skge.c 106 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/debugfs.h>
  39. #include <linux/sched.h>
  40. #include <linux/seq_file.h>
  41. #include <linux/mii.h>
  42. #include <asm/irq.h>
  43. #include "skge.h"
  44. #define DRV_NAME "skge"
  45. #define DRV_VERSION "1.13"
  46. #define PFX DRV_NAME " "
  47. #define DEFAULT_TX_RING_SIZE 128
  48. #define DEFAULT_RX_RING_SIZE 512
  49. #define MAX_TX_RING_SIZE 1024
  50. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  51. #define MAX_RX_RING_SIZE 4096
  52. #define RX_COPY_THRESHOLD 128
  53. #define RX_BUF_SIZE 1536
  54. #define PHY_RETRIES 1000
  55. #define ETH_JUMBO_MTU 9000
  56. #define TX_WATCHDOG (5 * HZ)
  57. #define NAPI_WEIGHT 64
  58. #define BLINK_MS 250
  59. #define LINK_HZ HZ
  60. #define SKGE_EEPROM_MAGIC 0x9933aabb
  61. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  62. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  63. MODULE_LICENSE("GPL");
  64. MODULE_VERSION(DRV_VERSION);
  65. static const u32 default_msg
  66. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  67. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  68. static int debug = -1; /* defaults above */
  69. module_param(debug, int, 0);
  70. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  71. static const struct pci_device_id skge_id_table[] = {
  72. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  78. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  79. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  80. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  81. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  82. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  83. { 0 }
  84. };
  85. MODULE_DEVICE_TABLE(pci, skge_id_table);
  86. static int skge_up(struct net_device *dev);
  87. static int skge_down(struct net_device *dev);
  88. static void skge_phy_reset(struct skge_port *skge);
  89. static void skge_tx_clean(struct net_device *dev);
  90. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  91. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  92. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  93. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  94. static void yukon_init(struct skge_hw *hw, int port);
  95. static void genesis_mac_init(struct skge_hw *hw, int port);
  96. static void genesis_link_up(struct skge_port *skge);
  97. static void skge_set_multicast(struct net_device *dev);
  98. /* Avoid conditionals by using array */
  99. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  100. static const int rxqaddr[] = { Q_R1, Q_R2 };
  101. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  102. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  103. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  104. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  105. static int skge_get_regs_len(struct net_device *dev)
  106. {
  107. return 0x4000;
  108. }
  109. /*
  110. * Returns copy of whole control register region
  111. * Note: skip RAM address register because accessing it will
  112. * cause bus hangs!
  113. */
  114. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  115. void *p)
  116. {
  117. const struct skge_port *skge = netdev_priv(dev);
  118. const void __iomem *io = skge->hw->regs;
  119. regs->version = 1;
  120. memset(p, 0, regs->len);
  121. memcpy_fromio(p, io, B3_RAM_ADDR);
  122. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  123. regs->len - B3_RI_WTO_R1);
  124. }
  125. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  126. static u32 wol_supported(const struct skge_hw *hw)
  127. {
  128. if (hw->chip_id == CHIP_ID_GENESIS)
  129. return 0;
  130. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  131. return 0;
  132. return WAKE_MAGIC | WAKE_PHY;
  133. }
  134. static void skge_wol_init(struct skge_port *skge)
  135. {
  136. struct skge_hw *hw = skge->hw;
  137. int port = skge->port;
  138. u16 ctrl;
  139. skge_write16(hw, B0_CTST, CS_RST_CLR);
  140. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  141. /* Turn on Vaux */
  142. skge_write8(hw, B0_POWER_CTRL,
  143. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  144. /* WA code for COMA mode -- clear PHY reset */
  145. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  146. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  147. u32 reg = skge_read32(hw, B2_GP_IO);
  148. reg |= GP_DIR_9;
  149. reg &= ~GP_IO_9;
  150. skge_write32(hw, B2_GP_IO, reg);
  151. }
  152. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  153. GPC_DIS_SLEEP |
  154. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  155. GPC_ANEG_1 | GPC_RST_SET);
  156. skge_write32(hw, SK_REG(port, GPHY_CTRL),
  157. GPC_DIS_SLEEP |
  158. GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
  159. GPC_ANEG_1 | GPC_RST_CLR);
  160. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  161. /* Force to 10/100 skge_reset will re-enable on resume */
  162. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  163. PHY_AN_100FULL | PHY_AN_100HALF |
  164. PHY_AN_10FULL | PHY_AN_10HALF| PHY_AN_CSMA);
  165. /* no 1000 HD/FD */
  166. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
  167. gm_phy_write(hw, port, PHY_MARV_CTRL,
  168. PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
  169. PHY_CT_RE_CFG | PHY_CT_DUP_MD);
  170. /* Set GMAC to no flow control and auto update for speed/duplex */
  171. gma_write16(hw, port, GM_GP_CTRL,
  172. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  173. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  174. /* Set WOL address */
  175. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  176. skge->netdev->dev_addr, ETH_ALEN);
  177. /* Turn on appropriate WOL control bits */
  178. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  179. ctrl = 0;
  180. if (skge->wol & WAKE_PHY)
  181. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  182. else
  183. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  184. if (skge->wol & WAKE_MAGIC)
  185. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  186. else
  187. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
  188. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  189. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  190. /* block receiver */
  191. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  192. }
  193. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  194. {
  195. struct skge_port *skge = netdev_priv(dev);
  196. wol->supported = wol_supported(skge->hw);
  197. wol->wolopts = skge->wol;
  198. }
  199. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  200. {
  201. struct skge_port *skge = netdev_priv(dev);
  202. struct skge_hw *hw = skge->hw;
  203. if ((wol->wolopts & ~wol_supported(hw))
  204. || !device_can_wakeup(&hw->pdev->dev))
  205. return -EOPNOTSUPP;
  206. skge->wol = wol->wolopts;
  207. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  208. return 0;
  209. }
  210. /* Determine supported/advertised modes based on hardware.
  211. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  212. */
  213. static u32 skge_supported_modes(const struct skge_hw *hw)
  214. {
  215. u32 supported;
  216. if (hw->copper) {
  217. supported = SUPPORTED_10baseT_Half
  218. | SUPPORTED_10baseT_Full
  219. | SUPPORTED_100baseT_Half
  220. | SUPPORTED_100baseT_Full
  221. | SUPPORTED_1000baseT_Half
  222. | SUPPORTED_1000baseT_Full
  223. | SUPPORTED_Autoneg| SUPPORTED_TP;
  224. if (hw->chip_id == CHIP_ID_GENESIS)
  225. supported &= ~(SUPPORTED_10baseT_Half
  226. | SUPPORTED_10baseT_Full
  227. | SUPPORTED_100baseT_Half
  228. | SUPPORTED_100baseT_Full);
  229. else if (hw->chip_id == CHIP_ID_YUKON)
  230. supported &= ~SUPPORTED_1000baseT_Half;
  231. } else
  232. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  233. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  234. return supported;
  235. }
  236. static int skge_get_settings(struct net_device *dev,
  237. struct ethtool_cmd *ecmd)
  238. {
  239. struct skge_port *skge = netdev_priv(dev);
  240. struct skge_hw *hw = skge->hw;
  241. ecmd->transceiver = XCVR_INTERNAL;
  242. ecmd->supported = skge_supported_modes(hw);
  243. if (hw->copper) {
  244. ecmd->port = PORT_TP;
  245. ecmd->phy_address = hw->phy_addr;
  246. } else
  247. ecmd->port = PORT_FIBRE;
  248. ecmd->advertising = skge->advertising;
  249. ecmd->autoneg = skge->autoneg;
  250. ecmd->speed = skge->speed;
  251. ecmd->duplex = skge->duplex;
  252. return 0;
  253. }
  254. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  255. {
  256. struct skge_port *skge = netdev_priv(dev);
  257. const struct skge_hw *hw = skge->hw;
  258. u32 supported = skge_supported_modes(hw);
  259. int err = 0;
  260. if (ecmd->autoneg == AUTONEG_ENABLE) {
  261. ecmd->advertising = supported;
  262. skge->duplex = -1;
  263. skge->speed = -1;
  264. } else {
  265. u32 setting;
  266. switch (ecmd->speed) {
  267. case SPEED_1000:
  268. if (ecmd->duplex == DUPLEX_FULL)
  269. setting = SUPPORTED_1000baseT_Full;
  270. else if (ecmd->duplex == DUPLEX_HALF)
  271. setting = SUPPORTED_1000baseT_Half;
  272. else
  273. return -EINVAL;
  274. break;
  275. case SPEED_100:
  276. if (ecmd->duplex == DUPLEX_FULL)
  277. setting = SUPPORTED_100baseT_Full;
  278. else if (ecmd->duplex == DUPLEX_HALF)
  279. setting = SUPPORTED_100baseT_Half;
  280. else
  281. return -EINVAL;
  282. break;
  283. case SPEED_10:
  284. if (ecmd->duplex == DUPLEX_FULL)
  285. setting = SUPPORTED_10baseT_Full;
  286. else if (ecmd->duplex == DUPLEX_HALF)
  287. setting = SUPPORTED_10baseT_Half;
  288. else
  289. return -EINVAL;
  290. break;
  291. default:
  292. return -EINVAL;
  293. }
  294. if ((setting & supported) == 0)
  295. return -EINVAL;
  296. skge->speed = ecmd->speed;
  297. skge->duplex = ecmd->duplex;
  298. }
  299. skge->autoneg = ecmd->autoneg;
  300. skge->advertising = ecmd->advertising;
  301. if (netif_running(dev)) {
  302. skge_down(dev);
  303. err = skge_up(dev);
  304. if (err) {
  305. dev_close(dev);
  306. return err;
  307. }
  308. }
  309. return (0);
  310. }
  311. static void skge_get_drvinfo(struct net_device *dev,
  312. struct ethtool_drvinfo *info)
  313. {
  314. struct skge_port *skge = netdev_priv(dev);
  315. strcpy(info->driver, DRV_NAME);
  316. strcpy(info->version, DRV_VERSION);
  317. strcpy(info->fw_version, "N/A");
  318. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  319. }
  320. static const struct skge_stat {
  321. char name[ETH_GSTRING_LEN];
  322. u16 xmac_offset;
  323. u16 gma_offset;
  324. } skge_stats[] = {
  325. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  326. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  327. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  328. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  329. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  330. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  331. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  332. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  333. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  334. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  335. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  336. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  337. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  338. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  339. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  340. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  341. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  342. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  343. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  344. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  345. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  346. };
  347. static int skge_get_sset_count(struct net_device *dev, int sset)
  348. {
  349. switch (sset) {
  350. case ETH_SS_STATS:
  351. return ARRAY_SIZE(skge_stats);
  352. default:
  353. return -EOPNOTSUPP;
  354. }
  355. }
  356. static void skge_get_ethtool_stats(struct net_device *dev,
  357. struct ethtool_stats *stats, u64 *data)
  358. {
  359. struct skge_port *skge = netdev_priv(dev);
  360. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  361. genesis_get_stats(skge, data);
  362. else
  363. yukon_get_stats(skge, data);
  364. }
  365. /* Use hardware MIB variables for critical path statistics and
  366. * transmit feedback not reported at interrupt.
  367. * Other errors are accounted for in interrupt handler.
