qlge_main.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int irq_type = MSIX_IRQ;
  67. module_param(irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  70. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  194. if (status)
  195. return status;
  196. status = ql_wait_cfg(qdev, bit);
  197. if (status) {
  198. QPRINTK(qdev, IFUP, ERR,
  199. "Timed out waiting for CFG to come ready.\n");
  200. goto exit;
  201. }
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. mask = CFG_Q_MASK | (bit << 16);
  205. value = bit | (q_id << CFG_Q_SHIFT);
  206. ql_write32(qdev, CFG, (mask | value));
  207. /*
  208. * Wait for the bit to clear after signaling hw.
  209. */
  210. status = ql_wait_cfg(qdev, bit);
  211. exit:
  212. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. {
  293. u32 upper = (addr[0] << 8) | addr[1];
  294. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  295. (addr[4] << 8) | (addr[5]);
  296. status =
  297. ql_wait_reg_rdy(qdev,
  298. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  299. if (status)
  300. goto exit;
  301. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  302. (index << MAC_ADDR_IDX_SHIFT) |
  303. type | MAC_ADDR_E);
  304. ql_write32(qdev, MAC_ADDR_DATA, lower);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  311. (index << MAC_ADDR_IDX_SHIFT) |
  312. type | MAC_ADDR_E);
  313. ql_write32(qdev, MAC_ADDR_DATA, upper);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. break;
  320. }
  321. case MAC_ADDR_TYPE_CAM_MAC:
  322. {
  323. u32 cam_output;
  324. u32 upper = (addr[0] << 8) | addr[1];
  325. u32 lower =
  326. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  327. (addr[5]);
  328. QPRINTK(qdev, IFUP, DEBUG,
  329. "Adding %s address %pM"
  330. " at index %d in the CAM.\n",
  331. ((type ==
  332. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  333. "UNICAST"), addr, index);
  334. status =
  335. ql_wait_reg_rdy(qdev,
  336. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  337. if (status)
  338. goto exit;
  339. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  340. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  341. type); /* type */
  342. ql_write32(qdev, MAC_ADDR_DATA, lower);
  343. status =
  344. ql_wait_reg_rdy(qdev,
  345. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  346. if (status)
  347. goto exit;
  348. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  349. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  350. type); /* type */
  351. ql_write32(qdev, MAC_ADDR_DATA, upper);
  352. status =
  353. ql_wait_reg_rdy(qdev,
  354. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  355. if (status)
  356. goto exit;
  357. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  358. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  359. type); /* type */
  360. /* This field should also include the queue id
  361. and possibly the function id. Right now we hardcode
  362. the route field to NIC core.
  363. */
  364. cam_output = (CAM_OUT_ROUTE_NIC |
  365. (qdev->
  366. func << CAM_OUT_FUNC_SHIFT) |
  367. (0 << CAM_OUT_CQ_ID_SHIFT));
  368. if (qdev->vlgrp)
  369. cam_output |= CAM_OUT_RV;
  370. /* route to NIC core */
  371. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  372. break;
  373. }
  374. case MAC_ADDR_TYPE_VLAN:
  375. {
  376. u32 enable_bit = *((u32 *) &addr[0]);
  377. /* For VLAN, the addr actually holds a bit that
  378. * either enables or disables the vlan id we are
  379. * addressing. It's either MAC_ADDR_E on or off.
  380. * That's bit-27 we're talking about.
  381. */
  382. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  383. (enable_bit ? "Adding" : "Removing"),
  384. index, (enable_bit ? "to" : "from"));
  385. status =
  386. ql_wait_reg_rdy(qdev,
  387. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  391. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  392. type | /* type */
  393. enable_bit); /* enable/disable */
  394. break;
  395. }
  396. case MAC_ADDR_TYPE_MULTI_FLTR:
  397. default:
  398. QPRINTK(qdev, IFUP, CRIT,
  399. "Address type %d not yet supported.\n", type);
  400. status = -EPERM;
  401. }
  402. exit:
  403. return status;
  404. }
  405. /* Set or clear MAC address in hardware. We sometimes
  406. * have to clear it to prevent wrong frame routing
  407. * especially in a bonding environment.
  408. */
  409. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  410. {
  411. int status;
  412. char zero_mac_addr[ETH_ALEN];
  413. char *addr;
  414. if (set) {
  415. addr = &qdev->ndev->dev_addr[0];
  416. QPRINTK(qdev, IFUP, DEBUG,
  417. "Set Mac addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  418. addr[0], addr[1], addr[2], addr[3],
  419. addr[4], addr[5]);
  420. } else {
  421. memset(zero_mac_addr, 0, ETH_ALEN);
  422. addr = &zero_mac_addr[0];
  423. QPRINTK(qdev, IFUP, DEBUG,
  424. "Clearing MAC address on %s\n",
  425. qdev->ndev->name);
  426. }
  427. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  428. if (status)
  429. return status;
  430. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  431. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  432. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  433. if (status)
  434. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  435. "address.\n");
  436. return status;
  437. }
  438. void ql_link_on(struct ql_adapter *qdev)
  439. {
  440. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  441. qdev->ndev->name);
  442. netif_carrier_on(qdev->ndev);
  443. ql_set_mac_addr(qdev, 1);
  444. }
  445. void ql_link_off(struct ql_adapter *qdev)
  446. {
  447. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  448. qdev->ndev->name);
  449. netif_carrier_off(qdev->ndev);
  450. ql_set_mac_addr(qdev, 0);
  451. }
  452. /* Get a specific frame routing value from the CAM.
  453. * Used for debug and reg dump.
  454. */
  455. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  456. {
  457. int status = 0;
  458. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  459. if (status)
  460. goto exit;
  461. ql_write32(qdev, RT_IDX,
  462. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  463. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  464. if (status)
  465. goto exit;
  466. *value = ql_read32(qdev, RT_DATA);
  467. exit:
  468. return status;
  469. }
  470. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  471. * to route different frame types to various inbound queues. We send broadcast/
  472. * multicast/error frames to the default queue for slow handling,
  473. * and CAM hit/RSS frames to the fast handling queues.
  474. */
  475. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  476. int enable)
  477. {
  478. int status = -EINVAL; /* Return error if no mask match. */
  479. u32 value = 0;
  480. QPRINTK(qdev, IFUP, DEBUG,
  481. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  482. (enable ? "Adding" : "Removing"),
  483. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  484. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  485. ((index ==
  486. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  487. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  488. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  489. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  490. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  491. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  492. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  493. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  494. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  495. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  496. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  497. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  498. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  499. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  500. (enable ? "to" : "from"));
  501. switch (mask) {
  502. case RT_IDX_CAM_HIT:
  503. {
  504. value = RT_IDX_DST_CAM_Q | /* dest */
  505. RT_IDX_TYPE_NICQ | /* type */
  506. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  507. break;
  508. }
  509. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  510. {
  511. value = RT_IDX_DST_DFLT_Q | /* dest */
  512. RT_IDX_TYPE_NICQ | /* type */
  513. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  514. break;
  515. }
  516. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  517. {
  518. value = RT_IDX_DST_DFLT_Q | /* dest */
  519. RT_IDX_TYPE_NICQ | /* type */
  520. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  521. break;
  522. }
  523. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  524. {
  525. value = RT_IDX_DST_DFLT_Q | /* dest */
  526. RT_IDX_TYPE_NICQ | /* type */
  527. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  528. break;
  529. }
  530. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  531. {
  532. value = RT_IDX_DST_DFLT_Q | /* dest */
  533. RT_IDX_TYPE_NICQ | /* type */
  534. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  535. break;
  536. }
  537. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  538. {
  539. value = RT_IDX_DST_DFLT_Q | /* dest */
  540. RT_IDX_TYPE_NICQ | /* type */
  541. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  542. break;
  543. }
  544. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  545. {
  546. value = RT_IDX_DST_RSS | /* dest */
  547. RT_IDX_TYPE_NICQ | /* type */
  548. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  549. break;
  550. }
  551. case 0: /* Clear the E-bit on an entry. */
  552. {
  553. value = RT_IDX_DST_DFLT_Q | /* dest */
  554. RT_IDX_TYPE_NICQ | /* type */
  555. (index << RT_IDX_IDX_SHIFT);/* index */
  556. break;
  557. }
  558. default:
  559. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  560. mask);
  561. status = -EPERM;
  562. goto exit;
  563. }
  564. if (value) {
  565. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  566. if (status)
  567. goto exit;
  568. value |= (enable ? RT_IDX_E : 0);
  569. ql_write32(qdev, RT_IDX, value);
  570. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  571. }
  572. exit:
  573. return status;
  574. }
  575. static void ql_enable_interrupts(struct ql_adapter *qdev)
  576. {
  577. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  578. }
  579. static void ql_disable_interrupts(struct ql_adapter *qdev)
  580. {
  581. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  582. }
  583. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  584. * Otherwise, we may have multiple outstanding workers and don't want to
  585. * enable until the last one finishes. In this case, the irq_cnt gets
  586. * incremented everytime we queue a worker and decremented everytime
  587. * a worker finishes. Once it hits zero we enable the interrupt.
  588. */
  589. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  590. {
  591. u32 var = 0;
  592. unsigned long hw_flags = 0;
  593. struct intr_context *ctx = qdev->intr_context + intr;
  594. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  595. /* Always enable if we're MSIX multi interrupts and
  596. * it's not the default (zeroeth) interrupt.
  597. */
  598. ql_write32(qdev, INTR_EN,
  599. ctx->intr_en_mask);
  600. var = ql_read32(qdev, STS);
  601. return var;
  602. }
  603. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  604. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  605. ql_write32(qdev, INTR_EN,
  606. ctx->intr_en_mask);
  607. var = ql_read32(qdev, STS);
  608. }
  609. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  610. return var;
  611. }
  612. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  613. {
  614. u32 var = 0;
  615. struct intr_context *ctx;
  616. /* HW disables for us if we're MSIX multi interrupts and
  617. * it's not the default (zeroeth) interrupt.
  618. */
  619. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  620. return 0;
  621. ctx = qdev->intr_context + intr;
  622. spin_lock(&qdev->hw_lock);
  623. if (!atomic_read(&ctx->irq_cnt)) {
  624. ql_write32(qdev, INTR_EN,
  625. ctx->intr_dis_mask);
  626. var = ql_read32(qdev, STS);
  627. }
  628. atomic_inc(&ctx->irq_cnt);
  629. spin_unlock(&qdev->hw_lock);
  630. return var;
  631. }
  632. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  633. {
  634. int i;
  635. for (i = 0; i < qdev->intr_count; i++) {
  636. /* The enable call does a atomic_dec_and_test
  637. * and enables only if the result is zero.
  638. * So we precharge it here.
  639. */
  640. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  641. i == 0))
  642. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  643. ql_enable_completion_interrupt(qdev, i);
  644. }
  645. }
  646. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  647. {
  648. int status, i;
  649. u16 csum = 0;
  650. __le16 *flash = (__le16 *)&qdev->flash;
  651. status = strncmp((char *)&qdev->flash, str, 4);
  652. if (status) {
  653. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  654. return status;
  655. }
  656. for (i = 0; i < size; i++)
  657. csum += le16_to_cpu(*flash++);
  658. if (csum)
  659. QPRINTK(qdev, IFUP, ERR,
  660. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  661. return csum;
  662. }
  663. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  664. {
  665. int status = 0;
  666. /* wait for reg to come ready */
  667. status = ql_wait_reg_rdy(qdev,
  668. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  669. if (status)
  670. goto exit;
  671. /* set up for reg read */
  672. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  673. /* wait for reg to come ready */
  674. status = ql_wait_reg_rdy(qdev,
  675. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  676. if (status)
  677. goto exit;
  678. /* This data is stored on flash as an array of
  679. * __le32. Since ql_read32() returns cpu endian
  680. * we need to swap it back.
  681. */
  682. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  683. exit:
  684. return status;
  685. }
  686. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  687. {
  688. u32 i, size;
  689. int status;
  690. __le32 *p = (__le32 *)&qdev->flash;
  691. u32 offset;
  692. u8 mac_addr[6];
  693. /* Get flash offset for function and adjust
  694. * for dword access.
  695. */
  696. if (!qdev->port)
  697. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  698. else
  699. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  700. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  701. return -ETIMEDOUT;
  702. size = sizeof(struct flash_params_8000) / sizeof(u32);
  703. for (i = 0; i < size; i++, p++) {
  704. status = ql_read_flash_word(qdev, i+offset, p);
  705. if (status) {
  706. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  707. goto exit;
  708. }
  709. }
  710. status = ql_validate_flash(qdev,
  711. sizeof(struct flash_params_8000) / sizeof(u16),
  712. "8000");
  713. if (status) {
  714. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  715. status = -EINVAL;
  716. goto exit;
  717. }
  718. /* Extract either manufacturer or BOFM modified
  719. * MAC address.
  720. */
  721. if (qdev->flash.flash_params_8000.data_type1 == 2)
  722. memcpy(mac_addr,
  723. qdev->flash.flash_params_8000.mac_addr1,
  724. qdev->ndev->addr_len);
  725. else
  726. memcpy(mac_addr,
  727. qdev->flash.flash_params_8000.mac_addr,
  728. qdev->ndev->addr_len);
  729. if (!is_valid_ether_addr(mac_addr)) {
  730. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  731. status = -EINVAL;
  732. goto exit;
  733. }
  734. memcpy(qdev->ndev->dev_addr,
  735. mac_addr,
  736. qdev->ndev->addr_len);
  737. exit:
  738. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  739. return status;
  740. }
  741. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  742. {
  743. int i;
  744. int status;
  745. __le32 *p = (__le32 *)&qdev->flash;
  746. u32 offset = 0;
  747. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  748. /* Second function's parameters follow the first
  749. * function's.
  750. */
  751. if (qdev->port)
  752. offset = size;
  753. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  754. return -ETIMEDOUT;
  755. for (i = 0; i < size; i++, p++) {
  756. status = ql_read_flash_word(qdev, i+offset, p);
  757. if (status) {
  758. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  759. goto exit;
  760. }
  761. }
  762. status = ql_validate_flash(qdev,
  763. sizeof(struct flash_params_8012) / sizeof(u16),
  764. "8012");
  765. if (status) {
  766. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  767. status = -EINVAL;
  768. goto exit;
  769. }
  770. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  771. status = -EINVAL;
  772. goto exit;
  773. }
  774. memcpy(qdev->ndev->dev_addr,
  775. qdev->flash.flash_params_8012.mac_addr,
  776. qdev->ndev->addr_len);
  777. exit:
  778. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  779. return status;
  780. }
  781. /* xgmac register are located behind the xgmac_addr and xgmac_data
  782. * register pair. Each read/write requires us to wait for the ready
  783. * bit before reading/writing the data.
