gianfar.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361
  1. /*
  2. * drivers/net/gianfar.c
  3. *
  4. * Gianfar Ethernet Driver
  5. * This driver is designed for the non-CPM ethernet controllers
  6. * on the 85xx and 83xx family of integrated processors
  7. * Based on 8260_io/fcc_enet.c
  8. *
  9. * Author: Andy Fleming
  10. * Maintainer: Kumar Gala
  11. *
  12. * Copyright (c) 2002-2006 Freescale Semiconductor, Inc.
  13. * Copyright (c) 2007 MontaVista Software, Inc.
  14. *
  15. * This program is free software; you can redistribute it and/or modify it
  16. * under the terms of the GNU General Public License as published by the
  17. * Free Software Foundation; either version 2 of the License, or (at your
  18. * option) any later version.
  19. *
  20. * Gianfar: AKA Lambda Draconis, "Dragon"
  21. * RA 11 31 24.2
  22. * Dec +69 19 52
  23. * V 3.84
  24. * B-V +1.62
  25. *
  26. * Theory of operation
  27. *
  28. * The driver is initialized through of_device. Configuration information
  29. * is therefore conveyed through an OF-style device tree.
  30. *
  31. * The Gianfar Ethernet Controller uses a ring of buffer
  32. * descriptors. The beginning is indicated by a register
  33. * pointing to the physical address of the start of the ring.
  34. * The end is determined by a "wrap" bit being set in the
  35. * last descriptor of the ring.
  36. *
  37. * When a packet is received, the RXF bit in the
  38. * IEVENT register is set, triggering an interrupt when the
  39. * corresponding bit in the IMASK register is also set (if
  40. * interrupt coalescing is active, then the interrupt may not
  41. * happen immediately, but will wait until either a set number
  42. * of frames or amount of time have passed). In NAPI, the
  43. * interrupt handler will signal there is work to be done, and
  44. * exit. This method will start at the last known empty
  45. * descriptor, and process every subsequent descriptor until there
  46. * are none left with data (NAPI will stop after a set number of
  47. * packets to give time to other tasks, but will eventually
  48. * process all the packets). The data arrives inside a
  49. * pre-allocated skb, and so after the skb is passed up to the
  50. * stack, a new skb must be allocated, and the address field in
  51. * the buffer descriptor must be updated to indicate this new
  52. * skb.
  53. *
  54. * When the kernel requests that a packet be transmitted, the
  55. * driver starts where it left off last time, and points the
  56. * descriptor at the buffer which was passed in. The driver
  57. * then informs the DMA engine that there are packets ready to
  58. * be transmitted. Once the controller is finished transmitting
  59. * the packet, an interrupt may be triggered (under the same
  60. * conditions as for reception, but depending on the TXF bit).
  61. * The driver then cleans up the buffer.
  62. */
  63. #include <linux/kernel.h>
  64. #include <linux/string.h>
  65. #include <linux/errno.h>
  66. #include <linux/unistd.h>
  67. #include <linux/slab.h>
  68. #include <linux/interrupt.h>
  69. #include <linux/init.h>
  70. #include <linux/delay.h>
  71. #include <linux/netdevice.h>
  72. #include <linux/etherdevice.h>
  73. #include <linux/skbuff.h>
  74. #include <linux/if_vlan.h>
  75. #include <linux/spinlock.h>
  76. #include <linux/mm.h>
  77. #include <linux/of_mdio.h>
  78. #include <linux/of_platform.h>
  79. #include <linux/ip.h>
  80. #include <linux/tcp.h>
  81. #include <linux/udp.h>
  82. #include <linux/in.h>
  83. #include <asm/io.h>
  84. #include <asm/irq.h>
  85. #include <asm/uaccess.h>
  86. #include <linux/module.h>
  87. #include <linux/dma-mapping.h>
  88. #include <linux/crc32.h>
  89. #include <linux/mii.h>
  90. #include <linux/phy.h>
  91. #include <linux/phy_fixed.h>
  92. #include <linux/of.h>
  93. #include "gianfar.h"
  94. #include "fsl_pq_mdio.h"
  95. #define TX_TIMEOUT (1*HZ)
  96. #undef BRIEF_GFAR_ERRORS
  97. #undef VERBOSE_GFAR_ERRORS
  98. const char gfar_driver_name[] = "Gianfar Ethernet";
  99. const char gfar_driver_version[] = "1.3";
  100. static int gfar_enet_open(struct net_device *dev);
  101. static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
  102. static void gfar_reset_task(struct work_struct *work);
  103. static void gfar_timeout(struct net_device *dev);
  104. static int gfar_close(struct net_device *dev);
  105. struct sk_buff *gfar_new_skb(struct net_device *dev);
  106. static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
  107. struct sk_buff *skb);
  108. static int gfar_set_mac_address(struct net_device *dev);
  109. static int gfar_change_mtu(struct net_device *dev, int new_mtu);
  110. static irqreturn_t gfar_error(int irq, void *dev_id);
  111. static irqreturn_t gfar_transmit(int irq, void *dev_id);
  112. static irqreturn_t gfar_interrupt(int irq, void *dev_id);
  113. static void adjust_link(struct net_device *dev);
  114. static void init_registers(struct net_device *dev);
  115. static int init_phy(struct net_device *dev);
  116. static int gfar_probe(struct of_device *ofdev,
  117. const struct of_device_id *match);
  118. static int gfar_remove(struct of_device *ofdev);
  119. static void free_skb_resources(struct gfar_private *priv);
  120. static void gfar_set_multi(struct net_device *dev);
  121. static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
  122. static void gfar_configure_serdes(struct net_device *dev);
  123. static int gfar_poll(struct napi_struct *napi, int budget);
  124. #ifdef CONFIG_NET_POLL_CONTROLLER
  125. static void gfar_netpoll(struct net_device *dev);
  126. #endif
  127. int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit);
  128. static int gfar_clean_tx_ring(struct net_device *dev);
  129. static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
  130. int amount_pull);
  131. static void gfar_vlan_rx_register(struct net_device *netdev,
  132. struct vlan_group *grp);
  133. void gfar_halt(struct net_device *dev);
  134. static void gfar_halt_nodisable(struct net_device *dev);
  135. void gfar_start(struct net_device *dev);
  136. static void gfar_clear_exact_match(struct net_device *dev);
  137. static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr);
  138. static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
  139. MODULE_AUTHOR("Freescale Semiconductor, Inc");
  140. MODULE_DESCRIPTION("Gianfar Ethernet Driver");
  141. MODULE_LICENSE("GPL");
  142. static const struct net_device_ops gfar_netdev_ops = {
  143. .ndo_open = gfar_enet_open,
  144. .ndo_start_xmit = gfar_start_xmit,
  145. .ndo_stop = gfar_close,
  146. .ndo_change_mtu = gfar_change_mtu,
  147. .ndo_set_multicast_list = gfar_set_multi,
  148. .ndo_tx_timeout = gfar_timeout,
  149. .ndo_do_ioctl = gfar_ioctl,
  150. .ndo_vlan_rx_register = gfar_vlan_rx_register,
  151. .ndo_set_mac_address = eth_mac_addr,
  152. .ndo_validate_addr = eth_validate_addr,
  153. #ifdef CONFIG_NET_POLL_CONTROLLER
  154. .ndo_poll_controller = gfar_netpoll,
  155. #endif
  156. };
  157. /* Returns 1 if incoming frames use an FCB */
  158. static inline int gfar_uses_fcb(struct gfar_private *priv)
  159. {
  160. return priv->vlgrp || priv->rx_csum_enable;
  161. }
  162. static int gfar_of_init(struct net_device *dev)
  163. {
  164. const char *model;
  165. const char *ctype;
  166. const void *mac_addr;
  167. u64 addr, size;
  168. int err = 0;
  169. struct gfar_private *priv = netdev_priv(dev);
  170. struct device_node *np = priv->node;
  171. const u32 *stash;
  172. const u32 *stash_len;
  173. const u32 *stash_idx;
  174. if (!np || !of_device_is_available(np))
  175. return -ENODEV;
  176. /* get a pointer to the register memory */
  177. addr = of_translate_address(np, of_get_address(np, 0, &size, NULL));
  178. priv->regs = ioremap(addr, size);
  179. if (priv->regs == NULL)
  180. return -ENOMEM;
  181. priv->interruptTransmit = irq_of_parse_and_map(np, 0);
  182. model = of_get_property(np, "model", NULL);
  183. /* If we aren't the FEC we have multiple interrupts */
  184. if (model && strcasecmp(model, "FEC")) {
  185. priv->interruptReceive = irq_of_parse_and_map(np, 1);
  186. priv->interruptError = irq_of_parse_and_map(np, 2);
  187. if (priv->interruptTransmit < 0 ||
  188. priv->interruptReceive < 0 ||
  189. priv->interruptError < 0) {
  190. err = -EINVAL;
  191. goto err_out;
  192. }
  193. }
  194. stash = of_get_property(np, "bd-stash", NULL);
  195. if(stash) {
  196. priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
  197. priv->bd_stash_en = 1;
  198. }
  199. stash_len = of_get_property(np, "rx-stash-len", NULL);
  200. if (stash_len)
  201. priv->rx_stash_size = *stash_len;
  202. stash_idx = of_get_property(np, "rx-stash-idx", NULL);
  203. if (stash_idx)
  204. priv->rx_stash_index = *stash_idx;
  205. if (stash_len || stash_idx)
  206. priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
  207. mac_addr = of_get_mac_address(np);
  208. if (mac_addr)
  209. memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
  210. if (model && !strcasecmp(model, "TSEC"))
  211. priv->device_flags =
  212. FSL_GIANFAR_DEV_HAS_GIGABIT |
  213. FSL_GIANFAR_DEV_HAS_COALESCE |
  214. FSL_GIANFAR_DEV_HAS_RMON |
  215. FSL_GIANFAR_DEV_HAS_MULTI_INTR;
  216. if (model && !strcasecmp(model, "eTSEC"))
  217. priv->device_flags =
  218. FSL_GIANFAR_DEV_HAS_GIGABIT |
  219. FSL_GIANFAR_DEV_HAS_COALESCE |
  220. FSL_GIANFAR_DEV_HAS_RMON |
  221. FSL_GIANFAR_DEV_HAS_MULTI_INTR |
  222. FSL_GIANFAR_DEV_HAS_PADDING |
  223. FSL_GIANFAR_DEV_HAS_CSUM |
  224. FSL_GIANFAR_DEV_HAS_VLAN |