  368. */
  369. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  370. {
  371. struct skge_port *skge = netdev_priv(dev);
  372. u64 data[ARRAY_SIZE(skge_stats)];
  373. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  374. genesis_get_stats(skge, data);
  375. else
  376. yukon_get_stats(skge, data);
  377. dev->stats.tx_bytes = data[0];
  378. dev->stats.rx_bytes = data[1];
  379. dev->stats.tx_packets = data[2] + data[4] + data[6];
  380. dev->stats.rx_packets = data[3] + data[5] + data[7];
  381. dev->stats.multicast = data[3] + data[5];
  382. dev->stats.collisions = data[10];
  383. dev->stats.tx_aborted_errors = data[12];
  384. return &dev->stats;
  385. }
  386. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  387. {
  388. int i;
  389. switch (stringset) {
  390. case ETH_SS_STATS:
  391. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  392. memcpy(data + i * ETH_GSTRING_LEN,
  393. skge_stats[i].name, ETH_GSTRING_LEN);
  394. break;
  395. }
  396. }
  397. static void skge_get_ring_param(struct net_device *dev,
  398. struct ethtool_ringparam *p)
  399. {
  400. struct skge_port *skge = netdev_priv(dev);
  401. p->rx_max_pending = MAX_RX_RING_SIZE;
  402. p->tx_max_pending = MAX_TX_RING_SIZE;
  403. p->rx_mini_max_pending = 0;
  404. p->rx_jumbo_max_pending = 0;
  405. p->rx_pending = skge->rx_ring.count;
  406. p->tx_pending = skge->tx_ring.count;
  407. p->rx_mini_pending = 0;
  408. p->rx_jumbo_pending = 0;
  409. }
  410. static int skge_set_ring_param(struct net_device *dev,
  411. struct ethtool_ringparam *p)
  412. {
  413. struct skge_port *skge = netdev_priv(dev);
  414. int err = 0;
  415. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  416. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  417. return -EINVAL;
  418. skge->rx_ring.count = p->rx_pending;
  419. skge->tx_ring.count = p->tx_pending;
  420. if (netif_running(dev)) {
  421. skge_down(dev);
  422. err = skge_up(dev);
  423. if (err)
  424. dev_close(dev);
  425. }
  426. return err;
  427. }
  428. static u32 skge_get_msglevel(struct net_device *netdev)
  429. {
  430. struct skge_port *skge = netdev_priv(netdev);
  431. return skge->msg_enable;
  432. }
  433. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  434. {
  435. struct skge_port *skge = netdev_priv(netdev);
  436. skge->msg_enable = value;
  437. }
  438. static int skge_nway_reset(struct net_device *dev)
  439. {
  440. struct skge_port *skge = netdev_priv(dev);
  441. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  442. return -EINVAL;
  443. skge_phy_reset(skge);
  444. return 0;
  445. }
  446. static int skge_set_sg(struct net_device *dev, u32 data)
  447. {
  448. struct skge_port *skge = netdev_priv(dev);
  449. struct skge_hw *hw = skge->hw;
  450. if (hw->chip_id == CHIP_ID_GENESIS && data)
  451. return -EOPNOTSUPP;
  452. return ethtool_op_set_sg(dev, data);
  453. }
  454. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  455. {
  456. struct skge_port *skge = netdev_priv(dev);
  457. struct skge_hw *hw = skge->hw;
  458. if (hw->chip_id == CHIP_ID_GENESIS && data)
  459. return -EOPNOTSUPP;
  460. return ethtool_op_set_tx_csum(dev, data);
  461. }
  462. static u32 skge_get_rx_csum(struct net_device *dev)
  463. {
  464. struct skge_port *skge = netdev_priv(dev);
  465. return skge->rx_csum;
  466. }
  467. /* Only Yukon supports checksum offload. */
  468. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  469. {
  470. struct skge_port *skge = netdev_priv(dev);
  471. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  472. return -EOPNOTSUPP;
  473. skge->rx_csum = data;
  474. return 0;
  475. }
  476. static void skge_get_pauseparam(struct net_device *dev,
  477. struct ethtool_pauseparam *ecmd)
  478. {
  479. struct skge_port *skge = netdev_priv(dev);
  480. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  481. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  482. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  483. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  484. }
  485. static int skge_set_pauseparam(struct net_device *dev,
  486. struct ethtool_pauseparam *ecmd)
  487. {
  488. struct skge_port *skge = netdev_priv(dev);
  489. struct ethtool_pauseparam old;
  490. int err = 0;
  491. skge_get_pauseparam(dev, &old);
  492. if (ecmd->autoneg != old.autoneg)
  493. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  494. else {
  495. if (ecmd->rx_pause && ecmd->tx_pause)
  496. skge->flow_control = FLOW_MODE_SYMMETRIC;
  497. else if (ecmd->rx_pause && !ecmd->tx_pause)
  498. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  499. else if (!ecmd->rx_pause && ecmd->tx_pause)
  500. skge->flow_control = FLOW_MODE_LOC_SEND;
  501. else
  502. skge->flow_control = FLOW_MODE_NONE;
  503. }
  504. if (netif_running(dev)) {
  505. skge_down(dev);
  506. err = skge_up(dev);
  507. if (err) {
  508. dev_close(dev);
  509. return err;
  510. }
  511. }
  512. return 0;
  513. }
  514. /* Chip internal frequency for clock calculations */
  515. static inline u32 hwkhz(const struct skge_hw *hw)
  516. {
  517. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  518. }
  519. /* Chip HZ to microseconds */
  520. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  521. {
  522. return (ticks * 1000) / hwkhz(hw);
  523. }
  524. /* Microseconds to chip HZ */
  525. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  526. {
  527. return hwkhz(hw) * usec / 1000;
  528. }
  529. static int skge_get_coalesce(struct net_device *dev,
  530. struct ethtool_coalesce *ecmd)
  531. {
  532. struct skge_port *skge = netdev_priv(dev);
  533. struct skge_hw *hw = skge->hw;
  534. int port = skge->port;
  535. ecmd->rx_coalesce_usecs = 0;
  536. ecmd->tx_coalesce_usecs = 0;
  537. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  538. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  539. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  540. if (msk & rxirqmask[port])
  541. ecmd->rx_coalesce_usecs = delay;
  542. if (msk & txirqmask[port])
  543. ecmd->tx_coalesce_usecs = delay;
  544. }
  545. return 0;
  546. }
  547. /* Note: interrupt timer is per board, but can turn on/off per port */
  548. static int skge_set_coalesce(struct net_device *dev,
  549. struct ethtool_coalesce *ecmd)
  550. {
  551. struct skge_port *skge = netdev_priv(dev);
  552. struct skge_hw *hw = skge->hw;
  553. int port = skge->port;
  554. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  555. u32 delay = 25;
  556. if (ecmd->rx_coalesce_usecs == 0)
  557. msk &= ~rxirqmask[port];
  558. else if (ecmd->rx_coalesce_usecs < 25 ||
  559. ecmd->rx_coalesce_usecs > 33333)
  560. return -EINVAL;
  561. else {
  562. msk |= rxirqmask[port];
  563. delay = ecmd->rx_coalesce_usecs;
  564. }
  565. if (ecmd->tx_coalesce_usecs == 0)
  566. msk &= ~txirqmask[port];
  567. else if (ecmd->tx_coalesce_usecs < 25 ||
  568. ecmd->tx_coalesce_usecs > 33333)
  569. return -EINVAL;
  570. else {
  571. msk |= txirqmask[port];
  572. delay = min(delay, ecmd->rx_coalesce_usecs);
  573. }
  574. skge_write32(hw, B2_IRQM_MSK, msk);
  575. if (msk == 0)
  576. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  577. else {
  578. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  579. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  580. }
  581. return 0;
  582. }
  583. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  584. static void skge_led(struct skge_port *skge, enum led_mode mode)
  585. {
  586. struct skge_hw *hw = skge->hw;
  587. int port = skge->port;
  588. spin_lock_bh(&hw->phy_lock);
  589. if (hw->chip_id == CHIP_ID_GENESIS) {
  590. switch (mode) {
  591. case LED_MODE_OFF:
  592. if (hw->phy_type == SK_PHY_BCOM)
  593. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  594. else {
  595. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  596. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  597. }
  598. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  599. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  600. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  601. break;
  602. case LED_MODE_ON:
  603. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  604. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  605. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  606. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  607. break;
  608. case LED_MODE_TST:
  609. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  610. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  611. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  612. if (hw->phy_type == SK_PHY_BCOM)
  613. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  614. else {
  615. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  616. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  617. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  618. }
  619. }
  620. } else {
  621. switch (mode) {
  622. case LED_MODE_OFF:
  623. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  624. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  625. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  626. PHY_M_LED_MO_10(MO_LED_OFF) |
  627. PHY_M_LED_MO_100(MO_LED_OFF) |
  628. PHY_M_LED_MO_1000(MO_LED_OFF) |
  629. PHY_M_LED_MO_RX(MO_LED_OFF));
  630. break;
  631. case LED_MODE_ON:
  632. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  633. PHY_M_LED_PULS_DUR(PULS_170MS) |
  634. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  635. PHY_M_LEDC_TX_CTRL |
  636. PHY_M_LEDC_DP_CTRL);
  637. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  638. PHY_M_LED_MO_RX(MO_LED_OFF) |
  639. (skge->speed == SPEED_100 ?
  640. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  641. break;
  642. case LED_MODE_TST:
  643. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  644. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  645. PHY_M_LED_MO_DUP(MO_LED_ON) |
  646. PHY_M_LED_MO_10(MO_LED_ON) |
  647. PHY_M_LED_MO_100(MO_LED_ON) |
  648. PHY_M_LED_MO_1000(MO_LED_ON) |
  649. PHY_M_LED_MO_RX(MO_LED_ON));
  650. }
  651. }
  652. spin_unlock_bh(&hw->phy_lock);
  653. }
  654. /* blink LED's for finding board */
  655. static int skge_phys_id(struct net_device *dev, u32 data)
  656. {
  657. struct skge_port *skge = netdev_priv(dev);
  658. unsigned long ms;
  659. enum led_mode mode = LED_MODE_TST;
  660. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  661. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  662. else
  663. ms = data * 1000;
  664. while (ms > 0) {
  665. skge_led(skge, mode);
  666. mode ^= LED_MODE_TST;
  667. if (msleep_interruptible(BLINK_MS))
  668. break;
  669. ms -= BLINK_MS;
  670. }
  671. /* back to regular LED state */
  672. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  673. return 0;
  674. }
  675. static int skge_get_eeprom_len(struct net_device *dev)
  676. {
  677. struct skge_port *skge = netdev_priv(dev);
  678. u32 reg2;
  679. pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
  680. return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
  681. }
  682. static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
  683. {
  684. u32 val;
  685. pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
  686. do {
  687. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  688. } while (!(offset & PCI_VPD_ADDR_F));
  689. pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
  690. return val;
  691. }
  692. static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
  693. {
  694. pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
  695. pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
  696. offset | PCI_VPD_ADDR_F);
  697. do {
  698. pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
  699. } while (offset & PCI_VPD_ADDR_F);
  700. }
  701. static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  702. u8 *data)
  703. {
  704. struct skge_port *skge = netdev_priv(dev);
  705. struct pci_dev *pdev = skge->hw->pdev;
  706. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  707. int length = eeprom->len;
  708. u16 offset = eeprom->offset;
  709. if (!cap)
  710. return -EINVAL;
  711. eeprom->magic = SKGE_EEPROM_MAGIC;
  712. while (length > 0) {
  713. u32 val = skge_vpd_read(pdev, cap, offset);
  714. int n = min_t(int, length, sizeof(val));
  715. memcpy(data, &val, n);
  716. length -= n;
  717. data += n;
  718. offset += n;
  719. }
  720. return 0;
  721. }
  722. static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  723. u8 *data)
  724. {
  725. struct skge_port *skge = netdev_priv(dev);
  726. struct pci_dev *pdev = skge->hw->pdev;
  727. int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
  728. int length = eeprom->len;
  729. u16 offset = eeprom->offset;
  730. if (!cap)
  731. return -EINVAL;
  732. if (eeprom->magic != SKGE_EEPROM_MAGIC)
  733. return -EINVAL;
  734. while (length > 0) {
  735. u32 val;
  736. int n = min_t(int, length, sizeof(val));
  737. if (n < sizeof(val))
  738. val = skge_vpd_read(pdev, cap, offset);
  739. memcpy(&val, data, n);
  740. skge_vpd_write(pdev, cap, offset, val);
  741. length -= n;
  742. data += n;
  743. offset += n;
  744. }
  745. return 0;
  746. }
  747. static const struct ethtool_ops skge_ethtool_ops = {
  748. .get_settings = skge_get_settings,
  749. .set_settings = skge_set_settings,
  750. .get_drvinfo = skge_get_drvinfo,
  751. .get_regs_len = skge_get_regs_len,
  752. .get_regs = skge_get_regs,
  753. .get_wol = skge_get_wol,
  754. .set_wol = skge_set_wol,
  755. .get_msglevel = skge_get_msglevel,
  756. .set_msglevel = skge_set_msglevel,
  757. .nway_reset = skge_nway_reset,
  758. .get_link = ethtool_op_get_link,
  759. .get_eeprom_len = skge_get_eeprom_len,
  760. .get_eeprom = skge_get_eeprom,
  761. .set_eeprom = skge_set_eeprom,
  762. .get_ringparam = skge_get_ring_param,
  763. .set_ringparam = skge_set_ring_param,
  764. .get_pauseparam = skge_get_pauseparam,
  765. .set_pauseparam = skge_set_pauseparam,
  766. .get_coalesce = skge_get_coalesce,
  767. .set_coalesce = skge_set_coalesce,
  768. .set_sg = skge_set_sg,
  769. .set_tx_csum = skge_set_tx_csum,
  770. .get_rx_csum = skge_get_rx_csum,
  771. .set_rx_csum = skge_set_rx_csum,
  772. .get_strings = skge_get_strings,
  773. .phys_id = skge_phys_id,
  774. .get_sset_count = skge_get_sset_count,
  775. .get_ethtool_stats = skge_get_ethtool_stats,
  776. };
  777. /*
  778. * Allocate ring elements and chain them together
  779. * One-to-one association of board descriptors with ring elements
  780. */
  781. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  782. {
  783. struct skge_tx_desc *d;
  784. struct skge_element *e;
  785. int i;
  786. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  787. if (!ring->start)
  788. return -ENOMEM;
  789. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  790. e->desc = d;
  791. if (i == ring->count - 1) {
  792. e->next = ring->start;
  793. d->next_offset = base;
  794. } else {
  795. e->next = e + 1;
  796. d->next_offset = base + (i+1) * sizeof(*d);
  797. }
  798. }
  799. ring->to_use = ring->to_clean = ring->start;
  800. return 0;
  801. }
  802. /* Allocate and setup a new buffer for receiving */
  803. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  804. struct sk_buff *skb, unsigned int bufsize)
  805. {
  806. struct skge_rx_desc *rd = e->desc;
  807. u64 map;
  808. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  809. PCI_DMA_FROMDEVICE);
  810. rd->dma_lo = map;
  811. rd->dma_hi = map >> 32;
  812. e->skb = skb;
  813. rd->csum1_start = ETH_HLEN;
  814. rd->csum2_start = ETH_HLEN;
  815. rd->csum1 = 0;
  816. rd->csum2 = 0;
  817. wmb();
  818. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  819. pci_unmap_addr_set(e, mapaddr, map);
  820. pci_unmap_len_set(e, maplen, bufsize);
  821. }
  822. /* Resume receiving using existing skb,
  823. * Note: DMA address is not changed by chip.
  824. * MTU not changed while receiver active.
  825. */
  826. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  827. {
  828. struct skge_rx_desc *rd = e->desc;
  829. rd->csum2 = 0;
  830. rd->csum2_start = ETH_HLEN;
  831. wmb();
  832. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  833. }
  834. /* Free all buffers in receive ring, assumes receiver stopped */
  835. static void skge_rx_clean(struct skge_port *skge)
  836. {
  837. struct skge_hw *hw = skge->hw;
  838. struct skge_ring *ring = &skge->rx_ring;
  839. struct skge_element *e;
  840. e = ring->start;
  841. do {
  842. struct skge_rx_desc *rd = e->desc;
  843. rd->control = 0;
  844. if (e->skb) {
  845. pci_unmap_single(hw->pdev,
  846. pci_unmap_addr(e, mapaddr),
  847. pci_unmap_len(e, maplen),
  848. PCI_DMA_FROMDEVICE);
  849. dev_kfree_skb(e->skb);
  850. e->skb = NULL;
  851. }
  852. } while ((e = e->next) != ring->start);
  853. }
  854. /* Allocate buffers for receive ring
  855. * For receive: to_clean is next received frame.
