niu.c 232 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/pci.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/ethtool.h>
  11. #include <linux/etherdevice.h>
  12. #include <linux/platform_device.h>
  13. #include <linux/delay.h>
  14. #include <linux/bitops.h>
  15. #include <linux/mii.h>
  16. #include <linux/if_ether.h>
  17. #include <linux/if_vlan.h>
  18. #include <linux/ip.h>
  19. #include <linux/in.h>
  20. #include <linux/ipv6.h>
  21. #include <linux/log2.h>
  22. #include <linux/jiffies.h>
  23. #include <linux/crc32.h>
  24. #include <linux/list.h>
  25. #include <linux/io.h>
  26. #ifdef CONFIG_SPARC64
  27. #include <linux/of_device.h>
  28. #endif
  29. #include "niu.h"
  30. #define DRV_MODULE_NAME "niu"
  31. #define PFX DRV_MODULE_NAME ": "
  32. #define DRV_MODULE_VERSION "1.0"
  33. #define DRV_MODULE_RELDATE "Nov 14, 2008"
  34. static char version[] __devinitdata =
  35. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  36. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  37. MODULE_DESCRIPTION("NIU ethernet driver");
  38. MODULE_LICENSE("GPL");
  39. MODULE_VERSION(DRV_MODULE_VERSION);
  40. #ifndef DMA_44BIT_MASK
  41. #define DMA_44BIT_MASK 0x00000fffffffffffULL
  42. #endif
  43. #ifndef readq
  44. static u64 readq(void __iomem *reg)
  45. {
  46. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  47. }
  48. static void writeq(u64 val, void __iomem *reg)
  49. {
  50. writel(val & 0xffffffff, reg);
  51. writel(val >> 32, reg + 0x4UL);
  52. }
  53. #endif
  54. static struct pci_device_id niu_pci_tbl[] = {
  55. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  56. {}
  57. };
  58. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  59. #define NIU_TX_TIMEOUT (5 * HZ)
  60. #define nr64(reg) readq(np->regs + (reg))
  61. #define nw64(reg, val) writeq((val), np->regs + (reg))
  62. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  63. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  64. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  65. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  66. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  67. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  68. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  69. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  70. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  71. static int niu_debug;
  72. static int debug = -1;
  73. module_param(debug, int, 0);
  74. MODULE_PARM_DESC(debug, "NIU debug level");
  75. #define niudbg(TYPE, f, a...) \
  76. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  77. printk(KERN_DEBUG PFX f, ## a); \
  78. } while (0)
  79. #define niuinfo(TYPE, f, a...) \
  80. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  81. printk(KERN_INFO PFX f, ## a); \
  82. } while (0)
  83. #define niuwarn(TYPE, f, a...) \
  84. do { if ((np)->msg_enable & NETIF_MSG_##TYPE) \
  85. printk(KERN_WARNING PFX f, ## a); \
  86. } while (0)
  87. #define niu_lock_parent(np, flags) \
  88. spin_lock_irqsave(&np->parent->lock, flags)
  89. #define niu_unlock_parent(np, flags) \
  90. spin_unlock_irqrestore(&np->parent->lock, flags)
  91. static int serdes_init_10g_serdes(struct niu *np);
  92. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  93. u64 bits, int limit, int delay)
  94. {
  95. while (--limit >= 0) {
  96. u64 val = nr64_mac(reg);
  97. if (!(val & bits))
  98. break;
  99. udelay(delay);
  100. }
  101. if (limit < 0)
  102. return -ENODEV;
  103. return 0;
  104. }
  105. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  106. u64 bits, int limit, int delay,
  107. const char *reg_name)
  108. {
  109. int err;
  110. nw64_mac(reg, bits);
  111. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  112. if (err)
  113. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  114. "would not clear, val[%llx]\n",
  115. np->dev->name, (unsigned long long) bits, reg_name,
  116. (unsigned long long) nr64_mac(reg));
  117. return err;
  118. }
  119. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  120. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  121. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  122. })
  123. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  124. u64 bits, int limit, int delay)
  125. {
  126. while (--limit >= 0) {
  127. u64 val = nr64_ipp(reg);
  128. if (!(val & bits))
  129. break;
  130. udelay(delay);
  131. }
  132. if (limit < 0)
  133. return -ENODEV;
  134. return 0;
  135. }
  136. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  137. u64 bits, int limit, int delay,
  138. const char *reg_name)
  139. {
  140. int err;
  141. u64 val;
  142. val = nr64_ipp(reg);
  143. val |= bits;
  144. nw64_ipp(reg, val);
  145. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  146. if (err)
  147. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  148. "would not clear, val[%llx]\n",
  149. np->dev->name, (unsigned long long) bits, reg_name,
  150. (unsigned long long) nr64_ipp(reg));
  151. return err;
  152. }
  153. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  154. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  155. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  156. })
  157. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  158. u64 bits, int limit, int delay)
  159. {
  160. while (--limit >= 0) {
  161. u64 val = nr64(reg);
  162. if (!(val & bits))
  163. break;
  164. udelay(delay);
  165. }
  166. if (limit < 0)
  167. return -ENODEV;
  168. return 0;
  169. }
  170. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  171. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  172. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  173. })
  174. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  175. u64 bits, int limit, int delay,
  176. const char *reg_name)
  177. {
  178. int err;
  179. nw64(reg, bits);
  180. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  181. if (err)
  182. dev_err(np->device, PFX "%s: bits (%llx) of register %s "
  183. "would not clear, val[%llx]\n",
  184. np->dev->name, (unsigned long long) bits, reg_name,
  185. (unsigned long long) nr64(reg));
  186. return err;
  187. }
  188. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  189. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  190. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  191. })
  192. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  193. {
  194. u64 val = (u64) lp->timer;
  195. if (on)
  196. val |= LDG_IMGMT_ARM;
  197. nw64(LDG_IMGMT(lp->ldg_num), val);
  198. }
  199. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  200. {
  201. unsigned long mask_reg, bits;
  202. u64 val;
  203. if (ldn < 0 || ldn > LDN_MAX)
  204. return -EINVAL;
  205. if (ldn < 64) {
  206. mask_reg = LD_IM0(ldn);
  207. bits = LD_IM0_MASK;
  208. } else {
  209. mask_reg = LD_IM1(ldn - 64);
  210. bits = LD_IM1_MASK;
  211. }
  212. val = nr64(mask_reg);
  213. if (on)
  214. val &= ~bits;
  215. else
  216. val |= bits;
  217. nw64(mask_reg, val);
  218. return 0;
  219. }
  220. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  221. {
  222. struct niu_parent *parent = np->parent;
  223. int i;
  224. for (i = 0; i <= LDN_MAX; i++) {
  225. int err;
  226. if (parent->ldg_map[i] != lp->ldg_num)
  227. continue;
  228. err = niu_ldn_irq_enable(np, i, on);
  229. if (err)
  230. return err;
  231. }
  232. return 0;
  233. }
  234. static int niu_enable_interrupts(struct niu *np, int on)
  235. {
  236. int i;
  237. for (i = 0; i < np->num_ldg; i++) {
  238. struct niu_ldg *lp = &np->ldg[i];
  239. int err;
  240. err = niu_enable_ldn_in_ldg(np, lp, on);
  241. if (err)
  242. return err;
  243. }
  244. for (i = 0; i < np->num_ldg; i++)
  245. niu_ldg_rearm(np, &np->ldg[i], on);
  246. return 0;
  247. }
  248. static u32 phy_encode(u32 type, int port)
  249. {
  250. return (type << (port * 2));
  251. }
  252. static u32 phy_decode(u32 val, int port)
  253. {
  254. return (val >> (port * 2)) & PORT_TYPE_MASK;
  255. }
  256. static int mdio_wait(struct niu *np)
  257. {
  258. int limit = 1000;
  259. u64 val;
  260. while (--limit > 0) {
  261. val = nr64(MIF_FRAME_OUTPUT);
  262. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  263. return val & MIF_FRAME_OUTPUT_DATA;
  264. udelay(10);
  265. }
  266. return -ENODEV;
  267. }
  268. static int mdio_read(struct niu *np, int port, int dev, int reg)
  269. {
  270. int err;
  271. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  272. err = mdio_wait(np);
  273. if (err < 0)
  274. return err;
  275. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  276. return mdio_wait(np);
  277. }
  278. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  279. {
  280. int err;
  281. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  282. err = mdio_wait(np);
  283. if (err < 0)
  284. return err;
  285. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  286. err = mdio_wait(np);
  287. if (err < 0)
  288. return err;
  289. return 0;
  290. }
  291. static int mii_read(struct niu *np, int port, int reg)
  292. {
  293. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  294. return mdio_wait(np);
  295. }
  296. static int mii_write(struct niu *np, int port, int reg, int data)
  297. {
  298. int err;
  299. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  300. err = mdio_wait(np);
  301. if (err < 0)
  302. return err;
  303. return 0;
  304. }
  305. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  306. {
  307. int err;
  308. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  309. ESR2_TI_PLL_TX_CFG_L(channel),
  310. val & 0xffff);
  311. if (!err)
  312. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  313. ESR2_TI_PLL_TX_CFG_H(channel),
  314. val >> 16);
  315. return err;
  316. }
  317. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  318. {
  319. int err;
  320. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  321. ESR2_TI_PLL_RX_CFG_L(channel),
  322. val & 0xffff);
  323. if (!err)
  324. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  325. ESR2_TI_PLL_RX_CFG_H(channel),
  326. val >> 16);
  327. return err;
  328. }
  329. /* Mode is always 10G fiber. */
  330. static int serdes_init_niu_10g_fiber(struct niu *np)
  331. {
  332. struct niu_link_config *lp = &np->link_config;
  333. u32 tx_cfg, rx_cfg;
  334. unsigned long i;
  335. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  336. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  337. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  338. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  339. if (lp->loopback_mode == LOOPBACK_PHY) {
  340. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  341. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  342. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  343. tx_cfg |= PLL_TX_CFG_ENTEST;
  344. rx_cfg |= PLL_RX_CFG_ENTEST;
  345. }
  346. /* Initialize all 4 lanes of the SERDES. */
  347. for (i = 0; i < 4; i++) {
  348. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  349. if (err)
  350. return err;
  351. }
  352. for (i = 0; i < 4; i++) {
  353. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  354. if (err)
  355. return err;
  356. }
  357. return 0;
  358. }
  359. static int serdes_init_niu_1g_serdes(struct niu *np)
  360. {
  361. struct niu_link_config *lp = &np->link_config;
  362. u16 pll_cfg, pll_sts;
  363. int max_retry = 100;
  364. u64 uninitialized_var(sig), mask, val;
  365. u32 tx_cfg, rx_cfg;
  366. unsigned long i;
  367. int err;
  368. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  369. PLL_TX_CFG_RATE_HALF);
  370. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  371. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  372. PLL_RX_CFG_RATE_HALF);
  373. if (np->port == 0)
  374. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  375. if (lp->loopback_mode == LOOPBACK_PHY) {
  376. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  377. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  378. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  379. tx_cfg |= PLL_TX_CFG_ENTEST;
  380. rx_cfg |= PLL_RX_CFG_ENTEST;
  381. }
  382. /* Initialize PLL for 1G */
  383. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  384. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  385. ESR2_TI_PLL_CFG_L, pll_cfg);
  386. if (err) {
  387. dev_err(np->device, PFX "NIU Port %d "
  388. "serdes_init_niu_1g_serdes: "
  389. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  390. return err;
  391. }
  392. pll_sts = PLL_CFG_ENPLL;
  393. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  394. ESR2_TI_PLL_STS_L, pll_sts);
  395. if (err) {
  396. dev_err(np->device, PFX "NIU Port %d "
  397. "serdes_init_niu_1g_serdes: "
  398. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  399. return err;
  400. }
  401. udelay(200);
  402. /* Initialize all 4 lanes of the SERDES. */
  403. for (i = 0; i < 4; i++) {
  404. err = esr2_set_tx_cfg(np, i, tx_cfg);
  405. if (err)
  406. return err;
  407. }
  408. for (i = 0; i < 4; i++) {
  409. err = esr2_set_rx_cfg(np, i, rx_cfg);
  410. if (err)
  411. return err;
  412. }
  413. switch (np->port) {
  414. case 0:
  415. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  416. mask = val;
  417. break;
  418. case 1:
  419. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  420. mask = val;
  421. break;
  422. default:
  423. return -EINVAL;
  424. }
  425. while (max_retry--) {
  426. sig = nr64(ESR_INT_SIGNALS);
  427. if ((sig & mask) == val)
  428. break;
  429. mdelay(500);
  430. }
  431. if ((sig & mask) != val) {
  432. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  433. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  434. return -ENODEV;
  435. }
  436. return 0;
  437. }
  438. static int serdes_init_niu_10g_serdes(struct niu *np)
  439. {
  440. struct niu_link_config *lp = &np->link_config;
  441. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  442. int max_retry = 100;
  443. u64 uninitialized_var(sig), mask, val;
  444. unsigned long i;
  445. int err;
  446. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  447. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  448. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  449. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  450. if (lp->loopback_mode == LOOPBACK_PHY) {
  451. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  452. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  453. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  454. tx_cfg |= PLL_TX_CFG_ENTEST;
  455. rx_cfg |= PLL_RX_CFG_ENTEST;
  456. }
  457. /* Initialize PLL for 10G */
  458. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  459. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  460. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  461. if (err) {
  462. dev_err(np->device, PFX "NIU Port %d "
  463. "serdes_init_niu_10g_serdes: "
  464. "mdio write to ESR2_TI_PLL_CFG_L failed", np->port);
  465. return err;
  466. }
  467. pll_sts = PLL_CFG_ENPLL;
  468. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  469. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  470. if (err) {
  471. dev_err(np->device, PFX "NIU Port %d "
  472. "serdes_init_niu_10g_serdes: "
  473. "mdio write to ESR2_TI_PLL_STS_L failed", np->port);
  474. return err;
  475. }
  476. udelay(200);
  477. /* Initialize all 4 lanes of the SERDES. */
  478. for (i = 0; i < 4; i++) {
  479. err = esr2_set_tx_cfg(np, i, tx_cfg);
  480. if (err)
  481. return err;
  482. }
  483. for (i = 0; i < 4; i++) {
  484. err = esr2_set_rx_cfg(np, i, rx_cfg);
  485. if (err)
  486. return err;
  487. }
  488. /* check if serdes is ready */
  489. switch (np->port) {
  490. case 0:
  491. mask = ESR_INT_SIGNALS_P0_BITS;
  492. val = (ESR_INT_SRDY0_P0 |
  493. ESR_INT_DET0_P0 |
  494. ESR_INT_XSRDY_P0 |
  495. ESR_INT_XDP_P0_CH3 |
  496. ESR_INT_XDP_P0_CH2 |
  497. ESR_INT_XDP_P0_CH1 |
  498. ESR_INT_XDP_P0_CH0);
  499. break;
  500. case 1:
  501. mask = ESR_INT_SIGNALS_P1_BITS;
  502. val = (ESR_INT_SRDY0_P1 |
  503. ESR_INT_DET0_P1 |
  504. ESR_INT_XSRDY_P1 |
  505. ESR_INT_XDP_P1_CH3 |
  506. ESR_INT_XDP_P1_CH2 |
  507. ESR_INT_XDP_P1_CH1 |
  508. ESR_INT_XDP_P1_CH0);
  509. break;
  510. default:
  511. return -EINVAL;
  512. }
  513. while (max_retry--) {
  514. sig = nr64(ESR_INT_SIGNALS);
  515. if ((sig & mask) == val)
  516. break;
  517. mdelay(500);
  518. }
  519. if ((sig & mask) != val) {
  520. pr_info(PFX "NIU Port %u signal bits [%08x] are not "
  521. "[%08x] for 10G...trying 1G\n",
  522. np->port, (int) (sig & mask), (int) val);
  523. /* 10G failed, try initializing at 1G */
  524. err = serdes_init_niu_1g_serdes(np);
  525. if (!err) {
  526. np->flags &= ~NIU_FLAGS_10G;
  527. np->mac_xcvr = MAC_XCVR_PCS;
  528. } else {
  529. dev_err(np->device, PFX "Port %u 10G/1G SERDES "
  530. "Link Failed \n", np->port);
  531. return -ENODEV;
  532. }
  533. }
  534. return 0;
  535. }
  536. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  537. {
  538. int err;
  539. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  540. if (err >= 0) {
  541. *val = (err & 0xffff);
  542. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  543. ESR_RXTX_CTRL_H(chan));
  544. if (err >= 0)
  545. *val |= ((err & 0xffff) << 16);
  546. err = 0;
  547. }
  548. return err;
  549. }
  550. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  551. {
  552. int err;
  553. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  554. ESR_GLUE_CTRL0_L(chan));
  555. if (err >= 0) {
  556. *val = (err & 0xffff);
  557. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  558. ESR_GLUE_CTRL0_H(chan));
  559. if (err >= 0) {
  560. *val |= ((err & 0xffff) << 16);
  561. err = 0;
  562. }
  563. }
  564. return err;
  565. }
  566. static int esr_read_reset(struct niu *np, u32 *val)
  567. {
  568. int err;
  569. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  570. ESR_RXTX_RESET_CTRL_L);
  571. if (err >= 0) {
  572. *val = (err & 0xffff);
  573. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  574. ESR_RXTX_RESET_CTRL_H);
  575. if (err >= 0) {
  576. *val |= ((err & 0xffff) << 16);
  577. err = 0;
  578. }
  579. }
  580. return err;
  581. }
  582. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  583. {
  584. int err;
  585. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  586. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  587. if (!err)
  588. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  589. ESR_RXTX_CTRL_H(chan), (val >> 16));
  590. return err;
  591. }
  592. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  593. {
  594. int err;
  595. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  596. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  597. if (!err)
  598. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  599. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  600. return err;
  601. }
  602. static int esr_reset(struct niu *np)
  603. {
  604. u32 uninitialized_var(reset);
  605. int err;
  606. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  607. ESR_RXTX_RESET_CTRL_L, 0x0000);
  608. if (err)
  609. return err;
  610. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  611. ESR_RXTX_RESET_CTRL_H, 0xffff);
  612. if (err)
  613. return err;
  614. udelay(200);
  615. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  616. ESR_RXTX_RESET_CTRL_L, 0xffff);
  617. if (err)
  618. return err;
  619. udelay(200);
  620. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  621. ESR_RXTX_RESET_CTRL_H, 0x0000);
  622. if (err)
  623. return err;
  624. udelay(200);
  625. err = esr_read_reset(np, &reset);
  626. if (err)
  627. return err;
  628. if (reset != 0) {
  629. dev_err(np->device, PFX "Port %u ESR_RESET "
  630. "did not clear [%08x]\n",
  631. np->port, reset);
  632. return -ENODEV;
  633. }
  634. return 0;
  635. }
  636. static int serdes_init_10g(struct niu *np)
  637. {
  638. struct niu_link_config *lp = &np->link_config;
  639. unsigned long ctrl_reg, test_cfg_reg, i;
  640. u64 ctrl_val, test_cfg_val, sig, mask, val;
  641. int err;
  642. switch (np->port) {
  643. case 0:
  644. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  645. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  646. break;
  647. case 1:
  648. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  649. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  650. break;
  651. default:
  652. return -EINVAL;
  653. }
  654. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  655. ENET_SERDES_CTRL_SDET_1 |
  656. ENET_SERDES_CTRL_SDET_2 |
  657. ENET_SERDES_CTRL_SDET_3 |
  658. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  659. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  660. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  661. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  662. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  663. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  664. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  665. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  666. test_cfg_val = 0;
  667. if (lp->loopback_mode == LOOPBACK_PHY) {
  668. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  669. ENET_SERDES_TEST_MD_0_SHIFT) |
  670. (ENET_TEST_MD_PAD_LOOPBACK <<
  671. ENET_SERDES_TEST_MD_1_SHIFT) |
  672. (ENET_TEST_MD_PAD_LOOPBACK <<
  673. ENET_SERDES_TEST_MD_2_SHIFT) |
  674. (ENET_TEST_MD_PAD_LOOPBACK <<
  675. ENET_SERDES_TEST_MD_3_SHIFT));
  676. }
  677. nw64(ctrl_reg, ctrl_val);
  678. nw64(test_cfg_reg, test_cfg_val);
  679. /* Initialize all 4 lanes of the SERDES. */
  680. for (i = 0; i < 4; i++) {
  681. u32 rxtx_ctrl, glue0;
  682. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  683. if (err)
  684. return err;
  685. err = esr_read_glue0(np, i, &glue0);
  686. if (err)
  687. return err;
  688. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  689. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  690. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  691. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  692. ESR_GLUE_CTRL0_THCNT |
  693. ESR_GLUE_CTRL0_BLTIME);
  694. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  695. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  696. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  697. (BLTIME_300_CYCLES <<
  698. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  699. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  700. if (err)
  701. return err;
  702. err = esr_write_glue0(np, i, glue0);
  703. if (err)
  704. return err;
  705. }
  706. err = esr_reset(np);
  707. if (err)
  708. return err;
  709. sig = nr64(ESR_INT_SIGNALS);
  710. switch (np->port) {
  711. case 0:
  712. mask = ESR_INT_SIGNALS_P0_BITS;
  713. val = (ESR_INT_SRDY0_P0 |
  714. ESR_INT_DET0_P0 |
  715. ESR_INT_XSRDY_P0 |
  716. ESR_INT_XDP_P0_CH3 |
  717. ESR_INT_XDP_P0_CH2 |
  718. ESR_INT_XDP_P0_CH1 |
  719. ESR_INT_XDP_P0_CH0);
  720. break;
  721. case 1:
  722. mask = ESR_INT_SIGNALS_P1_BITS;
  723. val = (ESR_INT_SRDY0_P1 |
  724. ESR_INT_DET0_P1 |
  725. ESR_INT_XSRDY_P1 |
  726. ESR_INT_XDP_P1_CH3 |
  727. ESR_INT_XDP_P1_CH2 |
  728. ESR_INT_XDP_P1_CH1 |
  729. ESR_INT_XDP_P1_CH0);
  730. break;
  731. default:
  732. return -EINVAL;
  733. }
  734. if ((sig & mask) != val) {
  735. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  736. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  737. return 0;
  738. }
  739. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  740. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  741. return -ENODEV;
  742. }
  743. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  744. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  745. return 0;
  746. }
  747. static int serdes_init_1g(struct niu *np)
  748. {
  749. u64 val;
  750. val = nr64(ENET_SERDES_1_PLL_CFG);
  751. val &= ~ENET_SERDES_PLL_FBDIV2;
  752. switch (np->port) {
  753. case 0:
  754. val |= ENET_SERDES_PLL_HRATE0;
  755. break;
  756. case 1:
  757. val |= ENET_SERDES_PLL_HRATE1;
  758. break;
  759. case 2:
  760. val |= ENET_SERDES_PLL_HRATE2;
  761. break;
  762. case 3:
  763. val |= ENET_SERDES_PLL_HRATE3;
  764. break;
  765. default:
  766. return -EINVAL;
  767. }
  768. nw64(ENET_SERDES_1_PLL_CFG, val);
  769. return 0;
  770. }
  771. static int serdes_init_1g_serdes(struct niu *np)
  772. {
  773. struct niu_link_config *lp = &np->link_config;
  774. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  775. u64 ctrl_val, test_cfg_val, sig, mask, val;
  776. int err;
  777. u64 reset_val, val_rd;
  778. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  779. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  780. ENET_SERDES_PLL_FBDIV0;
  781. switch (np->port) {
  782. case 0:
  783. reset_val = ENET_SERDES_RESET_0;
  784. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  785. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  786. pll_cfg = ENET_SERDES_0_PLL_CFG;
  787. break;
  788. case 1:
  789. reset_val = ENET_SERDES_RESET_1;
  790. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  791. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  792. pll_cfg = ENET_SERDES_1_PLL_CFG;
  793. break;
  794. default:
  795. return -EINVAL;
  796. }
  797. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  798. ENET_SERDES_CTRL_SDET_1 |
  799. ENET_SERDES_CTRL_SDET_2 |
  800. ENET_SERDES_CTRL_SDET_3 |
  801. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  802. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  803. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  804. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  805. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  806. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  807. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  808. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  809. test_cfg_val = 0;
  810. if (lp->loopback_mode == LOOPBACK_PHY) {
  811. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  812. ENET_SERDES_TEST_MD_0_SHIFT) |
  813. (ENET_TEST_MD_PAD_LOOPBACK <<
  814. ENET_SERDES_TEST_MD_1_SHIFT) |
  815. (ENET_TEST_MD_PAD_LOOPBACK <<
  816. ENET_SERDES_TEST_MD_2_SHIFT) |
  817. (ENET_TEST_MD_PAD_LOOPBACK <<
  818. ENET_SERDES_TEST_MD_3_SHIFT));
  819. }
  820. nw64(ENET_SERDES_RESET, reset_val);
  821. mdelay(20);
  822. val_rd = nr64(ENET_SERDES_RESET);
  823. val_rd &= ~reset_val;
  824. nw64(pll_cfg, val);
  825. nw64(ctrl_reg, ctrl_val);
  826. nw64(test_cfg_reg, test_cfg_val);
  827. nw64(ENET_SERDES_RESET, val_rd);
  828. mdelay(2000);
  829. /* Initialize all 4 lanes of the SERDES. */
  830. for (i = 0; i < 4; i++) {
  831. u32 rxtx_ctrl, glue0;
  832. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  833. if (err)
  834. return err;
  835. err = esr_read_glue0(np, i, &glue0);
  836. if (err)
  837. return err;
  838. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  839. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  840. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  841. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  842. ESR_GLUE_CTRL0_THCNT |
  843. ESR_GLUE_CTRL0_BLTIME);
  844. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  845. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  846. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  847. (BLTIME_300_CYCLES <<
  848. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  849. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  850. if (err)
  851. return err;
  852. err = esr_write_glue0(np, i, glue0);
  853. if (err)
  854. return err;
  855. }
  856. sig = nr64(ESR_INT_SIGNALS);
  857. switch (np->port) {
  858. case 0:
  859. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  860. mask = val;
  861. break;
  862. case 1:
  863. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  864. mask = val;
  865. break;
  866. default:
  867. return -EINVAL;
  868. }
  869. if ((sig & mask) != val) {
  870. dev_err(np->device, PFX "Port %u signal bits [%08x] are not "
  871. "[%08x]\n", np->port, (int) (sig & mask), (int) val);
  872. return -ENODEV;
  873. }
  874. return 0;
  875. }
  876. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  877. {
  878. struct niu_link_config *lp = &np->link_config;
  879. int link_up;
  880. u64 val;
  881. u16 current_speed;
  882. unsigned long flags;
  883. u8 current_duplex;
  884. link_up = 0;
  885. current_speed = SPEED_INVALID;
  886. current_duplex = DUPLEX_INVALID;
  887. spin_lock_irqsave(&np->lock, flags);
  888. val = nr64_pcs(PCS_MII_STAT);
  889. if (val & PCS_MII_STAT_LINK_STATUS) {
  890. link_up = 1;
  891. current_speed = SPEED_1000;
  892. current_duplex = DUPLEX_FULL;
  893. }
  894. lp->active_speed = current_speed;
  895. lp->active_duplex = current_duplex;
  896. spin_unlock_irqrestore(&np->lock, flags);
  897. *link_up_p = link_up;
  898. return 0;
  899. }
  900. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  901. {
  902. unsigned long flags;
  903. struct niu_link_config *lp = &np->link_config;
  904. int link_up = 0;
  905. int link_ok = 1;
  906. u64 val, val2;
  907. u16 current_speed;
  908. u8 current_duplex;
  909. if (!(np->flags & NIU_FLAGS_10G))
  910. return link_status_1g_serdes(np, link_up_p);
  911. current_speed = SPEED_INVALID;
  912. current_duplex = DUPLEX_INVALID;
  913. spin_lock_irqsave(&np->lock, flags);
  914. val = nr64_xpcs(XPCS_STATUS(0));
  915. val2 = nr64_mac(XMAC_INTER2);
  916. if (val2 & 0x01000000)
  917. link_ok = 0;
  918. if ((val & 0x1000ULL) && link_ok) {
  919. link_up = 1;
  920. current_speed = SPEED_10000;
  921. current_duplex = DUPLEX_FULL;
  922. }
  923. lp->active_speed = current_speed;
  924. lp->active_duplex = current_duplex;
  925. spin_unlock_irqrestore(&np->lock, flags);
  926. *link_up_p = link_up;
  927. return 0;
  928. }
  929. static int link_status_mii(struct niu *np, int *link_up_p)
  930. {
  931. struct niu_link_config *lp = &np->link_config;
  932. int err;
  933. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  934. int supported, advertising, active_speed, active_duplex;
  935. err = mii_read(np, np->phy_addr, MII_BMCR);
  936. if (unlikely(err < 0))
  937. return err;
  938. bmcr = err;
  939. err = mii_read(np, np->phy_addr, MII_BMSR);
  940. if (unlikely(err < 0))
  941. return err;
  942. bmsr = err;
  943. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  944. if (unlikely(err < 0))
  945. return err;
  946. advert = err;
  947. err = mii_read(np, np->phy_addr, MII_LPA);
  948. if (unlikely(err < 0))
  949. return err;
  950. lpa = err;
  951. if (likely(bmsr & BMSR_ESTATEN)) {
  952. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  953. if (unlikely(err < 0))
  954. return err;
  955. estatus = err;
  956. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  957. if (unlikely(err < 0))
  958. return err;
  959. ctrl1000 = err;
  960. err = mii_read(np, np->phy_addr, MII_STAT1000);
  961. if (unlikely(err < 0))
  962. return err;
  963. stat1000 = err;
  964. } else
  965. estatus = ctrl1000 = stat1000 = 0;
  966. supported = 0;
  967. if (bmsr & BMSR_ANEGCAPABLE)
  968. supported |= SUPPORTED_Autoneg;
  969. if (bmsr & BMSR_10HALF)
  970. supported |= SUPPORTED_10baseT_Half;
  971. if (bmsr & BMSR_10FULL)
  972. supported |= SUPPORTED_10baseT_Full;
  973. if (bmsr & BMSR_100HALF)
  974. supported |= SUPPORTED_100baseT_Half;
  975. if (bmsr & BMSR_100FULL)
  976. supported |= SUPPORTED_100baseT_Full;
  977. if (estatus & ESTATUS_1000_THALF)
  978. supported |= SUPPORTED_1000baseT_Half;
  979. if (estatus & ESTATUS_1000_TFULL)
  980. supported |= SUPPORTED_1000baseT_Full;
  981. lp->supported = supported;
  982. advertising = 0;
  983. if (advert & ADVERTISE_10HALF)
  984. advertising |= ADVERTISED_10baseT_Half;
  985. if (advert & ADVERTISE_10FULL)
  986. advertising |= ADVERTISED_10baseT_Full;
  987. if (advert & ADVERTISE_100HALF)
  988. advertising |= ADVERTISED_100baseT_Half;
  989. if (advert & ADVERTISE_100FULL)
  990. advertising |= ADVERTISED_100baseT_Full;
  991. if (ctrl1000 & ADVERTISE_1000HALF)
  992. advertising |= ADVERTISED_1000baseT_Half;
  993. if (ctrl1000 & ADVERTISE_1000FULL)
  994. advertising |= ADVERTISED_1000baseT_Full;
  995. if (bmcr & BMCR_ANENABLE) {
  996. int neg, neg1000;
  997. lp->active_autoneg = 1;
  998. advertising |= ADVERTISED_Autoneg;
  999. neg = advert & lpa;
  1000. neg1000 = (ctrl1000 << 2) & stat1000;
  1001. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  1002. active_speed = SPEED_1000;
  1003. else if (neg & LPA_100)
  1004. active_speed = SPEED_100;
  1005. else if (neg & (LPA_10HALF | LPA_10FULL))
  1006. active_speed = SPEED_10;
  1007. else
  1008. active_speed = SPEED_INVALID;
  1009. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  1010. active_duplex = DUPLEX_FULL;
  1011. else if (active_speed != SPEED_INVALID)
  1012. active_duplex = DUPLEX_HALF;
  1013. else
  1014. active_duplex = DUPLEX_INVALID;
  1015. } else {
  1016. lp->active_autoneg = 0;
  1017. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  1018. active_speed = SPEED_1000;
  1019. else if (bmcr & BMCR_SPEED100)
  1020. active_speed = SPEED_100;
  1021. else
  1022. active_speed = SPEED_10;
  1023. if (bmcr & BMCR_FULLDPLX)
  1024. active_duplex = DUPLEX_FULL;
  1025. else
  1026. active_duplex = DUPLEX_HALF;
  1027. }
  1028. lp->active_advertising = advertising;
  1029. lp->active_speed = active_speed;
  1030. lp->active_duplex = active_duplex;
  1031. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  1032. return 0;
  1033. }
  1034. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1035. {
  1036. struct niu_link_config *lp = &np->link_config;
  1037. u16 current_speed, bmsr;
  1038. unsigned long flags;
  1039. u8 current_duplex;
  1040. int err, link_up;
  1041. link_up = 0;
  1042. current_speed = SPEED_INVALID;
  1043. current_duplex = DUPLEX_INVALID;
  1044. spin_lock_irqsave(&np->lock, flags);
  1045. err = -EINVAL;
  1046. err = mii_read(np, np->phy_addr, MII_BMSR);
  1047. if (err < 0)
  1048. goto out;
  1049. bmsr = err;
  1050. if (bmsr & BMSR_LSTATUS) {
  1051. u16 adv, lpa, common, estat;
  1052. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1053. if (err < 0)
  1054. goto out;
  1055. adv = err;
  1056. err = mii_read(np, np->phy_addr, MII_LPA);
  1057. if (err < 0)
  1058. goto out;
  1059. lpa = err;
  1060. common = adv & lpa;
  1061. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1062. if (err < 0)
  1063. goto out;
  1064. estat = err;
  1065. link_up = 1;
  1066. current_speed = SPEED_1000;
  1067. current_duplex = DUPLEX_FULL;
  1068. }
  1069. lp->active_speed = current_speed;
  1070. lp->active_duplex = current_duplex;
  1071. err = 0;
  1072. out:
  1073. spin_unlock_irqrestore(&np->lock, flags);
  1074. *link_up_p = link_up;
  1075. return err;
  1076. }
  1077. static int link_status_1g(struct niu *np, int *link_up_p)
  1078. {
  1079. struct niu_link_config *lp = &np->link_config;
  1080. unsigned long flags;
  1081. int err;
  1082. spin_lock_irqsave(&np->lock, flags);
  1083. err = link_status_mii(np, link_up_p);
  1084. lp->supported |= SUPPORTED_TP;
  1085. lp->active_advertising |= ADVERTISED_TP;
  1086. spin_unlock_irqrestore(&np->lock, flags);
  1087. return err;
  1088. }
  1089. static int bcm8704_reset(struct niu *np)
  1090. {
  1091. int err, limit;
  1092. err = mdio_read(np, np->phy_addr,
  1093. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1094. if (err < 0 || err == 0xffff)
  1095. return err;
  1096. err |= BMCR_RESET;
  1097. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1098. MII_BMCR, err);
  1099. if (err)
  1100. return err;
  1101. limit = 1000;
  1102. while (--limit >= 0) {
  1103. err = mdio_read(np, np->phy_addr,
  1104. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1105. if (err < 0)
  1106. return err;
  1107. if (!(err & BMCR_RESET))
  1108. break;
  1109. }
  1110. if (limit < 0) {
  1111. dev_err(np->device, PFX "Port %u PHY will not reset "
  1112. "(bmcr=%04x)\n", np->port, (err & 0xffff));
  1113. return -ENODEV;
  1114. }
  1115. return 0;
  1116. }
  1117. /* When written, certain PHY registers need to be read back twice
  1118. * in order for the bits to settle properly.