  225. FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
  226. FSL_GIANFAR_DEV_HAS_EXTENDED_HASH;
  227. ctype = of_get_property(np, "phy-connection-type", NULL);
  228. /* We only care about rgmii-id. The rest are autodetected */
  229. if (ctype && !strcmp(ctype, "rgmii-id"))
  230. priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
  231. else
  232. priv->interface = PHY_INTERFACE_MODE_MII;
  233. if (of_get_property(np, "fsl,magic-packet", NULL))
  234. priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
  235. priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
  236. /* Find the TBI PHY. If it's not there, we don't support SGMII */
  237. priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
  238. return 0;
  239. err_out:
  240. iounmap(priv->regs);
  241. return err;
  242. }
  243. /* Ioctl MII Interface */
  244. static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  245. {
  246. struct gfar_private *priv = netdev_priv(dev);
  247. if (!netif_running(dev))
  248. return -EINVAL;
  249. if (!priv->phydev)
  250. return -ENODEV;
  251. return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
  252. }
  253. /* Set up the ethernet device structure, private data,
  254. * and anything else we need before we start */
  255. static int gfar_probe(struct of_device *ofdev,
  256. const struct of_device_id *match)
  257. {
  258. u32 tempval;
  259. struct net_device *dev = NULL;
  260. struct gfar_private *priv = NULL;
  261. int err = 0;
  262. int len_devname;
  263. /* Create an ethernet device instance */
  264. dev = alloc_etherdev(sizeof (*priv));
  265. if (NULL == dev)
  266. return -ENOMEM;
  267. priv = netdev_priv(dev);
  268. priv->ndev = dev;
  269. priv->ofdev = ofdev;
  270. priv->node = ofdev->node;
  271. SET_NETDEV_DEV(dev, &ofdev->dev);
  272. err = gfar_of_init(dev);
  273. if (err)
  274. goto regs_fail;
  275. spin_lock_init(&priv->txlock);
  276. spin_lock_init(&priv->rxlock);
  277. spin_lock_init(&priv->bflock);
  278. INIT_WORK(&priv->reset_task, gfar_reset_task);
  279. dev_set_drvdata(&ofdev->dev, priv);
  280. /* Stop the DMA engine now, in case it was running before */
  281. /* (The firmware could have used it, and left it running). */
  282. gfar_halt(dev);
  283. /* Reset MAC layer */
  284. gfar_write(&priv->regs->maccfg1, MACCFG1_SOFT_RESET);
  285. /* We need to delay at least 3 TX clocks */
  286. udelay(2);
  287. tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
  288. gfar_write(&priv->regs->maccfg1, tempval);
  289. /* Initialize MACCFG2. */
  290. gfar_write(&priv->regs->maccfg2, MACCFG2_INIT_SETTINGS);
  291. /* Initialize ECNTRL */
  292. gfar_write(&priv->regs->ecntrl, ECNTRL_INIT_SETTINGS);
  293. /* Set the dev->base_addr to the gfar reg region */
  294. dev->base_addr = (unsigned long) (priv->regs);
  295. SET_NETDEV_DEV(dev, &ofdev->dev);
  296. /* Fill in the dev structure */
  297. dev->watchdog_timeo = TX_TIMEOUT;
  298. netif_napi_add(dev, &priv->napi, gfar_poll, GFAR_DEV_WEIGHT);
  299. dev->mtu = 1500;
  300. dev->netdev_ops = &gfar_netdev_ops;
  301. dev->ethtool_ops = &gfar_ethtool_ops;
  302. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
  303. priv->rx_csum_enable = 1;
  304. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA;
  305. } else
  306. priv->rx_csum_enable = 0;
  307. priv->vlgrp = NULL;
  308. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
  309. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  310. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
  311. priv->extended_hash = 1;
  312. priv->hash_width = 9;
  313. priv->hash_regs[0] = &priv->regs->igaddr0;
  314. priv->hash_regs[1] = &priv->regs->igaddr1;
  315. priv->hash_regs[2] = &priv->regs->igaddr2;
  316. priv->hash_regs[3] = &priv->regs->igaddr3;
  317. priv->hash_regs[4] = &priv->regs->igaddr4;
  318. priv->hash_regs[5] = &priv->regs->igaddr5;
  319. priv->hash_regs[6] = &priv->regs->igaddr6;
  320. priv->hash_regs[7] = &priv->regs->igaddr7;
  321. priv->hash_regs[8] = &priv->regs->gaddr0;
  322. priv->hash_regs[9] = &priv->regs->gaddr1;
  323. priv->hash_regs[10] = &priv->regs->gaddr2;
  324. priv->hash_regs[11] = &priv->regs->gaddr3;
  325. priv->hash_regs[12] = &priv->regs->gaddr4;
  326. priv->hash_regs[13] = &priv->regs->gaddr5;
  327. priv->hash_regs[14] = &priv->regs->gaddr6;
  328. priv->hash_regs[15] = &priv->regs->gaddr7;
  329. } else {
  330. priv->extended_hash = 0;
  331. priv->hash_width = 8;
  332. priv->hash_regs[0] = &priv->regs->gaddr0;
  333. priv->hash_regs[1] = &priv->regs->gaddr1;
  334. priv->hash_regs[2] = &priv->regs->gaddr2;
  335. priv->hash_regs[3] = &priv->regs->gaddr3;
  336. priv->hash_regs[4] = &priv->regs->gaddr4;
  337. priv->hash_regs[5] = &priv->regs->gaddr5;
  338. priv->hash_regs[6] = &priv->regs->gaddr6;
  339. priv->hash_regs[7] = &priv->regs->gaddr7;
  340. }
  341. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
  342. priv->padding = DEFAULT_PADDING;
  343. else
  344. priv->padding = 0;
  345. if (dev->features & NETIF_F_IP_CSUM)
  346. dev->hard_header_len += GMAC_FCB_LEN;
  347. priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
  348. priv->tx_ring_size = DEFAULT_TX_RING_SIZE;
  349. priv->rx_ring_size = DEFAULT_RX_RING_SIZE;
  350. priv->num_txbdfree = DEFAULT_TX_RING_SIZE;
  351. priv->txcoalescing = DEFAULT_TX_COALESCE;
  352. priv->txic = DEFAULT_TXIC;
  353. priv->rxcoalescing = DEFAULT_RX_COALESCE;
  354. priv->rxic = DEFAULT_RXIC;
  355. /* Enable most messages by default */
  356. priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
  357. /* Carrier starts down, phylib will bring it up */
  358. netif_carrier_off(dev);
  359. err = register_netdev(dev);
  360. if (err) {
  361. printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
  362. dev->name);
  363. goto register_fail;
  364. }
  365. device_init_wakeup(&dev->dev,
  366. priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
  367. /* fill out IRQ number and name fields */
  368. len_devname = strlen(dev->name);
  369. strncpy(&priv->int_name_tx[0], dev->name, len_devname);
  370. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
  371. strncpy(&priv->int_name_tx[len_devname],
  372. "_tx", sizeof("_tx") + 1);
  373. strncpy(&priv->int_name_rx[0], dev->name, len_devname);
  374. strncpy(&priv->int_name_rx[len_devname],
  375. "_rx", sizeof("_rx") + 1);
  376. strncpy(&priv->int_name_er[0], dev->name, len_devname);
  377. strncpy(&priv->int_name_er[len_devname],
  378. "_er", sizeof("_er") + 1);
  379. } else
  380. priv->int_name_tx[len_devname] = '\0';
  381. /* Create all the sysfs files */
  382. gfar_init_sysfs(dev);
  383. /* Print out the device info */
  384. printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
  385. /* Even more device info helps when determining which kernel */
  386. /* provided which set of benchmarks. */
  387. printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
  388. printk(KERN_INFO "%s: %d/%d RX/TX BD ring size\n",
  389. dev->name, priv->rx_ring_size, priv->tx_ring_size);
  390. return 0;
  391. register_fail:
  392. iounmap(priv->regs);
  393. regs_fail:
  394. if (priv->phy_node)
  395. of_node_put(priv->phy_node);
  396. if (priv->tbi_node)
  397. of_node_put(priv->tbi_node);
  398. free_netdev(dev);
  399. return err;
  400. }
  401. static int gfar_remove(struct of_device *ofdev)
  402. {
  403. struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
  404. if (priv->phy_node)
  405. of_node_put(priv->phy_node);
  406. if (priv->tbi_node)
  407. of_node_put(priv->tbi_node);
  408. dev_set_drvdata(&ofdev->dev, NULL);
  409. unregister_netdev(priv->ndev);
  410. iounmap(priv->regs);
  411. free_netdev(priv->ndev);
  412. return 0;
  413. }
  414. #ifdef CONFIG_PM
  415. static int gfar_suspend(struct of_device *ofdev, pm_message_t state)
  416. {
  417. struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
  418. struct net_device *dev = priv->ndev;
  419. unsigned long flags;
  420. u32 tempval;
  421. int magic_packet = priv->wol_en &&
  422. (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
  423. netif_device_detach(dev);
  424. if (netif_running(dev)) {
  425. spin_lock_irqsave(&priv->txlock, flags);
  426. spin_lock(&priv->rxlock);
  427. gfar_halt_nodisable(dev);
  428. /* Disable Tx, and Rx if wake-on-LAN is disabled. */
  429. tempval = gfar_read(&priv->regs->maccfg1);
  430. tempval &= ~MACCFG1_TX_EN;
  431. if (!magic_packet)
  432. tempval &= ~MACCFG1_RX_EN;
  433. gfar_write(&priv->regs->maccfg1, tempval);
  434. spin_unlock(&priv->rxlock);
  435. spin_unlock_irqrestore(&priv->txlock, flags);
  436. napi_disable(&priv->napi);
  437. if (magic_packet) {
  438. /* Enable interrupt on Magic Packet */
  439. gfar_write(&priv->regs->imask, IMASK_MAG);
  440. /* Enable Magic Packet mode */
  441. tempval = gfar_read(&priv->regs->maccfg2);
  442. tempval |= MACCFG2_MPEN;
  443. gfar_write(&priv->regs->maccfg2, tempval);
  444. } else {
  445. phy_stop(priv->phydev);
  446. }
  447. }
  448. return 0;
  449. }
  450. static int gfar_resume(struct of_device *ofdev)
  451. {
  452. struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
  453. struct net_device *dev = priv->ndev;
  454. unsigned long flags;
  455. u32 tempval;
  456. int magic_packet = priv->wol_en &&
  457. (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
  458. if (!netif_running(dev)) {
  459. netif_device_attach(dev);
  460. return 0;
  461. }
  462. if (!magic_packet && priv->phydev)
  463. phy_start(priv->phydev);
  464. /* Disable Magic Packet mode, in case something
  465. * else woke us up.