  784. */
  785. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  786. {
  787. int status;
  788. /* wait for reg to come ready */
  789. status = ql_wait_reg_rdy(qdev,
  790. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  791. if (status)
  792. return status;
  793. /* write the data to the data reg */
  794. ql_write32(qdev, XGMAC_DATA, data);
  795. /* trigger the write */
  796. ql_write32(qdev, XGMAC_ADDR, reg);
  797. return status;
  798. }
  799. /* xgmac register are located behind the xgmac_addr and xgmac_data
  800. * register pair. Each read/write requires us to wait for the ready
  801. * bit before reading/writing the data.
  802. */
  803. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  804. {
  805. int status = 0;
  806. /* wait for reg to come ready */
  807. status = ql_wait_reg_rdy(qdev,
  808. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  809. if (status)
  810. goto exit;
  811. /* set up for reg read */
  812. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  813. /* wait for reg to come ready */
  814. status = ql_wait_reg_rdy(qdev,
  815. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  816. if (status)
  817. goto exit;
  818. /* get the data */
  819. *data = ql_read32(qdev, XGMAC_DATA);
  820. exit:
  821. return status;
  822. }
  823. /* This is used for reading the 64-bit statistics regs. */
  824. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  825. {
  826. int status = 0;
  827. u32 hi = 0;
  828. u32 lo = 0;
  829. status = ql_read_xgmac_reg(qdev, reg, &lo);
  830. if (status)
  831. goto exit;
  832. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  833. if (status)
  834. goto exit;
  835. *data = (u64) lo | ((u64) hi << 32);
  836. exit:
  837. return status;
  838. }
  839. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  840. {
  841. int status;
  842. /*
  843. * Get MPI firmware version for driver banner
  844. * and ethool info.
  845. */
  846. status = ql_mb_about_fw(qdev);
  847. if (status)
  848. goto exit;
  849. status = ql_mb_get_fw_state(qdev);
  850. if (status)
  851. goto exit;
  852. /* Wake up a worker to get/set the TX/RX frame sizes. */
  853. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  854. exit:
  855. return status;
  856. }
  857. /* Take the MAC Core out of reset.
  858. * Enable statistics counting.
  859. * Take the transmitter/receiver out of reset.
  860. * This functionality may be done in the MPI firmware at a
  861. * later date.
  862. */
  863. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  864. {
  865. int status = 0;
  866. u32 data;
  867. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  868. /* Another function has the semaphore, so
  869. * wait for the port init bit to come ready.
  870. */
  871. QPRINTK(qdev, LINK, INFO,
  872. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  873. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  874. if (status) {
  875. QPRINTK(qdev, LINK, CRIT,
  876. "Port initialize timed out.\n");
  877. }
  878. return status;
  879. }
  880. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  881. /* Set the core reset. */
  882. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  883. if (status)
  884. goto end;
  885. data |= GLOBAL_CFG_RESET;
  886. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  887. if (status)
  888. goto end;
  889. /* Clear the core reset and turn on jumbo for receiver. */
  890. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  891. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  892. data |= GLOBAL_CFG_TX_STAT_EN;
  893. data |= GLOBAL_CFG_RX_STAT_EN;
  894. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  895. if (status)
  896. goto end;
  897. /* Enable transmitter, and clear it's reset. */
  898. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  899. if (status)
  900. goto end;
  901. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  902. data |= TX_CFG_EN; /* Enable the transmitter. */
  903. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  904. if (status)
  905. goto end;
  906. /* Enable receiver and clear it's reset. */
  907. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  908. if (status)
  909. goto end;
  910. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  911. data |= RX_CFG_EN; /* Enable the receiver. */
  912. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  913. if (status)
  914. goto end;
  915. /* Turn on jumbo. */
  916. status =
  917. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  918. if (status)
  919. goto end;
  920. status =
  921. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  922. if (status)
  923. goto end;
  924. /* Signal to the world that the port is enabled. */
  925. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  926. end:
  927. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  928. return status;
  929. }
  930. /* Get the next large buffer. */
  931. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  932. {
  933. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  934. rx_ring->lbq_curr_idx++;
  935. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  936. rx_ring->lbq_curr_idx = 0;
  937. rx_ring->lbq_free_cnt++;
  938. return lbq_desc;
  939. }
  940. /* Get the next small buffer. */
  941. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  942. {
  943. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  944. rx_ring->sbq_curr_idx++;
  945. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  946. rx_ring->sbq_curr_idx = 0;
  947. rx_ring->sbq_free_cnt++;
  948. return sbq_desc;
  949. }
  950. /* Update an rx ring index. */
  951. static void ql_update_cq(struct rx_ring *rx_ring)
  952. {
  953. rx_ring->cnsmr_idx++;
  954. rx_ring->curr_entry++;
  955. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  956. rx_ring->cnsmr_idx = 0;
  957. rx_ring->curr_entry = rx_ring->cq_base;
  958. }
  959. }
  960. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  961. {
  962. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  963. }
  964. /* Process (refill) a large buffer queue. */
  965. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  966. {
  967. u32 clean_idx = rx_ring->lbq_clean_idx;
  968. u32 start_idx = clean_idx;
  969. struct bq_desc *lbq_desc;
  970. u64 map;
  971. int i;
  972. while (rx_ring->lbq_free_cnt > 16) {
  973. for (i = 0; i < 16; i++) {
  974. QPRINTK(qdev, RX_STATUS, DEBUG,
  975. "lbq: try cleaning clean_idx = %d.\n",
  976. clean_idx);
  977. lbq_desc = &rx_ring->lbq[clean_idx];
  978. if (lbq_desc->p.lbq_page == NULL) {
  979. QPRINTK(qdev, RX_STATUS, DEBUG,
  980. "lbq: getting new page for index %d.\n",
  981. lbq_desc->index);
  982. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  983. if (lbq_desc->p.lbq_page == NULL) {
  984. rx_ring->lbq_clean_idx = clean_idx;
  985. QPRINTK(qdev, RX_STATUS, ERR,
  986. "Couldn't get a page.\n");
  987. return;
  988. }
  989. map = pci_map_page(qdev->pdev,
  990. lbq_desc->p.lbq_page,
  991. 0, PAGE_SIZE,
  992. PCI_DMA_FROMDEVICE);
  993. if (pci_dma_mapping_error(qdev->pdev, map)) {
  994. rx_ring->lbq_clean_idx = clean_idx;
  995. put_page(lbq_desc->p.lbq_page);
  996. lbq_desc->p.lbq_page = NULL;
  997. QPRINTK(qdev, RX_STATUS, ERR,
  998. "PCI mapping failed.\n");
  999. return;
  1000. }
  1001. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1002. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1003. *lbq_desc->addr = cpu_to_le64(map);
  1004. }
  1005. clean_idx++;
  1006. if (clean_idx == rx_ring->lbq_len)
  1007. clean_idx = 0;
  1008. }
  1009. rx_ring->lbq_clean_idx = clean_idx;
  1010. rx_ring->lbq_prod_idx += 16;
  1011. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1012. rx_ring->lbq_prod_idx = 0;
  1013. rx_ring->lbq_free_cnt -= 16;
  1014. }
  1015. if (start_idx != clean_idx) {
  1016. QPRINTK(qdev, RX_STATUS, DEBUG,
  1017. "lbq: updating prod idx = %d.\n",
  1018. rx_ring->lbq_prod_idx);
  1019. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1020. rx_ring->lbq_prod_idx_db_reg);
  1021. }
  1022. }
  1023. /* Process (refill) a small buffer queue. */
  1024. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1025. {
  1026. u32 clean_idx = rx_ring->sbq_clean_idx;
  1027. u32 start_idx = clean_idx;
  1028. struct bq_desc *sbq_desc;
  1029. u64 map;
  1030. int i;
  1031. while (rx_ring->sbq_free_cnt > 16) {
  1032. for (i = 0; i < 16; i++) {
  1033. sbq_desc = &rx_ring->sbq[clean_idx];
  1034. QPRINTK(qdev, RX_STATUS, DEBUG,
  1035. "sbq: try cleaning clean_idx = %d.\n",
  1036. clean_idx);
  1037. if (sbq_desc->p.skb == NULL) {
  1038. QPRINTK(qdev, RX_STATUS, DEBUG,
  1039. "sbq: getting new skb for index %d.\n",
  1040. sbq_desc->index);
  1041. sbq_desc->p.skb =
  1042. netdev_alloc_skb(qdev->ndev,
  1043. rx_ring->sbq_buf_size);
  1044. if (sbq_desc->p.skb == NULL) {
  1045. QPRINTK(qdev, PROBE, ERR,
  1046. "Couldn't get an skb.\n");
  1047. rx_ring->sbq_clean_idx = clean_idx;
  1048. return;
  1049. }
  1050. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1051. map = pci_map_single(qdev->pdev,
  1052. sbq_desc->p.skb->data,
  1053. rx_ring->sbq_buf_size /
  1054. 2, PCI_DMA_FROMDEVICE);
  1055. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1056. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1057. rx_ring->sbq_clean_idx = clean_idx;
  1058. dev_kfree_skb_any(sbq_desc->p.skb);
  1059. sbq_desc->p.skb = NULL;
  1060. return;
  1061. }
  1062. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1063. pci_unmap_len_set(sbq_desc, maplen,
  1064. rx_ring->sbq_buf_size / 2);
  1065. *sbq_desc->addr = cpu_to_le64(map);
  1066. }
  1067. clean_idx++;
  1068. if (clean_idx == rx_ring->sbq_len)
  1069. clean_idx = 0;
  1070. }
  1071. rx_ring->sbq_clean_idx = clean_idx;
  1072. rx_ring->sbq_prod_idx += 16;
  1073. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1074. rx_ring->sbq_prod_idx = 0;
  1075. rx_ring->sbq_free_cnt -= 16;
  1076. }
  1077. if (start_idx != clean_idx) {
  1078. QPRINTK(qdev, RX_STATUS, DEBUG,
  1079. "sbq: updating prod idx = %d.\n",
  1080. rx_ring->sbq_prod_idx);
  1081. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1082. rx_ring->sbq_prod_idx_db_reg);
  1083. }
  1084. }
  1085. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1086. struct rx_ring *rx_ring)
  1087. {
  1088. ql_update_sbq(qdev, rx_ring);
  1089. ql_update_lbq(qdev, rx_ring);
  1090. }
  1091. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1092. * fails at some stage, or from the interrupt when a tx completes.
  1093. */
  1094. static void ql_unmap_send(struct ql_adapter *qdev,
  1095. struct tx_ring_desc *tx_ring_desc, int mapped)
  1096. {
  1097. int i;
  1098. for (i = 0; i < mapped; i++) {
  1099. if (i == 0 || (i == 7 && mapped > 7)) {
  1100. /*
  1101. * Unmap the skb->data area, or the
  1102. * external sglist (AKA the Outbound
  1103. * Address List (OAL)).
  1104. * If its the zeroeth element, then it's
  1105. * the skb->data area. If it's the 7th
  1106. * element and there is more than 6 frags,
  1107. * then its an OAL.
  1108. */
  1109. if (i == 7) {
  1110. QPRINTK(qdev, TX_DONE, DEBUG,
  1111. "unmapping OAL area.\n");
  1112. }
  1113. pci_unmap_single(qdev->pdev,
  1114. pci_unmap_addr(&tx_ring_desc->map[i],
  1115. mapaddr),
  1116. pci_unmap_len(&tx_ring_desc->map[i],
  1117. maplen),
  1118. PCI_DMA_TODEVICE);
  1119. } else {
  1120. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1121. i);
  1122. pci_unmap_page(qdev->pdev,
  1123. pci_unmap_addr(&tx_ring_desc->map[i],
  1124. mapaddr),
  1125. pci_unmap_len(&tx_ring_desc->map[i],
  1126. maplen), PCI_DMA_TODEVICE);
  1127. }
  1128. }
  1129. }
  1130. /* Map the buffers for this transmit. This will return
  1131. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1132. */
  1133. static int ql_map_send(struct ql_adapter *qdev,
  1134. struct ob_mac_iocb_req *mac_iocb_ptr,
  1135. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1136. {
  1137. int len = skb_headlen(skb);
  1138. dma_addr_t map;
  1139. int frag_idx, err, map_idx = 0;
  1140. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1141. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1142. if (frag_cnt) {
  1143. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1144. }
  1145. /*
  1146. * Map the skb buffer first.
  1147. */
  1148. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1149. err = pci_dma_mapping_error(qdev->pdev, map);
  1150. if (err) {
  1151. QPRINTK(qdev, TX_QUEUED, ERR,
  1152. "PCI mapping failed with error: %d\n", err);
  1153. return NETDEV_TX_BUSY;
  1154. }
  1155. tbd->len = cpu_to_le32(len);
  1156. tbd->addr = cpu_to_le64(map);
  1157. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1158. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1159. map_idx++;
  1160. /*
  1161. * This loop fills the remainder of the 8 address descriptors
  1162. * in the IOCB. If there are more than 7 fragments, then the
  1163. * eighth address desc will point to an external list (OAL).
  1164. * When this happens, the remainder of the frags will be stored
  1165. * in this list.
  1166. */
  1167. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1168. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1169. tbd++;
  1170. if (frag_idx == 6 && frag_cnt > 7) {
  1171. /* Let's tack on an sglist.
  1172. * Our control block will now
  1173. * look like this:
  1174. * iocb->seg[0] = skb->data
  1175. * iocb->seg[1] = frag[0]
  1176. * iocb->seg[2] = frag[1]
  1177. * iocb->seg[3] = frag[2]
  1178. * iocb->seg[4] = frag[3]
  1179. * iocb->seg[5] = frag[4]
  1180. * iocb->seg[6] = frag[5]
  1181. * iocb->seg[7] = ptr to OAL (external sglist)
  1182. * oal->seg[0] = frag[6]
  1183. * oal->seg[1] = frag[7]
  1184. * oal->seg[2] = frag[8]
  1185. * oal->seg[3] = frag[9]
  1186. * oal->seg[4] = frag[10]
  1187. * etc...
  1188. */
  1189. /* Tack on the OAL in the eighth segment of IOCB. */
  1190. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1191. sizeof(struct oal),
  1192. PCI_DMA_TODEVICE);
  1193. err = pci_dma_mapping_error(qdev->pdev, map);
  1194. if (err) {
  1195. QPRINTK(qdev, TX_QUEUED, ERR,
  1196. "PCI mapping outbound address list with error: %d\n",
  1197. err);
  1198. goto map_error;
  1199. }
  1200. tbd->addr = cpu_to_le64(map);
  1201. /*
  1202. * The length is the number of fragments
  1203. * that remain to be mapped times the length
  1204. * of our sglist (OAL).