  856. */
  857. static int skge_rx_fill(struct net_device *dev)
  858. {
  859. struct skge_port *skge = netdev_priv(dev);
  860. struct skge_ring *ring = &skge->rx_ring;
  861. struct skge_element *e;
  862. e = ring->start;
  863. do {
  864. struct sk_buff *skb;
  865. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  866. GFP_KERNEL);
  867. if (!skb)
  868. return -ENOMEM;
  869. skb_reserve(skb, NET_IP_ALIGN);
  870. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  871. } while ( (e = e->next) != ring->start);
  872. ring->to_clean = ring->start;
  873. return 0;
  874. }
  875. static const char *skge_pause(enum pause_status status)
  876. {
  877. switch(status) {
  878. case FLOW_STAT_NONE:
  879. return "none";
  880. case FLOW_STAT_REM_SEND:
  881. return "rx only";
  882. case FLOW_STAT_LOC_SEND:
  883. return "tx_only";
  884. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  885. return "both";
  886. default:
  887. return "indeterminated";
  888. }
  889. }
  890. static void skge_link_up(struct skge_port *skge)
  891. {
  892. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  893. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  894. netif_carrier_on(skge->netdev);
  895. netif_wake_queue(skge->netdev);
  896. if (netif_msg_link(skge)) {
  897. printk(KERN_INFO PFX
  898. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  899. skge->netdev->name, skge->speed,
  900. skge->duplex == DUPLEX_FULL ? "full" : "half",
  901. skge_pause(skge->flow_status));
  902. }
  903. }
  904. static void skge_link_down(struct skge_port *skge)
  905. {
  906. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  907. netif_carrier_off(skge->netdev);
  908. netif_stop_queue(skge->netdev);
  909. if (netif_msg_link(skge))
  910. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  911. }
  912. static void xm_link_down(struct skge_hw *hw, int port)
  913. {
  914. struct net_device *dev = hw->dev[port];
  915. struct skge_port *skge = netdev_priv(dev);
  916. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  917. if (netif_carrier_ok(dev))
  918. skge_link_down(skge);
  919. }
  920. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  921. {
  922. int i;
  923. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  924. *val = xm_read16(hw, port, XM_PHY_DATA);
  925. if (hw->phy_type == SK_PHY_XMAC)
  926. goto ready;
  927. for (i = 0; i < PHY_RETRIES; i++) {
  928. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  929. goto ready;
  930. udelay(1);
  931. }
  932. return -ETIMEDOUT;
  933. ready:
  934. *val = xm_read16(hw, port, XM_PHY_DATA);
  935. return 0;
  936. }
  937. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  938. {
  939. u16 v = 0;
  940. if (__xm_phy_read(hw, port, reg, &v))
  941. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  942. hw->dev[port]->name);
  943. return v;
  944. }
  945. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  946. {
  947. int i;
  948. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  949. for (i = 0; i < PHY_RETRIES; i++) {
  950. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  951. goto ready;
  952. udelay(1);
  953. }
  954. return -EIO;
  955. ready:
  956. xm_write16(hw, port, XM_PHY_DATA, val);
  957. for (i = 0; i < PHY_RETRIES; i++) {
  958. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  959. return 0;
  960. udelay(1);
  961. }
  962. return -ETIMEDOUT;
  963. }
  964. static void genesis_init(struct skge_hw *hw)
  965. {
  966. /* set blink source counter */
  967. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  968. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  969. /* configure mac arbiter */
  970. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  971. /* configure mac arbiter timeout values */
  972. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  973. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  974. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  975. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  976. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  977. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  978. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  979. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  980. /* configure packet arbiter timeout */
  981. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  982. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  983. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  984. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  985. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  986. }
  987. static void genesis_reset(struct skge_hw *hw, int port)
  988. {
  989. const u8 zero[8] = { 0 };
  990. u32 reg;
  991. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  992. /* reset the statistics module */
  993. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  994. xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
  995. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  996. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  997. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  998. /* disable Broadcom PHY IRQ */
  999. if (hw->phy_type == SK_PHY_BCOM)
  1000. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  1001. xm_outhash(hw, port, XM_HSM, zero);
  1002. /* Flush TX and RX fifo */
  1003. reg = xm_read32(hw, port, XM_MODE);
  1004. xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
  1005. xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
  1006. }
  1007. /* Convert mode to MII values */
  1008. static const u16 phy_pause_map[] = {
  1009. [FLOW_MODE_NONE] = 0,
  1010. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  1011. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  1012. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  1013. };
  1014. /* special defines for FIBER (88E1011S only) */
  1015. static const u16 fiber_pause_map[] = {
  1016. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  1017. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  1018. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  1019. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  1020. };
  1021. /* Check status of Broadcom phy link */
  1022. static void bcom_check_link(struct skge_hw *hw, int port)
  1023. {
  1024. struct net_device *dev = hw->dev[port];
  1025. struct skge_port *skge = netdev_priv(dev);
  1026. u16 status;
  1027. /* read twice because of latch */
  1028. xm_phy_read(hw, port, PHY_BCOM_STAT);
  1029. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1030. if ((status & PHY_ST_LSYNC) == 0) {
  1031. xm_link_down(hw, port);
  1032. return;
  1033. }
  1034. if (skge->autoneg == AUTONEG_ENABLE) {
  1035. u16 lpa, aux;
  1036. if (!(status & PHY_ST_AN_OVER))
  1037. return;
  1038. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1039. if (lpa & PHY_B_AN_RF) {
  1040. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1041. dev->name);
  1042. return;
  1043. }
  1044. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1045. /* Check Duplex mismatch */
  1046. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1047. case PHY_B_RES_1000FD:
  1048. skge->duplex = DUPLEX_FULL;
  1049. break;
  1050. case PHY_B_RES_1000HD:
  1051. skge->duplex = DUPLEX_HALF;
  1052. break;
  1053. default:
  1054. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1055. dev->name);
  1056. return;
  1057. }
  1058. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1059. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1060. case PHY_B_AS_PAUSE_MSK:
  1061. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1062. break;
  1063. case PHY_B_AS_PRR:
  1064. skge->flow_status = FLOW_STAT_REM_SEND;
  1065. break;
  1066. case PHY_B_AS_PRT:
  1067. skge->flow_status = FLOW_STAT_LOC_SEND;
  1068. break;
  1069. default:
  1070. skge->flow_status = FLOW_STAT_NONE;
  1071. }
  1072. skge->speed = SPEED_1000;
  1073. }
  1074. if (!netif_carrier_ok(dev))
  1075. genesis_link_up(skge);
  1076. }
  1077. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  1078. * Phy on for 100 or 10Mbit operation
  1079. */
  1080. static void bcom_phy_init(struct skge_port *skge)
  1081. {
  1082. struct skge_hw *hw = skge->hw;
  1083. int port = skge->port;
  1084. int i;
  1085. u16 id1, r, ext, ctl;
  1086. /* magic workaround patterns for Broadcom */
  1087. static const struct {
  1088. u16 reg;
  1089. u16 val;
  1090. } A1hack[] = {
  1091. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  1092. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  1093. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  1094. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  1095. }, C0hack[] = {
  1096. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1097. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1098. };
  1099. /* read Id from external PHY (all have the same address) */
  1100. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1101. /* Optimize MDIO transfer by suppressing preamble. */
  1102. r = xm_read16(hw, port, XM_MMU_CMD);
  1103. r |= XM_MMU_NO_PRE;
  1104. xm_write16(hw, port, XM_MMU_CMD,r);
  1105. switch (id1) {
  1106. case PHY_BCOM_ID1_C0:
  1107. /*
  1108. * Workaround BCOM Errata for the C0 type.
  1109. * Write magic patterns to reserved registers.
  1110. */
  1111. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1112. xm_phy_write(hw, port,
  1113. C0hack[i].reg, C0hack[i].val);
  1114. break;
  1115. case PHY_BCOM_ID1_A1:
  1116. /*
  1117. * Workaround BCOM Errata for the A1 type.
  1118. * Write magic patterns to reserved registers.
  1119. */
  1120. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1121. xm_phy_write(hw, port,
  1122. A1hack[i].reg, A1hack[i].val);
  1123. break;
  1124. }
  1125. /*
  1126. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1127. * Disable Power Management after reset.
  1128. */
  1129. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1130. r |= PHY_B_AC_DIS_PM;
  1131. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1132. /* Dummy read */
  1133. xm_read16(hw, port, XM_ISRC);
  1134. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1135. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1136. if (skge->autoneg == AUTONEG_ENABLE) {
  1137. /*
  1138. * Workaround BCOM Errata #1 for the C5 type.
  1139. * 1000Base-T Link Acquisition Failure in Slave Mode
  1140. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1141. */
  1142. u16 adv = PHY_B_1000C_RD;
  1143. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1144. adv |= PHY_B_1000C_AHD;
  1145. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1146. adv |= PHY_B_1000C_AFD;
  1147. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1148. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1149. } else {
  1150. if (skge->duplex == DUPLEX_FULL)
  1151. ctl |= PHY_CT_DUP_MD;
  1152. /* Force to slave */
  1153. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1154. }
  1155. /* Set autonegotiation pause parameters */
  1156. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1157. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1158. /* Handle Jumbo frames */
  1159. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1160. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1161. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1162. ext |= PHY_B_PEC_HIGH_LA;
  1163. }
  1164. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1165. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1166. /* Use link status change interrupt */
  1167. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1168. }
  1169. static void xm_phy_init(struct skge_port *skge)
  1170. {
  1171. struct skge_hw *hw = skge->hw;
  1172. int port = skge->port;
  1173. u16 ctrl = 0;
  1174. if (skge->autoneg == AUTONEG_ENABLE) {
  1175. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1176. ctrl |= PHY_X_AN_HD;
  1177. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1178. ctrl |= PHY_X_AN_FD;
  1179. ctrl |= fiber_pause_map[skge->flow_control];
  1180. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1181. /* Restart Auto-negotiation */
  1182. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1183. } else {
  1184. /* Set DuplexMode in Config register */
  1185. if (skge->duplex == DUPLEX_FULL)
  1186. ctrl |= PHY_CT_DUP_MD;
  1187. /*
  1188. * Do NOT enable Auto-negotiation here. This would hold
  1189. * the link down because no IDLEs are transmitted
  1190. */
  1191. }
  1192. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1193. /* Poll PHY for status changes */
  1194. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1195. }
  1196. static int xm_check_link(struct net_device *dev)
  1197. {
  1198. struct skge_port *skge = netdev_priv(dev);
  1199. struct skge_hw *hw = skge->hw;
  1200. int port = skge->port;
  1201. u16 status;
  1202. /* read twice because of latch */
  1203. xm_phy_read(hw, port, PHY_XMAC_STAT);
  1204. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1205. if ((status & PHY_ST_LSYNC) == 0) {
  1206. xm_link_down(hw, port);
  1207. return 0;
  1208. }
  1209. if (skge->autoneg == AUTONEG_ENABLE) {
  1210. u16 lpa, res;
  1211. if (!(status & PHY_ST_AN_OVER))
  1212. return 0;
  1213. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1214. if (lpa & PHY_B_AN_RF) {
  1215. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1216. dev->name);
  1217. return 0;
  1218. }
  1219. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1220. /* Check Duplex mismatch */
  1221. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1222. case PHY_X_RS_FD:
  1223. skge->duplex = DUPLEX_FULL;
  1224. break;
  1225. case PHY_X_RS_HD:
  1226. skge->duplex = DUPLEX_HALF;
  1227. break;
  1228. default:
  1229. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1230. dev->name);
  1231. return 0;
  1232. }
  1233. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1234. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1235. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1236. (lpa & PHY_X_P_SYM_MD))
  1237. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1238. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1239. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1240. /* Enable PAUSE receive, disable PAUSE transmit */
  1241. skge->flow_status = FLOW_STAT_REM_SEND;
  1242. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1243. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1244. /* Disable PAUSE receive, enable PAUSE transmit */
  1245. skge->flow_status = FLOW_STAT_LOC_SEND;
  1246. else
  1247. skge->flow_status = FLOW_STAT_NONE;
  1248. skge->speed = SPEED_1000;
  1249. }
  1250. if (!netif_carrier_ok(dev))
  1251. genesis_link_up(skge);
  1252. return 1;
  1253. }
  1254. /* Poll to check for link coming up.
  1255. *
  1256. * Since internal PHY is wired to a level triggered pin, can't
  1257. * get an interrupt when carrier is detected, need to poll for
  1258. * link coming up.
  1259. */
  1260. static void xm_link_timer(unsigned long arg)
  1261. {
  1262. struct skge_port *skge = (struct skge_port *) arg;
  1263. struct net_device *dev = skge->netdev;
  1264. struct skge_hw *hw = skge->hw;
  1265. int port = skge->port;
  1266. int i;
  1267. unsigned long flags;
  1268. if (!netif_running(dev))
  1269. return;
  1270. spin_lock_irqsave(&hw->phy_lock, flags);
  1271. /*
  1272. * Verify that the link by checking GPIO register three times.
  1273. * This pin has the signal from the link_sync pin connected to it.
  1274. */
  1275. for (i = 0; i < 3; i++) {
  1276. if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1277. goto link_down;
  1278. }
  1279. /* Re-enable interrupt to detect link down */
  1280. if (xm_check_link(dev)) {
  1281. u16 msk = xm_read16(hw, port, XM_IMSK);
  1282. msk &= ~XM_IS_INP_ASS;
  1283. xm_write16(hw, port, XM_IMSK, msk);
  1284. xm_read16(hw, port, XM_ISRC);
  1285. } else {
  1286. link_down:
  1287. mod_timer(&skge->link_timer,
  1288. round_jiffies(jiffies + LINK_HZ));
  1289. }
  1290. spin_unlock_irqrestore(&hw->phy_lock, flags);
  1291. }
  1292. static void genesis_mac_init(struct skge_hw *hw, int port)
  1293. {
  1294. struct net_device *dev = hw->dev[port];
  1295. struct skge_port *skge = netdev_priv(dev);
  1296. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1297. int i;
  1298. u32 r;
  1299. const u8 zero[6] = { 0 };
  1300. for (i = 0; i < 10; i++) {
  1301. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1302. MFF_SET_MAC_RST);
  1303. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1304. goto reset_ok;
  1305. udelay(1);
  1306. }
  1307. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1308. reset_ok:
  1309. /* Unreset the XMAC. */
  1310. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1311. /*
  1312. * Perform additional initialization for external PHYs,
  1313. * namely for the 1000baseTX cards that use the XMAC's
  1314. * GMII mode.