  466. */
  467. spin_lock_irqsave(&priv->txlock, flags);
  468. spin_lock(&priv->rxlock);
  469. tempval = gfar_read(&priv->regs->maccfg2);
  470. tempval &= ~MACCFG2_MPEN;
  471. gfar_write(&priv->regs->maccfg2, tempval);
  472. gfar_start(dev);
  473. spin_unlock(&priv->rxlock);
  474. spin_unlock_irqrestore(&priv->txlock, flags);
  475. netif_device_attach(dev);
  476. napi_enable(&priv->napi);
  477. return 0;
  478. }
  479. #else
  480. #define gfar_suspend NULL
  481. #define gfar_resume NULL
  482. #endif
  483. /* Reads the controller's registers to determine what interface
  484. * connects it to the PHY.
  485. */
  486. static phy_interface_t gfar_get_interface(struct net_device *dev)
  487. {
  488. struct gfar_private *priv = netdev_priv(dev);
  489. u32 ecntrl = gfar_read(&priv->regs->ecntrl);
  490. if (ecntrl & ECNTRL_SGMII_MODE)
  491. return PHY_INTERFACE_MODE_SGMII;
  492. if (ecntrl & ECNTRL_TBI_MODE) {
  493. if (ecntrl & ECNTRL_REDUCED_MODE)
  494. return PHY_INTERFACE_MODE_RTBI;
  495. else
  496. return PHY_INTERFACE_MODE_TBI;
  497. }
  498. if (ecntrl & ECNTRL_REDUCED_MODE) {
  499. if (ecntrl & ECNTRL_REDUCED_MII_MODE)
  500. return PHY_INTERFACE_MODE_RMII;
  501. else {
  502. phy_interface_t interface = priv->interface;
  503. /*
  504. * This isn't autodetected right now, so it must
  505. * be set by the device tree or platform code.
  506. */
  507. if (interface == PHY_INTERFACE_MODE_RGMII_ID)
  508. return PHY_INTERFACE_MODE_RGMII_ID;
  509. return PHY_INTERFACE_MODE_RGMII;
  510. }
  511. }
  512. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
  513. return PHY_INTERFACE_MODE_GMII;
  514. return PHY_INTERFACE_MODE_MII;
  515. }
  516. /* Initializes driver's PHY state, and attaches to the PHY.
  517. * Returns 0 on success.
  518. */
  519. static int init_phy(struct net_device *dev)
  520. {
  521. struct gfar_private *priv = netdev_priv(dev);
  522. uint gigabit_support =
  523. priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
  524. SUPPORTED_1000baseT_Full : 0;
  525. phy_interface_t interface;
  526. priv->oldlink = 0;
  527. priv->oldspeed = 0;
  528. priv->oldduplex = -1;
  529. interface = gfar_get_interface(dev);
  530. priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
  531. interface);
  532. if (!priv->phydev)
  533. priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
  534. interface);
  535. if (!priv->phydev) {
  536. dev_err(&dev->dev, "could not attach to PHY\n");
  537. return -ENODEV;
  538. }
  539. if (interface == PHY_INTERFACE_MODE_SGMII)
  540. gfar_configure_serdes(dev);
  541. /* Remove any features not supported by the controller */
  542. priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
  543. priv->phydev->advertising = priv->phydev->supported;
  544. return 0;
  545. }
  546. /*
  547. * Initialize TBI PHY interface for communicating with the
  548. * SERDES lynx PHY on the chip. We communicate with this PHY
  549. * through the MDIO bus on each controller, treating it as a
  550. * "normal" PHY at the address found in the TBIPA register. We assume
  551. * that the TBIPA register is valid. Either the MDIO bus code will set
  552. * it to a value that doesn't conflict with other PHYs on the bus, or the
  553. * value doesn't matter, as there are no other PHYs on the bus.
  554. */
  555. static void gfar_configure_serdes(struct net_device *dev)
  556. {
  557. struct gfar_private *priv = netdev_priv(dev);
  558. struct phy_device *tbiphy;
  559. if (!priv->tbi_node) {
  560. dev_warn(&dev->dev, "error: SGMII mode requires that the "
  561. "device tree specify a tbi-handle\n");
  562. return;
  563. }
  564. tbiphy = of_phy_find_device(priv->tbi_node);
  565. if (!tbiphy) {
  566. dev_err(&dev->dev, "error: Could not get TBI device\n");
  567. return;
  568. }
  569. /*
  570. * If the link is already up, we must already be ok, and don't need to
  571. * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
  572. * everything for us? Resetting it takes the link down and requires
  573. * several seconds for it to come back.
  574. */
  575. if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
  576. return;
  577. /* Single clk mode, mii mode off(for serdes communication) */
  578. phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
  579. phy_write(tbiphy, MII_ADVERTISE,
  580. ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
  581. ADVERTISE_1000XPSE_ASYM);
  582. phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
  583. BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
  584. }
  585. static void init_registers(struct net_device *dev)
  586. {
  587. struct gfar_private *priv = netdev_priv(dev);
  588. /* Clear IEVENT */
  589. gfar_write(&priv->regs->ievent, IEVENT_INIT_CLEAR);
  590. /* Initialize IMASK */
  591. gfar_write(&priv->regs->imask, IMASK_INIT_CLEAR);
  592. /* Init hash registers to zero */
  593. gfar_write(&priv->regs->igaddr0, 0);
  594. gfar_write(&priv->regs->igaddr1, 0);
  595. gfar_write(&priv->regs->igaddr2, 0);
  596. gfar_write(&priv->regs->igaddr3, 0);
  597. gfar_write(&priv->regs->igaddr4, 0);
  598. gfar_write(&priv->regs->igaddr5, 0);
  599. gfar_write(&priv->regs->igaddr6, 0);
  600. gfar_write(&priv->regs->igaddr7, 0);
  601. gfar_write(&priv->regs->gaddr0, 0);
  602. gfar_write(&priv->regs->gaddr1, 0);
  603. gfar_write(&priv->regs->gaddr2, 0);
  604. gfar_write(&priv->regs->gaddr3, 0);
  605. gfar_write(&priv->regs->gaddr4, 0);
  606. gfar_write(&priv->regs->gaddr5, 0);
  607. gfar_write(&priv->regs->gaddr6, 0);
  608. gfar_write(&priv->regs->gaddr7, 0);
  609. /* Zero out the rmon mib registers if it has them */
  610. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
  611. memset_io(&(priv->regs->rmon), 0, sizeof (struct rmon_mib));
  612. /* Mask off the CAM interrupts */
  613. gfar_write(&priv->regs->rmon.cam1, 0xffffffff);
  614. gfar_write(&priv->regs->rmon.cam2, 0xffffffff);
  615. }
  616. /* Initialize the max receive buffer length */
  617. gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
  618. /* Initialize the Minimum Frame Length Register */
  619. gfar_write(&priv->regs->minflr, MINFLR_INIT_SETTINGS);
  620. }
  621. /* Halt the receive and transmit queues */
  622. static void gfar_halt_nodisable(struct net_device *dev)
  623. {
  624. struct gfar_private *priv = netdev_priv(dev);
  625. struct gfar __iomem *regs = priv->regs;
  626. u32 tempval;
  627. /* Mask all interrupts */
  628. gfar_write(&regs->imask, IMASK_INIT_CLEAR);
  629. /* Clear all interrupts */
  630. gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
  631. /* Stop the DMA, and wait for it to stop */
  632. tempval = gfar_read(&priv->regs->dmactrl);
  633. if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
  634. != (DMACTRL_GRS | DMACTRL_GTS)) {
  635. tempval |= (DMACTRL_GRS | DMACTRL_GTS);
  636. gfar_write(&priv->regs->dmactrl, tempval);
  637. while (!(gfar_read(&priv->regs->ievent) &
  638. (IEVENT_GRSC | IEVENT_GTSC)))
  639. cpu_relax();
  640. }
  641. }
  642. /* Halt the receive and transmit queues */
  643. void gfar_halt(struct net_device *dev)
  644. {
  645. struct gfar_private *priv = netdev_priv(dev);
  646. struct gfar __iomem *regs = priv->regs;
  647. u32 tempval;
  648. gfar_halt_nodisable(dev);
  649. /* Disable Rx and Tx */
  650. tempval = gfar_read(&regs->maccfg1);
  651. tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
  652. gfar_write(&regs->maccfg1, tempval);
  653. }
  654. void stop_gfar(struct net_device *dev)
  655. {
  656. struct gfar_private *priv = netdev_priv(dev);
  657. struct gfar __iomem *regs = priv->regs;
  658. unsigned long flags;
  659. phy_stop(priv->phydev);
  660. /* Lock it down */
  661. spin_lock_irqsave(&priv->txlock, flags);
  662. spin_lock(&priv->rxlock);
  663. gfar_halt(dev);
  664. spin_unlock(&priv->rxlock);
  665. spin_unlock_irqrestore(&priv->txlock, flags);
  666. /* Free the IRQs */
  667. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
  668. free_irq(priv->interruptError, dev);
  669. free_irq(priv->interruptTransmit, dev);
  670. free_irq(priv->interruptReceive, dev);
  671. } else {
  672. free_irq(priv->interruptTransmit, dev);
  673. }
  674. free_skb_resources(priv);
  675. dma_free_coherent(&priv->ofdev->dev,
  676. sizeof(struct txbd8)*priv->tx_ring_size
  677. + sizeof(struct rxbd8)*priv->rx_ring_size,
  678. priv->tx_bd_base,
  679. gfar_read(&regs->tbase0));
  680. }
  681. /* If there are any tx skbs or rx skbs still around, free them.