  1119. */
  1120. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1121. {
  1122. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1123. if (err < 0)
  1124. return err;
  1125. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1126. if (err < 0)
  1127. return err;
  1128. return 0;
  1129. }
  1130. static int bcm8706_init_user_dev3(struct niu *np)
  1131. {
  1132. int err;
  1133. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1134. BCM8704_USER_OPT_DIGITAL_CTRL);
  1135. if (err < 0)
  1136. return err;
  1137. err &= ~USER_ODIG_CTRL_GPIOS;
  1138. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1139. err |= USER_ODIG_CTRL_RESV2;
  1140. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1141. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1142. if (err)
  1143. return err;
  1144. mdelay(1000);
  1145. return 0;
  1146. }
  1147. static int bcm8704_init_user_dev3(struct niu *np)
  1148. {
  1149. int err;
  1150. err = mdio_write(np, np->phy_addr,
  1151. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1152. (USER_CONTROL_OPTXRST_LVL |
  1153. USER_CONTROL_OPBIASFLT_LVL |
  1154. USER_CONTROL_OBTMPFLT_LVL |
  1155. USER_CONTROL_OPPRFLT_LVL |
  1156. USER_CONTROL_OPTXFLT_LVL |
  1157. USER_CONTROL_OPRXLOS_LVL |
  1158. USER_CONTROL_OPRXFLT_LVL |
  1159. USER_CONTROL_OPTXON_LVL |
  1160. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1161. if (err)
  1162. return err;
  1163. err = mdio_write(np, np->phy_addr,
  1164. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1165. (USER_PMD_TX_CTL_XFP_CLKEN |
  1166. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1167. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1168. USER_PMD_TX_CTL_TSCK_LPWREN));
  1169. if (err)
  1170. return err;
  1171. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1172. if (err)
  1173. return err;
  1174. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1175. if (err)
  1176. return err;
  1177. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1178. BCM8704_USER_OPT_DIGITAL_CTRL);
  1179. if (err < 0)
  1180. return err;
  1181. err &= ~USER_ODIG_CTRL_GPIOS;
  1182. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1183. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1184. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1185. if (err)
  1186. return err;
  1187. mdelay(1000);
  1188. return 0;
  1189. }
  1190. static int mrvl88x2011_act_led(struct niu *np, int val)
  1191. {
  1192. int err;
  1193. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1194. MRVL88X2011_LED_8_TO_11_CTL);
  1195. if (err < 0)
  1196. return err;
  1197. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1198. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1199. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1200. MRVL88X2011_LED_8_TO_11_CTL, err);
  1201. }
  1202. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1203. {
  1204. int err;
  1205. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1206. MRVL88X2011_LED_BLINK_CTL);
  1207. if (err >= 0) {
  1208. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1209. err |= (rate << 4);
  1210. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1211. MRVL88X2011_LED_BLINK_CTL, err);
  1212. }
  1213. return err;
  1214. }
  1215. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1216. {
  1217. int err;
  1218. /* Set LED functions */
  1219. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1220. if (err)
  1221. return err;
  1222. /* led activity */
  1223. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1224. if (err)
  1225. return err;
  1226. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1227. MRVL88X2011_GENERAL_CTL);
  1228. if (err < 0)
  1229. return err;
  1230. err |= MRVL88X2011_ENA_XFPREFCLK;
  1231. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1232. MRVL88X2011_GENERAL_CTL, err);
  1233. if (err < 0)
  1234. return err;
  1235. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1236. MRVL88X2011_PMA_PMD_CTL_1);
  1237. if (err < 0)
  1238. return err;
  1239. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1240. err |= MRVL88X2011_LOOPBACK;
  1241. else
  1242. err &= ~MRVL88X2011_LOOPBACK;
  1243. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1244. MRVL88X2011_PMA_PMD_CTL_1, err);
  1245. if (err < 0)
  1246. return err;
  1247. /* Enable PMD */
  1248. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1249. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1250. }
  1251. static int xcvr_diag_bcm870x(struct niu *np)
  1252. {
  1253. u16 analog_stat0, tx_alarm_status;
  1254. int err = 0;
  1255. #if 1
  1256. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1257. MII_STAT1000);
  1258. if (err < 0)
  1259. return err;
  1260. pr_info(PFX "Port %u PMA_PMD(MII_STAT1000) [%04x]\n",
  1261. np->port, err);
  1262. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1263. if (err < 0)
  1264. return err;
  1265. pr_info(PFX "Port %u USER_DEV3(0x20) [%04x]\n",
  1266. np->port, err);
  1267. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1268. MII_NWAYTEST);
  1269. if (err < 0)
  1270. return err;
  1271. pr_info(PFX "Port %u PHYXS(MII_NWAYTEST) [%04x]\n",
  1272. np->port, err);
  1273. #endif
  1274. /* XXX dig this out it might not be so useful XXX */
  1275. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1276. BCM8704_USER_ANALOG_STATUS0);
  1277. if (err < 0)
  1278. return err;
  1279. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1280. BCM8704_USER_ANALOG_STATUS0);
  1281. if (err < 0)
  1282. return err;
  1283. analog_stat0 = err;
  1284. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1285. BCM8704_USER_TX_ALARM_STATUS);
  1286. if (err < 0)
  1287. return err;
  1288. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1289. BCM8704_USER_TX_ALARM_STATUS);
  1290. if (err < 0)
  1291. return err;
  1292. tx_alarm_status = err;
  1293. if (analog_stat0 != 0x03fc) {
  1294. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1295. pr_info(PFX "Port %u cable not connected "
  1296. "or bad cable.\n", np->port);
  1297. } else if (analog_stat0 == 0x639c) {
  1298. pr_info(PFX "Port %u optical module is bad "
  1299. "or missing.\n", np->port);
  1300. }
  1301. }
  1302. return 0;
  1303. }
  1304. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1305. {
  1306. struct niu_link_config *lp = &np->link_config;
  1307. int err;
  1308. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1309. MII_BMCR);
  1310. if (err < 0)
  1311. return err;
  1312. err &= ~BMCR_LOOPBACK;
  1313. if (lp->loopback_mode == LOOPBACK_MAC)
  1314. err |= BMCR_LOOPBACK;
  1315. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1316. MII_BMCR, err);
  1317. if (err)
  1318. return err;
  1319. return 0;
  1320. }
  1321. static int xcvr_init_10g_bcm8706(struct niu *np)
  1322. {
  1323. int err = 0;
  1324. u64 val;
  1325. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1326. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1327. return err;
  1328. val = nr64_mac(XMAC_CONFIG);
  1329. val &= ~XMAC_CONFIG_LED_POLARITY;
  1330. val |= XMAC_CONFIG_FORCE_LED_ON;
  1331. nw64_mac(XMAC_CONFIG, val);
  1332. val = nr64(MIF_CONFIG);
  1333. val |= MIF_CONFIG_INDIRECT_MODE;
  1334. nw64(MIF_CONFIG, val);
  1335. err = bcm8704_reset(np);
  1336. if (err)
  1337. return err;
  1338. err = xcvr_10g_set_lb_bcm870x(np);
  1339. if (err)
  1340. return err;
  1341. err = bcm8706_init_user_dev3(np);
  1342. if (err)
  1343. return err;
  1344. err = xcvr_diag_bcm870x(np);
  1345. if (err)
  1346. return err;
  1347. return 0;
  1348. }
  1349. static int xcvr_init_10g_bcm8704(struct niu *np)
  1350. {
  1351. int err;
  1352. err = bcm8704_reset(np);
  1353. if (err)
  1354. return err;
  1355. err = bcm8704_init_user_dev3(np);
  1356. if (err)
  1357. return err;
  1358. err = xcvr_10g_set_lb_bcm870x(np);
  1359. if (err)
  1360. return err;
  1361. err = xcvr_diag_bcm870x(np);
  1362. if (err)
  1363. return err;
  1364. return 0;
  1365. }
  1366. static int xcvr_init_10g(struct niu *np)
  1367. {
  1368. int phy_id, err;
  1369. u64 val;
  1370. val = nr64_mac(XMAC_CONFIG);
  1371. val &= ~XMAC_CONFIG_LED_POLARITY;
  1372. val |= XMAC_CONFIG_FORCE_LED_ON;
  1373. nw64_mac(XMAC_CONFIG, val);
  1374. /* XXX shared resource, lock parent XXX */
  1375. val = nr64(MIF_CONFIG);
  1376. val |= MIF_CONFIG_INDIRECT_MODE;
  1377. nw64(MIF_CONFIG, val);
  1378. phy_id = phy_decode(np->parent->port_phy, np->port);
  1379. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1380. /* handle different phy types */
  1381. switch (phy_id & NIU_PHY_ID_MASK) {
  1382. case NIU_PHY_ID_MRVL88X2011:
  1383. err = xcvr_init_10g_mrvl88x2011(np);
  1384. break;
  1385. default: /* bcom 8704 */
  1386. err = xcvr_init_10g_bcm8704(np);
  1387. break;
  1388. }
  1389. return 0;
  1390. }
  1391. static int mii_reset(struct niu *np)
  1392. {
  1393. int limit, err;
  1394. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1395. if (err)
  1396. return err;
  1397. limit = 1000;
  1398. while (--limit >= 0) {
  1399. udelay(500);
  1400. err = mii_read(np, np->phy_addr, MII_BMCR);
  1401. if (err < 0)
  1402. return err;
  1403. if (!(err & BMCR_RESET))
  1404. break;
  1405. }
  1406. if (limit < 0) {
  1407. dev_err(np->device, PFX "Port %u MII would not reset, "
  1408. "bmcr[%04x]\n", np->port, err);
  1409. return -ENODEV;
  1410. }
  1411. return 0;
  1412. }
  1413. static int xcvr_init_1g_rgmii(struct niu *np)
  1414. {
  1415. int err;
  1416. u64 val;
  1417. u16 bmcr, bmsr, estat;
  1418. val = nr64(MIF_CONFIG);
  1419. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1420. nw64(MIF_CONFIG, val);
  1421. err = mii_reset(np);
  1422. if (err)
  1423. return err;
  1424. err = mii_read(np, np->phy_addr, MII_BMSR);
  1425. if (err < 0)
  1426. return err;
  1427. bmsr = err;
  1428. estat = 0;
  1429. if (bmsr & BMSR_ESTATEN) {
  1430. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1431. if (err < 0)
  1432. return err;
  1433. estat = err;
  1434. }
  1435. bmcr = 0;
  1436. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1437. if (err)
  1438. return err;
  1439. if (bmsr & BMSR_ESTATEN) {
  1440. u16 ctrl1000 = 0;
  1441. if (estat & ESTATUS_1000_TFULL)
  1442. ctrl1000 |= ADVERTISE_1000FULL;
  1443. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1444. if (err)
  1445. return err;
  1446. }
  1447. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1448. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1449. if (err)
  1450. return err;
  1451. err = mii_read(np, np->phy_addr, MII_BMCR);
  1452. if (err < 0)
  1453. return err;
  1454. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1455. err = mii_read(np, np->phy_addr, MII_BMSR);
  1456. if (err < 0)
  1457. return err;
  1458. return 0;
  1459. }
  1460. static int mii_init_common(struct niu *np)
  1461. {
  1462. struct niu_link_config *lp = &np->link_config;
  1463. u16 bmcr, bmsr, adv, estat;
  1464. int err;
  1465. err = mii_reset(np);
  1466. if (err)
  1467. return err;
  1468. err = mii_read(np, np->phy_addr, MII_BMSR);
  1469. if (err < 0)
  1470. return err;
  1471. bmsr = err;
  1472. estat = 0;
  1473. if (bmsr & BMSR_ESTATEN) {
  1474. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1475. if (err < 0)
  1476. return err;
  1477. estat = err;
  1478. }
  1479. bmcr = 0;
  1480. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1481. if (err)
  1482. return err;
  1483. if (lp->loopback_mode == LOOPBACK_MAC) {
  1484. bmcr |= BMCR_LOOPBACK;
  1485. if (lp->active_speed == SPEED_1000)
  1486. bmcr |= BMCR_SPEED1000;
  1487. if (lp->active_duplex == DUPLEX_FULL)
  1488. bmcr |= BMCR_FULLDPLX;
  1489. }
  1490. if (lp->loopback_mode == LOOPBACK_PHY) {
  1491. u16 aux;
  1492. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1493. BCM5464R_AUX_CTL_WRITE_1);
  1494. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1495. if (err)
  1496. return err;
  1497. }
  1498. if (lp->autoneg) {
  1499. u16 ctrl1000;
  1500. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1501. if ((bmsr & BMSR_10HALF) &&
  1502. (lp->advertising & ADVERTISED_10baseT_Half))
  1503. adv |= ADVERTISE_10HALF;
  1504. if ((bmsr & BMSR_10FULL) &&
  1505. (lp->advertising & ADVERTISED_10baseT_Full))
  1506. adv |= ADVERTISE_10FULL;
  1507. if ((bmsr & BMSR_100HALF) &&
  1508. (lp->advertising & ADVERTISED_100baseT_Half))
  1509. adv |= ADVERTISE_100HALF;
  1510. if ((bmsr & BMSR_100FULL) &&
  1511. (lp->advertising & ADVERTISED_100baseT_Full))
  1512. adv |= ADVERTISE_100FULL;
  1513. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1514. if (err)
  1515. return err;
  1516. if (likely(bmsr & BMSR_ESTATEN)) {
  1517. ctrl1000 = 0;
  1518. if ((estat & ESTATUS_1000_THALF) &&
  1519. (lp->advertising & ADVERTISED_1000baseT_Half))
  1520. ctrl1000 |= ADVERTISE_1000HALF;
  1521. if ((estat & ESTATUS_1000_TFULL) &&
  1522. (lp->advertising & ADVERTISED_1000baseT_Full))
  1523. ctrl1000 |= ADVERTISE_1000FULL;
  1524. err = mii_write(np, np->phy_addr,
  1525. MII_CTRL1000, ctrl1000);
  1526. if (err)
  1527. return err;
  1528. }
  1529. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1530. } else {
  1531. /* !lp->autoneg */
  1532. int fulldpx;
  1533. if (lp->duplex == DUPLEX_FULL) {
  1534. bmcr |= BMCR_FULLDPLX;
  1535. fulldpx = 1;
  1536. } else if (lp->duplex == DUPLEX_HALF)
  1537. fulldpx = 0;
  1538. else
  1539. return -EINVAL;
  1540. if (lp->speed == SPEED_1000) {
  1541. /* if X-full requested while not supported, or
  1542. X-half requested while not supported... */
  1543. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1544. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1545. return -EINVAL;
  1546. bmcr |= BMCR_SPEED1000;
  1547. } else if (lp->speed == SPEED_100) {
  1548. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1549. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1550. return -EINVAL;
  1551. bmcr |= BMCR_SPEED100;
  1552. } else if (lp->speed == SPEED_10) {
  1553. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1554. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1555. return -EINVAL;
  1556. } else
  1557. return -EINVAL;
  1558. }
  1559. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1560. if (err)
  1561. return err;
  1562. #if 0
  1563. err = mii_read(np, np->phy_addr, MII_BMCR);
  1564. if (err < 0)
  1565. return err;
  1566. bmcr = err;
  1567. err = mii_read(np, np->phy_addr, MII_BMSR);
  1568. if (err < 0)
  1569. return err;
  1570. bmsr = err;
  1571. pr_info(PFX "Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1572. np->port, bmcr, bmsr);
  1573. #endif
  1574. return 0;
  1575. }
  1576. static int xcvr_init_1g(struct niu *np)
  1577. {
  1578. u64 val;
  1579. /* XXX shared resource, lock parent XXX */
  1580. val = nr64(MIF_CONFIG);
  1581. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1582. nw64(MIF_CONFIG, val);
  1583. return mii_init_common(np);
  1584. }
  1585. static int niu_xcvr_init(struct niu *np)
  1586. {
  1587. const struct niu_phy_ops *ops = np->phy_ops;
  1588. int err;
  1589. err = 0;
  1590. if (ops->xcvr_init)
  1591. err = ops->xcvr_init(np);
  1592. return err;
  1593. }
  1594. static int niu_serdes_init(struct niu *np)
  1595. {
  1596. const struct niu_phy_ops *ops = np->phy_ops;
  1597. int err;
  1598. err = 0;
  1599. if (ops->serdes_init)
  1600. err = ops->serdes_init(np);
  1601. return err;
  1602. }
  1603. static void niu_init_xif(struct niu *);
  1604. static void niu_handle_led(struct niu *, int status);
  1605. static int niu_link_status_common(struct niu *np, int link_up)
  1606. {
  1607. struct niu_link_config *lp = &np->link_config;
  1608. struct net_device *dev = np->dev;
  1609. unsigned long flags;
  1610. if (!netif_carrier_ok(dev) && link_up) {
  1611. niuinfo(LINK, "%s: Link is up at %s, %s duplex\n",
  1612. dev->name,
  1613. (lp->active_speed == SPEED_10000 ?
  1614. "10Gb/sec" :
  1615. (lp->active_speed == SPEED_1000 ?
  1616. "1Gb/sec" :
  1617. (lp->active_speed == SPEED_100 ?
  1618. "100Mbit/sec" : "10Mbit/sec"))),
  1619. (lp->active_duplex == DUPLEX_FULL ?
  1620. "full" : "half"));
  1621. spin_lock_irqsave(&np->lock, flags);
  1622. niu_init_xif(np);
  1623. niu_handle_led(np, 1);
  1624. spin_unlock_irqrestore(&np->lock, flags);
  1625. netif_carrier_on(dev);
  1626. } else if (netif_carrier_ok(dev) && !link_up) {
  1627. niuwarn(LINK, "%s: Link is down\n", dev->name);
  1628. spin_lock_irqsave(&np->lock, flags);
  1629. niu_handle_led(np, 0);
  1630. spin_unlock_irqrestore(&np->lock, flags);
  1631. netif_carrier_off(dev);
  1632. }
  1633. return 0;
  1634. }
  1635. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1636. {
  1637. int err, link_up, pma_status, pcs_status;
  1638. link_up = 0;
  1639. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1640. MRVL88X2011_10G_PMD_STATUS_2);
  1641. if (err < 0)
  1642. goto out;
  1643. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1644. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1645. MRVL88X2011_PMA_PMD_STATUS_1);
  1646. if (err < 0)
  1647. goto out;
  1648. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1649. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1650. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1651. MRVL88X2011_PMA_PMD_STATUS_1);
  1652. if (err < 0)
  1653. goto out;
  1654. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1655. MRVL88X2011_PMA_PMD_STATUS_1);
  1656. if (err < 0)
  1657. goto out;
  1658. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1659. /* Check XGXS Register : 4.0018.[0-3,12] */
  1660. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1661. MRVL88X2011_10G_XGXS_LANE_STAT);
  1662. if (err < 0)
  1663. goto out;
  1664. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1665. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1666. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1667. 0x800))
  1668. link_up = (pma_status && pcs_status) ? 1 : 0;
  1669. np->link_config.active_speed = SPEED_10000;
  1670. np->link_config.active_duplex = DUPLEX_FULL;
  1671. err = 0;
  1672. out:
  1673. mrvl88x2011_act_led(np, (link_up ?
  1674. MRVL88X2011_LED_CTL_PCS_ACT :
  1675. MRVL88X2011_LED_CTL_OFF));
  1676. *link_up_p = link_up;
  1677. return err;
  1678. }
  1679. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1680. {
  1681. int err, link_up;
  1682. link_up = 0;
  1683. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1684. BCM8704_PMD_RCV_SIGDET);
  1685. if (err < 0 || err == 0xffff)
  1686. goto out;
  1687. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1688. err = 0;
  1689. goto out;
  1690. }
  1691. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1692. BCM8704_PCS_10G_R_STATUS);
  1693. if (err < 0)
  1694. goto out;
  1695. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1696. err = 0;
  1697. goto out;
  1698. }
  1699. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1700. BCM8704_PHYXS_XGXS_LANE_STAT);
  1701. if (err < 0)
  1702. goto out;
  1703. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1704. PHYXS_XGXS_LANE_STAT_MAGIC |
  1705. PHYXS_XGXS_LANE_STAT_PATTEST |
  1706. PHYXS_XGXS_LANE_STAT_LANE3 |
  1707. PHYXS_XGXS_LANE_STAT_LANE2 |
  1708. PHYXS_XGXS_LANE_STAT_LANE1 |
  1709. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1710. err = 0;
  1711. np->link_config.active_speed = SPEED_INVALID;
  1712. np->link_config.active_duplex = DUPLEX_INVALID;
  1713. goto out;
  1714. }
  1715. link_up = 1;
  1716. np->link_config.active_speed = SPEED_10000;
  1717. np->link_config.active_duplex = DUPLEX_FULL;
  1718. err = 0;
  1719. out:
  1720. *link_up_p = link_up;
  1721. return err;
  1722. }
  1723. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1724. {
  1725. int err, link_up;
  1726. link_up = 0;
  1727. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1728. BCM8704_PMD_RCV_SIGDET);
  1729. if (err < 0)
  1730. goto out;
  1731. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1732. err = 0;
  1733. goto out;
  1734. }
  1735. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1736. BCM8704_PCS_10G_R_STATUS);
  1737. if (err < 0)
  1738. goto out;
  1739. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1740. err = 0;
  1741. goto out;
  1742. }
  1743. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1744. BCM8704_PHYXS_XGXS_LANE_STAT);
  1745. if (err < 0)
  1746. goto out;
  1747. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1748. PHYXS_XGXS_LANE_STAT_MAGIC |
  1749. PHYXS_XGXS_LANE_STAT_LANE3 |
  1750. PHYXS_XGXS_LANE_STAT_LANE2 |
  1751. PHYXS_XGXS_LANE_STAT_LANE1 |
  1752. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1753. err = 0;
  1754. goto out;
  1755. }
  1756. link_up = 1;
  1757. np->link_config.active_speed = SPEED_10000;
  1758. np->link_config.active_duplex = DUPLEX_FULL;
  1759. err = 0;
  1760. out:
  1761. *link_up_p = link_up;
  1762. return err;
  1763. }
  1764. static int link_status_10g(struct niu *np, int *link_up_p)
  1765. {
  1766. unsigned long flags;
  1767. int err = -EINVAL;
  1768. spin_lock_irqsave(&np->lock, flags);
  1769. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1770. int phy_id;
  1771. phy_id = phy_decode(np->parent->port_phy, np->port);
  1772. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1773. /* handle different phy types */
  1774. switch (phy_id & NIU_PHY_ID_MASK) {
  1775. case NIU_PHY_ID_MRVL88X2011:
  1776. err = link_status_10g_mrvl(np, link_up_p);
  1777. break;
  1778. default: /* bcom 8704 */
  1779. err = link_status_10g_bcom(np, link_up_p);
  1780. break;
  1781. }
  1782. }
  1783. spin_unlock_irqrestore(&np->lock, flags);
  1784. return err;
  1785. }
  1786. static int niu_10g_phy_present(struct niu *np)
  1787. {
  1788. u64 sig, mask, val;
  1789. sig = nr64(ESR_INT_SIGNALS);
  1790. switch (np->port) {
  1791. case 0:
  1792. mask = ESR_INT_SIGNALS_P0_BITS;
  1793. val = (ESR_INT_SRDY0_P0 |
  1794. ESR_INT_DET0_P0 |
  1795. ESR_INT_XSRDY_P0 |
  1796. ESR_INT_XDP_P0_CH3 |
  1797. ESR_INT_XDP_P0_CH2 |
  1798. ESR_INT_XDP_P0_CH1 |
  1799. ESR_INT_XDP_P0_CH0);
  1800. break;
  1801. case 1:
  1802. mask = ESR_INT_SIGNALS_P1_BITS;
  1803. val = (ESR_INT_SRDY0_P1 |
  1804. ESR_INT_DET0_P1 |
  1805. ESR_INT_XSRDY_P1 |
  1806. ESR_INT_XDP_P1_CH3 |
  1807. ESR_INT_XDP_P1_CH2 |
  1808. ESR_INT_XDP_P1_CH1 |
  1809. ESR_INT_XDP_P1_CH0);
  1810. break;
  1811. default:
  1812. return 0;
  1813. }
  1814. if ((sig & mask) != val)
  1815. return 0;
  1816. return 1;
  1817. }
  1818. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1819. {
  1820. unsigned long flags;
  1821. int err = 0;
  1822. int phy_present;
  1823. int phy_present_prev;
  1824. spin_lock_irqsave(&np->lock, flags);
  1825. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1826. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1827. 1 : 0;
  1828. phy_present = niu_10g_phy_present(np);
  1829. if (phy_present != phy_present_prev) {
  1830. /* state change */
  1831. if (phy_present) {
  1832. /* A NEM was just plugged in */
  1833. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1834. if (np->phy_ops->xcvr_init)
  1835. err = np->phy_ops->xcvr_init(np);
  1836. if (err) {
  1837. err = mdio_read(np, np->phy_addr,
  1838. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1839. if (err == 0xffff) {
  1840. /* No mdio, back-to-back XAUI */
  1841. goto out;
  1842. }
  1843. /* debounce */
  1844. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1845. }
  1846. } else {
  1847. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1848. *link_up_p = 0;
  1849. niuwarn(LINK, "%s: Hotplug PHY Removed\n",
  1850. np->dev->name);
  1851. }
  1852. }
  1853. out:
  1854. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1855. err = link_status_10g_bcm8706(np, link_up_p);
  1856. if (err == 0xffff) {
  1857. /* No mdio, back-to-back XAUI: it is C10NEM */
  1858. *link_up_p = 1;
  1859. np->link_config.active_speed = SPEED_10000;
  1860. np->link_config.active_duplex = DUPLEX_FULL;
  1861. }
  1862. }
  1863. }
  1864. spin_unlock_irqrestore(&np->lock, flags);
  1865. return 0;
  1866. }
  1867. static int niu_link_status(struct niu *np, int *link_up_p)
  1868. {
  1869. const struct niu_phy_ops *ops = np->phy_ops;
  1870. int err;
  1871. err = 0;
  1872. if (ops->link_status)
  1873. err = ops->link_status(np, link_up_p);
  1874. return err;
  1875. }
  1876. static void niu_timer(unsigned long __opaque)
  1877. {
  1878. struct niu *np = (struct niu *) __opaque;
  1879. unsigned long off;
  1880. int err, link_up;
  1881. err = niu_link_status(np, &link_up);
  1882. if (!err)
  1883. niu_link_status_common(np, link_up);
  1884. if (netif_carrier_ok(np->dev))
  1885. off = 5 * HZ;
  1886. else
  1887. off = 1 * HZ;
  1888. np->timer.expires = jiffies + off;
  1889. add_timer(&np->timer);
  1890. }
  1891. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1892. .serdes_init = serdes_init_10g_serdes,
  1893. .link_status = link_status_10g_serdes,
  1894. };
  1895. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1896. .serdes_init = serdes_init_niu_10g_serdes,
  1897. .link_status = link_status_10g_serdes,
  1898. };
  1899. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1900. .serdes_init = serdes_init_niu_1g_serdes,
  1901. .link_status = link_status_1g_serdes,
  1902. };
  1903. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1904. .xcvr_init = xcvr_init_1g_rgmii,
  1905. .link_status = link_status_1g_rgmii,
  1906. };
  1907. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1908. .serdes_init = serdes_init_niu_10g_fiber,
  1909. .xcvr_init = xcvr_init_10g,
  1910. .link_status = link_status_10g,
  1911. };
  1912. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1913. .serdes_init = serdes_init_10g,
  1914. .xcvr_init = xcvr_init_10g,
  1915. .link_status = link_status_10g,
  1916. };
  1917. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1918. .serdes_init = serdes_init_10g,
  1919. .xcvr_init = xcvr_init_10g_bcm8706,
  1920. .link_status = link_status_10g_hotplug,
  1921. };
  1922. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1923. .serdes_init = serdes_init_niu_10g_fiber,
  1924. .xcvr_init = xcvr_init_10g_bcm8706,
  1925. .link_status = link_status_10g_hotplug,
  1926. };
  1927. static const struct niu_phy_ops phy_ops_10g_copper = {
  1928. .serdes_init = serdes_init_10g,
  1929. .link_status = link_status_10g, /* XXX */
  1930. };
  1931. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1932. .serdes_init = serdes_init_1g,
  1933. .xcvr_init = xcvr_init_1g,
  1934. .link_status = link_status_1g,
  1935. };
  1936. static const struct niu_phy_ops phy_ops_1g_copper = {
  1937. .xcvr_init = xcvr_init_1g,
  1938. .link_status = link_status_1g,
  1939. };
  1940. struct niu_phy_template {
  1941. const struct niu_phy_ops *ops;
  1942. u32 phy_addr_base;
  1943. };
  1944. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1945. .ops = &phy_ops_10g_fiber_niu,
  1946. .phy_addr_base = 16,
  1947. };
  1948. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1949. .ops = &phy_ops_10g_serdes_niu,
  1950. .phy_addr_base = 0,
  1951. };
  1952. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1953. .ops = &phy_ops_1g_serdes_niu,
  1954. .phy_addr_base = 0,
  1955. };
  1956. static const struct niu_phy_template phy_template_10g_fiber = {
  1957. .ops = &phy_ops_10g_fiber,
  1958. .phy_addr_base = 8,
  1959. };
  1960. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1961. .ops = &phy_ops_10g_fiber_hotplug,
  1962. .phy_addr_base = 8,
  1963. };
  1964. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1965. .ops = &phy_ops_niu_10g_hotplug,
  1966. .phy_addr_base = 8,
  1967. };
  1968. static const struct niu_phy_template phy_template_10g_copper = {
  1969. .ops = &phy_ops_10g_copper,
  1970. .phy_addr_base = 10,
  1971. };
  1972. static const struct niu_phy_template phy_template_1g_fiber = {
  1973. .ops = &phy_ops_1g_fiber,
  1974. .phy_addr_base = 0,
  1975. };
  1976. static const struct niu_phy_template phy_template_1g_copper = {
  1977. .ops = &phy_ops_1g_copper,
  1978. .phy_addr_base = 0,
  1979. };
  1980. static const struct niu_phy_template phy_template_1g_rgmii = {
  1981. .ops = &phy_ops_1g_rgmii,
  1982. .phy_addr_base = 0,
  1983. };
  1984. static const struct niu_phy_template phy_template_10g_serdes = {
  1985. .ops = &phy_ops_10g_serdes,
  1986. .phy_addr_base = 0,
  1987. };
  1988. static int niu_atca_port_num[4] = {
  1989. 0, 0, 11, 10
  1990. };
  1991. static int serdes_init_10g_serdes(struct niu *np)
  1992. {
  1993. struct niu_link_config *lp = &np->link_config;
  1994. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1995. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1996. u64 reset_val;
  1997. switch (np->port) {
  1998. case 0:
  1999. reset_val = ENET_SERDES_RESET_0;
  2000. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  2001. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  2002. pll_cfg = ENET_SERDES_0_PLL_CFG;
  2003. break;
  2004. case 1:
  2005. reset_val = ENET_SERDES_RESET_1;
  2006. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  2007. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  2008. pll_cfg = ENET_SERDES_1_PLL_CFG;
  2009. break;
  2010. default:
  2011. return -EINVAL;
  2012. }
  2013. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  2014. ENET_SERDES_CTRL_SDET_1 |
  2015. ENET_SERDES_CTRL_SDET_2 |
  2016. ENET_SERDES_CTRL_SDET_3 |
  2017. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  2018. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  2019. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  2020. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  2021. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  2022. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  2023. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  2024. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  2025. test_cfg_val = 0;
  2026. if (lp->loopback_mode == LOOPBACK_PHY) {
  2027. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  2028. ENET_SERDES_TEST_MD_0_SHIFT) |
  2029. (ENET_TEST_MD_PAD_LOOPBACK <<
  2030. ENET_SERDES_TEST_MD_1_SHIFT) |
  2031. (ENET_TEST_MD_PAD_LOOPBACK <<
  2032. ENET_SERDES_TEST_MD_2_SHIFT) |
  2033. (ENET_TEST_MD_PAD_LOOPBACK <<
  2034. ENET_SERDES_TEST_MD_3_SHIFT));
  2035. }
  2036. esr_reset(np);
  2037. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  2038. nw64(ctrl_reg, ctrl_val);
  2039. nw64(test_cfg_reg, test_cfg_val);
  2040. /* Initialize all 4 lanes of the SERDES. */
  2041. for (i = 0; i < 4; i++) {
  2042. u32 rxtx_ctrl, glue0;
  2043. int err;
  2044. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  2045. if (err)
  2046. return err;
  2047. err = esr_read_glue0(np, i, &glue0);
  2048. if (err)
  2049. return err;
  2050. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2051. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2052. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2053. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2054. ESR_GLUE_CTRL0_THCNT |
  2055. ESR_GLUE_CTRL0_BLTIME);
  2056. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2057. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2058. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2059. (BLTIME_300_CYCLES <<
  2060. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2061. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2062. if (err)
  2063. return err;
  2064. err = esr_write_glue0(np, i, glue0);
  2065. if (err)
  2066. return err;
  2067. }
  2068. sig = nr64(ESR_INT_SIGNALS);
  2069. switch (np->port) {
  2070. case 0:
  2071. mask = ESR_INT_SIGNALS_P0_BITS;
  2072. val = (ESR_INT_SRDY0_P0 |
  2073. ESR_INT_DET0_P0 |
  2074. ESR_INT_XSRDY_P0 |
  2075. ESR_INT_XDP_P0_CH3 |
  2076. ESR_INT_XDP_P0_CH2 |
  2077. ESR_INT_XDP_P0_CH1 |
  2078. ESR_INT_XDP_P0_CH0);
  2079. break;
  2080. case 1:
  2081. mask = ESR_INT_SIGNALS_P1_BITS;
  2082. val = (ESR_INT_SRDY0_P1 |
  2083. ESR_INT_DET0_P1 |
  2084. ESR_INT_XSRDY_P1 |
  2085. ESR_INT_XDP_P1_CH3 |
  2086. ESR_INT_XDP_P1_CH2 |
  2087. ESR_INT_XDP_P1_CH1 |
  2088. ESR_INT_XDP_P1_CH0);
  2089. break;
  2090. default:
  2091. return -EINVAL;
  2092. }
  2093. if ((sig & mask) != val) {
  2094. int err;
  2095. err = serdes_init_1g_serdes(np);
  2096. if (!err) {
  2097. np->flags &= ~NIU_FLAGS_10G;
  2098. np->mac_xcvr = MAC_XCVR_PCS;
  2099. } else {
  2100. dev_err(np->device, PFX "Port %u 10G/1G SERDES Link Failed \n",
  2101. np->port);
  2102. return -ENODEV;
  2103. }
  2104. }
  2105. return 0;
  2106. }
  2107. static int niu_determine_phy_disposition(struct niu *np)
  2108. {
  2109. struct niu_parent *parent = np->parent;
  2110. u8 plat_type = parent->plat_type;
  2111. const struct niu_phy_template *tp;
  2112. u32 phy_addr_off = 0;
  2113. if (plat_type == PLAT_TYPE_NIU) {
  2114. switch (np->flags &
  2115. (NIU_FLAGS_10G |
  2116. NIU_FLAGS_FIBER |
  2117. NIU_FLAGS_XCVR_SERDES)) {
  2118. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2119. /* 10G Serdes */
  2120. tp = &phy_template_niu_10g_serdes;
  2121. break;
  2122. case NIU_FLAGS_XCVR_SERDES:
  2123. /* 1G Serdes */
  2124. tp = &phy_template_niu_1g_serdes;
  2125. break;
  2126. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2127. /* 10G Fiber */
  2128. default:
  2129. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2130. tp = &phy_template_niu_10g_hotplug;
  2131. if (np->port == 0)
  2132. phy_addr_off = 8;
  2133. if (np->port == 1)
  2134. phy_addr_off = 12;
  2135. } else {
  2136. tp = &phy_template_niu_10g_fiber;
  2137. phy_addr_off += np->port;
  2138. }
  2139. break;
  2140. }
  2141. } else {
  2142. switch (np->flags &
  2143. (NIU_FLAGS_10G |
  2144. NIU_FLAGS_FIBER |
  2145. NIU_FLAGS_XCVR_SERDES)) {
  2146. case 0:
  2147. /* 1G copper */
  2148. tp = &phy_template_1g_copper;
  2149. if (plat_type == PLAT_TYPE_VF_P0)
  2150. phy_addr_off = 10;
  2151. else if (plat_type == PLAT_TYPE_VF_P1)
  2152. phy_addr_off = 26;
  2153. phy_addr_off += (np->port ^ 0x3);
  2154. break;
  2155. case NIU_FLAGS_10G:
  2156. /* 10G copper */
  2157. tp = &phy_template_10g_copper;
  2158. break;
  2159. case NIU_FLAGS_FIBER:
  2160. /* 1G fiber */
  2161. tp = &phy_template_1g_fiber;
  2162. break;
  2163. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2164. /* 10G fiber */
  2165. tp = &phy_template_10g_fiber;
  2166. if (plat_type == PLAT_TYPE_VF_P0 ||
  2167. plat_type == PLAT_TYPE_VF_P1)
  2168. phy_addr_off = 8;
  2169. phy_addr_off += np->port;
  2170. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2171. tp = &phy_template_10g_fiber_hotplug;
  2172. if (np->port == 0)
  2173. phy_addr_off = 8;
  2174. if (np->port == 1)
  2175. phy_addr_off = 12;
  2176. }
  2177. break;
  2178. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2179. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2180. case NIU_FLAGS_XCVR_SERDES:
  2181. switch(np->port) {
  2182. case 0:
  2183. case 1:
  2184. tp = &phy_template_10g_serdes;
  2185. break;
  2186. case 2:
  2187. case 3:
  2188. tp = &phy_template_1g_rgmii;
  2189. break;
  2190. default:
  2191. return -EINVAL;
  2192. break;
  2193. }
  2194. phy_addr_off = niu_atca_port_num[np->port];
  2195. break;
  2196. default:
  2197. return -EINVAL;
  2198. }
  2199. }
  2200. np->phy_ops = tp->ops;
  2201. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2202. return 0;
  2203. }
  2204. static int niu_init_link(struct niu *np)
  2205. {
  2206. struct niu_parent *parent = np->parent;
  2207. int err, ignore;
  2208. if (parent->plat_type == PLAT_TYPE_NIU) {
  2209. err = niu_xcvr_init(np);
  2210. if (err)
  2211. return err;
  2212. msleep(200);
  2213. }
  2214. err = niu_serdes_init(np);
  2215. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2216. return err;
  2217. msleep(200);
  2218. err = niu_xcvr_init(np);
  2219. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2220. niu_link_status(np, &ignore);
  2221. return 0;
  2222. }
  2223. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2224. {
  2225. u16 reg0 = addr[4] << 8 | addr[5];
  2226. u16 reg1 = addr[2] << 8 | addr[3];
  2227. u16 reg2 = addr[0] << 8 | addr[1];
  2228. if (np->flags & NIU_FLAGS_XMAC) {
  2229. nw64_mac(XMAC_ADDR0, reg0);
  2230. nw64_mac(XMAC_ADDR1, reg1);
  2231. nw64_mac(XMAC_ADDR2, reg2);
  2232. } else {
  2233. nw64_mac(BMAC_ADDR0, reg0);
  2234. nw64_mac(BMAC_ADDR1, reg1);
  2235. nw64_mac(BMAC_ADDR2, reg2);
  2236. }
  2237. }
  2238. static int niu_num_alt_addr(struct niu *np)
  2239. {
  2240. if (np->flags & NIU_FLAGS_XMAC)
  2241. return XMAC_NUM_ALT_ADDR;
  2242. else
  2243. return BMAC_NUM_ALT_ADDR;
  2244. }
  2245. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2246. {
  2247. u16 reg0 = addr[4] << 8 | addr[5];
  2248. u16 reg1 = addr[2] << 8 | addr[3];
  2249. u16 reg2 = addr[0] << 8 | addr[1];
  2250. if (index >= niu_num_alt_addr(np))
  2251. return -EINVAL;
  2252. if (np->flags & NIU_FLAGS_XMAC) {
  2253. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2254. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2255. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2256. } else {
  2257. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2258. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2259. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2260. }
  2261. return 0;
  2262. }
  2263. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2264. {
  2265. unsigned long reg;
  2266. u64 val, mask;
  2267. if (index >= niu_num_alt_addr(np))
  2268. return -EINVAL;
  2269. if (np->flags & NIU_FLAGS_XMAC) {
  2270. reg = XMAC_ADDR_CMPEN;
  2271. mask = 1 << index;
  2272. } else {
  2273. reg = BMAC_ADDR_CMPEN;
  2274. mask = 1 << (index + 1);
  2275. }
  2276. val = nr64_mac(reg);
  2277. if (on)
  2278. val |= mask;
  2279. else
  2280. val &= ~mask;
  2281. nw64_mac(reg, val);
  2282. return 0;
  2283. }
  2284. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2285. int num, int mac_pref)
  2286. {
  2287. u64 val = nr64_mac(reg);
  2288. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2289. val |= num;
  2290. if (mac_pref)
  2291. val |= HOST_INFO_MPR;
  2292. nw64_mac(reg, val);
  2293. }
  2294. static int __set_rdc_table_num(struct niu *np,
  2295. int xmac_index, int bmac_index,
  2296. int rdc_table_num, int mac_pref)
  2297. {
  2298. unsigned long reg;
  2299. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2300. return -EINVAL;
  2301. if (np->flags & NIU_FLAGS_XMAC)
  2302. reg = XMAC_HOST_INFO(xmac_index);
  2303. else
  2304. reg = BMAC_HOST_INFO(bmac_index);
  2305. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2306. return 0;
  2307. }
  2308. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2309. int mac_pref)
  2310. {
  2311. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2312. }
  2313. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2314. int mac_pref)
  2315. {
  2316. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2317. }
  2318. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2319. int table_num, int mac_pref)
  2320. {
  2321. if (idx >= niu_num_alt_addr(np))
  2322. return -EINVAL;
  2323. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2324. }
  2325. static u64 vlan_entry_set_parity(u64 reg_val)
  2326. {
  2327. u64 port01_mask;
  2328. u64 port23_mask;
  2329. port01_mask = 0x00ff;
  2330. port23_mask = 0xff00;
  2331. if (hweight64(reg_val & port01_mask) & 1)
  2332. reg_val |= ENET_VLAN_TBL_PARITY0;
  2333. else
  2334. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2335. if (hweight64(reg_val & port23_mask) & 1)
  2336. reg_val |= ENET_VLAN_TBL_PARITY1;
  2337. else
  2338. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2339. return reg_val;
  2340. }
  2341. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2342. int port, int vpr, int rdc_table)
  2343. {
  2344. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2345. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2346. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2347. ENET_VLAN_TBL_SHIFT(port));
  2348. if (vpr)
  2349. reg_val |= (ENET_VLAN_TBL_VPR <<
  2350. ENET_VLAN_TBL_SHIFT(port));
  2351. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2352. reg_val = vlan_entry_set_parity(reg_val);
  2353. nw64(ENET_VLAN_TBL(index), reg_val);
  2354. }
  2355. static void vlan_tbl_clear(struct niu *np)
  2356. {
  2357. int i;
  2358. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2359. nw64(ENET_VLAN_TBL(i), 0);
  2360. }
  2361. static int tcam_wait_bit(struct niu *np, u64 bit)
  2362. {
  2363. int limit = 1000;
  2364. while (--limit > 0) {
  2365. if (nr64(TCAM_CTL) & bit)
  2366. break;
  2367. udelay(1);
  2368. }
  2369. if (limit < 0)
  2370. return -ENODEV;
  2371. return 0;
  2372. }
  2373. static int tcam_flush(struct niu *np, int index)
  2374. {
  2375. nw64(TCAM_KEY_0, 0x00);
  2376. nw64(TCAM_KEY_MASK_0, 0xff);
  2377. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2378. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2379. }
  2380. #if 0
  2381. static int tcam_read(struct niu *np, int index,
  2382. u64 *key, u64 *mask)
  2383. {
  2384. int err;
  2385. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2386. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2387. if (!err) {
  2388. key[0] = nr64(TCAM_KEY_0);
  2389. key[1] = nr64(TCAM_KEY_1);
  2390. key[2] = nr64(TCAM_KEY_2);
  2391. key[3] = nr64(TCAM_KEY_3);
  2392. mask[0] = nr64(TCAM_KEY_MASK_0);
  2393. mask[1] = nr64(TCAM_KEY_MASK_1);
  2394. mask[2] = nr64(TCAM_KEY_MASK_2);
  2395. mask[3] = nr64(TCAM_KEY_MASK_3);
  2396. }
  2397. return err;
  2398. }
  2399. #endif
  2400. static int tcam_write(struct niu *np, int index,
  2401. u64 *key, u64 *mask)
  2402. {
  2403. nw64(TCAM_KEY_0, key[0]);
  2404. nw64(TCAM_KEY_1, key[1]);
  2405. nw64(TCAM_KEY_2, key[2]);
  2406. nw64(TCAM_KEY_3, key[3]);
  2407. nw64(TCAM_KEY_MASK_0, mask[0]);
  2408. nw64(TCAM_KEY_MASK_1, mask[1]);
  2409. nw64(TCAM_KEY_MASK_2, mask[2]);
  2410. nw64(TCAM_KEY_MASK_3, mask[3]);
  2411. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2412. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2413. }
  2414. #if 0
  2415. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2416. {
  2417. int err;
  2418. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2419. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2420. if (!err)
  2421. *data = nr64(TCAM_KEY_1);
  2422. return err;
  2423. }
  2424. #endif
  2425. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2426. {
  2427. nw64(TCAM_KEY_1, assoc_data);
  2428. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2429. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2430. }
  2431. static void tcam_enable(struct niu *np, int on)
  2432. {
  2433. u64 val = nr64(FFLP_CFG_1);
  2434. if (on)
  2435. val &= ~FFLP_CFG_1_TCAM_DIS;
  2436. else
  2437. val |= FFLP_CFG_1_TCAM_DIS;
  2438. nw64(FFLP_CFG_1, val);
  2439. }
  2440. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2441. {
  2442. u64 val = nr64(FFLP_CFG_1);
  2443. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2444. FFLP_CFG_1_CAMLAT |
  2445. FFLP_CFG_1_CAMRATIO);
  2446. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2447. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2448. nw64(FFLP_CFG_1, val);
  2449. val = nr64(FFLP_CFG_1);
  2450. val |= FFLP_CFG_1_FFLPINITDONE;
  2451. nw64(FFLP_CFG_1, val);
  2452. }
  2453. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2454. int on)
  2455. {
  2456. unsigned long reg;
  2457. u64 val;
  2458. if (class < CLASS_CODE_ETHERTYPE1 ||
  2459. class > CLASS_CODE_ETHERTYPE2)
  2460. return -EINVAL;
  2461. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2462. val = nr64(reg);
  2463. if (on)
  2464. val |= L2_CLS_VLD;
  2465. else
  2466. val &= ~L2_CLS_VLD;
  2467. nw64(reg, val);
  2468. return 0;
  2469. }
  2470. #if 0
  2471. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2472. u64 ether_type)
  2473. {
  2474. unsigned long reg;
  2475. u64 val;
  2476. if (class < CLASS_CODE_ETHERTYPE1 ||
  2477. class > CLASS_CODE_ETHERTYPE2 ||
  2478. (ether_type & ~(u64)0xffff) != 0)
  2479. return -EINVAL;
  2480. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2481. val = nr64(reg);
  2482. val &= ~L2_CLS_ETYPE;
  2483. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2484. nw64(reg, val);
  2485. return 0;
  2486. }
  2487. #endif
  2488. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2489. int on)
  2490. {
  2491. unsigned long reg;
  2492. u64 val;
  2493. if (class < CLASS_CODE_USER_PROG1 ||
  2494. class > CLASS_CODE_USER_PROG4)
  2495. return -EINVAL;
  2496. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2497. val = nr64(reg);
  2498. if (on)
  2499. val |= L3_CLS_VALID;
  2500. else
  2501. val &= ~L3_CLS_VALID;
  2502. nw64(reg, val);
  2503. return 0;
  2504. }
  2505. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2506. int ipv6, u64 protocol_id,
  2507. u64 tos_mask, u64 tos_val)
  2508. {
  2509. unsigned long reg;
  2510. u64 val;
  2511. if (class < CLASS_CODE_USER_PROG1 ||
  2512. class > CLASS_CODE_USER_PROG4 ||
  2513. (protocol_id & ~(u64)0xff) != 0 ||
  2514. (tos_mask & ~(u64)0xff) != 0 ||
  2515. (tos_val & ~(u64)0xff) != 0)
  2516. return -EINVAL;
  2517. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2518. val = nr64(reg);
  2519. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2520. L3_CLS_TOSMASK | L3_CLS_TOS);
  2521. if (ipv6)
  2522. val |= L3_CLS_IPVER;
  2523. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2524. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2525. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2526. nw64(reg, val);
  2527. return 0;
  2528. }
  2529. static int tcam_early_init(struct niu *np)
  2530. {
  2531. unsigned long i;
  2532. int err;
  2533. tcam_enable(np, 0);
  2534. tcam_set_lat_and_ratio(np,
  2535. DEFAULT_TCAM_LATENCY,
  2536. DEFAULT_TCAM_ACCESS_RATIO);
  2537. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2538. err = tcam_user_eth_class_enable(np, i, 0);
  2539. if (err)
  2540. return err;
  2541. }
  2542. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2543. err = tcam_user_ip_class_enable(np, i, 0);
  2544. if (err)
  2545. return err;
  2546. }
  2547. return 0;
  2548. }
  2549. static int tcam_flush_all(struct niu *np)
  2550. {
  2551. unsigned long i;
  2552. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2553. int err = tcam_flush(np, i);
  2554. if (err)
  2555. return err;
  2556. }
  2557. return 0;
  2558. }
  2559. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2560. {
  2561. return ((u64)index | (num_entries == 1 ?