  1315. */
  1316. if (hw->phy_type != SK_PHY_XMAC) {
  1317. /* Take external Phy out of reset */
  1318. r = skge_read32(hw, B2_GP_IO);
  1319. if (port == 0)
  1320. r |= GP_DIR_0|GP_IO_0;
  1321. else
  1322. r |= GP_DIR_2|GP_IO_2;
  1323. skge_write32(hw, B2_GP_IO, r);
  1324. /* Enable GMII interface */
  1325. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1326. }
  1327. switch(hw->phy_type) {
  1328. case SK_PHY_XMAC:
  1329. xm_phy_init(skge);
  1330. break;
  1331. case SK_PHY_BCOM:
  1332. bcom_phy_init(skge);
  1333. bcom_check_link(hw, port);
  1334. }
  1335. /* Set Station Address */
  1336. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1337. /* We don't use match addresses so clear */
  1338. for (i = 1; i < 16; i++)
  1339. xm_outaddr(hw, port, XM_EXM(i), zero);
  1340. /* Clear MIB counters */
  1341. xm_write16(hw, port, XM_STAT_CMD,
  1342. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1343. /* Clear two times according to Errata #3 */
  1344. xm_write16(hw, port, XM_STAT_CMD,
  1345. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1346. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1347. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1348. /* We don't need the FCS appended to the packet. */
  1349. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1350. if (jumbo)
  1351. r |= XM_RX_BIG_PK_OK;
  1352. if (skge->duplex == DUPLEX_HALF) {
  1353. /*
  1354. * If in manual half duplex mode the other side might be in
  1355. * full duplex mode, so ignore if a carrier extension is not seen
  1356. * on frames received
  1357. */
  1358. r |= XM_RX_DIS_CEXT;
  1359. }
  1360. xm_write16(hw, port, XM_RX_CMD, r);
  1361. /* We want short frames padded to 60 bytes. */
  1362. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1363. /* Increase threshold for jumbo frames on dual port */
  1364. if (hw->ports > 1 && jumbo)
  1365. xm_write16(hw, port, XM_TX_THR, 1020);
  1366. else
  1367. xm_write16(hw, port, XM_TX_THR, 512);
  1368. /*
  1369. * Enable the reception of all error frames. This is is
  1370. * a necessary evil due to the design of the XMAC. The
  1371. * XMAC's receive FIFO is only 8K in size, however jumbo
  1372. * frames can be up to 9000 bytes in length. When bad
  1373. * frame filtering is enabled, the XMAC's RX FIFO operates
  1374. * in 'store and forward' mode. For this to work, the
  1375. * entire frame has to fit into the FIFO, but that means
  1376. * that jumbo frames larger than 8192 bytes will be
  1377. * truncated. Disabling all bad frame filtering causes
  1378. * the RX FIFO to operate in streaming mode, in which
  1379. * case the XMAC will start transferring frames out of the
  1380. * RX FIFO as soon as the FIFO threshold is reached.
  1381. */
  1382. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1383. /*
  1384. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1385. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1386. * and 'Octets Rx OK Hi Cnt Ov'.
  1387. */
  1388. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1389. /*
  1390. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1391. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1392. * and 'Octets Tx OK Hi Cnt Ov'.
  1393. */
  1394. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1395. /* Configure MAC arbiter */
  1396. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1397. /* configure timeout values */
  1398. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1399. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1400. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1401. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1402. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1403. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1404. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1405. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1406. /* Configure Rx MAC FIFO */
  1407. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1408. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1409. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1410. /* Configure Tx MAC FIFO */
  1411. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1412. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1413. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1414. if (jumbo) {
  1415. /* Enable frame flushing if jumbo frames used */
  1416. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1417. } else {
  1418. /* enable timeout timers if normal frames */
  1419. skge_write16(hw, B3_PA_CTRL,
  1420. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1421. }
  1422. }
  1423. static void genesis_stop(struct skge_port *skge)
  1424. {
  1425. struct skge_hw *hw = skge->hw;
  1426. int port = skge->port;
  1427. unsigned retries = 1000;
  1428. u16 cmd;
  1429. /* Disable Tx and Rx */
  1430. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1431. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1432. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1433. genesis_reset(hw, port);
  1434. /* Clear Tx packet arbiter timeout IRQ */
  1435. skge_write16(hw, B3_PA_CTRL,
  1436. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1437. /* Reset the MAC */
  1438. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1439. do {
  1440. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1441. if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
  1442. break;
  1443. } while (--retries > 0);
  1444. /* For external PHYs there must be special handling */
  1445. if (hw->phy_type != SK_PHY_XMAC) {
  1446. u32 reg = skge_read32(hw, B2_GP_IO);
  1447. if (port == 0) {
  1448. reg |= GP_DIR_0;
  1449. reg &= ~GP_IO_0;
  1450. } else {
  1451. reg |= GP_DIR_2;
  1452. reg &= ~GP_IO_2;
  1453. }
  1454. skge_write32(hw, B2_GP_IO, reg);
  1455. skge_read32(hw, B2_GP_IO);
  1456. }
  1457. xm_write16(hw, port, XM_MMU_CMD,
  1458. xm_read16(hw, port, XM_MMU_CMD)
  1459. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1460. xm_read16(hw, port, XM_MMU_CMD);
  1461. }
  1462. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1463. {
  1464. struct skge_hw *hw = skge->hw;
  1465. int port = skge->port;
  1466. int i;
  1467. unsigned long timeout = jiffies + HZ;
  1468. xm_write16(hw, port,
  1469. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1470. /* wait for update to complete */
  1471. while (xm_read16(hw, port, XM_STAT_CMD)
  1472. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1473. if (time_after(jiffies, timeout))
  1474. break;
  1475. udelay(10);
  1476. }
  1477. /* special case for 64 bit octet counter */
  1478. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1479. | xm_read32(hw, port, XM_TXO_OK_LO);
  1480. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1481. | xm_read32(hw, port, XM_RXO_OK_LO);
  1482. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1483. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1484. }
  1485. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1486. {
  1487. struct net_device *dev = hw->dev[port];
  1488. struct skge_port *skge = netdev_priv(dev);
  1489. u16 status = xm_read16(hw, port, XM_ISRC);
  1490. if (netif_msg_intr(skge))
  1491. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1492. dev->name, status);
  1493. if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
  1494. xm_link_down(hw, port);
  1495. mod_timer(&skge->link_timer, jiffies + 1);
  1496. }
  1497. if (status & XM_IS_TXF_UR) {
  1498. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1499. ++dev->stats.tx_fifo_errors;
  1500. }
  1501. }
  1502. static void genesis_link_up(struct skge_port *skge)
  1503. {
  1504. struct skge_hw *hw = skge->hw;
  1505. int port = skge->port;
  1506. u16 cmd, msk;
  1507. u32 mode;
  1508. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1509. /*
  1510. * enabling pause frame reception is required for 1000BT
  1511. * because the XMAC is not reset if the link is going down
  1512. */
  1513. if (skge->flow_status == FLOW_STAT_NONE ||
  1514. skge->flow_status == FLOW_STAT_LOC_SEND)
  1515. /* Disable Pause Frame Reception */
  1516. cmd |= XM_MMU_IGN_PF;
  1517. else
  1518. /* Enable Pause Frame Reception */
  1519. cmd &= ~XM_MMU_IGN_PF;
  1520. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1521. mode = xm_read32(hw, port, XM_MODE);
  1522. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1523. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1524. /*
  1525. * Configure Pause Frame Generation
  1526. * Use internal and external Pause Frame Generation.
  1527. * Sending pause frames is edge triggered.
  1528. * Send a Pause frame with the maximum pause time if
  1529. * internal oder external FIFO full condition occurs.
  1530. * Send a zero pause time frame to re-start transmission.
  1531. */
  1532. /* XM_PAUSE_DA = '010000C28001' (default) */
  1533. /* XM_MAC_PTIME = 0xffff (maximum) */
  1534. /* remember this value is defined in big endian (!) */
  1535. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1536. mode |= XM_PAUSE_MODE;
  1537. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1538. } else {
  1539. /*
  1540. * disable pause frame generation is required for 1000BT
  1541. * because the XMAC is not reset if the link is going down
  1542. */
  1543. /* Disable Pause Mode in Mode Register */
  1544. mode &= ~XM_PAUSE_MODE;
  1545. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1546. }
  1547. xm_write32(hw, port, XM_MODE, mode);
  1548. /* Turn on detection of Tx underrun */
  1549. msk = xm_read16(hw, port, XM_IMSK);
  1550. msk &= ~XM_IS_TXF_UR;
  1551. xm_write16(hw, port, XM_IMSK, msk);
  1552. xm_read16(hw, port, XM_ISRC);
  1553. /* get MMU Command Reg. */
  1554. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1555. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1556. cmd |= XM_MMU_GMII_FD;
  1557. /*
  1558. * Workaround BCOM Errata (#10523) for all BCom Phys
  1559. * Enable Power Management after link up
  1560. */
  1561. if (hw->phy_type == SK_PHY_BCOM) {
  1562. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1563. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1564. & ~PHY_B_AC_DIS_PM);
  1565. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1566. }
  1567. /* enable Rx/Tx */
  1568. xm_write16(hw, port, XM_MMU_CMD,
  1569. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1570. skge_link_up(skge);
  1571. }
  1572. static inline void bcom_phy_intr(struct skge_port *skge)
  1573. {
  1574. struct skge_hw *hw = skge->hw;
  1575. int port = skge->port;
  1576. u16 isrc;
  1577. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1578. if (netif_msg_intr(skge))
  1579. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1580. skge->netdev->name, isrc);
  1581. if (isrc & PHY_B_IS_PSE)
  1582. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1583. hw->dev[port]->name);
  1584. /* Workaround BCom Errata:
  1585. * enable and disable loopback mode if "NO HCD" occurs.
  1586. */
  1587. if (isrc & PHY_B_IS_NO_HDCL) {
  1588. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1589. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1590. ctrl | PHY_CT_LOOP);
  1591. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1592. ctrl & ~PHY_CT_LOOP);
  1593. }
  1594. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1595. bcom_check_link(hw, port);
  1596. }
  1597. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1598. {
  1599. int i;
  1600. gma_write16(hw, port, GM_SMI_DATA, val);
  1601. gma_write16(hw, port, GM_SMI_CTRL,
  1602. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1603. for (i = 0; i < PHY_RETRIES; i++) {
  1604. udelay(1);
  1605. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1606. return 0;
  1607. }
  1608. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1609. hw->dev[port]->name);
  1610. return -EIO;
  1611. }
  1612. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1613. {
  1614. int i;
  1615. gma_write16(hw, port, GM_SMI_CTRL,
  1616. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1617. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1618. for (i = 0; i < PHY_RETRIES; i++) {
  1619. udelay(1);
  1620. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1621. goto ready;
  1622. }
  1623. return -ETIMEDOUT;
  1624. ready:
  1625. *val = gma_read16(hw, port, GM_SMI_DATA);
  1626. return 0;
  1627. }
  1628. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1629. {
  1630. u16 v = 0;
  1631. if (__gm_phy_read(hw, port, reg, &v))
  1632. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1633. hw->dev[port]->name);
  1634. return v;
  1635. }
  1636. /* Marvell Phy Initialization */
  1637. static void yukon_init(struct skge_hw *hw, int port)
  1638. {
  1639. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1640. u16 ctrl, ct1000, adv;
  1641. if (skge->autoneg == AUTONEG_ENABLE) {
  1642. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1643. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1644. PHY_M_EC_MAC_S_MSK);
  1645. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1646. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1647. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1648. }
  1649. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1650. if (skge->autoneg == AUTONEG_DISABLE)
  1651. ctrl &= ~PHY_CT_ANE;
  1652. ctrl |= PHY_CT_RESET;
  1653. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1654. ctrl = 0;
  1655. ct1000 = 0;
  1656. adv = PHY_AN_CSMA;
  1657. if (skge->autoneg == AUTONEG_ENABLE) {
  1658. if (hw->copper) {
  1659. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1660. ct1000 |= PHY_M_1000C_AFD;
  1661. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1662. ct1000 |= PHY_M_1000C_AHD;
  1663. if (skge->advertising & ADVERTISED_100baseT_Full)
  1664. adv |= PHY_M_AN_100_FD;
  1665. if (skge->advertising & ADVERTISED_100baseT_Half)
  1666. adv |= PHY_M_AN_100_HD;
  1667. if (skge->advertising & ADVERTISED_10baseT_Full)
  1668. adv |= PHY_M_AN_10_FD;
  1669. if (skge->advertising & ADVERTISED_10baseT_Half)
  1670. adv |= PHY_M_AN_10_HD;
  1671. /* Set Flow-control capabilities */
  1672. adv |= phy_pause_map[skge->flow_control];
  1673. } else {
  1674. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1675. adv |= PHY_M_AN_1000X_AFD;
  1676. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1677. adv |= PHY_M_AN_1000X_AHD;
  1678. adv |= fiber_pause_map[skge->flow_control];
  1679. }
  1680. /* Restart Auto-negotiation */
  1681. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1682. } else {
  1683. /* forced speed/duplex settings */
  1684. ct1000 = PHY_M_1000C_MSE;
  1685. if (skge->duplex == DUPLEX_FULL)
  1686. ctrl |= PHY_CT_DUP_MD;
  1687. switch (skge->speed) {
  1688. case SPEED_1000:
  1689. ctrl |= PHY_CT_SP1000;
  1690. break;
  1691. case SPEED_100:
  1692. ctrl |= PHY_CT_SP100;
  1693. break;
  1694. }
  1695. ctrl |= PHY_CT_RESET;
  1696. }
  1697. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1698. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1699. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1700. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1701. if (skge->autoneg == AUTONEG_ENABLE)
  1702. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1703. else
  1704. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1705. }
  1706. static void yukon_reset(struct skge_hw *hw, int port)
  1707. {
  1708. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1709. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1710. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1711. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1712. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1713. gma_write16(hw, port, GM_RX_CTRL,
  1714. gma_read16(hw, port, GM_RX_CTRL)
  1715. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1716. }
  1717. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1718. static int is_yukon_lite_a0(struct skge_hw *hw)
  1719. {
  1720. u32 reg;
  1721. int ret;
  1722. if (hw->chip_id != CHIP_ID_YUKON)
  1723. return 0;
  1724. reg = skge_read32(hw, B2_FAR);
  1725. skge_write8(hw, B2_FAR + 3, 0xff);
  1726. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1727. skge_write32(hw, B2_FAR, reg);
  1728. return ret;
  1729. }
  1730. static void yukon_mac_init(struct skge_hw *hw, int port)
  1731. {
  1732. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1733. int i;
  1734. u32 reg;
  1735. const u8 *addr = hw->dev[port]->dev_addr;
  1736. /* WA code for COMA mode -- set PHY reset */
  1737. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1738. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1739. reg = skge_read32(hw, B2_GP_IO);
  1740. reg |= GP_DIR_9 | GP_IO_9;
  1741. skge_write32(hw, B2_GP_IO, reg);
  1742. }
  1743. /* hard reset */
  1744. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1745. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1746. /* WA code for COMA mode -- clear PHY reset */
  1747. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1748. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1749. reg = skge_read32(hw, B2_GP_IO);
  1750. reg |= GP_DIR_9;
  1751. reg &= ~GP_IO_9;
  1752. skge_write32(hw, B2_GP_IO, reg);
  1753. }
  1754. /* Set hardware config mode */
  1755. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1756. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1757. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1758. /* Clear GMC reset */
  1759. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1760. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1761. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1762. if (skge->autoneg == AUTONEG_DISABLE) {
  1763. reg = GM_GPCR_AU_ALL_DIS;
  1764. gma_write16(hw, port, GM_GP_CTRL,
  1765. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1766. switch (skge->speed) {
  1767. case SPEED_1000:
  1768. reg &= ~GM_GPCR_SPEED_100;
  1769. reg |= GM_GPCR_SPEED_1000;
  1770. break;
  1771. case SPEED_100:
  1772. reg &= ~GM_GPCR_SPEED_1000;
  1773. reg |= GM_GPCR_SPEED_100;
  1774. break;
  1775. case SPEED_10:
  1776. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1777. break;
  1778. }
  1779. if (skge->duplex == DUPLEX_FULL)
  1780. reg |= GM_GPCR_DUP_FULL;
  1781. } else
  1782. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1783. switch (skge->flow_control) {
  1784. case FLOW_MODE_NONE:
  1785. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1786. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1787. break;
  1788. case FLOW_MODE_LOC_SEND:
  1789. /* disable Rx flow-control */
  1790. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1791. break;
  1792. case FLOW_MODE_SYMMETRIC:
  1793. case FLOW_MODE_SYM_OR_REM:
  1794. /* enable Tx & Rx flow-control */
  1795. break;
  1796. }
  1797. gma_write16(hw, port, GM_GP_CTRL, reg);
