sh_eth.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include <asm/cacheflush.h>
  33. #include "sh_eth.h"
  34. /* There is CPU dependent code */
  35. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  36. #define SH_ETH_RESET_DEFAULT 1
  37. static void sh_eth_set_duplex(struct net_device *ndev)
  38. {
  39. struct sh_eth_private *mdp = netdev_priv(ndev);
  40. u32 ioaddr = ndev->base_addr;
  41. if (mdp->duplex) /* Full */
  42. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  43. else /* Half */
  44. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  45. }
  46. static void sh_eth_set_rate(struct net_device *ndev)
  47. {
  48. struct sh_eth_private *mdp = netdev_priv(ndev);
  49. u32 ioaddr = ndev->base_addr;
  50. switch (mdp->speed) {
  51. case 10: /* 10BASE */
  52. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_RTM, ioaddr + ECMR);
  53. break;
  54. case 100:/* 100BASE */
  55. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_RTM, ioaddr + ECMR);
  56. break;
  57. default:
  58. break;
  59. }
  60. }
  61. /* SH7724 */
  62. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  63. .set_duplex = sh_eth_set_duplex,
  64. .set_rate = sh_eth_set_rate,
  65. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  66. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  67. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  68. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  69. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  70. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  71. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  72. .apr = 1,
  73. .mpr = 1,
  74. .tpauser = 1,
  75. .hw_swap = 1,
  76. };
  77. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  78. #define SH_ETH_HAS_TSU 1
  79. static void sh_eth_chip_reset(struct net_device *ndev)
  80. {
  81. /* reset device */
  82. ctrl_outl(ARSTR_ARSTR, ARSTR);
  83. mdelay(1);
  84. }
  85. static void sh_eth_reset(struct net_device *ndev)
  86. {
  87. u32 ioaddr = ndev->base_addr;
  88. int cnt = 100;
  89. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  90. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  91. while (cnt > 0) {
  92. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  93. break;
  94. mdelay(1);
  95. cnt--;
  96. }
  97. if (cnt < 0)
  98. printk(KERN_ERR "Device reset fail\n");
  99. /* Table Init */
  100. ctrl_outl(0x0, ioaddr + TDLAR);
  101. ctrl_outl(0x0, ioaddr + TDFAR);
  102. ctrl_outl(0x0, ioaddr + TDFXR);
  103. ctrl_outl(0x0, ioaddr + TDFFR);
  104. ctrl_outl(0x0, ioaddr + RDLAR);
  105. ctrl_outl(0x0, ioaddr + RDFAR);
  106. ctrl_outl(0x0, ioaddr + RDFXR);
  107. ctrl_outl(0x0, ioaddr + RDFFR);
  108. }
  109. static void sh_eth_set_duplex(struct net_device *ndev)
  110. {
  111. struct sh_eth_private *mdp = netdev_priv(ndev);
  112. u32 ioaddr = ndev->base_addr;
  113. if (mdp->duplex) /* Full */
  114. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  115. else /* Half */
  116. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  117. }
  118. static void sh_eth_set_rate(struct net_device *ndev)
  119. {
  120. struct sh_eth_private *mdp = netdev_priv(ndev);
  121. u32 ioaddr = ndev->base_addr;
  122. switch (mdp->speed) {
  123. case 10: /* 10BASE */
  124. ctrl_outl(GECMR_10, ioaddr + GECMR);
  125. break;
  126. case 100:/* 100BASE */
  127. ctrl_outl(GECMR_100, ioaddr + GECMR);
  128. break;
  129. case 1000: /* 1000BASE */
  130. ctrl_outl(GECMR_1000, ioaddr + GECMR);
  131. break;
  132. default:
  133. break;
  134. }
  135. }
  136. /* sh7763 */
  137. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  138. .chip_reset = sh_eth_chip_reset,
  139. .set_duplex = sh_eth_set_duplex,
  140. .set_rate = sh_eth_set_rate,
  141. .ecsr_value = ECSR_ICD | ECSR_MPD,
  142. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  143. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  144. .tx_check = EESR_TC1 | EESR_FTC,
  145. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  146. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  147. EESR_ECI,
  148. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  149. EESR_TFE,
  150. .apr = 1,
  151. .mpr = 1,
  152. .tpauser = 1,
  153. .bculr = 1,
  154. .hw_swap = 1,
  155. .rpadir = 1,
  156. .no_trimd = 1,
  157. .no_ade = 1,
  158. };
  159. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  160. #define SH_ETH_RESET_DEFAULT 1
  161. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  162. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  163. .apr = 1,
  164. .mpr = 1,
  165. .tpauser = 1,
  166. .hw_swap = 1,
  167. };
  168. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  169. #define SH_ETH_RESET_DEFAULT 1
  170. #define SH_ETH_HAS_TSU 1
  171. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  172. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  173. };
  174. #endif
  175. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  176. {
  177. if (!cd->ecsr_value)
  178. cd->ecsr_value = DEFAULT_ECSR_INIT;
  179. if (!cd->ecsipr_value)
  180. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  181. if (!cd->fcftr_value)
  182. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  183. DEFAULT_FIFO_F_D_RFD;
  184. if (!cd->fdr_value)
  185. cd->fdr_value = DEFAULT_FDR_INIT;
  186. if (!cd->rmcr_value)
  187. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  188. if (!cd->tx_check)
  189. cd->tx_check = DEFAULT_TX_CHECK;
  190. if (!cd->eesr_err_check)
  191. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  192. if (!cd->tx_error_check)
  193. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  194. }
  195. #if defined(SH_ETH_RESET_DEFAULT)
  196. /* Chip Reset */
  197. static void sh_eth_reset(struct net_device *ndev)
  198. {
  199. u32 ioaddr = ndev->base_addr;
  200. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  201. mdelay(3);
  202. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  203. }
  204. #endif
  205. #if defined(CONFIG_CPU_SH4)
  206. static void sh_eth_set_receive_align(struct sk_buff *skb)
  207. {
  208. int reserve;
  209. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  210. if (reserve)
  211. skb_reserve(skb, reserve);
  212. }
  213. #else
  214. static void sh_eth_set_receive_align(struct sk_buff *skb)
  215. {
  216. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  217. }
  218. #endif
  219. /* CPU <-> EDMAC endian convert */
  220. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  221. {
  222. switch (mdp->edmac_endian) {
  223. case EDMAC_LITTLE_ENDIAN:
  224. return cpu_to_le32(x);
  225. case EDMAC_BIG_ENDIAN:
  226. return cpu_to_be32(x);
  227. }
  228. return x;
  229. }
  230. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  231. {
  232. switch (mdp->edmac_endian) {
  233. case EDMAC_LITTLE_ENDIAN:
  234. return le32_to_cpu(x);
  235. case EDMAC_BIG_ENDIAN:
  236. return be32_to_cpu(x);
  237. }
  238. return x;
  239. }
  240. /*
  241. * Program the hardware MAC address from dev->dev_addr.
