156. #ifdef STRIP_FCS
  2157. rxcfg_new |= MAC_RXCFG_SFCS;
  2158. #endif
  2159. gp->mac_rx_cfg = rxcfg_new;
  2160. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2161. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2162. if (!limit--)
  2163. break;
  2164. udelay(10);
  2165. }
  2166. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2167. rxcfg |= rxcfg_new;
  2168. writel(rxcfg, gp->regs + MAC_RXCFG);
  2169. netif_wake_queue(dev);
  2170. bail:
  2171. spin_unlock(&gp->tx_lock);
  2172. spin_unlock_irq(&gp->lock);
  2173. }
  2174. /* Jumbo-grams don't seem to work :-( */
  2175. #define GEM_MIN_MTU 68
  2176. #if 1
  2177. #define GEM_MAX_MTU 1500
  2178. #else
  2179. #define GEM_MAX_MTU 9000
  2180. #endif
  2181. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2182. {
  2183. struct gem *gp = netdev_priv(dev);
  2184. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2185. return -EINVAL;
  2186. if (!netif_running(dev) || !netif_device_present(dev)) {
  2187. /* We'll just catch it later when the
  2188. * device is up'd or resumed.
  2189. */
  2190. dev->mtu = new_mtu;
  2191. return 0;
  2192. }
  2193. mutex_lock(&gp->pm_mutex);
  2194. spin_lock_irq(&gp->lock);
  2195. spin_lock(&gp->tx_lock);
  2196. dev->mtu = new_mtu;
  2197. if (gp->running) {
  2198. gem_reinit_chip(gp);
  2199. if (gp->lstate == link_up)
  2200. gem_set_link_modes(gp);
  2201. }
  2202. spin_unlock(&gp->tx_lock);
  2203. spin_unlock_irq(&gp->lock);
  2204. mutex_unlock(&gp->pm_mutex);
  2205. return 0;
  2206. }
  2207. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2208. {
  2209. struct gem *gp = netdev_priv(dev);
  2210. strcpy(info->driver, DRV_NAME);
  2211. strcpy(info->version, DRV_VERSION);
  2212. strcpy(info->bus_info, pci_name(gp->pdev));
  2213. }
  2214. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2215. {
  2216. struct gem *gp = netdev_priv(dev);
  2217. if (gp->phy_type == phy_mii_mdio0 ||
  2218. gp->phy_type == phy_mii_mdio1) {
  2219. if (gp->phy_mii.def)
  2220. cmd->supported = gp->phy_mii.def->features;
  2221. else
  2222. cmd->supported = (SUPPORTED_10baseT_Half |
  2223. SUPPORTED_10baseT_Full);
  2224. /* XXX hardcoded stuff for now */
  2225. cmd->port = PORT_MII;
  2226. cmd->transceiver = XCVR_EXTERNAL;
  2227. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2228. /* Return current PHY settings */
  2229. spin_lock_irq(&gp->lock);
  2230. cmd->autoneg = gp->want_autoneg;
  2231. cmd->speed = gp->phy_mii.speed;
  2232. cmd->duplex = gp->phy_mii.duplex;
  2233. cmd->advertising = gp->phy_mii.advertising;
  2234. /* If we started with a forced mode, we don't have a default
  2235. * advertise set, we need to return something sensible so
  2236. * userland can re-enable autoneg properly.
  2237. */
  2238. if (cmd->advertising == 0)
  2239. cmd->advertising = cmd->supported;
  2240. spin_unlock_irq(&gp->lock);
  2241. } else { // XXX PCS ?