  1798. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1799. yukon_init(hw, port);
  1800. /* MIB clear */
  1801. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1802. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1803. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1804. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1805. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1806. /* transmit control */
  1807. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1808. /* receive control reg: unicast + multicast + no FCS */
  1809. gma_write16(hw, port, GM_RX_CTRL,
  1810. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1811. /* transmit flow control */
  1812. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1813. /* transmit parameter */
  1814. gma_write16(hw, port, GM_TX_PARAM,
  1815. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1816. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1817. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1818. /* configure the Serial Mode Register */
  1819. reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
  1820. | GM_SMOD_VLAN_ENA
  1821. | IPG_DATA_VAL(IPG_DATA_DEF);
  1822. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1823. reg |= GM_SMOD_JUMBO_ENA;
  1824. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1825. /* physical address: used for pause frames */
  1826. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1827. /* virtual address for data */
  1828. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1829. /* enable interrupt mask for counter overflows */
  1830. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1831. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1832. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1833. /* Initialize Mac Fifo */
  1834. /* Configure Rx MAC FIFO */
  1835. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1836. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1837. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1838. if (is_yukon_lite_a0(hw))
  1839. reg &= ~GMF_RX_F_FL_ON;
  1840. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1841. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1842. /*
  1843. * because Pause Packet Truncation in GMAC is not working
  1844. * we have to increase the Flush Threshold to 64 bytes
  1845. * in order to flush pause packets in Rx FIFO on Yukon-1
  1846. */
  1847. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1848. /* Configure Tx MAC FIFO */
  1849. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1850. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1851. }
  1852. /* Go into power down mode */
  1853. static void yukon_suspend(struct skge_hw *hw, int port)
  1854. {
  1855. u16 ctrl;
  1856. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1857. ctrl |= PHY_M_PC_POL_R_DIS;
  1858. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1859. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1860. ctrl |= PHY_CT_RESET;
  1861. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1862. /* switch IEEE compatible power down mode on */
  1863. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1864. ctrl |= PHY_CT_PDOWN;
  1865. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1866. }
  1867. static void yukon_stop(struct skge_port *skge)
  1868. {
  1869. struct skge_hw *hw = skge->hw;
  1870. int port = skge->port;
  1871. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1872. yukon_reset(hw, port);
  1873. gma_write16(hw, port, GM_GP_CTRL,
  1874. gma_read16(hw, port, GM_GP_CTRL)
  1875. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1876. gma_read16(hw, port, GM_GP_CTRL);
  1877. yukon_suspend(hw, port);
  1878. /* set GPHY Control reset */
  1879. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1880. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1881. }
  1882. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1883. {
  1884. struct skge_hw *hw = skge->hw;
  1885. int port = skge->port;
  1886. int i;
  1887. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1888. | gma_read32(hw, port, GM_TXO_OK_LO);
  1889. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1890. | gma_read32(hw, port, GM_RXO_OK_LO);
  1891. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1892. data[i] = gma_read32(hw, port,
  1893. skge_stats[i].gma_offset);
  1894. }
  1895. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1896. {
  1897. struct net_device *dev = hw->dev[port];
  1898. struct skge_port *skge = netdev_priv(dev);
  1899. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1900. if (netif_msg_intr(skge))
  1901. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1902. dev->name, status);
  1903. if (status & GM_IS_RX_FF_OR) {
  1904. ++dev->stats.rx_fifo_errors;
  1905. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1906. }
  1907. if (status & GM_IS_TX_FF_UR) {
  1908. ++dev->stats.tx_fifo_errors;
  1909. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1910. }
  1911. }
  1912. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1913. {
  1914. switch (aux & PHY_M_PS_SPEED_MSK) {
  1915. case PHY_M_PS_SPEED_1000:
  1916. return SPEED_1000;
  1917. case PHY_M_PS_SPEED_100:
  1918. return SPEED_100;
  1919. default:
  1920. return SPEED_10;
  1921. }
  1922. }
  1923. static void yukon_link_up(struct skge_port *skge)
  1924. {
  1925. struct skge_hw *hw = skge->hw;
  1926. int port = skge->port;
  1927. u16 reg;
  1928. /* Enable Transmit FIFO Underrun */
  1929. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1930. reg = gma_read16(hw, port, GM_GP_CTRL);
  1931. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1932. reg |= GM_GPCR_DUP_FULL;
  1933. /* enable Rx/Tx */
  1934. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1935. gma_write16(hw, port, GM_GP_CTRL, reg);
  1936. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1937. skge_link_up(skge);
  1938. }
  1939. static void yukon_link_down(struct skge_port *skge)
  1940. {
  1941. struct skge_hw *hw = skge->hw;
  1942. int port = skge->port;
  1943. u16 ctrl;
  1944. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1945. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1946. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1947. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1948. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1949. ctrl |= PHY_M_AN_ASP;
  1950. /* restore Asymmetric Pause bit */
  1951. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1952. }
  1953. skge_link_down(skge);
  1954. yukon_init(hw, port);
  1955. }
  1956. static void yukon_phy_intr(struct skge_port *skge)
  1957. {
  1958. struct skge_hw *hw = skge->hw;
  1959. int port = skge->port;
  1960. const char *reason = NULL;
  1961. u16 istatus, phystat;
  1962. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1963. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1964. if (netif_msg_intr(skge))
  1965. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1966. skge->netdev->name, istatus, phystat);
  1967. if (istatus & PHY_M_IS_AN_COMPL) {
  1968. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1969. & PHY_M_AN_RF) {
  1970. reason = "remote fault";
  1971. goto failed;
  1972. }
  1973. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1974. reason = "master/slave fault";
  1975. goto failed;
  1976. }
  1977. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1978. reason = "speed/duplex";
  1979. goto failed;
  1980. }
  1981. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1982. ? DUPLEX_FULL : DUPLEX_HALF;
  1983. skge->speed = yukon_speed(hw, phystat);
  1984. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1985. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1986. case PHY_M_PS_PAUSE_MSK:
  1987. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1988. break;
  1989. case PHY_M_PS_RX_P_EN:
  1990. skge->flow_status = FLOW_STAT_REM_SEND;
  1991. break;
  1992. case PHY_M_PS_TX_P_EN:
  1993. skge->flow_status = FLOW_STAT_LOC_SEND;
  1994. break;
  1995. default:
  1996. skge->flow_status = FLOW_STAT_NONE;
  1997. }
  1998. if (skge->flow_status == FLOW_STAT_NONE ||
  1999. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  2000. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  2001. else
  2002. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  2003. yukon_link_up(skge);
  2004. return;
  2005. }
  2006. if (istatus & PHY_M_IS_LSP_CHANGE)
  2007. skge->speed = yukon_speed(hw, phystat);
  2008. if (istatus & PHY_M_IS_DUP_CHANGE)
  2009. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  2010. if (istatus & PHY_M_IS_LST_CHANGE) {
  2011. if (phystat & PHY_M_PS_LINK_UP)
  2012. yukon_link_up(skge);
  2013. else
  2014. yukon_link_down(skge);
  2015. }
  2016. return;
  2017. failed:
  2018. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  2019. skge->netdev->name, reason);
  2020. /* XXX restart autonegotiation? */
  2021. }
  2022. static void skge_phy_reset(struct skge_port *skge)
  2023. {
  2024. struct skge_hw *hw = skge->hw;
  2025. int port = skge->port;
  2026. struct net_device *dev = hw->dev[port];
  2027. netif_stop_queue(skge->netdev);
  2028. netif_carrier_off(skge->netdev);
  2029. spin_lock_bh(&hw->phy_lock);
  2030. if (hw->chip_id == CHIP_ID_GENESIS) {
  2031. genesis_reset(hw, port);
  2032. genesis_mac_init(hw, port);
  2033. } else {
  2034. yukon_reset(hw, port);
  2035. yukon_init(hw, port);
  2036. }
  2037. spin_unlock_bh(&hw->phy_lock);
  2038. skge_set_multicast(dev);
  2039. }
  2040. /* Basic MII support */
  2041. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2042. {
  2043. struct mii_ioctl_data *data = if_mii(ifr);
  2044. struct skge_port *skge = netdev_priv(dev);
  2045. struct skge_hw *hw = skge->hw;
  2046. int err = -EOPNOTSUPP;
  2047. if (!netif_running(dev))
  2048. return -ENODEV; /* Phy still in reset */
  2049. switch(cmd) {
  2050. case SIOCGMIIPHY:
  2051. data->phy_id = hw->phy_addr;
  2052. /* fallthru */
  2053. case SIOCGMIIREG: {
  2054. u16 val = 0;
  2055. spin_lock_bh(&hw->phy_lock);
  2056. if (hw->chip_id == CHIP_ID_GENESIS)
  2057. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2058. else
  2059. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  2060. spin_unlock_bh(&hw->phy_lock);
  2061. data->val_out = val;
  2062. break;
  2063. }
  2064. case SIOCSMIIREG:
  2065. spin_lock_bh(&hw->phy_lock);
  2066. if (hw->chip_id == CHIP_ID_GENESIS)
  2067. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2068. data->val_in);
  2069. else
  2070. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  2071. data->val_in);
  2072. spin_unlock_bh(&hw->phy_lock);
  2073. break;
  2074. }
  2075. return err;
  2076. }
  2077. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  2078. {
  2079. u32 end;
  2080. start /= 8;
  2081. len /= 8;
  2082. end = start + len - 1;
  2083. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  2084. skge_write32(hw, RB_ADDR(q, RB_START), start);
  2085. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  2086. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  2087. skge_write32(hw, RB_ADDR(q, RB_END), end);
  2088. if (q == Q_R1 || q == Q_R2) {
  2089. /* Set thresholds on receive queue's */
  2090. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  2091. start + (2*len)/3);
  2092. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  2093. start + (len/3));
  2094. } else {
  2095. /* Enable store & forward on Tx queue's because
  2096. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  2097. */
  2098. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  2099. }
  2100. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  2101. }
  2102. /* Setup Bus Memory Interface */
  2103. static void skge_qset(struct skge_port *skge, u16 q,
  2104. const struct skge_element *e)
  2105. {
  2106. struct skge_hw *hw = skge->hw;
  2107. u32 watermark = 0x600;
  2108. u64 base = skge->dma + (e->desc - skge->mem);
  2109. /* optimization to reduce window on 32bit/33mhz */
  2110. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2111. watermark /= 2;
  2112. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2113. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2114. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2115. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2116. }
  2117. static int skge_up(struct net_device *dev)
  2118. {
  2119. struct skge_port *skge = netdev_priv(dev);
  2120. struct skge_hw *hw = skge->hw;
  2121. int port = skge->port;
  2122. u32 chunk, ram_addr;
  2123. size_t rx_size, tx_size;
  2124. int err;
  2125. if (!is_valid_ether_addr(dev->dev_addr))
  2126. return -EINVAL;
  2127. if (netif_msg_ifup(skge))
  2128. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2129. if (dev->mtu > RX_BUF_SIZE)
  2130. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2131. else
  2132. skge->rx_buf_size = RX_BUF_SIZE;
  2133. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2134. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2135. skge->mem_size = tx_size + rx_size;
  2136. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2137. if (!skge->mem)
  2138. return -ENOMEM;
  2139. BUG_ON(skge->dma & 7);
  2140. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2141. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2142. err = -EINVAL;
  2143. goto free_pci_mem;
  2144. }
  2145. memset(skge->mem, 0, skge->mem_size);
  2146. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2147. if (err)
  2148. goto free_pci_mem;
  2149. err = skge_rx_fill(dev);
  2150. if (err)
  2151. goto free_rx_ring;
  2152. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2153. skge->dma + rx_size);
  2154. if (err)
  2155. goto free_rx_ring;
  2156. /* Initialize MAC */
  2157. spin_lock_bh(&hw->phy_lock);
  2158. if (hw->chip_id == CHIP_ID_GENESIS)
  2159. genesis_mac_init(hw, port);
  2160. else
  2161. yukon_mac_init(hw, port);
  2162. spin_unlock_bh(&hw->phy_lock);
  2163. /* Configure RAMbuffers - equally between ports and tx/rx */
  2164. chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
  2165. ram_addr = hw->ram_offset + 2 * chunk * port;
  2166. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2167. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2168. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2169. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2170. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2171. /* Start receiver BMU */
  2172. wmb();
  2173. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2174. skge_led(skge, LED_MODE_ON);
  2175. spin_lock_irq(&hw->hw_lock);
  2176. hw->intr_mask |= portmask[port];
  2177. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2178. spin_unlock_irq(&hw->hw_lock);
  2179. napi_enable(&skge->napi);
  2180. return 0;
  2181. free_rx_ring:
  2182. skge_rx_clean(skge);
  2183. kfree(skge->rx_ring.start);
  2184. free_pci_mem:
  2185. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2186. skge->mem = NULL;
  2187. return err;
  2188. }
  2189. /* stop receiver */
  2190. static void skge_rx_stop(struct skge_hw *hw, int port)
  2191. {
  2192. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2193. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2194. RB_RST_SET|RB_DIS_OP_MD);
  2195. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2196. }
  2197. static int skge_down(struct net_device *dev)
  2198. {
  2199. struct skge_port *skge = netdev_priv(dev);
  2200. struct skge_hw *hw = skge->hw;
  2201. int port = skge->port;
  2202. if (skge->mem == NULL)
  2203. return 0;
  2204. if (netif_msg_ifdown(skge))
  2205. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2206. netif_tx_disable(dev);
  2207. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2208. del_timer_sync(&skge->link_timer);
  2209. napi_disable(&skge->napi);
  2210. netif_carrier_off(dev);
  2211. spin_lock_irq(&hw->hw_lock);
  2212. hw->intr_mask &= ~portmask[port];
  2213. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2214. spin_unlock_irq(&hw->hw_lock);
  2215. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2216. if (hw->chip_id == CHIP_ID_GENESIS)
  2217. genesis_stop(skge);
  2218. else
  2219. yukon_stop(skge);
  2220. /* Stop transmitter */
  2221. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2222. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2223. RB_RST_SET|RB_DIS_OP_MD);
  2224. /* Disable Force Sync bit and Enable Alloc bit */
  2225. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2226. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2227. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2228. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2229. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2230. /* Reset PCI FIFO */
  2231. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2232. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2233. /* Reset the RAM Buffer async Tx queue */
  2234. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2235. skge_rx_stop(hw, port);
  2236. if (hw->chip_id == CHIP_ID_GENESIS) {
  2237. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2238. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2239. } else {
  2240. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2241. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2242. }
  2243. skge_led(skge, LED_MODE_OFF);
  2244. netif_tx_lock_bh(dev);
  2245. skge_tx_clean(dev);
  2246. netif_tx_unlock_bh(dev);
  2247. skge_rx_clean(skge);
  2248. kfree(skge->rx_ring.start);
  2249. kfree(skge->tx_ring.start);
  2250. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2251. skge->mem = NULL;
  2252. return 0;
  2253. }
  2254. static inline int skge_avail(const struct skge_ring *ring)
  2255. {
  2256. smp_mb();
  2257. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2258. + (ring->to_clean - ring->to_use) - 1;
  2259. }
  2260. static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
  2261. struct net_device *dev)
  2262. {
  2263. struct skge_port *skge = netdev_priv(dev);
  2264. struct skge_hw *hw = skge->hw;
  2265. struct skge_element *e;
  2266. struct skge_tx_desc *td;
  2267. int i;
  2268. u32 control, len;
  2269. u64 map;
  2270. if (skb_padto(skb, ETH_ZLEN))
  2271. return NETDEV_TX_OK;
  2272. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2273. return NETDEV_TX_BUSY;
  2274. e = skge->tx_ring.to_use;
  2275. td = e->desc;
  2276. BUG_ON(td->control & BMU_OWN);
  2277. e->skb = skb;
  2278. len = skb_headlen(skb);
  2279. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2280. pci_unmap_addr_set(e, mapaddr, map);
  2281. pci_unmap_len_set(e, maplen, len);
  2282. td->dma_lo = map;
  2283. td->dma_hi = map >> 32;
  2284. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2285. const int offset = skb_transport_offset(skb);
  2286. /* This seems backwards, but it is what the sk98lin
  2287. * does. Looks like hardware is wrong?