  1205. */
  1206. tbd->len =
  1207. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1208. (frag_cnt - frag_idx)) | TX_DESC_C);
  1209. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1210. map);
  1211. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1212. sizeof(struct oal));
  1213. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1214. map_idx++;
  1215. }
  1216. map =
  1217. pci_map_page(qdev->pdev, frag->page,
  1218. frag->page_offset, frag->size,
  1219. PCI_DMA_TODEVICE);
  1220. err = pci_dma_mapping_error(qdev->pdev, map);
  1221. if (err) {
  1222. QPRINTK(qdev, TX_QUEUED, ERR,
  1223. "PCI mapping frags failed with error: %d.\n",
  1224. err);
  1225. goto map_error;
  1226. }
  1227. tbd->addr = cpu_to_le64(map);
  1228. tbd->len = cpu_to_le32(frag->size);
  1229. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1230. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1231. frag->size);
  1232. }
  1233. /* Save the number of segments we've mapped. */
  1234. tx_ring_desc->map_cnt = map_idx;
  1235. /* Terminate the last segment. */
  1236. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1237. return NETDEV_TX_OK;
  1238. map_error:
  1239. /*
  1240. * If the first frag mapping failed, then i will be zero.
  1241. * This causes the unmap of the skb->data area. Otherwise
  1242. * we pass in the number of frags that mapped successfully
  1243. * so they can be umapped.
  1244. */
  1245. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1246. return NETDEV_TX_BUSY;
  1247. }
  1248. static void ql_realign_skb(struct sk_buff *skb, int len)
  1249. {
  1250. void *temp_addr = skb->data;
  1251. /* Undo the skb_reserve(skb,32) we did before
  1252. * giving to hardware, and realign data on
  1253. * a 2-byte boundary.
  1254. */
  1255. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1256. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1257. skb_copy_to_linear_data(skb, temp_addr,
  1258. (unsigned int)len);
  1259. }
  1260. /*
  1261. * This function builds an skb for the given inbound
  1262. * completion. It will be rewritten for readability in the near
  1263. * future, but for not it works well.
  1264. */
  1265. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1266. struct rx_ring *rx_ring,
  1267. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1268. {
  1269. struct bq_desc *lbq_desc;
  1270. struct bq_desc *sbq_desc;
  1271. struct sk_buff *skb = NULL;
  1272. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1273. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1274. /*
  1275. * Handle the header buffer if present.
  1276. */
  1277. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1278. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1279. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1280. /*
  1281. * Headers fit nicely into a small buffer.
  1282. */
  1283. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1284. pci_unmap_single(qdev->pdev,
  1285. pci_unmap_addr(sbq_desc, mapaddr),
  1286. pci_unmap_len(sbq_desc, maplen),
  1287. PCI_DMA_FROMDEVICE);
  1288. skb = sbq_desc->p.skb;
  1289. ql_realign_skb(skb, hdr_len);
  1290. skb_put(skb, hdr_len);
  1291. sbq_desc->p.skb = NULL;
  1292. }
  1293. /*
  1294. * Handle the data buffer(s).
  1295. */
  1296. if (unlikely(!length)) { /* Is there data too? */
  1297. QPRINTK(qdev, RX_STATUS, DEBUG,
  1298. "No Data buffer in this packet.\n");
  1299. return skb;
  1300. }
  1301. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1302. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1303. QPRINTK(qdev, RX_STATUS, DEBUG,
  1304. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1305. /*
  1306. * Data is less than small buffer size so it's
  1307. * stuffed in a small buffer.
  1308. * For this case we append the data
  1309. * from the "data" small buffer to the "header" small
  1310. * buffer.
  1311. */
  1312. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1313. pci_dma_sync_single_for_cpu(qdev->pdev,
  1314. pci_unmap_addr
  1315. (sbq_desc, mapaddr),
  1316. pci_unmap_len
  1317. (sbq_desc, maplen),
  1318. PCI_DMA_FROMDEVICE);
  1319. memcpy(skb_put(skb, length),
  1320. sbq_desc->p.skb->data, length);
  1321. pci_dma_sync_single_for_device(qdev->pdev,
  1322. pci_unmap_addr
  1323. (sbq_desc,
  1324. mapaddr),
  1325. pci_unmap_len
  1326. (sbq_desc,
  1327. maplen),
  1328. PCI_DMA_FROMDEVICE);
  1329. } else {
  1330. QPRINTK(qdev, RX_STATUS, DEBUG,
  1331. "%d bytes in a single small buffer.\n", length);
  1332. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1333. skb = sbq_desc->p.skb;
  1334. ql_realign_skb(skb, length);
  1335. skb_put(skb, length);
  1336. pci_unmap_single(qdev->pdev,
  1337. pci_unmap_addr(sbq_desc,
  1338. mapaddr),
  1339. pci_unmap_len(sbq_desc,
  1340. maplen),
  1341. PCI_DMA_FROMDEVICE);
  1342. sbq_desc->p.skb = NULL;
  1343. }
  1344. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1345. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1346. QPRINTK(qdev, RX_STATUS, DEBUG,
  1347. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1348. /*
  1349. * The data is in a single large buffer. We
  1350. * chain it to the header buffer's skb and let
  1351. * it rip.
  1352. */
  1353. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1354. pci_unmap_page(qdev->pdev,
  1355. pci_unmap_addr(lbq_desc,
  1356. mapaddr),
  1357. pci_unmap_len(lbq_desc, maplen),
  1358. PCI_DMA_FROMDEVICE);
  1359. QPRINTK(qdev, RX_STATUS, DEBUG,
  1360. "Chaining page to skb.\n");
  1361. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1362. 0, length);
  1363. skb->len += length;
  1364. skb->data_len += length;
  1365. skb->truesize += length;
  1366. lbq_desc->p.lbq_page = NULL;
  1367. } else {
  1368. /*
  1369. * The headers and data are in a single large buffer. We
  1370. * copy it to a new skb and let it go. This can happen with
  1371. * jumbo mtu on a non-TCP/UDP frame.
  1372. */
  1373. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1374. skb = netdev_alloc_skb(qdev->ndev, length);
  1375. if (skb == NULL) {
  1376. QPRINTK(qdev, PROBE, DEBUG,
  1377. "No skb available, drop the packet.\n");
  1378. return NULL;
  1379. }
  1380. pci_unmap_page(qdev->pdev,
  1381. pci_unmap_addr(lbq_desc,
  1382. mapaddr),
  1383. pci_unmap_len(lbq_desc, maplen),
  1384. PCI_DMA_FROMDEVICE);
  1385. skb_reserve(skb, NET_IP_ALIGN);
  1386. QPRINTK(qdev, RX_STATUS, DEBUG,
  1387. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1388. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1389. 0, length);
  1390. skb->len += length;
  1391. skb->data_len += length;
  1392. skb->truesize += length;
  1393. length -= length;
  1394. lbq_desc->p.lbq_page = NULL;
  1395. __pskb_pull_tail(skb,
  1396. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1397. VLAN_ETH_HLEN : ETH_HLEN);
  1398. }
  1399. } else {
  1400. /*
  1401. * The data is in a chain of large buffers
  1402. * pointed to by a small buffer. We loop
  1403. * thru and chain them to the our small header
  1404. * buffer's skb.
  1405. * frags: There are 18 max frags and our small
  1406. * buffer will hold 32 of them. The thing is,
  1407. * we'll use 3 max for our 9000 byte jumbo
  1408. * frames. If the MTU goes up we could
  1409. * eventually be in trouble.
  1410. */
  1411. int size, offset, i = 0;
  1412. __le64 *bq, bq_array[8];
  1413. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1414. pci_unmap_single(qdev->pdev,
  1415. pci_unmap_addr(sbq_desc, mapaddr),
  1416. pci_unmap_len(sbq_desc, maplen),
  1417. PCI_DMA_FROMDEVICE);
  1418. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1419. /*
  1420. * This is an non TCP/UDP IP frame, so
  1421. * the headers aren't split into a small
  1422. * buffer. We have to use the small buffer
  1423. * that contains our sg list as our skb to
  1424. * send upstairs. Copy the sg list here to
  1425. * a local buffer and use it to find the
  1426. * pages to chain.
  1427. */
  1428. QPRINTK(qdev, RX_STATUS, DEBUG,
  1429. "%d bytes of headers & data in chain of large.\n", length);
  1430. skb = sbq_desc->p.skb;
  1431. bq = &bq_array[0];
  1432. memcpy(bq, skb->data, sizeof(bq_array));
  1433. sbq_desc->p.skb = NULL;
  1434. skb_reserve(skb, NET_IP_ALIGN);
  1435. } else {
  1436. QPRINTK(qdev, RX_STATUS, DEBUG,
  1437. "Headers in small, %d bytes of data in chain of large.\n", length);
  1438. bq = (__le64 *)sbq_desc->p.skb->data;
  1439. }
  1440. while (length > 0) {
  1441. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1442. pci_unmap_page(qdev->pdev,
  1443. pci_unmap_addr(lbq_desc,
  1444. mapaddr),
  1445. pci_unmap_len(lbq_desc,
  1446. maplen),
  1447. PCI_DMA_FROMDEVICE);
  1448. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1449. offset = 0;
  1450. QPRINTK(qdev, RX_STATUS, DEBUG,
  1451. "Adding page %d to skb for %d bytes.\n",
  1452. i, size);
  1453. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1454. offset, size);
  1455. skb->len += size;
  1456. skb->data_len += size;
  1457. skb->truesize += size;
  1458. length -= size;
  1459. lbq_desc->p.lbq_page = NULL;
  1460. bq++;
  1461. i++;
  1462. }
  1463. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1464. VLAN_ETH_HLEN : ETH_HLEN);
  1465. }
  1466. return skb;
  1467. }
  1468. /* Process an inbound completion from an rx ring. */
  1469. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1470. struct rx_ring *rx_ring,
  1471. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1472. {
  1473. struct net_device *ndev = qdev->ndev;
  1474. struct sk_buff *skb = NULL;
  1475. u16 vlan_id = (le16_to_cpu(ib_mac_rsp->vlan_id) &
  1476. IB_MAC_IOCB_RSP_VLAN_MASK)
  1477. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1478. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1479. if (unlikely(!skb)) {
  1480. QPRINTK(qdev, RX_STATUS, DEBUG,
  1481. "No skb available, drop packet.\n");
  1482. return;
  1483. }
  1484. /* Frame error, so drop the packet. */
  1485. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1486. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1487. ib_mac_rsp->flags2);
  1488. dev_kfree_skb_any(skb);
  1489. return;
  1490. }
  1491. /* The max framesize filter on this chip is set higher than
  1492. * MTU since FCoE uses 2k frames.
  1493. */
  1494. if (skb->len > ndev->mtu + ETH_HLEN) {
  1495. dev_kfree_skb_any(skb);
  1496. return;
  1497. }
  1498. prefetch(skb->data);
  1499. skb->dev = ndev;
  1500. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1501. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1502. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1503. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1504. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1505. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1506. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1507. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1508. }
  1509. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1510. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1511. }
  1512. skb->protocol = eth_type_trans(skb, ndev);
  1513. skb->ip_summed = CHECKSUM_NONE;
  1514. /* If rx checksum is on, and there are no
  1515. * csum or frame errors.
  1516. */
  1517. if (qdev->rx_csum &&
  1518. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1519. /* TCP frame. */
  1520. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1521. QPRINTK(qdev, RX_STATUS, DEBUG,
  1522. "TCP checksum done!\n");
  1523. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1524. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1525. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1526. /* Unfragmented ipv4 UDP frame. */
  1527. struct iphdr *iph = (struct iphdr *) skb->data;
  1528. if (!(iph->frag_off &
  1529. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1530. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1531. QPRINTK(qdev, RX_STATUS, DEBUG,
  1532. "TCP checksum done!\n");
  1533. }
  1534. }
  1535. }
  1536. qdev->stats.rx_packets++;
  1537. qdev->stats.rx_bytes += skb->len;
  1538. skb_record_rx_queue(skb, rx_ring->cq_id);
  1539. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1540. if (qdev->vlgrp &&
  1541. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1542. (vlan_id != 0))
  1543. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1544. vlan_id, skb);
  1545. else
  1546. napi_gro_receive(&rx_ring->napi, skb);
  1547. } else {
  1548. if (qdev->vlgrp &&
  1549. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1550. (vlan_id != 0))
  1551. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1552. else
  1553. netif_receive_skb(skb);
  1554. }
  1555. }
  1556. /* Process an outbound completion from an rx ring. */
  1557. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1558. struct ob_mac_iocb_rsp *mac_rsp)
  1559. {
  1560. struct tx_ring *tx_ring;
  1561. struct tx_ring_desc *tx_ring_desc;
  1562. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1563. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1564. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1565. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1566. qdev->stats.tx_bytes += (tx_ring_desc->skb)->len;
  1567. qdev->stats.tx_packets++;
  1568. dev_kfree_skb(tx_ring_desc->skb);
  1569. tx_ring_desc->skb = NULL;
  1570. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1571. OB_MAC_IOCB_RSP_S |
  1572. OB_MAC_IOCB_RSP_L |
  1573. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1574. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1575. QPRINTK(qdev, TX_DONE, WARNING,
  1576. "Total descriptor length did not match transfer length.\n");
  1577. }
  1578. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1579. QPRINTK(qdev, TX_DONE, WARNING,
  1580. "Frame too short to be legal, not sent.\n");
  1581. }
  1582. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1583. QPRINTK(qdev, TX_DONE, WARNING,
  1584. "Frame too long, but sent anyway.\n");
  1585. }
  1586. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1587. QPRINTK(qdev, TX_DONE, WARNING,
  1588. "PCI backplane error. Frame not sent.\n");
  1589. }
  1590. }
  1591. atomic_inc(&tx_ring->tx_count);
  1592. }
  1593. /* Fire up a handler to reset the MPI processor. */
  1594. void ql_queue_fw_error(struct ql_adapter *qdev)
  1595. {
  1596. ql_link_off(qdev);
  1597. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1598. }
  1599. void ql_queue_asic_error(struct ql_adapter *qdev)
  1600. {
  1601. ql_link_off(qdev);
  1602. ql_disable_interrupts(qdev);
  1603. /* Clear adapter up bit to signal the recovery
  1604. * process that it shouldn't kill the reset worker
  1605. * thread
  1606. */
  1607. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1608. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1609. }
  1610. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1611. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1612. {
  1613. switch (ib_ae_rsp->event) {
  1614. case MGMT_ERR_EVENT:
  1615. QPRINTK(qdev, RX_ERR, ERR,
  1616. "Management Processor Fatal Error.\n");
  1617. ql_queue_fw_error(qdev);
  1618. return;
  1619. case CAM_LOOKUP_ERR_EVENT:
  1620. QPRINTK(qdev, LINK, ERR,
  1621. "Multiple CAM hits lookup occurred.\n");
  1622. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1623. ql_queue_asic_error(qdev);
  1624. return;
  1625. case SOFT_ECC_ERROR_EVENT:
  1626. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1627. ql_queue_asic_error(qdev);
  1628. break;
  1629. case PCI_ERR_ANON_BUF_RD:
  1630. QPRINTK(qdev, RX_ERR, ERR,
  1631. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1632. ib_ae_rsp->q_id);
  1633. ql_queue_asic_error(qdev);
  1634. break;
  1635. default:
  1636. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1637. ib_ae_rsp->event);
  1638. ql_queue_asic_error(qdev);
  1639. break;
  1640. }
  1641. }
  1642. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1643. {
  1644. struct ql_adapter *qdev = rx_ring->qdev;
  1645. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1646. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1647. int count = 0;
  1648. struct tx_ring *tx_ring;
  1649. /* While there are entries in the completion queue. */
  1650. while (prod != rx_ring->cnsmr_idx) {
  1651. QPRINTK(qdev, RX_STATUS, DEBUG,
  1652. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1653. prod, rx_ring->cnsmr_idx);
  1654. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1655. rmb();
  1656. switch (net_rsp->opcode) {
  1657. case OPCODE_OB_MAC_TSO_IOCB:
  1658. case OPCODE_OB_MAC_IOCB:
  1659. ql_process_mac_tx_intr(qdev, net_rsp);
  1660. break;
  1661. default:
  1662. QPRINTK(qdev, RX_STATUS, DEBUG,
  1663. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1664. net_rsp->opcode);
  1665. }
  1666. count++;
  1667. ql_update_cq(rx_ring);
  1668. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1669. }
  1670. ql_write_cq_idx(rx_ring);
  1671. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1672. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1673. net_rsp != NULL) {
  1674. if (atomic_read(&tx_ring->queue_stopped) &&
  1675. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1676. /*
  1677. * The queue got stopped because the tx_ring was full.