  2242. cmd->supported =
  2243. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2244. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2245. SUPPORTED_Autoneg);
  2246. cmd->advertising = cmd->supported;
  2247. cmd->speed = 0;
  2248. cmd->duplex = cmd->port = cmd->phy_address =
  2249. cmd->transceiver = cmd->autoneg = 0;
  2250. /* serdes means usually a Fibre connector, with most fixed */
  2251. if (gp->phy_type == phy_serdes) {
  2252. cmd->port = PORT_FIBRE;
  2253. cmd->supported = (SUPPORTED_1000baseT_Half |
  2254. SUPPORTED_1000baseT_Full |
  2255. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2256. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2257. cmd->advertising = cmd->supported;
  2258. cmd->transceiver = XCVR_INTERNAL;
  2259. if (gp->lstate == link_up)
  2260. cmd->speed = SPEED_1000;
  2261. cmd->duplex = DUPLEX_FULL;
  2262. cmd->autoneg = 1;
  2263. }
  2264. }
  2265. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2266. return 0;
  2267. }
  2268. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2269. {
  2270. struct gem *gp = netdev_priv(dev);
  2271. /* Verify the settings we care about. */
  2272. if (cmd->autoneg != AUTONEG_ENABLE &&
  2273. cmd->autoneg != AUTONEG_DISABLE)
  2274. return -EINVAL;
  2275. if (cmd->autoneg == AUTONEG_ENABLE &&
  2276. cmd->advertising == 0)
  2277. return -EINVAL;
  2278. if (cmd->autoneg == AUTONEG_DISABLE &&
  2279. ((cmd->speed != SPEED_1000 &&
  2280. cmd->speed != SPEED_100 &&
  2281. cmd->speed != SPEED_10) ||
  2282. (cmd->duplex != DUPLEX_HALF &&
  2283. cmd->duplex != DUPLEX_FULL)))
  2284. return -EINVAL;
  2285. /* Apply settings and restart link process. */
  2286. spin_lock_irq(&gp->lock);
  2287. gem_get_cell(gp);
  2288. gem_begin_auto_negotiation(gp, cmd);
  2289. gem_put_cell(gp);
  2290. spin_unlock_irq(&gp->lock);
  2291. return 0;
  2292. }
  2293. static int gem_nway_reset(struct net_device *dev)
  2294. {
  2295. struct gem *gp = netdev_priv(dev);
  2296. if (!gp->want_autoneg)
  2297. return -EINVAL;
  2298. /* Restart link process. */
  2299. spin_lock_irq(&gp->lock);
  2300. gem_get_cell(gp);
  2301. gem_begin_auto_negotiation(gp, NULL);
  2302. gem_put_cell(gp);
  2303. spin_unlock_irq(&gp->lock);
  2304. return 0;
  2305. }
  2306. static u32 gem_get_msglevel(struct net_device *dev)
  2307. {
  2308. struct gem *gp = netdev_priv(dev);
  2309. return gp->msg_enable;
  2310. }
  2311. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2312. {
  2313. struct gem *gp = netdev_priv(dev);
  2314. gp->msg_enable = value;
  2315. }
  2316. /* Add more when I understand how to program the chip */
  2317. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2318. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2319. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2320. {
  2321. struct gem *gp = netdev_priv(dev);
  2322. /* Add more when I understand how to program the chip */
  2323. if (gp->has_wol) {
  2324. wol->supported = WOL_SUPPORTED_MASK;
  2325. wol->wolopts = gp->wake_on_lan;
  2326. } else {
  2327. wol->supported = 0;
  2328. wol->wolopts = 0;
  2329. }
  2330. }
  2331. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2332. {
  2333. struct gem *gp = netdev_priv(dev);
  2334. if (!gp->has_wol)
  2335. return -EOPNOTSUPP;
  2336. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2337. return 0;
  2338. }
  2339. static const struct ethtool_ops gem_ethtool_ops = {
  2340. .get_drvinfo = gem_get_drvinfo,
  2341. .get_link = ethtool_op_get_link,
  2342. .get_settings = gem_get_settings,
  2343. .set_settings = gem_set_settings,
  2344. .nway_reset = gem_nway_reset,
  2345. .get_msglevel = gem_get_msglevel,
  2346. .set_msglevel = gem_set_msglevel,
  2347. .get_wol = gem_get_wol,
  2348. .set_wol = gem_set_wol,
  2349. };
  2350. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2351. {
  2352. struct gem *gp = netdev_priv(dev);
  2353. struct mii_ioctl_data *data = if_mii(ifr);
  2354. int rc = -EOPNOTSUPP;
  2355. unsigned long flags;
  2356. /* Hold the PM mutex while doing ioctl's or we may collide
  2357. * with power management.