  2288. */
  2289. if (ipip_hdr(skb)->protocol == IPPROTO_UDP
  2290. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2291. control = BMU_TCP_CHECK;
  2292. else
  2293. control = BMU_UDP_CHECK;
  2294. td->csum_offs = 0;
  2295. td->csum_start = offset;
  2296. td->csum_write = offset + skb->csum_offset;
  2297. } else
  2298. control = BMU_CHECK;
  2299. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2300. control |= BMU_EOF| BMU_IRQ_EOF;
  2301. else {
  2302. struct skge_tx_desc *tf = td;
  2303. control |= BMU_STFWD;
  2304. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2305. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2306. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2307. frag->size, PCI_DMA_TODEVICE);
  2308. e = e->next;
  2309. e->skb = skb;
  2310. tf = e->desc;
  2311. BUG_ON(tf->control & BMU_OWN);
  2312. tf->dma_lo = map;
  2313. tf->dma_hi = (u64) map >> 32;
  2314. pci_unmap_addr_set(e, mapaddr, map);
  2315. pci_unmap_len_set(e, maplen, frag->size);
  2316. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2317. }
  2318. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2319. }
  2320. /* Make sure all the descriptors written */
  2321. wmb();
  2322. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2323. wmb();
  2324. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2325. if (unlikely(netif_msg_tx_queued(skge)))
  2326. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2327. dev->name, e - skge->tx_ring.start, skb->len);
  2328. skge->tx_ring.to_use = e->next;
  2329. smp_wmb();
  2330. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2331. pr_debug("%s: transmit queue full\n", dev->name);
  2332. netif_stop_queue(dev);
  2333. }
  2334. return NETDEV_TX_OK;
  2335. }
  2336. /* Free resources associated with this reing element */
  2337. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2338. u32 control)
  2339. {
  2340. struct pci_dev *pdev = skge->hw->pdev;
  2341. /* skb header vs. fragment */
  2342. if (control & BMU_STF)
  2343. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2344. pci_unmap_len(e, maplen),
  2345. PCI_DMA_TODEVICE);
  2346. else
  2347. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2348. pci_unmap_len(e, maplen),
  2349. PCI_DMA_TODEVICE);
  2350. if (control & BMU_EOF) {
  2351. if (unlikely(netif_msg_tx_done(skge)))
  2352. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2353. skge->netdev->name, e - skge->tx_ring.start);
  2354. dev_kfree_skb(e->skb);
  2355. }
  2356. }
  2357. /* Free all buffers in transmit ring */
  2358. static void skge_tx_clean(struct net_device *dev)
  2359. {
  2360. struct skge_port *skge = netdev_priv(dev);
  2361. struct skge_element *e;
  2362. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2363. struct skge_tx_desc *td = e->desc;
  2364. skge_tx_free(skge, e, td->control);
  2365. td->control = 0;
  2366. }
  2367. skge->tx_ring.to_clean = e;
  2368. }
  2369. static void skge_tx_timeout(struct net_device *dev)
  2370. {
  2371. struct skge_port *skge = netdev_priv(dev);
  2372. if (netif_msg_timer(skge))
  2373. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2374. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2375. skge_tx_clean(dev);
  2376. netif_wake_queue(dev);
  2377. }
  2378. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2379. {
  2380. int err;
  2381. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2382. return -EINVAL;
  2383. if (!netif_running(dev)) {
  2384. dev->mtu = new_mtu;
  2385. return 0;
  2386. }
  2387. skge_down(dev);
  2388. dev->mtu = new_mtu;
  2389. err = skge_up(dev);
  2390. if (err)
  2391. dev_close(dev);
  2392. return err;
  2393. }
  2394. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2395. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2396. {
  2397. u32 crc, bit;
  2398. crc = ether_crc_le(ETH_ALEN, addr);
  2399. bit = ~crc & 0x3f;
  2400. filter[bit/8] |= 1 << (bit%8);
  2401. }
  2402. static void genesis_set_multicast(struct net_device *dev)
  2403. {
  2404. struct skge_port *skge = netdev_priv(dev);
  2405. struct skge_hw *hw = skge->hw;
  2406. int port = skge->port;
  2407. int i, count = dev->mc_count;
  2408. struct dev_mc_list *list = dev->mc_list;
  2409. u32 mode;
  2410. u8 filter[8];
  2411. mode = xm_read32(hw, port, XM_MODE);
  2412. mode |= XM_MD_ENA_HASH;
  2413. if (dev->flags & IFF_PROMISC)
  2414. mode |= XM_MD_ENA_PROM;
  2415. else
  2416. mode &= ~XM_MD_ENA_PROM;
  2417. if (dev->flags & IFF_ALLMULTI)
  2418. memset(filter, 0xff, sizeof(filter));
  2419. else {
  2420. memset(filter, 0, sizeof(filter));
  2421. if (skge->flow_status == FLOW_STAT_REM_SEND
  2422. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2423. genesis_add_filter(filter, pause_mc_addr);
  2424. for (i = 0; list && i < count; i++, list = list->next)
  2425. genesis_add_filter(filter, list->dmi_addr);
  2426. }
  2427. xm_write32(hw, port, XM_MODE, mode);
  2428. xm_outhash(hw, port, XM_HSM, filter);
  2429. }
  2430. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2431. {
  2432. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2433. filter[bit/8] |= 1 << (bit%8);
  2434. }
  2435. static void yukon_set_multicast(struct net_device *dev)
  2436. {
  2437. struct skge_port *skge = netdev_priv(dev);
  2438. struct skge_hw *hw = skge->hw;
  2439. int port = skge->port;
  2440. struct dev_mc_list *list = dev->mc_list;
  2441. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2442. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2443. u16 reg;
  2444. u8 filter[8];
  2445. memset(filter, 0, sizeof(filter));
  2446. reg = gma_read16(hw, port, GM_RX_CTRL);
  2447. reg |= GM_RXCR_UCF_ENA;
  2448. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2449. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2450. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2451. memset(filter, 0xff, sizeof(filter));
  2452. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2453. reg &= ~GM_RXCR_MCF_ENA;
  2454. else {
  2455. int i;
  2456. reg |= GM_RXCR_MCF_ENA;
  2457. if (rx_pause)
  2458. yukon_add_filter(filter, pause_mc_addr);
  2459. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2460. yukon_add_filter(filter, list->dmi_addr);
  2461. }
  2462. gma_write16(hw, port, GM_MC_ADDR_H1,
  2463. (u16)filter[0] | ((u16)filter[1] << 8));
  2464. gma_write16(hw, port, GM_MC_ADDR_H2,
  2465. (u16)filter[2] | ((u16)filter[3] << 8));
  2466. gma_write16(hw, port, GM_MC_ADDR_H3,
  2467. (u16)filter[4] | ((u16)filter[5] << 8));
  2468. gma_write16(hw, port, GM_MC_ADDR_H4,
  2469. (u16)filter[6] | ((u16)filter[7] << 8));
  2470. gma_write16(hw, port, GM_RX_CTRL, reg);
  2471. }
  2472. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2473. {
  2474. if (hw->chip_id == CHIP_ID_GENESIS)
  2475. return status >> XMR_FS_LEN_SHIFT;
  2476. else
  2477. return status >> GMR_FS_LEN_SHIFT;
  2478. }
  2479. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2480. {
  2481. if (hw->chip_id == CHIP_ID_GENESIS)
  2482. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2483. else
  2484. return (status & GMR_FS_ANY_ERR) ||
  2485. (status & GMR_FS_RX_OK) == 0;
  2486. }
  2487. static void skge_set_multicast(struct net_device *dev)
  2488. {
  2489. struct skge_port *skge = netdev_priv(dev);
  2490. struct skge_hw *hw = skge->hw;
  2491. if (hw->chip_id == CHIP_ID_GENESIS)
  2492. genesis_set_multicast(dev);
  2493. else
  2494. yukon_set_multicast(dev);
  2495. }
  2496. /* Get receive buffer from descriptor.
  2497. * Handles copy of small buffers and reallocation failures
  2498. */
  2499. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2500. struct skge_element *e,
  2501. u32 control, u32 status, u16 csum)
  2502. {
  2503. struct skge_port *skge = netdev_priv(dev);
  2504. struct sk_buff *skb;
  2505. u16 len = control & BMU_BBC;
  2506. if (unlikely(netif_msg_rx_status(skge)))
  2507. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2508. dev->name, e - skge->rx_ring.start,
  2509. status, len);
  2510. if (len > skge->rx_buf_size)
  2511. goto error;
  2512. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2513. goto error;
  2514. if (bad_phy_status(skge->hw, status))
  2515. goto error;
  2516. if (phy_length(skge->hw, status) != len)
  2517. goto error;
  2518. if (len < RX_COPY_THRESHOLD) {
  2519. skb = netdev_alloc_skb(dev, len + 2);
  2520. if (!skb)
  2521. goto resubmit;
  2522. skb_reserve(skb, 2);
  2523. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2524. pci_unmap_addr(e, mapaddr),
  2525. len, PCI_DMA_FROMDEVICE);
  2526. skb_copy_from_linear_data(e->skb, skb->data, len);
  2527. pci_dma_sync_single_for_device(skge->hw->pdev,
  2528. pci_unmap_addr(e, mapaddr),
  2529. len, PCI_DMA_FROMDEVICE);
  2530. skge_rx_reuse(e, skge->rx_buf_size);
  2531. } else {
  2532. struct sk_buff *nskb;
  2533. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2534. if (!nskb)
  2535. goto resubmit;
  2536. skb_reserve(nskb, NET_IP_ALIGN);
  2537. pci_unmap_single(skge->hw->pdev,
  2538. pci_unmap_addr(e, mapaddr),
  2539. pci_unmap_len(e, maplen),
  2540. PCI_DMA_FROMDEVICE);
  2541. skb = e->skb;
  2542. prefetch(skb->data);
  2543. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2544. }
  2545. skb_put(skb, len);
  2546. if (skge->rx_csum) {
  2547. skb->csum = csum;
  2548. skb->ip_summed = CHECKSUM_COMPLETE;
  2549. }
  2550. skb->protocol = eth_type_trans(skb, dev);
  2551. return skb;
  2552. error:
  2553. if (netif_msg_rx_err(skge))
  2554. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2555. dev->name, e - skge->rx_ring.start,
  2556. control, status);
  2557. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2558. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2559. dev->stats.rx_length_errors++;
  2560. if (status & XMR_FS_FRA_ERR)
  2561. dev->stats.rx_frame_errors++;
  2562. if (status & XMR_FS_FCS_ERR)
  2563. dev->stats.rx_crc_errors++;
  2564. } else {
  2565. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2566. dev->stats.rx_length_errors++;
  2567. if (status & GMR_FS_FRAGMENT)
  2568. dev->stats.rx_frame_errors++;
  2569. if (status & GMR_FS_CRC_ERR)
  2570. dev->stats.rx_crc_errors++;
  2571. }
  2572. resubmit:
  2573. skge_rx_reuse(e, skge->rx_buf_size);
  2574. return NULL;
  2575. }
  2576. /* Free all buffers in Tx ring which are no longer owned by device */
  2577. static void skge_tx_done(struct net_device *dev)
  2578. {
  2579. struct skge_port *skge = netdev_priv(dev);
  2580. struct skge_ring *ring = &skge->tx_ring;
  2581. struct skge_element *e;
  2582. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2583. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2584. u32 control = ((const struct skge_tx_desc *) e->desc)->control;
  2585. if (control & BMU_OWN)
  2586. break;
  2587. skge_tx_free(skge, e, control);
  2588. }
  2589. skge->tx_ring.to_clean = e;
  2590. /* Can run lockless until we need to synchronize to restart queue. */
  2591. smp_mb();
  2592. if (unlikely(netif_queue_stopped(dev) &&
  2593. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2594. netif_tx_lock(dev);
  2595. if (unlikely(netif_queue_stopped(dev) &&
  2596. skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
  2597. netif_wake_queue(dev);
  2598. }
  2599. netif_tx_unlock(dev);
  2600. }
  2601. }
  2602. static int skge_poll(struct napi_struct *napi, int to_do)
  2603. {
  2604. struct skge_port *skge = container_of(napi, struct skge_port, napi);
  2605. struct net_device *dev = skge->netdev;
  2606. struct skge_hw *hw = skge->hw;
  2607. struct skge_ring *ring = &skge->rx_ring;
  2608. struct skge_element *e;
  2609. int work_done = 0;
  2610. skge_tx_done(dev);
  2611. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2612. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2613. struct skge_rx_desc *rd = e->desc;
  2614. struct sk_buff *skb;
  2615. u32 control;
  2616. rmb();
  2617. control = rd->control;
  2618. if (control & BMU_OWN)
  2619. break;
  2620. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2621. if (likely(skb)) {
  2622. netif_receive_skb(skb);
  2623. ++work_done;
  2624. }
  2625. }
  2626. ring->to_clean = e;
  2627. /* restart receiver */
  2628. wmb();
  2629. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2630. if (work_done < to_do) {
  2631. unsigned long flags;
  2632. spin_lock_irqsave(&hw->hw_lock, flags);
  2633. __napi_complete(napi);
  2634. hw->intr_mask |= napimask[skge->port];
  2635. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2636. skge_read32(hw, B0_IMSK);
  2637. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2638. }
  2639. return work_done;
  2640. }
  2641. /* Parity errors seem to happen when Genesis is connected to a switch
  2642. * with no other ports present. Heartbeat error??