  1678. * Wake it up, because it's now at least 25% empty.
  1679. */
  1680. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  1681. }
  1682. return count;
  1683. }
  1684. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1685. {
  1686. struct ql_adapter *qdev = rx_ring->qdev;
  1687. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1688. struct ql_net_rsp_iocb *net_rsp;
  1689. int count = 0;
  1690. /* While there are entries in the completion queue. */
  1691. while (prod != rx_ring->cnsmr_idx) {
  1692. QPRINTK(qdev, RX_STATUS, DEBUG,
  1693. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1694. prod, rx_ring->cnsmr_idx);
  1695. net_rsp = rx_ring->curr_entry;
  1696. rmb();
  1697. switch (net_rsp->opcode) {
  1698. case OPCODE_IB_MAC_IOCB:
  1699. ql_process_mac_rx_intr(qdev, rx_ring,
  1700. (struct ib_mac_iocb_rsp *)
  1701. net_rsp);
  1702. break;
  1703. case OPCODE_IB_AE_IOCB:
  1704. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1705. net_rsp);
  1706. break;
  1707. default:
  1708. {
  1709. QPRINTK(qdev, RX_STATUS, DEBUG,
  1710. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1711. net_rsp->opcode);
  1712. }
  1713. }
  1714. count++;
  1715. ql_update_cq(rx_ring);
  1716. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1717. if (count == budget)
  1718. break;
  1719. }
  1720. ql_update_buffer_queues(qdev, rx_ring);
  1721. ql_write_cq_idx(rx_ring);
  1722. return count;
  1723. }
  1724. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1725. {
  1726. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1727. struct ql_adapter *qdev = rx_ring->qdev;
  1728. struct rx_ring *trx_ring;
  1729. int i, work_done = 0;
  1730. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  1731. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1732. rx_ring->cq_id);
  1733. /* Service the TX rings first. They start
  1734. * right after the RSS rings. */
  1735. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  1736. trx_ring = &qdev->rx_ring[i];
  1737. /* If this TX completion ring belongs to this vector and
  1738. * it's not empty then service it.
  1739. */
  1740. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  1741. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  1742. trx_ring->cnsmr_idx)) {
  1743. QPRINTK(qdev, INTR, DEBUG,
  1744. "%s: Servicing TX completion ring %d.\n",
  1745. __func__, trx_ring->cq_id);
  1746. ql_clean_outbound_rx_ring(trx_ring);
  1747. }
  1748. }
  1749. /*
  1750. * Now service the RSS ring if it's active.
  1751. */
  1752. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1753. rx_ring->cnsmr_idx) {
  1754. QPRINTK(qdev, INTR, DEBUG,
  1755. "%s: Servicing RX completion ring %d.\n",
  1756. __func__, rx_ring->cq_id);
  1757. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1758. }
  1759. if (work_done < budget) {
  1760. napi_complete(napi);
  1761. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1762. }
  1763. return work_done;
  1764. }
  1765. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1766. {
  1767. struct ql_adapter *qdev = netdev_priv(ndev);
  1768. qdev->vlgrp = grp;
  1769. if (grp) {
  1770. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1771. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1772. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1773. } else {
  1774. QPRINTK(qdev, IFUP, DEBUG,
  1775. "Turning off VLAN in NIC_RCV_CFG.\n");
  1776. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1777. }
  1778. }
  1779. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1780. {
  1781. struct ql_adapter *qdev = netdev_priv(ndev);
  1782. u32 enable_bit = MAC_ADDR_E;
  1783. int status;
  1784. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1785. if (status)
  1786. return;
  1787. if (ql_set_mac_addr_reg
  1788. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1789. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1790. }
  1791. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1792. }
  1793. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1794. {
  1795. struct ql_adapter *qdev = netdev_priv(ndev);
  1796. u32 enable_bit = 0;
  1797. int status;
  1798. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  1799. if (status)
  1800. return;
  1801. if (ql_set_mac_addr_reg
  1802. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1803. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1804. }
  1805. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  1806. }
  1807. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1808. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1809. {
  1810. struct rx_ring *rx_ring = dev_id;
  1811. napi_schedule(&rx_ring->napi);
  1812. return IRQ_HANDLED;
  1813. }
  1814. /* This handles a fatal error, MPI activity, and the default
  1815. * rx_ring in an MSI-X multiple vector environment.
  1816. * In MSI/Legacy environment it also process the rest of
  1817. * the rx_rings.
  1818. */
  1819. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1820. {
  1821. struct rx_ring *rx_ring = dev_id;
  1822. struct ql_adapter *qdev = rx_ring->qdev;
  1823. struct intr_context *intr_context = &qdev->intr_context[0];
  1824. u32 var;
  1825. int work_done = 0;
  1826. spin_lock(&qdev->hw_lock);
  1827. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  1828. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  1829. spin_unlock(&qdev->hw_lock);
  1830. return IRQ_NONE;
  1831. }
  1832. spin_unlock(&qdev->hw_lock);
  1833. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  1834. /*
  1835. * Check for fatal error.
  1836. */
  1837. if (var & STS_FE) {
  1838. ql_queue_asic_error(qdev);
  1839. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1840. var = ql_read32(qdev, ERR_STS);
  1841. QPRINTK(qdev, INTR, ERR,
  1842. "Resetting chip. Error Status Register = 0x%x\n", var);
  1843. return IRQ_HANDLED;
  1844. }
  1845. /*
  1846. * Check MPI processor activity.
  1847. */
  1848. if ((var & STS_PI) &&
  1849. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  1850. /*
  1851. * We've got an async event or mailbox completion.
  1852. * Handle it and clear the source of the interrupt.
  1853. */
  1854. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1855. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1856. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  1857. queue_delayed_work_on(smp_processor_id(),
  1858. qdev->workqueue, &qdev->mpi_work, 0);
  1859. work_done++;
  1860. }
  1861. /*
  1862. * Get the bit-mask that shows the active queues for this
  1863. * pass. Compare it to the queues that this irq services
  1864. * and call napi if there's a match.
  1865. */
  1866. var = ql_read32(qdev, ISR1);
  1867. if (var & intr_context->irq_mask) {
  1868. QPRINTK(qdev, INTR, INFO,
  1869. "Waking handler for rx_ring[0].\n");
  1870. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1871. napi_schedule(&rx_ring->napi);
  1872. work_done++;
  1873. }
  1874. ql_enable_completion_interrupt(qdev, intr_context->intr);
  1875. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1876. }
  1877. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1878. {
  1879. if (skb_is_gso(skb)) {
  1880. int err;
  1881. if (skb_header_cloned(skb)) {
  1882. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1883. if (err)
  1884. return err;
  1885. }
  1886. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1887. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1888. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1889. mac_iocb_ptr->total_hdrs_len =
  1890. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1891. mac_iocb_ptr->net_trans_offset =
  1892. cpu_to_le16(skb_network_offset(skb) |
  1893. skb_transport_offset(skb)
  1894. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1895. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1896. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1897. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1898. struct iphdr *iph = ip_hdr(skb);
  1899. iph->check = 0;
  1900. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1901. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1902. iph->daddr, 0,
  1903. IPPROTO_TCP,
  1904. 0);
  1905. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1906. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1907. tcp_hdr(skb)->check =
  1908. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1909. &ipv6_hdr(skb)->daddr,
  1910. 0, IPPROTO_TCP, 0);
  1911. }
  1912. return 1;
  1913. }
  1914. return 0;
  1915. }
  1916. static void ql_hw_csum_setup(struct sk_buff *skb,
  1917. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1918. {
  1919. int len;
  1920. struct iphdr *iph = ip_hdr(skb);
  1921. __sum16 *check;
  1922. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1923. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1924. mac_iocb_ptr->net_trans_offset =
  1925. cpu_to_le16(skb_network_offset(skb) |
  1926. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1927. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1928. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1929. if (likely(iph->protocol == IPPROTO_TCP)) {
  1930. check = &(tcp_hdr(skb)->check);
  1931. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1932. mac_iocb_ptr->total_hdrs_len =
  1933. cpu_to_le16(skb_transport_offset(skb) +
  1934. (tcp_hdr(skb)->doff << 2));
  1935. } else {
  1936. check = &(udp_hdr(skb)->check);
  1937. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1938. mac_iocb_ptr->total_hdrs_len =
  1939. cpu_to_le16(skb_transport_offset(skb) +
  1940. sizeof(struct udphdr));
  1941. }
  1942. *check = ~csum_tcpudp_magic(iph->saddr,
  1943. iph->daddr, len, iph->protocol, 0);
  1944. }
  1945. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1946. {
  1947. struct tx_ring_desc *tx_ring_desc;
  1948. struct ob_mac_iocb_req *mac_iocb_ptr;
  1949. struct ql_adapter *qdev = netdev_priv(ndev);
  1950. int tso;
  1951. struct tx_ring *tx_ring;
  1952. u32 tx_ring_idx = (u32) skb->queue_mapping;
  1953. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1954. if (skb_padto(skb, ETH_ZLEN))
  1955. return NETDEV_TX_OK;
  1956. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1957. QPRINTK(qdev, TX_QUEUED, INFO,
  1958. "%s: shutting down tx queue %d du to lack of resources.\n",
  1959. __func__, tx_ring_idx);
  1960. netif_stop_subqueue(ndev, tx_ring->wq_id);
  1961. atomic_inc(&tx_ring->queue_stopped);
  1962. return NETDEV_TX_BUSY;
  1963. }
  1964. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1965. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1966. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  1967. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1968. mac_iocb_ptr->tid = tx_ring_desc->index;
  1969. /* We use the upper 32-bits to store the tx queue for this IO.
  1970. * When we get the completion we can use it to establish the context.
  1971. */
  1972. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1973. tx_ring_desc->skb = skb;
  1974. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1975. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1976. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1977. vlan_tx_tag_get(skb));
  1978. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1979. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1980. }
  1981. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1982. if (tso < 0) {
  1983. dev_kfree_skb_any(skb);
  1984. return NETDEV_TX_OK;
  1985. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1986. ql_hw_csum_setup(skb,
  1987. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1988. }
  1989. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  1990. NETDEV_TX_OK) {
  1991. QPRINTK(qdev, TX_QUEUED, ERR,
  1992. "Could not map the segments.\n");
  1993. return NETDEV_TX_BUSY;
  1994. }
  1995. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1996. tx_ring->prod_idx++;
  1997. if (tx_ring->prod_idx == tx_ring->wq_len)
  1998. tx_ring->prod_idx = 0;
  1999. wmb();
  2000. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2001. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  2002. tx_ring->prod_idx, skb->len);
  2003. atomic_dec(&tx_ring->tx_count);
  2004. return NETDEV_TX_OK;
  2005. }
  2006. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2007. {
  2008. if (qdev->rx_ring_shadow_reg_area) {
  2009. pci_free_consistent(qdev->pdev,
  2010. PAGE_SIZE,
  2011. qdev->rx_ring_shadow_reg_area,
  2012. qdev->rx_ring_shadow_reg_dma);
  2013. qdev->rx_ring_shadow_reg_area = NULL;
  2014. }
  2015. if (qdev->tx_ring_shadow_reg_area) {
  2016. pci_free_consistent(qdev->pdev,
  2017. PAGE_SIZE,
  2018. qdev->tx_ring_shadow_reg_area,
  2019. qdev->tx_ring_shadow_reg_dma);
  2020. qdev->tx_ring_shadow_reg_area = NULL;
  2021. }
  2022. }
  2023. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2024. {
  2025. qdev->rx_ring_shadow_reg_area =
  2026. pci_alloc_consistent(qdev->pdev,
  2027. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2028. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2029. QPRINTK(qdev, IFUP, ERR,
  2030. "Allocation of RX shadow space failed.\n");
  2031. return -ENOMEM;
  2032. }
  2033. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2034. qdev->tx_ring_shadow_reg_area =
  2035. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2036. &qdev->tx_ring_shadow_reg_dma);
  2037. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2038. QPRINTK(qdev, IFUP, ERR,
  2039. "Allocation of TX shadow space failed.\n");
  2040. goto err_wqp_sh_area;
  2041. }
  2042. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2043. return 0;
  2044. err_wqp_sh_area:
  2045. pci_free_consistent(qdev->pdev,
  2046. PAGE_SIZE,
  2047. qdev->rx_ring_shadow_reg_area,
  2048. qdev->rx_ring_shadow_reg_dma);
  2049. return -ENOMEM;
  2050. }
  2051. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2052. {
  2053. struct tx_ring_desc *tx_ring_desc;
  2054. int i;
  2055. struct ob_mac_iocb_req *mac_iocb_ptr;
  2056. mac_iocb_ptr = tx_ring->wq_base;
  2057. tx_ring_desc = tx_ring->q;
  2058. for (i = 0; i < tx_ring->wq_len; i++) {
  2059. tx_ring_desc->index = i;
  2060. tx_ring_desc->skb = NULL;
  2061. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2062. mac_iocb_ptr++;
  2063. tx_ring_desc++;
  2064. }
  2065. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2066. atomic_set(&tx_ring->queue_stopped, 0);
  2067. }
  2068. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2069. struct tx_ring *tx_ring)
  2070. {
  2071. if (tx_ring->wq_base) {
  2072. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2073. tx_ring->wq_base, tx_ring->wq_base_dma);
  2074. tx_ring->wq_base = NULL;
  2075. }
  2076. kfree(tx_ring->q);
  2077. tx_ring->q = NULL;
  2078. }
  2079. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2080. struct tx_ring *tx_ring)
  2081. {
  2082. tx_ring->wq_base =
  2083. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2084. &tx_ring->wq_base_dma);
  2085. if ((tx_ring->wq_base == NULL)
  2086. || tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2087. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2088. return -ENOMEM;
  2089. }
  2090. tx_ring->q =
  2091. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2092. if (tx_ring->q == NULL)
  2093. goto err;
  2094. return 0;
  2095. err:
  2096. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2097. tx_ring->wq_base, tx_ring->wq_base_dma);
  2098. return -ENOMEM;
  2099. }
  2100. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2101. {
  2102. int i;
  2103. struct bq_desc *lbq_desc;
  2104. for (i = 0; i < rx_ring->lbq_len; i++) {
  2105. lbq_desc = &rx_ring->lbq[i];
  2106. if (lbq_desc->p.lbq_page) {
  2107. pci_unmap_page(qdev->pdev,
  2108. pci_unmap_addr(lbq_desc, mapaddr),
  2109. pci_unmap_len(lbq_desc, maplen),
  2110. PCI_DMA_FROMDEVICE);
  2111. put_page(lbq_desc->p.lbq_page);
  2112. lbq_desc->p.lbq_page = NULL;
  2113. }
  2114. }
  2115. }
  2116. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2117. {
  2118. int i;
  2119. struct bq_desc *sbq_desc;
  2120. for (i = 0; i < rx_ring->sbq_len; i++) {
  2121. sbq_desc = &rx_ring->sbq[i];
  2122. if (sbq_desc == NULL) {
  2123. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2124. return;
  2125. }
  2126. if (sbq_desc->p.skb) {
  2127. pci_unmap_single(qdev->pdev,
  2128. pci_unmap_addr(sbq_desc, mapaddr),
  2129. pci_unmap_len(sbq_desc, maplen),
  2130. PCI_DMA_FROMDEVICE);
  2131. dev_kfree_skb(sbq_desc->p.skb);
  2132. sbq_desc->p.skb = NULL;
  2133. }
  2134. }
  2135. }
  2136. /* Free all large and small rx buffers associated
  2137. * with the completion queues for this device.