  682. * Then free tx_skbuff and rx_skbuff */
  683. static void free_skb_resources(struct gfar_private *priv)
  684. {
  685. struct rxbd8 *rxbdp;
  686. struct txbd8 *txbdp;
  687. int i, j;
  688. /* Go through all the buffer descriptors and free their data buffers */
  689. txbdp = priv->tx_bd_base;
  690. for (i = 0; i < priv->tx_ring_size; i++) {
  691. if (!priv->tx_skbuff[i])
  692. continue;
  693. dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
  694. txbdp->length, DMA_TO_DEVICE);
  695. txbdp->lstatus = 0;
  696. for (j = 0; j < skb_shinfo(priv->tx_skbuff[i])->nr_frags; j++) {
  697. txbdp++;
  698. dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
  699. txbdp->length, DMA_TO_DEVICE);
  700. }
  701. txbdp++;
  702. dev_kfree_skb_any(priv->tx_skbuff[i]);
  703. priv->tx_skbuff[i] = NULL;
  704. }
  705. kfree(priv->tx_skbuff);
  706. rxbdp = priv->rx_bd_base;
  707. /* rx_skbuff is not guaranteed to be allocated, so only
  708. * free it and its contents if it is allocated */
  709. if(priv->rx_skbuff != NULL) {
  710. for (i = 0; i < priv->rx_ring_size; i++) {
  711. if (priv->rx_skbuff[i]) {
  712. dma_unmap_single(&priv->ofdev->dev, rxbdp->bufPtr,
  713. priv->rx_buffer_size,
  714. DMA_FROM_DEVICE);
  715. dev_kfree_skb_any(priv->rx_skbuff[i]);
  716. priv->rx_skbuff[i] = NULL;
  717. }
  718. rxbdp->lstatus = 0;
  719. rxbdp->bufPtr = 0;
  720. rxbdp++;
  721. }
  722. kfree(priv->rx_skbuff);
  723. }
  724. }
  725. void gfar_start(struct net_device *dev)
  726. {
  727. struct gfar_private *priv = netdev_priv(dev);
  728. struct gfar __iomem *regs = priv->regs;
  729. u32 tempval;
  730. /* Enable Rx and Tx in MACCFG1 */
  731. tempval = gfar_read(&regs->maccfg1);
  732. tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
  733. gfar_write(&regs->maccfg1, tempval);
  734. /* Initialize DMACTRL to have WWR and WOP */
  735. tempval = gfar_read(&priv->regs->dmactrl);
  736. tempval |= DMACTRL_INIT_SETTINGS;
  737. gfar_write(&priv->regs->dmactrl, tempval);
  738. /* Make sure we aren't stopped */
  739. tempval = gfar_read(&priv->regs->dmactrl);
  740. tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
  741. gfar_write(&priv->regs->dmactrl, tempval);
  742. /* Clear THLT/RHLT, so that the DMA starts polling now */
  743. gfar_write(&regs->tstat, TSTAT_CLEAR_THALT);
  744. gfar_write(&regs->rstat, RSTAT_CLEAR_RHALT);
  745. /* Unmask the interrupts we look for */
  746. gfar_write(&regs->imask, IMASK_DEFAULT);
  747. dev->trans_start = jiffies;
  748. }
  749. /* Bring the controller up and running */
  750. int startup_gfar(struct net_device *dev)
  751. {
  752. struct txbd8 *txbdp;
  753. struct rxbd8 *rxbdp;
  754. dma_addr_t addr = 0;
  755. unsigned long vaddr;
  756. int i;
  757. struct gfar_private *priv = netdev_priv(dev);
  758. struct gfar __iomem *regs = priv->regs;
  759. int err = 0;
  760. u32 rctrl = 0;
  761. u32 tctrl = 0;
  762. u32 attrs = 0;
  763. gfar_write(&regs->imask, IMASK_INIT_CLEAR);
  764. /* Allocate memory for the buffer descriptors */
  765. vaddr = (unsigned long) dma_alloc_coherent(&priv->ofdev->dev,
  766. sizeof (struct txbd8) * priv->tx_ring_size +
  767. sizeof (struct rxbd8) * priv->rx_ring_size,
  768. &addr, GFP_KERNEL);
  769. if (vaddr == 0) {
  770. if (netif_msg_ifup(priv))
  771. printk(KERN_ERR "%s: Could not allocate buffer descriptors!\n",
  772. dev->name);
  773. return -ENOMEM;
  774. }
  775. priv->tx_bd_base = (struct txbd8 *) vaddr;
  776. /* enet DMA only understands physical addresses */
  777. gfar_write(&regs->tbase0, addr);
  778. /* Start the rx descriptor ring where the tx ring leaves off */
  779. addr = addr + sizeof (struct txbd8) * priv->tx_ring_size;
  780. vaddr = vaddr + sizeof (struct txbd8) * priv->tx_ring_size;
  781. priv->rx_bd_base = (struct rxbd8 *) vaddr;
  782. gfar_write(&regs->rbase0, addr);
  783. /* Setup the skbuff rings */
  784. priv->tx_skbuff =
  785. (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
  786. priv->tx_ring_size, GFP_KERNEL);
  787. if (NULL == priv->tx_skbuff) {
  788. if (netif_msg_ifup(priv))
  789. printk(KERN_ERR "%s: Could not allocate tx_skbuff\n",
  790. dev->name);
  791. err = -ENOMEM;
  792. goto tx_skb_fail;
  793. }
  794. for (i = 0; i < priv->tx_ring_size; i++)
  795. priv->tx_skbuff[i] = NULL;
  796. priv->rx_skbuff =
  797. (struct sk_buff **) kmalloc(sizeof (struct sk_buff *) *
  798. priv->rx_ring_size, GFP_KERNEL);
  799. if (NULL == priv->rx_skbuff) {
  800. if (netif_msg_ifup(priv))
  801. printk(KERN_ERR "%s: Could not allocate rx_skbuff\n",
  802. dev->name);
  803. err = -ENOMEM;
  804. goto rx_skb_fail;
  805. }
  806. for (i = 0; i < priv->rx_ring_size; i++)
  807. priv->rx_skbuff[i] = NULL;
  808. /* Initialize some variables in our dev structure */
  809. priv->num_txbdfree = priv->tx_ring_size;
  810. priv->dirty_tx = priv->cur_tx = priv->tx_bd_base;
  811. priv->cur_rx = priv->rx_bd_base;
  812. priv->skb_curtx = priv->skb_dirtytx = 0;
  813. priv->skb_currx = 0;
  814. /* Initialize Transmit Descriptor Ring */
  815. txbdp = priv->tx_bd_base;
  816. for (i = 0; i < priv->tx_ring_size; i++) {
  817. txbdp->lstatus = 0;
  818. txbdp->bufPtr = 0;
  819. txbdp++;
  820. }
  821. /* Set the last descriptor in the ring to indicate wrap */
  822. txbdp--;
  823. txbdp->status |= TXBD_WRAP;
  824. rxbdp = priv->rx_bd_base;
  825. for (i = 0; i < priv->rx_ring_size; i++) {
  826. struct sk_buff *skb;
  827. skb = gfar_new_skb(dev);
  828. if (!skb) {
  829. printk(KERN_ERR "%s: Can't allocate RX buffers\n",
  830. dev->name);
  831. goto err_rxalloc_fail;
  832. }
  833. priv->rx_skbuff[i] = skb;
  834. gfar_new_rxbdp(dev, rxbdp, skb);
  835. rxbdp++;
  836. }
  837. /* Set the last descriptor in the ring to wrap */
  838. rxbdp--;
  839. rxbdp->status |= RXBD_WRAP;
  840. /* If the device has multiple interrupts, register for
  841. * them. Otherwise, only register for the one */
  842. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
  843. /* Install our interrupt handlers for Error,
  844. * Transmit, and Receive */
  845. if (request_irq(priv->interruptError, gfar_error,
  846. 0, priv->int_name_er, dev) < 0) {
  847. if (netif_msg_intr(priv))
  848. printk(KERN_ERR "%s: Can't get IRQ %d\n",
  849. dev->name, priv->interruptError);
  850. err = -1;
  851. goto err_irq_fail;
  852. }
  853. if (request_irq(priv->interruptTransmit, gfar_transmit,
  854. 0, priv->int_name_tx, dev) < 0) {
  855. if (netif_msg_intr(priv))
  856. printk(KERN_ERR "%s: Can't get IRQ %d\n",
  857. dev->name, priv->interruptTransmit);
  858. err = -1;
  859. goto tx_irq_fail;
  860. }
  861. if (request_irq(priv->interruptReceive, gfar_receive,
  862. 0, priv->int_name_rx, dev) < 0) {
  863. if (netif_msg_intr(priv))
  864. printk(KERN_ERR "%s: Can't get IRQ %d (receive0)\n",
  865. dev->name, priv->interruptReceive);
  866. err = -1;
  867. goto rx_irq_fail;
  868. }
  869. } else {
  870. if (request_irq(priv->interruptTransmit, gfar_interrupt,
  871. 0, priv->int_name_tx, dev) < 0) {
  872. if (netif_msg_intr(priv))
  873. printk(KERN_ERR "%s: Can't get IRQ %d\n",
  874. dev->name, priv->interruptTransmit);
  875. err = -1;
  876. goto err_irq_fail;
  877. }
  878. }
  879. phy_start(priv->phydev);
  880. /* Configure the coalescing support */
  881. gfar_write(&regs->txic, 0);
  882. if (priv->txcoalescing)
  883. gfar_write(&regs->txic, priv->txic);
  884. gfar_write(&regs->rxic, 0);
  885. if (priv->rxcoalescing)
  886. gfar_write(&regs->rxic, priv->rxic);
  887. if (priv->rx_csum_enable)
  888. rctrl |= RCTRL_CHECKSUMMING;
  889. if (priv->extended_hash) {
  890. rctrl |= RCTRL_EXTHASH;
  891. gfar_clear_exact_match(dev);
  892. rctrl |= RCTRL_EMEN;
  893. }
  894. if (priv->padding) {
  895. rctrl &= ~RCTRL_PAL_MASK;
  896. rctrl |= RCTRL_PADDING(priv->padding);
  897. }
  898. /* keep vlan related bits if it's enabled */
  899. if (priv->vlgrp) {
  900. rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
  901. tctrl |= TCTRL_VLINS;
  902. }
  903. /* Init rctrl based on our settings */
  904. gfar_write(&priv->regs->rctrl, rctrl);
  905. if (dev->features & NETIF_F_IP_CSUM)
  906. tctrl |= TCTRL_INIT_CSUM;
  907. gfar_write(&priv->regs->tctrl, tctrl);
  908. /* Set the extraction length and index */
  909. attrs = ATTRELI_EL(priv->rx_stash_size) |
  910. ATTRELI_EI(priv->rx_stash_index);
  911. gfar_write(&priv->regs->attreli, attrs);
  912. /* Start with defaults, and add stashing or locking
  913. * depending on the approprate variables */
  914. attrs = ATTR_INIT_SETTINGS;
  915. if (priv->bd_stash_en)
  916. attrs |= ATTR_BDSTASH;
  917. if (priv->rx_stash_size != 0)
  918. attrs |= ATTR_BUFSTASH;
  919. gfar_write(&priv->regs->attr, attrs);
  920. gfar_write(&priv->regs->fifo_tx_thr, priv->fifo_threshold);
  921. gfar_write(&priv->regs->fifo_tx_starve, priv->fifo_starve);
  922. gfar_write(&priv->regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
  923. /* Start the controller */
  924. gfar_start(dev);
  925. return 0;
  926. rx_irq_fail:
  927. free_irq(priv->interruptTransmit, dev);
  928. tx_irq_fail:
  929. free_irq(priv->interruptError, dev);
  930. err_irq_fail:
  931. err_rxalloc_fail:
  932. rx_skb_fail:
  933. free_skb_resources(priv);
  934. tx_skb_fail:
  935. dma_free_coherent(&priv->ofdev->dev,
  936. sizeof(struct txbd8)*priv->tx_ring_size
  937. + sizeof(struct rxbd8)*priv->rx_ring_size,
  938. priv->tx_bd_base,
  939. gfar_read(&regs->tbase0));
  940. return err;
  941. }
  942. /* Called when something needs to use the ethernet device */
  943. /* Returns 0 for success. */
  944. static int gfar_enet_open(struct net_device *dev)
  945. {
  946. struct gfar_private *priv = netdev_priv(dev);
  947. int err;
  948. napi_enable(&priv->napi);
  949. skb_queue_head_init(&priv->rx_recycle);
  950. /* Initialize a bunch of registers */
  951. init_registers(dev);
  952. gfar_set_mac_address(dev);
  953. err = init_phy(dev);
  954. if(err) {
  955. napi_disable(&priv->napi);
  956. return err;
  957. }
  958. err = startup_gfar(dev);
  959. if (err) {
  960. napi_disable(&priv->napi);
  961. return err;
  962. }
  963. netif_start_queue(dev);
  964. device_set_wakeup_enable(&dev->dev, priv->wol_en);
  965. return err;
  966. }
  967. static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
  968. {
  969. struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
  970. memset(fcb, 0, GMAC_FCB_LEN);
  971. return fcb;
  972. }
  973. static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
  974. {
  975. u8 flags = 0;
  976. /* If we're here, it's a IP packet with a TCP or UDP
  977. * payload. We set it to checksum, using a pseudo-header
  978. * we provide
  979. */
  980. flags = TXFCB_DEFAULT;
  981. /* Tell the controller what the protocol is */
  982. /* And provide the already calculated phcs */
  983. if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
  984. flags |= TXFCB_UDP;
  985. fcb->phcs = udp_hdr(skb)->check;
  986. } else
  987. fcb->phcs = tcp_hdr(skb)->check;
  988. /* l3os is the distance between the start of the
  989. * frame (skb->data) and the start of the IP hdr.