  242. */
  243. static void update_mac_address(struct net_device *ndev)
  244. {
  245. u32 ioaddr = ndev->base_addr;
  246. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  247. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  248. ioaddr + MAHR);
  249. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  250. ioaddr + MALR);
  251. }
  252. /*
  253. * Get MAC address from SuperH MAC address register
  254. *
  255. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  256. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  257. * When you want use this device, you must set MAC address in bootloader.
  258. *
  259. */
  260. static void read_mac_address(struct net_device *ndev)
  261. {
  262. u32 ioaddr = ndev->base_addr;
  263. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  264. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  265. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  266. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  267. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  268. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  269. }
  270. struct bb_info {
  271. struct mdiobb_ctrl ctrl;
  272. u32 addr;
  273. u32 mmd_msk;/* MMD */
  274. u32 mdo_msk;
  275. u32 mdi_msk;
  276. u32 mdc_msk;
  277. };
  278. /* PHY bit set */
  279. static void bb_set(u32 addr, u32 msk)
  280. {
  281. ctrl_outl(ctrl_inl(addr) | msk, addr);
  282. }
  283. /* PHY bit clear */
  284. static void bb_clr(u32 addr, u32 msk)
  285. {
  286. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  287. }
  288. /* PHY bit read */
  289. static int bb_read(u32 addr, u32 msk)
  290. {
  291. return (ctrl_inl(addr) & msk) != 0;
  292. }
  293. /* Data I/O pin control */
  294. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  295. {
  296. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  297. if (bit)
  298. bb_set(bitbang->addr, bitbang->mmd_msk);
  299. else
  300. bb_clr(bitbang->addr, bitbang->mmd_msk);
  301. }
  302. /* Set bit data*/
  303. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  304. {
  305. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  306. if (bit)
  307. bb_set(bitbang->addr, bitbang->mdo_msk);
  308. else
  309. bb_clr(bitbang->addr, bitbang->mdo_msk);
  310. }
  311. /* Get bit data*/
  312. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  313. {
  314. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  315. return bb_read(bitbang->addr, bitbang->mdi_msk);
  316. }
  317. /* MDC pin control */
  318. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  319. {
  320. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  321. if (bit)
  322. bb_set(bitbang->addr, bitbang->mdc_msk);
  323. else
  324. bb_clr(bitbang->addr, bitbang->mdc_msk);
  325. }
  326. /* mdio bus control struct */
  327. static struct mdiobb_ops bb_ops = {
  328. .owner = THIS_MODULE,
  329. .set_mdc = sh_mdc_ctrl,
  330. .set_mdio_dir = sh_mmd_ctrl,
  331. .set_mdio_data = sh_set_mdio,
  332. .get_mdio_data = sh_get_mdio,
  333. };
  334. /* free skb and descriptor buffer */
  335. static void sh_eth_ring_free(struct net_device *ndev)
  336. {
  337. struct sh_eth_private *mdp = netdev_priv(ndev);
  338. int i;
  339. /* Free Rx skb ringbuffer */
  340. if (mdp->rx_skbuff) {
  341. for (i = 0; i < RX_RING_SIZE; i++) {
  342. if (mdp->rx_skbuff[i])
  343. dev_kfree_skb(mdp->rx_skbuff[i]);
  344. }
  345. }
  346. kfree(mdp->rx_skbuff);
  347. /* Free Tx skb ringbuffer */
  348. if (mdp->tx_skbuff) {
  349. for (i = 0; i < TX_RING_SIZE; i++) {
  350. if (mdp->tx_skbuff[i])
  351. dev_kfree_skb(mdp->tx_skbuff[i]);
  352. }
  353. }
  354. kfree(mdp->tx_skbuff);
  355. }
  356. /* format skb and descriptor buffer */
  357. static void sh_eth_ring_format(struct net_device *ndev)
  358. {
  359. u32 ioaddr = ndev->base_addr;
  360. struct sh_eth_private *mdp = netdev_priv(ndev);
  361. int i;
  362. struct sk_buff *skb;
  363. struct sh_eth_rxdesc *rxdesc = NULL;
  364. struct sh_eth_txdesc *txdesc = NULL;
  365. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  366. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  367. mdp->cur_rx = mdp->cur_tx = 0;
  368. mdp->dirty_rx = mdp->dirty_tx = 0;
  369. memset(mdp->rx_ring, 0, rx_ringsize);
  370. /* build Rx ring buffer */
  371. for (i = 0; i < RX_RING_SIZE; i++) {
  372. /* skb */
  373. mdp->rx_skbuff[i] = NULL;
  374. skb = dev_alloc_skb(mdp->rx_buf_sz);
  375. mdp->rx_skbuff[i] = skb;
  376. if (skb == NULL)
  377. break;
  378. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  379. DMA_FROM_DEVICE);
  380. skb->dev = ndev; /* Mark as being used by this device. */
  381. sh_eth_set_receive_align(skb);
  382. /* RX descriptor */
  383. rxdesc = &mdp->rx_ring[i];
  384. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  385. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  386. /* The size of the buffer is 16 byte boundary. */
  387. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  388. /* Rx descriptor address set */
  389. if (i == 0) {
  390. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR);
  391. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  392. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR);