  2138. */
  2139. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2140. {
  2141. int i;
  2142. struct rx_ring *rx_ring;
  2143. for (i = 0; i < qdev->rx_ring_count; i++) {
  2144. rx_ring = &qdev->rx_ring[i];
  2145. if (rx_ring->lbq)
  2146. ql_free_lbq_buffers(qdev, rx_ring);
  2147. if (rx_ring->sbq)
  2148. ql_free_sbq_buffers(qdev, rx_ring);
  2149. }
  2150. }
  2151. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2152. {
  2153. struct rx_ring *rx_ring;
  2154. int i;
  2155. for (i = 0; i < qdev->rx_ring_count; i++) {
  2156. rx_ring = &qdev->rx_ring[i];
  2157. if (rx_ring->type != TX_Q)
  2158. ql_update_buffer_queues(qdev, rx_ring);
  2159. }
  2160. }
  2161. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2162. struct rx_ring *rx_ring)
  2163. {
  2164. int i;
  2165. struct bq_desc *lbq_desc;
  2166. __le64 *bq = rx_ring->lbq_base;
  2167. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2168. for (i = 0; i < rx_ring->lbq_len; i++) {
  2169. lbq_desc = &rx_ring->lbq[i];
  2170. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2171. lbq_desc->index = i;
  2172. lbq_desc->addr = bq;
  2173. bq++;
  2174. }
  2175. }
  2176. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2177. struct rx_ring *rx_ring)
  2178. {
  2179. int i;
  2180. struct bq_desc *sbq_desc;
  2181. __le64 *bq = rx_ring->sbq_base;
  2182. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2183. for (i = 0; i < rx_ring->sbq_len; i++) {
  2184. sbq_desc = &rx_ring->sbq[i];
  2185. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2186. sbq_desc->index = i;
  2187. sbq_desc->addr = bq;
  2188. bq++;
  2189. }
  2190. }
  2191. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2192. struct rx_ring *rx_ring)
  2193. {
  2194. /* Free the small buffer queue. */
  2195. if (rx_ring->sbq_base) {
  2196. pci_free_consistent(qdev->pdev,
  2197. rx_ring->sbq_size,
  2198. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2199. rx_ring->sbq_base = NULL;
  2200. }
  2201. /* Free the small buffer queue control blocks. */
  2202. kfree(rx_ring->sbq);
  2203. rx_ring->sbq = NULL;
  2204. /* Free the large buffer queue. */
  2205. if (rx_ring->lbq_base) {
  2206. pci_free_consistent(qdev->pdev,
  2207. rx_ring->lbq_size,
  2208. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2209. rx_ring->lbq_base = NULL;
  2210. }
  2211. /* Free the large buffer queue control blocks. */
  2212. kfree(rx_ring->lbq);
  2213. rx_ring->lbq = NULL;
  2214. /* Free the rx queue. */
  2215. if (rx_ring->cq_base) {
  2216. pci_free_consistent(qdev->pdev,
  2217. rx_ring->cq_size,
  2218. rx_ring->cq_base, rx_ring->cq_base_dma);
  2219. rx_ring->cq_base = NULL;
  2220. }
  2221. }
  2222. /* Allocate queues and buffers for this completions queue based
  2223. * on the values in the parameter structure. */
  2224. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2225. struct rx_ring *rx_ring)
  2226. {
  2227. /*
  2228. * Allocate the completion queue for this rx_ring.
  2229. */
  2230. rx_ring->cq_base =
  2231. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2232. &rx_ring->cq_base_dma);
  2233. if (rx_ring->cq_base == NULL) {
  2234. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2235. return -ENOMEM;
  2236. }
  2237. if (rx_ring->sbq_len) {
  2238. /*
  2239. * Allocate small buffer queue.
  2240. */
  2241. rx_ring->sbq_base =
  2242. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2243. &rx_ring->sbq_base_dma);
  2244. if (rx_ring->sbq_base == NULL) {
  2245. QPRINTK(qdev, IFUP, ERR,
  2246. "Small buffer queue allocation failed.\n");
  2247. goto err_mem;
  2248. }
  2249. /*
  2250. * Allocate small buffer queue control blocks.
  2251. */
  2252. rx_ring->sbq =
  2253. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2254. GFP_KERNEL);
  2255. if (rx_ring->sbq == NULL) {
  2256. QPRINTK(qdev, IFUP, ERR,
  2257. "Small buffer queue control block allocation failed.\n");
  2258. goto err_mem;
  2259. }
  2260. ql_init_sbq_ring(qdev, rx_ring);
  2261. }
  2262. if (rx_ring->lbq_len) {
  2263. /*
  2264. * Allocate large buffer queue.
  2265. */
  2266. rx_ring->lbq_base =
  2267. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2268. &rx_ring->lbq_base_dma);
  2269. if (rx_ring->lbq_base == NULL) {
  2270. QPRINTK(qdev, IFUP, ERR,
  2271. "Large buffer queue allocation failed.\n");
  2272. goto err_mem;
  2273. }
  2274. /*
  2275. * Allocate large buffer queue control blocks.
  2276. */
  2277. rx_ring->lbq =
  2278. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2279. GFP_KERNEL);
  2280. if (rx_ring->lbq == NULL) {
  2281. QPRINTK(qdev, IFUP, ERR,
  2282. "Large buffer queue control block allocation failed.\n");
  2283. goto err_mem;
  2284. }
  2285. ql_init_lbq_ring(qdev, rx_ring);
  2286. }
  2287. return 0;
  2288. err_mem:
  2289. ql_free_rx_resources(qdev, rx_ring);
  2290. return -ENOMEM;
  2291. }
  2292. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2293. {
  2294. struct tx_ring *tx_ring;
  2295. struct tx_ring_desc *tx_ring_desc;
  2296. int i, j;
  2297. /*
  2298. * Loop through all queues and free
  2299. * any resources.
  2300. */
  2301. for (j = 0; j < qdev->tx_ring_count; j++) {
  2302. tx_ring = &qdev->tx_ring[j];
  2303. for (i = 0; i < tx_ring->wq_len; i++) {
  2304. tx_ring_desc = &tx_ring->q[i];
  2305. if (tx_ring_desc && tx_ring_desc->skb) {
  2306. QPRINTK(qdev, IFDOWN, ERR,
  2307. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2308. tx_ring_desc->skb, j,
  2309. tx_ring_desc->index);
  2310. ql_unmap_send(qdev, tx_ring_desc,
  2311. tx_ring_desc->map_cnt);
  2312. dev_kfree_skb(tx_ring_desc->skb);
  2313. tx_ring_desc->skb = NULL;
  2314. }
  2315. }
  2316. }
  2317. }
  2318. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2319. {
  2320. int i;
  2321. for (i = 0; i < qdev->tx_ring_count; i++)
  2322. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2323. for (i = 0; i < qdev->rx_ring_count; i++)
  2324. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2325. ql_free_shadow_space(qdev);
  2326. }
  2327. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2328. {
  2329. int i;
  2330. /* Allocate space for our shadow registers and such. */
  2331. if (ql_alloc_shadow_space(qdev))
  2332. return -ENOMEM;
  2333. for (i = 0; i < qdev->rx_ring_count; i++) {
  2334. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2335. QPRINTK(qdev, IFUP, ERR,
  2336. "RX resource allocation failed.\n");
  2337. goto err_mem;
  2338. }
  2339. }
  2340. /* Allocate tx queue resources */
  2341. for (i = 0; i < qdev->tx_ring_count; i++) {
  2342. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2343. QPRINTK(qdev, IFUP, ERR,
  2344. "TX resource allocation failed.\n");
  2345. goto err_mem;
  2346. }
  2347. }
  2348. return 0;
  2349. err_mem:
  2350. ql_free_mem_resources(qdev);
  2351. return -ENOMEM;
  2352. }
  2353. /* Set up the rx ring control block and pass it to the chip.
  2354. * The control block is defined as
  2355. * "Completion Queue Initialization Control Block", or cqicb.
  2356. */
  2357. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2358. {
  2359. struct cqicb *cqicb = &rx_ring->cqicb;
  2360. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2361. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2362. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2363. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2364. void __iomem *doorbell_area =
  2365. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2366. int err = 0;
  2367. u16 bq_len;
  2368. u64 tmp;
  2369. __le64 *base_indirect_ptr;
  2370. int page_entries;
  2371. /* Set up the shadow registers for this ring. */
  2372. rx_ring->prod_idx_sh_reg = shadow_reg;
  2373. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2374. shadow_reg += sizeof(u64);
  2375. shadow_reg_dma += sizeof(u64);
  2376. rx_ring->lbq_base_indirect = shadow_reg;
  2377. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2378. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2379. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2380. rx_ring->sbq_base_indirect = shadow_reg;
  2381. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2382. /* PCI doorbell mem area + 0x00 for consumer index register */
  2383. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2384. rx_ring->cnsmr_idx = 0;
  2385. rx_ring->curr_entry = rx_ring->cq_base;
  2386. /* PCI doorbell mem area + 0x04 for valid register */
  2387. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2388. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2389. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2390. /* PCI doorbell mem area + 0x1c */
  2391. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2392. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2393. cqicb->msix_vect = rx_ring->irq;
  2394. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2395. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2396. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2397. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2398. /*
  2399. * Set up the control block load flags.
  2400. */
  2401. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2402. FLAGS_LV | /* Load MSI-X vector */
  2403. FLAGS_LI; /* Load irq delay values */
  2404. if (rx_ring->lbq_len) {
  2405. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2406. tmp = (u64)rx_ring->lbq_base_dma;
  2407. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2408. page_entries = 0;
  2409. do {
  2410. *base_indirect_ptr = cpu_to_le64(tmp);
  2411. tmp += DB_PAGE_SIZE;
  2412. base_indirect_ptr++;
  2413. page_entries++;
  2414. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2415. cqicb->lbq_addr =
  2416. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2417. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2418. (u16) rx_ring->lbq_buf_size;
  2419. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2420. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2421. (u16) rx_ring->lbq_len;
  2422. cqicb->lbq_len = cpu_to_le16(bq_len);
  2423. rx_ring->lbq_prod_idx = 0;
  2424. rx_ring->lbq_curr_idx = 0;
  2425. rx_ring->lbq_clean_idx = 0;
  2426. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2427. }
  2428. if (rx_ring->sbq_len) {
  2429. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2430. tmp = (u64)rx_ring->sbq_base_dma;
  2431. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2432. page_entries = 0;
  2433. do {
  2434. *base_indirect_ptr = cpu_to_le64(tmp);
  2435. tmp += DB_PAGE_SIZE;
  2436. base_indirect_ptr++;
  2437. page_entries++;
  2438. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2439. cqicb->sbq_addr =
  2440. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2441. cqicb->sbq_buf_size =
  2442. cpu_to_le16((u16)(rx_ring->sbq_buf_size/2));
  2443. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2444. (u16) rx_ring->sbq_len;
  2445. cqicb->sbq_len = cpu_to_le16(bq_len);
  2446. rx_ring->sbq_prod_idx = 0;
  2447. rx_ring->sbq_curr_idx = 0;
  2448. rx_ring->sbq_clean_idx = 0;
  2449. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2450. }
  2451. switch (rx_ring->type) {
  2452. case TX_Q:
  2453. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2454. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2455. break;
  2456. case RX_Q:
  2457. /* Inbound completion handling rx_rings run in
  2458. * separate NAPI contexts.
  2459. */
  2460. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2461. 64);
  2462. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2463. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2464. break;
  2465. default:
  2466. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2467. rx_ring->type);
  2468. }
  2469. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2470. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2471. CFG_LCQ, rx_ring->cq_id);
  2472. if (err) {
  2473. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2474. return err;
  2475. }
  2476. return err;
  2477. }
  2478. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2479. {
  2480. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2481. void __iomem *doorbell_area =
  2482. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2483. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2484. (tx_ring->wq_id * sizeof(u64));
  2485. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2486. (tx_ring->wq_id * sizeof(u64));
  2487. int err = 0;
  2488. /*
  2489. * Assign doorbell registers for this tx_ring.
  2490. */
  2491. /* TX PCI doorbell mem area for tx producer index */
  2492. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2493. tx_ring->prod_idx = 0;
  2494. /* TX PCI doorbell mem area + 0x04 */
  2495. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2496. /*
  2497. * Assign shadow registers for this tx_ring.
  2498. */
  2499. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2500. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2501. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2502. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2503. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2504. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2505. wqicb->rid = 0;
  2506. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2507. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2508. ql_init_tx_ring(qdev, tx_ring);
  2509. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2510. (u16) tx_ring->wq_id);
  2511. if (err) {
  2512. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2513. return err;
  2514. }
  2515. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2516. return err;
  2517. }
  2518. static void ql_disable_msix(struct ql_adapter *qdev)
  2519. {
  2520. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2521. pci_disable_msix(qdev->pdev);
  2522. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2523. kfree(qdev->msi_x_entry);
  2524. qdev->msi_x_entry = NULL;
  2525. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2526. pci_disable_msi(qdev->pdev);
  2527. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2528. }
  2529. }
  2530. /* We start by trying to get the number of vectors
  2531. * stored in qdev->intr_count. If we don't get that
  2532. * many then we reduce the count and try again.