  990. * l4os is the distance between the start of the
  991. * l3 hdr and the l4 hdr */
  992. fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
  993. fcb->l4os = skb_network_header_len(skb);
  994. fcb->flags = flags;
  995. }
  996. void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
  997. {
  998. fcb->flags |= TXFCB_VLN;
  999. fcb->vlctl = vlan_tx_tag_get(skb);
  1000. }
  1001. static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
  1002. struct txbd8 *base, int ring_size)
  1003. {
  1004. struct txbd8 *new_bd = bdp + stride;
  1005. return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
  1006. }
  1007. static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
  1008. int ring_size)
  1009. {
  1010. return skip_txbd(bdp, 1, base, ring_size);
  1011. }
  1012. /* This is called by the kernel when a frame is ready for transmission. */
  1013. /* It is pointed to by the dev->hard_start_xmit function pointer */
  1014. static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1015. {
  1016. struct gfar_private *priv = netdev_priv(dev);
  1017. struct txfcb *fcb = NULL;
  1018. struct txbd8 *txbdp, *txbdp_start, *base;
  1019. u32 lstatus;
  1020. int i;
  1021. u32 bufaddr;
  1022. unsigned long flags;
  1023. unsigned int nr_frags, length;
  1024. base = priv->tx_bd_base;
  1025. /* make space for additional header when fcb is needed */
  1026. if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
  1027. (priv->vlgrp && vlan_tx_tag_present(skb))) &&
  1028. (skb_headroom(skb) < GMAC_FCB_LEN)) {
  1029. struct sk_buff *skb_new;
  1030. skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
  1031. if (!skb_new) {
  1032. dev->stats.tx_errors++;
  1033. kfree_skb(skb);
  1034. return NETDEV_TX_OK;
  1035. }
  1036. kfree_skb(skb);
  1037. skb = skb_new;
  1038. }
  1039. /* total number of fragments in the SKB */
  1040. nr_frags = skb_shinfo(skb)->nr_frags;
  1041. spin_lock_irqsave(&priv->txlock, flags);
  1042. /* check if there is space to queue this packet */
  1043. if ((nr_frags+1) > priv->num_txbdfree) {
  1044. /* no space, stop the queue */
  1045. netif_stop_queue(dev);
  1046. dev->stats.tx_fifo_errors++;
  1047. spin_unlock_irqrestore(&priv->txlock, flags);
  1048. return NETDEV_TX_BUSY;
  1049. }
  1050. /* Update transmit stats */
  1051. dev->stats.tx_bytes += skb->len;
  1052. txbdp = txbdp_start = priv->cur_tx;
  1053. if (nr_frags == 0) {
  1054. lstatus = txbdp->lstatus | BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
  1055. } else {
  1056. /* Place the fragment addresses and lengths into the TxBDs */
  1057. for (i = 0; i < nr_frags; i++) {
  1058. /* Point at the next BD, wrapping as needed */
  1059. txbdp = next_txbd(txbdp, base, priv->tx_ring_size);
  1060. length = skb_shinfo(skb)->frags[i].size;
  1061. lstatus = txbdp->lstatus | length |
  1062. BD_LFLAG(TXBD_READY);
  1063. /* Handle the last BD specially */
  1064. if (i == nr_frags - 1)
  1065. lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
  1066. bufaddr = dma_map_page(&priv->ofdev->dev,
  1067. skb_shinfo(skb)->frags[i].page,
  1068. skb_shinfo(skb)->frags[i].page_offset,
  1069. length,
  1070. DMA_TO_DEVICE);
  1071. /* set the TxBD length and buffer pointer */
  1072. txbdp->bufPtr = bufaddr;
  1073. txbdp->lstatus = lstatus;
  1074. }
  1075. lstatus = txbdp_start->lstatus;
  1076. }
  1077. /* Set up checksumming */
  1078. if (CHECKSUM_PARTIAL == skb->ip_summed) {
  1079. fcb = gfar_add_fcb(skb);
  1080. lstatus |= BD_LFLAG(TXBD_TOE);
  1081. gfar_tx_checksum(skb, fcb);
  1082. }
  1083. if (priv->vlgrp && vlan_tx_tag_present(skb)) {
  1084. if (unlikely(NULL == fcb)) {
  1085. fcb = gfar_add_fcb(skb);
  1086. lstatus |= BD_LFLAG(TXBD_TOE);
  1087. }
  1088. gfar_tx_vlan(skb, fcb);
  1089. }
  1090. /* setup the TxBD length and buffer pointer for the first BD */
  1091. priv->tx_skbuff[priv->skb_curtx] = skb;
  1092. txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
  1093. skb_headlen(skb), DMA_TO_DEVICE);
  1094. lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
  1095. /*
  1096. * The powerpc-specific eieio() is used, as wmb() has too strong
  1097. * semantics (it requires synchronization between cacheable and
  1098. * uncacheable mappings, which eieio doesn't provide and which we
  1099. * don't need), thus requiring a more expensive sync instruction. At
  1100. * some point, the set of architecture-independent barrier functions
  1101. * should be expanded to include weaker barriers.
  1102. */
  1103. eieio();
  1104. txbdp_start->lstatus = lstatus;
  1105. /* Update the current skb pointer to the next entry we will use
  1106. * (wrapping if necessary) */
  1107. priv->skb_curtx = (priv->skb_curtx + 1) &
  1108. TX_RING_MOD_MASK(priv->tx_ring_size);
  1109. priv->cur_tx = next_txbd(txbdp, base, priv->tx_ring_size);
  1110. /* reduce TxBD free count */
  1111. priv->num_txbdfree -= (nr_frags + 1);
  1112. dev->trans_start = jiffies;
  1113. /* If the next BD still needs to be cleaned up, then the bds
  1114. are full. We need to tell the kernel to stop sending us stuff. */
  1115. if (!priv->num_txbdfree) {
  1116. netif_stop_queue(dev);
  1117. dev->stats.tx_fifo_errors++;
  1118. }
  1119. /* Tell the DMA to go go go */
  1120. gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
  1121. /* Unlock priv */
  1122. spin_unlock_irqrestore(&priv->txlock, flags);
  1123. return NETDEV_TX_OK;
  1124. }
  1125. /* Stops the kernel queue, and halts the controller */
  1126. static int gfar_close(struct net_device *dev)
  1127. {
  1128. struct gfar_private *priv = netdev_priv(dev);
  1129. napi_disable(&priv->napi);
  1130. skb_queue_purge(&priv->rx_recycle);
  1131. cancel_work_sync(&priv->reset_task);
  1132. stop_gfar(dev);
  1133. /* Disconnect from the PHY */
  1134. phy_disconnect(priv->phydev);
  1135. priv->phydev = NULL;
  1136. netif_stop_queue(dev);
  1137. return 0;
  1138. }
  1139. /* Changes the mac address if the controller is not running. */
  1140. static int gfar_set_mac_address(struct net_device *dev)
  1141. {
  1142. gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
  1143. return 0;
  1144. }
  1145. /* Enables and disables VLAN insertion/extraction */
  1146. static void gfar_vlan_rx_register(struct net_device *dev,
  1147. struct vlan_group *grp)
  1148. {
  1149. struct gfar_private *priv = netdev_priv(dev);
  1150. unsigned long flags;
  1151. u32 tempval;
  1152. spin_lock_irqsave(&priv->rxlock, flags);
  1153. priv->vlgrp = grp;
  1154. if (grp) {
  1155. /* Enable VLAN tag insertion */
  1156. tempval = gfar_read(&priv->regs->tctrl);
  1157. tempval |= TCTRL_VLINS;
  1158. gfar_write(&priv->regs->tctrl, tempval);
  1159. /* Enable VLAN tag extraction */
  1160. tempval = gfar_read(&priv->regs->rctrl);
  1161. tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
  1162. gfar_write(&priv->regs->rctrl, tempval);
  1163. } else {
  1164. /* Disable VLAN tag insertion */
  1165. tempval = gfar_read(&priv->regs->tctrl);
  1166. tempval &= ~TCTRL_VLINS;
  1167. gfar_write(&priv->regs->tctrl, tempval);
  1168. /* Disable VLAN tag extraction */
  1169. tempval = gfar_read(&priv->regs->rctrl);
  1170. tempval &= ~RCTRL_VLEX;
  1171. /* If parse is no longer required, then disable parser */
  1172. if (tempval & RCTRL_REQ_PARSER)
  1173. tempval |= RCTRL_PRSDEP_INIT;
  1174. else
  1175. tempval &= ~RCTRL_PRSDEP_INIT;
  1176. gfar_write(&priv->regs->rctrl, tempval);
  1177. }
  1178. gfar_change_mtu(dev, dev->mtu);
  1179. spin_unlock_irqrestore(&priv->rxlock, flags);
  1180. }
  1181. static int gfar_change_mtu(struct net_device *dev, int new_mtu)
  1182. {
  1183. int tempsize, tempval;
  1184. struct gfar_private *priv = netdev_priv(dev);
  1185. int oldsize = priv->rx_buffer_size;
  1186. int frame_size = new_mtu + ETH_HLEN;
  1187. if (priv->vlgrp)
  1188. frame_size += VLAN_HLEN;
  1189. if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
  1190. if (netif_msg_drv(priv))
  1191. printk(KERN_ERR "%s: Invalid MTU setting\n",
  1192. dev->name);
  1193. return -EINVAL;
  1194. }
  1195. if (gfar_uses_fcb(priv))
  1196. frame_size += GMAC_FCB_LEN;
  1197. frame_size += priv->padding;
  1198. tempsize =
  1199. (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
  1200. INCREMENTAL_BUFFER_SIZE;
  1201. /* Only stop and start the controller if it isn't already
  1202. * stopped, and we changed something */
  1203. if ((oldsize != tempsize) && (dev->flags & IFF_UP))
  1204. stop_gfar(dev);
  1205. priv->rx_buffer_size = tempsize;
  1206. dev->mtu = new_mtu;
  1207. gfar_write(&priv->regs->mrblr, priv->rx_buffer_size);
  1208. gfar_write(&priv->regs->maxfrm, priv->rx_buffer_size);
  1209. /* If the mtu is larger than the max size for standard
  1210. * ethernet frames (ie, a jumbo frame), then set maccfg2
  1211. * to allow huge frames, and to check the length */
  1212. tempval = gfar_read(&priv->regs->maccfg2);
  1213. if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE)
  1214. tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
  1215. else
  1216. tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
  1217. gfar_write(&priv->regs->maccfg2, tempval);
  1218. if ((oldsize != tempsize) && (dev->flags & IFF_UP))
  1219. startup_gfar(dev);
  1220. return 0;
  1221. }
  1222. /* gfar_reset_task gets scheduled when a packet has not been
  1223. * transmitted after a set amount of time.