  393. #endif
  394. }
  395. }
  396. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  397. /* Mark the last entry as wrapping the ring. */
  398. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  399. memset(mdp->tx_ring, 0, tx_ringsize);
  400. /* build Tx ring buffer */
  401. for (i = 0; i < TX_RING_SIZE; i++) {
  402. mdp->tx_skbuff[i] = NULL;
  403. txdesc = &mdp->tx_ring[i];
  404. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  405. txdesc->buffer_length = 0;
  406. if (i == 0) {
  407. /* Tx descriptor address set */
  408. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR);
  409. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  410. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR);
  411. #endif
  412. }
  413. }
  414. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  415. }
  416. /* Get skb and descriptor buffer */
  417. static int sh_eth_ring_init(struct net_device *ndev)
  418. {
  419. struct sh_eth_private *mdp = netdev_priv(ndev);
  420. int rx_ringsize, tx_ringsize, ret = 0;
  421. /*
  422. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  423. * card needs room to do 8 byte alignment, +2 so we can reserve
  424. * the first 2 bytes, and +16 gets room for the status word from the
  425. * card.
  426. */
  427. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  428. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  429. /* Allocate RX and TX skb rings */
  430. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  431. GFP_KERNEL);
  432. if (!mdp->rx_skbuff) {
  433. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  434. ret = -ENOMEM;
  435. return ret;
  436. }
  437. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  438. GFP_KERNEL);
  439. if (!mdp->tx_skbuff) {
  440. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  441. ret = -ENOMEM;
  442. goto skb_ring_free;
  443. }
  444. /* Allocate all Rx descriptors. */
  445. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  446. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  447. GFP_KERNEL);
  448. if (!mdp->rx_ring) {
  449. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  450. rx_ringsize);
  451. ret = -ENOMEM;
  452. goto desc_ring_free;
  453. }
  454. mdp->dirty_rx = 0;
  455. /* Allocate all Tx descriptors. */
  456. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  457. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  458. GFP_KERNEL);
  459. if (!mdp->tx_ring) {
  460. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  461. tx_ringsize);
  462. ret = -ENOMEM;
  463. goto desc_ring_free;
  464. }
  465. return ret;
  466. desc_ring_free:
  467. /* free DMA buffer */
  468. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  469. skb_ring_free:
  470. /* Free Rx and Tx skb ring buffer */
  471. sh_eth_ring_free(ndev);
  472. return ret;
  473. }
  474. static int sh_eth_dev_init(struct net_device *ndev)
  475. {
  476. int ret = 0;
  477. struct sh_eth_private *mdp = netdev_priv(ndev);
  478. u32 ioaddr = ndev->base_addr;
  479. u_int32_t rx_int_var, tx_int_var;
  480. u32 val;
  481. /* Soft Reset */
  482. sh_eth_reset(ndev);
  483. /* Descriptor format */
  484. sh_eth_ring_format(ndev);
  485. if (mdp->cd->rpadir)
  486. ctrl_outl(mdp->cd->rpadir_value, ioaddr + RPADIR);
  487. /* all sh_eth int mask */
  488. ctrl_outl(0, ioaddr + EESIPR);
  489. #if defined(__LITTLE_ENDIAN__)
  490. if (mdp->cd->hw_swap)
  491. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  492. else
  493. #endif
  494. ctrl_outl(0, ioaddr + EDMR);
  495. /* FIFO size set */
  496. ctrl_outl(mdp->cd->fdr_value, ioaddr + FDR);
  497. ctrl_outl(0, ioaddr + TFTR);
  498. /* Frame recv control */
  499. ctrl_outl(mdp->cd->rmcr_value, ioaddr + RMCR);
  500. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  501. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  502. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  503. if (mdp->cd->bculr)
  504. ctrl_outl(0x800, ioaddr + BCULR); /* Burst sycle set */
  505. ctrl_outl(mdp->cd->fcftr_value, ioaddr + FCFTR);
  506. if (!mdp->cd->no_trimd)
  507. ctrl_outl(0, ioaddr + TRIMD);
  508. /* Recv frame limit set register */
  509. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  510. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  511. ctrl_outl(mdp->cd->eesipr_value, ioaddr + EESIPR);
  512. /* PAUSE Prohibition */
  513. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  514. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  515. ctrl_outl(val, ioaddr + ECMR);
  516. if (mdp->cd->set_rate)
  517. mdp->cd->set_rate(ndev);
  518. /* E-MAC Status Register clear */
  519. ctrl_outl(mdp->cd->ecsr_value, ioaddr + ECSR);
  520. /* E-MAC Interrupt Enable register */
  521. ctrl_outl(mdp->cd->ecsipr_value, ioaddr + ECSIPR);
  522. /* Set MAC address */
  523. update_mac_address(ndev);
  524. /* mask reset */
  525. if (mdp->cd->apr)
  526. ctrl_outl(APR_AP, ioaddr + APR);
  527. if (mdp->cd->mpr)
  528. ctrl_outl(MPR_MP, ioaddr + MPR);
  529. if (mdp->cd->tpauser)
  530. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  531. /* Setting the Rx mode will start the Rx process. */