  2358. */
  2359. mutex_lock(&gp->pm_mutex);
  2360. spin_lock_irqsave(&gp->lock, flags);
  2361. gem_get_cell(gp);
  2362. spin_unlock_irqrestore(&gp->lock, flags);
  2363. switch (cmd) {
  2364. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2365. data->phy_id = gp->mii_phy_addr;
  2366. /* Fallthrough... */
  2367. case SIOCGMIIREG: /* Read MII PHY register. */
  2368. if (!gp->running)
  2369. rc = -EAGAIN;
  2370. else {
  2371. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2372. data->reg_num & 0x1f);
  2373. rc = 0;
  2374. }
  2375. break;
  2376. case SIOCSMIIREG: /* Write MII PHY register. */
  2377. if (!gp->running)
  2378. rc = -EAGAIN;
  2379. else {
  2380. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2381. data->val_in);
  2382. rc = 0;
  2383. }
  2384. break;
  2385. };
  2386. spin_lock_irqsave(&gp->lock, flags);
  2387. gem_put_cell(gp);
  2388. spin_unlock_irqrestore(&gp->lock, flags);
  2389. mutex_unlock(&gp->pm_mutex);
  2390. return rc;
  2391. }
  2392. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2393. /* Fetch MAC address from vital product data of PCI ROM. */
  2394. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2395. {
  2396. int this_offset;
  2397. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2398. void __iomem *p = rom_base + this_offset;
  2399. int i;
  2400. if (readb(p + 0) != 0x90 ||
  2401. readb(p + 1) != 0x00 ||
  2402. readb(p + 2) != 0x09 ||
  2403. readb(p + 3) != 0x4e ||
  2404. readb(p + 4) != 0x41 ||
  2405. readb(p + 5) != 0x06)
  2406. continue;
  2407. this_offset += 6;
  2408. p += 6;
  2409. for (i = 0; i < 6; i++)
  2410. dev_addr[i] = readb(p + i);
  2411. return 1;
  2412. }
  2413. return 0;
  2414. }
  2415. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2416. {
  2417. size_t size;
  2418. void __iomem *p = pci_map_rom(pdev, &size);
  2419. if (p) {
  2420. int found;
  2421. found = readb(p) == 0x55 &&
  2422. readb(p + 1) == 0xaa &&
  2423. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2424. pci_unmap_rom(pdev, p);
  2425. if (found)
  2426. return;
  2427. }
  2428. /* Sun MAC prefix then 3 random bytes. */
  2429. dev_addr[0] = 0x08;
  2430. dev_addr[1] = 0x00;
  2431. dev_addr[2] = 0x20;
  2432. get_random_bytes(dev_addr + 3, 3);
  2433. return;
  2434. }
  2435. #endif /* not Sparc and not PPC */
  2436. static int __devinit gem_get_device_address(struct gem *gp)
  2437. {
  2438. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2439. struct net_device *dev = gp->dev;
  2440. const unsigned char *addr;
  2441. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2442. if (addr == NULL) {
  2443. #ifdef CONFIG_SPARC
  2444. addr = idprom->id_ethaddr;
  2445. #else
  2446. printk("\n");
  2447. printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
  2448. return -1;
  2449. #endif
  2450. }
  2451. memcpy(dev->dev_addr, addr, 6);
  2452. #else
  2453. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2454. #endif
  2455. return 0;
  2456. }
  2457. static void gem_remove_one(struct pci_dev *pdev)
  2458. {
  2459. struct net_device *dev = pci_get_drvdata(pdev);
  2460. if (dev) {
  2461. struct gem *gp = netdev_priv(dev);
  2462. unregister_netdev(dev);
  2463. /* Stop the link timer */
  2464. del_timer_sync(&gp->link_timer);
  2465. /* We shouldn't need any locking here */
  2466. gem_get_cell(gp);
  2467. /* Wait for a pending reset task to complete */
  2468. while (gp->reset_task_pending)
  2469. yield();
  2470. flush_scheduled_work();
  2471. /* Shut the PHY down */
  2472. gem_stop_phy(gp, 0);
  2473. gem_put_cell(gp);
  2474. /* Make sure bus master is disabled */
  2475. pci_disable_device(gp->pdev);
  2476. /* Free resources */
  2477. pci_free_consistent(pdev,
  2478. sizeof(struct gem_init_block),
  2479. gp->init_block,
  2480. gp->gblock_dvma);
  2481. iounmap(gp->regs);
  2482. pci_release_regions(pdev);
  2483. free_netdev(dev);
  2484. pci_set_drvdata(pdev, NULL);
  2485. }
  2486. }