  2643. */
  2644. static void skge_mac_parity(struct skge_hw *hw, int port)
  2645. {
  2646. struct net_device *dev = hw->dev[port];
  2647. ++dev->stats.tx_heartbeat_errors;
  2648. if (hw->chip_id == CHIP_ID_GENESIS)
  2649. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2650. MFF_CLR_PERR);
  2651. else
  2652. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2653. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2654. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2655. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2656. }
  2657. static void skge_mac_intr(struct skge_hw *hw, int port)
  2658. {
  2659. if (hw->chip_id == CHIP_ID_GENESIS)
  2660. genesis_mac_intr(hw, port);
  2661. else
  2662. yukon_mac_intr(hw, port);
  2663. }
  2664. /* Handle device specific framing and timeout interrupts */
  2665. static void skge_error_irq(struct skge_hw *hw)
  2666. {
  2667. struct pci_dev *pdev = hw->pdev;
  2668. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2669. if (hw->chip_id == CHIP_ID_GENESIS) {
  2670. /* clear xmac errors */
  2671. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2672. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2673. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2674. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2675. } else {
  2676. /* Timestamp (unused) overflow */
  2677. if (hwstatus & IS_IRQ_TIST_OV)
  2678. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2679. }
  2680. if (hwstatus & IS_RAM_RD_PAR) {
  2681. dev_err(&pdev->dev, "Ram read data parity error\n");
  2682. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2683. }
  2684. if (hwstatus & IS_RAM_WR_PAR) {
  2685. dev_err(&pdev->dev, "Ram write data parity error\n");
  2686. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2687. }
  2688. if (hwstatus & IS_M1_PAR_ERR)
  2689. skge_mac_parity(hw, 0);
  2690. if (hwstatus & IS_M2_PAR_ERR)
  2691. skge_mac_parity(hw, 1);
  2692. if (hwstatus & IS_R1_PAR_ERR) {
  2693. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2694. hw->dev[0]->name);
  2695. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2696. }
  2697. if (hwstatus & IS_R2_PAR_ERR) {
  2698. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2699. hw->dev[1]->name);
  2700. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2701. }
  2702. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2703. u16 pci_status, pci_cmd;
  2704. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2705. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2706. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2707. pci_cmd, pci_status);
  2708. /* Write the error bits back to clear them. */
  2709. pci_status &= PCI_STATUS_ERROR_BITS;
  2710. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2711. pci_write_config_word(pdev, PCI_COMMAND,
  2712. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2713. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2714. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2715. /* if error still set then just ignore it */
  2716. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2717. if (hwstatus & IS_IRQ_STAT) {
  2718. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2719. hw->intr_mask &= ~IS_HW_ERR;
  2720. }
  2721. }
  2722. }
  2723. /*
  2724. * Interrupt from PHY are handled in tasklet (softirq)
  2725. * because accessing phy registers requires spin wait which might
  2726. * cause excess interrupt latency.
  2727. */
  2728. static void skge_extirq(unsigned long arg)
  2729. {
  2730. struct skge_hw *hw = (struct skge_hw *) arg;
  2731. int port;
  2732. for (port = 0; port < hw->ports; port++) {
  2733. struct net_device *dev = hw->dev[port];
  2734. if (netif_running(dev)) {
  2735. struct skge_port *skge = netdev_priv(dev);
  2736. spin_lock(&hw->phy_lock);
  2737. if (hw->chip_id != CHIP_ID_GENESIS)
  2738. yukon_phy_intr(skge);
  2739. else if (hw->phy_type == SK_PHY_BCOM)
  2740. bcom_phy_intr(skge);
  2741. spin_unlock(&hw->phy_lock);
  2742. }
  2743. }
  2744. spin_lock_irq(&hw->hw_lock);
  2745. hw->intr_mask |= IS_EXT_REG;
  2746. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2747. skge_read32(hw, B0_IMSK);
  2748. spin_unlock_irq(&hw->hw_lock);
  2749. }
  2750. static irqreturn_t skge_intr(int irq, void *dev_id)
  2751. {
  2752. struct skge_hw *hw = dev_id;
  2753. u32 status;
  2754. int handled = 0;
  2755. spin_lock(&hw->hw_lock);
  2756. /* Reading this register masks IRQ */
  2757. status = skge_read32(hw, B0_SP_ISRC);
  2758. if (status == 0 || status == ~0)
  2759. goto out;
  2760. handled = 1;
  2761. status &= hw->intr_mask;
  2762. if (status & IS_EXT_REG) {
  2763. hw->intr_mask &= ~IS_EXT_REG;
  2764. tasklet_schedule(&hw->phy_task);
  2765. }
  2766. if (status & (IS_XA1_F|IS_R1_F)) {
  2767. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2768. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2769. napi_schedule(&skge->napi);
  2770. }
  2771. if (status & IS_PA_TO_TX1)
  2772. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2773. if (status & IS_PA_TO_RX1) {
  2774. ++hw->dev[0]->stats.rx_over_errors;
  2775. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2776. }
  2777. if (status & IS_MAC1)
  2778. skge_mac_intr(hw, 0);
  2779. if (hw->dev[1]) {
  2780. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2781. if (status & (IS_XA2_F|IS_R2_F)) {
  2782. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2783. napi_schedule(&skge->napi);
  2784. }
  2785. if (status & IS_PA_TO_RX2) {
  2786. ++hw->dev[1]->stats.rx_over_errors;
  2787. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2788. }
  2789. if (status & IS_PA_TO_TX2)
  2790. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2791. if (status & IS_MAC2)
  2792. skge_mac_intr(hw, 1);
  2793. }
  2794. if (status & IS_HW_ERR)
  2795. skge_error_irq(hw);
  2796. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2797. skge_read32(hw, B0_IMSK);
  2798. out:
  2799. spin_unlock(&hw->hw_lock);
  2800. return IRQ_RETVAL(handled);
  2801. }
  2802. #ifdef CONFIG_NET_POLL_CONTROLLER
  2803. static void skge_netpoll(struct net_device *dev)
  2804. {
  2805. struct skge_port *skge = netdev_priv(dev);
  2806. disable_irq(dev->irq);
  2807. skge_intr(dev->irq, skge->hw);
  2808. enable_irq(dev->irq);
  2809. }
  2810. #endif
  2811. static int skge_set_mac_address(struct net_device *dev, void *p)
  2812. {
  2813. struct skge_port *skge = netdev_priv(dev);
  2814. struct skge_hw *hw = skge->hw;
  2815. unsigned port = skge->port;
  2816. const struct sockaddr *addr = p;
  2817. u16 ctrl;
  2818. if (!is_valid_ether_addr(addr->sa_data))
  2819. return -EADDRNOTAVAIL;
  2820. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2821. if (!netif_running(dev)) {
  2822. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2823. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2824. } else {
  2825. /* disable Rx */
  2826. spin_lock_bh(&hw->phy_lock);
  2827. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2828. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2829. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2830. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2831. if (hw->chip_id == CHIP_ID_GENESIS)
  2832. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2833. else {
  2834. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2835. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2836. }
  2837. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2838. spin_unlock_bh(&hw->phy_lock);
  2839. }
  2840. return 0;
  2841. }
  2842. static const struct {
  2843. u8 id;
  2844. const char *name;
  2845. } skge_chips[] = {
  2846. { CHIP_ID_GENESIS, "Genesis" },
  2847. { CHIP_ID_YUKON, "Yukon" },
  2848. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2849. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2850. };
  2851. static const char *skge_board_name(const struct skge_hw *hw)
  2852. {
  2853. int i;
  2854. static char buf[16];
  2855. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2856. if (skge_chips[i].id == hw->chip_id)
  2857. return skge_chips[i].name;
  2858. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2859. return buf;
  2860. }
  2861. /*
  2862. * Setup the board data structure, but don't bring up
  2863. * the port(s)
  2864. */
  2865. static int skge_reset(struct skge_hw *hw)
  2866. {
  2867. u32 reg;
  2868. u16 ctst, pci_status;
  2869. u8 t8, mac_cfg, pmd_type;
  2870. int i;
  2871. ctst = skge_read16(hw, B0_CTST);
  2872. /* do a SW reset */
  2873. skge_write8(hw, B0_CTST, CS_RST_SET);
  2874. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2875. /* clear PCI errors, if any */
  2876. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2877. skge_write8(hw, B2_TST_CTRL2, 0);
  2878. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2879. pci_write_config_word(hw->pdev, PCI_STATUS,
  2880. pci_status | PCI_STATUS_ERROR_BITS);
  2881. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2882. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2883. /* restore CLK_RUN bits (for Yukon-Lite) */
  2884. skge_write16(hw, B0_CTST,
  2885. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2886. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2887. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2888. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2889. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2890. switch (hw->chip_id) {
  2891. case CHIP_ID_GENESIS:
  2892. switch (hw->phy_type) {
  2893. case SK_PHY_XMAC:
  2894. hw->phy_addr = PHY_ADDR_XMAC;
  2895. break;
  2896. case SK_PHY_BCOM:
  2897. hw->phy_addr = PHY_ADDR_BCOM;
  2898. break;
  2899. default:
  2900. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2901. hw->phy_type);
  2902. return -EOPNOTSUPP;
  2903. }
  2904. break;
  2905. case CHIP_ID_YUKON:
  2906. case CHIP_ID_YUKON_LITE:
  2907. case CHIP_ID_YUKON_LP:
  2908. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2909. hw->copper = 1;
  2910. hw->phy_addr = PHY_ADDR_MARV;
  2911. break;
  2912. default:
  2913. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2914. hw->chip_id);
  2915. return -EOPNOTSUPP;
  2916. }
  2917. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2918. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2919. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2920. /* read the adapters RAM size */
  2921. t8 = skge_read8(hw, B2_E_0);
  2922. if (hw->chip_id == CHIP_ID_GENESIS) {
  2923. if (t8 == 3) {
  2924. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2925. hw->ram_size = 0x100000;
  2926. hw->ram_offset = 0x80000;
  2927. } else
  2928. hw->ram_size = t8 * 512;
  2929. }
  2930. else if (t8 == 0)
  2931. hw->ram_size = 0x20000;
  2932. else
  2933. hw->ram_size = t8 * 4096;
  2934. hw->intr_mask = IS_HW_ERR;
  2935. /* Use PHY IRQ for all but fiber based Genesis board */
  2936. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2937. hw->intr_mask |= IS_EXT_REG;
  2938. if (hw->chip_id == CHIP_ID_GENESIS)
  2939. genesis_init(hw);
  2940. else {
  2941. /* switch power to VCC (WA for VAUX problem) */
  2942. skge_write8(hw, B0_POWER_CTRL,
  2943. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2944. /* avoid boards with stuck Hardware error bits */
  2945. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2946. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2947. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2948. hw->intr_mask &= ~IS_HW_ERR;
  2949. }
  2950. /* Clear PHY COMA */
  2951. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2952. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2953. reg &= ~PCI_PHY_COMA;
  2954. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2955. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2956. for (i = 0; i < hw->ports; i++) {
  2957. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2958. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2959. }
  2960. }
  2961. /* turn off hardware timer (unused) */
  2962. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2963. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2964. skge_write8(hw, B0_LED, LED_STAT_ON);
  2965. /* enable the Tx Arbiters */
  2966. for (i = 0; i < hw->ports; i++)
  2967. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2968. /* Initialize ram interface */
  2969. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2970. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2971. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2972. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2973. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2974. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2975. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2976. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2977. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2978. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2979. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2980. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2981. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2982. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2983. /* Set interrupt moderation for Transmit only
  2984. * Receive interrupts avoided by NAPI
  2985. */
  2986. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2987. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2988. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2989. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2990. for (i = 0; i < hw->ports; i++) {
  2991. if (hw->chip_id == CHIP_ID_GENESIS)
  2992. genesis_reset(hw, i);
  2993. else
  2994. yukon_reset(hw, i);
  2995. }
  2996. return 0;
  2997. }
  2998. #ifdef CONFIG_SKGE_DEBUG
  2999. static struct dentry *skge_debug;
  3000. static int skge_debug_show(struct seq_file *seq, void *v)
  3001. {