  1224. * For now, assume that clearing out all the structures, and
  1225. * starting over will fix the problem.
  1226. */
  1227. static void gfar_reset_task(struct work_struct *work)
  1228. {
  1229. struct gfar_private *priv = container_of(work, struct gfar_private,
  1230. reset_task);
  1231. struct net_device *dev = priv->ndev;
  1232. if (dev->flags & IFF_UP) {
  1233. netif_stop_queue(dev);
  1234. stop_gfar(dev);
  1235. startup_gfar(dev);
  1236. netif_start_queue(dev);
  1237. }
  1238. netif_tx_schedule_all(dev);
  1239. }
  1240. static void gfar_timeout(struct net_device *dev)
  1241. {
  1242. struct gfar_private *priv = netdev_priv(dev);
  1243. dev->stats.tx_errors++;
  1244. schedule_work(&priv->reset_task);
  1245. }
  1246. /* Interrupt Handler for Transmit complete */
  1247. static int gfar_clean_tx_ring(struct net_device *dev)
  1248. {
  1249. struct gfar_private *priv = netdev_priv(dev);
  1250. struct txbd8 *bdp;
  1251. struct txbd8 *lbdp = NULL;
  1252. struct txbd8 *base = priv->tx_bd_base;
  1253. struct sk_buff *skb;
  1254. int skb_dirtytx;
  1255. int tx_ring_size = priv->tx_ring_size;
  1256. int frags = 0;
  1257. int i;
  1258. int howmany = 0;
  1259. u32 lstatus;
  1260. bdp = priv->dirty_tx;
  1261. skb_dirtytx = priv->skb_dirtytx;
  1262. while ((skb = priv->tx_skbuff[skb_dirtytx])) {
  1263. frags = skb_shinfo(skb)->nr_frags;
  1264. lbdp = skip_txbd(bdp, frags, base, tx_ring_size);
  1265. lstatus = lbdp->lstatus;
  1266. /* Only clean completed frames */
  1267. if ((lstatus & BD_LFLAG(TXBD_READY)) &&
  1268. (lstatus & BD_LENGTH_MASK))
  1269. break;
  1270. dma_unmap_single(&priv->ofdev->dev,
  1271. bdp->bufPtr,
  1272. bdp->length,
  1273. DMA_TO_DEVICE);
  1274. bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
  1275. bdp = next_txbd(bdp, base, tx_ring_size);
  1276. for (i = 0; i < frags; i++) {
  1277. dma_unmap_page(&priv->ofdev->dev,
  1278. bdp->bufPtr,
  1279. bdp->length,
  1280. DMA_TO_DEVICE);
  1281. bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
  1282. bdp = next_txbd(bdp, base, tx_ring_size);
  1283. }
  1284. /*
  1285. * If there's room in the queue (limit it to rx_buffer_size)
  1286. * we add this skb back into the pool, if it's the right size
  1287. */
  1288. if (skb_queue_len(&priv->rx_recycle) < priv->rx_ring_size &&
  1289. skb_recycle_check(skb, priv->rx_buffer_size +
  1290. RXBUF_ALIGNMENT))
  1291. __skb_queue_head(&priv->rx_recycle, skb);
  1292. else
  1293. dev_kfree_skb_any(skb);
  1294. priv->tx_skbuff[skb_dirtytx] = NULL;
  1295. skb_dirtytx = (skb_dirtytx + 1) &
  1296. TX_RING_MOD_MASK(tx_ring_size);
  1297. howmany++;
  1298. priv->num_txbdfree += frags + 1;
  1299. }
  1300. /* If we freed a buffer, we can restart transmission, if necessary */
  1301. if (netif_queue_stopped(dev) && priv->num_txbdfree)
  1302. netif_wake_queue(dev);
  1303. /* Update dirty indicators */
  1304. priv->skb_dirtytx = skb_dirtytx;
  1305. priv->dirty_tx = bdp;
  1306. dev->stats.tx_packets += howmany;
  1307. return howmany;
  1308. }
  1309. static void gfar_schedule_cleanup(struct net_device *dev)
  1310. {
  1311. struct gfar_private *priv = netdev_priv(dev);
  1312. unsigned long flags;
  1313. spin_lock_irqsave(&priv->txlock, flags);
  1314. spin_lock(&priv->rxlock);
  1315. if (napi_schedule_prep(&priv->napi)) {
  1316. gfar_write(&priv->regs->imask, IMASK_RTX_DISABLED);
  1317. __napi_schedule(&priv->napi);
  1318. } else {
  1319. /*
  1320. * Clear IEVENT, so interrupts aren't called again
  1321. * because of the packets that have already arrived.
  1322. */
  1323. gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
  1324. }
  1325. spin_unlock(&priv->rxlock);
  1326. spin_unlock_irqrestore(&priv->txlock, flags);
  1327. }
  1328. /* Interrupt Handler for Transmit complete */
  1329. static irqreturn_t gfar_transmit(int irq, void *dev_id)
  1330. {
  1331. gfar_schedule_cleanup((struct net_device *)dev_id);
  1332. return IRQ_HANDLED;
  1333. }
  1334. static void gfar_new_rxbdp(struct net_device *dev, struct rxbd8 *bdp,
  1335. struct sk_buff *skb)
  1336. {
  1337. struct gfar_private *priv = netdev_priv(dev);
  1338. u32 lstatus;
  1339. bdp->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
  1340. priv->rx_buffer_size, DMA_FROM_DEVICE);
  1341. lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
  1342. if (bdp == priv->rx_bd_base + priv->rx_ring_size - 1)
  1343. lstatus |= BD_LFLAG(RXBD_WRAP);
  1344. eieio();
  1345. bdp->lstatus = lstatus;
  1346. }
  1347. struct sk_buff * gfar_new_skb(struct net_device *dev)
  1348. {
  1349. unsigned int alignamount;
  1350. struct gfar_private *priv = netdev_priv(dev);
  1351. struct sk_buff *skb = NULL;
  1352. skb = __skb_dequeue(&priv->rx_recycle);
  1353. if (!skb)
  1354. skb = netdev_alloc_skb(dev,
  1355. priv->rx_buffer_size + RXBUF_ALIGNMENT);
  1356. if (!skb)
  1357. return NULL;
  1358. alignamount = RXBUF_ALIGNMENT -
  1359. (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1));
  1360. /* We need the data buffer to be aligned properly. We will reserve
  1361. * as many bytes as needed to align the data properly
  1362. */
  1363. skb_reserve(skb, alignamount);
  1364. return skb;
  1365. }
  1366. static inline void count_errors(unsigned short status, struct net_device *dev)
  1367. {
  1368. struct gfar_private *priv = netdev_priv(dev);
  1369. struct net_device_stats *stats = &dev->stats;
  1370. struct gfar_extra_stats *estats = &priv->extra_stats;
  1371. /* If the packet was truncated, none of the other errors
  1372. * matter */
  1373. if (status & RXBD_TRUNCATED) {
  1374. stats->rx_length_errors++;
  1375. estats->rx_trunc++;
  1376. return;
  1377. }
  1378. /* Count the errors, if there were any */
  1379. if (status & (RXBD_LARGE | RXBD_SHORT)) {
  1380. stats->rx_length_errors++;
  1381. if (status & RXBD_LARGE)
  1382. estats->rx_large++;
  1383. else
  1384. estats->rx_short++;
  1385. }
  1386. if (status & RXBD_NONOCTET) {
  1387. stats->rx_frame_errors++;
  1388. estats->rx_nonoctet++;
  1389. }
  1390. if (status & RXBD_CRCERR) {
  1391. estats->rx_crcerr++;
  1392. stats->rx_crc_errors++;
  1393. }
  1394. if (status & RXBD_OVERRUN) {
  1395. estats->rx_overrun++;
  1396. stats->rx_crc_errors++;
  1397. }
  1398. }
  1399. irqreturn_t gfar_receive(int irq, void *dev_id)
  1400. {
  1401. gfar_schedule_cleanup((struct net_device *)dev_id);
  1402. return IRQ_HANDLED;
  1403. }
  1404. static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
  1405. {
  1406. /* If valid headers were found, and valid sums
  1407. * were verified, then we tell the kernel that no
  1408. * checksumming is necessary. Otherwise, it is */
  1409. if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
  1410. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1411. else
  1412. skb->ip_summed = CHECKSUM_NONE;
  1413. }
  1414. /* gfar_process_frame() -- handle one incoming packet if skb
  1415. * isn't NULL. */
  1416. static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
  1417. int amount_pull)
  1418. {
  1419. struct gfar_private *priv = netdev_priv(dev);
  1420. struct rxfcb *fcb = NULL;
  1421. int ret;
  1422. /* fcb is at the beginning if exists */
  1423. fcb = (struct rxfcb *)skb->data;
  1424. /* Remove the FCB from the skb */
  1425. /* Remove the padded bytes, if there are any */
  1426. if (amount_pull)
  1427. skb_pull(skb, amount_pull);
  1428. if (priv->rx_csum_enable)
  1429. gfar_rx_checksum(skb, fcb);
  1430. /* Tell the skb what kind of packet this is */
  1431. skb->protocol = eth_type_trans(skb, dev);
  1432. /* Send the packet up the stack */
  1433. if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
  1434. ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
  1435. else
  1436. ret = netif_receive_skb(skb);
  1437. if (NET_RX_DROP == ret)
  1438. priv->extra_stats.kernel_dropped++;
  1439. return 0;
  1440. }
  1441. /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
  1442. * until the budget/quota has been reached. Returns the number
  1443. * of frames handled
  1444. */
  1445. int gfar_clean_rx_ring(struct net_device *dev, int rx_work_limit)
  1446. {
  1447. struct rxbd8 *bdp, *base;
  1448. struct sk_buff *skb;
  1449. int pkt_len;
  1450. int amount_pull;
  1451. int howmany = 0;
  1452. struct gfar_private *priv = netdev_priv(dev);
  1453. /* Get the first full descriptor */
  1454. bdp = priv->cur_rx;
  1455. base = priv->rx_bd_base;
  1456. amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0) +
  1457. priv->padding;
  1458. while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
  1459. struct sk_buff *newskb;
  1460. rmb();
  1461. /* Add another skb for the future */
  1462. newskb = gfar_new_skb(dev);
  1463. skb = priv->rx_skbuff[priv->skb_currx];
  1464. dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
  1465. priv->rx_buffer_size, DMA_FROM_DEVICE);
  1466. /* We drop the frame if we failed to allocate a new buffer */
  1467. if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
  1468. bdp->status & RXBD_ERR)) {
  1469. count_errors(bdp->status, dev);
  1470. if (unlikely(!newskb))
  1471. newskb = skb;
  1472. else if (skb) {
  1473. /*
  1474. * We need to reset ->data to what it
  1475. * was before gfar_new_skb() re-aligned
  1476. * it to an RXBUF_ALIGNMENT boundary
  1477. * before we put the skb back on the
  1478. * recycle list.