  2562. HASH_TBL_ADDR_AUTOINC : 0));
  2563. }
  2564. #if 0
  2565. static int hash_read(struct niu *np, unsigned long partition,
  2566. unsigned long index, unsigned long num_entries,
  2567. u64 *data)
  2568. {
  2569. u64 val = hash_addr_regval(index, num_entries);
  2570. unsigned long i;
  2571. if (partition >= FCRAM_NUM_PARTITIONS ||
  2572. index + num_entries > FCRAM_SIZE)
  2573. return -EINVAL;
  2574. nw64(HASH_TBL_ADDR(partition), val);
  2575. for (i = 0; i < num_entries; i++)
  2576. data[i] = nr64(HASH_TBL_DATA(partition));
  2577. return 0;
  2578. }
  2579. #endif
  2580. static int hash_write(struct niu *np, unsigned long partition,
  2581. unsigned long index, unsigned long num_entries,
  2582. u64 *data)
  2583. {
  2584. u64 val = hash_addr_regval(index, num_entries);
  2585. unsigned long i;
  2586. if (partition >= FCRAM_NUM_PARTITIONS ||
  2587. index + (num_entries * 8) > FCRAM_SIZE)
  2588. return -EINVAL;
  2589. nw64(HASH_TBL_ADDR(partition), val);
  2590. for (i = 0; i < num_entries; i++)
  2591. nw64(HASH_TBL_DATA(partition), data[i]);
  2592. return 0;
  2593. }
  2594. static void fflp_reset(struct niu *np)
  2595. {
  2596. u64 val;
  2597. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2598. udelay(10);
  2599. nw64(FFLP_CFG_1, 0);
  2600. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2601. nw64(FFLP_CFG_1, val);
  2602. }
  2603. static void fflp_set_timings(struct niu *np)
  2604. {
  2605. u64 val = nr64(FFLP_CFG_1);
  2606. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2607. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2608. nw64(FFLP_CFG_1, val);
  2609. val = nr64(FFLP_CFG_1);
  2610. val |= FFLP_CFG_1_FFLPINITDONE;
  2611. nw64(FFLP_CFG_1, val);
  2612. val = nr64(FCRAM_REF_TMR);
  2613. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2614. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2615. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2616. nw64(FCRAM_REF_TMR, val);
  2617. }
  2618. static int fflp_set_partition(struct niu *np, u64 partition,
  2619. u64 mask, u64 base, int enable)
  2620. {
  2621. unsigned long reg;
  2622. u64 val;
  2623. if (partition >= FCRAM_NUM_PARTITIONS ||
  2624. (mask & ~(u64)0x1f) != 0 ||
  2625. (base & ~(u64)0x1f) != 0)
  2626. return -EINVAL;
  2627. reg = FLW_PRT_SEL(partition);
  2628. val = nr64(reg);
  2629. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2630. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2631. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2632. if (enable)
  2633. val |= FLW_PRT_SEL_EXT;
  2634. nw64(reg, val);
  2635. return 0;
  2636. }
  2637. static int fflp_disable_all_partitions(struct niu *np)
  2638. {
  2639. unsigned long i;
  2640. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2641. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2642. if (err)
  2643. return err;
  2644. }
  2645. return 0;
  2646. }
  2647. static void fflp_llcsnap_enable(struct niu *np, int on)
  2648. {
  2649. u64 val = nr64(FFLP_CFG_1);
  2650. if (on)
  2651. val |= FFLP_CFG_1_LLCSNAP;
  2652. else
  2653. val &= ~FFLP_CFG_1_LLCSNAP;
  2654. nw64(FFLP_CFG_1, val);
  2655. }
  2656. static void fflp_errors_enable(struct niu *np, int on)
  2657. {
  2658. u64 val = nr64(FFLP_CFG_1);
  2659. if (on)
  2660. val &= ~FFLP_CFG_1_ERRORDIS;
  2661. else
  2662. val |= FFLP_CFG_1_ERRORDIS;
  2663. nw64(FFLP_CFG_1, val);
  2664. }
  2665. static int fflp_hash_clear(struct niu *np)
  2666. {
  2667. struct fcram_hash_ipv4 ent;
  2668. unsigned long i;
  2669. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2670. memset(&ent, 0, sizeof(ent));
  2671. ent.header = HASH_HEADER_EXT;
  2672. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2673. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2674. if (err)
  2675. return err;
  2676. }
  2677. return 0;
  2678. }
  2679. static int fflp_early_init(struct niu *np)
  2680. {
  2681. struct niu_parent *parent;
  2682. unsigned long flags;
  2683. int err;
  2684. niu_lock_parent(np, flags);
  2685. parent = np->parent;
  2686. err = 0;
  2687. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2688. niudbg(PROBE, "fflp_early_init: Initting hw on port %u\n",
  2689. np->port);
  2690. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2691. fflp_reset(np);
  2692. fflp_set_timings(np);
  2693. err = fflp_disable_all_partitions(np);
  2694. if (err) {
  2695. niudbg(PROBE, "fflp_disable_all_partitions "
  2696. "failed, err=%d\n", err);
  2697. goto out;
  2698. }
  2699. }
  2700. err = tcam_early_init(np);
  2701. if (err) {
  2702. niudbg(PROBE, "tcam_early_init failed, err=%d\n",
  2703. err);
  2704. goto out;
  2705. }
  2706. fflp_llcsnap_enable(np, 1);
  2707. fflp_errors_enable(np, 0);
  2708. nw64(H1POLY, 0);
  2709. nw64(H2POLY, 0);
  2710. err = tcam_flush_all(np);
  2711. if (err) {
  2712. niudbg(PROBE, "tcam_flush_all failed, err=%d\n",
  2713. err);
  2714. goto out;
  2715. }
  2716. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2717. err = fflp_hash_clear(np);
  2718. if (err) {
  2719. niudbg(PROBE, "fflp_hash_clear failed, "
  2720. "err=%d\n", err);
  2721. goto out;
  2722. }
  2723. }
  2724. vlan_tbl_clear(np);
  2725. niudbg(PROBE, "fflp_early_init: Success\n");
  2726. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2727. }
  2728. out:
  2729. niu_unlock_parent(np, flags);
  2730. return err;
  2731. }
  2732. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2733. {
  2734. if (class_code < CLASS_CODE_USER_PROG1 ||
  2735. class_code > CLASS_CODE_SCTP_IPV6)
  2736. return -EINVAL;
  2737. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2738. return 0;
  2739. }
  2740. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2741. {
  2742. if (class_code < CLASS_CODE_USER_PROG1 ||
  2743. class_code > CLASS_CODE_SCTP_IPV6)
  2744. return -EINVAL;
  2745. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2746. return 0;
  2747. }
  2748. /* Entries for the ports are interleaved in the TCAM */
  2749. static u16 tcam_get_index(struct niu *np, u16 idx)
  2750. {
  2751. /* One entry reserved for IP fragment rule */
  2752. if (idx >= (np->clas.tcam_sz - 1))
  2753. idx = 0;
  2754. return (np->clas.tcam_top + ((idx+1) * np->parent->num_ports));
  2755. }
  2756. static u16 tcam_get_size(struct niu *np)
  2757. {
  2758. /* One entry reserved for IP fragment rule */
  2759. return np->clas.tcam_sz - 1;
  2760. }
  2761. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2762. {
  2763. /* One entry reserved for IP fragment rule */
  2764. return np->clas.tcam_valid_entries - 1;
  2765. }
  2766. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2767. u32 offset, u32 size)
  2768. {
  2769. int i = skb_shinfo(skb)->nr_frags;
  2770. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2771. frag->page = page;
  2772. frag->page_offset = offset;
  2773. frag->size = size;
  2774. skb->len += size;
  2775. skb->data_len += size;
  2776. skb->truesize += size;
  2777. skb_shinfo(skb)->nr_frags = i + 1;
  2778. }
  2779. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2780. {
  2781. a >>= PAGE_SHIFT;
  2782. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2783. return (a & (MAX_RBR_RING_SIZE - 1));
  2784. }
  2785. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2786. struct page ***link)
  2787. {
  2788. unsigned int h = niu_hash_rxaddr(rp, addr);
  2789. struct page *p, **pp;
  2790. addr &= PAGE_MASK;
  2791. pp = &rp->rxhash[h];
  2792. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2793. if (p->index == addr) {
  2794. *link = pp;
  2795. break;
  2796. }
  2797. }
  2798. return p;
  2799. }
  2800. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2801. {
  2802. unsigned int h = niu_hash_rxaddr(rp, base);
  2803. page->index = base;
  2804. page->mapping = (struct address_space *) rp->rxhash[h];
  2805. rp->rxhash[h] = page;
  2806. }
  2807. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2808. gfp_t mask, int start_index)
  2809. {
  2810. struct page *page;
  2811. u64 addr;
  2812. int i;
  2813. page = alloc_page(mask);
  2814. if (!page)
  2815. return -ENOMEM;
  2816. addr = np->ops->map_page(np->device, page, 0,
  2817. PAGE_SIZE, DMA_FROM_DEVICE);
  2818. niu_hash_page(rp, page, addr);
  2819. if (rp->rbr_blocks_per_page > 1)
  2820. atomic_add(rp->rbr_blocks_per_page - 1,
  2821. &compound_head(page)->_count);
  2822. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2823. __le32 *rbr = &rp->rbr[start_index + i];
  2824. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2825. addr += rp->rbr_block_size;
  2826. }
  2827. return 0;
  2828. }
  2829. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2830. {
  2831. int index = rp->rbr_index;
  2832. rp->rbr_pending++;
  2833. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2834. int err = niu_rbr_add_page(np, rp, mask, index);
  2835. if (unlikely(err)) {
  2836. rp->rbr_pending--;
  2837. return;
  2838. }
  2839. rp->rbr_index += rp->rbr_blocks_per_page;
  2840. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2841. if (rp->rbr_index == rp->rbr_table_size)
  2842. rp->rbr_index = 0;
  2843. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2844. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2845. rp->rbr_pending = 0;
  2846. }
  2847. }
  2848. }
  2849. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2850. {
  2851. unsigned int index = rp->rcr_index;
  2852. int num_rcr = 0;
  2853. rp->rx_dropped++;
  2854. while (1) {
  2855. struct page *page, **link;
  2856. u64 addr, val;
  2857. u32 rcr_size;
  2858. num_rcr++;
  2859. val = le64_to_cpup(&rp->rcr[index]);
  2860. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2861. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2862. page = niu_find_rxpage(rp, addr, &link);
  2863. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2864. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2865. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2866. *link = (struct page *) page->mapping;
  2867. np->ops->unmap_page(np->device, page->index,
  2868. PAGE_SIZE, DMA_FROM_DEVICE);
  2869. page->index = 0;
  2870. page->mapping = NULL;
  2871. __free_page(page);
  2872. rp->rbr_refill_pending++;
  2873. }
  2874. index = NEXT_RCR(rp, index);
  2875. if (!(val & RCR_ENTRY_MULTI))
  2876. break;
  2877. }
  2878. rp->rcr_index = index;
  2879. return num_rcr;
  2880. }
  2881. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2882. struct rx_ring_info *rp)
  2883. {
  2884. unsigned int index = rp->rcr_index;
  2885. struct sk_buff *skb;
  2886. int len, num_rcr;
  2887. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2888. if (unlikely(!skb))
  2889. return niu_rx_pkt_ignore(np, rp);
  2890. num_rcr = 0;
  2891. while (1) {
  2892. struct page *page, **link;
  2893. u32 rcr_size, append_size;
  2894. u64 addr, val, off;
  2895. num_rcr++;
  2896. val = le64_to_cpup(&rp->rcr[index]);
  2897. len = (val & RCR_ENTRY_L2_LEN) >>
  2898. RCR_ENTRY_L2_LEN_SHIFT;
  2899. len -= ETH_FCS_LEN;
  2900. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2901. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2902. page = niu_find_rxpage(rp, addr, &link);
  2903. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2904. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2905. off = addr & ~PAGE_MASK;
  2906. append_size = rcr_size;
  2907. if (num_rcr == 1) {
  2908. int ptype;
  2909. off += 2;
  2910. append_size -= 2;
  2911. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2912. if ((ptype == RCR_PKT_TYPE_TCP ||
  2913. ptype == RCR_PKT_TYPE_UDP) &&
  2914. !(val & (RCR_ENTRY_NOPORT |
  2915. RCR_ENTRY_ERROR)))
  2916. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2917. else
  2918. skb->ip_summed = CHECKSUM_NONE;
  2919. }
  2920. if (!(val & RCR_ENTRY_MULTI))
  2921. append_size = len - skb->len;
  2922. niu_rx_skb_append(skb, page, off, append_size);
  2923. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2924. *link = (struct page *) page->mapping;
  2925. np->ops->unmap_page(np->device, page->index,
  2926. PAGE_SIZE, DMA_FROM_DEVICE);
  2927. page->index = 0;
  2928. page->mapping = NULL;
  2929. rp->rbr_refill_pending++;
  2930. } else
  2931. get_page(page);
  2932. index = NEXT_RCR(rp, index);
  2933. if (!(val & RCR_ENTRY_MULTI))
  2934. break;
  2935. }
  2936. rp->rcr_index = index;
  2937. skb_reserve(skb, NET_IP_ALIGN);
  2938. __pskb_pull_tail(skb, min(len, VLAN_ETH_HLEN));
  2939. rp->rx_packets++;
  2940. rp->rx_bytes += skb->len;
  2941. skb->protocol = eth_type_trans(skb, np->dev);
  2942. skb_record_rx_queue(skb, rp->rx_channel);
  2943. napi_gro_receive(napi, skb);
  2944. return num_rcr;
  2945. }
  2946. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2947. {
  2948. int blocks_per_page = rp->rbr_blocks_per_page;
  2949. int err, index = rp->rbr_index;
  2950. err = 0;
  2951. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2952. err = niu_rbr_add_page(np, rp, mask, index);
  2953. if (err)
  2954. break;
  2955. index += blocks_per_page;
  2956. }
  2957. rp->rbr_index = index;
  2958. return err;
  2959. }
  2960. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2961. {
  2962. int i;
  2963. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2964. struct page *page;
  2965. page = rp->rxhash[i];
  2966. while (page) {
  2967. struct page *next = (struct page *) page->mapping;
  2968. u64 base = page->index;
  2969. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2970. DMA_FROM_DEVICE);
  2971. page->index = 0;
  2972. page->mapping = NULL;
  2973. __free_page(page);
  2974. page = next;
  2975. }
  2976. }
  2977. for (i = 0; i < rp->rbr_table_size; i++)
  2978. rp->rbr[i] = cpu_to_le32(0);
  2979. rp->rbr_index = 0;
  2980. }
  2981. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2982. {
  2983. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2984. struct sk_buff *skb = tb->skb;
  2985. struct tx_pkt_hdr *tp;
  2986. u64 tx_flags;
  2987. int i, len;
  2988. tp = (struct tx_pkt_hdr *) skb->data;
  2989. tx_flags = le64_to_cpup(&tp->flags);
  2990. rp->tx_packets++;
  2991. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2992. ((tx_flags & TXHDR_PAD) / 2));
  2993. len = skb_headlen(skb);
  2994. np->ops->unmap_single(np->device, tb->mapping,
  2995. len, DMA_TO_DEVICE);
  2996. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2997. rp->mark_pending--;
  2998. tb->skb = NULL;
  2999. do {
  3000. idx = NEXT_TX(rp, idx);
  3001. len -= MAX_TX_DESC_LEN;
  3002. } while (len > 0);
  3003. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  3004. tb = &rp->tx_buffs[idx];
  3005. BUG_ON(tb->skb != NULL);
  3006. np->ops->unmap_page(np->device, tb->mapping,
  3007. skb_shinfo(skb)->frags[i].size,
  3008. DMA_TO_DEVICE);
  3009. idx = NEXT_TX(rp, idx);
  3010. }
  3011. dev_kfree_skb(skb);
  3012. return idx;
  3013. }
  3014. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  3015. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  3016. {
  3017. struct netdev_queue *txq;
  3018. u16 pkt_cnt, tmp;
  3019. int cons, index;
  3020. u64 cs;
  3021. index = (rp - np->tx_rings);
  3022. txq = netdev_get_tx_queue(np->dev, index);
  3023. cs = rp->tx_cs;
  3024. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  3025. goto out;
  3026. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  3027. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  3028. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  3029. rp->last_pkt_cnt = tmp;
  3030. cons = rp->cons;
  3031. niudbg(TX_DONE, "%s: niu_tx_work() pkt_cnt[%u] cons[%d]\n",
  3032. np->dev->name, pkt_cnt, cons);
  3033. while (pkt_cnt--)
  3034. cons = release_tx_packet(np, rp, cons);
  3035. rp->cons = cons;
  3036. smp_mb();
  3037. out:
  3038. if (unlikely(netif_tx_queue_stopped(txq) &&
  3039. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3040. __netif_tx_lock(txq, smp_processor_id());
  3041. if (netif_tx_queue_stopped(txq) &&
  3042. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3043. netif_tx_wake_queue(txq);
  3044. __netif_tx_unlock(txq);
  3045. }
  3046. }
  3047. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3048. struct rx_ring_info *rp,
  3049. const int limit)
  3050. {
  3051. /* This elaborate scheme is needed for reading the RX discard
  3052. * counters, as they are only 16-bit and can overflow quickly,
  3053. * and because the overflow indication bit is not usable as
  3054. * the counter value does not wrap, but remains at max value
  3055. * 0xFFFF.
  3056. *
  3057. * In theory and in practice counters can be lost in between
  3058. * reading nr64() and clearing the counter nw64(). For this
  3059. * reason, the number of counter clearings nw64() is
  3060. * limited/reduced though the limit parameter.
  3061. */
  3062. int rx_channel = rp->rx_channel;
  3063. u32 misc, wred;
  3064. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3065. * following discard events: IPP (Input Port Process),
  3066. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3067. * Block Ring) prefetch buffer is empty.
  3068. */
  3069. misc = nr64(RXMISC(rx_channel));
  3070. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3071. nw64(RXMISC(rx_channel), 0);
  3072. rp->rx_errors += misc & RXMISC_COUNT;
  3073. if (unlikely(misc & RXMISC_OFLOW))
  3074. dev_err(np->device, "rx-%d: Counter overflow "
  3075. "RXMISC discard\n", rx_channel);
  3076. niudbg(RX_ERR, "%s-rx-%d: MISC drop=%u over=%u\n",
  3077. np->dev->name, rx_channel, misc, misc-limit);
  3078. }
  3079. /* WRED (Weighted Random Early Discard) by hardware */
  3080. wred = nr64(RED_DIS_CNT(rx_channel));
  3081. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3082. nw64(RED_DIS_CNT(rx_channel), 0);
  3083. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3084. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3085. dev_err(np->device, "rx-%d: Counter overflow "
  3086. "WRED discard\n", rx_channel);
  3087. niudbg(RX_ERR, "%s-rx-%d: WRED drop=%u over=%u\n",
  3088. np->dev->name, rx_channel, wred, wred-limit);
  3089. }
  3090. }
  3091. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3092. struct rx_ring_info *rp, int budget)
  3093. {
  3094. int qlen, rcr_done = 0, work_done = 0;
  3095. struct rxdma_mailbox *mbox = rp->mbox;
  3096. u64 stat;
  3097. #if 1
  3098. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3099. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3100. #else
  3101. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3102. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3103. #endif
  3104. mbox->rx_dma_ctl_stat = 0;
  3105. mbox->rcrstat_a = 0;
  3106. niudbg(RX_STATUS, "%s: niu_rx_work(chan[%d]), stat[%llx] qlen=%d\n",
  3107. np->dev->name, rp->rx_channel, (unsigned long long) stat, qlen);
  3108. rcr_done = work_done = 0;
  3109. qlen = min(qlen, budget);
  3110. while (work_done < qlen) {
  3111. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3112. work_done++;
  3113. }
  3114. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3115. unsigned int i;
  3116. for (i = 0; i < rp->rbr_refill_pending; i++)
  3117. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3118. rp->rbr_refill_pending = 0;
  3119. }
  3120. stat = (RX_DMA_CTL_STAT_MEX |
  3121. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3122. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3123. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3124. /* Only sync discards stats when qlen indicate potential for drops */
  3125. if (qlen > 10)
  3126. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3127. return work_done;
  3128. }
  3129. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3130. {
  3131. u64 v0 = lp->v0;
  3132. u32 tx_vec = (v0 >> 32);
  3133. u32 rx_vec = (v0 & 0xffffffff);
  3134. int i, work_done = 0;
  3135. niudbg(INTR, "%s: niu_poll_core() v0[%016llx]\n",
  3136. np->dev->name, (unsigned long long) v0);
  3137. for (i = 0; i < np->num_tx_rings; i++) {
  3138. struct tx_ring_info *rp = &np->tx_rings[i];
  3139. if (tx_vec & (1 << rp->tx_channel))
  3140. niu_tx_work(np, rp);
  3141. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3142. }
  3143. for (i = 0; i < np->num_rx_rings; i++) {
  3144. struct rx_ring_info *rp = &np->rx_rings[i];
  3145. if (rx_vec & (1 << rp->rx_channel)) {
  3146. int this_work_done;
  3147. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3148. budget);
  3149. budget -= this_work_done;
  3150. work_done += this_work_done;
  3151. }
  3152. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3153. }
  3154. return work_done;
  3155. }
  3156. static int niu_poll(struct napi_struct *napi, int budget)
  3157. {
  3158. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3159. struct niu *np = lp->np;
  3160. int work_done;
  3161. work_done = niu_poll_core(np, lp, budget);
  3162. if (work_done < budget) {
  3163. napi_complete(napi);
  3164. niu_ldg_rearm(np, lp, 1);
  3165. }
  3166. return work_done;
  3167. }
  3168. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3169. u64 stat)
  3170. {
  3171. dev_err(np->device, PFX "%s: RX channel %u errors ( ",
  3172. np->dev->name, rp->rx_channel);
  3173. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3174. printk("RBR_TMOUT ");
  3175. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3176. printk("RSP_CNT ");
  3177. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3178. printk("BYTE_EN_BUS ");
  3179. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3180. printk("RSP_DAT ");
  3181. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3182. printk("RCR_ACK ");
  3183. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3184. printk("RCR_SHA_PAR ");
  3185. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3186. printk("RBR_PRE_PAR ");
  3187. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3188. printk("CONFIG ");
  3189. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3190. printk("RCRINCON ");
  3191. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3192. printk("RCRFULL ");
  3193. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3194. printk("RBRFULL ");
  3195. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3196. printk("RBRLOGPAGE ");
  3197. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3198. printk("CFIGLOGPAGE ");
  3199. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3200. printk("DC_FIDO ");
  3201. printk(")\n");
  3202. }
  3203. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3204. {
  3205. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3206. int err = 0;
  3207. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3208. RX_DMA_CTL_STAT_PORT_FATAL))
  3209. err = -EINVAL;
  3210. if (err) {
  3211. dev_err(np->device, PFX "%s: RX channel %u error, stat[%llx]\n",
  3212. np->dev->name, rp->rx_channel,
  3213. (unsigned long long) stat);
  3214. niu_log_rxchan_errors(np, rp, stat);
  3215. }
  3216. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3217. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3218. return err;
  3219. }
  3220. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3221. u64 cs)
  3222. {
  3223. dev_err(np->device, PFX "%s: TX channel %u errors ( ",
  3224. np->dev->name, rp->tx_channel);
  3225. if (cs & TX_CS_MBOX_ERR)
  3226. printk("MBOX ");
  3227. if (cs & TX_CS_PKT_SIZE_ERR)
  3228. printk("PKT_SIZE ");
  3229. if (cs & TX_CS_TX_RING_OFLOW)
  3230. printk("TX_RING_OFLOW ");
  3231. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3232. printk("PREF_BUF_PAR ");
  3233. if (cs & TX_CS_NACK_PREF)
  3234. printk("NACK_PREF ");
  3235. if (cs & TX_CS_NACK_PKT_RD)
  3236. printk("NACK_PKT_RD ");
  3237. if (cs & TX_CS_CONF_PART_ERR)
  3238. printk("CONF_PART ");
  3239. if (cs & TX_CS_PKT_PRT_ERR)
  3240. printk("PKT_PTR ");
  3241. printk(")\n");
  3242. }
  3243. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3244. {
  3245. u64 cs, logh, logl;
  3246. cs = nr64(TX_CS(rp->tx_channel));
  3247. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3248. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3249. dev_err(np->device, PFX "%s: TX channel %u error, "
  3250. "cs[%llx] logh[%llx] logl[%llx]\n",
  3251. np->dev->name, rp->tx_channel,
  3252. (unsigned long long) cs,
  3253. (unsigned long long) logh,
  3254. (unsigned long long) logl);
  3255. niu_log_txchan_errors(np, rp, cs);
  3256. return -ENODEV;
  3257. }
  3258. static int niu_mif_interrupt(struct niu *np)
  3259. {
  3260. u64 mif_status = nr64(MIF_STATUS);
  3261. int phy_mdint = 0;
  3262. if (np->flags & NIU_FLAGS_XMAC) {
  3263. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3264. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3265. phy_mdint = 1;
  3266. }
  3267. dev_err(np->device, PFX "%s: MIF interrupt, "
  3268. "stat[%llx] phy_mdint(%d)\n",
  3269. np->dev->name, (unsigned long long) mif_status, phy_mdint);
  3270. return -ENODEV;
  3271. }
  3272. static void niu_xmac_interrupt(struct niu *np)
  3273. {
  3274. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3275. u64 val;
  3276. val = nr64_mac(XTXMAC_STATUS);
  3277. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3278. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3279. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3280. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3281. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3282. mp->tx_fifo_errors++;
  3283. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3284. mp->tx_overflow_errors++;
  3285. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3286. mp->tx_max_pkt_size_errors++;
  3287. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3288. mp->tx_underflow_errors++;
  3289. val = nr64_mac(XRXMAC_STATUS);
  3290. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3291. mp->rx_local_faults++;
  3292. if (val & XRXMAC_STATUS_RFLT_DET)
  3293. mp->rx_remote_faults++;
  3294. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3295. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3296. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3297. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3298. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3299. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3300. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3301. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3302. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3303. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3304. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3305. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3306. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3307. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3308. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3309. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3310. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3311. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3312. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3313. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3314. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3315. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3316. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3317. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3318. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3319. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3320. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3321. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3322. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3323. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3324. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3325. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3326. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3327. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3328. if (val & XRXMAC_STATUS_RXUFLOW)
  3329. mp->rx_underflows++;
  3330. if (val & XRXMAC_STATUS_RXOFLOW)
  3331. mp->rx_overflows++;
  3332. val = nr64_mac(XMAC_FC_STAT);
  3333. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3334. mp->pause_off_state++;
  3335. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3336. mp->pause_on_state++;
  3337. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3338. mp->pause_received++;
  3339. }
  3340. static void niu_bmac_interrupt(struct niu *np)
  3341. {
  3342. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3343. u64 val;
  3344. val = nr64_mac(BTXMAC_STATUS);
  3345. if (val & BTXMAC_STATUS_UNDERRUN)
  3346. mp->tx_underflow_errors++;
  3347. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3348. mp->tx_max_pkt_size_errors++;
  3349. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3350. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3351. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3352. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3353. val = nr64_mac(BRXMAC_STATUS);
  3354. if (val & BRXMAC_STATUS_OVERFLOW)
  3355. mp->rx_overflows++;
  3356. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3357. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3358. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3359. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3360. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3361. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3362. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3363. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3364. val = nr64_mac(BMAC_CTRL_STATUS);
  3365. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3366. mp->pause_off_state++;
  3367. if (val & BMAC_CTRL_STATUS_PAUSE)
  3368. mp->pause_on_state++;
  3369. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3370. mp->pause_received++;
  3371. }
  3372. static int niu_mac_interrupt(struct niu *np)
  3373. {
  3374. if (np->flags & NIU_FLAGS_XMAC)
  3375. niu_xmac_interrupt(np);
  3376. else
  3377. niu_bmac_interrupt(np);
  3378. return 0;
  3379. }
  3380. static void niu_log_device_error(struct niu *np, u64 stat)
  3381. {
  3382. dev_err(np->device, PFX "%s: Core device errors ( ",
  3383. np->dev->name);
  3384. if (stat & SYS_ERR_MASK_META2)
  3385. printk("META2 ");
  3386. if (stat & SYS_ERR_MASK_META1)
  3387. printk("META1 ");
  3388. if (stat & SYS_ERR_MASK_PEU)
  3389. printk("PEU ");
  3390. if (stat & SYS_ERR_MASK_TXC)
  3391. printk("TXC ");
  3392. if (stat & SYS_ERR_MASK_RDMC)
  3393. printk("RDMC ");
  3394. if (stat & SYS_ERR_MASK_TDMC)
  3395. printk("TDMC ");
  3396. if (stat & SYS_ERR_MASK_ZCP)
  3397. printk("ZCP ");
  3398. if (stat & SYS_ERR_MASK_FFLP)
  3399. printk("FFLP ");
  3400. if (stat & SYS_ERR_MASK_IPP)
  3401. printk("IPP ");
  3402. if (stat & SYS_ERR_MASK_MAC)
  3403. printk("MAC ");
  3404. if (stat & SYS_ERR_MASK_SMX)
  3405. printk("SMX ");
  3406. printk(")\n");
  3407. }
  3408. static int niu_device_error(struct niu *np)
  3409. {
  3410. u64 stat = nr64(SYS_ERR_STAT);
  3411. dev_err(np->device, PFX "%s: Core device error, stat[%llx]\n",
  3412. np->dev->name, (unsigned long long) stat);
  3413. niu_log_device_error(np, stat);
  3414. return -ENODEV;
  3415. }
  3416. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3417. u64 v0, u64 v1, u64 v2)
  3418. {
  3419. int i, err = 0;
  3420. lp->v0 = v0;
  3421. lp->v1 = v1;
  3422. lp->v2 = v2;
  3423. if (v1 & 0x00000000ffffffffULL) {
  3424. u32 rx_vec = (v1 & 0xffffffff);
  3425. for (i = 0; i < np->num_rx_rings; i++) {
  3426. struct rx_ring_info *rp = &np->rx_rings[i];
  3427. if (rx_vec & (1 << rp->rx_channel)) {
  3428. int r = niu_rx_error(np, rp);
  3429. if (r) {
  3430. err = r;
  3431. } else {
  3432. if (!v0)
  3433. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3434. RX_DMA_CTL_STAT_MEX);
  3435. }
  3436. }
  3437. }
  3438. }
  3439. if (v1 & 0x7fffffff00000000ULL) {
  3440. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3441. for (i = 0; i < np->num_tx_rings; i++) {
  3442. struct tx_ring_info *rp = &np->tx_rings[i];
  3443. if (tx_vec & (1 << rp->tx_channel)) {
  3444. int r = niu_tx_error(np, rp);
  3445. if (r)
  3446. err = r;
  3447. }
  3448. }
  3449. }
  3450. if ((v0 | v1) & 0x8000000000000000ULL) {
  3451. int r = niu_mif_interrupt(np);
  3452. if (r)
  3453. err = r;
  3454. }
  3455. if (v2) {
  3456. if (v2 & 0x01ef) {
  3457. int r = niu_mac_interrupt(np);
  3458. if (r)
  3459. err = r;
  3460. }
  3461. if (v2 & 0x0210) {
  3462. int r = niu_device_error(np);
  3463. if (r)
  3464. err = r;
  3465. }
  3466. }
  3467. if (err)
  3468. niu_enable_interrupts(np, 0);
  3469. return err;
  3470. }
  3471. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3472. int ldn)
  3473. {
  3474. struct rxdma_mailbox *mbox = rp->mbox;
  3475. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3476. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3477. RX_DMA_CTL_STAT_RCRTO);
  3478. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3479. niudbg(INTR, "%s: rxchan_intr stat[%llx]\n",
  3480. np->dev->name, (unsigned long long) stat);
  3481. }
  3482. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3483. int ldn)
  3484. {
  3485. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3486. niudbg(INTR, "%s: txchan_intr cs[%llx]\n",
  3487. np->dev->name, (unsigned long long) rp->tx_cs);
  3488. }
  3489. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3490. {
  3491. struct niu_parent *parent = np->parent;
  3492. u32 rx_vec, tx_vec;
  3493. int i;
  3494. tx_vec = (v0 >> 32);
  3495. rx_vec = (v0 & 0xffffffff);
  3496. for (i = 0; i < np->num_rx_rings; i++) {
  3497. struct rx_ring_info *rp = &np->rx_rings[i];
  3498. int ldn = LDN_RXDMA(rp->rx_channel);
  3499. if (parent->ldg_map[ldn] != ldg)
  3500. continue;
  3501. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3502. if (rx_vec & (1 << rp->rx_channel))
  3503. niu_rxchan_intr(np, rp, ldn);
  3504. }
  3505. for (i = 0; i < np->num_tx_rings; i++) {
  3506. struct tx_ring_info *rp = &np->tx_rings[i];
  3507. int ldn = LDN_TXDMA(rp->tx_channel);
  3508. if (parent->ldg_map[ldn] != ldg)
  3509. continue;
  3510. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3511. if (tx_vec & (1 << rp->tx_channel))
  3512. niu_txchan_intr(np, rp, ldn);
  3513. }
  3514. }
  3515. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3516. u64 v0, u64 v1, u64 v2)
  3517. {
  3518. if (likely(napi_schedule_prep(&lp->napi))) {
  3519. lp->v0 = v0;
  3520. lp->v1 = v1;
  3521. lp->v2 = v2;
  3522. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3523. __napi_schedule(&lp->napi);
  3524. }
  3525. }
  3526. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3527. {
  3528. struct niu_ldg *lp = dev_id;
  3529. struct niu *np = lp->np;
  3530. int ldg = lp->ldg_num;
  3531. unsigned long flags;
  3532. u64 v0, v1, v2;
  3533. if (netif_msg_intr(np))
  3534. printk(KERN_DEBUG PFX "niu_interrupt() ldg[%p](%d) ",
  3535. lp, ldg);
  3536. spin_lock_irqsave(&np->lock, flags);
  3537. v0 = nr64(LDSV0(ldg));
  3538. v1 = nr64(LDSV1(ldg));
  3539. v2 = nr64(LDSV2(ldg));
  3540. if (netif_msg_intr(np))
  3541. printk("v0[%llx] v1[%llx] v2[%llx]\n",
  3542. (unsigned long long) v0,
  3543. (unsigned long long) v1,
  3544. (unsigned long long) v2);
  3545. if (unlikely(!v0 && !v1 && !v2)) {
  3546. spin_unlock_irqrestore(&np->lock, flags);
  3547. return IRQ_NONE;
  3548. }
  3549. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3550. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3551. if (err)
  3552. goto out;
  3553. }
  3554. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3555. niu_schedule_napi(np, lp, v0, v1, v2);
  3556. else
  3557. niu_ldg_rearm(np, lp, 1);
  3558. out:
  3559. spin_unlock_irqrestore(&np->lock, flags);
  3560. return IRQ_HANDLED;
  3561. }
  3562. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3563. {
  3564. if (rp->mbox) {
  3565. np->ops->free_coherent(np->device,
  3566. sizeof(struct rxdma_mailbox),
  3567. rp->mbox, rp->mbox_dma);
  3568. rp->mbox = NULL;
  3569. }
  3570. if (rp->rcr) {
  3571. np->ops->free_coherent(np->device,
  3572. MAX_RCR_RING_SIZE * sizeof(__le64),
  3573. rp->rcr, rp->rcr_dma);
  3574. rp->rcr = NULL;
  3575. rp->rcr_table_size = 0;
  3576. rp->rcr_index = 0;
  3577. }
  3578. if (rp->rbr) {
  3579. niu_rbr_free(np, rp);
  3580. np->ops->free_coherent(np->device,
  3581. MAX_RBR_RING_SIZE * sizeof(__le32),
  3582. rp->rbr, rp->rbr_dma);
  3583. rp->rbr = NULL;
  3584. rp->rbr_table_size = 0;
  3585. rp->rbr_index = 0;
  3586. }
  3587. kfree(rp->rxhash);
  3588. rp->rxhash = NULL;
  3589. }
  3590. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3591. {
  3592. if (rp->mbox) {
  3593. np->ops->free_coherent(np->device,
  3594. sizeof(struct txdma_mailbox),
  3595. rp->mbox, rp->mbox_dma);
  3596. rp->mbox = NULL;
  3597. }
  3598. if (rp->descr) {
  3599. int i;
  3600. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3601. if (rp->tx_buffs[i].skb)
  3602. (void) release_tx_packet(np, rp, i);
  3603. }
  3604. np->ops->free_coherent(np->device,
  3605. MAX_TX_RING_SIZE * sizeof(__le64),
  3606. rp->descr, rp->descr_dma);
  3607. rp->descr = NULL;
  3608. rp->pending = 0;
  3609. rp->prod = 0;
  3610. rp->cons = 0;
  3611. rp->wrap_bit = 0;
  3612. }
  3613. }
  3614. static void niu_free_channels(struct niu *np)
  3615. {
  3616. int i;
  3617. if (np->rx_rings) {
  3618. for (i = 0; i < np->num_rx_rings; i++) {
  3619. struct rx_ring_info *rp = &np->rx_rings[i];
  3620. niu_free_rx_ring_info(np, rp);
  3621. }
  3622. kfree(np->rx_rings);
  3623. np->rx_rings = NULL;
  3624. np->num_rx_rings = 0;
  3625. }
  3626. if (np->tx_rings) {
  3627. for (i = 0; i < np->num_tx_rings; i++) {
  3628. struct tx_ring_info *rp = &np->tx_rings[i];
  3629. niu_free_tx_ring_info(np, rp);
  3630. }
  3631. kfree(np->tx_rings);
  3632. np->tx_rings = NULL;
  3633. np->num_tx_rings = 0;
  3634. }
  3635. }
  3636. static int niu_alloc_rx_ring_info(struct niu *np,
  3637. struct rx_ring_info *rp)
  3638. {
  3639. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3640. rp->rxhash = kzalloc(MAX_RBR_RING_SIZE * sizeof(struct page *),
  3641. GFP_KERNEL);
  3642. if (!rp->rxhash)
  3643. return -ENOMEM;
  3644. rp->mbox = np->ops->alloc_coherent(np->device,
  3645. sizeof(struct rxdma_mailbox),
  3646. &rp->mbox_dma, GFP_KERNEL);
  3647. if (!rp->mbox)
  3648. return -ENOMEM;
  3649. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3650. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3651. "RXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3652. return -EINVAL;
  3653. }
  3654. rp->rcr = np->ops->alloc_coherent(np->device,
  3655. MAX_RCR_RING_SIZE * sizeof(__le64),
  3656. &rp->rcr_dma, GFP_KERNEL);
  3657. if (!rp->rcr)
  3658. return -ENOMEM;
  3659. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3660. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3661. "RXDMA RCR table %p\n", np->dev->name, rp->rcr);
  3662. return -EINVAL;
  3663. }
  3664. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3665. rp->rcr_index = 0;
  3666. rp->rbr = np->ops->alloc_coherent(np->device,
  3667. MAX_RBR_RING_SIZE * sizeof(__le32),
  3668. &rp->rbr_dma, GFP_KERNEL);
  3669. if (!rp->rbr)
  3670. return -ENOMEM;
  3671. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3672. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3673. "RXDMA RBR table %p\n", np->dev->name, rp->rbr);
  3674. return -EINVAL;
  3675. }
  3676. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3677. rp->rbr_index = 0;
  3678. rp->rbr_pending = 0;
  3679. return 0;
  3680. }
  3681. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3682. {
  3683. int mtu = np->dev->mtu;
  3684. /* These values are recommended by the HW designers for fair
  3685. * utilization of DRR amongst the rings.