  2487. static const struct net_device_ops gem_netdev_ops = {
  2488. .ndo_open = gem_open,
  2489. .ndo_stop = gem_close,
  2490. .ndo_start_xmit = gem_start_xmit,
  2491. .ndo_get_stats = gem_get_stats,
  2492. .ndo_set_multicast_list = gem_set_multicast,
  2493. .ndo_do_ioctl = gem_ioctl,
  2494. .ndo_tx_timeout = gem_tx_timeout,
  2495. .ndo_change_mtu = gem_change_mtu,
  2496. .ndo_validate_addr = eth_validate_addr,
  2497. .ndo_set_mac_address = gem_set_mac_address,
  2498. #ifdef CONFIG_NET_POLL_CONTROLLER
  2499. .ndo_poll_controller = gem_poll_controller,
  2500. #endif
  2501. };
  2502. static int __devinit gem_init_one(struct pci_dev *pdev,
  2503. const struct pci_device_id *ent)
  2504. {
  2505. static int gem_version_printed = 0;
  2506. unsigned long gemreg_base, gemreg_len;
  2507. struct net_device *dev;
  2508. struct gem *gp;
  2509. int err, pci_using_dac;
  2510. if (gem_version_printed++ == 0)
  2511. printk(KERN_INFO "%s", version);
  2512. /* Apple gmac note: during probe, the chip is powered up by
  2513. * the arch code to allow the code below to work (and to let
  2514. * the chip be probed on the config space. It won't stay powered
  2515. * up until the interface is brought up however, so we can't rely
  2516. * on register configuration done at this point.
  2517. */
  2518. err = pci_enable_device(pdev);
  2519. if (err) {
  2520. printk(KERN_ERR PFX "Cannot enable MMIO operation, "
  2521. "aborting.\n");
  2522. return err;
  2523. }
  2524. pci_set_master(pdev);
  2525. /* Configure DMA attributes. */
  2526. /* All of the GEM documentation states that 64-bit DMA addressing
  2527. * is fully supported and should work just fine. However the
  2528. * front end for RIO based GEMs is different and only supports
  2529. * 32-bit addressing.
  2530. *
  2531. * For now we assume the various PPC GEMs are 32-bit only as well.
  2532. */
  2533. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2534. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2535. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2536. pci_using_dac = 1;
  2537. } else {
  2538. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2539. if (err) {
  2540. printk(KERN_ERR PFX "No usable DMA configuration, "
  2541. "aborting.\n");
  2542. goto err_disable_device;
  2543. }
  2544. pci_using_dac = 0;
  2545. }
  2546. gemreg_base = pci_resource_start(pdev, 0);
  2547. gemreg_len = pci_resource_len(pdev, 0);
  2548. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2549. printk(KERN_ERR PFX "Cannot find proper PCI device "
  2550. "base address, aborting.\n");
  2551. err = -ENODEV;
  2552. goto err_disable_device;
  2553. }
  2554. dev = alloc_etherdev(sizeof(*gp));
  2555. if (!dev) {
  2556. printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
  2557. err = -ENOMEM;
  2558. goto err_disable_device;
  2559. }
  2560. SET_NETDEV_DEV(dev, &pdev->dev);
  2561. gp = netdev_priv(dev);
  2562. err = pci_request_regions(pdev, DRV_NAME);
  2563. if (err) {
  2564. printk(KERN_ERR PFX "Cannot obtain PCI resources, "
  2565. "aborting.\n");
  2566. goto err_out_free_netdev;
  2567. }
  2568. gp->pdev = pdev;
  2569. dev->base_addr = (long) pdev;
  2570. gp->dev = dev;
  2571. gp->msg_enable = DEFAULT_MSG;
  2572. spin_lock_init(&gp->lock);
  2573. spin_lock_init(&gp->tx_lock);
  2574. mutex_init(&gp->pm_mutex);
  2575. init_timer(&gp->link_timer);
  2576. gp->link_timer.function = gem_link_timer;
  2577. gp->link_timer.data = (unsigned long) gp;
  2578. INIT_WORK(&gp->reset_task, gem_reset_task);
  2579. gp->lstate = link_down;
  2580. gp->timer_ticks = 0;
  2581. netif_carrier_off(dev);
  2582. gp->regs = ioremap(gemreg_base, gemreg_len);
  2583. if (!gp->regs) {
  2584. printk(KERN_ERR PFX "Cannot map device registers, "
  2585. "aborting.\n");
  2586. err = -EIO;
  2587. goto err_out_free_res;
  2588. }
  2589. /* On Apple, we want a reference to the Open Firmware device-tree
  2590. * node. We use it for clock control.
