forcedeth.c 193 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/sched.h>
  52. #include <linux/spinlock.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/timer.h>
  55. #include <linux/skbuff.h>
  56. #include <linux/mii.h>
  57. #include <linux/random.h>
  58. #include <linux/init.h>
  59. #include <linux/if_vlan.h>
  60. #include <linux/dma-mapping.h>
  61. #include <asm/irq.h>
  62. #include <asm/io.h>
  63. #include <asm/uaccess.h>
  64. #include <asm/system.h>
  65. #if 0
  66. #define dprintk printk
  67. #else
  68. #define dprintk(x...) do { } while (0)
  69. #endif
  70. #define TX_WORK_PER_LOOP 64
  71. #define RX_WORK_PER_LOOP 64
  72. /*
  73. * Hardware access:
  74. */
  75. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  76. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  77. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  78. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  79. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  80. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  81. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  82. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  83. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  84. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  85. #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
  86. #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
  87. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  88. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  89. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  90. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  91. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  93. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  94. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  95. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  96. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  97. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  98. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  99. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  100. enum {
  101. NvRegIrqStatus = 0x000,
  102. #define NVREG_IRQSTAT_MIIEVENT 0x040
  103. #define NVREG_IRQSTAT_MASK 0x83ff
  104. NvRegIrqMask = 0x004,
  105. #define NVREG_IRQ_RX_ERROR 0x0001
  106. #define NVREG_IRQ_RX 0x0002
  107. #define NVREG_IRQ_RX_NOBUF 0x0004
  108. #define NVREG_IRQ_TX_ERR 0x0008
  109. #define NVREG_IRQ_TX_OK 0x0010
  110. #define NVREG_IRQ_TIMER 0x0020
  111. #define NVREG_IRQ_LINK 0x0040
  112. #define NVREG_IRQ_RX_FORCED 0x0080
  113. #define NVREG_IRQ_TX_FORCED 0x0100
  114. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  115. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  116. #define NVREG_IRQMASK_CPU 0x0060
  117. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  118. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  119. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  120. NvRegUnknownSetupReg6 = 0x008,
  121. #define NVREG_UNKSETUP6_VAL 3
  122. /*
  123. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  124. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  125. */
  126. NvRegPollingInterval = 0x00c,
  127. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  128. #define NVREG_POLL_DEFAULT_CPU 13
  129. NvRegMSIMap0 = 0x020,
  130. NvRegMSIMap1 = 0x024,
  131. NvRegMSIIrqMask = 0x030,
  132. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  133. NvRegMisc1 = 0x080,
  134. #define NVREG_MISC1_PAUSE_TX 0x01
  135. #define NVREG_MISC1_HD 0x02
  136. #define NVREG_MISC1_FORCE 0x3b0f3c
  137. NvRegMacReset = 0x34,
  138. #define NVREG_MAC_RESET_ASSERT 0x0F3
  139. NvRegTransmitterControl = 0x084,
  140. #define NVREG_XMITCTL_START 0x01
  141. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  142. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  143. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  144. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  145. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  146. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  147. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  148. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  149. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  150. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  151. #define NVREG_XMITCTL_DATA_START 0x00100000