  3686. */
  3687. rp->max_burst = mtu + 32;
  3688. if (rp->max_burst > 4096)
  3689. rp->max_burst = 4096;
  3690. }
  3691. static int niu_alloc_tx_ring_info(struct niu *np,
  3692. struct tx_ring_info *rp)
  3693. {
  3694. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3695. rp->mbox = np->ops->alloc_coherent(np->device,
  3696. sizeof(struct txdma_mailbox),
  3697. &rp->mbox_dma, GFP_KERNEL);
  3698. if (!rp->mbox)
  3699. return -ENOMEM;
  3700. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3701. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3702. "TXDMA mailbox %p\n", np->dev->name, rp->mbox);
  3703. return -EINVAL;
  3704. }
  3705. rp->descr = np->ops->alloc_coherent(np->device,
  3706. MAX_TX_RING_SIZE * sizeof(__le64),
  3707. &rp->descr_dma, GFP_KERNEL);
  3708. if (!rp->descr)
  3709. return -ENOMEM;
  3710. if ((unsigned long)rp->descr & (64UL - 1)) {
  3711. dev_err(np->device, PFX "%s: Coherent alloc gives misaligned "
  3712. "TXDMA descr table %p\n", np->dev->name, rp->descr);
  3713. return -EINVAL;
  3714. }
  3715. rp->pending = MAX_TX_RING_SIZE;
  3716. rp->prod = 0;
  3717. rp->cons = 0;
  3718. rp->wrap_bit = 0;
  3719. /* XXX make these configurable... XXX */
  3720. rp->mark_freq = rp->pending / 4;
  3721. niu_set_max_burst(np, rp);
  3722. return 0;
  3723. }
  3724. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3725. {
  3726. u16 bss;
  3727. bss = min(PAGE_SHIFT, 15);
  3728. rp->rbr_block_size = 1 << bss;
  3729. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3730. rp->rbr_sizes[0] = 256;
  3731. rp->rbr_sizes[1] = 1024;
  3732. if (np->dev->mtu > ETH_DATA_LEN) {
  3733. switch (PAGE_SIZE) {
  3734. case 4 * 1024:
  3735. rp->rbr_sizes[2] = 4096;
  3736. break;
  3737. default:
  3738. rp->rbr_sizes[2] = 8192;
  3739. break;
  3740. }
  3741. } else {
  3742. rp->rbr_sizes[2] = 2048;
  3743. }
  3744. rp->rbr_sizes[3] = rp->rbr_block_size;
  3745. }
  3746. static int niu_alloc_channels(struct niu *np)
  3747. {
  3748. struct niu_parent *parent = np->parent;
  3749. int first_rx_channel, first_tx_channel;
  3750. int i, port, err;
  3751. port = np->port;
  3752. first_rx_channel = first_tx_channel = 0;
  3753. for (i = 0; i < port; i++) {
  3754. first_rx_channel += parent->rxchan_per_port[i];
  3755. first_tx_channel += parent->txchan_per_port[i];
  3756. }
  3757. np->num_rx_rings = parent->rxchan_per_port[port];
  3758. np->num_tx_rings = parent->txchan_per_port[port];
  3759. np->dev->real_num_tx_queues = np->num_tx_rings;
  3760. np->rx_rings = kzalloc(np->num_rx_rings * sizeof(struct rx_ring_info),
  3761. GFP_KERNEL);
  3762. err = -ENOMEM;
  3763. if (!np->rx_rings)
  3764. goto out_err;
  3765. for (i = 0; i < np->num_rx_rings; i++) {
  3766. struct rx_ring_info *rp = &np->rx_rings[i];
  3767. rp->np = np;
  3768. rp->rx_channel = first_rx_channel + i;
  3769. err = niu_alloc_rx_ring_info(np, rp);
  3770. if (err)
  3771. goto out_err;
  3772. niu_size_rbr(np, rp);
  3773. /* XXX better defaults, configurable, etc... XXX */
  3774. rp->nonsyn_window = 64;
  3775. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3776. rp->syn_window = 64;
  3777. rp->syn_threshold = rp->rcr_table_size - 64;
  3778. rp->rcr_pkt_threshold = 16;
  3779. rp->rcr_timeout = 8;
  3780. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3781. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3782. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3783. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3784. if (err)
  3785. return err;
  3786. }
  3787. np->tx_rings = kzalloc(np->num_tx_rings * sizeof(struct tx_ring_info),
  3788. GFP_KERNEL);
  3789. err = -ENOMEM;
  3790. if (!np->tx_rings)
  3791. goto out_err;
  3792. for (i = 0; i < np->num_tx_rings; i++) {
  3793. struct tx_ring_info *rp = &np->tx_rings[i];
  3794. rp->np = np;
  3795. rp->tx_channel = first_tx_channel + i;
  3796. err = niu_alloc_tx_ring_info(np, rp);
  3797. if (err)
  3798. goto out_err;
  3799. }
  3800. return 0;
  3801. out_err:
  3802. niu_free_channels(np);
  3803. return err;
  3804. }
  3805. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3806. {
  3807. int limit = 1000;
  3808. while (--limit > 0) {
  3809. u64 val = nr64(TX_CS(channel));
  3810. if (val & TX_CS_SNG_STATE)
  3811. return 0;
  3812. }
  3813. return -ENODEV;
  3814. }
  3815. static int niu_tx_channel_stop(struct niu *np, int channel)
  3816. {
  3817. u64 val = nr64(TX_CS(channel));
  3818. val |= TX_CS_STOP_N_GO;
  3819. nw64(TX_CS(channel), val);
  3820. return niu_tx_cs_sng_poll(np, channel);
  3821. }
  3822. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3823. {
  3824. int limit = 1000;
  3825. while (--limit > 0) {
  3826. u64 val = nr64(TX_CS(channel));
  3827. if (!(val & TX_CS_RST))
  3828. return 0;
  3829. }
  3830. return -ENODEV;
  3831. }
  3832. static int niu_tx_channel_reset(struct niu *np, int channel)
  3833. {
  3834. u64 val = nr64(TX_CS(channel));
  3835. int err;
  3836. val |= TX_CS_RST;
  3837. nw64(TX_CS(channel), val);
  3838. err = niu_tx_cs_reset_poll(np, channel);
  3839. if (!err)
  3840. nw64(TX_RING_KICK(channel), 0);
  3841. return err;
  3842. }
  3843. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3844. {
  3845. u64 val;
  3846. nw64(TX_LOG_MASK1(channel), 0);
  3847. nw64(TX_LOG_VAL1(channel), 0);
  3848. nw64(TX_LOG_MASK2(channel), 0);
  3849. nw64(TX_LOG_VAL2(channel), 0);
  3850. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3851. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3852. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3853. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3854. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3855. nw64(TX_LOG_PAGE_VLD(channel), val);
  3856. /* XXX TXDMA 32bit mode? XXX */
  3857. return 0;
  3858. }
  3859. static void niu_txc_enable_port(struct niu *np, int on)
  3860. {
  3861. unsigned long flags;
  3862. u64 val, mask;
  3863. niu_lock_parent(np, flags);
  3864. val = nr64(TXC_CONTROL);
  3865. mask = (u64)1 << np->port;
  3866. if (on) {
  3867. val |= TXC_CONTROL_ENABLE | mask;
  3868. } else {
  3869. val &= ~mask;
  3870. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3871. val &= ~TXC_CONTROL_ENABLE;
  3872. }
  3873. nw64(TXC_CONTROL, val);
  3874. niu_unlock_parent(np, flags);
  3875. }
  3876. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3877. {
  3878. unsigned long flags;
  3879. u64 val;
  3880. niu_lock_parent(np, flags);
  3881. val = nr64(TXC_INT_MASK);
  3882. val &= ~TXC_INT_MASK_VAL(np->port);
  3883. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3884. niu_unlock_parent(np, flags);
  3885. }
  3886. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3887. {
  3888. u64 val = 0;
  3889. if (on) {
  3890. int i;
  3891. for (i = 0; i < np->num_tx_rings; i++)
  3892. val |= (1 << np->tx_rings[i].tx_channel);
  3893. }
  3894. nw64(TXC_PORT_DMA(np->port), val);
  3895. }
  3896. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3897. {
  3898. int err, channel = rp->tx_channel;
  3899. u64 val, ring_len;
  3900. err = niu_tx_channel_stop(np, channel);
  3901. if (err)
  3902. return err;
  3903. err = niu_tx_channel_reset(np, channel);
  3904. if (err)
  3905. return err;
  3906. err = niu_tx_channel_lpage_init(np, channel);
  3907. if (err)
  3908. return err;
  3909. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3910. nw64(TX_ENT_MSK(channel), 0);
  3911. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3912. TX_RNG_CFIG_STADDR)) {
  3913. dev_err(np->device, PFX "%s: TX ring channel %d "
  3914. "DMA addr (%llx) is not aligned.\n",
  3915. np->dev->name, channel,
  3916. (unsigned long long) rp->descr_dma);
  3917. return -EINVAL;
  3918. }
  3919. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3920. * blocks. rp->pending is the number of TX descriptors in
  3921. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3922. * to get the proper value the chip wants.
  3923. */
  3924. ring_len = (rp->pending / 8);
  3925. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3926. rp->descr_dma);
  3927. nw64(TX_RNG_CFIG(channel), val);
  3928. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3929. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3930. dev_err(np->device, PFX "%s: TX ring channel %d "
  3931. "MBOX addr (%llx) is has illegal bits.\n",
  3932. np->dev->name, channel,
  3933. (unsigned long long) rp->mbox_dma);
  3934. return -EINVAL;
  3935. }
  3936. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3937. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3938. nw64(TX_CS(channel), 0);
  3939. rp->last_pkt_cnt = 0;
  3940. return 0;
  3941. }
  3942. static void niu_init_rdc_groups(struct niu *np)
  3943. {
  3944. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3945. int i, first_table_num = tp->first_table_num;
  3946. for (i = 0; i < tp->num_tables; i++) {
  3947. struct rdc_table *tbl = &tp->tables[i];
  3948. int this_table = first_table_num + i;
  3949. int slot;
  3950. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3951. nw64(RDC_TBL(this_table, slot),
  3952. tbl->rxdma_channel[slot]);
  3953. }
  3954. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3955. }
  3956. static void niu_init_drr_weight(struct niu *np)
  3957. {
  3958. int type = phy_decode(np->parent->port_phy, np->port);
  3959. u64 val;
  3960. switch (type) {
  3961. case PORT_TYPE_10G:
  3962. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3963. break;
  3964. case PORT_TYPE_1G:
  3965. default:
  3966. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3967. break;
  3968. }
  3969. nw64(PT_DRR_WT(np->port), val);
  3970. }
  3971. static int niu_init_hostinfo(struct niu *np)
  3972. {
  3973. struct niu_parent *parent = np->parent;
  3974. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3975. int i, err, num_alt = niu_num_alt_addr(np);
  3976. int first_rdc_table = tp->first_table_num;
  3977. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3978. if (err)
  3979. return err;
  3980. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3981. if (err)
  3982. return err;
  3983. for (i = 0; i < num_alt; i++) {
  3984. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3985. if (err)
  3986. return err;
  3987. }
  3988. return 0;
  3989. }
  3990. static int niu_rx_channel_reset(struct niu *np, int channel)
  3991. {
  3992. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3993. RXDMA_CFIG1_RST, 1000, 10,
  3994. "RXDMA_CFIG1");
  3995. }
  3996. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3997. {
  3998. u64 val;
  3999. nw64(RX_LOG_MASK1(channel), 0);
  4000. nw64(RX_LOG_VAL1(channel), 0);
  4001. nw64(RX_LOG_MASK2(channel), 0);
  4002. nw64(RX_LOG_VAL2(channel), 0);
  4003. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  4004. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  4005. nw64(RX_LOG_PAGE_HDL(channel), 0);
  4006. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  4007. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  4008. nw64(RX_LOG_PAGE_VLD(channel), val);
  4009. return 0;
  4010. }
  4011. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  4012. {
  4013. u64 val;
  4014. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  4015. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  4016. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  4017. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  4018. nw64(RDC_RED_PARA(rp->rx_channel), val);
  4019. }
  4020. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  4021. {
  4022. u64 val = 0;
  4023. *ret = 0;
  4024. switch (rp->rbr_block_size) {
  4025. case 4 * 1024:
  4026. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4027. break;
  4028. case 8 * 1024:
  4029. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4030. break;
  4031. case 16 * 1024:
  4032. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4033. break;
  4034. case 32 * 1024:
  4035. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4036. break;
  4037. default:
  4038. return -EINVAL;
  4039. }
  4040. val |= RBR_CFIG_B_VLD2;
  4041. switch (rp->rbr_sizes[2]) {
  4042. case 2 * 1024:
  4043. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4044. break;
  4045. case 4 * 1024:
  4046. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4047. break;
  4048. case 8 * 1024:
  4049. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4050. break;
  4051. case 16 * 1024:
  4052. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4053. break;
  4054. default:
  4055. return -EINVAL;
  4056. }
  4057. val |= RBR_CFIG_B_VLD1;
  4058. switch (rp->rbr_sizes[1]) {
  4059. case 1 * 1024:
  4060. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4061. break;
  4062. case 2 * 1024:
  4063. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4064. break;
  4065. case 4 * 1024:
  4066. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4067. break;
  4068. case 8 * 1024:
  4069. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4070. break;
  4071. default:
  4072. return -EINVAL;
  4073. }
  4074. val |= RBR_CFIG_B_VLD0;
  4075. switch (rp->rbr_sizes[0]) {
  4076. case 256:
  4077. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4078. break;
  4079. case 512:
  4080. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4081. break;
  4082. case 1 * 1024:
  4083. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4084. break;
  4085. case 2 * 1024:
  4086. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4087. break;
  4088. default:
  4089. return -EINVAL;
  4090. }
  4091. *ret = val;
  4092. return 0;
  4093. }
  4094. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4095. {
  4096. u64 val = nr64(RXDMA_CFIG1(channel));
  4097. int limit;
  4098. if (on)
  4099. val |= RXDMA_CFIG1_EN;
  4100. else
  4101. val &= ~RXDMA_CFIG1_EN;
  4102. nw64(RXDMA_CFIG1(channel), val);
  4103. limit = 1000;
  4104. while (--limit > 0) {
  4105. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4106. break;
  4107. udelay(10);
  4108. }
  4109. if (limit <= 0)
  4110. return -ENODEV;
  4111. return 0;
  4112. }
  4113. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4114. {
  4115. int err, channel = rp->rx_channel;
  4116. u64 val;
  4117. err = niu_rx_channel_reset(np, channel);
  4118. if (err)
  4119. return err;
  4120. err = niu_rx_channel_lpage_init(np, channel);
  4121. if (err)
  4122. return err;
  4123. niu_rx_channel_wred_init(np, rp);
  4124. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4125. nw64(RX_DMA_CTL_STAT(channel),
  4126. (RX_DMA_CTL_STAT_MEX |
  4127. RX_DMA_CTL_STAT_RCRTHRES |
  4128. RX_DMA_CTL_STAT_RCRTO |
  4129. RX_DMA_CTL_STAT_RBR_EMPTY));
  4130. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4131. nw64(RXDMA_CFIG2(channel), (rp->mbox_dma & 0x00000000ffffffc0));
  4132. nw64(RBR_CFIG_A(channel),
  4133. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4134. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4135. err = niu_compute_rbr_cfig_b(rp, &val);
  4136. if (err)
  4137. return err;
  4138. nw64(RBR_CFIG_B(channel), val);
  4139. nw64(RCRCFIG_A(channel),
  4140. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4141. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4142. nw64(RCRCFIG_B(channel),
  4143. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4144. RCRCFIG_B_ENTOUT |
  4145. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4146. err = niu_enable_rx_channel(np, channel, 1);
  4147. if (err)
  4148. return err;
  4149. nw64(RBR_KICK(channel), rp->rbr_index);
  4150. val = nr64(RX_DMA_CTL_STAT(channel));
  4151. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4152. nw64(RX_DMA_CTL_STAT(channel), val);
  4153. return 0;
  4154. }
  4155. static int niu_init_rx_channels(struct niu *np)
  4156. {
  4157. unsigned long flags;
  4158. u64 seed = jiffies_64;
  4159. int err, i;
  4160. niu_lock_parent(np, flags);
  4161. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4162. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4163. niu_unlock_parent(np, flags);
  4164. /* XXX RXDMA 32bit mode? XXX */
  4165. niu_init_rdc_groups(np);
  4166. niu_init_drr_weight(np);
  4167. err = niu_init_hostinfo(np);
  4168. if (err)
  4169. return err;
  4170. for (i = 0; i < np->num_rx_rings; i++) {
  4171. struct rx_ring_info *rp = &np->rx_rings[i];
  4172. err = niu_init_one_rx_channel(np, rp);
  4173. if (err)
  4174. return err;
  4175. }
  4176. return 0;
  4177. }
  4178. static int niu_set_ip_frag_rule(struct niu *np)
  4179. {
  4180. struct niu_parent *parent = np->parent;
  4181. struct niu_classifier *cp = &np->clas;
  4182. struct niu_tcam_entry *tp;
  4183. int index, err;
  4184. index = cp->tcam_top;
  4185. tp = &parent->tcam[index];
  4186. /* Note that the noport bit is the same in both ipv4 and
  4187. * ipv6 format TCAM entries.
  4188. */
  4189. memset(tp, 0, sizeof(*tp));
  4190. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4191. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4192. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4193. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4194. err = tcam_write(np, index, tp->key, tp->key_mask);
  4195. if (err)
  4196. return err;
  4197. err = tcam_assoc_write(np, index, tp->assoc_data);
  4198. if (err)
  4199. return err;
  4200. tp->valid = 1;
  4201. cp->tcam_valid_entries++;
  4202. return 0;
  4203. }
  4204. static int niu_init_classifier_hw(struct niu *np)
  4205. {
  4206. struct niu_parent *parent = np->parent;
  4207. struct niu_classifier *cp = &np->clas;
  4208. int i, err;
  4209. nw64(H1POLY, cp->h1_init);
  4210. nw64(H2POLY, cp->h2_init);
  4211. err = niu_init_hostinfo(np);
  4212. if (err)
  4213. return err;
  4214. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4215. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4216. vlan_tbl_write(np, i, np->port,
  4217. vp->vlan_pref, vp->rdc_num);
  4218. }
  4219. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4220. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4221. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4222. ap->rdc_num, ap->mac_pref);
  4223. if (err)
  4224. return err;
  4225. }
  4226. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4227. int index = i - CLASS_CODE_USER_PROG1;
  4228. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4229. if (err)
  4230. return err;
  4231. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4232. if (err)
  4233. return err;
  4234. }
  4235. err = niu_set_ip_frag_rule(np);
  4236. if (err)
  4237. return err;
  4238. tcam_enable(np, 1);
  4239. return 0;
  4240. }
  4241. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4242. {
  4243. nw64(ZCP_RAM_DATA0, data[0]);
  4244. nw64(ZCP_RAM_DATA1, data[1]);
  4245. nw64(ZCP_RAM_DATA2, data[2]);
  4246. nw64(ZCP_RAM_DATA3, data[3]);
  4247. nw64(ZCP_RAM_DATA4, data[4]);
  4248. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4249. nw64(ZCP_RAM_ACC,
  4250. (ZCP_RAM_ACC_WRITE |
  4251. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4252. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4253. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4254. 1000, 100);
  4255. }
  4256. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4257. {
  4258. int err;
  4259. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4260. 1000, 100);
  4261. if (err) {
  4262. dev_err(np->device, PFX "%s: ZCP read busy won't clear, "
  4263. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4264. (unsigned long long) nr64(ZCP_RAM_ACC));
  4265. return err;
  4266. }
  4267. nw64(ZCP_RAM_ACC,
  4268. (ZCP_RAM_ACC_READ |
  4269. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4270. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4271. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4272. 1000, 100);
  4273. if (err) {
  4274. dev_err(np->device, PFX "%s: ZCP read busy2 won't clear, "
  4275. "ZCP_RAM_ACC[%llx]\n", np->dev->name,
  4276. (unsigned long long) nr64(ZCP_RAM_ACC));
  4277. return err;
  4278. }
  4279. data[0] = nr64(ZCP_RAM_DATA0);
  4280. data[1] = nr64(ZCP_RAM_DATA1);
  4281. data[2] = nr64(ZCP_RAM_DATA2);
  4282. data[3] = nr64(ZCP_RAM_DATA3);
  4283. data[4] = nr64(ZCP_RAM_DATA4);
  4284. return 0;
  4285. }
  4286. static void niu_zcp_cfifo_reset(struct niu *np)
  4287. {
  4288. u64 val = nr64(RESET_CFIFO);
  4289. val |= RESET_CFIFO_RST(np->port);
  4290. nw64(RESET_CFIFO, val);
  4291. udelay(10);
  4292. val &= ~RESET_CFIFO_RST(np->port);
  4293. nw64(RESET_CFIFO, val);
  4294. }
  4295. static int niu_init_zcp(struct niu *np)
  4296. {
  4297. u64 data[5], rbuf[5];
  4298. int i, max, err;
  4299. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4300. if (np->port == 0 || np->port == 1)
  4301. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4302. else
  4303. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4304. } else
  4305. max = NIU_CFIFO_ENTRIES;
  4306. data[0] = 0;
  4307. data[1] = 0;
  4308. data[2] = 0;
  4309. data[3] = 0;
  4310. data[4] = 0;
  4311. for (i = 0; i < max; i++) {
  4312. err = niu_zcp_write(np, i, data);
  4313. if (err)
  4314. return err;
  4315. err = niu_zcp_read(np, i, rbuf);
  4316. if (err)
  4317. return err;
  4318. }
  4319. niu_zcp_cfifo_reset(np);
  4320. nw64(CFIFO_ECC(np->port), 0);
  4321. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4322. (void) nr64(ZCP_INT_STAT);
  4323. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4324. return 0;
  4325. }
  4326. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4327. {
  4328. u64 val = nr64_ipp(IPP_CFIG);
  4329. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4330. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4331. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4332. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4333. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4334. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4335. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4336. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4337. }
  4338. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4339. {
  4340. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4341. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4342. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4343. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4344. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4345. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4346. }
  4347. static int niu_ipp_reset(struct niu *np)
  4348. {
  4349. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4350. 1000, 100, "IPP_CFIG");
  4351. }
  4352. static int niu_init_ipp(struct niu *np)
  4353. {
  4354. u64 data[5], rbuf[5], val;
  4355. int i, max, err;
  4356. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4357. if (np->port == 0 || np->port == 1)
  4358. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4359. else
  4360. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4361. } else
  4362. max = NIU_DFIFO_ENTRIES;
  4363. data[0] = 0;
  4364. data[1] = 0;
  4365. data[2] = 0;
  4366. data[3] = 0;
  4367. data[4] = 0;
  4368. for (i = 0; i < max; i++) {
  4369. niu_ipp_write(np, i, data);
  4370. niu_ipp_read(np, i, rbuf);
  4371. }
  4372. (void) nr64_ipp(IPP_INT_STAT);
  4373. (void) nr64_ipp(IPP_INT_STAT);
  4374. err = niu_ipp_reset(np);
  4375. if (err)
  4376. return err;
  4377. (void) nr64_ipp(IPP_PKT_DIS);
  4378. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4379. (void) nr64_ipp(IPP_ECC);
  4380. (void) nr64_ipp(IPP_INT_STAT);
  4381. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4382. val = nr64_ipp(IPP_CFIG);
  4383. val &= ~IPP_CFIG_IP_MAX_PKT;
  4384. val |= (IPP_CFIG_IPP_ENABLE |
  4385. IPP_CFIG_DFIFO_ECC_EN |
  4386. IPP_CFIG_DROP_BAD_CRC |
  4387. IPP_CFIG_CKSUM_EN |
  4388. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4389. nw64_ipp(IPP_CFIG, val);
  4390. return 0;
  4391. }
  4392. static void niu_handle_led(struct niu *np, int status)
  4393. {
  4394. u64 val;
  4395. val = nr64_mac(XMAC_CONFIG);
  4396. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4397. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4398. if (status) {
  4399. val |= XMAC_CONFIG_LED_POLARITY;
  4400. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4401. } else {
  4402. val |= XMAC_CONFIG_FORCE_LED_ON;
  4403. val &= ~XMAC_CONFIG_LED_POLARITY;
  4404. }
  4405. }
  4406. nw64_mac(XMAC_CONFIG, val);
  4407. }
  4408. static void niu_init_xif_xmac(struct niu *np)
  4409. {
  4410. struct niu_link_config *lp = &np->link_config;
  4411. u64 val;
  4412. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4413. val = nr64(MIF_CONFIG);
  4414. val |= MIF_CONFIG_ATCA_GE;
  4415. nw64(MIF_CONFIG, val);
  4416. }
  4417. val = nr64_mac(XMAC_CONFIG);
  4418. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4419. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4420. if (lp->loopback_mode == LOOPBACK_MAC) {
  4421. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4422. val |= XMAC_CONFIG_LOOPBACK;
  4423. } else {
  4424. val &= ~XMAC_CONFIG_LOOPBACK;
  4425. }
  4426. if (np->flags & NIU_FLAGS_10G) {
  4427. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4428. } else {
  4429. val |= XMAC_CONFIG_LFS_DISABLE;
  4430. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4431. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4432. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4433. else
  4434. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4435. }
  4436. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4437. if (lp->active_speed == SPEED_100)
  4438. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4439. else
  4440. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4441. nw64_mac(XMAC_CONFIG, val);
  4442. val = nr64_mac(XMAC_CONFIG);
  4443. val &= ~XMAC_CONFIG_MODE_MASK;
  4444. if (np->flags & NIU_FLAGS_10G) {
  4445. val |= XMAC_CONFIG_MODE_XGMII;
  4446. } else {
  4447. if (lp->active_speed == SPEED_1000)
  4448. val |= XMAC_CONFIG_MODE_GMII;
  4449. else
  4450. val |= XMAC_CONFIG_MODE_MII;
  4451. }
  4452. nw64_mac(XMAC_CONFIG, val);
  4453. }
  4454. static void niu_init_xif_bmac(struct niu *np)
  4455. {
  4456. struct niu_link_config *lp = &np->link_config;
  4457. u64 val;
  4458. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4459. if (lp->loopback_mode == LOOPBACK_MAC)
  4460. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4461. else
  4462. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4463. if (lp->active_speed == SPEED_1000)
  4464. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4465. else
  4466. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4467. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4468. BMAC_XIF_CONFIG_LED_POLARITY);
  4469. if (!(np->flags & NIU_FLAGS_10G) &&
  4470. !(np->flags & NIU_FLAGS_FIBER) &&
  4471. lp->active_speed == SPEED_100)
  4472. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4473. else
  4474. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4475. nw64_mac(BMAC_XIF_CONFIG, val);
  4476. }
  4477. static void niu_init_xif(struct niu *np)
  4478. {
  4479. if (np->flags & NIU_FLAGS_XMAC)
  4480. niu_init_xif_xmac(np);
  4481. else
  4482. niu_init_xif_bmac(np);
  4483. }
  4484. static void niu_pcs_mii_reset(struct niu *np)
  4485. {
  4486. int limit = 1000;
  4487. u64 val = nr64_pcs(PCS_MII_CTL);
  4488. val |= PCS_MII_CTL_RST;
  4489. nw64_pcs(PCS_MII_CTL, val);
  4490. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4491. udelay(100);
  4492. val = nr64_pcs(PCS_MII_CTL);
  4493. }
  4494. }
  4495. static void niu_xpcs_reset(struct niu *np)
  4496. {
  4497. int limit = 1000;
  4498. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4499. val |= XPCS_CONTROL1_RESET;
  4500. nw64_xpcs(XPCS_CONTROL1, val);
  4501. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4502. udelay(100);
  4503. val = nr64_xpcs(XPCS_CONTROL1);
  4504. }
  4505. }
  4506. static int niu_init_pcs(struct niu *np)
  4507. {
  4508. struct niu_link_config *lp = &np->link_config;
  4509. u64 val;
  4510. switch (np->flags & (NIU_FLAGS_10G |
  4511. NIU_FLAGS_FIBER |
  4512. NIU_FLAGS_XCVR_SERDES)) {
  4513. case NIU_FLAGS_FIBER:
  4514. /* 1G fiber */
  4515. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4516. nw64_pcs(PCS_DPATH_MODE, 0);
  4517. niu_pcs_mii_reset(np);
  4518. break;
  4519. case NIU_FLAGS_10G:
  4520. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4521. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4522. /* 10G SERDES */
  4523. if (!(np->flags & NIU_FLAGS_XMAC))
  4524. return -EINVAL;
  4525. /* 10G copper or fiber */
  4526. val = nr64_mac(XMAC_CONFIG);
  4527. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4528. nw64_mac(XMAC_CONFIG, val);
  4529. niu_xpcs_reset(np);
  4530. val = nr64_xpcs(XPCS_CONTROL1);
  4531. if (lp->loopback_mode == LOOPBACK_PHY)
  4532. val |= XPCS_CONTROL1_LOOPBACK;
  4533. else
  4534. val &= ~XPCS_CONTROL1_LOOPBACK;
  4535. nw64_xpcs(XPCS_CONTROL1, val);
  4536. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4537. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4538. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4539. break;
  4540. case NIU_FLAGS_XCVR_SERDES:
  4541. /* 1G SERDES */
  4542. niu_pcs_mii_reset(np);
  4543. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4544. nw64_pcs(PCS_DPATH_MODE, 0);
  4545. break;
  4546. case 0:
  4547. /* 1G copper */
  4548. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4549. /* 1G RGMII FIBER */
  4550. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4551. niu_pcs_mii_reset(np);
  4552. break;
  4553. default:
  4554. return -EINVAL;
  4555. }
  4556. return 0;
  4557. }
  4558. static int niu_reset_tx_xmac(struct niu *np)
  4559. {
  4560. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4561. (XTXMAC_SW_RST_REG_RS |
  4562. XTXMAC_SW_RST_SOFT_RST),
  4563. 1000, 100, "XTXMAC_SW_RST");
  4564. }
  4565. static int niu_reset_tx_bmac(struct niu *np)
  4566. {
  4567. int limit;
  4568. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4569. limit = 1000;
  4570. while (--limit >= 0) {
  4571. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4572. break;
  4573. udelay(100);
  4574. }
  4575. if (limit < 0) {
  4576. dev_err(np->device, PFX "Port %u TX BMAC would not reset, "
  4577. "BTXMAC_SW_RST[%llx]\n",
  4578. np->port,
  4579. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4580. return -ENODEV;
  4581. }
  4582. return 0;
  4583. }
  4584. static int niu_reset_tx_mac(struct niu *np)
  4585. {
  4586. if (np->flags & NIU_FLAGS_XMAC)
  4587. return niu_reset_tx_xmac(np);
  4588. else
  4589. return niu_reset_tx_bmac(np);
  4590. }
  4591. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4592. {
  4593. u64 val;
  4594. val = nr64_mac(XMAC_MIN);
  4595. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4596. XMAC_MIN_RX_MIN_PKT_SIZE);
  4597. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4598. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4599. nw64_mac(XMAC_MIN, val);
  4600. nw64_mac(XMAC_MAX, max);
  4601. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4602. val = nr64_mac(XMAC_IPG);
  4603. if (np->flags & NIU_FLAGS_10G) {
  4604. val &= ~XMAC_IPG_IPG_XGMII;
  4605. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4606. } else {
  4607. val &= ~XMAC_IPG_IPG_MII_GMII;
  4608. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4609. }
  4610. nw64_mac(XMAC_IPG, val);
  4611. val = nr64_mac(XMAC_CONFIG);
  4612. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4613. XMAC_CONFIG_STRETCH_MODE |
  4614. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4615. XMAC_CONFIG_TX_ENABLE);
  4616. nw64_mac(XMAC_CONFIG, val);
  4617. nw64_mac(TXMAC_FRM_CNT, 0);
  4618. nw64_mac(TXMAC_BYTE_CNT, 0);
  4619. }
  4620. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4621. {
  4622. u64 val;
  4623. nw64_mac(BMAC_MIN_FRAME, min);
  4624. nw64_mac(BMAC_MAX_FRAME, max);
  4625. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4626. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4627. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4628. val = nr64_mac(BTXMAC_CONFIG);
  4629. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4630. BTXMAC_CONFIG_ENABLE);
  4631. nw64_mac(BTXMAC_CONFIG, val);
  4632. }
  4633. static void niu_init_tx_mac(struct niu *np)
  4634. {
  4635. u64 min, max;
  4636. min = 64;
  4637. if (np->dev->mtu > ETH_DATA_LEN)
  4638. max = 9216;
  4639. else
  4640. max = 1522;
  4641. /* The XMAC_MIN register only accepts values for TX min which
  4642. * have the low 3 bits cleared.