  1479. */
  1480. skb->data = skb->head + NET_SKB_PAD;
  1481. __skb_queue_head(&priv->rx_recycle, skb);
  1482. }
  1483. } else {
  1484. /* Increment the number of packets */
  1485. dev->stats.rx_packets++;
  1486. howmany++;
  1487. if (likely(skb)) {
  1488. pkt_len = bdp->length - ETH_FCS_LEN;
  1489. /* Remove the FCS from the packet length */
  1490. skb_put(skb, pkt_len);
  1491. dev->stats.rx_bytes += pkt_len;
  1492. if (in_irq() || irqs_disabled())
  1493. printk("Interrupt problem!\n");
  1494. gfar_process_frame(dev, skb, amount_pull);
  1495. } else {
  1496. if (netif_msg_rx_err(priv))
  1497. printk(KERN_WARNING
  1498. "%s: Missing skb!\n", dev->name);
  1499. dev->stats.rx_dropped++;
  1500. priv->extra_stats.rx_skbmissing++;
  1501. }
  1502. }
  1503. priv->rx_skbuff[priv->skb_currx] = newskb;
  1504. /* Setup the new bdp */
  1505. gfar_new_rxbdp(dev, bdp, newskb);
  1506. /* Update to the next pointer */
  1507. bdp = next_bd(bdp, base, priv->rx_ring_size);
  1508. /* update to point at the next skb */
  1509. priv->skb_currx =
  1510. (priv->skb_currx + 1) &
  1511. RX_RING_MOD_MASK(priv->rx_ring_size);
  1512. }
  1513. /* Update the current rxbd pointer to be the next one */
  1514. priv->cur_rx = bdp;
  1515. return howmany;
  1516. }
  1517. static int gfar_poll(struct napi_struct *napi, int budget)
  1518. {
  1519. struct gfar_private *priv = container_of(napi, struct gfar_private, napi);
  1520. struct net_device *dev = priv->ndev;
  1521. int tx_cleaned = 0;
  1522. int rx_cleaned = 0;
  1523. unsigned long flags;
  1524. /* Clear IEVENT, so interrupts aren't called again
  1525. * because of the packets that have already arrived */
  1526. gfar_write(&priv->regs->ievent, IEVENT_RTX_MASK);
  1527. /* If we fail to get the lock, don't bother with the TX BDs */
  1528. if (spin_trylock_irqsave(&priv->txlock, flags)) {
  1529. tx_cleaned = gfar_clean_tx_ring(dev);
  1530. spin_unlock_irqrestore(&priv->txlock, flags);
  1531. }
  1532. rx_cleaned = gfar_clean_rx_ring(dev, budget);
  1533. if (tx_cleaned)
  1534. return budget;
  1535. if (rx_cleaned < budget) {
  1536. napi_complete(napi);
  1537. /* Clear the halt bit in RSTAT */
  1538. gfar_write(&priv->regs->rstat, RSTAT_CLEAR_RHALT);
  1539. gfar_write(&priv->regs->imask, IMASK_DEFAULT);
  1540. /* If we are coalescing interrupts, update the timer */
  1541. /* Otherwise, clear it */
  1542. if (likely(priv->rxcoalescing)) {
  1543. gfar_write(&priv->regs->rxic, 0);
  1544. gfar_write(&priv->regs->rxic, priv->rxic);
  1545. }
  1546. if (likely(priv->txcoalescing)) {
  1547. gfar_write(&priv->regs->txic, 0);
  1548. gfar_write(&priv->regs->txic, priv->txic);
  1549. }
  1550. }
  1551. return rx_cleaned;
  1552. }
  1553. #ifdef CONFIG_NET_POLL_CONTROLLER
  1554. /*
  1555. * Polling 'interrupt' - used by things like netconsole to send skbs
  1556. * without having to re-enable interrupts. It's not called while
  1557. * the interrupt routine is executing.
  1558. */
  1559. static void gfar_netpoll(struct net_device *dev)
  1560. {
  1561. struct gfar_private *priv = netdev_priv(dev);
  1562. /* If the device has multiple interrupts, run tx/rx */
  1563. if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
  1564. disable_irq(priv->interruptTransmit);
  1565. disable_irq(priv->interruptReceive);
  1566. disable_irq(priv->interruptError);
  1567. gfar_interrupt(priv->interruptTransmit, dev);
  1568. enable_irq(priv->interruptError);
  1569. enable_irq(priv->interruptReceive);
  1570. enable_irq(priv->interruptTransmit);
  1571. } else {
  1572. disable_irq(priv->interruptTransmit);
  1573. gfar_interrupt(priv->interruptTransmit, dev);
  1574. enable_irq(priv->interruptTransmit);
  1575. }
  1576. }
  1577. #endif
  1578. /* The interrupt handler for devices with one interrupt */
  1579. static irqreturn_t gfar_interrupt(int irq, void *dev_id)
  1580. {
  1581. struct net_device *dev = dev_id;
  1582. struct gfar_private *priv = netdev_priv(dev);
  1583. /* Save ievent for future reference */
  1584. u32 events = gfar_read(&priv->regs->ievent);
  1585. /* Check for reception */
  1586. if (events & IEVENT_RX_MASK)
  1587. gfar_receive(irq, dev_id);
  1588. /* Check for transmit completion */
  1589. if (events & IEVENT_TX_MASK)
  1590. gfar_transmit(irq, dev_id);
  1591. /* Check for errors */
  1592. if (events & IEVENT_ERR_MASK)
  1593. gfar_error(irq, dev_id);
  1594. return IRQ_HANDLED;
  1595. }
  1596. /* Called every time the controller might need to be made
  1597. * aware of new link state. The PHY code conveys this
  1598. * information through variables in the phydev structure, and this
  1599. * function converts those variables into the appropriate
  1600. * register values, and can bring down the device if needed.
  1601. */
  1602. static void adjust_link(struct net_device *dev)
  1603. {
  1604. struct gfar_private *priv = netdev_priv(dev);
  1605. struct gfar __iomem *regs = priv->regs;
  1606. unsigned long flags;
  1607. struct phy_device *phydev = priv->phydev;
  1608. int new_state = 0;
  1609. spin_lock_irqsave(&priv->txlock, flags);
  1610. if (phydev->link) {
  1611. u32 tempval = gfar_read(&regs->maccfg2);
  1612. u32 ecntrl = gfar_read(&regs->ecntrl);
  1613. /* Now we make sure that we can be in full duplex mode.