  152. #define NVREG_XMITCTL_DATA_READY 0x00010000
  153. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  154. NvRegTransmitterStatus = 0x088,
  155. #define NVREG_XMITSTAT_BUSY 0x01
  156. NvRegPacketFilterFlags = 0x8c,
  157. #define NVREG_PFF_PAUSE_RX 0x08
  158. #define NVREG_PFF_ALWAYS 0x7F0000
  159. #define NVREG_PFF_PROMISC 0x80
  160. #define NVREG_PFF_MYADDR 0x20
  161. #define NVREG_PFF_LOOPBACK 0x10
  162. NvRegOffloadConfig = 0x90,
  163. #define NVREG_OFFLOAD_HOMEPHY 0x601
  164. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  165. NvRegReceiverControl = 0x094,
  166. #define NVREG_RCVCTL_START 0x01
  167. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  168. NvRegReceiverStatus = 0x98,
  169. #define NVREG_RCVSTAT_BUSY 0x01
  170. NvRegSlotTime = 0x9c,
  171. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  172. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  173. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  174. #define NVREG_SLOTTIME_HALF 0x0000ff00
  175. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  176. #define NVREG_SLOTTIME_MASK 0x000000ff
  177. NvRegTxDeferral = 0xA0,
  178. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  179. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  180. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  181. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  182. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  183. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  184. NvRegRxDeferral = 0xA4,
  185. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  186. NvRegMacAddrA = 0xA8,
  187. NvRegMacAddrB = 0xAC,
  188. NvRegMulticastAddrA = 0xB0,
  189. #define NVREG_MCASTADDRA_FORCE 0x01
  190. NvRegMulticastAddrB = 0xB4,
  191. NvRegMulticastMaskA = 0xB8,
  192. #define NVREG_MCASTMASKA_NONE 0xffffffff
  193. NvRegMulticastMaskB = 0xBC,
  194. #define NVREG_MCASTMASKB_NONE 0xffff
  195. NvRegPhyInterface = 0xC0,
  196. #define PHY_RGMII 0x10000000
  197. NvRegBackOffControl = 0xC4,
  198. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  199. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  200. #define NVREG_BKOFFCTRL_SELECT 24
  201. #define NVREG_BKOFFCTRL_GEAR 12
  202. NvRegTxRingPhysAddr = 0x100,
  203. NvRegRxRingPhysAddr = 0x104,
  204. NvRegRingSizes = 0x108,
  205. #define NVREG_RINGSZ_TXSHIFT 0
  206. #define NVREG_RINGSZ_RXSHIFT 16
  207. NvRegTransmitPoll = 0x10c,
  208. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  209. NvRegLinkSpeed = 0x110,
  210. #define NVREG_LINKSPEED_FORCE 0x10000
  211. #define NVREG_LINKSPEED_10 1000
  212. #define NVREG_LINKSPEED_100 100
  213. #define NVREG_LINKSPEED_1000 50
  214. #define NVREG_LINKSPEED_MASK (0xFFF)
  215. NvRegUnknownSetupReg5 = 0x130,
  216. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  217. NvRegTxWatermark = 0x13c,
  218. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  219. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  220. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  221. NvRegTxRxControl = 0x144,
  222. #define NVREG_TXRXCTL_KICK 0x0001
  223. #define NVREG_TXRXCTL_BIT1 0x0002
  224. #define NVREG_TXRXCTL_BIT2 0x0004
  225. #define NVREG_TXRXCTL_IDLE 0x0008
  226. #define NVREG_TXRXCTL_RESET 0x0010
  227. #define NVREG_TXRXCTL_RXCHECK 0x0400
  228. #define NVREG_TXRXCTL_DESC_1 0
  229. #define NVREG_TXRXCTL_DESC_2 0x002100
  230. #define NVREG_TXRXCTL_DESC_3 0xc02200
  231. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  232. #define NVREG_TXRXCTL_VLANINS 0x00080
  233. NvRegTxRingPhysAddrHigh = 0x148,
  234. NvRegRxRingPhysAddrHigh = 0x14C,
  235. NvRegTxPauseFrame = 0x170,
  236. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  237. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  238. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  239. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  240. NvRegTxPauseFrameLimit = 0x174,
  241. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  242. NvRegMIIStatus = 0x180,
  243. #define NVREG_MIISTAT_ERROR 0x0001