  4643. */
  4644. BUG_ON(min & 0x7);
  4645. if (np->flags & NIU_FLAGS_XMAC)
  4646. niu_init_tx_xmac(np, min, max);
  4647. else
  4648. niu_init_tx_bmac(np, min, max);
  4649. }
  4650. static int niu_reset_rx_xmac(struct niu *np)
  4651. {
  4652. int limit;
  4653. nw64_mac(XRXMAC_SW_RST,
  4654. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4655. limit = 1000;
  4656. while (--limit >= 0) {
  4657. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4658. XRXMAC_SW_RST_SOFT_RST)))
  4659. break;
  4660. udelay(100);
  4661. }
  4662. if (limit < 0) {
  4663. dev_err(np->device, PFX "Port %u RX XMAC would not reset, "
  4664. "XRXMAC_SW_RST[%llx]\n",
  4665. np->port,
  4666. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4667. return -ENODEV;
  4668. }
  4669. return 0;
  4670. }
  4671. static int niu_reset_rx_bmac(struct niu *np)
  4672. {
  4673. int limit;
  4674. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4675. limit = 1000;
  4676. while (--limit >= 0) {
  4677. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4678. break;
  4679. udelay(100);
  4680. }
  4681. if (limit < 0) {
  4682. dev_err(np->device, PFX "Port %u RX BMAC would not reset, "
  4683. "BRXMAC_SW_RST[%llx]\n",
  4684. np->port,
  4685. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4686. return -ENODEV;
  4687. }
  4688. return 0;
  4689. }
  4690. static int niu_reset_rx_mac(struct niu *np)
  4691. {
  4692. if (np->flags & NIU_FLAGS_XMAC)
  4693. return niu_reset_rx_xmac(np);
  4694. else
  4695. return niu_reset_rx_bmac(np);
  4696. }
  4697. static void niu_init_rx_xmac(struct niu *np)
  4698. {
  4699. struct niu_parent *parent = np->parent;
  4700. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4701. int first_rdc_table = tp->first_table_num;
  4702. unsigned long i;
  4703. u64 val;
  4704. nw64_mac(XMAC_ADD_FILT0, 0);
  4705. nw64_mac(XMAC_ADD_FILT1, 0);
  4706. nw64_mac(XMAC_ADD_FILT2, 0);
  4707. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4708. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4709. for (i = 0; i < MAC_NUM_HASH; i++)
  4710. nw64_mac(XMAC_HASH_TBL(i), 0);
  4711. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4712. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4713. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4714. val = nr64_mac(XMAC_CONFIG);
  4715. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4716. XMAC_CONFIG_PROMISCUOUS |
  4717. XMAC_CONFIG_PROMISC_GROUP |
  4718. XMAC_CONFIG_ERR_CHK_DIS |
  4719. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4720. XMAC_CONFIG_RESERVED_MULTICAST |
  4721. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4722. XMAC_CONFIG_ADDR_FILTER_EN |
  4723. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4724. XMAC_CONFIG_STRIP_CRC |
  4725. XMAC_CONFIG_PASS_FLOW_CTRL |
  4726. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4727. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4728. nw64_mac(XMAC_CONFIG, val);
  4729. nw64_mac(RXMAC_BT_CNT, 0);
  4730. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4731. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4732. nw64_mac(RXMAC_FRAG_CNT, 0);
  4733. nw64_mac(RXMAC_HIST_CNT1, 0);
  4734. nw64_mac(RXMAC_HIST_CNT2, 0);
  4735. nw64_mac(RXMAC_HIST_CNT3, 0);
  4736. nw64_mac(RXMAC_HIST_CNT4, 0);
  4737. nw64_mac(RXMAC_HIST_CNT5, 0);
  4738. nw64_mac(RXMAC_HIST_CNT6, 0);
  4739. nw64_mac(RXMAC_HIST_CNT7, 0);
  4740. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4741. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4742. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4743. nw64_mac(LINK_FAULT_CNT, 0);
  4744. }
  4745. static void niu_init_rx_bmac(struct niu *np)
  4746. {
  4747. struct niu_parent *parent = np->parent;
  4748. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4749. int first_rdc_table = tp->first_table_num;
  4750. unsigned long i;
  4751. u64 val;
  4752. nw64_mac(BMAC_ADD_FILT0, 0);
  4753. nw64_mac(BMAC_ADD_FILT1, 0);
  4754. nw64_mac(BMAC_ADD_FILT2, 0);
  4755. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4756. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4757. for (i = 0; i < MAC_NUM_HASH; i++)
  4758. nw64_mac(BMAC_HASH_TBL(i), 0);
  4759. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4760. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4761. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4762. val = nr64_mac(BRXMAC_CONFIG);
  4763. val &= ~(BRXMAC_CONFIG_ENABLE |
  4764. BRXMAC_CONFIG_STRIP_PAD |
  4765. BRXMAC_CONFIG_STRIP_FCS |
  4766. BRXMAC_CONFIG_PROMISC |
  4767. BRXMAC_CONFIG_PROMISC_GRP |
  4768. BRXMAC_CONFIG_ADDR_FILT_EN |
  4769. BRXMAC_CONFIG_DISCARD_DIS);
  4770. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4771. nw64_mac(BRXMAC_CONFIG, val);
  4772. val = nr64_mac(BMAC_ADDR_CMPEN);
  4773. val |= BMAC_ADDR_CMPEN_EN0;
  4774. nw64_mac(BMAC_ADDR_CMPEN, val);
  4775. }
  4776. static void niu_init_rx_mac(struct niu *np)
  4777. {
  4778. niu_set_primary_mac(np, np->dev->dev_addr);
  4779. if (np->flags & NIU_FLAGS_XMAC)
  4780. niu_init_rx_xmac(np);
  4781. else
  4782. niu_init_rx_bmac(np);
  4783. }
  4784. static void niu_enable_tx_xmac(struct niu *np, int on)
  4785. {
  4786. u64 val = nr64_mac(XMAC_CONFIG);
  4787. if (on)
  4788. val |= XMAC_CONFIG_TX_ENABLE;
  4789. else
  4790. val &= ~XMAC_CONFIG_TX_ENABLE;
  4791. nw64_mac(XMAC_CONFIG, val);
  4792. }
  4793. static void niu_enable_tx_bmac(struct niu *np, int on)
  4794. {
  4795. u64 val = nr64_mac(BTXMAC_CONFIG);
  4796. if (on)
  4797. val |= BTXMAC_CONFIG_ENABLE;
  4798. else
  4799. val &= ~BTXMAC_CONFIG_ENABLE;
  4800. nw64_mac(BTXMAC_CONFIG, val);
  4801. }
  4802. static void niu_enable_tx_mac(struct niu *np, int on)
  4803. {
  4804. if (np->flags & NIU_FLAGS_XMAC)
  4805. niu_enable_tx_xmac(np, on);
  4806. else
  4807. niu_enable_tx_bmac(np, on);
  4808. }
  4809. static void niu_enable_rx_xmac(struct niu *np, int on)
  4810. {
  4811. u64 val = nr64_mac(XMAC_CONFIG);
  4812. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4813. XMAC_CONFIG_PROMISCUOUS);
  4814. if (np->flags & NIU_FLAGS_MCAST)
  4815. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4816. if (np->flags & NIU_FLAGS_PROMISC)
  4817. val |= XMAC_CONFIG_PROMISCUOUS;
  4818. if (on)
  4819. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4820. else
  4821. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4822. nw64_mac(XMAC_CONFIG, val);
  4823. }
  4824. static void niu_enable_rx_bmac(struct niu *np, int on)
  4825. {
  4826. u64 val = nr64_mac(BRXMAC_CONFIG);
  4827. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4828. BRXMAC_CONFIG_PROMISC);
  4829. if (np->flags & NIU_FLAGS_MCAST)
  4830. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4831. if (np->flags & NIU_FLAGS_PROMISC)
  4832. val |= BRXMAC_CONFIG_PROMISC;
  4833. if (on)
  4834. val |= BRXMAC_CONFIG_ENABLE;
  4835. else
  4836. val &= ~BRXMAC_CONFIG_ENABLE;
  4837. nw64_mac(BRXMAC_CONFIG, val);
  4838. }
  4839. static void niu_enable_rx_mac(struct niu *np, int on)
  4840. {
  4841. if (np->flags & NIU_FLAGS_XMAC)
  4842. niu_enable_rx_xmac(np, on);
  4843. else
  4844. niu_enable_rx_bmac(np, on);
  4845. }
  4846. static int niu_init_mac(struct niu *np)
  4847. {
  4848. int err;
  4849. niu_init_xif(np);
  4850. err = niu_init_pcs(np);
  4851. if (err)
  4852. return err;
  4853. err = niu_reset_tx_mac(np);
  4854. if (err)
  4855. return err;
  4856. niu_init_tx_mac(np);
  4857. err = niu_reset_rx_mac(np);
  4858. if (err)
  4859. return err;
  4860. niu_init_rx_mac(np);
  4861. /* This looks hookey but the RX MAC reset we just did will
  4862. * undo some of the state we setup in niu_init_tx_mac() so we
  4863. * have to call it again. In particular, the RX MAC reset will
  4864. * set the XMAC_MAX register back to it's default value.
  4865. */
  4866. niu_init_tx_mac(np);
  4867. niu_enable_tx_mac(np, 1);
  4868. niu_enable_rx_mac(np, 1);
  4869. return 0;
  4870. }
  4871. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4872. {
  4873. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4874. }
  4875. static void niu_stop_tx_channels(struct niu *np)
  4876. {
  4877. int i;
  4878. for (i = 0; i < np->num_tx_rings; i++) {
  4879. struct tx_ring_info *rp = &np->tx_rings[i];
  4880. niu_stop_one_tx_channel(np, rp);
  4881. }
  4882. }
  4883. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4884. {
  4885. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4886. }
  4887. static void niu_reset_tx_channels(struct niu *np)
  4888. {
  4889. int i;
  4890. for (i = 0; i < np->num_tx_rings; i++) {
  4891. struct tx_ring_info *rp = &np->tx_rings[i];
  4892. niu_reset_one_tx_channel(np, rp);
  4893. }
  4894. }
  4895. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4896. {
  4897. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4898. }
  4899. static void niu_stop_rx_channels(struct niu *np)
  4900. {
  4901. int i;
  4902. for (i = 0; i < np->num_rx_rings; i++) {
  4903. struct rx_ring_info *rp = &np->rx_rings[i];
  4904. niu_stop_one_rx_channel(np, rp);
  4905. }
  4906. }
  4907. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4908. {
  4909. int channel = rp->rx_channel;
  4910. (void) niu_rx_channel_reset(np, channel);
  4911. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4912. nw64(RX_DMA_CTL_STAT(channel), 0);
  4913. (void) niu_enable_rx_channel(np, channel, 0);
  4914. }
  4915. static void niu_reset_rx_channels(struct niu *np)
  4916. {
  4917. int i;
  4918. for (i = 0; i < np->num_rx_rings; i++) {
  4919. struct rx_ring_info *rp = &np->rx_rings[i];
  4920. niu_reset_one_rx_channel(np, rp);
  4921. }
  4922. }
  4923. static void niu_disable_ipp(struct niu *np)
  4924. {
  4925. u64 rd, wr, val;
  4926. int limit;
  4927. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4928. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4929. limit = 100;
  4930. while (--limit >= 0 && (rd != wr)) {
  4931. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4932. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4933. }
  4934. if (limit < 0 &&
  4935. (rd != 0 && wr != 1)) {
  4936. dev_err(np->device, PFX "%s: IPP would not quiesce, "
  4937. "rd_ptr[%llx] wr_ptr[%llx]\n",
  4938. np->dev->name,
  4939. (unsigned long long) nr64_ipp(IPP_DFIFO_RD_PTR),
  4940. (unsigned long long) nr64_ipp(IPP_DFIFO_WR_PTR));
  4941. }
  4942. val = nr64_ipp(IPP_CFIG);
  4943. val &= ~(IPP_CFIG_IPP_ENABLE |
  4944. IPP_CFIG_DFIFO_ECC_EN |
  4945. IPP_CFIG_DROP_BAD_CRC |
  4946. IPP_CFIG_CKSUM_EN);
  4947. nw64_ipp(IPP_CFIG, val);
  4948. (void) niu_ipp_reset(np);
  4949. }
  4950. static int niu_init_hw(struct niu *np)
  4951. {
  4952. int i, err;
  4953. niudbg(IFUP, "%s: Initialize TXC\n", np->dev->name);
  4954. niu_txc_enable_port(np, 1);
  4955. niu_txc_port_dma_enable(np, 1);
  4956. niu_txc_set_imask(np, 0);
  4957. niudbg(IFUP, "%s: Initialize TX channels\n", np->dev->name);
  4958. for (i = 0; i < np->num_tx_rings; i++) {
  4959. struct tx_ring_info *rp = &np->tx_rings[i];
  4960. err = niu_init_one_tx_channel(np, rp);
  4961. if (err)
  4962. return err;
  4963. }
  4964. niudbg(IFUP, "%s: Initialize RX channels\n", np->dev->name);
  4965. err = niu_init_rx_channels(np);
  4966. if (err)
  4967. goto out_uninit_tx_channels;
  4968. niudbg(IFUP, "%s: Initialize classifier\n", np->dev->name);
  4969. err = niu_init_classifier_hw(np);
  4970. if (err)
  4971. goto out_uninit_rx_channels;
  4972. niudbg(IFUP, "%s: Initialize ZCP\n", np->dev->name);
  4973. err = niu_init_zcp(np);
  4974. if (err)
  4975. goto out_uninit_rx_channels;
  4976. niudbg(IFUP, "%s: Initialize IPP\n", np->dev->name);
  4977. err = niu_init_ipp(np);
  4978. if (err)
  4979. goto out_uninit_rx_channels;
  4980. niudbg(IFUP, "%s: Initialize MAC\n", np->dev->name);
  4981. err = niu_init_mac(np);
  4982. if (err)
  4983. goto out_uninit_ipp;
  4984. return 0;
  4985. out_uninit_ipp:
  4986. niudbg(IFUP, "%s: Uninit IPP\n", np->dev->name);
  4987. niu_disable_ipp(np);
  4988. out_uninit_rx_channels:
  4989. niudbg(IFUP, "%s: Uninit RX channels\n", np->dev->name);
  4990. niu_stop_rx_channels(np);
  4991. niu_reset_rx_channels(np);
  4992. out_uninit_tx_channels:
  4993. niudbg(IFUP, "%s: Uninit TX channels\n", np->dev->name);
  4994. niu_stop_tx_channels(np);
  4995. niu_reset_tx_channels(np);
  4996. return err;
  4997. }
  4998. static void niu_stop_hw(struct niu *np)
  4999. {
  5000. niudbg(IFDOWN, "%s: Disable interrupts\n", np->dev->name);
  5001. niu_enable_interrupts(np, 0);
  5002. niudbg(IFDOWN, "%s: Disable RX MAC\n", np->dev->name);
  5003. niu_enable_rx_mac(np, 0);
  5004. niudbg(IFDOWN, "%s: Disable IPP\n", np->dev->name);
  5005. niu_disable_ipp(np);
  5006. niudbg(IFDOWN, "%s: Stop TX channels\n", np->dev->name);
  5007. niu_stop_tx_channels(np);
  5008. niudbg(IFDOWN, "%s: Stop RX channels\n", np->dev->name);
  5009. niu_stop_rx_channels(np);
  5010. niudbg(IFDOWN, "%s: Reset TX channels\n", np->dev->name);
  5011. niu_reset_tx_channels(np);
  5012. niudbg(IFDOWN, "%s: Reset RX channels\n", np->dev->name);
  5013. niu_reset_rx_channels(np);
  5014. }
  5015. static void niu_set_irq_name(struct niu *np)
  5016. {
  5017. int port = np->port;
  5018. int i, j = 1;
  5019. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  5020. if (port == 0) {
  5021. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  5022. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  5023. j = 3;
  5024. }
  5025. for (i = 0; i < np->num_ldg - j; i++) {
  5026. if (i < np->num_rx_rings)
  5027. sprintf(np->irq_name[i+j], "%s-rx-%d",
  5028. np->dev->name, i);
  5029. else if (i < np->num_tx_rings + np->num_rx_rings)
  5030. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  5031. i - np->num_rx_rings);
  5032. }
  5033. }
  5034. static int niu_request_irq(struct niu *np)
  5035. {
  5036. int i, j, err;
  5037. niu_set_irq_name(np);
  5038. err = 0;
  5039. for (i = 0; i < np->num_ldg; i++) {
  5040. struct niu_ldg *lp = &np->ldg[i];
  5041. err = request_irq(lp->irq, niu_interrupt,
  5042. IRQF_SHARED | IRQF_SAMPLE_RANDOM,
  5043. np->irq_name[i], lp);
  5044. if (err)
  5045. goto out_free_irqs;
  5046. }
  5047. return 0;
  5048. out_free_irqs:
  5049. for (j = 0; j < i; j++) {
  5050. struct niu_ldg *lp = &np->ldg[j];
  5051. free_irq(lp->irq, lp);
  5052. }
  5053. return err;
  5054. }
  5055. static void niu_free_irq(struct niu *np)
  5056. {
  5057. int i;
  5058. for (i = 0; i < np->num_ldg; i++) {
  5059. struct niu_ldg *lp = &np->ldg[i];
  5060. free_irq(lp->irq, lp);
  5061. }
  5062. }
  5063. static void niu_enable_napi(struct niu *np)
  5064. {
  5065. int i;
  5066. for (i = 0; i < np->num_ldg; i++)
  5067. napi_enable(&np->ldg[i].napi);
  5068. }
  5069. static void niu_disable_napi(struct niu *np)
  5070. {
  5071. int i;
  5072. for (i = 0; i < np->num_ldg; i++)
  5073. napi_disable(&np->ldg[i].napi);
  5074. }
  5075. static int niu_open(struct net_device *dev)
  5076. {
  5077. struct niu *np = netdev_priv(dev);
  5078. int err;
  5079. netif_carrier_off(dev);
  5080. err = niu_alloc_channels(np);
  5081. if (err)
  5082. goto out_err;
  5083. err = niu_enable_interrupts(np, 0);
  5084. if (err)
  5085. goto out_free_channels;
  5086. err = niu_request_irq(np);
  5087. if (err)
  5088. goto out_free_channels;
  5089. niu_enable_napi(np);
  5090. spin_lock_irq(&np->lock);
  5091. err = niu_init_hw(np);
  5092. if (!err) {
  5093. init_timer(&np->timer);
  5094. np->timer.expires = jiffies + HZ;
  5095. np->timer.data = (unsigned long) np;
  5096. np->timer.function = niu_timer;
  5097. err = niu_enable_interrupts(np, 1);
  5098. if (err)
  5099. niu_stop_hw(np);
  5100. }
  5101. spin_unlock_irq(&np->lock);
  5102. if (err) {
  5103. niu_disable_napi(np);
  5104. goto out_free_irq;
  5105. }
  5106. netif_tx_start_all_queues(dev);
  5107. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5108. netif_carrier_on(dev);
  5109. add_timer(&np->timer);
  5110. return 0;
  5111. out_free_irq:
  5112. niu_free_irq(np);
  5113. out_free_channels:
  5114. niu_free_channels(np);
  5115. out_err:
  5116. return err;
  5117. }
  5118. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5119. {
  5120. cancel_work_sync(&np->reset_task);
  5121. niu_disable_napi(np);
  5122. netif_tx_stop_all_queues(dev);
  5123. del_timer_sync(&np->timer);
  5124. spin_lock_irq(&np->lock);
  5125. niu_stop_hw(np);
  5126. spin_unlock_irq(&np->lock);
  5127. }
  5128. static int niu_close(struct net_device *dev)
  5129. {
  5130. struct niu *np = netdev_priv(dev);
  5131. niu_full_shutdown(np, dev);
  5132. niu_free_irq(np);
  5133. niu_free_channels(np);
  5134. niu_handle_led(np, 0);
  5135. return 0;
  5136. }
  5137. static void niu_sync_xmac_stats(struct niu *np)
  5138. {
  5139. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5140. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5141. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5142. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5143. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5144. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5145. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5146. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5147. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5148. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5149. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5150. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5151. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5152. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5153. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5154. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5155. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5156. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5157. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5158. }
  5159. static void niu_sync_bmac_stats(struct niu *np)
  5160. {
  5161. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5162. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5163. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5164. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5165. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5166. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5167. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5168. }
  5169. static void niu_sync_mac_stats(struct niu *np)
  5170. {
  5171. if (np->flags & NIU_FLAGS_XMAC)
  5172. niu_sync_xmac_stats(np);
  5173. else
  5174. niu_sync_bmac_stats(np);
  5175. }
  5176. static void niu_get_rx_stats(struct niu *np)
  5177. {
  5178. unsigned long pkts, dropped, errors, bytes;
  5179. int i;
  5180. pkts = dropped = errors = bytes = 0;
  5181. for (i = 0; i < np->num_rx_rings; i++) {
  5182. struct rx_ring_info *rp = &np->rx_rings[i];
  5183. niu_sync_rx_discard_stats(np, rp, 0);
  5184. pkts += rp->rx_packets;
  5185. bytes += rp->rx_bytes;
  5186. dropped += rp->rx_dropped;
  5187. errors += rp->rx_errors;
  5188. }
  5189. np->dev->stats.rx_packets = pkts;
  5190. np->dev->stats.rx_bytes = bytes;
  5191. np->dev->stats.rx_dropped = dropped;
  5192. np->dev->stats.rx_errors = errors;
  5193. }
  5194. static void niu_get_tx_stats(struct niu *np)
  5195. {
  5196. unsigned long pkts, errors, bytes;
  5197. int i;
  5198. pkts = errors = bytes = 0;
  5199. for (i = 0; i < np->num_tx_rings; i++) {
  5200. struct tx_ring_info *rp = &np->tx_rings[i];
  5201. pkts += rp->tx_packets;
  5202. bytes += rp->tx_bytes;
  5203. errors += rp->tx_errors;
  5204. }
  5205. np->dev->stats.tx_packets = pkts;
  5206. np->dev->stats.tx_bytes = bytes;
  5207. np->dev->stats.tx_errors = errors;
  5208. }
  5209. static struct net_device_stats *niu_get_stats(struct net_device *dev)
  5210. {
  5211. struct niu *np = netdev_priv(dev);
  5212. niu_get_rx_stats(np);
  5213. niu_get_tx_stats(np);
  5214. return &dev->stats;
  5215. }
  5216. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5217. {
  5218. int i;
  5219. for (i = 0; i < 16; i++)
  5220. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5221. }
  5222. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5223. {
  5224. int i;
  5225. for (i = 0; i < 16; i++)
  5226. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5227. }
  5228. static void niu_load_hash(struct niu *np, u16 *hash)
  5229. {
  5230. if (np->flags & NIU_FLAGS_XMAC)
  5231. niu_load_hash_xmac(np, hash);
  5232. else
  5233. niu_load_hash_bmac(np, hash);
  5234. }
  5235. static void niu_set_rx_mode(struct net_device *dev)
  5236. {
  5237. struct niu *np = netdev_priv(dev);
  5238. int i, alt_cnt, err;
  5239. struct dev_addr_list *addr;
  5240. struct netdev_hw_addr *ha;
  5241. unsigned long flags;
  5242. u16 hash[16] = { 0, };
  5243. spin_lock_irqsave(&np->lock, flags);
  5244. niu_enable_rx_mac(np, 0);
  5245. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5246. if (dev->flags & IFF_PROMISC)
  5247. np->flags |= NIU_FLAGS_PROMISC;
  5248. if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 0))
  5249. np->flags |= NIU_FLAGS_MCAST;
  5250. alt_cnt = dev->uc.count;
  5251. if (alt_cnt > niu_num_alt_addr(np)) {
  5252. alt_cnt = 0;
  5253. np->flags |= NIU_FLAGS_PROMISC;
  5254. }
  5255. if (alt_cnt) {
  5256. int index = 0;
  5257. list_for_each_entry(ha, &dev->uc.list, list) {
  5258. err = niu_set_alt_mac(np, index, ha->addr);
  5259. if (err)
  5260. printk(KERN_WARNING PFX "%s: Error %d "
  5261. "adding alt mac %d\n",
  5262. dev->name, err, index);
  5263. err = niu_enable_alt_mac(np, index, 1);
  5264. if (err)
  5265. printk(KERN_WARNING PFX "%s: Error %d "
  5266. "enabling alt mac %d\n",
  5267. dev->name, err, index);
  5268. index++;
  5269. }
  5270. } else {
  5271. int alt_start;
  5272. if (np->flags & NIU_FLAGS_XMAC)
  5273. alt_start = 0;
  5274. else
  5275. alt_start = 1;
  5276. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5277. err = niu_enable_alt_mac(np, i, 0);
  5278. if (err)
  5279. printk(KERN_WARNING PFX "%s: Error %d "
  5280. "disabling alt mac %d\n",
  5281. dev->name, err, i);
  5282. }
  5283. }
  5284. if (dev->flags & IFF_ALLMULTI) {
  5285. for (i = 0; i < 16; i++)
  5286. hash[i] = 0xffff;
  5287. } else if (dev->mc_count > 0) {
  5288. for (addr = dev->mc_list; addr; addr = addr->next) {
  5289. u32 crc = ether_crc_le(ETH_ALEN, addr->da_addr);
  5290. crc >>= 24;
  5291. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5292. }
  5293. }
  5294. if (np->flags & NIU_FLAGS_MCAST)
  5295. niu_load_hash(np, hash);
  5296. niu_enable_rx_mac(np, 1);
  5297. spin_unlock_irqrestore(&np->lock, flags);
  5298. }
  5299. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5300. {
  5301. struct niu *np = netdev_priv(dev);
  5302. struct sockaddr *addr = p;
  5303. unsigned long flags;
  5304. if (!is_valid_ether_addr(addr->sa_data))
  5305. return -EINVAL;
  5306. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5307. if (!netif_running(dev))
  5308. return 0;
  5309. spin_lock_irqsave(&np->lock, flags);
  5310. niu_enable_rx_mac(np, 0);
  5311. niu_set_primary_mac(np, dev->dev_addr);
  5312. niu_enable_rx_mac(np, 1);
  5313. spin_unlock_irqrestore(&np->lock, flags);
  5314. return 0;
  5315. }
  5316. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5317. {
  5318. return -EOPNOTSUPP;
  5319. }
  5320. static void niu_netif_stop(struct niu *np)
  5321. {
  5322. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5323. niu_disable_napi(np);
  5324. netif_tx_disable(np->dev);
  5325. }
  5326. static void niu_netif_start(struct niu *np)
  5327. {
  5328. /* NOTE: unconditional netif_wake_queue is only appropriate
  5329. * so long as all callers are assured to have free tx slots
  5330. * (such as after niu_init_hw).
  5331. */
  5332. netif_tx_wake_all_queues(np->dev);
  5333. niu_enable_napi(np);
  5334. niu_enable_interrupts(np, 1);
  5335. }
  5336. static void niu_reset_buffers(struct niu *np)
  5337. {
  5338. int i, j, k, err;
  5339. if (np->rx_rings) {
  5340. for (i = 0; i < np->num_rx_rings; i++) {
  5341. struct rx_ring_info *rp = &np->rx_rings[i];
  5342. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5343. struct page *page;
  5344. page = rp->rxhash[j];
  5345. while (page) {
  5346. struct page *next =
  5347. (struct page *) page->mapping;
  5348. u64 base = page->index;
  5349. base = base >> RBR_DESCR_ADDR_SHIFT;
  5350. rp->rbr[k++] = cpu_to_le32(base);
  5351. page = next;
  5352. }
  5353. }
  5354. for (; k < MAX_RBR_RING_SIZE; k++) {
  5355. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5356. if (unlikely(err))
  5357. break;
  5358. }
  5359. rp->rbr_index = rp->rbr_table_size - 1;
  5360. rp->rcr_index = 0;
  5361. rp->rbr_pending = 0;
  5362. rp->rbr_refill_pending = 0;
  5363. }
  5364. }
  5365. if (np->tx_rings) {
  5366. for (i = 0; i < np->num_tx_rings; i++) {
  5367. struct tx_ring_info *rp = &np->tx_rings[i];
  5368. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5369. if (rp->tx_buffs[j].skb)
  5370. (void) release_tx_packet(np, rp, j);
  5371. }
  5372. rp->pending = MAX_TX_RING_SIZE;
  5373. rp->prod = 0;
  5374. rp->cons = 0;
  5375. rp->wrap_bit = 0;
  5376. }
  5377. }
  5378. }
  5379. static void niu_reset_task(struct work_struct *work)
  5380. {
  5381. struct niu *np = container_of(work, struct niu, reset_task);
  5382. unsigned long flags;
  5383. int err;
  5384. spin_lock_irqsave(&np->lock, flags);
  5385. if (!netif_running(np->dev)) {
  5386. spin_unlock_irqrestore(&np->lock, flags);
  5387. return;
  5388. }
  5389. spin_unlock_irqrestore(&np->lock, flags);
  5390. del_timer_sync(&np->timer);
  5391. niu_netif_stop(np);
  5392. spin_lock_irqsave(&np->lock, flags);
  5393. niu_stop_hw(np);
  5394. spin_unlock_irqrestore(&np->lock, flags);
  5395. niu_reset_buffers(np);
  5396. spin_lock_irqsave(&np->lock, flags);
  5397. err = niu_init_hw(np);
  5398. if (!err) {
  5399. np->timer.expires = jiffies + HZ;
  5400. add_timer(&np->timer);
  5401. niu_netif_start(np);
  5402. }
  5403. spin_unlock_irqrestore(&np->lock, flags);
  5404. }
  5405. static void niu_tx_timeout(struct net_device *dev)
  5406. {
  5407. struct niu *np = netdev_priv(dev);
  5408. dev_err(np->device, PFX "%s: Transmit timed out, resetting\n",
  5409. dev->name);
  5410. schedule_work(&np->reset_task);
  5411. }
  5412. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5413. u64 mapping, u64 len, u64 mark,
  5414. u64 n_frags)
  5415. {
  5416. __le64 *desc = &rp->descr[index];
  5417. *desc = cpu_to_le64(mark |
  5418. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5419. (len << TX_DESC_TR_LEN_SHIFT) |
  5420. (mapping & TX_DESC_SAD));
  5421. }
  5422. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5423. u64 pad_bytes, u64 len)
  5424. {
  5425. u16 eth_proto, eth_proto_inner;
  5426. u64 csum_bits, l3off, ihl, ret;
  5427. u8 ip_proto;
  5428. int ipv6;
  5429. eth_proto = be16_to_cpu(ehdr->h_proto);
  5430. eth_proto_inner = eth_proto;
  5431. if (eth_proto == ETH_P_8021Q) {
  5432. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5433. __be16 val = vp->h_vlan_encapsulated_proto;
  5434. eth_proto_inner = be16_to_cpu(val);
  5435. }
  5436. ipv6 = ihl = 0;
  5437. switch (skb->protocol) {
  5438. case cpu_to_be16(ETH_P_IP):
  5439. ip_proto = ip_hdr(skb)->protocol;
  5440. ihl = ip_hdr(skb)->ihl;
  5441. break;
  5442. case cpu_to_be16(ETH_P_IPV6):
  5443. ip_proto = ipv6_hdr(skb)->nexthdr;
  5444. ihl = (40 >> 2);
  5445. ipv6 = 1;
  5446. break;
  5447. default:
  5448. ip_proto = ihl = 0;
  5449. break;
  5450. }
  5451. csum_bits = TXHDR_CSUM_NONE;
  5452. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5453. u64 start, stuff;
  5454. csum_bits = (ip_proto == IPPROTO_TCP ?
  5455. TXHDR_CSUM_TCP :
  5456. (ip_proto == IPPROTO_UDP ?