  2591. */
  2592. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2593. gp->of_node = pci_device_to_OF_node(pdev);
  2594. #endif
  2595. /* Only Apple version supports WOL afaik */
  2596. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2597. gp->has_wol = 1;
  2598. /* Make sure cell is enabled */
  2599. gem_get_cell(gp);
  2600. /* Make sure everything is stopped and in init state */
  2601. gem_reset(gp);
  2602. /* Fill up the mii_phy structure (even if we won't use it) */
  2603. gp->phy_mii.dev = dev;
  2604. gp->phy_mii.mdio_read = _phy_read;
  2605. gp->phy_mii.mdio_write = _phy_write;
  2606. #ifdef CONFIG_PPC_PMAC
  2607. gp->phy_mii.platform_data = gp->of_node;
  2608. #endif
  2609. /* By default, we start with autoneg */
  2610. gp->want_autoneg = 1;
  2611. /* Check fifo sizes, PHY type, etc... */
  2612. if (gem_check_invariants(gp)) {
  2613. err = -ENODEV;
  2614. goto err_out_iounmap;
  2615. }
  2616. /* It is guaranteed that the returned buffer will be at least
  2617. * PAGE_SIZE aligned.
  2618. */
  2619. gp->init_block = (struct gem_init_block *)
  2620. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2621. &gp->gblock_dvma);
  2622. if (!gp->init_block) {
  2623. printk(KERN_ERR PFX "Cannot allocate init block, "
  2624. "aborting.\n");
  2625. err = -ENOMEM;
  2626. goto err_out_iounmap;
  2627. }
  2628. if (gem_get_device_address(gp))
  2629. goto err_out_free_consistent;
  2630. dev->netdev_ops = &gem_netdev_ops;
  2631. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2632. dev->ethtool_ops = &gem_ethtool_ops;
  2633. dev->watchdog_timeo = 5 * HZ;
  2634. dev->irq = pdev->irq;
  2635. dev->dma = 0;
  2636. /* Set that now, in case PM kicks in now */
  2637. pci_set_drvdata(pdev, dev);
  2638. /* Detect & init PHY, start autoneg, we release the cell now
  2639. * too, it will be managed by whoever needs it
  2640. */
  2641. gem_init_phy(gp);
  2642. spin_lock_irq(&gp->lock);
  2643. gem_put_cell(gp);
  2644. spin_unlock_irq(&gp->lock);
  2645. /* Register with kernel */
  2646. if (register_netdev(dev)) {
  2647. printk(KERN_ERR PFX "Cannot register net device, "
  2648. "aborting.\n");
  2649. err = -ENOMEM;
  2650. goto err_out_free_consistent;
  2651. }
  2652. printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2653. dev->name, dev->dev_addr);
  2654. if (gp->phy_type == phy_mii_mdio0 ||
  2655. gp->phy_type == phy_mii_mdio1)
  2656. printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
  2657. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2658. /* GEM can do it all... */
  2659. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
  2660. if (pci_using_dac)
  2661. dev->features |= NETIF_F_HIGHDMA;
  2662. return 0;
  2663. err_out_free_consistent:
  2664. gem_remove_one(pdev);
  2665. err_out_iounmap:
  2666. gem_put_cell(gp);
  2667. iounmap(gp->regs);
  2668. err_out_free_res:
  2669. pci_release_regions(pdev);
  2670. err_out_free_netdev:
  2671. free_netdev(dev);
  2672. err_disable_device:
  2673. pci_disable_device(pdev);
  2674. return err;
  2675. }
  2676. static struct pci_driver gem_driver = {
  2677. .name = GEM_MODULE_NAME,
  2678. .id_table = gem_pci_tbl,
  2679. .probe = gem_init_one,
  2680. .remove = gem_remove_one,
  2681. #ifdef CONFIG_PM
  2682. .suspend = gem_suspend,
  2683. .resume = gem_resume,
  2684. #endif /* CONFIG_PM */
  2685. };
  2686. static int __init gem_init(void)
  2687. {
  2688. return pci_register_driver(&gem_driver);
  2689. }
  2690. static void __exit gem_cleanup(void)
  2691. {
  2692. pci_unregister_driver(&gem_driver);
  2693. }
  2694. module_init(gem_init);
  2695. module_exit(gem_cleanup);