  244. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  245. #define NVREG_MIISTAT_MASK_RW 0x0007
  246. #define NVREG_MIISTAT_MASK_ALL 0x000f
  247. NvRegMIIMask = 0x184,
  248. #define NVREG_MII_LINKCHANGE 0x0008
  249. NvRegAdapterControl = 0x188,
  250. #define NVREG_ADAPTCTL_START 0x02
  251. #define NVREG_ADAPTCTL_LINKUP 0x04
  252. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  253. #define NVREG_ADAPTCTL_RUNNING 0x100000
  254. #define NVREG_ADAPTCTL_PHYSHIFT 24
  255. NvRegMIISpeed = 0x18c,
  256. #define NVREG_MIISPEED_BIT8 (1<<8)
  257. #define NVREG_MIIDELAY 5
  258. NvRegMIIControl = 0x190,
  259. #define NVREG_MIICTL_INUSE 0x08000
  260. #define NVREG_MIICTL_WRITE 0x00400
  261. #define NVREG_MIICTL_ADDRSHIFT 5
  262. NvRegMIIData = 0x194,
  263. NvRegTxUnicast = 0x1a0,
  264. NvRegTxMulticast = 0x1a4,
  265. NvRegTxBroadcast = 0x1a8,
  266. NvRegWakeUpFlags = 0x200,
  267. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  268. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  269. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  270. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  271. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  272. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  273. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  276. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  277. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  278. NvRegMgmtUnitGetVersion = 0x204,
  279. #define NVREG_MGMTUNITGETVERSION 0x01
  280. NvRegMgmtUnitVersion = 0x208,
  281. #define NVREG_MGMTUNITVERSION 0x08
  282. NvRegPowerCap = 0x268,
  283. #define NVREG_POWERCAP_D3SUPP (1<<30)
  284. #define NVREG_POWERCAP_D2SUPP (1<<26)
  285. #define NVREG_POWERCAP_D1SUPP (1<<25)
  286. NvRegPowerState = 0x26c,
  287. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  288. #define NVREG_POWERSTATE_VALID 0x0100
  289. #define NVREG_POWERSTATE_MASK 0x0003
  290. #define NVREG_POWERSTATE_D0 0x0000
  291. #define NVREG_POWERSTATE_D1 0x0001
  292. #define NVREG_POWERSTATE_D2 0x0002
  293. #define NVREG_POWERSTATE_D3 0x0003
  294. NvRegMgmtUnitControl = 0x278,
  295. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  296. NvRegTxCnt = 0x280,
  297. NvRegTxZeroReXmt = 0x284,
  298. NvRegTxOneReXmt = 0x288,
  299. NvRegTxManyReXmt = 0x28c,
  300. NvRegTxLateCol = 0x290,
  301. NvRegTxUnderflow = 0x294,
  302. NvRegTxLossCarrier = 0x298,
  303. NvRegTxExcessDef = 0x29c,
  304. NvRegTxRetryErr = 0x2a0,
  305. NvRegRxFrameErr = 0x2a4,
  306. NvRegRxExtraByte = 0x2a8,
  307. NvRegRxLateCol = 0x2ac,
  308. NvRegRxRunt = 0x2b0,
  309. NvRegRxFrameTooLong = 0x2b4,
  310. NvRegRxOverflow = 0x2b8,
  311. NvRegRxFCSErr = 0x2bc,
  312. NvRegRxFrameAlignErr = 0x2c0,
  313. NvRegRxLenErr = 0x2c4,
  314. NvRegRxUnicast = 0x2c8,
  315. NvRegRxMulticast = 0x2cc,
  316. NvRegRxBroadcast = 0x2d0,
  317. NvRegTxDef = 0x2d4,
  318. NvRegTxFrame = 0x2d8,
  319. NvRegRxCnt = 0x2dc,
  320. NvRegTxPause = 0x2e0,
  321. NvRegRxPause = 0x2e4,
  322. NvRegRxDropFrame = 0x2e8,
  323. NvRegVlanControl = 0x300,
  324. #define NVREG_VLANCONTROL_ENABLE 0x2000
  325. NvRegMSIXMap0 = 0x3e0,
  326. NvRegMSIXMap1 = 0x3e4,
  327. NvRegMSIXIrqStatus = 0x3f0,
  328. NvRegPowerState2 = 0x600,
  329. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  330. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  331. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  332. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  333. };
  334. /* Big endian: should work, but is untested */
  335. struct ring_desc {
  336. __le32 buf;
  337. __le32 flaglen;
  338. };
  339. struct ring_desc_ex {
  340. __le32 bufhigh;
  341. __le32 buflow;
  342. __le32 txvlan;
  343. __le32 flaglen;
  344. };
  345. union ring_type {
  346. struct ring_desc* orig;
  347. struct ring_desc_ex* ex;
  348. };
  349. #define FLAG_MASK_V1 0xffff0000
  350. #define FLAG_MASK_V2 0xffffc000
  351. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  352. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  353. #define NV_TX_LASTPACKET (1<<16)
  354. #define NV_TX_RETRYERROR (1<<19)
  355. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  356. #define NV_TX_FORCED_INTERRUPT (1<<24)