  5457. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5458. start = skb_transport_offset(skb) -
  5459. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5460. stuff = start + skb->csum_offset;
  5461. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5462. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5463. }
  5464. l3off = skb_network_offset(skb) -
  5465. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5466. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5467. (len << TXHDR_LEN_SHIFT) |
  5468. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5469. (ihl << TXHDR_IHL_SHIFT) |
  5470. ((eth_proto_inner < 1536) ? TXHDR_LLC : 0) |
  5471. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5472. (ipv6 ? TXHDR_IP_VER : 0) |
  5473. csum_bits);
  5474. return ret;
  5475. }
  5476. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5477. struct net_device *dev)
  5478. {
  5479. struct niu *np = netdev_priv(dev);
  5480. unsigned long align, headroom;
  5481. struct netdev_queue *txq;
  5482. struct tx_ring_info *rp;
  5483. struct tx_pkt_hdr *tp;
  5484. unsigned int len, nfg;
  5485. struct ethhdr *ehdr;
  5486. int prod, i, tlen;
  5487. u64 mapping, mrk;
  5488. i = skb_get_queue_mapping(skb);
  5489. rp = &np->tx_rings[i];
  5490. txq = netdev_get_tx_queue(dev, i);
  5491. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5492. netif_tx_stop_queue(txq);
  5493. dev_err(np->device, PFX "%s: BUG! Tx ring full when "
  5494. "queue awake!\n", dev->name);
  5495. rp->tx_errors++;
  5496. return NETDEV_TX_BUSY;
  5497. }
  5498. if (skb->len < ETH_ZLEN) {
  5499. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5500. if (skb_pad(skb, pad_bytes))
  5501. goto out;
  5502. skb_put(skb, pad_bytes);
  5503. }
  5504. len = sizeof(struct tx_pkt_hdr) + 15;
  5505. if (skb_headroom(skb) < len) {
  5506. struct sk_buff *skb_new;
  5507. skb_new = skb_realloc_headroom(skb, len);
  5508. if (!skb_new) {
  5509. rp->tx_errors++;
  5510. goto out_drop;
  5511. }
  5512. kfree_skb(skb);
  5513. skb = skb_new;
  5514. } else
  5515. skb_orphan(skb);
  5516. align = ((unsigned long) skb->data & (16 - 1));
  5517. headroom = align + sizeof(struct tx_pkt_hdr);
  5518. ehdr = (struct ethhdr *) skb->data;
  5519. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5520. len = skb->len - sizeof(struct tx_pkt_hdr);
  5521. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5522. tp->resv = 0;
  5523. len = skb_headlen(skb);
  5524. mapping = np->ops->map_single(np->device, skb->data,
  5525. len, DMA_TO_DEVICE);
  5526. prod = rp->prod;
  5527. rp->tx_buffs[prod].skb = skb;
  5528. rp->tx_buffs[prod].mapping = mapping;
  5529. mrk = TX_DESC_SOP;
  5530. if (++rp->mark_counter == rp->mark_freq) {
  5531. rp->mark_counter = 0;
  5532. mrk |= TX_DESC_MARK;
  5533. rp->mark_pending++;
  5534. }
  5535. tlen = len;
  5536. nfg = skb_shinfo(skb)->nr_frags;
  5537. while (tlen > 0) {
  5538. tlen -= MAX_TX_DESC_LEN;
  5539. nfg++;
  5540. }
  5541. while (len > 0) {
  5542. unsigned int this_len = len;
  5543. if (this_len > MAX_TX_DESC_LEN)
  5544. this_len = MAX_TX_DESC_LEN;
  5545. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5546. mrk = nfg = 0;
  5547. prod = NEXT_TX(rp, prod);
  5548. mapping += this_len;
  5549. len -= this_len;
  5550. }
  5551. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5552. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5553. len = frag->size;
  5554. mapping = np->ops->map_page(np->device, frag->page,
  5555. frag->page_offset, len,
  5556. DMA_TO_DEVICE);
  5557. rp->tx_buffs[prod].skb = NULL;
  5558. rp->tx_buffs[prod].mapping = mapping;
  5559. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5560. prod = NEXT_TX(rp, prod);
  5561. }
  5562. if (prod < rp->prod)
  5563. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5564. rp->prod = prod;
  5565. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5566. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5567. netif_tx_stop_queue(txq);
  5568. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5569. netif_tx_wake_queue(txq);
  5570. }
  5571. out:
  5572. return NETDEV_TX_OK;
  5573. out_drop:
  5574. rp->tx_errors++;
  5575. kfree_skb(skb);
  5576. goto out;
  5577. }
  5578. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5579. {
  5580. struct niu *np = netdev_priv(dev);
  5581. int err, orig_jumbo, new_jumbo;
  5582. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5583. return -EINVAL;
  5584. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5585. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5586. dev->mtu = new_mtu;
  5587. if (!netif_running(dev) ||
  5588. (orig_jumbo == new_jumbo))
  5589. return 0;
  5590. niu_full_shutdown(np, dev);
  5591. niu_free_channels(np);
  5592. niu_enable_napi(np);
  5593. err = niu_alloc_channels(np);
  5594. if (err)
  5595. return err;
  5596. spin_lock_irq(&np->lock);
  5597. err = niu_init_hw(np);
  5598. if (!err) {
  5599. init_timer(&np->timer);
  5600. np->timer.expires = jiffies + HZ;
  5601. np->timer.data = (unsigned long) np;
  5602. np->timer.function = niu_timer;
  5603. err = niu_enable_interrupts(np, 1);
  5604. if (err)
  5605. niu_stop_hw(np);
  5606. }
  5607. spin_unlock_irq(&np->lock);
  5608. if (!err) {
  5609. netif_tx_start_all_queues(dev);
  5610. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5611. netif_carrier_on(dev);
  5612. add_timer(&np->timer);
  5613. }
  5614. return err;
  5615. }
  5616. static void niu_get_drvinfo(struct net_device *dev,
  5617. struct ethtool_drvinfo *info)
  5618. {
  5619. struct niu *np = netdev_priv(dev);
  5620. struct niu_vpd *vpd = &np->vpd;
  5621. strcpy(info->driver, DRV_MODULE_NAME);
  5622. strcpy(info->version, DRV_MODULE_VERSION);
  5623. sprintf(info->fw_version, "%d.%d",
  5624. vpd->fcode_major, vpd->fcode_minor);
  5625. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5626. strcpy(info->bus_info, pci_name(np->pdev));
  5627. }
  5628. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5629. {
  5630. struct niu *np = netdev_priv(dev);
  5631. struct niu_link_config *lp;
  5632. lp = &np->link_config;
  5633. memset(cmd, 0, sizeof(*cmd));
  5634. cmd->phy_address = np->phy_addr;
  5635. cmd->supported = lp->supported;
  5636. cmd->advertising = lp->active_advertising;
  5637. cmd->autoneg = lp->active_autoneg;
  5638. cmd->speed = lp->active_speed;
  5639. cmd->duplex = lp->active_duplex;
  5640. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5641. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5642. XCVR_EXTERNAL : XCVR_INTERNAL;
  5643. return 0;
  5644. }
  5645. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5646. {
  5647. struct niu *np = netdev_priv(dev);
  5648. struct niu_link_config *lp = &np->link_config;
  5649. lp->advertising = cmd->advertising;
  5650. lp->speed = cmd->speed;
  5651. lp->duplex = cmd->duplex;
  5652. lp->autoneg = cmd->autoneg;
  5653. return niu_init_link(np);
  5654. }
  5655. static u32 niu_get_msglevel(struct net_device *dev)
  5656. {
  5657. struct niu *np = netdev_priv(dev);
  5658. return np->msg_enable;
  5659. }
  5660. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5661. {
  5662. struct niu *np = netdev_priv(dev);
  5663. np->msg_enable = value;
  5664. }
  5665. static int niu_nway_reset(struct net_device *dev)
  5666. {
  5667. struct niu *np = netdev_priv(dev);
  5668. if (np->link_config.autoneg)
  5669. return niu_init_link(np);
  5670. return 0;
  5671. }
  5672. static int niu_get_eeprom_len(struct net_device *dev)
  5673. {
  5674. struct niu *np = netdev_priv(dev);
  5675. return np->eeprom_len;
  5676. }
  5677. static int niu_get_eeprom(struct net_device *dev,
  5678. struct ethtool_eeprom *eeprom, u8 *data)
  5679. {
  5680. struct niu *np = netdev_priv(dev);
  5681. u32 offset, len, val;
  5682. offset = eeprom->offset;
  5683. len = eeprom->len;
  5684. if (offset + len < offset)
  5685. return -EINVAL;
  5686. if (offset >= np->eeprom_len)
  5687. return -EINVAL;
  5688. if (offset + len > np->eeprom_len)
  5689. len = eeprom->len = np->eeprom_len - offset;
  5690. if (offset & 3) {
  5691. u32 b_offset, b_count;
  5692. b_offset = offset & 3;
  5693. b_count = 4 - b_offset;
  5694. if (b_count > len)
  5695. b_count = len;
  5696. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5697. memcpy(data, ((char *)&val) + b_offset, b_count);
  5698. data += b_count;
  5699. len -= b_count;
  5700. offset += b_count;
  5701. }
  5702. while (len >= 4) {
  5703. val = nr64(ESPC_NCR(offset / 4));
  5704. memcpy(data, &val, 4);
  5705. data += 4;
  5706. len -= 4;
  5707. offset += 4;
  5708. }
  5709. if (len) {
  5710. val = nr64(ESPC_NCR(offset / 4));
  5711. memcpy(data, &val, len);
  5712. }
  5713. return 0;
  5714. }
  5715. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5716. {
  5717. switch (flow_type) {
  5718. case TCP_V4_FLOW:
  5719. case TCP_V6_FLOW:
  5720. *pid = IPPROTO_TCP;
  5721. break;
  5722. case UDP_V4_FLOW:
  5723. case UDP_V6_FLOW:
  5724. *pid = IPPROTO_UDP;
  5725. break;
  5726. case SCTP_V4_FLOW:
  5727. case SCTP_V6_FLOW:
  5728. *pid = IPPROTO_SCTP;
  5729. break;
  5730. case AH_V4_FLOW:
  5731. case AH_V6_FLOW:
  5732. *pid = IPPROTO_AH;
  5733. break;
  5734. case ESP_V4_FLOW:
  5735. case ESP_V6_FLOW:
  5736. *pid = IPPROTO_ESP;
  5737. break;
  5738. default:
  5739. *pid = 0;
  5740. break;
  5741. }
  5742. }
  5743. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5744. {
  5745. switch (class) {
  5746. case CLASS_CODE_TCP_IPV4:
  5747. *flow_type = TCP_V4_FLOW;
  5748. break;
  5749. case CLASS_CODE_UDP_IPV4:
  5750. *flow_type = UDP_V4_FLOW;
  5751. break;
  5752. case CLASS_CODE_AH_ESP_IPV4:
  5753. *flow_type = AH_V4_FLOW;
  5754. break;
  5755. case CLASS_CODE_SCTP_IPV4:
  5756. *flow_type = SCTP_V4_FLOW;
  5757. break;
  5758. case CLASS_CODE_TCP_IPV6:
  5759. *flow_type = TCP_V6_FLOW;
  5760. break;
  5761. case CLASS_CODE_UDP_IPV6:
  5762. *flow_type = UDP_V6_FLOW;
  5763. break;
  5764. case CLASS_CODE_AH_ESP_IPV6:
  5765. *flow_type = AH_V6_FLOW;
  5766. break;
  5767. case CLASS_CODE_SCTP_IPV6:
  5768. *flow_type = SCTP_V6_FLOW;
  5769. break;
  5770. case CLASS_CODE_USER_PROG1:
  5771. case CLASS_CODE_USER_PROG2:
  5772. case CLASS_CODE_USER_PROG3:
  5773. case CLASS_CODE_USER_PROG4:
  5774. *flow_type = IP_USER_FLOW;
  5775. break;
  5776. default:
  5777. return 0;
  5778. }
  5779. return 1;
  5780. }
  5781. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5782. {
  5783. switch (flow_type) {
  5784. case TCP_V4_FLOW:
  5785. *class = CLASS_CODE_TCP_IPV4;
  5786. break;
  5787. case UDP_V4_FLOW:
  5788. *class = CLASS_CODE_UDP_IPV4;
  5789. break;
  5790. case AH_V4_FLOW:
  5791. case ESP_V4_FLOW:
  5792. *class = CLASS_CODE_AH_ESP_IPV4;
  5793. break;
  5794. case SCTP_V4_FLOW:
  5795. *class = CLASS_CODE_SCTP_IPV4;
  5796. break;
  5797. case TCP_V6_FLOW:
  5798. *class = CLASS_CODE_TCP_IPV6;
  5799. break;
  5800. case UDP_V6_FLOW:
  5801. *class = CLASS_CODE_UDP_IPV6;
  5802. break;
  5803. case AH_V6_FLOW:
  5804. case ESP_V6_FLOW:
  5805. *class = CLASS_CODE_AH_ESP_IPV6;
  5806. break;
  5807. case SCTP_V6_FLOW:
  5808. *class = CLASS_CODE_SCTP_IPV6;
  5809. break;
  5810. default:
  5811. return 0;
  5812. }
  5813. return 1;
  5814. }
  5815. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5816. {
  5817. u64 ethflow = 0;
  5818. if (flow_key & FLOW_KEY_L2DA)
  5819. ethflow |= RXH_L2DA;
  5820. if (flow_key & FLOW_KEY_VLAN)
  5821. ethflow |= RXH_VLAN;
  5822. if (flow_key & FLOW_KEY_IPSA)
  5823. ethflow |= RXH_IP_SRC;
  5824. if (flow_key & FLOW_KEY_IPDA)
  5825. ethflow |= RXH_IP_DST;
  5826. if (flow_key & FLOW_KEY_PROTO)
  5827. ethflow |= RXH_L3_PROTO;
  5828. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5829. ethflow |= RXH_L4_B_0_1;
  5830. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5831. ethflow |= RXH_L4_B_2_3;
  5832. return ethflow;
  5833. }
  5834. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5835. {
  5836. u64 key = 0;
  5837. if (ethflow & RXH_L2DA)
  5838. key |= FLOW_KEY_L2DA;
  5839. if (ethflow & RXH_VLAN)
  5840. key |= FLOW_KEY_VLAN;
  5841. if (ethflow & RXH_IP_SRC)
  5842. key |= FLOW_KEY_IPSA;
  5843. if (ethflow & RXH_IP_DST)
  5844. key |= FLOW_KEY_IPDA;
  5845. if (ethflow & RXH_L3_PROTO)
  5846. key |= FLOW_KEY_PROTO;
  5847. if (ethflow & RXH_L4_B_0_1)
  5848. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5849. if (ethflow & RXH_L4_B_2_3)
  5850. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5851. *flow_key = key;
  5852. return 1;
  5853. }
  5854. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5855. {
  5856. u64 class;
  5857. nfc->data = 0;
  5858. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5859. return -EINVAL;
  5860. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5861. TCAM_KEY_DISC)
  5862. nfc->data = RXH_DISCARD;
  5863. else
  5864. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5865. CLASS_CODE_USER_PROG1]);
  5866. return 0;
  5867. }
  5868. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5869. struct ethtool_rx_flow_spec *fsp)
  5870. {
  5871. fsp->h_u.tcp_ip4_spec.ip4src = (tp->key[3] & TCAM_V4KEY3_SADDR) >>
  5872. TCAM_V4KEY3_SADDR_SHIFT;
  5873. fsp->h_u.tcp_ip4_spec.ip4dst = (tp->key[3] & TCAM_V4KEY3_DADDR) >>
  5874. TCAM_V4KEY3_DADDR_SHIFT;
  5875. fsp->m_u.tcp_ip4_spec.ip4src = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >>
  5876. TCAM_V4KEY3_SADDR_SHIFT;
  5877. fsp->m_u.tcp_ip4_spec.ip4dst = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >>
  5878. TCAM_V4KEY3_DADDR_SHIFT;
  5879. fsp->h_u.tcp_ip4_spec.ip4src =
  5880. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4src);
  5881. fsp->m_u.tcp_ip4_spec.ip4src =
  5882. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4src);
  5883. fsp->h_u.tcp_ip4_spec.ip4dst =
  5884. cpu_to_be32(fsp->h_u.tcp_ip4_spec.ip4dst);
  5885. fsp->m_u.tcp_ip4_spec.ip4dst =
  5886. cpu_to_be32(fsp->m_u.tcp_ip4_spec.ip4dst);
  5887. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5888. TCAM_V4KEY2_TOS_SHIFT;
  5889. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5890. TCAM_V4KEY2_TOS_SHIFT;
  5891. switch (fsp->flow_type) {
  5892. case TCP_V4_FLOW:
  5893. case UDP_V4_FLOW:
  5894. case SCTP_V4_FLOW:
  5895. fsp->h_u.tcp_ip4_spec.psrc =
  5896. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5897. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5898. fsp->h_u.tcp_ip4_spec.pdst =
  5899. ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5900. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5901. fsp->m_u.tcp_ip4_spec.psrc =
  5902. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5903. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5904. fsp->m_u.tcp_ip4_spec.pdst =
  5905. ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5906. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5907. fsp->h_u.tcp_ip4_spec.psrc =
  5908. cpu_to_be16(fsp->h_u.tcp_ip4_spec.psrc);
  5909. fsp->h_u.tcp_ip4_spec.pdst =
  5910. cpu_to_be16(fsp->h_u.tcp_ip4_spec.pdst);
  5911. fsp->m_u.tcp_ip4_spec.psrc =
  5912. cpu_to_be16(fsp->m_u.tcp_ip4_spec.psrc);
  5913. fsp->m_u.tcp_ip4_spec.pdst =
  5914. cpu_to_be16(fsp->m_u.tcp_ip4_spec.pdst);
  5915. break;
  5916. case AH_V4_FLOW:
  5917. case ESP_V4_FLOW:
  5918. fsp->h_u.ah_ip4_spec.spi =
  5919. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5920. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5921. fsp->m_u.ah_ip4_spec.spi =
  5922. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5923. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5924. fsp->h_u.ah_ip4_spec.spi =
  5925. cpu_to_be32(fsp->h_u.ah_ip4_spec.spi);
  5926. fsp->m_u.ah_ip4_spec.spi =
  5927. cpu_to_be32(fsp->m_u.ah_ip4_spec.spi);
  5928. break;
  5929. case IP_USER_FLOW:
  5930. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5931. (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5932. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5933. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5934. (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5935. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5936. fsp->h_u.usr_ip4_spec.l4_4_bytes =
  5937. cpu_to_be32(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  5938. fsp->m_u.usr_ip4_spec.l4_4_bytes =
  5939. cpu_to_be32(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  5940. fsp->h_u.usr_ip4_spec.proto =
  5941. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5942. TCAM_V4KEY2_PROTO_SHIFT;
  5943. fsp->m_u.usr_ip4_spec.proto =
  5944. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5945. TCAM_V4KEY2_PROTO_SHIFT;
  5946. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5947. break;
  5948. default:
  5949. break;
  5950. }
  5951. }
  5952. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5953. struct ethtool_rxnfc *nfc)
  5954. {
  5955. struct niu_parent *parent = np->parent;
  5956. struct niu_tcam_entry *tp;
  5957. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5958. u16 idx;
  5959. u64 class;
  5960. int ret = 0;
  5961. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5962. tp = &parent->tcam[idx];
  5963. if (!tp->valid) {
  5964. pr_info(PFX "niu%d: %s entry [%d] invalid for idx[%d]\n",
  5965. parent->index, np->dev->name, (u16)nfc->fs.location, idx);
  5966. return -EINVAL;
  5967. }
  5968. /* fill the flow spec entry */
  5969. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5970. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5971. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5972. if (ret < 0) {
  5973. pr_info(PFX "niu%d: %s niu_class_to_ethflow failed\n",
  5974. parent->index, np->dev->name);
  5975. ret = -EINVAL;
  5976. goto out;
  5977. }
  5978. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5979. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5980. TCAM_V4KEY2_PROTO_SHIFT;
  5981. if (proto == IPPROTO_ESP) {
  5982. if (fsp->flow_type == AH_V4_FLOW)
  5983. fsp->flow_type = ESP_V4_FLOW;
  5984. else
  5985. fsp->flow_type = ESP_V6_FLOW;
  5986. }
  5987. }
  5988. switch (fsp->flow_type) {
  5989. case TCP_V4_FLOW:
  5990. case UDP_V4_FLOW:
  5991. case SCTP_V4_FLOW:
  5992. case AH_V4_FLOW:
  5993. case ESP_V4_FLOW:
  5994. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5995. break;
  5996. case TCP_V6_FLOW:
  5997. case UDP_V6_FLOW:
  5998. case SCTP_V6_FLOW:
  5999. case AH_V6_FLOW:
  6000. case ESP_V6_FLOW:
  6001. /* Not yet implemented */
  6002. ret = -EINVAL;
  6003. break;
  6004. case IP_USER_FLOW:
  6005. niu_get_ip4fs_from_tcam_key(tp, fsp);
  6006. break;
  6007. default:
  6008. ret = -EINVAL;
  6009. break;
  6010. }
  6011. if (ret < 0)
  6012. goto out;
  6013. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  6014. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  6015. else
  6016. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  6017. TCAM_ASSOCDATA_OFFSET_SHIFT;
  6018. /* put the tcam size here */
  6019. nfc->data = tcam_get_size(np);
  6020. out:
  6021. return ret;
  6022. }
  6023. static int niu_get_ethtool_tcam_all(struct niu *np,
  6024. struct ethtool_rxnfc *nfc,
  6025. u32 *rule_locs)
  6026. {
  6027. struct niu_parent *parent = np->parent;
  6028. struct niu_tcam_entry *tp;
  6029. int i, idx, cnt;
  6030. u16 n_entries;
  6031. unsigned long flags;
  6032. /* put the tcam size here */
  6033. nfc->data = tcam_get_size(np);
  6034. niu_lock_parent(np, flags);
  6035. n_entries = nfc->rule_cnt;
  6036. for (cnt = 0, i = 0; i < nfc->data; i++) {
  6037. idx = tcam_get_index(np, i);
  6038. tp = &parent->tcam[idx];
  6039. if (!tp->valid)
  6040. continue;
  6041. rule_locs[cnt] = i;
  6042. cnt++;
  6043. }
  6044. niu_unlock_parent(np, flags);
  6045. if (n_entries != cnt) {
  6046. /* print warning, this should not happen */
  6047. pr_info(PFX "niu%d: %s In niu_get_ethtool_tcam_all, "
  6048. "n_entries[%d] != cnt[%d]!!!\n\n",
  6049. np->parent->index, np->dev->name, n_entries, cnt);
  6050. }
  6051. return 0;
  6052. }
  6053. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6054. void *rule_locs)
  6055. {
  6056. struct niu *np = netdev_priv(dev);
  6057. int ret = 0;
  6058. switch (cmd->cmd) {
  6059. case ETHTOOL_GRXFH:
  6060. ret = niu_get_hash_opts(np, cmd);
  6061. break;
  6062. case ETHTOOL_GRXRINGS:
  6063. cmd->data = np->num_rx_rings;
  6064. break;
  6065. case ETHTOOL_GRXCLSRLCNT:
  6066. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6067. break;
  6068. case ETHTOOL_GRXCLSRULE:
  6069. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6070. break;
  6071. case ETHTOOL_GRXCLSRLALL:
  6072. ret = niu_get_ethtool_tcam_all(np, cmd, (u32 *)rule_locs);
  6073. break;
  6074. default:
  6075. ret = -EINVAL;
  6076. break;
  6077. }
  6078. return ret;
  6079. }
  6080. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6081. {
  6082. u64 class;
  6083. u64 flow_key = 0;
  6084. unsigned long flags;
  6085. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6086. return -EINVAL;
  6087. if (class < CLASS_CODE_USER_PROG1 ||
  6088. class > CLASS_CODE_SCTP_IPV6)
  6089. return -EINVAL;
  6090. if (nfc->data & RXH_DISCARD) {
  6091. niu_lock_parent(np, flags);
  6092. flow_key = np->parent->tcam_key[class -
  6093. CLASS_CODE_USER_PROG1];
  6094. flow_key |= TCAM_KEY_DISC;
  6095. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6096. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6097. niu_unlock_parent(np, flags);
  6098. return 0;
  6099. } else {
  6100. /* Discard was set before, but is not set now */
  6101. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6102. TCAM_KEY_DISC) {
  6103. niu_lock_parent(np, flags);
  6104. flow_key = np->parent->tcam_key[class -
  6105. CLASS_CODE_USER_PROG1];
  6106. flow_key &= ~TCAM_KEY_DISC;
  6107. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6108. flow_key);
  6109. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6110. flow_key;
  6111. niu_unlock_parent(np, flags);
  6112. }
  6113. }
  6114. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6115. return -EINVAL;
  6116. niu_lock_parent(np, flags);
  6117. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6118. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6119. niu_unlock_parent(np, flags);
  6120. return 0;
  6121. }
  6122. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6123. struct niu_tcam_entry *tp,
  6124. int l2_rdc_tab, u64 class)
  6125. {
  6126. u8 pid = 0;
  6127. u32 sip, dip, sipm, dipm, spi, spim;
  6128. u16 sport, dport, spm, dpm;
  6129. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6130. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6131. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6132. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6133. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6134. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6135. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6136. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6137. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6138. tp->key[3] |= dip;
  6139. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6140. tp->key_mask[3] |= dipm;
  6141. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6142. TCAM_V4KEY2_TOS_SHIFT);
  6143. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6144. TCAM_V4KEY2_TOS_SHIFT);
  6145. switch (fsp->flow_type) {
  6146. case TCP_V4_FLOW:
  6147. case UDP_V4_FLOW:
  6148. case SCTP_V4_FLOW:
  6149. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6150. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6151. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6152. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6153. tp->key[2] |= (((u64)sport << 16) | dport);
  6154. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6155. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6156. break;
  6157. case AH_V4_FLOW:
  6158. case ESP_V4_FLOW:
  6159. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6160. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6161. tp->key[2] |= spi;
  6162. tp->key_mask[2] |= spim;
  6163. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6164. break;
  6165. case IP_USER_FLOW:
  6166. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6167. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6168. tp->key[2] |= spi;
  6169. tp->key_mask[2] |= spim;
  6170. pid = fsp->h_u.usr_ip4_spec.proto;
  6171. break;
  6172. default:
  6173. break;
  6174. }
  6175. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6176. if (pid) {
  6177. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6178. }
  6179. }
  6180. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6181. struct ethtool_rxnfc *nfc)
  6182. {
  6183. struct niu_parent *parent = np->parent;
  6184. struct niu_tcam_entry *tp;
  6185. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6186. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6187. int l2_rdc_table = rdc_table->first_table_num;
  6188. u16 idx;
  6189. u64 class;
  6190. unsigned long flags;
  6191. int err, ret;
  6192. ret = 0;
  6193. idx = nfc->fs.location;
  6194. if (idx >= tcam_get_size(np))
  6195. return -EINVAL;
  6196. if (fsp->flow_type == IP_USER_FLOW) {
  6197. int i;
  6198. int add_usr_cls = 0;
  6199. int ipv6 = 0;
  6200. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6201. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6202. niu_lock_parent(np, flags);
  6203. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6204. if (parent->l3_cls[i]) {
  6205. if (uspec->proto == parent->l3_cls_pid[i]) {
  6206. class = parent->l3_cls[i];
  6207. parent->l3_cls_refcnt[i]++;
  6208. add_usr_cls = 1;
  6209. break;
  6210. }
  6211. } else {
  6212. /* Program new user IP class */
  6213. switch (i) {
  6214. case 0:
  6215. class = CLASS_CODE_USER_PROG1;
  6216. break;
  6217. case 1:
  6218. class = CLASS_CODE_USER_PROG2;
  6219. break;
  6220. case 2:
  6221. class = CLASS_CODE_USER_PROG3;
  6222. break;
  6223. case 3:
  6224. class = CLASS_CODE_USER_PROG4;
  6225. break;
  6226. default:
  6227. break;
  6228. }
  6229. if (uspec->ip_ver == ETH_RX_NFC_IP6)
  6230. ipv6 = 1;
  6231. ret = tcam_user_ip_class_set(np, class, ipv6,
  6232. uspec->proto,
  6233. uspec->tos,
  6234. umask->tos);
  6235. if (ret)
  6236. goto out;
  6237. ret = tcam_user_ip_class_enable(np, class, 1);
  6238. if (ret)
  6239. goto out;
  6240. parent->l3_cls[i] = class;
  6241. parent->l3_cls_pid[i] = uspec->proto;
  6242. parent->l3_cls_refcnt[i]++;
  6243. add_usr_cls = 1;
  6244. break;
  6245. }
  6246. }
  6247. if (!add_usr_cls) {
  6248. pr_info(PFX "niu%d: %s niu_add_ethtool_tcam_entry: "
  6249. "Could not find/insert class for pid %d\n",
  6250. parent->index, np->dev->name, uspec->proto);
  6251. ret = -EINVAL;
  6252. goto out;
  6253. }
  6254. niu_unlock_parent(np, flags);
  6255. } else {
  6256. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6257. return -EINVAL;
  6258. }
  6259. }
  6260. niu_lock_parent(np, flags);
  6261. idx = tcam_get_index(np, idx);
  6262. tp = &parent->tcam[idx];
  6263. memset(tp, 0, sizeof(*tp));
  6264. /* fill in the tcam key and mask */
  6265. switch (fsp->flow_type) {
  6266. case TCP_V4_FLOW:
  6267. case UDP_V4_FLOW:
  6268. case SCTP_V4_FLOW:
  6269. case AH_V4_FLOW:
  6270. case ESP_V4_FLOW:
  6271. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6272. break;
  6273. case TCP_V6_FLOW:
  6274. case UDP_V6_FLOW:
  6275. case SCTP_V6_FLOW:
  6276. case AH_V6_FLOW:
  6277. case ESP_V6_FLOW:
  6278. /* Not yet implemented */
  6279. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6280. "flow %d for IPv6 not implemented\n\n",
  6281. parent->index, np->dev->name, fsp->flow_type);
  6282. ret = -EINVAL;
  6283. goto out;
  6284. case IP_USER_FLOW:
  6285. if (fsp->h_u.usr_ip4_spec.ip_ver == ETH_RX_NFC_IP4) {
  6286. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table,
  6287. class);
  6288. } else {
  6289. /* Not yet implemented */
  6290. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6291. "usr flow for IPv6 not implemented\n\n",
  6292. parent->index, np->dev->name);
  6293. ret = -EINVAL;
  6294. goto out;
  6295. }
  6296. break;
  6297. default:
  6298. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6299. "Unknown flow type %d\n\n",
  6300. parent->index, np->dev->name, fsp->flow_type);
  6301. ret = -EINVAL;
  6302. goto out;
  6303. }
  6304. /* fill in the assoc data */
  6305. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6306. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6307. } else {
  6308. if (fsp->ring_cookie >= np->num_rx_rings) {
  6309. pr_info(PFX "niu%d: %s In niu_add_ethtool_tcam_entry: "
  6310. "Invalid RX ring %lld\n\n",
  6311. parent->index, np->dev->name,
  6312. (long long) fsp->ring_cookie);
  6313. ret = -EINVAL;
  6314. goto out;
  6315. }
  6316. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6317. (fsp->ring_cookie <<
  6318. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6319. }
  6320. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6321. if (err) {
  6322. ret = -EINVAL;
  6323. goto out;
  6324. }
  6325. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6326. if (err) {
  6327. ret = -EINVAL;
  6328. goto out;
  6329. }
  6330. /* validate the entry */
  6331. tp->valid = 1;
  6332. np->clas.tcam_valid_entries++;
  6333. out:
  6334. niu_unlock_parent(np, flags);
  6335. return ret;
  6336. }
  6337. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6338. {
  6339. struct niu_parent *parent = np->parent;
  6340. struct niu_tcam_entry *tp;
  6341. u16 idx;
  6342. unsigned long flags;
  6343. u64 class;
  6344. int ret = 0;
  6345. if (loc >= tcam_get_size(np))
  6346. return -EINVAL;
  6347. niu_lock_parent(np, flags);
  6348. idx = tcam_get_index(np, loc);
  6349. tp = &parent->tcam[idx];
  6350. /* if the entry is of a user defined class, then update*/
  6351. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6352. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6353. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6354. int i;
  6355. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6356. if (parent->l3_cls[i] == class) {
  6357. parent->l3_cls_refcnt[i]--;
  6358. if (!parent->l3_cls_refcnt[i]) {
  6359. /* disable class */
  6360. ret = tcam_user_ip_class_enable(np,
  6361. class,
  6362. 0);
  6363. if (ret)
  6364. goto out;
  6365. parent->l3_cls[i] = 0;
  6366. parent->l3_cls_pid[i] = 0;
  6367. }
  6368. break;
  6369. }
  6370. }
  6371. if (i == NIU_L3_PROG_CLS) {
  6372. pr_info(PFX "niu%d: %s In niu_del_ethtool_tcam_entry,"
  6373. "Usr class 0x%llx not found \n",
  6374. parent->index, np->dev->name,
  6375. (unsigned long long) class);
  6376. ret = -EINVAL;
  6377. goto out;
  6378. }
  6379. }
  6380. ret = tcam_flush(np, idx);
  6381. if (ret)
  6382. goto out;
  6383. /* invalidate the entry */
  6384. tp->valid = 0;
  6385. np->clas.tcam_valid_entries--;
  6386. out:
  6387. niu_unlock_parent(np, flags);
  6388. return ret;
  6389. }
  6390. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6391. {
  6392. struct niu *np = netdev_priv(dev);
  6393. int ret = 0;
  6394. switch (cmd->cmd) {
  6395. case ETHTOOL_SRXFH:
  6396. ret = niu_set_hash_opts(np, cmd);
  6397. break;
  6398. case ETHTOOL_SRXCLSRLINS:
  6399. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6400. break;
  6401. case ETHTOOL_SRXCLSRLDEL:
  6402. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6403. break;
  6404. default:
  6405. ret = -EINVAL;
  6406. break;
  6407. }
  6408. return ret;
  6409. }
  6410. static const struct {
  6411. const char string[ETH_GSTRING_LEN];
  6412. } niu_xmac_stat_keys[] = {
  6413. { "tx_frames" },
  6414. { "tx_bytes" },
  6415. { "tx_fifo_errors" },
  6416. { "tx_overflow_errors" },
  6417. { "tx_max_pkt_size_errors" },
  6418. { "tx_underflow_errors" },
  6419. { "rx_local_faults" },
  6420. { "rx_remote_faults" },
  6421. { "rx_link_faults" },
  6422. { "rx_align_errors" },
  6423. { "rx_frags" },
  6424. { "rx_mcasts" },
  6425. { "rx_bcasts" },
  6426. { "rx_hist_cnt1" },
  6427. { "rx_hist_cnt2" },
  6428. { "rx_hist_cnt3" },
  6429. { "rx_hist_cnt4" },
  6430. { "rx_hist_cnt5" },
  6431. { "rx_hist_cnt6" },
  6432. { "rx_hist_cnt7" },
  6433. { "rx_octets" },
  6434. { "rx_code_violations" },
  6435. { "rx_len_errors" },
  6436. { "rx_crc_errors" },
  6437. { "rx_underflows" },
  6438. { "rx_overflows" },
  6439. { "pause_off_state" },
  6440. { "pause_on_state" },
  6441. { "pause_received" },
  6442. };
  6443. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6444. static const struct {
  6445. const char string[ETH_GSTRING_LEN];
  6446. } niu_bmac_stat_keys[] = {
  6447. { "tx_underflow_errors" },
  6448. { "tx_max_pkt_size_errors" },
  6449. { "tx_bytes" },
  6450. { "tx_frames" },
  6451. { "rx_overflows" },
  6452. { "rx_frames" },
  6453. { "rx_align_errors" },
  6454. { "rx_crc_errors" },
  6455. { "rx_len_errors" },
  6456. { "pause_off_state" },
  6457. { "pause_on_state" },
  6458. { "pause_received" },
  6459. };
  6460. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6461. static const struct {
  6462. const char string[ETH_GSTRING_LEN];
  6463. } niu_rxchan_stat_keys[] = {
  6464. { "rx_channel" },
  6465. { "rx_packets" },
  6466. { "rx_bytes" },
  6467. { "rx_dropped" },
  6468. { "rx_errors" },
  6469. };
  6470. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6471. static const struct {
  6472. const char string[ETH_GSTRING_LEN];
  6473. } niu_txchan_stat_keys[] = {
  6474. { "tx_channel" },
  6475. { "tx_packets" },
  6476. { "tx_bytes" },
  6477. { "tx_errors" },
  6478. };
  6479. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6480. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6481. {
  6482. struct niu *np = netdev_priv(dev);
  6483. int i;
  6484. if (stringset != ETH_SS_STATS)
  6485. return;
  6486. if (np->flags & NIU_FLAGS_XMAC) {
  6487. memcpy(data, niu_xmac_stat_keys,
  6488. sizeof(niu_xmac_stat_keys));
  6489. data += sizeof(niu_xmac_stat_keys);
  6490. } else {
  6491. memcpy(data, niu_bmac_stat_keys,
  6492. sizeof(niu_bmac_stat_keys));
  6493. data += sizeof(niu_bmac_stat_keys);
  6494. }
  6495. for (i = 0; i < np->num_rx_rings; i++) {
  6496. memcpy(data, niu_rxchan_stat_keys,
  6497. sizeof(niu_rxchan_stat_keys));
  6498. data += sizeof(niu_rxchan_stat_keys);
  6499. }
  6500. for (i = 0; i < np->num_tx_rings; i++) {
  6501. memcpy(data, niu_txchan_stat_keys,
  6502. sizeof(niu_txchan_stat_keys));
  6503. data += sizeof(niu_txchan_stat_keys);
  6504. }
  6505. }
  6506. static int niu_get_stats_count(struct net_device *dev)
  6507. {
  6508. struct niu *np = netdev_priv(dev);
  6509. return ((np->flags & NIU_FLAGS_XMAC ?
  6510. NUM_XMAC_STAT_KEYS :
  6511. NUM_BMAC_STAT_KEYS) +
  6512. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6513. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS));
  6514. }
  6515. static void niu_get_ethtool_stats(struct net_device *dev,
  6516. struct ethtool_stats *stats, u64 *data)
  6517. {
  6518. struct niu *np = netdev_priv(dev);
  6519. int i;
  6520. niu_sync_mac_stats(np);
  6521. if (np->flags & NIU_FLAGS_XMAC) {
  6522. memcpy(data, &np->mac_stats.xmac,
  6523. sizeof(struct niu_xmac_stats));
  6524. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6525. } else {
  6526. memcpy(data, &np->mac_stats.bmac,
  6527. sizeof(struct niu_bmac_stats));
  6528. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6529. }
  6530. for (i = 0; i < np->num_rx_rings; i++) {
  6531. struct rx_ring_info *rp = &np->rx_rings[i];
  6532. niu_sync_rx_discard_stats(np, rp, 0);
  6533. data[0] = rp->rx_channel;
  6534. data[1] = rp->rx_packets;
  6535. data[2] = rp->rx_bytes;
  6536. data[3] = rp->rx_dropped;
  6537. data[4] = rp->rx_errors;
  6538. data += 5;
  6539. }
  6540. for (i = 0; i < np->num_tx_rings; i++) {
  6541. struct tx_ring_info *rp = &np->tx_rings[i];
  6542. data[0] = rp->tx_channel;
  6543. data[1] = rp->tx_packets;
  6544. data[2] = rp->tx_bytes;
  6545. data[3] = rp->tx_errors;
  6546. data += 4;
  6547. }
  6548. }
  6549. static u64 niu_led_state_save(struct niu *np)
  6550. {
  6551. if (np->flags & NIU_FLAGS_XMAC)
  6552. return nr64_mac(XMAC_CONFIG);
  6553. else
  6554. return nr64_mac(BMAC_XIF_CONFIG);
  6555. }
  6556. static void niu_led_state_restore(struct niu *np, u64 val)
  6557. {
  6558. if (np->flags & NIU_FLAGS_XMAC)
  6559. nw64_mac(XMAC_CONFIG, val);
  6560. else
  6561. nw64_mac(BMAC_XIF_CONFIG, val);
  6562. }
  6563. static void niu_force_led(struct niu *np, int on)
  6564. {
  6565. u64 val, reg, bit;
  6566. if (np->flags & NIU_FLAGS_XMAC) {
  6567. reg = XMAC_CONFIG;
  6568. bit = XMAC_CONFIG_FORCE_LED_ON;
  6569. } else {
  6570. reg = BMAC_XIF_CONFIG;
  6571. bit = BMAC_XIF_CONFIG_LINK_LED;
  6572. }
  6573. val = nr64_mac(reg);
  6574. if (on)
  6575. val |= bit;
  6576. else
  6577. val &= ~bit;
  6578. nw64_mac(reg, val);
  6579. }
  6580. static int niu_phys_id(struct net_device *dev, u32 data)
  6581. {
  6582. struct niu *np = netdev_priv(dev);
  6583. u64 orig_led_state;
  6584. int i;
  6585. if (!netif_running(dev))
  6586. return -EAGAIN;
  6587. if (data == 0)
  6588. data = 2;
  6589. orig_led_state = niu_led_state_save(np);
  6590. for (i = 0; i < (data * 2); i++) {
  6591. int on = ((i % 2) == 0);
  6592. niu_force_led(np, on);
  6593. if (msleep_interruptible(500))
  6594. break;
  6595. }
  6596. niu_led_state_restore(np, orig_led_state);
  6597. return 0;
  6598. }
  6599. static const struct ethtool_ops niu_ethtool_ops = {
  6600. .get_drvinfo = niu_get_drvinfo,
  6601. .get_link = ethtool_op_get_link,
  6602. .get_msglevel = niu_get_msglevel,
  6603. .set_msglevel = niu_set_msglevel,
  6604. .nway_reset = niu_nway_reset,
  6605. .get_eeprom_len = niu_get_eeprom_len,
  6606. .get_eeprom = niu_get_eeprom,
  6607. .get_settings = niu_get_settings,
  6608. .set_settings = niu_set_settings,
  6609. .get_strings = niu_get_strings,
  6610. .get_stats_count = niu_get_stats_count,
  6611. .get_ethtool_stats = niu_get_ethtool_stats,
  6612. .phys_id = niu_phys_id,
  6613. .get_rxnfc = niu_get_nfc,
  6614. .set_rxnfc = niu_set_nfc,
  6615. };
  6616. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6617. int ldg, int ldn)
  6618. {
  6619. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6620. return -EINVAL;
  6621. if (ldn < 0 || ldn > LDN_MAX)
  6622. return -EINVAL;
  6623. parent->ldg_map[ldn] = ldg;
  6624. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6625. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6626. * the firmware, and we're not supposed to change them.