  2533. */
  2534. static void ql_enable_msix(struct ql_adapter *qdev)
  2535. {
  2536. int i, err;
  2537. /* Get the MSIX vectors. */
  2538. if (irq_type == MSIX_IRQ) {
  2539. /* Try to alloc space for the msix struct,
  2540. * if it fails then go to MSI/legacy.
  2541. */
  2542. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2543. sizeof(struct msix_entry),
  2544. GFP_KERNEL);
  2545. if (!qdev->msi_x_entry) {
  2546. irq_type = MSI_IRQ;
  2547. goto msi;
  2548. }
  2549. for (i = 0; i < qdev->intr_count; i++)
  2550. qdev->msi_x_entry[i].entry = i;
  2551. /* Loop to get our vectors. We start with
  2552. * what we want and settle for what we get.
  2553. */
  2554. do {
  2555. err = pci_enable_msix(qdev->pdev,
  2556. qdev->msi_x_entry, qdev->intr_count);
  2557. if (err > 0)
  2558. qdev->intr_count = err;
  2559. } while (err > 0);
  2560. if (err < 0) {
  2561. kfree(qdev->msi_x_entry);
  2562. qdev->msi_x_entry = NULL;
  2563. QPRINTK(qdev, IFUP, WARNING,
  2564. "MSI-X Enable failed, trying MSI.\n");
  2565. qdev->intr_count = 1;
  2566. irq_type = MSI_IRQ;
  2567. } else if (err == 0) {
  2568. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2569. QPRINTK(qdev, IFUP, INFO,
  2570. "MSI-X Enabled, got %d vectors.\n",
  2571. qdev->intr_count);
  2572. return;
  2573. }
  2574. }
  2575. msi:
  2576. qdev->intr_count = 1;
  2577. if (irq_type == MSI_IRQ) {
  2578. if (!pci_enable_msi(qdev->pdev)) {
  2579. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2580. QPRINTK(qdev, IFUP, INFO,
  2581. "Running with MSI interrupts.\n");
  2582. return;
  2583. }
  2584. }
  2585. irq_type = LEG_IRQ;
  2586. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2587. }
  2588. /* Each vector services 1 RSS ring and and 1 or more
  2589. * TX completion rings. This function loops through
  2590. * the TX completion rings and assigns the vector that
  2591. * will service it. An example would be if there are
  2592. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2593. * This would mean that vector 0 would service RSS ring 0
  2594. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2595. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2596. */
  2597. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2598. {
  2599. int i, j, vect;
  2600. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2601. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2602. /* Assign irq vectors to TX rx_rings.*/
  2603. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2604. i < qdev->rx_ring_count; i++) {
  2605. if (j == tx_rings_per_vector) {
  2606. vect++;
  2607. j = 0;
  2608. }
  2609. qdev->rx_ring[i].irq = vect;
  2610. j++;
  2611. }
  2612. } else {
  2613. /* For single vector all rings have an irq
  2614. * of zero.
  2615. */
  2616. for (i = 0; i < qdev->rx_ring_count; i++)
  2617. qdev->rx_ring[i].irq = 0;
  2618. }
  2619. }
  2620. /* Set the interrupt mask for this vector. Each vector
  2621. * will service 1 RSS ring and 1 or more TX completion
  2622. * rings. This function sets up a bit mask per vector
  2623. * that indicates which rings it services.
  2624. */
  2625. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2626. {
  2627. int j, vect = ctx->intr;
  2628. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2629. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2630. /* Add the RSS ring serviced by this vector
  2631. * to the mask.
  2632. */
  2633. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2634. /* Add the TX ring(s) serviced by this vector
  2635. * to the mask. */
  2636. for (j = 0; j < tx_rings_per_vector; j++) {
  2637. ctx->irq_mask |=
  2638. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2639. (vect * tx_rings_per_vector) + j].cq_id);
  2640. }
  2641. } else {
  2642. /* For single vector we just shift each queue's
  2643. * ID into the mask.
  2644. */
  2645. for (j = 0; j < qdev->rx_ring_count; j++)
  2646. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2647. }
  2648. }
  2649. /*
  2650. * Here we build the intr_context structures based on
  2651. * our rx_ring count and intr vector count.
  2652. * The intr_context structure is used to hook each vector
  2653. * to possibly different handlers.
  2654. */
  2655. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2656. {
  2657. int i = 0;
  2658. struct intr_context *intr_context = &qdev->intr_context[0];
  2659. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2660. /* Each rx_ring has it's
  2661. * own intr_context since we have separate
  2662. * vectors for each queue.
  2663. */
  2664. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2665. qdev->rx_ring[i].irq = i;
  2666. intr_context->intr = i;
  2667. intr_context->qdev = qdev;
  2668. /* Set up this vector's bit-mask that indicates
  2669. * which queues it services.
  2670. */
  2671. ql_set_irq_mask(qdev, intr_context);
  2672. /*
  2673. * We set up each vectors enable/disable/read bits so
  2674. * there's no bit/mask calculations in the critical path.
  2675. */
  2676. intr_context->intr_en_mask =
  2677. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2678. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2679. | i;
  2680. intr_context->intr_dis_mask =
  2681. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2682. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2683. INTR_EN_IHD | i;
  2684. intr_context->intr_read_mask =
  2685. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2686. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2687. i;
  2688. if (i == 0) {
  2689. /* The first vector/queue handles
  2690. * broadcast/multicast, fatal errors,
  2691. * and firmware events. This in addition
  2692. * to normal inbound NAPI processing.
  2693. */
  2694. intr_context->handler = qlge_isr;
  2695. sprintf(intr_context->name, "%s-rx-%d",
  2696. qdev->ndev->name, i);
  2697. } else {
  2698. /*
  2699. * Inbound queues handle unicast frames only.
  2700. */
  2701. intr_context->handler = qlge_msix_rx_isr;
  2702. sprintf(intr_context->name, "%s-rx-%d",
  2703. qdev->ndev->name, i);
  2704. }
  2705. }
  2706. } else {
  2707. /*
  2708. * All rx_rings use the same intr_context since
  2709. * there is only one vector.
  2710. */
  2711. intr_context->intr = 0;
  2712. intr_context->qdev = qdev;
  2713. /*
  2714. * We set up each vectors enable/disable/read bits so
  2715. * there's no bit/mask calculations in the critical path.
  2716. */
  2717. intr_context->intr_en_mask =
  2718. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2719. intr_context->intr_dis_mask =
  2720. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2721. INTR_EN_TYPE_DISABLE;
  2722. intr_context->intr_read_mask =
  2723. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2724. /*
  2725. * Single interrupt means one handler for all rings.
  2726. */
  2727. intr_context->handler = qlge_isr;
  2728. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2729. /* Set up this vector's bit-mask that indicates
  2730. * which queues it services. In this case there is
  2731. * a single vector so it will service all RSS and
  2732. * TX completion rings.
  2733. */
  2734. ql_set_irq_mask(qdev, intr_context);
  2735. }
  2736. /* Tell the TX completion rings which MSIx vector
  2737. * they will be using.
  2738. */
  2739. ql_set_tx_vect(qdev);
  2740. }
  2741. static void ql_free_irq(struct ql_adapter *qdev)
  2742. {
  2743. int i;
  2744. struct intr_context *intr_context = &qdev->intr_context[0];
  2745. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2746. if (intr_context->hooked) {
  2747. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2748. free_irq(qdev->msi_x_entry[i].vector,
  2749. &qdev->rx_ring[i]);
  2750. QPRINTK(qdev, IFDOWN, DEBUG,
  2751. "freeing msix interrupt %d.\n", i);
  2752. } else {
  2753. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2754. QPRINTK(qdev, IFDOWN, DEBUG,
  2755. "freeing msi interrupt %d.\n", i);
  2756. }
  2757. }
  2758. }
  2759. ql_disable_msix(qdev);
  2760. }
  2761. static int ql_request_irq(struct ql_adapter *qdev)
  2762. {
  2763. int i;
  2764. int status = 0;
  2765. struct pci_dev *pdev = qdev->pdev;
  2766. struct intr_context *intr_context = &qdev->intr_context[0];
  2767. ql_resolve_queues_to_irqs(qdev);
  2768. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2769. atomic_set(&intr_context->irq_cnt, 0);
  2770. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2771. status = request_irq(qdev->msi_x_entry[i].vector,
  2772. intr_context->handler,
  2773. 0,
  2774. intr_context->name,
  2775. &qdev->rx_ring[i]);
  2776. if (status) {
  2777. QPRINTK(qdev, IFUP, ERR,
  2778. "Failed request for MSIX interrupt %d.\n",
  2779. i);
  2780. goto err_irq;
  2781. } else {
  2782. QPRINTK(qdev, IFUP, DEBUG,
  2783. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2784. i,
  2785. qdev->rx_ring[i].type ==
  2786. DEFAULT_Q ? "DEFAULT_Q" : "",
  2787. qdev->rx_ring[i].type ==
  2788. TX_Q ? "TX_Q" : "",
  2789. qdev->rx_ring[i].type ==
  2790. RX_Q ? "RX_Q" : "", intr_context->name);
  2791. }
  2792. } else {
  2793. QPRINTK(qdev, IFUP, DEBUG,
  2794. "trying msi or legacy interrupts.\n");
  2795. QPRINTK(qdev, IFUP, DEBUG,
  2796. "%s: irq = %d.\n", __func__, pdev->irq);
  2797. QPRINTK(qdev, IFUP, DEBUG,
  2798. "%s: context->name = %s.\n", __func__,
  2799. intr_context->name);
  2800. QPRINTK(qdev, IFUP, DEBUG,
  2801. "%s: dev_id = 0x%p.\n", __func__,
  2802. &qdev->rx_ring[0]);
  2803. status =
  2804. request_irq(pdev->irq, qlge_isr,
  2805. test_bit(QL_MSI_ENABLED,
  2806. &qdev->
  2807. flags) ? 0 : IRQF_SHARED,
  2808. intr_context->name, &qdev->rx_ring[0]);
  2809. if (status)
  2810. goto err_irq;
  2811. QPRINTK(qdev, IFUP, ERR,
  2812. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2813. i,
  2814. qdev->rx_ring[0].type ==
  2815. DEFAULT_Q ? "DEFAULT_Q" : "",
  2816. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2817. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2818. intr_context->name);
  2819. }
  2820. intr_context->hooked = 1;
  2821. }
  2822. return status;
  2823. err_irq:
  2824. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2825. ql_free_irq(qdev);
  2826. return status;
  2827. }
  2828. static int ql_start_rss(struct ql_adapter *qdev)
  2829. {
  2830. u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  2831. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
  2832. 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
  2833. 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
  2834. 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
  2835. 0xbe, 0xac, 0x01, 0xfa};
  2836. struct ricb *ricb = &qdev->ricb;
  2837. int status = 0;
  2838. int i;
  2839. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2840. memset((void *)ricb, 0, sizeof(*ricb));
  2841. ricb->base_cq = RSS_L4K;
  2842. ricb->flags =
  2843. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  2844. ricb->mask = cpu_to_le16((u16)(0x3ff));
  2845. /*
  2846. * Fill out the Indirection Table.
  2847. */
  2848. for (i = 0; i < 1024; i++)
  2849. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  2850. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  2851. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  2852. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  2853. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  2854. if (status) {
  2855. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2856. return status;
  2857. }
  2858. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  2859. return status;
  2860. }
  2861. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  2862. {
  2863. int i, status = 0;
  2864. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2865. if (status)
  2866. return status;
  2867. /* Clear all the entries in the routing table. */
  2868. for (i = 0; i < 16; i++) {
  2869. status = ql_set_routing_reg(qdev, i, 0, 0);
  2870. if (status) {
  2871. QPRINTK(qdev, IFUP, ERR,
  2872. "Failed to init routing register for CAM "
  2873. "packets.\n");
  2874. break;
  2875. }
  2876. }
  2877. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2878. return status;
  2879. }
  2880. /* Initialize the frame-to-queue routing. */
  2881. static int ql_route_initialize(struct ql_adapter *qdev)
  2882. {
  2883. int status = 0;
  2884. /* Clear all the entries in the routing table. */
  2885. status = ql_clear_routing_entries(qdev);
  2886. if (status)
  2887. return status;
  2888. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  2889. if (status)
  2890. return status;
  2891. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2892. if (status) {
  2893. QPRINTK(qdev, IFUP, ERR,
  2894. "Failed to init routing register for error packets.\n");
  2895. goto exit;
  2896. }
  2897. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2898. if (status) {
  2899. QPRINTK(qdev, IFUP, ERR,
  2900. "Failed to init routing register for broadcast packets.\n");
  2901. goto exit;
  2902. }
  2903. /* If we have more than one inbound queue, then turn on RSS in the
  2904. * routing block.
  2905. */
  2906. if (qdev->rss_ring_count > 1) {
  2907. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2908. RT_IDX_RSS_MATCH, 1);
  2909. if (status) {
  2910. QPRINTK(qdev, IFUP, ERR,
  2911. "Failed to init routing register for MATCH RSS packets.\n");
  2912. goto exit;
  2913. }
  2914. }
  2915. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2916. RT_IDX_CAM_HIT, 1);
  2917. if (status)
  2918. QPRINTK(qdev, IFUP, ERR,
  2919. "Failed to init routing register for CAM packets.\n");
  2920. exit:
  2921. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  2922. return status;
  2923. }
  2924. int ql_cam_route_initialize(struct ql_adapter *qdev)
  2925. {
  2926. int status, set;
  2927. /* If check if the link is up and use to
  2928. * determine if we are setting or clearing
  2929. * the MAC address in the CAM.
  2930. */
  2931. set = ql_read32(qdev, STS);
  2932. set &= qdev->port_link_up;
  2933. status = ql_set_mac_addr(qdev, set);
  2934. if (status) {
  2935. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2936. return status;
  2937. }
  2938. status = ql_route_initialize(qdev);
  2939. if (status)
  2940. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2941. return status;
  2942. }
  2943. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2944. {
  2945. u32 value, mask;
  2946. int i;
  2947. int status = 0;
  2948. /*
  2949. * Set up the System register to halt on errors.
  2950. */
  2951. value = SYS_EFE | SYS_FAE;
  2952. mask = value << 16;
  2953. ql_write32(qdev, SYS, mask | value);
  2954. /* Set the default queue, and VLAN behavior. */
  2955. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  2956. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  2957. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2958. /* Set the MPI interrupt to enabled. */
  2959. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2960. /* Enable the function, set pagesize, enable error checking. */
  2961. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2962. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2963. /* Set/clear header splitting. */
  2964. mask = FSC_VM_PAGESIZE_MASK |
  2965. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2966. ql_write32(qdev, FSC, mask | value);
  2967. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2968. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2969. /* Set RX packet routing to use port/pci function on which the
  2970. * packet arrived on in addition to usual frame routing.