  532. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  533. netif_start_queue(ndev);
  534. return ret;
  535. }
  536. /* free Tx skb function */
  537. static int sh_eth_txfree(struct net_device *ndev)
  538. {
  539. struct sh_eth_private *mdp = netdev_priv(ndev);
  540. struct sh_eth_txdesc *txdesc;
  541. int freeNum = 0;
  542. int entry = 0;
  543. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  544. entry = mdp->dirty_tx % TX_RING_SIZE;
  545. txdesc = &mdp->tx_ring[entry];
  546. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  547. break;
  548. /* Free the original skb. */
  549. if (mdp->tx_skbuff[entry]) {
  550. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  551. mdp->tx_skbuff[entry] = NULL;
  552. freeNum++;
  553. }
  554. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  555. if (entry >= TX_RING_SIZE - 1)
  556. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  557. mdp->stats.tx_packets++;
  558. mdp->stats.tx_bytes += txdesc->buffer_length;
  559. }
  560. return freeNum;
  561. }
  562. /* Packet receive function */
  563. static int sh_eth_rx(struct net_device *ndev)
  564. {
  565. struct sh_eth_private *mdp = netdev_priv(ndev);
  566. struct sh_eth_rxdesc *rxdesc;
  567. int entry = mdp->cur_rx % RX_RING_SIZE;
  568. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  569. struct sk_buff *skb;
  570. u16 pkt_len = 0;
  571. u32 desc_status;
  572. rxdesc = &mdp->rx_ring[entry];
  573. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  574. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  575. pkt_len = rxdesc->frame_length;
  576. if (--boguscnt < 0)
  577. break;
  578. if (!(desc_status & RDFEND))
  579. mdp->stats.rx_length_errors++;
  580. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  581. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  582. mdp->stats.rx_errors++;
  583. if (desc_status & RD_RFS1)
  584. mdp->stats.rx_crc_errors++;
  585. if (desc_status & RD_RFS2)
  586. mdp->stats.rx_frame_errors++;
  587. if (desc_status & RD_RFS3)
  588. mdp->stats.rx_length_errors++;
  589. if (desc_status & RD_RFS4)
  590. mdp->stats.rx_length_errors++;
  591. if (desc_status & RD_RFS6)
  592. mdp->stats.rx_missed_errors++;
  593. if (desc_status & RD_RFS10)
  594. mdp->stats.rx_over_errors++;
  595. } else {
  596. if (!mdp->cd->hw_swap)
  597. sh_eth_soft_swap(
  598. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  599. pkt_len + 2);
  600. skb = mdp->rx_skbuff[entry];
  601. mdp->rx_skbuff[entry] = NULL;
  602. skb_put(skb, pkt_len);
  603. skb->protocol = eth_type_trans(skb, ndev);
  604. netif_rx(skb);
  605. mdp->stats.rx_packets++;
  606. mdp->stats.rx_bytes += pkt_len;
  607. }
  608. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  609. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  610. rxdesc = &mdp->rx_ring[entry];
  611. }
  612. /* Refill the Rx ring buffers. */
  613. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  614. entry = mdp->dirty_rx % RX_RING_SIZE;
  615. rxdesc = &mdp->rx_ring[entry];
  616. /* The size of the buffer is 16 byte boundary. */
  617. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  618. if (mdp->rx_skbuff[entry] == NULL) {
  619. skb = dev_alloc_skb(mdp->rx_buf_sz);
  620. mdp->rx_skbuff[entry] = skb;
  621. if (skb == NULL)
  622. break; /* Better luck next round. */
  623. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  624. DMA_FROM_DEVICE);
  625. skb->dev = ndev;
  626. sh_eth_set_receive_align(skb);
  627. skb->ip_summed = CHECKSUM_NONE;
  628. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  629. }
  630. if (entry >= RX_RING_SIZE - 1)
  631. rxdesc->status |=
  632. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  633. else
  634. rxdesc->status |=
  635. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  636. }
  637. /* Restart Rx engine if stopped. */
  638. /* If we don't need to check status, don't. -KDU */
  639. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  640. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  641. return 0;
  642. }
  643. /* error control function */
  644. static void sh_eth_error(struct net_device *ndev, int intr_status)
  645. {
  646. struct sh_eth_private *mdp = netdev_priv(ndev);
  647. u32 ioaddr = ndev->base_addr;
  648. u32 felic_stat;
  649. u32 link_stat;
  650. u32 mask;
  651. if (intr_status & EESR_ECI) {
  652. felic_stat = ctrl_inl(ioaddr + ECSR);
  653. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  654. if (felic_stat & ECSR_ICD)
  655. mdp->stats.tx_carrier_errors++;
  656. if (felic_stat & ECSR_LCHNG) {
  657. /* Link Changed */
  658. if (mdp->cd->no_psr || mdp->no_ether_link) {
  659. if (mdp->link == PHY_DOWN)
  660. link_stat = 0;
  661. else
  662. link_stat = PHY_ST_LINK;
  663. } else {
  664. link_stat = (ctrl_inl(ioaddr + PSR));
  665. if (mdp->ether_link_active_low)
  666. link_stat = ~link_stat;
  667. }
  668. if (!(link_stat & PHY_ST_LINK)) {
  669. /* Link Down : disable tx and rx */
  670. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  671. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  672. } else {
  673. /* Link Up */
  674. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  675. ~DMAC_M_ECI, ioaddr + EESIPR);