  6627. * Validate the mapping, because if it's wrong we probably
  6628. * won't get any interrupts and that's painful to debug.
  6629. */
  6630. if (nr64(LDG_NUM(ldn)) != ldg) {
  6631. dev_err(np->device, PFX "Port %u, mis-matched "
  6632. "LDG assignment "
  6633. "for ldn %d, should be %d is %llu\n",
  6634. np->port, ldn, ldg,
  6635. (unsigned long long) nr64(LDG_NUM(ldn)));
  6636. return -EINVAL;
  6637. }
  6638. } else
  6639. nw64(LDG_NUM(ldn), ldg);
  6640. return 0;
  6641. }
  6642. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6643. {
  6644. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6645. return -EINVAL;
  6646. nw64(LDG_TIMER_RES, res);
  6647. return 0;
  6648. }
  6649. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6650. {
  6651. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6652. (func < 0 || func > 3) ||
  6653. (vector < 0 || vector > 0x1f))
  6654. return -EINVAL;
  6655. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6656. return 0;
  6657. }
  6658. static int __devinit niu_pci_eeprom_read(struct niu *np, u32 addr)
  6659. {
  6660. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6661. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6662. int limit;
  6663. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6664. return -EINVAL;
  6665. frame = frame_base;
  6666. nw64(ESPC_PIO_STAT, frame);
  6667. limit = 64;
  6668. do {
  6669. udelay(5);
  6670. frame = nr64(ESPC_PIO_STAT);
  6671. if (frame & ESPC_PIO_STAT_READ_END)
  6672. break;
  6673. } while (limit--);
  6674. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6675. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6676. (unsigned long long) frame);
  6677. return -ENODEV;
  6678. }
  6679. frame = frame_base;
  6680. nw64(ESPC_PIO_STAT, frame);
  6681. limit = 64;
  6682. do {
  6683. udelay(5);
  6684. frame = nr64(ESPC_PIO_STAT);
  6685. if (frame & ESPC_PIO_STAT_READ_END)
  6686. break;
  6687. } while (limit--);
  6688. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6689. dev_err(np->device, PFX "EEPROM read timeout frame[%llx]\n",
  6690. (unsigned long long) frame);
  6691. return -ENODEV;
  6692. }
  6693. frame = nr64(ESPC_PIO_STAT);
  6694. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6695. }
  6696. static int __devinit niu_pci_eeprom_read16(struct niu *np, u32 off)
  6697. {
  6698. int err = niu_pci_eeprom_read(np, off);
  6699. u16 val;
  6700. if (err < 0)
  6701. return err;
  6702. val = (err << 8);
  6703. err = niu_pci_eeprom_read(np, off + 1);
  6704. if (err < 0)
  6705. return err;
  6706. val |= (err & 0xff);
  6707. return val;
  6708. }
  6709. static int __devinit niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6710. {
  6711. int err = niu_pci_eeprom_read(np, off);
  6712. u16 val;
  6713. if (err < 0)
  6714. return err;
  6715. val = (err & 0xff);
  6716. err = niu_pci_eeprom_read(np, off + 1);
  6717. if (err < 0)
  6718. return err;
  6719. val |= (err & 0xff) << 8;
  6720. return val;
  6721. }
  6722. static int __devinit niu_pci_vpd_get_propname(struct niu *np,
  6723. u32 off,
  6724. char *namebuf,
  6725. int namebuf_len)
  6726. {
  6727. int i;
  6728. for (i = 0; i < namebuf_len; i++) {
  6729. int err = niu_pci_eeprom_read(np, off + i);
  6730. if (err < 0)
  6731. return err;
  6732. *namebuf++ = err;
  6733. if (!err)
  6734. break;
  6735. }
  6736. if (i >= namebuf_len)
  6737. return -EINVAL;
  6738. return i + 1;
  6739. }
  6740. static void __devinit niu_vpd_parse_version(struct niu *np)
  6741. {
  6742. struct niu_vpd *vpd = &np->vpd;
  6743. int len = strlen(vpd->version) + 1;
  6744. const char *s = vpd->version;
  6745. int i;
  6746. for (i = 0; i < len - 5; i++) {
  6747. if (!strncmp(s + i, "FCode ", 5))
  6748. break;
  6749. }
  6750. if (i >= len - 5)
  6751. return;
  6752. s += i + 5;
  6753. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6754. niudbg(PROBE, "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6755. vpd->fcode_major, vpd->fcode_minor);
  6756. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6757. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6758. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6759. np->flags |= NIU_FLAGS_VPD_VALID;
  6760. }
  6761. /* ESPC_PIO_EN_ENABLE must be set */
  6762. static int __devinit niu_pci_vpd_scan_props(struct niu *np,
  6763. u32 start, u32 end)
  6764. {
  6765. unsigned int found_mask = 0;
  6766. #define FOUND_MASK_MODEL 0x00000001
  6767. #define FOUND_MASK_BMODEL 0x00000002
  6768. #define FOUND_MASK_VERS 0x00000004
  6769. #define FOUND_MASK_MAC 0x00000008
  6770. #define FOUND_MASK_NMAC 0x00000010
  6771. #define FOUND_MASK_PHY 0x00000020
  6772. #define FOUND_MASK_ALL 0x0000003f
  6773. niudbg(PROBE, "VPD_SCAN: start[%x] end[%x]\n",
  6774. start, end);
  6775. while (start < end) {
  6776. int len, err, instance, type, prop_len;
  6777. char namebuf[64];
  6778. u8 *prop_buf;
  6779. int max_len;
  6780. if (found_mask == FOUND_MASK_ALL) {
  6781. niu_vpd_parse_version(np);
  6782. return 1;
  6783. }
  6784. err = niu_pci_eeprom_read(np, start + 2);
  6785. if (err < 0)
  6786. return err;
  6787. len = err;
  6788. start += 3;
  6789. instance = niu_pci_eeprom_read(np, start);
  6790. type = niu_pci_eeprom_read(np, start + 3);
  6791. prop_len = niu_pci_eeprom_read(np, start + 4);
  6792. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6793. if (err < 0)
  6794. return err;
  6795. prop_buf = NULL;
  6796. max_len = 0;
  6797. if (!strcmp(namebuf, "model")) {
  6798. prop_buf = np->vpd.model;
  6799. max_len = NIU_VPD_MODEL_MAX;
  6800. found_mask |= FOUND_MASK_MODEL;
  6801. } else if (!strcmp(namebuf, "board-model")) {
  6802. prop_buf = np->vpd.board_model;
  6803. max_len = NIU_VPD_BD_MODEL_MAX;
  6804. found_mask |= FOUND_MASK_BMODEL;
  6805. } else if (!strcmp(namebuf, "version")) {
  6806. prop_buf = np->vpd.version;
  6807. max_len = NIU_VPD_VERSION_MAX;
  6808. found_mask |= FOUND_MASK_VERS;
  6809. } else if (!strcmp(namebuf, "local-mac-address")) {
  6810. prop_buf = np->vpd.local_mac;
  6811. max_len = ETH_ALEN;
  6812. found_mask |= FOUND_MASK_MAC;
  6813. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6814. prop_buf = &np->vpd.mac_num;
  6815. max_len = 1;
  6816. found_mask |= FOUND_MASK_NMAC;
  6817. } else if (!strcmp(namebuf, "phy-type")) {
  6818. prop_buf = np->vpd.phy_type;
  6819. max_len = NIU_VPD_PHY_TYPE_MAX;
  6820. found_mask |= FOUND_MASK_PHY;
  6821. }
  6822. if (max_len && prop_len > max_len) {
  6823. dev_err(np->device, PFX "Property '%s' length (%d) is "
  6824. "too long.\n", namebuf, prop_len);
  6825. return -EINVAL;
  6826. }
  6827. if (prop_buf) {
  6828. u32 off = start + 5 + err;
  6829. int i;
  6830. niudbg(PROBE, "VPD_SCAN: Reading in property [%s] "
  6831. "len[%d]\n", namebuf, prop_len);
  6832. for (i = 0; i < prop_len; i++)
  6833. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6834. }
  6835. start += len;
  6836. }
  6837. return 0;
  6838. }
  6839. /* ESPC_PIO_EN_ENABLE must be set */
  6840. static void __devinit niu_pci_vpd_fetch(struct niu *np, u32 start)
  6841. {
  6842. u32 offset;
  6843. int err;
  6844. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6845. if (err < 0)
  6846. return;
  6847. offset = err + 3;
  6848. while (start + offset < ESPC_EEPROM_SIZE) {
  6849. u32 here = start + offset;
  6850. u32 end;
  6851. err = niu_pci_eeprom_read(np, here);
  6852. if (err != 0x90)
  6853. return;
  6854. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6855. if (err < 0)
  6856. return;
  6857. here = start + offset + 3;
  6858. end = start + offset + err;
  6859. offset += err;
  6860. err = niu_pci_vpd_scan_props(np, here, end);
  6861. if (err < 0 || err == 1)
  6862. return;
  6863. }
  6864. }
  6865. /* ESPC_PIO_EN_ENABLE must be set */
  6866. static u32 __devinit niu_pci_vpd_offset(struct niu *np)
  6867. {
  6868. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6869. int err;
  6870. while (start < end) {
  6871. ret = start;
  6872. /* ROM header signature? */
  6873. err = niu_pci_eeprom_read16(np, start + 0);
  6874. if (err != 0x55aa)
  6875. return 0;
  6876. /* Apply offset to PCI data structure. */
  6877. err = niu_pci_eeprom_read16(np, start + 23);
  6878. if (err < 0)
  6879. return 0;
  6880. start += err;
  6881. /* Check for "PCIR" signature. */
  6882. err = niu_pci_eeprom_read16(np, start + 0);
  6883. if (err != 0x5043)
  6884. return 0;
  6885. err = niu_pci_eeprom_read16(np, start + 2);
  6886. if (err != 0x4952)
  6887. return 0;
  6888. /* Check for OBP image type. */
  6889. err = niu_pci_eeprom_read(np, start + 20);
  6890. if (err < 0)
  6891. return 0;
  6892. if (err != 0x01) {
  6893. err = niu_pci_eeprom_read(np, ret + 2);
  6894. if (err < 0)
  6895. return 0;
  6896. start = ret + (err * 512);
  6897. continue;
  6898. }
  6899. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6900. if (err < 0)
  6901. return err;
  6902. ret += err;
  6903. err = niu_pci_eeprom_read(np, ret + 0);
  6904. if (err != 0x82)
  6905. return 0;
  6906. return ret;
  6907. }
  6908. return 0;
  6909. }
  6910. static int __devinit niu_phy_type_prop_decode(struct niu *np,
  6911. const char *phy_prop)
  6912. {
  6913. if (!strcmp(phy_prop, "mif")) {
  6914. /* 1G copper, MII */
  6915. np->flags &= ~(NIU_FLAGS_FIBER |
  6916. NIU_FLAGS_10G);
  6917. np->mac_xcvr = MAC_XCVR_MII;
  6918. } else if (!strcmp(phy_prop, "xgf")) {
  6919. /* 10G fiber, XPCS */
  6920. np->flags |= (NIU_FLAGS_10G |
  6921. NIU_FLAGS_FIBER);
  6922. np->mac_xcvr = MAC_XCVR_XPCS;
  6923. } else if (!strcmp(phy_prop, "pcs")) {
  6924. /* 1G fiber, PCS */
  6925. np->flags &= ~NIU_FLAGS_10G;
  6926. np->flags |= NIU_FLAGS_FIBER;
  6927. np->mac_xcvr = MAC_XCVR_PCS;
  6928. } else if (!strcmp(phy_prop, "xgc")) {
  6929. /* 10G copper, XPCS */
  6930. np->flags |= NIU_FLAGS_10G;
  6931. np->flags &= ~NIU_FLAGS_FIBER;
  6932. np->mac_xcvr = MAC_XCVR_XPCS;
  6933. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6934. /* 10G Serdes or 1G Serdes, default to 10G */
  6935. np->flags |= NIU_FLAGS_10G;
  6936. np->flags &= ~NIU_FLAGS_FIBER;
  6937. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6938. np->mac_xcvr = MAC_XCVR_XPCS;
  6939. } else {
  6940. return -EINVAL;
  6941. }
  6942. return 0;
  6943. }
  6944. static int niu_pci_vpd_get_nports(struct niu *np)
  6945. {
  6946. int ports = 0;
  6947. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6948. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6949. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6950. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6951. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6952. ports = 4;
  6953. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6954. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6955. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6956. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6957. ports = 2;
  6958. }
  6959. return ports;
  6960. }
  6961. static void __devinit niu_pci_vpd_validate(struct niu *np)
  6962. {
  6963. struct net_device *dev = np->dev;
  6964. struct niu_vpd *vpd = &np->vpd;
  6965. u8 val8;
  6966. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6967. dev_err(np->device, PFX "VPD MAC invalid, "
  6968. "falling back to SPROM.\n");
  6969. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6970. return;
  6971. }
  6972. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6973. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6974. np->flags |= NIU_FLAGS_10G;
  6975. np->flags &= ~NIU_FLAGS_FIBER;
  6976. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6977. np->mac_xcvr = MAC_XCVR_PCS;
  6978. if (np->port > 1) {
  6979. np->flags |= NIU_FLAGS_FIBER;
  6980. np->flags &= ~NIU_FLAGS_10G;
  6981. }
  6982. if (np->flags & NIU_FLAGS_10G)
  6983. np->mac_xcvr = MAC_XCVR_XPCS;
  6984. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6985. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6986. NIU_FLAGS_HOTPLUG_PHY);
  6987. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6988. dev_err(np->device, PFX "Illegal phy string [%s].\n",
  6989. np->vpd.phy_type);
  6990. dev_err(np->device, PFX "Falling back to SPROM.\n");
  6991. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6992. return;
  6993. }
  6994. memcpy(dev->perm_addr, vpd->local_mac, ETH_ALEN);
  6995. val8 = dev->perm_addr[5];
  6996. dev->perm_addr[5] += np->port;
  6997. if (dev->perm_addr[5] < val8)
  6998. dev->perm_addr[4]++;
  6999. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7000. }
  7001. static int __devinit niu_pci_probe_sprom(struct niu *np)
  7002. {
  7003. struct net_device *dev = np->dev;
  7004. int len, i;
  7005. u64 val, sum;
  7006. u8 val8;
  7007. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  7008. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  7009. len = val / 4;
  7010. np->eeprom_len = len;
  7011. niudbg(PROBE, "SPROM: Image size %llu\n", (unsigned long long) val);
  7012. sum = 0;
  7013. for (i = 0; i < len; i++) {
  7014. val = nr64(ESPC_NCR(i));
  7015. sum += (val >> 0) & 0xff;
  7016. sum += (val >> 8) & 0xff;
  7017. sum += (val >> 16) & 0xff;
  7018. sum += (val >> 24) & 0xff;
  7019. }
  7020. niudbg(PROBE, "SPROM: Checksum %x\n", (int)(sum & 0xff));
  7021. if ((sum & 0xff) != 0xab) {
  7022. dev_err(np->device, PFX "Bad SPROM checksum "
  7023. "(%x, should be 0xab)\n", (int) (sum & 0xff));
  7024. return -EINVAL;
  7025. }
  7026. val = nr64(ESPC_PHY_TYPE);
  7027. switch (np->port) {
  7028. case 0:
  7029. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  7030. ESPC_PHY_TYPE_PORT0_SHIFT;
  7031. break;
  7032. case 1:
  7033. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  7034. ESPC_PHY_TYPE_PORT1_SHIFT;
  7035. break;
  7036. case 2:
  7037. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  7038. ESPC_PHY_TYPE_PORT2_SHIFT;
  7039. break;
  7040. case 3:
  7041. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  7042. ESPC_PHY_TYPE_PORT3_SHIFT;
  7043. break;
  7044. default:
  7045. dev_err(np->device, PFX "Bogus port number %u\n",
  7046. np->port);
  7047. return -EINVAL;
  7048. }
  7049. niudbg(PROBE, "SPROM: PHY type %x\n", val8);
  7050. switch (val8) {
  7051. case ESPC_PHY_TYPE_1G_COPPER:
  7052. /* 1G copper, MII */
  7053. np->flags &= ~(NIU_FLAGS_FIBER |
  7054. NIU_FLAGS_10G);
  7055. np->mac_xcvr = MAC_XCVR_MII;
  7056. break;
  7057. case ESPC_PHY_TYPE_1G_FIBER:
  7058. /* 1G fiber, PCS */
  7059. np->flags &= ~NIU_FLAGS_10G;
  7060. np->flags |= NIU_FLAGS_FIBER;
  7061. np->mac_xcvr = MAC_XCVR_PCS;
  7062. break;
  7063. case ESPC_PHY_TYPE_10G_COPPER:
  7064. /* 10G copper, XPCS */
  7065. np->flags |= NIU_FLAGS_10G;
  7066. np->flags &= ~NIU_FLAGS_FIBER;
  7067. np->mac_xcvr = MAC_XCVR_XPCS;
  7068. break;
  7069. case ESPC_PHY_TYPE_10G_FIBER:
  7070. /* 10G fiber, XPCS */
  7071. np->flags |= (NIU_FLAGS_10G |
  7072. NIU_FLAGS_FIBER);
  7073. np->mac_xcvr = MAC_XCVR_XPCS;
  7074. break;
  7075. default:
  7076. dev_err(np->device, PFX "Bogus SPROM phy type %u\n", val8);
  7077. return -EINVAL;
  7078. }
  7079. val = nr64(ESPC_MAC_ADDR0);
  7080. niudbg(PROBE, "SPROM: MAC_ADDR0[%08llx]\n",
  7081. (unsigned long long) val);
  7082. dev->perm_addr[0] = (val >> 0) & 0xff;
  7083. dev->perm_addr[1] = (val >> 8) & 0xff;
  7084. dev->perm_addr[2] = (val >> 16) & 0xff;
  7085. dev->perm_addr[3] = (val >> 24) & 0xff;
  7086. val = nr64(ESPC_MAC_ADDR1);
  7087. niudbg(PROBE, "SPROM: MAC_ADDR1[%08llx]\n",
  7088. (unsigned long long) val);
  7089. dev->perm_addr[4] = (val >> 0) & 0xff;
  7090. dev->perm_addr[5] = (val >> 8) & 0xff;
  7091. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7092. dev_err(np->device, PFX "SPROM MAC address invalid\n");
  7093. dev_err(np->device, PFX "[ \n");
  7094. for (i = 0; i < 6; i++)
  7095. printk("%02x ", dev->perm_addr[i]);
  7096. printk("]\n");
  7097. return -EINVAL;
  7098. }
  7099. val8 = dev->perm_addr[5];
  7100. dev->perm_addr[5] += np->port;
  7101. if (dev->perm_addr[5] < val8)
  7102. dev->perm_addr[4]++;
  7103. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7104. val = nr64(ESPC_MOD_STR_LEN);
  7105. niudbg(PROBE, "SPROM: MOD_STR_LEN[%llu]\n",
  7106. (unsigned long long) val);
  7107. if (val >= 8 * 4)
  7108. return -EINVAL;
  7109. for (i = 0; i < val; i += 4) {
  7110. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7111. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7112. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7113. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7114. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7115. }
  7116. np->vpd.model[val] = '\0';
  7117. val = nr64(ESPC_BD_MOD_STR_LEN);
  7118. niudbg(PROBE, "SPROM: BD_MOD_STR_LEN[%llu]\n",
  7119. (unsigned long long) val);
  7120. if (val >= 4 * 4)
  7121. return -EINVAL;
  7122. for (i = 0; i < val; i += 4) {
  7123. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7124. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7125. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7126. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7127. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7128. }
  7129. np->vpd.board_model[val] = '\0';
  7130. np->vpd.mac_num =
  7131. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7132. niudbg(PROBE, "SPROM: NUM_PORTS_MACS[%d]\n",
  7133. np->vpd.mac_num);
  7134. return 0;
  7135. }
  7136. static int __devinit niu_get_and_validate_port(struct niu *np)
  7137. {
  7138. struct niu_parent *parent = np->parent;
  7139. if (np->port <= 1)
  7140. np->flags |= NIU_FLAGS_XMAC;
  7141. if (!parent->num_ports) {
  7142. if (parent->plat_type == PLAT_TYPE_NIU) {
  7143. parent->num_ports = 2;
  7144. } else {
  7145. parent->num_ports = niu_pci_vpd_get_nports(np);
  7146. if (!parent->num_ports) {
  7147. /* Fall back to SPROM as last resort.
  7148. * This will fail on most cards.
  7149. */
  7150. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7151. ESPC_NUM_PORTS_MACS_VAL;
  7152. /* All of the current probing methods fail on
  7153. * Maramba on-board parts.
  7154. */
  7155. if (!parent->num_ports)
  7156. parent->num_ports = 4;
  7157. }
  7158. }
  7159. }
  7160. niudbg(PROBE, "niu_get_and_validate_port: port[%d] num_ports[%d]\n",
  7161. np->port, parent->num_ports);
  7162. if (np->port >= parent->num_ports)
  7163. return -ENODEV;
  7164. return 0;
  7165. }
  7166. static int __devinit phy_record(struct niu_parent *parent,
  7167. struct phy_probe_info *p,
  7168. int dev_id_1, int dev_id_2, u8 phy_port,
  7169. int type)
  7170. {
  7171. u32 id = (dev_id_1 << 16) | dev_id_2;
  7172. u8 idx;
  7173. if (dev_id_1 < 0 || dev_id_2 < 0)
  7174. return 0;
  7175. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7176. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7177. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011) &&
  7178. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8706))
  7179. return 0;
  7180. } else {
  7181. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7182. return 0;
  7183. }
  7184. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7185. parent->index, id,
  7186. (type == PHY_TYPE_PMA_PMD ?
  7187. "PMA/PMD" :
  7188. (type == PHY_TYPE_PCS ?
  7189. "PCS" : "MII")),
  7190. phy_port);
  7191. if (p->cur[type] >= NIU_MAX_PORTS) {
  7192. printk(KERN_ERR PFX "Too many PHY ports.\n");
  7193. return -EINVAL;
  7194. }
  7195. idx = p->cur[type];
  7196. p->phy_id[type][idx] = id;
  7197. p->phy_port[type][idx] = phy_port;
  7198. p->cur[type] = idx + 1;
  7199. return 0;
  7200. }
  7201. static int __devinit port_has_10g(struct phy_probe_info *p, int port)
  7202. {
  7203. int i;
  7204. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7205. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7206. return 1;
  7207. }
  7208. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7209. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7210. return 1;
  7211. }
  7212. return 0;
  7213. }
  7214. static int __devinit count_10g_ports(struct phy_probe_info *p, int *lowest)
  7215. {
  7216. int port, cnt;
  7217. cnt = 0;
  7218. *lowest = 32;
  7219. for (port = 8; port < 32; port++) {
  7220. if (port_has_10g(p, port)) {
  7221. if (!cnt)
  7222. *lowest = port;
  7223. cnt++;
  7224. }
  7225. }
  7226. return cnt;
  7227. }
  7228. static int __devinit count_1g_ports(struct phy_probe_info *p, int *lowest)
  7229. {
  7230. *lowest = 32;
  7231. if (p->cur[PHY_TYPE_MII])
  7232. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7233. return p->cur[PHY_TYPE_MII];
  7234. }
  7235. static void __devinit niu_n2_divide_channels(struct niu_parent *parent)
  7236. {
  7237. int num_ports = parent->num_ports;
  7238. int i;
  7239. for (i = 0; i < num_ports; i++) {
  7240. parent->rxchan_per_port[i] = (16 / num_ports);
  7241. parent->txchan_per_port[i] = (16 / num_ports);
  7242. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7243. "[%u TX chans]\n",
  7244. parent->index, i,
  7245. parent->rxchan_per_port[i],
  7246. parent->txchan_per_port[i]);
  7247. }
  7248. }
  7249. static void __devinit niu_divide_channels(struct niu_parent *parent,
  7250. int num_10g, int num_1g)
  7251. {
  7252. int num_ports = parent->num_ports;
  7253. int rx_chans_per_10g, rx_chans_per_1g;
  7254. int tx_chans_per_10g, tx_chans_per_1g;
  7255. int i, tot_rx, tot_tx;
  7256. if (!num_10g || !num_1g) {
  7257. rx_chans_per_10g = rx_chans_per_1g =
  7258. (NIU_NUM_RXCHAN / num_ports);
  7259. tx_chans_per_10g = tx_chans_per_1g =
  7260. (NIU_NUM_TXCHAN / num_ports);
  7261. } else {
  7262. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7263. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7264. (rx_chans_per_1g * num_1g)) /
  7265. num_10g;
  7266. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7267. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7268. (tx_chans_per_1g * num_1g)) /
  7269. num_10g;
  7270. }
  7271. tot_rx = tot_tx = 0;
  7272. for (i = 0; i < num_ports; i++) {
  7273. int type = phy_decode(parent->port_phy, i);
  7274. if (type == PORT_TYPE_10G) {
  7275. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7276. parent->txchan_per_port[i] = tx_chans_per_10g;
  7277. } else {
  7278. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7279. parent->txchan_per_port[i] = tx_chans_per_1g;
  7280. }
  7281. pr_info(PFX "niu%d: Port %u [%u RX chans] "
  7282. "[%u TX chans]\n",
  7283. parent->index, i,
  7284. parent->rxchan_per_port[i],
  7285. parent->txchan_per_port[i]);
  7286. tot_rx += parent->rxchan_per_port[i];
  7287. tot_tx += parent->txchan_per_port[i];
  7288. }
  7289. if (tot_rx > NIU_NUM_RXCHAN) {
  7290. printk(KERN_ERR PFX "niu%d: Too many RX channels (%d), "
  7291. "resetting to one per port.\n",
  7292. parent->index, tot_rx);
  7293. for (i = 0; i < num_ports; i++)
  7294. parent->rxchan_per_port[i] = 1;
  7295. }
  7296. if (tot_tx > NIU_NUM_TXCHAN) {
  7297. printk(KERN_ERR PFX "niu%d: Too many TX channels (%d), "
  7298. "resetting to one per port.\n",
  7299. parent->index, tot_tx);
  7300. for (i = 0; i < num_ports; i++)
  7301. parent->txchan_per_port[i] = 1;
  7302. }
  7303. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7304. printk(KERN_WARNING PFX "niu%d: Driver bug, wasted channels, "
  7305. "RX[%d] TX[%d]\n",
  7306. parent->index, tot_rx, tot_tx);
  7307. }
  7308. }
  7309. static void __devinit niu_divide_rdc_groups(struct niu_parent *parent,
  7310. int num_10g, int num_1g)
  7311. {
  7312. int i, num_ports = parent->num_ports;
  7313. int rdc_group, rdc_groups_per_port;
  7314. int rdc_channel_base;
  7315. rdc_group = 0;
  7316. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7317. rdc_channel_base = 0;
  7318. for (i = 0; i < num_ports; i++) {
  7319. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7320. int grp, num_channels = parent->rxchan_per_port[i];
  7321. int this_channel_offset;
  7322. tp->first_table_num = rdc_group;
  7323. tp->num_tables = rdc_groups_per_port;
  7324. this_channel_offset = 0;
  7325. for (grp = 0; grp < tp->num_tables; grp++) {
  7326. struct rdc_table *rt = &tp->tables[grp];
  7327. int slot;
  7328. pr_info(PFX "niu%d: Port %d RDC tbl(%d) [ ",
  7329. parent->index, i, tp->first_table_num + grp);
  7330. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7331. rt->rxdma_channel[slot] =
  7332. rdc_channel_base + this_channel_offset;
  7333. printk("%d ", rt->rxdma_channel[slot]);
  7334. if (++this_channel_offset == num_channels)
  7335. this_channel_offset = 0;
  7336. }
  7337. printk("]\n");
  7338. }
  7339. parent->rdc_default[i] = rdc_channel_base;
  7340. rdc_channel_base += num_channels;
  7341. rdc_group += rdc_groups_per_port;
  7342. }
  7343. }
  7344. static int __devinit fill_phy_probe_info(struct niu *np,
  7345. struct niu_parent *parent,
  7346. struct phy_probe_info *info)
  7347. {
  7348. unsigned long flags;
  7349. int port, err;
  7350. memset(info, 0, sizeof(*info));
  7351. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7352. niu_lock_parent(np, flags);
  7353. err = 0;
  7354. for (port = 8; port < 32; port++) {
  7355. int dev_id_1, dev_id_2;
  7356. dev_id_1 = mdio_read(np, port,
  7357. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7358. dev_id_2 = mdio_read(np, port,
  7359. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7360. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7361. PHY_TYPE_PMA_PMD);
  7362. if (err)
  7363. break;
  7364. dev_id_1 = mdio_read(np, port,
  7365. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7366. dev_id_2 = mdio_read(np, port,
  7367. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7368. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7369. PHY_TYPE_PCS);
  7370. if (err)
  7371. break;
  7372. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7373. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7374. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7375. PHY_TYPE_MII);
  7376. if (err)
  7377. break;
  7378. }
  7379. niu_unlock_parent(np, flags);
  7380. return err;
  7381. }
  7382. static int __devinit walk_phys(struct niu *np, struct niu_parent *parent)
  7383. {
  7384. struct phy_probe_info *info = &parent->phy_probe_info;
  7385. int lowest_10g, lowest_1g;
  7386. int num_10g, num_1g;
  7387. u32 val;
  7388. int err;
  7389. num_10g = num_1g = 0;
  7390. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7391. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7392. num_10g = 0;
  7393. num_1g = 2;
  7394. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7395. parent->num_ports = 4;
  7396. val = (phy_encode(PORT_TYPE_1G, 0) |
  7397. phy_encode(PORT_TYPE_1G, 1) |
  7398. phy_encode(PORT_TYPE_1G, 2) |
  7399. phy_encode(PORT_TYPE_1G, 3));
  7400. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7401. num_10g = 2;
  7402. num_1g = 0;
  7403. parent->num_ports = 2;
  7404. val = (phy_encode(PORT_TYPE_10G, 0) |
  7405. phy_encode(PORT_TYPE_10G, 1));
  7406. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7407. (parent->plat_type == PLAT_TYPE_NIU)) {
  7408. /* this is the Monza case */
  7409. if (np->flags & NIU_FLAGS_10G) {
  7410. val = (phy_encode(PORT_TYPE_10G, 0) |
  7411. phy_encode(PORT_TYPE_10G, 1));
  7412. } else {
  7413. val = (phy_encode(PORT_TYPE_1G, 0) |
  7414. phy_encode(PORT_TYPE_1G, 1));
  7415. }
  7416. } else {
  7417. err = fill_phy_probe_info(np, parent, info);
  7418. if (err)
  7419. return err;
  7420. num_10g = count_10g_ports(info, &lowest_10g);
  7421. num_1g = count_1g_ports(info, &lowest_1g);
  7422. switch ((num_10g << 4) | num_1g) {
  7423. case 0x24:
  7424. if (lowest_1g == 10)
  7425. parent->plat_type = PLAT_TYPE_VF_P0;
  7426. else if (lowest_1g == 26)
  7427. parent->plat_type = PLAT_TYPE_VF_P1;
  7428. else
  7429. goto unknown_vg_1g_port;
  7430. /* fallthru */
  7431. case 0x22:
  7432. val = (phy_encode(PORT_TYPE_10G, 0) |
  7433. phy_encode(PORT_TYPE_10G, 1) |
  7434. phy_encode(PORT_TYPE_1G, 2) |
  7435. phy_encode(PORT_TYPE_1G, 3));
  7436. break;
  7437. case 0x20:
  7438. val = (phy_encode(PORT_TYPE_10G, 0) |
  7439. phy_encode(PORT_TYPE_10G, 1));
  7440. break;
  7441. case 0x10:
  7442. val = phy_encode(PORT_TYPE_10G, np->port);
  7443. break;
  7444. case 0x14:
  7445. if (lowest_1g == 10)
  7446. parent->plat_type = PLAT_TYPE_VF_P0;
  7447. else if (lowest_1g == 26)
  7448. parent->plat_type = PLAT_TYPE_VF_P1;
  7449. else
  7450. goto unknown_vg_1g_port;
  7451. /* fallthru */
  7452. case 0x13:
  7453. if ((lowest_10g & 0x7) == 0)
  7454. val = (phy_encode(PORT_TYPE_10G, 0) |
  7455. phy_encode(PORT_TYPE_1G, 1) |
  7456. phy_encode(PORT_TYPE_1G, 2) |
  7457. phy_encode(PORT_TYPE_1G, 3));
  7458. else
  7459. val = (phy_encode(PORT_TYPE_1G, 0) |
  7460. phy_encode(PORT_TYPE_10G, 1) |
  7461. phy_encode(PORT_TYPE_1G, 2) |
  7462. phy_encode(PORT_TYPE_1G, 3));
  7463. break;
  7464. case 0x04:
  7465. if (lowest_1g == 10)
  7466. parent->plat_type = PLAT_TYPE_VF_P0;
  7467. else if (lowest_1g == 26)
  7468. parent->plat_type = PLAT_TYPE_VF_P1;
  7469. else
  7470. goto unknown_vg_1g_port;
  7471. val = (phy_encode(PORT_TYPE_1G, 0) |
  7472. phy_encode(PORT_TYPE_1G, 1) |
  7473. phy_encode(PORT_TYPE_1G, 2) |
  7474. phy_encode(PORT_TYPE_1G, 3));
  7475. break;
  7476. default:
  7477. printk(KERN_ERR PFX "Unsupported port config "
  7478. "10G[%d] 1G[%d]\n",
  7479. num_10g, num_1g);
  7480. return -EINVAL;
  7481. }
  7482. }
  7483. parent->port_phy = val;
  7484. if (parent->plat_type == PLAT_TYPE_NIU)
  7485. niu_n2_divide_channels(parent);
  7486. else
  7487. niu_divide_channels(parent, num_10g, num_1g);
  7488. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7489. return 0;
  7490. unknown_vg_1g_port:
  7491. printk(KERN_ERR PFX "Cannot identify platform type, 1gport=%d\n",
  7492. lowest_1g);
  7493. return -EINVAL;
  7494. }
  7495. static int __devinit niu_probe_ports(struct niu *np)
  7496. {
  7497. struct niu_parent *parent = np->parent;
  7498. int err, i;
  7499. niudbg(PROBE, "niu_probe_ports(): port_phy[%08x]\n",
  7500. parent->port_phy);
  7501. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7502. err = walk_phys(np, parent);
  7503. if (err)
  7504. return err;
  7505. niu_set_ldg_timer_res(np, 2);
  7506. for (i = 0; i <= LDN_MAX; i++)
  7507. niu_ldn_irq_enable(np, i, 0);
  7508. }
  7509. if (parent->port_phy == PORT_PHY_INVALID)
  7510. return -EINVAL;
  7511. return 0;
  7512. }
  7513. static int __devinit niu_classifier_swstate_init(struct niu *np)
  7514. {
  7515. struct niu_classifier *cp = &np->clas;
  7516. niudbg(PROBE, "niu_classifier_swstate_init: num_tcam(%d)\n",
  7517. np->parent->tcam_num_entries);
  7518. cp->tcam_top = (u16) np->port;
  7519. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7520. cp->h1_init = 0xffffffff;
  7521. cp->h2_init = 0xffff;
  7522. return fflp_early_init(np);
  7523. }
  7524. static void __devinit niu_link_config_init(struct niu *np)
  7525. {
  7526. struct niu_link_config *lp = &np->link_config;
  7527. lp->advertising = (ADVERTISED_10baseT_Half |
  7528. ADVERTISED_10baseT_Full |
  7529. ADVERTISED_100baseT_Half |
  7530. ADVERTISED_100baseT_Full |
  7531. ADVERTISED_1000baseT_Half |
  7532. ADVERTISED_1000baseT_Full |
  7533. ADVERTISED_10000baseT_Full |
  7534. ADVERTISED_Autoneg);
  7535. lp->speed = lp->active_speed = SPEED_INVALID;
  7536. lp->duplex = DUPLEX_FULL;
  7537. lp->active_duplex = DUPLEX_INVALID;
  7538. lp->autoneg = 1;
  7539. #if 0
  7540. lp->loopback_mode = LOOPBACK_MAC;
  7541. lp->active_speed = SPEED_10000;
  7542. lp->active_duplex = DUPLEX_FULL;
  7543. #else
  7544. lp->loopback_mode = LOOPBACK_DISABLED;
  7545. #endif
  7546. }
  7547. static int __devinit niu_init_mac_ipp_pcs_base(struct niu *np)
  7548. {
  7549. switch (np->port) {
  7550. case 0:
  7551. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7552. np->ipp_off = 0x00000;
  7553. np->pcs_off = 0x04000;
  7554. np->xpcs_off = 0x02000;
  7555. break;
  7556. case 1:
  7557. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7558. np->ipp_off = 0x08000;
  7559. np->pcs_off = 0x0a000;
  7560. np->xpcs_off = 0x08000;
  7561. break;
  7562. case 2:
  7563. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7564. np->ipp_off = 0x04000;
  7565. np->pcs_off = 0x0e000;
  7566. np->xpcs_off = ~0UL;
  7567. break;
  7568. case 3:
  7569. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7570. np->ipp_off = 0x0c000;
  7571. np->pcs_off = 0x12000;
  7572. np->xpcs_off = ~0UL;
  7573. break;
  7574. default:
  7575. dev_err(np->device, PFX "Port %u is invalid, cannot "
  7576. "compute MAC block offset.\n", np->port);
  7577. return -EINVAL;
  7578. }
  7579. return 0;
  7580. }
  7581. static void __devinit niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7582. {
  7583. struct msix_entry msi_vec[NIU_NUM_LDG];
  7584. struct niu_parent *parent = np->parent;
  7585. struct pci_dev *pdev = np->pdev;
  7586. int i, num_irqs, err;
  7587. u8 first_ldg;
  7588. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7589. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7590. ldg_num_map[i] = first_ldg + i;
  7591. num_irqs = (parent->rxchan_per_port[np->port] +
  7592. parent->txchan_per_port[np->port] +
  7593. (np->port == 0 ? 3 : 1));
  7594. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7595. retry:
  7596. for (i = 0; i < num_irqs; i++) {
  7597. msi_vec[i].vector = 0;
  7598. msi_vec[i].entry = i;
  7599. }
  7600. err = pci_enable_msix(pdev, msi_vec, num_irqs);
  7601. if (err < 0) {
  7602. np->flags &= ~NIU_FLAGS_MSIX;
  7603. return;
  7604. }
  7605. if (err > 0) {
  7606. num_irqs = err;
  7607. goto retry;
  7608. }
  7609. np->flags |= NIU_FLAGS_MSIX;
  7610. for (i = 0; i < num_irqs; i++)
  7611. np->ldg[i].irq = msi_vec[i].vector;
  7612. np->num_ldg = num_irqs;
  7613. }
  7614. static int __devinit niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7615. {
  7616. #ifdef CONFIG_SPARC64
  7617. struct of_device *op = np->op;
  7618. const u32 *int_prop;
  7619. int i;
  7620. int_prop = of_get_property(op->node, "interrupts", NULL);
  7621. if (!int_prop)
  7622. return -ENODEV;
  7623. for (i = 0; i < op->num_irqs; i++) {
  7624. ldg_num_map[i] = int_prop[i];
  7625. np->ldg[i].irq = op->irqs[i];
  7626. }
  7627. np->num_ldg = op->num_irqs;
  7628. return 0;
  7629. #else
  7630. return -EINVAL;
  7631. #endif
  7632. }
  7633. static int __devinit niu_ldg_init(struct niu *np)
  7634. {
  7635. struct niu_parent *parent = np->parent;
  7636. u8 ldg_num_map[NIU_NUM_LDG];
  7637. int first_chan, num_chan;
  7638. int i, err, ldg_rotor;
  7639. u8 port;
  7640. np->num_ldg = 1;
  7641. np->ldg[0].irq = np->dev->irq;
  7642. if (parent->plat_type == PLAT_TYPE_NIU) {
  7643. err = niu_n2_irq_init(np, ldg_num_map);
  7644. if (err)
  7645. return err;
  7646. } else
  7647. niu_try_msix(np, ldg_num_map);
  7648. port = np->port;
  7649. for (i = 0; i < np->num_ldg; i++) {
  7650. struct niu_ldg *lp = &np->ldg[i];
  7651. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7652. lp->np = np;
  7653. lp->ldg_num = ldg_num_map[i];
  7654. lp->timer = 2; /* XXX */
  7655. /* On N2 NIU the firmware has setup the SID mappings so they go
  7656. * to the correct values that will route the LDG to the proper
  7657. * interrupt in the NCU interrupt table.