  2971. * This is helpful on bonding where both interfaces can have
  2972. * the same MAC address.
  2973. */
  2974. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  2975. /* Start up the rx queues. */
  2976. for (i = 0; i < qdev->rx_ring_count; i++) {
  2977. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2978. if (status) {
  2979. QPRINTK(qdev, IFUP, ERR,
  2980. "Failed to start rx ring[%d].\n", i);
  2981. return status;
  2982. }
  2983. }
  2984. /* If there is more than one inbound completion queue
  2985. * then download a RICB to configure RSS.
  2986. */
  2987. if (qdev->rss_ring_count > 1) {
  2988. status = ql_start_rss(qdev);
  2989. if (status) {
  2990. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2991. return status;
  2992. }
  2993. }
  2994. /* Start up the tx queues. */
  2995. for (i = 0; i < qdev->tx_ring_count; i++) {
  2996. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2997. if (status) {
  2998. QPRINTK(qdev, IFUP, ERR,
  2999. "Failed to start tx ring[%d].\n", i);
  3000. return status;
  3001. }
  3002. }
  3003. /* Initialize the port and set the max framesize. */
  3004. status = qdev->nic_ops->port_initialize(qdev);
  3005. if (status) {
  3006. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  3007. return status;
  3008. }
  3009. /* Set up the MAC address and frame routing filter. */
  3010. status = ql_cam_route_initialize(qdev);
  3011. if (status) {
  3012. QPRINTK(qdev, IFUP, ERR,
  3013. "Failed to init CAM/Routing tables.\n");
  3014. return status;
  3015. }
  3016. /* Start NAPI for the RSS queues. */
  3017. for (i = 0; i < qdev->rss_ring_count; i++) {
  3018. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  3019. i);
  3020. napi_enable(&qdev->rx_ring[i].napi);
  3021. }
  3022. return status;
  3023. }
  3024. /* Issue soft reset to chip. */
  3025. static int ql_adapter_reset(struct ql_adapter *qdev)
  3026. {
  3027. u32 value;
  3028. int status = 0;
  3029. unsigned long end_jiffies;
  3030. /* Clear all the entries in the routing table. */
  3031. status = ql_clear_routing_entries(qdev);
  3032. if (status) {
  3033. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3034. return status;
  3035. }
  3036. end_jiffies = jiffies +
  3037. max((unsigned long)1, usecs_to_jiffies(30));
  3038. /* Stop management traffic. */
  3039. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3040. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3041. ql_wait_fifo_empty(qdev);
  3042. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3043. do {
  3044. value = ql_read32(qdev, RST_FO);
  3045. if ((value & RST_FO_FR) == 0)
  3046. break;
  3047. cpu_relax();
  3048. } while (time_before(jiffies, end_jiffies));
  3049. if (value & RST_FO_FR) {
  3050. QPRINTK(qdev, IFDOWN, ERR,
  3051. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3052. status = -ETIMEDOUT;
  3053. }
  3054. /* Resume management traffic. */
  3055. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3056. return status;
  3057. }
  3058. static void ql_display_dev_info(struct net_device *ndev)
  3059. {
  3060. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3061. QPRINTK(qdev, PROBE, INFO,
  3062. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3063. "XG Roll = %d, XG Rev = %d.\n",
  3064. qdev->func,
  3065. qdev->port,
  3066. qdev->chip_rev_id & 0x0000000f,
  3067. qdev->chip_rev_id >> 4 & 0x0000000f,
  3068. qdev->chip_rev_id >> 8 & 0x0000000f,
  3069. qdev->chip_rev_id >> 12 & 0x0000000f);
  3070. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3071. }
  3072. static int ql_adapter_down(struct ql_adapter *qdev)
  3073. {
  3074. int i, status = 0;
  3075. ql_link_off(qdev);
  3076. /* Don't kill the reset worker thread if we
  3077. * are in the process of recovery.
  3078. */
  3079. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3080. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3081. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3082. cancel_delayed_work_sync(&qdev->mpi_work);
  3083. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3084. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3085. for (i = 0; i < qdev->rss_ring_count; i++)
  3086. napi_disable(&qdev->rx_ring[i].napi);
  3087. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3088. ql_disable_interrupts(qdev);
  3089. ql_tx_ring_clean(qdev);
  3090. /* Call netif_napi_del() from common point.
  3091. */
  3092. for (i = 0; i < qdev->rss_ring_count; i++)
  3093. netif_napi_del(&qdev->rx_ring[i].napi);
  3094. ql_free_rx_buffers(qdev);
  3095. status = ql_adapter_reset(qdev);
  3096. if (status)
  3097. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3098. qdev->func);
  3099. return status;
  3100. }
  3101. static int ql_adapter_up(struct ql_adapter *qdev)
  3102. {
  3103. int err = 0;
  3104. err = ql_adapter_initialize(qdev);
  3105. if (err) {
  3106. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3107. goto err_init;
  3108. }
  3109. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3110. ql_alloc_rx_buffers(qdev);
  3111. /* If the port is initialized and the
  3112. * link is up the turn on the carrier.
  3113. */
  3114. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3115. (ql_read32(qdev, STS) & qdev->port_link_up))
  3116. ql_link_on(qdev);
  3117. ql_enable_interrupts(qdev);
  3118. ql_enable_all_completion_interrupts(qdev);
  3119. netif_tx_start_all_queues(qdev->ndev);
  3120. return 0;
  3121. err_init:
  3122. ql_adapter_reset(qdev);
  3123. return err;
  3124. }
  3125. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3126. {
  3127. ql_free_mem_resources(qdev);
  3128. ql_free_irq(qdev);
  3129. }
  3130. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3131. {
  3132. int status = 0;
  3133. if (ql_alloc_mem_resources(qdev)) {
  3134. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3135. return -ENOMEM;
  3136. }
  3137. status = ql_request_irq(qdev);
  3138. return status;
  3139. }
  3140. static int qlge_close(struct net_device *ndev)
  3141. {
  3142. struct ql_adapter *qdev = netdev_priv(ndev);
  3143. /*
  3144. * Wait for device to recover from a reset.
  3145. * (Rarely happens, but possible.)
  3146. */
  3147. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3148. msleep(1);
  3149. ql_adapter_down(qdev);
  3150. ql_release_adapter_resources(qdev);
  3151. return 0;
  3152. }
  3153. static int ql_configure_rings(struct ql_adapter *qdev)
  3154. {
  3155. int i;
  3156. struct rx_ring *rx_ring;
  3157. struct tx_ring *tx_ring;
  3158. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3159. /* In a perfect world we have one RSS ring for each CPU
  3160. * and each has it's own vector. To do that we ask for
  3161. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3162. * vector count to what we actually get. We then
  3163. * allocate an RSS ring for each.
  3164. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3165. */
  3166. qdev->intr_count = cpu_cnt;
  3167. ql_enable_msix(qdev);
  3168. /* Adjust the RSS ring count to the actual vector count. */
  3169. qdev->rss_ring_count = qdev->intr_count;
  3170. qdev->tx_ring_count = cpu_cnt;
  3171. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3172. for (i = 0; i < qdev->tx_ring_count; i++) {
  3173. tx_ring = &qdev->tx_ring[i];
  3174. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3175. tx_ring->qdev = qdev;
  3176. tx_ring->wq_id = i;
  3177. tx_ring->wq_len = qdev->tx_ring_size;
  3178. tx_ring->wq_size =
  3179. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3180. /*
  3181. * The completion queue ID for the tx rings start
  3182. * immediately after the rss rings.
  3183. */
  3184. tx_ring->cq_id = qdev->rss_ring_count + i;
  3185. }
  3186. for (i = 0; i < qdev->rx_ring_count; i++) {
  3187. rx_ring = &qdev->rx_ring[i];
  3188. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3189. rx_ring->qdev = qdev;
  3190. rx_ring->cq_id = i;
  3191. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3192. if (i < qdev->rss_ring_count) {
  3193. /*
  3194. * Inbound (RSS) queues.
  3195. */
  3196. rx_ring->cq_len = qdev->rx_ring_size;
  3197. rx_ring->cq_size =
  3198. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3199. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3200. rx_ring->lbq_size =
  3201. rx_ring->lbq_len * sizeof(__le64);
  3202. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3203. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3204. rx_ring->sbq_size =
  3205. rx_ring->sbq_len * sizeof(__le64);
  3206. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3207. rx_ring->type = RX_Q;
  3208. } else {
  3209. /*
  3210. * Outbound queue handles outbound completions only.
  3211. */
  3212. /* outbound cq is same size as tx_ring it services. */
  3213. rx_ring->cq_len = qdev->tx_ring_size;
  3214. rx_ring->cq_size =
  3215. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3216. rx_ring->lbq_len = 0;
  3217. rx_ring->lbq_size = 0;
  3218. rx_ring->lbq_buf_size = 0;
  3219. rx_ring->sbq_len = 0;
  3220. rx_ring->sbq_size = 0;
  3221. rx_ring->sbq_buf_size = 0;
  3222. rx_ring->type = TX_Q;
  3223. }
  3224. }
  3225. return 0;
  3226. }
  3227. static int qlge_open(struct net_device *ndev)
  3228. {
  3229. int err = 0;
  3230. struct ql_adapter *qdev = netdev_priv(ndev);
  3231. err = ql_configure_rings(qdev);
  3232. if (err)
  3233. return err;
  3234. err = ql_get_adapter_resources(qdev);
  3235. if (err)
  3236. goto error_up;
  3237. err = ql_adapter_up(qdev);
  3238. if (err)
  3239. goto error_up;
  3240. return err;
  3241. error_up:
  3242. ql_release_adapter_resources(qdev);
  3243. return err;
  3244. }
  3245. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3246. {
  3247. struct ql_adapter *qdev = netdev_priv(ndev);
  3248. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3249. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3250. queue_delayed_work(qdev->workqueue,
  3251. &qdev->mpi_port_cfg_work, 0);
  3252. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3253. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3254. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3255. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3256. return 0;
  3257. } else
  3258. return -EINVAL;
  3259. ndev->mtu = new_mtu;
  3260. return 0;
  3261. }
  3262. static struct net_device_stats *qlge_get_stats(struct net_device
  3263. *ndev)
  3264. {
  3265. struct ql_adapter *qdev = netdev_priv(ndev);
  3266. return &qdev->stats;
  3267. }
  3268. static void qlge_set_multicast_list(struct net_device *ndev)
  3269. {
  3270. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3271. struct dev_mc_list *mc_ptr;
  3272. int i, status;
  3273. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3274. if (status)
  3275. return;
  3276. /*
  3277. * Set or clear promiscuous mode if a
  3278. * transition is taking place.
  3279. */
  3280. if (ndev->flags & IFF_PROMISC) {
  3281. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3282. if (ql_set_routing_reg
  3283. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3284. QPRINTK(qdev, HW, ERR,
  3285. "Failed to set promiscous mode.\n");
  3286. } else {
  3287. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3288. }
  3289. }
  3290. } else {
  3291. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3292. if (ql_set_routing_reg
  3293. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3294. QPRINTK(qdev, HW, ERR,
  3295. "Failed to clear promiscous mode.\n");
  3296. } else {
  3297. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3298. }
  3299. }
  3300. }
  3301. /*
  3302. * Set or clear all multicast mode if a
  3303. * transition is taking place.
  3304. */
  3305. if ((ndev->flags & IFF_ALLMULTI) ||
  3306. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3307. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3308. if (ql_set_routing_reg
  3309. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3310. QPRINTK(qdev, HW, ERR,
  3311. "Failed to set all-multi mode.\n");
  3312. } else {
  3313. set_bit(QL_ALLMULTI, &qdev->flags);
  3314. }
  3315. }
  3316. } else {
  3317. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3318. if (ql_set_routing_reg
  3319. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3320. QPRINTK(qdev, HW, ERR,
  3321. "Failed to clear all-multi mode.\n");
  3322. } else {
  3323. clear_bit(QL_ALLMULTI, &qdev->flags);
  3324. }
  3325. }
  3326. }
  3327. if (ndev->mc_count) {
  3328. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3329. if (status)
  3330. goto exit;
  3331. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3332. i++, mc_ptr = mc_ptr->next)
  3333. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3334. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3335. QPRINTK(qdev, HW, ERR,
  3336. "Failed to loadmulticast address.\n");
  3337. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3338. goto exit;
  3339. }
  3340. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3341. if (ql_set_routing_reg
  3342. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3343. QPRINTK(qdev, HW, ERR,
  3344. "Failed to set multicast match mode.\n");
  3345. } else {
  3346. set_bit(QL_ALLMULTI, &qdev->flags);
  3347. }
  3348. }
  3349. exit:
  3350. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3351. }
  3352. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3353. {
  3354. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3355. struct sockaddr *addr = p;
  3356. int status;
  3357. if (netif_running(ndev))
  3358. return -EBUSY;
  3359. if (!is_valid_ether_addr(addr->sa_data))
  3360. return -EADDRNOTAVAIL;
  3361. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3362. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3363. if (status)
  3364. return status;
  3365. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3366. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3367. if (status)
  3368. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3369. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3370. return status;
  3371. }
  3372. static void qlge_tx_timeout(struct net_device *ndev)
  3373. {
  3374. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3375. ql_queue_asic_error(qdev);
  3376. }
  3377. static void ql_asic_reset_work(struct work_struct *work)
  3378. {
  3379. struct ql_adapter *qdev =
  3380. container_of(work, struct ql_adapter, asic_reset_work.work);
  3381. int status;
  3382. rtnl_lock();
  3383. status = ql_adapter_down(qdev);
  3384. if (status)
  3385. goto error;
  3386. status = ql_adapter_up(qdev);
  3387. if (status)
  3388. goto error;
  3389. /* Restore rx mode. */
  3390. clear_bit(QL_ALLMULTI, &qdev->flags);
  3391. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3392. qlge_set_multicast_list(qdev->ndev);
  3393. rtnl_unlock();
  3394. return;
  3395. error:
  3396. QPRINTK(qdev, IFUP, ALERT,
  3397. "Driver up/down cycle failed, closing device\n");
  3398. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3399. dev_close(qdev->ndev);
  3400. rtnl_unlock();
  3401. }
  3402. static struct nic_operations qla8012_nic_ops = {
  3403. .get_flash = ql_get_8012_flash_params,
  3404. .port_initialize = ql_8012_port_initialize,
  3405. };
  3406. static struct nic_operations qla8000_nic_ops = {
  3407. .get_flash = ql_get_8000_flash_params,
  3408. .port_initialize = ql_8000_port_initialize,
  3409. };
  3410. /* Find the pcie function number for the other NIC
  3411. * on this chip. Since both NIC functions share a
  3412. * common firmware we have the lowest enabled function
  3413. * do any common work. Examples would be resetting
  3414. * after a fatal firmware error, or doing a firmware
  3415. * coredump.