  676. /*clear int */
  677. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  678. ioaddr + ECSR);
  679. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  680. DMAC_M_ECI, ioaddr + EESIPR);
  681. /* enable tx and rx */
  682. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  683. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  684. }
  685. }
  686. }
  687. if (intr_status & EESR_TWB) {
  688. /* Write buck end. unused write back interrupt */
  689. if (intr_status & EESR_TABT) /* Transmit Abort int */
  690. mdp->stats.tx_aborted_errors++;
  691. }
  692. if (intr_status & EESR_RABT) {
  693. /* Receive Abort int */
  694. if (intr_status & EESR_RFRMER) {
  695. /* Receive Frame Overflow int */
  696. mdp->stats.rx_frame_errors++;
  697. dev_err(&ndev->dev, "Receive Frame Overflow\n");
  698. }
  699. }
  700. if (!mdp->cd->no_ade) {
  701. if (intr_status & EESR_ADE && intr_status & EESR_TDE &&
  702. intr_status & EESR_TFE)
  703. mdp->stats.tx_fifo_errors++;
  704. }
  705. if (intr_status & EESR_RDE) {
  706. /* Receive Descriptor Empty int */
  707. mdp->stats.rx_over_errors++;
  708. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  709. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  710. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  711. }
  712. if (intr_status & EESR_RFE) {
  713. /* Receive FIFO Overflow int */
  714. mdp->stats.rx_fifo_errors++;
  715. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  716. }
  717. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  718. if (mdp->cd->no_ade)
  719. mask &= ~EESR_ADE;
  720. if (intr_status & mask) {
  721. /* Tx error */
  722. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  723. /* dmesg */
  724. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  725. intr_status, mdp->cur_tx);
  726. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  727. mdp->dirty_tx, (u32) ndev->state, edtrr);
  728. /* dirty buffer free */
  729. sh_eth_txfree(ndev);
  730. /* SH7712 BUG */
  731. if (edtrr ^ EDTRR_TRNS) {
  732. /* tx dma start */
  733. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  734. }
  735. /* wakeup */
  736. netif_wake_queue(ndev);
  737. }
  738. }
  739. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  740. {
  741. struct net_device *ndev = netdev;
  742. struct sh_eth_private *mdp = netdev_priv(ndev);
  743. struct sh_eth_cpu_data *cd = mdp->cd;
  744. irqreturn_t ret = IRQ_NONE;
  745. u32 ioaddr, intr_status = 0;
  746. ioaddr = ndev->base_addr;
  747. spin_lock(&mdp->lock);
  748. /* Get interrpt stat */
  749. intr_status = ctrl_inl(ioaddr + EESR);
  750. /* Clear interrupt */
  751. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  752. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  753. cd->tx_check | cd->eesr_err_check)) {
  754. ctrl_outl(intr_status, ioaddr + EESR);
  755. ret = IRQ_HANDLED;
  756. } else
  757. goto other_irq;
  758. if (intr_status & (EESR_FRC | /* Frame recv*/
  759. EESR_RMAF | /* Multi cast address recv*/
  760. EESR_RRF | /* Bit frame recv */
  761. EESR_RTLF | /* Long frame recv*/
  762. EESR_RTSF | /* short frame recv */
  763. EESR_PRE | /* PHY-LSI recv error */
  764. EESR_CERF)){ /* recv frame CRC error */
  765. sh_eth_rx(ndev);
  766. }
  767. /* Tx Check */
  768. if (intr_status & cd->tx_check) {
  769. sh_eth_txfree(ndev);
  770. netif_wake_queue(ndev);
  771. }
  772. if (intr_status & cd->eesr_err_check)
  773. sh_eth_error(ndev, intr_status);
  774. other_irq:
  775. spin_unlock(&mdp->lock);
  776. return ret;
  777. }
  778. static void sh_eth_timer(unsigned long data)
  779. {
  780. struct net_device *ndev = (struct net_device *)data;
  781. struct sh_eth_private *mdp = netdev_priv(ndev);
  782. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  783. }
  784. /* PHY state control function */
  785. static void sh_eth_adjust_link(struct net_device *ndev)
  786. {
  787. struct sh_eth_private *mdp = netdev_priv(ndev);
  788. struct phy_device *phydev = mdp->phydev;
  789. u32 ioaddr = ndev->base_addr;
  790. int new_state = 0;
  791. if (phydev->link != PHY_DOWN) {
  792. if (phydev->duplex != mdp->duplex) {
  793. new_state = 1;
  794. mdp->duplex = phydev->duplex;
  795. if (mdp->cd->set_duplex)
  796. mdp->cd->set_duplex(ndev);
  797. }
  798. if (phydev->speed != mdp->speed) {
  799. new_state = 1;
  800. mdp->speed = phydev->speed;
  801. if (mdp->cd->set_rate)
  802. mdp->cd->set_rate(ndev);
  803. }
  804. if (mdp->link == PHY_DOWN) {
  805. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  806. | ECMR_DM, ioaddr + ECMR);
  807. new_state = 1;
  808. mdp->link = phydev->link;
  809. }
  810. } else if (mdp->link) {
  811. new_state = 1;
  812. mdp->link = PHY_DOWN;
  813. mdp->speed = 0;
  814. mdp->duplex = -1;
  815. }
  816. if (new_state)
  817. phy_print_status(phydev);
  818. }
  819. /* PHY init function */
  820. static int sh_eth_phy_init(struct net_device *ndev)
  821. {
  822. struct sh_eth_private *mdp = netdev_priv(ndev);
  823. char phy_id[MII_BUS_ID_SIZE + 3];
  824. struct phy_device *phydev = NULL;
  825. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  826. mdp->mii_bus->id , mdp->phy_id);