  7658. */
  7659. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7660. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7661. if (err)
  7662. return err;
  7663. }
  7664. }
  7665. /* We adopt the LDG assignment ordering used by the N2 NIU
  7666. * 'interrupt' properties because that simplifies a lot of
  7667. * things. This ordering is:
  7668. *
  7669. * MAC
  7670. * MIF (if port zero)
  7671. * SYSERR (if port zero)
  7672. * RX channels
  7673. * TX channels
  7674. */
  7675. ldg_rotor = 0;
  7676. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7677. LDN_MAC(port));
  7678. if (err)
  7679. return err;
  7680. ldg_rotor++;
  7681. if (ldg_rotor == np->num_ldg)
  7682. ldg_rotor = 0;
  7683. if (port == 0) {
  7684. err = niu_ldg_assign_ldn(np, parent,
  7685. ldg_num_map[ldg_rotor],
  7686. LDN_MIF);
  7687. if (err)
  7688. return err;
  7689. ldg_rotor++;
  7690. if (ldg_rotor == np->num_ldg)
  7691. ldg_rotor = 0;
  7692. err = niu_ldg_assign_ldn(np, parent,
  7693. ldg_num_map[ldg_rotor],
  7694. LDN_DEVICE_ERROR);
  7695. if (err)
  7696. return err;
  7697. ldg_rotor++;
  7698. if (ldg_rotor == np->num_ldg)
  7699. ldg_rotor = 0;
  7700. }
  7701. first_chan = 0;
  7702. for (i = 0; i < port; i++)
  7703. first_chan += parent->rxchan_per_port[port];
  7704. num_chan = parent->rxchan_per_port[port];
  7705. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7706. err = niu_ldg_assign_ldn(np, parent,
  7707. ldg_num_map[ldg_rotor],
  7708. LDN_RXDMA(i));
  7709. if (err)
  7710. return err;
  7711. ldg_rotor++;
  7712. if (ldg_rotor == np->num_ldg)
  7713. ldg_rotor = 0;
  7714. }
  7715. first_chan = 0;
  7716. for (i = 0; i < port; i++)
  7717. first_chan += parent->txchan_per_port[port];
  7718. num_chan = parent->txchan_per_port[port];
  7719. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7720. err = niu_ldg_assign_ldn(np, parent,
  7721. ldg_num_map[ldg_rotor],
  7722. LDN_TXDMA(i));
  7723. if (err)
  7724. return err;
  7725. ldg_rotor++;
  7726. if (ldg_rotor == np->num_ldg)
  7727. ldg_rotor = 0;
  7728. }
  7729. return 0;
  7730. }
  7731. static void __devexit niu_ldg_free(struct niu *np)
  7732. {
  7733. if (np->flags & NIU_FLAGS_MSIX)
  7734. pci_disable_msix(np->pdev);
  7735. }
  7736. static int __devinit niu_get_of_props(struct niu *np)
  7737. {
  7738. #ifdef CONFIG_SPARC64
  7739. struct net_device *dev = np->dev;
  7740. struct device_node *dp;
  7741. const char *phy_type;
  7742. const u8 *mac_addr;
  7743. const char *model;
  7744. int prop_len;
  7745. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7746. dp = np->op->node;
  7747. else
  7748. dp = pci_device_to_OF_node(np->pdev);
  7749. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7750. if (!phy_type) {
  7751. dev_err(np->device, PFX "%s: OF node lacks "
  7752. "phy-type property\n",
  7753. dp->full_name);
  7754. return -EINVAL;
  7755. }
  7756. if (!strcmp(phy_type, "none"))
  7757. return -ENODEV;
  7758. strcpy(np->vpd.phy_type, phy_type);
  7759. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7760. dev_err(np->device, PFX "%s: Illegal phy string [%s].\n",
  7761. dp->full_name, np->vpd.phy_type);
  7762. return -EINVAL;
  7763. }
  7764. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7765. if (!mac_addr) {
  7766. dev_err(np->device, PFX "%s: OF node lacks "
  7767. "local-mac-address property\n",
  7768. dp->full_name);
  7769. return -EINVAL;
  7770. }
  7771. if (prop_len != dev->addr_len) {
  7772. dev_err(np->device, PFX "%s: OF MAC address prop len (%d) "
  7773. "is wrong.\n",
  7774. dp->full_name, prop_len);
  7775. }
  7776. memcpy(dev->perm_addr, mac_addr, dev->addr_len);
  7777. if (!is_valid_ether_addr(&dev->perm_addr[0])) {
  7778. int i;
  7779. dev_err(np->device, PFX "%s: OF MAC address is invalid\n",
  7780. dp->full_name);
  7781. dev_err(np->device, PFX "%s: [ \n",
  7782. dp->full_name);
  7783. for (i = 0; i < 6; i++)
  7784. printk("%02x ", dev->perm_addr[i]);
  7785. printk("]\n");
  7786. return -EINVAL;
  7787. }
  7788. memcpy(dev->dev_addr, dev->perm_addr, dev->addr_len);
  7789. model = of_get_property(dp, "model", &prop_len);
  7790. if (model)
  7791. strcpy(np->vpd.model, model);
  7792. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7793. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7794. NIU_FLAGS_HOTPLUG_PHY);
  7795. }
  7796. return 0;
  7797. #else
  7798. return -EINVAL;
  7799. #endif
  7800. }
  7801. static int __devinit niu_get_invariants(struct niu *np)
  7802. {
  7803. int err, have_props;
  7804. u32 offset;
  7805. err = niu_get_of_props(np);
  7806. if (err == -ENODEV)
  7807. return err;
  7808. have_props = !err;
  7809. err = niu_init_mac_ipp_pcs_base(np);
  7810. if (err)
  7811. return err;
  7812. if (have_props) {
  7813. err = niu_get_and_validate_port(np);
  7814. if (err)
  7815. return err;
  7816. } else {
  7817. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7818. return -EINVAL;
  7819. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7820. offset = niu_pci_vpd_offset(np);
  7821. niudbg(PROBE, "niu_get_invariants: VPD offset [%08x]\n",
  7822. offset);
  7823. if (offset)
  7824. niu_pci_vpd_fetch(np, offset);
  7825. nw64(ESPC_PIO_EN, 0);
  7826. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7827. niu_pci_vpd_validate(np);
  7828. err = niu_get_and_validate_port(np);
  7829. if (err)
  7830. return err;
  7831. }
  7832. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7833. err = niu_get_and_validate_port(np);
  7834. if (err)
  7835. return err;
  7836. err = niu_pci_probe_sprom(np);
  7837. if (err)
  7838. return err;
  7839. }
  7840. }
  7841. err = niu_probe_ports(np);
  7842. if (err)
  7843. return err;
  7844. niu_ldg_init(np);
  7845. niu_classifier_swstate_init(np);
  7846. niu_link_config_init(np);
  7847. err = niu_determine_phy_disposition(np);
  7848. if (!err)
  7849. err = niu_init_link(np);
  7850. return err;
  7851. }
  7852. static LIST_HEAD(niu_parent_list);
  7853. static DEFINE_MUTEX(niu_parent_lock);
  7854. static int niu_parent_index;
  7855. static ssize_t show_port_phy(struct device *dev,
  7856. struct device_attribute *attr, char *buf)
  7857. {
  7858. struct platform_device *plat_dev = to_platform_device(dev);
  7859. struct niu_parent *p = plat_dev->dev.platform_data;
  7860. u32 port_phy = p->port_phy;
  7861. char *orig_buf = buf;
  7862. int i;
  7863. if (port_phy == PORT_PHY_UNKNOWN ||
  7864. port_phy == PORT_PHY_INVALID)
  7865. return 0;
  7866. for (i = 0; i < p->num_ports; i++) {
  7867. const char *type_str;
  7868. int type;
  7869. type = phy_decode(port_phy, i);
  7870. if (type == PORT_TYPE_10G)
  7871. type_str = "10G";
  7872. else
  7873. type_str = "1G";
  7874. buf += sprintf(buf,
  7875. (i == 0) ? "%s" : " %s",
  7876. type_str);
  7877. }
  7878. buf += sprintf(buf, "\n");
  7879. return buf - orig_buf;
  7880. }
  7881. static ssize_t show_plat_type(struct device *dev,
  7882. struct device_attribute *attr, char *buf)
  7883. {
  7884. struct platform_device *plat_dev = to_platform_device(dev);
  7885. struct niu_parent *p = plat_dev->dev.platform_data;
  7886. const char *type_str;
  7887. switch (p->plat_type) {
  7888. case PLAT_TYPE_ATLAS:
  7889. type_str = "atlas";
  7890. break;
  7891. case PLAT_TYPE_NIU:
  7892. type_str = "niu";
  7893. break;
  7894. case PLAT_TYPE_VF_P0:
  7895. type_str = "vf_p0";
  7896. break;
  7897. case PLAT_TYPE_VF_P1:
  7898. type_str = "vf_p1";
  7899. break;
  7900. default:
  7901. type_str = "unknown";
  7902. break;
  7903. }
  7904. return sprintf(buf, "%s\n", type_str);
  7905. }
  7906. static ssize_t __show_chan_per_port(struct device *dev,
  7907. struct device_attribute *attr, char *buf,
  7908. int rx)
  7909. {
  7910. struct platform_device *plat_dev = to_platform_device(dev);
  7911. struct niu_parent *p = plat_dev->dev.platform_data;
  7912. char *orig_buf = buf;
  7913. u8 *arr;
  7914. int i;
  7915. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7916. for (i = 0; i < p->num_ports; i++) {
  7917. buf += sprintf(buf,
  7918. (i == 0) ? "%d" : " %d",
  7919. arr[i]);
  7920. }
  7921. buf += sprintf(buf, "\n");
  7922. return buf - orig_buf;
  7923. }
  7924. static ssize_t show_rxchan_per_port(struct device *dev,
  7925. struct device_attribute *attr, char *buf)
  7926. {
  7927. return __show_chan_per_port(dev, attr, buf, 1);
  7928. }
  7929. static ssize_t show_txchan_per_port(struct device *dev,
  7930. struct device_attribute *attr, char *buf)
  7931. {
  7932. return __show_chan_per_port(dev, attr, buf, 1);
  7933. }
  7934. static ssize_t show_num_ports(struct device *dev,
  7935. struct device_attribute *attr, char *buf)
  7936. {
  7937. struct platform_device *plat_dev = to_platform_device(dev);
  7938. struct niu_parent *p = plat_dev->dev.platform_data;
  7939. return sprintf(buf, "%d\n", p->num_ports);
  7940. }
  7941. static struct device_attribute niu_parent_attributes[] = {
  7942. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7943. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7944. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7945. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7946. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7947. {}
  7948. };
  7949. static struct niu_parent * __devinit niu_new_parent(struct niu *np,
  7950. union niu_parent_id *id,
  7951. u8 ptype)
  7952. {
  7953. struct platform_device *plat_dev;
  7954. struct niu_parent *p;
  7955. int i;
  7956. niudbg(PROBE, "niu_new_parent: Creating new parent.\n");
  7957. plat_dev = platform_device_register_simple("niu", niu_parent_index,
  7958. NULL, 0);
  7959. if (IS_ERR(plat_dev))
  7960. return NULL;
  7961. for (i = 0; attr_name(niu_parent_attributes[i]); i++) {
  7962. int err = device_create_file(&plat_dev->dev,
  7963. &niu_parent_attributes[i]);
  7964. if (err)
  7965. goto fail_unregister;
  7966. }
  7967. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7968. if (!p)
  7969. goto fail_unregister;
  7970. p->index = niu_parent_index++;
  7971. plat_dev->dev.platform_data = p;
  7972. p->plat_dev = plat_dev;
  7973. memcpy(&p->id, id, sizeof(*id));
  7974. p->plat_type = ptype;
  7975. INIT_LIST_HEAD(&p->list);
  7976. atomic_set(&p->refcnt, 0);
  7977. list_add(&p->list, &niu_parent_list);
  7978. spin_lock_init(&p->lock);
  7979. p->rxdma_clock_divider = 7500;
  7980. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7981. if (p->plat_type == PLAT_TYPE_NIU)
  7982. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7983. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7984. int index = i - CLASS_CODE_USER_PROG1;
  7985. p->tcam_key[index] = TCAM_KEY_TSEL;
  7986. p->flow_key[index] = (FLOW_KEY_IPSA |
  7987. FLOW_KEY_IPDA |
  7988. FLOW_KEY_PROTO |
  7989. (FLOW_KEY_L4_BYTE12 <<
  7990. FLOW_KEY_L4_0_SHIFT) |
  7991. (FLOW_KEY_L4_BYTE12 <<
  7992. FLOW_KEY_L4_1_SHIFT));
  7993. }
  7994. for (i = 0; i < LDN_MAX + 1; i++)
  7995. p->ldg_map[i] = LDG_INVALID;
  7996. return p;
  7997. fail_unregister:
  7998. platform_device_unregister(plat_dev);
  7999. return NULL;
  8000. }
  8001. static struct niu_parent * __devinit niu_get_parent(struct niu *np,
  8002. union niu_parent_id *id,
  8003. u8 ptype)
  8004. {
  8005. struct niu_parent *p, *tmp;
  8006. int port = np->port;
  8007. niudbg(PROBE, "niu_get_parent: platform_type[%u] port[%u]\n",
  8008. ptype, port);
  8009. mutex_lock(&niu_parent_lock);
  8010. p = NULL;
  8011. list_for_each_entry(tmp, &niu_parent_list, list) {
  8012. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  8013. p = tmp;
  8014. break;
  8015. }
  8016. }
  8017. if (!p)
  8018. p = niu_new_parent(np, id, ptype);
  8019. if (p) {
  8020. char port_name[6];
  8021. int err;
  8022. sprintf(port_name, "port%d", port);
  8023. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  8024. &np->device->kobj,
  8025. port_name);
  8026. if (!err) {
  8027. p->ports[port] = np;
  8028. atomic_inc(&p->refcnt);
  8029. }
  8030. }
  8031. mutex_unlock(&niu_parent_lock);
  8032. return p;
  8033. }
  8034. static void niu_put_parent(struct niu *np)
  8035. {
  8036. struct niu_parent *p = np->parent;
  8037. u8 port = np->port;
  8038. char port_name[6];
  8039. BUG_ON(!p || p->ports[port] != np);
  8040. niudbg(PROBE, "niu_put_parent: port[%u]\n", port);
  8041. sprintf(port_name, "port%d", port);
  8042. mutex_lock(&niu_parent_lock);
  8043. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  8044. p->ports[port] = NULL;
  8045. np->parent = NULL;
  8046. if (atomic_dec_and_test(&p->refcnt)) {
  8047. list_del(&p->list);
  8048. platform_device_unregister(p->plat_dev);
  8049. }
  8050. mutex_unlock(&niu_parent_lock);
  8051. }
  8052. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  8053. u64 *handle, gfp_t flag)
  8054. {
  8055. dma_addr_t dh;
  8056. void *ret;
  8057. ret = dma_alloc_coherent(dev, size, &dh, flag);
  8058. if (ret)
  8059. *handle = dh;
  8060. return ret;
  8061. }
  8062. static void niu_pci_free_coherent(struct device *dev, size_t size,
  8063. void *cpu_addr, u64 handle)
  8064. {
  8065. dma_free_coherent(dev, size, cpu_addr, handle);
  8066. }
  8067. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  8068. unsigned long offset, size_t size,
  8069. enum dma_data_direction direction)
  8070. {
  8071. return dma_map_page(dev, page, offset, size, direction);
  8072. }
  8073. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  8074. size_t size, enum dma_data_direction direction)
  8075. {
  8076. dma_unmap_page(dev, dma_address, size, direction);
  8077. }
  8078. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  8079. size_t size,
  8080. enum dma_data_direction direction)
  8081. {
  8082. return dma_map_single(dev, cpu_addr, size, direction);
  8083. }
  8084. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  8085. size_t size,
  8086. enum dma_data_direction direction)
  8087. {
  8088. dma_unmap_single(dev, dma_address, size, direction);
  8089. }
  8090. static const struct niu_ops niu_pci_ops = {
  8091. .alloc_coherent = niu_pci_alloc_coherent,
  8092. .free_coherent = niu_pci_free_coherent,
  8093. .map_page = niu_pci_map_page,
  8094. .unmap_page = niu_pci_unmap_page,
  8095. .map_single = niu_pci_map_single,
  8096. .unmap_single = niu_pci_unmap_single,
  8097. };
  8098. static void __devinit niu_driver_version(void)
  8099. {
  8100. static int niu_version_printed;
  8101. if (niu_version_printed++ == 0)
  8102. pr_info("%s", version);
  8103. }
  8104. static struct net_device * __devinit niu_alloc_and_init(
  8105. struct device *gen_dev, struct pci_dev *pdev,
  8106. struct of_device *op, const struct niu_ops *ops,
  8107. u8 port)
  8108. {
  8109. struct net_device *dev;
  8110. struct niu *np;
  8111. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8112. if (!dev) {
  8113. dev_err(gen_dev, PFX "Etherdev alloc failed, aborting.\n");
  8114. return NULL;
  8115. }
  8116. SET_NETDEV_DEV(dev, gen_dev);
  8117. np = netdev_priv(dev);
  8118. np->dev = dev;
  8119. np->pdev = pdev;
  8120. np->op = op;
  8121. np->device = gen_dev;
  8122. np->ops = ops;
  8123. np->msg_enable = niu_debug;
  8124. spin_lock_init(&np->lock);
  8125. INIT_WORK(&np->reset_task, niu_reset_task);
  8126. np->port = port;
  8127. return dev;
  8128. }
  8129. static const struct net_device_ops niu_netdev_ops = {
  8130. .ndo_open = niu_open,
  8131. .ndo_stop = niu_close,
  8132. .ndo_start_xmit = niu_start_xmit,
  8133. .ndo_get_stats = niu_get_stats,
  8134. .ndo_set_multicast_list = niu_set_rx_mode,
  8135. .ndo_validate_addr = eth_validate_addr,
  8136. .ndo_set_mac_address = niu_set_mac_addr,
  8137. .ndo_do_ioctl = niu_ioctl,
  8138. .ndo_tx_timeout = niu_tx_timeout,
  8139. .ndo_change_mtu = niu_change_mtu,
  8140. };
  8141. static void __devinit niu_assign_netdev_ops(struct net_device *dev)
  8142. {
  8143. dev->netdev_ops = &niu_netdev_ops;
  8144. dev->ethtool_ops = &niu_ethtool_ops;
  8145. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8146. }
  8147. static void __devinit niu_device_announce(struct niu *np)
  8148. {
  8149. struct net_device *dev = np->dev;
  8150. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8151. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8152. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8153. dev->name,
  8154. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8155. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8156. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8157. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8158. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8159. np->vpd.phy_type);
  8160. } else {
  8161. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8162. dev->name,
  8163. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8164. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8165. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8166. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8167. "COPPER")),
  8168. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8169. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8170. np->vpd.phy_type);
  8171. }
  8172. }
  8173. static int __devinit niu_pci_init_one(struct pci_dev *pdev,
  8174. const struct pci_device_id *ent)
  8175. {
  8176. union niu_parent_id parent_id;
  8177. struct net_device *dev;
  8178. struct niu *np;
  8179. int err, pos;
  8180. u64 dma_mask;
  8181. u16 val16;
  8182. niu_driver_version();
  8183. err = pci_enable_device(pdev);
  8184. if (err) {
  8185. dev_err(&pdev->dev, PFX "Cannot enable PCI device, "
  8186. "aborting.\n");
  8187. return err;
  8188. }
  8189. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8190. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8191. dev_err(&pdev->dev, PFX "Cannot find proper PCI device "
  8192. "base addresses, aborting.\n");
  8193. err = -ENODEV;
  8194. goto err_out_disable_pdev;
  8195. }
  8196. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8197. if (err) {
  8198. dev_err(&pdev->dev, PFX "Cannot obtain PCI resources, "
  8199. "aborting.\n");
  8200. goto err_out_disable_pdev;
  8201. }
  8202. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  8203. if (pos <= 0) {
  8204. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  8205. "aborting.\n");
  8206. goto err_out_free_res;
  8207. }
  8208. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8209. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8210. if (!dev) {
  8211. err = -ENOMEM;
  8212. goto err_out_free_res;
  8213. }
  8214. np = netdev_priv(dev);
  8215. memset(&parent_id, 0, sizeof(parent_id));
  8216. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8217. parent_id.pci.bus = pdev->bus->number;
  8218. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8219. np->parent = niu_get_parent(np, &parent_id,
  8220. PLAT_TYPE_ATLAS);
  8221. if (!np->parent) {
  8222. err = -ENOMEM;
  8223. goto err_out_free_dev;
  8224. }
  8225. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  8226. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  8227. val16 |= (PCI_EXP_DEVCTL_CERE |
  8228. PCI_EXP_DEVCTL_NFERE |
  8229. PCI_EXP_DEVCTL_FERE |
  8230. PCI_EXP_DEVCTL_URRE |
  8231. PCI_EXP_DEVCTL_RELAX_EN);
  8232. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  8233. dma_mask = DMA_44BIT_MASK;
  8234. err = pci_set_dma_mask(pdev, dma_mask);
  8235. if (!err) {
  8236. dev->features |= NETIF_F_HIGHDMA;
  8237. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8238. if (err) {
  8239. dev_err(&pdev->dev, PFX "Unable to obtain 44 bit "
  8240. "DMA for consistent allocations, "
  8241. "aborting.\n");
  8242. goto err_out_release_parent;
  8243. }
  8244. }
  8245. if (err || dma_mask == DMA_BIT_MASK(32)) {
  8246. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8247. if (err) {
  8248. dev_err(&pdev->dev, PFX "No usable DMA configuration, "
  8249. "aborting.\n");
  8250. goto err_out_release_parent;
  8251. }
  8252. }
  8253. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8254. np->regs = pci_ioremap_bar(pdev, 0);
  8255. if (!np->regs) {
  8256. dev_err(&pdev->dev, PFX "Cannot map device registers, "
  8257. "aborting.\n");
  8258. err = -ENOMEM;
  8259. goto err_out_release_parent;
  8260. }
  8261. pci_set_master(pdev);
  8262. pci_save_state(pdev);
  8263. dev->irq = pdev->irq;
  8264. niu_assign_netdev_ops(dev);
  8265. err = niu_get_invariants(np);
  8266. if (err) {
  8267. if (err != -ENODEV)
  8268. dev_err(&pdev->dev, PFX "Problem fetching invariants "
  8269. "of chip, aborting.\n");
  8270. goto err_out_iounmap;
  8271. }
  8272. err = register_netdev(dev);
  8273. if (err) {
  8274. dev_err(&pdev->dev, PFX "Cannot register net device, "
  8275. "aborting.\n");
  8276. goto err_out_iounmap;
  8277. }
  8278. pci_set_drvdata(pdev, dev);
  8279. niu_device_announce(np);
  8280. return 0;
  8281. err_out_iounmap:
  8282. if (np->regs) {
  8283. iounmap(np->regs);
  8284. np->regs = NULL;
  8285. }
  8286. err_out_release_parent:
  8287. niu_put_parent(np);
  8288. err_out_free_dev:
  8289. free_netdev(dev);
  8290. err_out_free_res:
  8291. pci_release_regions(pdev);
  8292. err_out_disable_pdev:
  8293. pci_disable_device(pdev);
  8294. pci_set_drvdata(pdev, NULL);
  8295. return err;
  8296. }
  8297. static void __devexit niu_pci_remove_one(struct pci_dev *pdev)
  8298. {
  8299. struct net_device *dev = pci_get_drvdata(pdev);
  8300. if (dev) {
  8301. struct niu *np = netdev_priv(dev);
  8302. unregister_netdev(dev);
  8303. if (np->regs) {
  8304. iounmap(np->regs);
  8305. np->regs = NULL;
  8306. }
  8307. niu_ldg_free(np);
  8308. niu_put_parent(np);
  8309. free_netdev(dev);
  8310. pci_release_regions(pdev);
  8311. pci_disable_device(pdev);
  8312. pci_set_drvdata(pdev, NULL);
  8313. }
  8314. }
  8315. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8316. {
  8317. struct net_device *dev = pci_get_drvdata(pdev);
  8318. struct niu *np = netdev_priv(dev);
  8319. unsigned long flags;
  8320. if (!netif_running(dev))
  8321. return 0;
  8322. flush_scheduled_work();
  8323. niu_netif_stop(np);
  8324. del_timer_sync(&np->timer);
  8325. spin_lock_irqsave(&np->lock, flags);
  8326. niu_enable_interrupts(np, 0);
  8327. spin_unlock_irqrestore(&np->lock, flags);
  8328. netif_device_detach(dev);
  8329. spin_lock_irqsave(&np->lock, flags);
  8330. niu_stop_hw(np);
  8331. spin_unlock_irqrestore(&np->lock, flags);
  8332. pci_save_state(pdev);
  8333. return 0;
  8334. }
  8335. static int niu_resume(struct pci_dev *pdev)
  8336. {
  8337. struct net_device *dev = pci_get_drvdata(pdev);
  8338. struct niu *np = netdev_priv(dev);
  8339. unsigned long flags;
  8340. int err;
  8341. if (!netif_running(dev))
  8342. return 0;
  8343. pci_restore_state(pdev);
  8344. netif_device_attach(dev);
  8345. spin_lock_irqsave(&np->lock, flags);
  8346. err = niu_init_hw(np);
  8347. if (!err) {
  8348. np->timer.expires = jiffies + HZ;
  8349. add_timer(&np->timer);
  8350. niu_netif_start(np);
  8351. }
  8352. spin_unlock_irqrestore(&np->lock, flags);
  8353. return err;
  8354. }
  8355. static struct pci_driver niu_pci_driver = {
  8356. .name = DRV_MODULE_NAME,
  8357. .id_table = niu_pci_tbl,
  8358. .probe = niu_pci_init_one,
  8359. .remove = __devexit_p(niu_pci_remove_one),
  8360. .suspend = niu_suspend,
  8361. .resume = niu_resume,
  8362. };
  8363. #ifdef CONFIG_SPARC64
  8364. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8365. u64 *dma_addr, gfp_t flag)
  8366. {
  8367. unsigned long order = get_order(size);
  8368. unsigned long page = __get_free_pages(flag, order);
  8369. if (page == 0UL)
  8370. return NULL;
  8371. memset((char *)page, 0, PAGE_SIZE << order);
  8372. *dma_addr = __pa(page);
  8373. return (void *) page;
  8374. }
  8375. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8376. void *cpu_addr, u64 handle)
  8377. {
  8378. unsigned long order = get_order(size);
  8379. free_pages((unsigned long) cpu_addr, order);
  8380. }
  8381. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8382. unsigned long offset, size_t size,
  8383. enum dma_data_direction direction)
  8384. {
  8385. return page_to_phys(page) + offset;
  8386. }
  8387. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8388. size_t size, enum dma_data_direction direction)
  8389. {
  8390. /* Nothing to do. */
  8391. }
  8392. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8393. size_t size,
  8394. enum dma_data_direction direction)
  8395. {
  8396. return __pa(cpu_addr);
  8397. }
  8398. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8399. size_t size,
  8400. enum dma_data_direction direction)
  8401. {
  8402. /* Nothing to do. */
  8403. }
  8404. static const struct niu_ops niu_phys_ops = {
  8405. .alloc_coherent = niu_phys_alloc_coherent,
  8406. .free_coherent = niu_phys_free_coherent,
  8407. .map_page = niu_phys_map_page,
  8408. .unmap_page = niu_phys_unmap_page,
  8409. .map_single = niu_phys_map_single,
  8410. .unmap_single = niu_phys_unmap_single,
  8411. };
  8412. static int __devinit niu_of_probe(struct of_device *op,
  8413. const struct of_device_id *match)
  8414. {
  8415. union niu_parent_id parent_id;
  8416. struct net_device *dev;
  8417. struct niu *np;
  8418. const u32 *reg;
  8419. int err;
  8420. niu_driver_version();
  8421. reg = of_get_property(op->node, "reg", NULL);
  8422. if (!reg) {
  8423. dev_err(&op->dev, PFX "%s: No 'reg' property, aborting.\n",
  8424. op->node->full_name);
  8425. return -ENODEV;
  8426. }
  8427. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8428. &niu_phys_ops, reg[0] & 0x1);
  8429. if (!dev) {
  8430. err = -ENOMEM;
  8431. goto err_out;
  8432. }
  8433. np = netdev_priv(dev);
  8434. memset(&parent_id, 0, sizeof(parent_id));
  8435. parent_id.of = of_get_parent(op->node);
  8436. np->parent = niu_get_parent(np, &parent_id,
  8437. PLAT_TYPE_NIU);
  8438. if (!np->parent) {
  8439. err = -ENOMEM;
  8440. goto err_out_free_dev;
  8441. }
  8442. dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM);
  8443. np->regs = of_ioremap(&op->resource[1], 0,
  8444. resource_size(&op->resource[1]),
  8445. "niu regs");
  8446. if (!np->regs) {
  8447. dev_err(&op->dev, PFX "Cannot map device registers, "
  8448. "aborting.\n");
  8449. err = -ENOMEM;
  8450. goto err_out_release_parent;
  8451. }
  8452. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8453. resource_size(&op->resource[2]),
  8454. "niu vregs-1");
  8455. if (!np->vir_regs_1) {
  8456. dev_err(&op->dev, PFX "Cannot map device vir registers 1, "
  8457. "aborting.\n");
  8458. err = -ENOMEM;
  8459. goto err_out_iounmap;
  8460. }
  8461. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8462. resource_size(&op->resource[3]),
  8463. "niu vregs-2");
  8464. if (!np->vir_regs_2) {
  8465. dev_err(&op->dev, PFX "Cannot map device vir registers 2, "
  8466. "aborting.\n");
  8467. err = -ENOMEM;
  8468. goto err_out_iounmap;
  8469. }
  8470. niu_assign_netdev_ops(dev);
  8471. err = niu_get_invariants(np);
  8472. if (err) {
  8473. if (err != -ENODEV)
  8474. dev_err(&op->dev, PFX "Problem fetching invariants "
  8475. "of chip, aborting.\n");
  8476. goto err_out_iounmap;
  8477. }
  8478. err = register_netdev(dev);
  8479. if (err) {
  8480. dev_err(&op->dev, PFX "Cannot register net device, "
  8481. "aborting.\n");
  8482. goto err_out_iounmap;
  8483. }
  8484. dev_set_drvdata(&op->dev, dev);
  8485. niu_device_announce(np);
  8486. return 0;
  8487. err_out_iounmap:
  8488. if (np->vir_regs_1) {
  8489. of_iounmap(&op->resource[2], np->vir_regs_1,
  8490. resource_size(&op->resource[2]));
  8491. np->vir_regs_1 = NULL;
  8492. }
  8493. if (np->vir_regs_2) {
  8494. of_iounmap(&op->resource[3], np->vir_regs_2,
  8495. resource_size(&op->resource[3]));
  8496. np->vir_regs_2 = NULL;
  8497. }
  8498. if (np->regs) {
  8499. of_iounmap(&op->resource[1], np->regs,
  8500. resource_size(&op->resource[1]));
  8501. np->regs = NULL;
  8502. }
  8503. err_out_release_parent:
  8504. niu_put_parent(np);
  8505. err_out_free_dev:
  8506. free_netdev(dev);
  8507. err_out:
  8508. return err;
  8509. }
  8510. static int __devexit niu_of_remove(struct of_device *op)
  8511. {
  8512. struct net_device *dev = dev_get_drvdata(&op->dev);
  8513. if (dev) {
  8514. struct niu *np = netdev_priv(dev);
  8515. unregister_netdev(dev);
  8516. if (np->vir_regs_1) {
  8517. of_iounmap(&op->resource[2], np->vir_regs_1,
  8518. resource_size(&op->resource[2]));
  8519. np->vir_regs_1 = NULL;
  8520. }
  8521. if (np->vir_regs_2) {
  8522. of_iounmap(&op->resource[3], np->vir_regs_2,
  8523. resource_size(&op->resource[3]));
  8524. np->vir_regs_2 = NULL;
  8525. }
  8526. if (np->regs) {
  8527. of_iounmap(&op->resource[1], np->regs,
  8528. resource_size(&op->resource[1]));
  8529. np->regs = NULL;
  8530. }
  8531. niu_ldg_free(np);
  8532. niu_put_parent(np);
  8533. free_netdev(dev);
  8534. dev_set_drvdata(&op->dev, NULL);
  8535. }
  8536. return 0;
  8537. }
  8538. static const struct of_device_id niu_match[] = {
  8539. {
  8540. .name = "network",
  8541. .compatible = "SUNW,niusl",
  8542. },
  8543. {},
  8544. };
  8545. MODULE_DEVICE_TABLE(of, niu_match);
  8546. static struct of_platform_driver niu_of_driver = {
  8547. .name = "niu",
  8548. .match_table = niu_match,
  8549. .probe = niu_of_probe,
  8550. .remove = __devexit_p(niu_of_remove),
  8551. };
  8552. #endif /* CONFIG_SPARC64 */
  8553. static int __init niu_init(void)
  8554. {
  8555. int err = 0;
  8556. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8557. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8558. #ifdef CONFIG_SPARC64
  8559. err = of_register_driver(&niu_of_driver, &of_bus_type);
  8560. #endif
  8561. if (!err) {
  8562. err = pci_register_driver(&niu_pci_driver);
  8563. #ifdef CONFIG_SPARC64
  8564. if (err)
  8565. of_unregister_driver(&niu_of_driver);
  8566. #endif
  8567. }
  8568. return err;
  8569. }
  8570. static void __exit niu_exit(void)
  8571. {
  8572. pci_unregister_driver(&niu_pci_driver);
  8573. #ifdef CONFIG_SPARC64
  8574. of_unregister_driver(&niu_of_driver);
  8575. #endif
  8576. }
  8577. module_init(niu_init);
  8578. module_exit(niu_exit);