  357. #define NV_TX_DEFERRED (1<<26)
  358. #define NV_TX_CARRIERLOST (1<<27)
  359. #define NV_TX_LATECOLLISION (1<<28)
  360. #define NV_TX_UNDERFLOW (1<<29)
  361. #define NV_TX_ERROR (1<<30)
  362. #define NV_TX_VALID (1<<31)
  363. #define NV_TX2_LASTPACKET (1<<29)
  364. #define NV_TX2_RETRYERROR (1<<18)
  365. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  366. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  367. #define NV_TX2_DEFERRED (1<<25)
  368. #define NV_TX2_CARRIERLOST (1<<26)
  369. #define NV_TX2_LATECOLLISION (1<<27)
  370. #define NV_TX2_UNDERFLOW (1<<28)
  371. /* error and valid are the same for both */
  372. #define NV_TX2_ERROR (1<<30)
  373. #define NV_TX2_VALID (1<<31)
  374. #define NV_TX2_TSO (1<<28)
  375. #define NV_TX2_TSO_SHIFT 14
  376. #define NV_TX2_TSO_MAX_SHIFT 14
  377. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  378. #define NV_TX2_CHECKSUM_L3 (1<<27)
  379. #define NV_TX2_CHECKSUM_L4 (1<<26)
  380. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  381. #define NV_RX_DESCRIPTORVALID (1<<16)
  382. #define NV_RX_MISSEDFRAME (1<<17)
  383. #define NV_RX_SUBSTRACT1 (1<<18)
  384. #define NV_RX_ERROR1 (1<<23)
  385. #define NV_RX_ERROR2 (1<<24)
  386. #define NV_RX_ERROR3 (1<<25)
  387. #define NV_RX_ERROR4 (1<<26)
  388. #define NV_RX_CRCERR (1<<27)
  389. #define NV_RX_OVERFLOW (1<<28)
  390. #define NV_RX_FRAMINGERR (1<<29)
  391. #define NV_RX_ERROR (1<<30)
  392. #define NV_RX_AVAIL (1<<31)
  393. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  394. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  395. #define NV_RX2_CHECKSUM_IP (0x10000000)
  396. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  397. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  398. #define NV_RX2_DESCRIPTORVALID (1<<29)
  399. #define NV_RX2_SUBSTRACT1 (1<<25)
  400. #define NV_RX2_ERROR1 (1<<18)
  401. #define NV_RX2_ERROR2 (1<<19)
  402. #define NV_RX2_ERROR3 (1<<20)
  403. #define NV_RX2_ERROR4 (1<<21)
  404. #define NV_RX2_CRCERR (1<<22)
  405. #define NV_RX2_OVERFLOW (1<<23)
  406. #define NV_RX2_FRAMINGERR (1<<24)
  407. /* error and avail are the same for both */
  408. #define NV_RX2_ERROR (1<<30)
  409. #define NV_RX2_AVAIL (1<<31)
  410. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  411. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  412. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  413. /* Miscelaneous hardware related defines: */
  414. #define NV_PCI_REGSZ_VER1 0x270
  415. #define NV_PCI_REGSZ_VER2 0x2d4
  416. #define NV_PCI_REGSZ_VER3 0x604
  417. #define NV_PCI_REGSZ_MAX 0x604
  418. /* various timeout delays: all in usec */
  419. #define NV_TXRX_RESET_DELAY 4
  420. #define NV_TXSTOP_DELAY1 10
  421. #define NV_TXSTOP_DELAY1MAX 500000
  422. #define NV_TXSTOP_DELAY2 100
  423. #define NV_RXSTOP_DELAY1 10
  424. #define NV_RXSTOP_DELAY1MAX 500000
  425. #define NV_RXSTOP_DELAY2 100
  426. #define NV_SETUP5_DELAY 5
  427. #define NV_SETUP5_DELAYMAX 50000
  428. #define NV_POWERUP_DELAY 5
  429. #define NV_POWERUP_DELAYMAX 5000
  430. #define NV_MIIBUSY_DELAY 50
  431. #define NV_MIIPHY_DELAY 10
  432. #define NV_MIIPHY_DELAYMAX 10000
  433. #define NV_MAC_RESET_DELAY 64
  434. #define NV_WAKEUPPATTERNS 5
  435. #define NV_WAKEUPMASKENTRIES 4
  436. /* General driver defaults */
  437. #define NV_WATCHDOG_TIMEO (5*HZ)
  438. #define RX_RING_DEFAULT 512
  439. #define TX_RING_DEFAULT 256
  440. #define RX_RING_MIN 128
  441. #define TX_RING_MIN 64
  442. #define RING_MAX_DESC_VER_1 1024
  443. #define RING_MAX_DESC_VER_2_3 16384
  444. /* rx/tx mac addr + type + vlan + align + slack*/
  445. #define NV_RX_HEADERS (64)
  446. /* even more slack. */
  447. #define NV_RX_ALLOC_PAD (64)
  448. /* maximum mtu size */
  449. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  450. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  451. #define OOM_REFILL (1+HZ/20)
  452. #define POLL_WAIT (1+HZ/100)
  453. #define LINK_TIMEOUT (3*HZ)
  454. #define STATS_INTERVAL (10*HZ)
  455. /*
  456. * desc_ver values:
  457. * The nic supports three different descriptor types:
  458. * - DESC_VER_1: Original
  459. * - DESC_VER_2: support for jumbo frames.