  3002. struct net_device *dev = seq->private;
  3003. const struct skge_port *skge = netdev_priv(dev);
  3004. const struct skge_hw *hw = skge->hw;
  3005. const struct skge_element *e;
  3006. if (!netif_running(dev))
  3007. return -ENETDOWN;
  3008. seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
  3009. skge_read32(hw, B0_IMSK));
  3010. seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
  3011. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  3012. const struct skge_tx_desc *t = e->desc;
  3013. seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
  3014. t->control, t->dma_hi, t->dma_lo, t->status,
  3015. t->csum_offs, t->csum_write, t->csum_start);
  3016. }
  3017. seq_printf(seq, "\nRx Ring: \n");
  3018. for (e = skge->rx_ring.to_clean; ; e = e->next) {
  3019. const struct skge_rx_desc *r = e->desc;
  3020. if (r->control & BMU_OWN)
  3021. break;
  3022. seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
  3023. r->control, r->dma_hi, r->dma_lo, r->status,
  3024. r->timestamp, r->csum1, r->csum1_start);
  3025. }
  3026. return 0;
  3027. }
  3028. static int skge_debug_open(struct inode *inode, struct file *file)
  3029. {
  3030. return single_open(file, skge_debug_show, inode->i_private);
  3031. }
  3032. static const struct file_operations skge_debug_fops = {
  3033. .owner = THIS_MODULE,
  3034. .open = skge_debug_open,
  3035. .read = seq_read,
  3036. .llseek = seq_lseek,
  3037. .release = single_release,
  3038. };
  3039. /*
  3040. * Use network device events to create/remove/rename
  3041. * debugfs file entries
  3042. */
  3043. static int skge_device_event(struct notifier_block *unused,
  3044. unsigned long event, void *ptr)
  3045. {
  3046. struct net_device *dev = ptr;
  3047. struct skge_port *skge;
  3048. struct dentry *d;
  3049. if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
  3050. goto done;
  3051. skge = netdev_priv(dev);
  3052. switch(event) {
  3053. case NETDEV_CHANGENAME:
  3054. if (skge->debugfs) {
  3055. d = debugfs_rename(skge_debug, skge->debugfs,
  3056. skge_debug, dev->name);
  3057. if (d)
  3058. skge->debugfs = d;
  3059. else {
  3060. pr_info(PFX "%s: rename failed\n", dev->name);
  3061. debugfs_remove(skge->debugfs);
  3062. }
  3063. }
  3064. break;
  3065. case NETDEV_GOING_DOWN:
  3066. if (skge->debugfs) {
  3067. debugfs_remove(skge->debugfs);
  3068. skge->debugfs = NULL;
  3069. }
  3070. break;
  3071. case NETDEV_UP:
  3072. d = debugfs_create_file(dev->name, S_IRUGO,
  3073. skge_debug, dev,
  3074. &skge_debug_fops);
  3075. if (!d || IS_ERR(d))
  3076. pr_info(PFX "%s: debugfs create failed\n",
  3077. dev->name);
  3078. else
  3079. skge->debugfs = d;
  3080. break;
  3081. }
  3082. done:
  3083. return NOTIFY_DONE;
  3084. }
  3085. static struct notifier_block skge_notifier = {
  3086. .notifier_call = skge_device_event,
  3087. };
  3088. static __init void skge_debug_init(void)
  3089. {
  3090. struct dentry *ent;
  3091. ent = debugfs_create_dir("skge", NULL);
  3092. if (!ent || IS_ERR(ent)) {
  3093. pr_info(PFX "debugfs create directory failed\n");
  3094. return;
  3095. }
  3096. skge_debug = ent;
  3097. register_netdevice_notifier(&skge_notifier);
  3098. }
  3099. static __exit void skge_debug_cleanup(void)
  3100. {
  3101. if (skge_debug) {
  3102. unregister_netdevice_notifier(&skge_notifier);
  3103. debugfs_remove(skge_debug);
  3104. skge_debug = NULL;
  3105. }
  3106. }
  3107. #else
  3108. #define skge_debug_init()
  3109. #define skge_debug_cleanup()
  3110. #endif
  3111. static const struct net_device_ops skge_netdev_ops = {
  3112. .ndo_open = skge_up,
  3113. .ndo_stop = skge_down,
  3114. .ndo_start_xmit = skge_xmit_frame,
  3115. .ndo_do_ioctl = skge_ioctl,
  3116. .ndo_get_stats = skge_get_stats,
  3117. .ndo_tx_timeout = skge_tx_timeout,
  3118. .ndo_change_mtu = skge_change_mtu,
  3119. .ndo_validate_addr = eth_validate_addr,
  3120. .ndo_set_multicast_list = skge_set_multicast,
  3121. .ndo_set_mac_address = skge_set_mac_address,
  3122. #ifdef CONFIG_NET_POLL_CONTROLLER
  3123. .ndo_poll_controller = skge_netpoll,
  3124. #endif
  3125. };
  3126. /* Initialize network device */
  3127. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  3128. int highmem)
  3129. {
  3130. struct skge_port *skge;
  3131. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  3132. if (!dev) {
  3133. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  3134. return NULL;
  3135. }
  3136. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  3137. dev->netdev_ops = &skge_netdev_ops;
  3138. dev->ethtool_ops = &skge_ethtool_ops;
  3139. dev->watchdog_timeo = TX_WATCHDOG;
  3140. dev->irq = hw->pdev->irq;
  3141. if (highmem)
  3142. dev->features |= NETIF_F_HIGHDMA;
  3143. skge = netdev_priv(dev);
  3144. netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
  3145. skge->netdev = dev;
  3146. skge->hw = hw;
  3147. skge->msg_enable = netif_msg_init(debug, default_msg);
  3148. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  3149. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  3150. /* Auto speed and flow control */
  3151. skge->autoneg = AUTONEG_ENABLE;
  3152. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  3153. skge->duplex = -1;
  3154. skge->speed = -1;
  3155. skge->advertising = skge_supported_modes(hw);
  3156. if (device_can_wakeup(&hw->pdev->dev)) {
  3157. skge->wol = wol_supported(hw) & WAKE_MAGIC;
  3158. device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
  3159. }
  3160. hw->dev[port] = dev;
  3161. skge->port = port;
  3162. /* Only used for Genesis XMAC */
  3163. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  3164. if (hw->chip_id != CHIP_ID_GENESIS) {
  3165. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3166. skge->rx_csum = 1;
  3167. }
  3168. /* read the mac address */
  3169. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  3170. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3171. /* device is off until link detection */
  3172. netif_carrier_off(dev);
  3173. netif_stop_queue(dev);
  3174. return dev;
  3175. }
  3176. static void __devinit skge_show_addr(struct net_device *dev)
  3177. {
  3178. const struct skge_port *skge = netdev_priv(dev);
  3179. if (netif_msg_probe(skge))
  3180. printk(KERN_INFO PFX "%s: addr %pM\n",
  3181. dev->name, dev->dev_addr);
  3182. }
  3183. static int __devinit skge_probe(struct pci_dev *pdev,
  3184. const struct pci_device_id *ent)
  3185. {
  3186. struct net_device *dev, *dev1;
  3187. struct skge_hw *hw;
  3188. int err, using_dac = 0;
  3189. err = pci_enable_device(pdev);
  3190. if (err) {
  3191. dev_err(&pdev->dev, "cannot enable PCI device\n");
  3192. goto err_out;
  3193. }
  3194. err = pci_request_regions(pdev, DRV_NAME);
  3195. if (err) {
  3196. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  3197. goto err_out_disable_pdev;
  3198. }
  3199. pci_set_master(pdev);
  3200. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3201. using_dac = 1;
  3202. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3203. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3204. using_dac = 0;
  3205. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3206. }
  3207. if (err) {
  3208. dev_err(&pdev->dev, "no usable DMA configuration\n");
  3209. goto err_out_free_regions;
  3210. }
  3211. #ifdef __BIG_ENDIAN
  3212. /* byte swap descriptors in hardware */
  3213. {
  3214. u32 reg;
  3215. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  3216. reg |= PCI_REV_DESC;
  3217. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  3218. }
  3219. #endif
  3220. err = -ENOMEM;
  3221. /* space for skge@pci:0000:04:00.0 */
  3222. hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:" )
  3223. + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
  3224. if (!hw) {
  3225. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  3226. goto err_out_free_regions;
  3227. }
  3228. sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
  3229. hw->pdev = pdev;
  3230. spin_lock_init(&hw->hw_lock);
  3231. spin_lock_init(&hw->phy_lock);
  3232. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  3233. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  3234. if (!hw->regs) {
  3235. dev_err(&pdev->dev, "cannot map device registers\n");
  3236. goto err_out_free_hw;
  3237. }
  3238. err = skge_reset(hw);
  3239. if (err)
  3240. goto err_out_iounmap;
  3241. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3242. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3243. skge_board_name(hw), hw->chip_rev);
  3244. dev = skge_devinit(hw, 0, using_dac);
  3245. if (!dev)
  3246. goto err_out_led_off;
  3247. /* Some motherboards are broken and has zero in ROM. */
  3248. if (!is_valid_ether_addr(dev->dev_addr))
  3249. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3250. err = register_netdev(dev);
  3251. if (err) {
  3252. dev_err(&pdev->dev, "cannot register net device\n");
  3253. goto err_out_free_netdev;
  3254. }
  3255. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
  3256. if (err) {
  3257. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3258. dev->name, pdev->irq);
  3259. goto err_out_unregister;
  3260. }
  3261. skge_show_addr(dev);
  3262. if (hw->ports > 1) {
  3263. dev1 = skge_devinit(hw, 1, using_dac);
  3264. if (dev1 && register_netdev(dev1) == 0)
  3265. skge_show_addr(dev1);
  3266. else {
  3267. /* Failure to register second port need not be fatal */
  3268. dev_warn(&pdev->dev, "register of second port failed\n");
  3269. hw->dev[1] = NULL;
  3270. hw->ports = 1;
  3271. if (dev1)
  3272. free_netdev(dev1);
  3273. }
  3274. }
  3275. pci_set_drvdata(pdev, hw);
  3276. return 0;
  3277. err_out_unregister:
  3278. unregister_netdev(dev);
  3279. err_out_free_netdev:
  3280. free_netdev(dev);
  3281. err_out_led_off:
  3282. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3283. err_out_iounmap:
  3284. iounmap(hw->regs);
  3285. err_out_free_hw:
  3286. kfree(hw);
  3287. err_out_free_regions:
  3288. pci_release_regions(pdev);
  3289. err_out_disable_pdev:
  3290. pci_disable_device(pdev);
  3291. pci_set_drvdata(pdev, NULL);
  3292. err_out:
  3293. return err;
  3294. }
  3295. static void __devexit skge_remove(struct pci_dev *pdev)
  3296. {
  3297. struct skge_hw *hw = pci_get_drvdata(pdev);
  3298. struct net_device *dev0, *dev1;
  3299. if (!hw)
  3300. return;
  3301. flush_scheduled_work();
  3302. if ((dev1 = hw->dev[1]))
  3303. unregister_netdev(dev1);
  3304. dev0 = hw->dev[0];
  3305. unregister_netdev(dev0);
  3306. tasklet_disable(&hw->phy_task);
  3307. spin_lock_irq(&hw->hw_lock);
  3308. hw->intr_mask = 0;
  3309. skge_write32(hw, B0_IMSK, 0);
  3310. skge_read32(hw, B0_IMSK);
  3311. spin_unlock_irq(&hw->hw_lock);
  3312. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3313. skge_write8(hw, B0_CTST, CS_RST_SET);
  3314. free_irq(pdev->irq, hw);
  3315. pci_release_regions(pdev);
  3316. pci_disable_device(pdev);
  3317. if (dev1)
  3318. free_netdev(dev1);
  3319. free_netdev(dev0);
  3320. iounmap(hw->regs);
  3321. kfree(hw);
  3322. pci_set_drvdata(pdev, NULL);
  3323. }
  3324. #ifdef CONFIG_PM
  3325. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3326. {
  3327. struct skge_hw *hw = pci_get_drvdata(pdev);
  3328. int i, err, wol = 0;
  3329. if (!hw)
  3330. return 0;
  3331. err = pci_save_state(pdev);
  3332. if (err)
  3333. return err;
  3334. for (i = 0; i < hw->ports; i++) {
  3335. struct net_device *dev = hw->dev[i];
  3336. struct skge_port *skge = netdev_priv(dev);
  3337. if (netif_running(dev))
  3338. skge_down(dev);
  3339. if (skge->wol)
  3340. skge_wol_init(skge);
  3341. wol |= skge->wol;
  3342. }
  3343. skge_write32(hw, B0_IMSK, 0);
  3344. pci_prepare_to_sleep(pdev);
  3345. return 0;
  3346. }
  3347. static int skge_resume(struct pci_dev *pdev)
  3348. {
  3349. struct skge_hw *hw = pci_get_drvdata(pdev);
  3350. int i, err;
  3351. if (!hw)
  3352. return 0;
  3353. err = pci_back_from_sleep(pdev);
  3354. if (err)
  3355. goto out;
  3356. err = pci_restore_state(pdev);
  3357. if (err)
  3358. goto out;
  3359. err = skge_reset(hw);
  3360. if (err)
  3361. goto out;
  3362. for (i = 0; i < hw->ports; i++) {
  3363. struct net_device *dev = hw->dev[i];
  3364. if (netif_running(dev)) {
  3365. err = skge_up(dev);
  3366. if (err) {
  3367. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3368. dev->name, err);
  3369. dev_close(dev);
  3370. goto out;
  3371. }
  3372. }
  3373. }
  3374. out:
  3375. return err;
  3376. }
  3377. #endif
  3378. static void skge_shutdown(struct pci_dev *pdev)
  3379. {
  3380. struct skge_hw *hw = pci_get_drvdata(pdev);
  3381. int i, wol = 0;
  3382. if (!hw)
  3383. return;
  3384. for (i = 0; i < hw->ports; i++) {
  3385. struct net_device *dev = hw->dev[i];
  3386. struct skge_port *skge = netdev_priv(dev);
  3387. if (skge->wol)
  3388. skge_wol_init(skge);
  3389. wol |= skge->wol;
  3390. }
  3391. if (pci_enable_wake(pdev, PCI_D3cold, wol))
  3392. pci_enable_wake(pdev, PCI_D3hot, wol);
  3393. pci_disable_device(pdev);
  3394. pci_set_power_state(pdev, PCI_D3hot);
  3395. }
  3396. static struct pci_driver skge_driver = {
  3397. .name = DRV_NAME,
  3398. .id_table = skge_id_table,
  3399. .probe = skge_probe,
  3400. .remove = __devexit_p(skge_remove),
  3401. #ifdef CONFIG_PM
  3402. .suspend = skge_suspend,
  3403. .resume = skge_resume,
  3404. #endif
  3405. .shutdown = skge_shutdown,
  3406. };
  3407. static int __init skge_init_module(void)
  3408. {
  3409. skge_debug_init();
  3410. return pci_register_driver(&skge_driver);
  3411. }
  3412. static void __exit skge_cleanup_module(void)
  3413. {
  3414. pci_unregister_driver(&skge_driver);
  3415. skge_debug_cleanup();
  3416. }
  3417. module_init(skge_init_module);
  3418. module_exit(skge_cleanup_module);