  827. mdp->link = PHY_DOWN;
  828. mdp->speed = 0;
  829. mdp->duplex = -1;
  830. /* Try connect to PHY */
  831. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  832. 0, PHY_INTERFACE_MODE_MII);
  833. if (IS_ERR(phydev)) {
  834. dev_err(&ndev->dev, "phy_connect failed\n");
  835. return PTR_ERR(phydev);
  836. }
  837. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  838. phydev->addr, phydev->drv->name);
  839. mdp->phydev = phydev;
  840. return 0;
  841. }
  842. /* PHY control start function */
  843. static int sh_eth_phy_start(struct net_device *ndev)
  844. {
  845. struct sh_eth_private *mdp = netdev_priv(ndev);
  846. int ret;
  847. ret = sh_eth_phy_init(ndev);
  848. if (ret)
  849. return ret;
  850. /* reset phy - this also wakes it from PDOWN */
  851. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  852. phy_start(mdp->phydev);
  853. return 0;
  854. }
  855. /* network device open function */
  856. static int sh_eth_open(struct net_device *ndev)
  857. {
  858. int ret = 0;
  859. struct sh_eth_private *mdp = netdev_priv(ndev);
  860. ret = request_irq(ndev->irq, &sh_eth_interrupt,
  861. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764)
  862. IRQF_SHARED,
  863. #else
  864. 0,
  865. #endif
  866. ndev->name, ndev);
  867. if (ret) {
  868. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  869. return ret;
  870. }
  871. /* Descriptor set */
  872. ret = sh_eth_ring_init(ndev);
  873. if (ret)
  874. goto out_free_irq;
  875. /* device init */
  876. ret = sh_eth_dev_init(ndev);
  877. if (ret)
  878. goto out_free_irq;
  879. /* PHY control start*/
  880. ret = sh_eth_phy_start(ndev);
  881. if (ret)
  882. goto out_free_irq;
  883. /* Set the timer to check for link beat. */
  884. init_timer(&mdp->timer);
  885. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  886. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  887. return ret;
  888. out_free_irq:
  889. free_irq(ndev->irq, ndev);
  890. return ret;
  891. }
  892. /* Timeout function */
  893. static void sh_eth_tx_timeout(struct net_device *ndev)
  894. {
  895. struct sh_eth_private *mdp = netdev_priv(ndev);
  896. u32 ioaddr = ndev->base_addr;
  897. struct sh_eth_rxdesc *rxdesc;
  898. int i;
  899. netif_stop_queue(ndev);
  900. /* worning message out. */
  901. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  902. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  903. /* tx_errors count up */
  904. mdp->stats.tx_errors++;
  905. /* timer off */
  906. del_timer_sync(&mdp->timer);
  907. /* Free all the skbuffs in the Rx queue. */
  908. for (i = 0; i < RX_RING_SIZE; i++) {
  909. rxdesc = &mdp->rx_ring[i];
  910. rxdesc->status = 0;
  911. rxdesc->addr = 0xBADF00D0;
  912. if (mdp->rx_skbuff[i])
  913. dev_kfree_skb(mdp->rx_skbuff[i]);
  914. mdp->rx_skbuff[i] = NULL;
  915. }
  916. for (i = 0; i < TX_RING_SIZE; i++) {
  917. if (mdp->tx_skbuff[i])
  918. dev_kfree_skb(mdp->tx_skbuff[i]);
  919. mdp->tx_skbuff[i] = NULL;
  920. }
  921. /* device init */
  922. sh_eth_dev_init(ndev);
  923. /* timer on */
  924. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  925. add_timer(&mdp->timer);
  926. }
  927. /* Packet transmit function */
  928. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  929. {
  930. struct sh_eth_private *mdp = netdev_priv(ndev);
  931. struct sh_eth_txdesc *txdesc;
  932. u32 entry;
  933. unsigned long flags;
  934. spin_lock_irqsave(&mdp->lock, flags);
  935. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  936. if (!sh_eth_txfree(ndev)) {
  937. netif_stop_queue(ndev);
  938. spin_unlock_irqrestore(&mdp->lock, flags);
  939. return NETDEV_TX_BUSY;
  940. }
  941. }
  942. spin_unlock_irqrestore(&mdp->lock, flags);
  943. entry = mdp->cur_tx % TX_RING_SIZE;
  944. mdp->tx_skbuff[entry] = skb;
  945. txdesc = &mdp->tx_ring[entry];
  946. txdesc->addr = virt_to_phys(skb->data);
  947. /* soft swap. */
  948. if (!mdp->cd->hw_swap)
  949. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  950. skb->len + 2);
  951. /* write back */
  952. __flush_purge_region(skb->data, skb->len);
  953. if (skb->len < ETHERSMALL)
  954. txdesc->buffer_length = ETHERSMALL;
  955. else
  956. txdesc->buffer_length = skb->len;
  957. if (entry >= TX_RING_SIZE - 1)
  958. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  959. else
  960. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  961. mdp->cur_tx++;
  962. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  963. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  964. ndev->trans_start = jiffies;
  965. return NETDEV_TX_OK;
  966. }
  967. /* device close function */
  968. static int sh_eth_close(struct net_device *ndev)
  969. {
  970. struct sh_eth_private *mdp = netdev_priv(ndev);
  971. u32 ioaddr = ndev->base_addr;
  972. int ringsize;
  973. netif_stop_queue(ndev);
  974. /* Disable interrupts by clearing the interrupt mask. */
  975. ctrl_outl(0x0000, ioaddr + EESIPR);
  976. /* Stop the chip's Tx and Rx processes. */
  977. ctrl_outl(0, ioaddr + EDTRR);
  978. ctrl_outl(0, ioaddr + EDRRR);
  979. /* PHY Disconnect */
  980. if (mdp->phydev) {
  981. phy_stop(mdp->phydev);