  1614. * If not, we operate in half-duplex mode. */
  1615. if (phydev->duplex != priv->oldduplex) {
  1616. new_state = 1;
  1617. if (!(phydev->duplex))
  1618. tempval &= ~(MACCFG2_FULL_DUPLEX);
  1619. else
  1620. tempval |= MACCFG2_FULL_DUPLEX;
  1621. priv->oldduplex = phydev->duplex;
  1622. }
  1623. if (phydev->speed != priv->oldspeed) {
  1624. new_state = 1;
  1625. switch (phydev->speed) {
  1626. case 1000:
  1627. tempval =
  1628. ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
  1629. ecntrl &= ~(ECNTRL_R100);
  1630. break;
  1631. case 100:
  1632. case 10:
  1633. tempval =
  1634. ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
  1635. /* Reduced mode distinguishes
  1636. * between 10 and 100 */
  1637. if (phydev->speed == SPEED_100)
  1638. ecntrl |= ECNTRL_R100;
  1639. else
  1640. ecntrl &= ~(ECNTRL_R100);
  1641. break;
  1642. default:
  1643. if (netif_msg_link(priv))
  1644. printk(KERN_WARNING
  1645. "%s: Ack! Speed (%d) is not 10/100/1000!\n",
  1646. dev->name, phydev->speed);
  1647. break;
  1648. }
  1649. priv->oldspeed = phydev->speed;
  1650. }
  1651. gfar_write(&regs->maccfg2, tempval);
  1652. gfar_write(&regs->ecntrl, ecntrl);
  1653. if (!priv->oldlink) {
  1654. new_state = 1;
  1655. priv->oldlink = 1;
  1656. }
  1657. } else if (priv->oldlink) {
  1658. new_state = 1;
  1659. priv->oldlink = 0;
  1660. priv->oldspeed = 0;
  1661. priv->oldduplex = -1;
  1662. }
  1663. if (new_state && netif_msg_link(priv))
  1664. phy_print_status(phydev);
  1665. spin_unlock_irqrestore(&priv->txlock, flags);
  1666. }
  1667. /* Update the hash table based on the current list of multicast
  1668. * addresses we subscribe to. Also, change the promiscuity of
  1669. * the device based on the flags (this function is called
  1670. * whenever dev->flags is changed */
  1671. static void gfar_set_multi(struct net_device *dev)
  1672. {
  1673. struct dev_mc_list *mc_ptr;
  1674. struct gfar_private *priv = netdev_priv(dev);
  1675. struct gfar __iomem *regs = priv->regs;
  1676. u32 tempval;
  1677. if(dev->flags & IFF_PROMISC) {
  1678. /* Set RCTRL to PROM */
  1679. tempval = gfar_read(&regs->rctrl);
  1680. tempval |= RCTRL_PROM;
  1681. gfar_write(&regs->rctrl, tempval);
  1682. } else {
  1683. /* Set RCTRL to not PROM */
  1684. tempval = gfar_read(&regs->rctrl);
  1685. tempval &= ~(RCTRL_PROM);
  1686. gfar_write(&regs->rctrl, tempval);
  1687. }
  1688. if(dev->flags & IFF_ALLMULTI) {
  1689. /* Set the hash to rx all multicast frames */
  1690. gfar_write(&regs->igaddr0, 0xffffffff);
  1691. gfar_write(&regs->igaddr1, 0xffffffff);
  1692. gfar_write(&regs->igaddr2, 0xffffffff);
  1693. gfar_write(&regs->igaddr3, 0xffffffff);
  1694. gfar_write(&regs->igaddr4, 0xffffffff);
  1695. gfar_write(&regs->igaddr5, 0xffffffff);
  1696. gfar_write(&regs->igaddr6, 0xffffffff);
  1697. gfar_write(&regs->igaddr7, 0xffffffff);
  1698. gfar_write(&regs->gaddr0, 0xffffffff);
  1699. gfar_write(&regs->gaddr1, 0xffffffff);
  1700. gfar_write(&regs->gaddr2, 0xffffffff);
  1701. gfar_write(&regs->gaddr3, 0xffffffff);
  1702. gfar_write(&regs->gaddr4, 0xffffffff);
  1703. gfar_write(&regs->gaddr5, 0xffffffff);
  1704. gfar_write(&regs->gaddr6, 0xffffffff);
  1705. gfar_write(&regs->gaddr7, 0xffffffff);
  1706. } else {
  1707. int em_num;
  1708. int idx;
  1709. /* zero out the hash */
  1710. gfar_write(&regs->igaddr0, 0x0);
  1711. gfar_write(&regs->igaddr1, 0x0);
  1712. gfar_write(&regs->igaddr2, 0x0);
  1713. gfar_write(&regs->igaddr3, 0x0);
  1714. gfar_write(&regs->igaddr4, 0x0);
  1715. gfar_write(&regs->igaddr5, 0x0);
  1716. gfar_write(&regs->igaddr6, 0x0);
  1717. gfar_write(&regs->igaddr7, 0x0);
  1718. gfar_write(&regs->gaddr0, 0x0);
  1719. gfar_write(&regs->gaddr1, 0x0);
  1720. gfar_write(&regs->gaddr2, 0x0);
  1721. gfar_write(&regs->gaddr3, 0x0);
  1722. gfar_write(&regs->gaddr4, 0x0);
  1723. gfar_write(&regs->gaddr5, 0x0);
  1724. gfar_write(&regs->gaddr6, 0x0);
  1725. gfar_write(&regs->gaddr7, 0x0);
  1726. /* If we have extended hash tables, we need to
  1727. * clear the exact match registers to prepare for
  1728. * setting them */
  1729. if (priv->extended_hash) {
  1730. em_num = GFAR_EM_NUM + 1;
  1731. gfar_clear_exact_match(dev);
  1732. idx = 1;
  1733. } else {
  1734. idx = 0;
  1735. em_num = 0;
  1736. }
  1737. if(dev->mc_count == 0)
  1738. return;
  1739. /* Parse the list, and set the appropriate bits */
  1740. for(mc_ptr = dev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
  1741. if (idx < em_num) {
  1742. gfar_set_mac_for_addr(dev, idx,
  1743. mc_ptr->dmi_addr);
  1744. idx++;
  1745. } else
  1746. gfar_set_hash_for_addr(dev, mc_ptr->dmi_addr);
  1747. }
  1748. }
  1749. return;
  1750. }
  1751. /* Clears each of the exact match registers to zero, so they
  1752. * don't interfere with normal reception */
  1753. static void gfar_clear_exact_match(struct net_device *dev)
  1754. {
  1755. int idx;
  1756. u8 zero_arr[MAC_ADDR_LEN] = {0,0,0,0,0,0};
  1757. for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
  1758. gfar_set_mac_for_addr(dev, idx, (u8 *)zero_arr);
  1759. }
  1760. /* Set the appropriate hash bit for the given addr */
  1761. /* The algorithm works like so:
  1762. * 1) Take the Destination Address (ie the multicast address), and
  1763. * do a CRC on it (little endian), and reverse the bits of the
  1764. * result.
  1765. * 2) Use the 8 most significant bits as a hash into a 256-entry
  1766. * table. The table is controlled through 8 32-bit registers:
  1767. * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
  1768. * gaddr7. This means that the 3 most significant bits in the
  1769. * hash index which gaddr register to use, and the 5 other bits
  1770. * indicate which bit (assuming an IBM numbering scheme, which
  1771. * for PowerPC (tm) is usually the case) in the register holds
  1772. * the entry. */
  1773. static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
  1774. {
  1775. u32 tempval;
  1776. struct gfar_private *priv = netdev_priv(dev);
  1777. u32 result = ether_crc(MAC_ADDR_LEN, addr);
  1778. int width = priv->hash_width;
  1779. u8 whichbit = (result >> (32 - width)) & 0x1f;
  1780. u8 whichreg = result >> (32 - width + 5);
  1781. u32 value = (1 << (31-whichbit));
  1782. tempval = gfar_read(priv->hash_regs[whichreg]);
  1783. tempval |= value;
  1784. gfar_write(priv->hash_regs[whichreg], tempval);
  1785. return;
  1786. }
  1787. /* There are multiple MAC Address register pairs on some controllers
  1788. * This function sets the numth pair to a given address
  1789. */
  1790. static void gfar_set_mac_for_addr(struct net_device *dev, int num, u8 *addr)
  1791. {
  1792. struct gfar_private *priv = netdev_priv(dev);
  1793. int idx;
  1794. char tmpbuf[MAC_ADDR_LEN];
  1795. u32 tempval;
  1796. u32 __iomem *macptr = &priv->regs->macstnaddr1;
  1797. macptr += num*2;
  1798. /* Now copy it into the mac registers backwards, cuz */
  1799. /* little endian is silly */
  1800. for (idx = 0; idx < MAC_ADDR_LEN; idx++)
  1801. tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
  1802. gfar_write(macptr, *((u32 *) (tmpbuf)));
  1803. tempval = *((u32 *) (tmpbuf + 4));
  1804. gfar_write(macptr+1, tempval);
  1805. }
  1806. /* GFAR error interrupt handler */
  1807. static irqreturn_t gfar_error(int irq, void *dev_id)
  1808. {
  1809. struct net_device *dev = dev_id;
  1810. struct gfar_private *priv = netdev_priv(dev);
  1811. /* Save ievent for future reference */
  1812. u32 events = gfar_read(&priv->regs->ievent);
  1813. /* Clear IEVENT */
  1814. gfar_write(&priv->regs->ievent, events & IEVENT_ERR_MASK);
  1815. /* Magic Packet is not an error. */
  1816. if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
  1817. (events & IEVENT_MAG))
  1818. events &= ~IEVENT_MAG;
  1819. /* Hmm... */
  1820. if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
  1821. printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
  1822. dev->name, events, gfar_read(&priv->regs->imask));
  1823. /* Update the error counters */
  1824. if (events & IEVENT_TXE) {
  1825. dev->stats.tx_errors++;
  1826. if (events & IEVENT_LC)
  1827. dev->stats.tx_window_errors++;
  1828. if (events & IEVENT_CRL)
  1829. dev->stats.tx_aborted_errors++;
  1830. if (events & IEVENT_XFUN) {
  1831. if (netif_msg_tx_err(priv))
  1832. printk(KERN_DEBUG "%s: TX FIFO underrun, "
  1833. "packet dropped.\n", dev->name);
  1834. dev->stats.tx_dropped++;
  1835. priv->extra_stats.tx_underrun++;
  1836. /* Reactivate the Tx Queues */
  1837. gfar_write(&priv->regs->tstat, TSTAT_CLEAR_THALT);
  1838. }
  1839. if (netif_msg_tx_err(priv))
  1840. printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
  1841. }
  1842. if (events & IEVENT_BSY) {
  1843. dev->stats.rx_errors++;
  1844. priv->extra_stats.rx_bsy++;
  1845. gfar_receive(irq, dev_id);
  1846. if (netif_msg_rx_err(priv))
  1847. printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
  1848. dev->name, gfar_read(&priv->regs->rstat));
  1849. }
  1850. if (events & IEVENT_BABR) {
  1851. dev->stats.rx_errors++;
  1852. priv->extra_stats.rx_babr++;
  1853. if (netif_msg_rx_err(priv))
  1854. printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
  1855. }
  1856. if (events & IEVENT_EBERR) {
  1857. priv->extra_stats.eberr++;
  1858. if (netif_msg_rx_err(priv))
  1859. printk(KERN_DEBUG "%s: bus error\n", dev->name);
  1860. }
  1861. if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
  1862. printk(KERN_DEBUG "%s: control frame\n", dev->name);
  1863. if (events & IEVENT_BABT) {
  1864. priv->extra_stats.tx_babt++;
  1865. if (netif_msg_tx_err(priv))
  1866. printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
  1867. }
  1868. return IRQ_HANDLED;
  1869. }
  1870. static struct of_device_id gfar_match[] =
  1871. {
  1872. {
  1873. .type = "network",
  1874. .compatible = "gianfar",
  1875. },
  1876. {},
  1877. };
  1878. MODULE_DEVICE_TABLE(of, gfar_match);
  1879. /* Structure for a device driver */
  1880. static struct of_platform_driver gfar_driver = {
  1881. .name = "fsl-gianfar",
  1882. .match_table = gfar_match,
  1883. .probe = gfar_probe,
  1884. .remove = gfar_remove,
  1885. .suspend = gfar_suspend,
  1886. .resume = gfar_resume,
  1887. };
  1888. static int __init gfar_init(void)
  1889. {
  1890. return of_register_platform_driver(&gfar_driver);
  1891. }
  1892. static void __exit gfar_exit(void)
  1893. {
  1894. of_unregister_platform_driver(&gfar_driver);
  1895. }
  1896. module_init(gfar_init);
  1897. module_exit(gfar_exit);