  460. * - DESC_VER_3: 64-bit format.
  461. */
  462. #define DESC_VER_1 1
  463. #define DESC_VER_2 2
  464. #define DESC_VER_3 3
  465. /* PHY defines */
  466. #define PHY_OUI_MARVELL 0x5043
  467. #define PHY_OUI_CICADA 0x03f1
  468. #define PHY_OUI_VITESSE 0x01c1
  469. #define PHY_OUI_REALTEK 0x0732
  470. #define PHY_OUI_REALTEK2 0x0020
  471. #define PHYID1_OUI_MASK 0x03ff
  472. #define PHYID1_OUI_SHFT 6
  473. #define PHYID2_OUI_MASK 0xfc00
  474. #define PHYID2_OUI_SHFT 10
  475. #define PHYID2_MODEL_MASK 0x03f0
  476. #define PHY_MODEL_REALTEK_8211 0x0110
  477. #define PHY_REV_MASK 0x0001
  478. #define PHY_REV_REALTEK_8211B 0x0000
  479. #define PHY_REV_REALTEK_8211C 0x0001
  480. #define PHY_MODEL_REALTEK_8201 0x0200
  481. #define PHY_MODEL_MARVELL_E3016 0x0220
  482. #define PHY_MARVELL_E3016_INITMASK 0x0300
  483. #define PHY_CICADA_INIT1 0x0f000
  484. #define PHY_CICADA_INIT2 0x0e00
  485. #define PHY_CICADA_INIT3 0x01000
  486. #define PHY_CICADA_INIT4 0x0200
  487. #define PHY_CICADA_INIT5 0x0004
  488. #define PHY_CICADA_INIT6 0x02000
  489. #define PHY_VITESSE_INIT_REG1 0x1f
  490. #define PHY_VITESSE_INIT_REG2 0x10
  491. #define PHY_VITESSE_INIT_REG3 0x11
  492. #define PHY_VITESSE_INIT_REG4 0x12
  493. #define PHY_VITESSE_INIT_MSK1 0xc
  494. #define PHY_VITESSE_INIT_MSK2 0x0180
  495. #define PHY_VITESSE_INIT1 0x52b5
  496. #define PHY_VITESSE_INIT2 0xaf8a
  497. #define PHY_VITESSE_INIT3 0x8
  498. #define PHY_VITESSE_INIT4 0x8f8a
  499. #define PHY_VITESSE_INIT5 0xaf86
  500. #define PHY_VITESSE_INIT6 0x8f86
  501. #define PHY_VITESSE_INIT7 0xaf82
  502. #define PHY_VITESSE_INIT8 0x0100
  503. #define PHY_VITESSE_INIT9 0x8f82
  504. #define PHY_VITESSE_INIT10 0x0
  505. #define PHY_REALTEK_INIT_REG1 0x1f
  506. #define PHY_REALTEK_INIT_REG2 0x19
  507. #define PHY_REALTEK_INIT_REG3 0x13
  508. #define PHY_REALTEK_INIT_REG4 0x14
  509. #define PHY_REALTEK_INIT_REG5 0x18
  510. #define PHY_REALTEK_INIT_REG6 0x11
  511. #define PHY_REALTEK_INIT_REG7 0x01
  512. #define PHY_REALTEK_INIT1 0x0000
  513. #define PHY_REALTEK_INIT2 0x8e00
  514. #define PHY_REALTEK_INIT3 0x0001
  515. #define PHY_REALTEK_INIT4 0xad17
  516. #define PHY_REALTEK_INIT5 0xfb54
  517. #define PHY_REALTEK_INIT6 0xf5c7
  518. #define PHY_REALTEK_INIT7 0x1000
  519. #define PHY_REALTEK_INIT8 0x0003
  520. #define PHY_REALTEK_INIT9 0x0008
  521. #define PHY_REALTEK_INIT10 0x0005
  522. #define PHY_REALTEK_INIT11 0x0200
  523. #define PHY_REALTEK_INIT_MSK1 0x0003
  524. #define PHY_GIGABIT 0x0100
  525. #define PHY_TIMEOUT 0x1
  526. #define PHY_ERROR 0x2
  527. #define PHY_100 0x1
  528. #define PHY_1000 0x2
  529. #define PHY_HALF 0x100