  982. phy_disconnect(mdp->phydev);
  983. }
  984. free_irq(ndev->irq, ndev);
  985. del_timer_sync(&mdp->timer);
  986. /* Free all the skbuffs in the Rx queue. */
  987. sh_eth_ring_free(ndev);
  988. /* free DMA buffer */
  989. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  990. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  991. /* free DMA buffer */
  992. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  993. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  994. return 0;
  995. }
  996. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  997. {
  998. struct sh_eth_private *mdp = netdev_priv(ndev);
  999. u32 ioaddr = ndev->base_addr;
  1000. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  1001. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  1002. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  1003. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  1004. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  1005. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  1006. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1007. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  1008. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  1009. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  1010. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  1011. #else
  1012. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  1013. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  1014. #endif
  1015. return &mdp->stats;
  1016. }
  1017. /* ioctl to device funciotn*/
  1018. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1019. int cmd)
  1020. {
  1021. struct sh_eth_private *mdp = netdev_priv(ndev);
  1022. struct phy_device *phydev = mdp->phydev;
  1023. if (!netif_running(ndev))
  1024. return -EINVAL;
  1025. if (!phydev)
  1026. return -ENODEV;
  1027. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  1028. }
  1029. #if defined(SH_ETH_HAS_TSU)
  1030. /* Multicast reception directions set */
  1031. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1032. {
  1033. u32 ioaddr = ndev->base_addr;
  1034. if (ndev->flags & IFF_PROMISC) {
  1035. /* Set promiscuous. */
  1036. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  1037. ioaddr + ECMR);
  1038. } else {
  1039. /* Normal, unicast/broadcast-only mode. */
  1040. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  1041. ioaddr + ECMR);
  1042. }
  1043. }
  1044. /* SuperH's TSU register init function */
  1045. static void sh_eth_tsu_init(u32 ioaddr)
  1046. {
  1047. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  1048. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  1049. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  1050. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  1051. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  1052. ctrl_outl(0, ioaddr + TSU_PRISL0);
  1053. ctrl_outl(0, ioaddr + TSU_PRISL1);
  1054. ctrl_outl(0, ioaddr + TSU_FWSL0);
  1055. ctrl_outl(0, ioaddr + TSU_FWSL1);
  1056. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  1057. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1058. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  1059. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  1060. #else
  1061. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  1062. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  1063. #endif
  1064. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  1065. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  1066. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  1067. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1068. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  1069. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  1070. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  1071. }
  1072. #endif /* SH_ETH_HAS_TSU */
  1073. /* MDIO bus release function */
  1074. static int sh_mdio_release(struct net_device *ndev)
  1075. {
  1076. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1077. /* unregister mdio bus */
  1078. mdiobus_unregister(bus);
  1079. /* remove mdio bus info from net_device */
  1080. dev_set_drvdata(&ndev->dev, NULL);
  1081. /* free bitbang info */
  1082. free_mdio_bitbang(bus);
  1083. return 0;
  1084. }
  1085. /* MDIO bus init function */
  1086. static int sh_mdio_init(struct net_device *ndev, int id)
  1087. {
  1088. int ret, i;
  1089. struct bb_info *bitbang;
  1090. struct sh_eth_private *mdp = netdev_priv(ndev);
  1091. /* create bit control struct for PHY */
  1092. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1093. if (!bitbang) {
  1094. ret = -ENOMEM;
  1095. goto out;
  1096. }
  1097. /* bitbang init */
  1098. bitbang->addr = ndev->base_addr + PIR;
  1099. bitbang->mdi_msk = 0x08;
  1100. bitbang->mdo_msk = 0x04;
  1101. bitbang->mmd_msk = 0x02;/* MMD */
  1102. bitbang->mdc_msk = 0x01;
  1103. bitbang->ctrl.ops = &bb_ops;
  1104. /* MII contorller setting */
  1105. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1106. if (!mdp->mii_bus) {
  1107. ret = -ENOMEM;
  1108. goto out_free_bitbang;
  1109. }
  1110. /* Hook up MII support for ethtool */
  1111. mdp->mii_bus->name = "sh_mii";