  3416. */
  3417. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3418. {
  3419. int status = 0;
  3420. u32 temp;
  3421. u32 nic_func1, nic_func2;
  3422. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3423. &temp);
  3424. if (status)
  3425. return status;
  3426. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3427. MPI_TEST_NIC_FUNC_MASK);
  3428. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3429. MPI_TEST_NIC_FUNC_MASK);
  3430. if (qdev->func == nic_func1)
  3431. qdev->alt_func = nic_func2;
  3432. else if (qdev->func == nic_func2)
  3433. qdev->alt_func = nic_func1;
  3434. else
  3435. status = -EIO;
  3436. return status;
  3437. }
  3438. static int ql_get_board_info(struct ql_adapter *qdev)
  3439. {
  3440. int status;
  3441. qdev->func =
  3442. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3443. if (qdev->func > 3)
  3444. return -EIO;
  3445. status = ql_get_alt_pcie_func(qdev);
  3446. if (status)
  3447. return status;
  3448. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3449. if (qdev->port) {
  3450. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3451. qdev->port_link_up = STS_PL1;
  3452. qdev->port_init = STS_PI1;
  3453. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3454. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3455. } else {
  3456. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3457. qdev->port_link_up = STS_PL0;
  3458. qdev->port_init = STS_PI0;
  3459. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3460. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3461. }
  3462. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3463. qdev->device_id = qdev->pdev->device;
  3464. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3465. qdev->nic_ops = &qla8012_nic_ops;
  3466. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3467. qdev->nic_ops = &qla8000_nic_ops;
  3468. return status;
  3469. }
  3470. static void ql_release_all(struct pci_dev *pdev)
  3471. {
  3472. struct net_device *ndev = pci_get_drvdata(pdev);
  3473. struct ql_adapter *qdev = netdev_priv(ndev);
  3474. if (qdev->workqueue) {
  3475. destroy_workqueue(qdev->workqueue);
  3476. qdev->workqueue = NULL;
  3477. }
  3478. if (qdev->reg_base)
  3479. iounmap(qdev->reg_base);
  3480. if (qdev->doorbell_area)
  3481. iounmap(qdev->doorbell_area);
  3482. pci_release_regions(pdev);
  3483. pci_set_drvdata(pdev, NULL);
  3484. }
  3485. static int __devinit ql_init_device(struct pci_dev *pdev,
  3486. struct net_device *ndev, int cards_found)
  3487. {
  3488. struct ql_adapter *qdev = netdev_priv(ndev);
  3489. int pos, err = 0;
  3490. u16 val16;
  3491. memset((void *)qdev, 0, sizeof(*qdev));
  3492. err = pci_enable_device(pdev);
  3493. if (err) {
  3494. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3495. return err;
  3496. }
  3497. qdev->ndev = ndev;
  3498. qdev->pdev = pdev;
  3499. pci_set_drvdata(pdev, ndev);
  3500. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3501. if (pos <= 0) {
  3502. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3503. "aborting.\n");
  3504. return pos;
  3505. } else {
  3506. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3507. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3508. val16 |= (PCI_EXP_DEVCTL_CERE |
  3509. PCI_EXP_DEVCTL_NFERE |
  3510. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3511. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3512. }
  3513. err = pci_request_regions(pdev, DRV_NAME);
  3514. if (err) {
  3515. dev_err(&pdev->dev, "PCI region request failed.\n");
  3516. return err;
  3517. }
  3518. pci_set_master(pdev);
  3519. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3520. set_bit(QL_DMA64, &qdev->flags);
  3521. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3522. } else {
  3523. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3524. if (!err)
  3525. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3526. }
  3527. if (err) {
  3528. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3529. goto err_out;
  3530. }
  3531. /* Set PCIe reset type for EEH to fundamental. */
  3532. pdev->needs_freset = 1;
  3533. pci_save_state(pdev);
  3534. qdev->reg_base =
  3535. ioremap_nocache(pci_resource_start(pdev, 1),
  3536. pci_resource_len(pdev, 1));
  3537. if (!qdev->reg_base) {
  3538. dev_err(&pdev->dev, "Register mapping failed.\n");
  3539. err = -ENOMEM;
  3540. goto err_out;
  3541. }
  3542. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3543. qdev->doorbell_area =
  3544. ioremap_nocache(pci_resource_start(pdev, 3),
  3545. pci_resource_len(pdev, 3));
  3546. if (!qdev->doorbell_area) {
  3547. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3548. err = -ENOMEM;
  3549. goto err_out;
  3550. }
  3551. err = ql_get_board_info(qdev);
  3552. if (err) {
  3553. dev_err(&pdev->dev, "Register access failed.\n");
  3554. err = -EIO;
  3555. goto err_out;
  3556. }
  3557. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3558. spin_lock_init(&qdev->hw_lock);
  3559. spin_lock_init(&qdev->stats_lock);
  3560. /* make sure the EEPROM is good */
  3561. err = qdev->nic_ops->get_flash(qdev);
  3562. if (err) {
  3563. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3564. goto err_out;
  3565. }
  3566. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3567. /* Set up the default ring sizes. */
  3568. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3569. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3570. /* Set up the coalescing parameters. */
  3571. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3572. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3573. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3574. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3575. /*
  3576. * Set up the operating parameters.
  3577. */
  3578. qdev->rx_csum = 1;
  3579. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3580. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3581. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3582. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3583. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  3584. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  3585. init_completion(&qdev->ide_completion);
  3586. if (!cards_found) {
  3587. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3588. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3589. DRV_NAME, DRV_VERSION);
  3590. }
  3591. return 0;
  3592. err_out:
  3593. ql_release_all(pdev);
  3594. pci_disable_device(pdev);
  3595. return err;
  3596. }
  3597. static const struct net_device_ops qlge_netdev_ops = {
  3598. .ndo_open = qlge_open,
  3599. .ndo_stop = qlge_close,
  3600. .ndo_start_xmit = qlge_send,
  3601. .ndo_change_mtu = qlge_change_mtu,
  3602. .ndo_get_stats = qlge_get_stats,
  3603. .ndo_set_multicast_list = qlge_set_multicast_list,
  3604. .ndo_set_mac_address = qlge_set_mac_address,
  3605. .ndo_validate_addr = eth_validate_addr,
  3606. .ndo_tx_timeout = qlge_tx_timeout,
  3607. .ndo_vlan_rx_register = ql_vlan_rx_register,
  3608. .ndo_vlan_rx_add_vid = ql_vlan_rx_add_vid,
  3609. .ndo_vlan_rx_kill_vid = ql_vlan_rx_kill_vid,
  3610. };
  3611. static int __devinit qlge_probe(struct pci_dev *pdev,
  3612. const struct pci_device_id *pci_entry)
  3613. {
  3614. struct net_device *ndev = NULL;
  3615. struct ql_adapter *qdev = NULL;
  3616. static int cards_found = 0;
  3617. int err = 0;
  3618. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  3619. min(MAX_CPUS, (int)num_online_cpus()));
  3620. if (!ndev)
  3621. return -ENOMEM;
  3622. err = ql_init_device(pdev, ndev, cards_found);
  3623. if (err < 0) {
  3624. free_netdev(ndev);
  3625. return err;
  3626. }
  3627. qdev = netdev_priv(ndev);
  3628. SET_NETDEV_DEV(ndev, &pdev->dev);
  3629. ndev->features = (0
  3630. | NETIF_F_IP_CSUM
  3631. | NETIF_F_SG
  3632. | NETIF_F_TSO
  3633. | NETIF_F_TSO6
  3634. | NETIF_F_TSO_ECN
  3635. | NETIF_F_HW_VLAN_TX
  3636. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3637. ndev->features |= NETIF_F_GRO;
  3638. if (test_bit(QL_DMA64, &qdev->flags))
  3639. ndev->features |= NETIF_F_HIGHDMA;
  3640. /*
  3641. * Set up net_device structure.
  3642. */
  3643. ndev->tx_queue_len = qdev->tx_ring_size;
  3644. ndev->irq = pdev->irq;
  3645. ndev->netdev_ops = &qlge_netdev_ops;
  3646. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3647. ndev->watchdog_timeo = 10 * HZ;
  3648. err = register_netdev(ndev);
  3649. if (err) {
  3650. dev_err(&pdev->dev, "net device registration failed.\n");
  3651. ql_release_all(pdev);
  3652. pci_disable_device(pdev);
  3653. return err;
  3654. }
  3655. ql_link_off(qdev);
  3656. ql_display_dev_info(ndev);
  3657. cards_found++;
  3658. return 0;
  3659. }
  3660. static void __devexit qlge_remove(struct pci_dev *pdev)
  3661. {
  3662. struct net_device *ndev = pci_get_drvdata(pdev);
  3663. unregister_netdev(ndev);
  3664. ql_release_all(pdev);
  3665. pci_disable_device(pdev);
  3666. free_netdev(ndev);
  3667. }
  3668. /* Clean up resources without touching hardware. */
  3669. static void ql_eeh_close(struct net_device *ndev)
  3670. {
  3671. int i;
  3672. struct ql_adapter *qdev = netdev_priv(ndev);
  3673. if (netif_carrier_ok(ndev)) {
  3674. netif_carrier_off(ndev);
  3675. netif_stop_queue(ndev);
  3676. }
  3677. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3678. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3679. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3680. cancel_delayed_work_sync(&qdev->mpi_work);
  3681. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3682. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3683. for (i = 0; i < qdev->rss_ring_count; i++)
  3684. netif_napi_del(&qdev->rx_ring[i].napi);
  3685. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3686. ql_tx_ring_clean(qdev);
  3687. ql_free_rx_buffers(qdev);
  3688. ql_release_adapter_resources(qdev);
  3689. }
  3690. /*
  3691. * This callback is called by the PCI subsystem whenever
  3692. * a PCI bus error is detected.
  3693. */
  3694. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3695. enum pci_channel_state state)
  3696. {
  3697. struct net_device *ndev = pci_get_drvdata(pdev);
  3698. switch (state) {
  3699. case pci_channel_io_normal:
  3700. return PCI_ERS_RESULT_CAN_RECOVER;
  3701. case pci_channel_io_frozen:
  3702. netif_device_detach(ndev);
  3703. if (netif_running(ndev))
  3704. ql_eeh_close(ndev);
  3705. pci_disable_device(pdev);
  3706. return PCI_ERS_RESULT_NEED_RESET;
  3707. case pci_channel_io_perm_failure:
  3708. dev_err(&pdev->dev,
  3709. "%s: pci_channel_io_perm_failure.\n", __func__);
  3710. return PCI_ERS_RESULT_DISCONNECT;
  3711. }
  3712. /* Request a slot reset. */
  3713. return PCI_ERS_RESULT_NEED_RESET;
  3714. }
  3715. /*
  3716. * This callback is called after the PCI buss has been reset.
  3717. * Basically, this tries to restart the card from scratch.
  3718. * This is a shortened version of the device probe/discovery code,
  3719. * it resembles the first-half of the () routine.
  3720. */
  3721. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3722. {
  3723. struct net_device *ndev = pci_get_drvdata(pdev);
  3724. struct ql_adapter *qdev = netdev_priv(ndev);
  3725. pdev->error_state = pci_channel_io_normal;
  3726. pci_restore_state(pdev);
  3727. if (pci_enable_device(pdev)) {
  3728. QPRINTK(qdev, IFUP, ERR,
  3729. "Cannot re-enable PCI device after reset.\n");
  3730. return PCI_ERS_RESULT_DISCONNECT;
  3731. }
  3732. pci_set_master(pdev);
  3733. return PCI_ERS_RESULT_RECOVERED;
  3734. }
  3735. static void qlge_io_resume(struct pci_dev *pdev)
  3736. {
  3737. struct net_device *ndev = pci_get_drvdata(pdev);
  3738. struct ql_adapter *qdev = netdev_priv(ndev);
  3739. int err = 0;
  3740. if (ql_adapter_reset(qdev))
  3741. QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
  3742. if (netif_running(ndev)) {
  3743. err = qlge_open(ndev);
  3744. if (err) {
  3745. QPRINTK(qdev, IFUP, ERR,
  3746. "Device initialization failed after reset.\n");
  3747. return;
  3748. }
  3749. } else {
  3750. QPRINTK(qdev, IFUP, ERR,
  3751. "Device was not running prior to EEH.\n");
  3752. }
  3753. netif_device_attach(ndev);
  3754. }
  3755. static struct pci_error_handlers qlge_err_handler = {
  3756. .error_detected = qlge_io_error_detected,
  3757. .slot_reset = qlge_io_slot_reset,
  3758. .resume = qlge_io_resume,
  3759. };
  3760. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3761. {
  3762. struct net_device *ndev = pci_get_drvdata(pdev);
  3763. struct ql_adapter *qdev = netdev_priv(ndev);
  3764. int err;
  3765. netif_device_detach(ndev);
  3766. if (netif_running(ndev)) {
  3767. err = ql_adapter_down(qdev);
  3768. if (!err)
  3769. return err;
  3770. }
  3771. err = pci_save_state(pdev);
  3772. if (err)
  3773. return err;
  3774. pci_disable_device(pdev);
  3775. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3776. return 0;
  3777. }
  3778. #ifdef CONFIG_PM
  3779. static int qlge_resume(struct pci_dev *pdev)
  3780. {
  3781. struct net_device *ndev = pci_get_drvdata(pdev);
  3782. struct ql_adapter *qdev = netdev_priv(ndev);
  3783. int err;
  3784. pci_set_power_state(pdev, PCI_D0);
  3785. pci_restore_state(pdev);
  3786. err = pci_enable_device(pdev);
  3787. if (err) {
  3788. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3789. return err;
  3790. }
  3791. pci_set_master(pdev);
  3792. pci_enable_wake(pdev, PCI_D3hot, 0);
  3793. pci_enable_wake(pdev, PCI_D3cold, 0);
  3794. if (netif_running(ndev)) {
  3795. err = ql_adapter_up(qdev);
  3796. if (err)
  3797. return err;
  3798. }
  3799. netif_device_attach(ndev);
  3800. return 0;
  3801. }
  3802. #endif /* CONFIG_PM */
  3803. static void qlge_shutdown(struct pci_dev *pdev)
  3804. {
  3805. qlge_suspend(pdev, PMSG_SUSPEND);
  3806. }
  3807. static struct pci_driver qlge_driver = {
  3808. .name = DRV_NAME,
  3809. .id_table = qlge_pci_tbl,
  3810. .probe = qlge_probe,
  3811. .remove = __devexit_p(qlge_remove),
  3812. #ifdef CONFIG_PM
  3813. .suspend = qlge_suspend,
  3814. .resume = qlge_resume,
  3815. #endif
  3816. .shutdown = qlge_shutdown,
  3817. .err_handler = &qlge_err_handler
  3818. };
  3819. static int __init qlge_init_module(void)
  3820. {
  3821. return pci_register_driver(&qlge_driver);
  3822. }
  3823. static void __exit qlge_exit(void)
  3824. {
  3825. pci_unregister_driver(&qlge_driver);
  3826. }
  3827. module_init(qlge_init_module);
  3828. module_exit(qlge_exit);