  1112. mdp->mii_bus->parent = &ndev->dev;
  1113. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1114. /* PHY IRQ */
  1115. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1116. if (!mdp->mii_bus->irq) {
  1117. ret = -ENOMEM;
  1118. goto out_free_bus;
  1119. }
  1120. for (i = 0; i < PHY_MAX_ADDR; i++)
  1121. mdp->mii_bus->irq[i] = PHY_POLL;
  1122. /* regist mdio bus */
  1123. ret = mdiobus_register(mdp->mii_bus);
  1124. if (ret)
  1125. goto out_free_irq;
  1126. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1127. return 0;
  1128. out_free_irq:
  1129. kfree(mdp->mii_bus->irq);
  1130. out_free_bus:
  1131. free_mdio_bitbang(mdp->mii_bus);
  1132. out_free_bitbang:
  1133. kfree(bitbang);
  1134. out:
  1135. return ret;
  1136. }
  1137. static const struct net_device_ops sh_eth_netdev_ops = {
  1138. .ndo_open = sh_eth_open,
  1139. .ndo_stop = sh_eth_close,
  1140. .ndo_start_xmit = sh_eth_start_xmit,
  1141. .ndo_get_stats = sh_eth_get_stats,
  1142. #if defined(SH_ETH_HAS_TSU)
  1143. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1144. #endif
  1145. .ndo_tx_timeout = sh_eth_tx_timeout,
  1146. .ndo_do_ioctl = sh_eth_do_ioctl,
  1147. .ndo_validate_addr = eth_validate_addr,
  1148. .ndo_set_mac_address = eth_mac_addr,
  1149. .ndo_change_mtu = eth_change_mtu,
  1150. };
  1151. static int sh_eth_drv_probe(struct platform_device *pdev)
  1152. {
  1153. int ret, i, devno = 0;
  1154. struct resource *res;
  1155. struct net_device *ndev = NULL;
  1156. struct sh_eth_private *mdp;
  1157. struct sh_eth_plat_data *pd;
  1158. /* get base addr */
  1159. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1160. if (unlikely(res == NULL)) {
  1161. dev_err(&pdev->dev, "invalid resource\n");
  1162. ret = -EINVAL;
  1163. goto out;
  1164. }
  1165. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1166. if (!ndev) {
  1167. dev_err(&pdev->dev, "Could not allocate device.\n");
  1168. ret = -ENOMEM;
  1169. goto out;
  1170. }
  1171. /* The sh Ether-specific entries in the device structure. */
  1172. ndev->base_addr = res->start;
  1173. devno = pdev->id;
  1174. if (devno < 0)
  1175. devno = 0;
  1176. ndev->dma = -1;
  1177. ret = platform_get_irq(pdev, 0);
  1178. if (ret < 0) {
  1179. ret = -ENODEV;
  1180. goto out_release;
  1181. }
  1182. ndev->irq = ret;
  1183. SET_NETDEV_DEV(ndev, &pdev->dev);
  1184. /* Fill in the fields of the device structure with ethernet values. */
  1185. ether_setup(ndev);
  1186. mdp = netdev_priv(ndev);
  1187. spin_lock_init(&mdp->lock);
  1188. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1189. /* get PHY ID */
  1190. mdp->phy_id = pd->phy;
  1191. /* EDMAC endian */
  1192. mdp->edmac_endian = pd->edmac_endian;
  1193. mdp->no_ether_link = pd->no_ether_link;
  1194. mdp->ether_link_active_low = pd->ether_link_active_low;
  1195. /* set cpu data */
  1196. mdp->cd = &sh_eth_my_cpu_data;
  1197. sh_eth_set_default_cpu_data(mdp->cd);
  1198. /* set function */
  1199. ndev->netdev_ops = &sh_eth_netdev_ops;
  1200. ndev->watchdog_timeo = TX_TIMEOUT;
  1201. mdp->post_rx = POST_RX >> (devno << 1);
  1202. mdp->post_fw = POST_FW >> (devno << 1);
  1203. /* read and set MAC address */
  1204. read_mac_address(ndev);
  1205. /* First device only init */
  1206. if (!devno) {
  1207. if (mdp->cd->chip_reset)
  1208. mdp->cd->chip_reset(ndev);
  1209. #if defined(SH_ETH_HAS_TSU)
  1210. /* TSU init (Init only)*/
  1211. sh_eth_tsu_init(SH_TSU_ADDR);
  1212. #endif
  1213. }
  1214. /* network device register */
  1215. ret = register_netdev(ndev);
  1216. if (ret)
  1217. goto out_release;
  1218. /* mdio bus init */
  1219. ret = sh_mdio_init(ndev, pdev->id);
  1220. if (ret)
  1221. goto out_unregister;
  1222. /* pritnt device infomation */
  1223. pr_info("Base address at 0x%x, ",
  1224. (u32)ndev->base_addr);
  1225. for (i = 0; i < 5; i++)
  1226. printk("%02X:", ndev->dev_addr[i]);
  1227. printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  1228. platform_set_drvdata(pdev, ndev);
  1229. return ret;
  1230. out_unregister:
  1231. unregister_netdev(ndev);
  1232. out_release:
  1233. /* net_dev free */
  1234. if (ndev)
  1235. free_netdev(ndev);
  1236. out:
  1237. return ret;
  1238. }
  1239. static int sh_eth_drv_remove(struct platform_device *pdev)
  1240. {
  1241. struct net_device *ndev = platform_get_drvdata(pdev);
  1242. sh_mdio_release(ndev);
  1243. unregister_netdev(ndev);
  1244. flush_scheduled_work();
  1245. free_netdev(ndev);
  1246. platform_set_drvdata(pdev, NULL);
  1247. return 0;
  1248. }
  1249. static struct platform_driver sh_eth_driver = {
  1250. .probe = sh_eth_drv_probe,
  1251. .remove = sh_eth_drv_remove,
  1252. .driver = {
  1253. .name = CARDNAME,
  1254. },
  1255. };
  1256. static int __init sh_eth_init(void)
  1257. {
  1258. return platform_driver_register(&sh_eth_driver);
  1259. }
  1260. static void __exit sh_eth_cleanup(void)
  1261. {
  1262. platform_driver_unregister(&sh_eth_driver);
  1263. }
  1264. module_init(sh_eth_init);
  1265. module_exit(sh_eth_cleanup);
  1266. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1267. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1268. MODULE_LICENSE("GPL v2");