  530. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  531. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  532. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  533. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  534. #define NV_PAUSEFRAME_RX_REQ 0x0010
  535. #define NV_PAUSEFRAME_TX_REQ 0x0020
  536. #define NV_PAUSEFRAME_AUTONEG 0x0040
  537. /* MSI/MSI-X defines */
  538. #define NV_MSI_X_MAX_VECTORS 8
  539. #define NV_MSI_X_VECTORS_MASK 0x000f
  540. #define NV_MSI_CAPABLE 0x0010
  541. #define NV_MSI_X_CAPABLE 0x0020
  542. #define NV_MSI_ENABLED 0x0040
  543. #define NV_MSI_X_ENABLED 0x0080
  544. #define NV_MSI_X_VECTOR_ALL 0x0
  545. #define NV_MSI_X_VECTOR_RX 0x0
  546. #define NV_MSI_X_VECTOR_TX 0x1
  547. #define NV_MSI_X_VECTOR_OTHER 0x2
  548. #define NV_MSI_PRIV_OFFSET 0x68
  549. #define NV_MSI_PRIV_VALUE 0xffffffff
  550. #define NV_RESTART_TX 0x1
  551. #define NV_RESTART_RX 0x2
  552. #define NV_TX_LIMIT_COUNT 16
  553. #define NV_DYNAMIC_THRESHOLD 4
  554. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  555. /* statistics */
  556. struct nv_ethtool_str {
  557. char name[ETH_GSTRING_LEN];
  558. };
  559. static const struct nv_ethtool_str nv_estats_str[] = {
  560. { "tx_bytes" },
  561. { "tx_zero_rexmt" },
  562. { "tx_one_rexmt" },
  563. { "tx_many_rexmt" },
  564. { "tx_late_collision" },
  565. { "tx_fifo_errors" },
  566. { "tx_carrier_errors" },
  567. { "tx_excess_deferral" },
  568. { "tx_retry_error" },
  569. { "rx_frame_error" },
  570. { "rx_extra_byte" },
  571. { "rx_late_collision" },
  572. { "rx_runt" },
  573. { "rx_frame_too_long" },
  574. { "rx_over_errors" },
  575. { "rx_crc_errors" },
  576. { "rx_frame_align_error" },
  577. { "rx_length_error" },
  578. { "rx_unicast" },
  579. { "rx_multicast" },
  580. { "rx_broadcast" },
  581. { "rx_packets" },
  582. { "rx_errors_total" },
  583. { "tx_errors_total" },
  584. /* version 2 stats */
  585. { "tx_deferral" },
  586. { "tx_packets" },
  587. { "rx_bytes" },
  588. { "tx_pause" },
  589. { "rx_pause" },
  590. { "rx_drop_frame" },
  591. /* version 3 stats */
  592. { "tx_unicast" },
  593. { "tx_multicast" },
  594. { "tx_broadcast" }
  595. };
  596. struct nv_ethtool_stats {
  597. u64 tx_bytes;
  598. u64 tx_zero_rexmt;
  599. u64 tx_one_rexmt;
  600. u64 tx_many_rexmt;
  601. u64 tx_late_collision;
  602. u64 tx_fifo_errors;
  603. u64 tx_carrier_errors;
  604. u64 tx_excess_deferral;
  605. u64 tx_retry_error;
  606. u64 rx_frame_error;
  607. u64 rx_extra_byte;
  608. u64 rx_late_collision;
  609. u64 rx_runt;
  610. u64 rx_frame_too_long;
  611. u64 rx_over_errors;
  612. u64 rx_crc_errors;
  613. u64 rx_frame_align_error;
  614. u64 rx_length_error;
  615. u64 rx_unicast;
  616. u64 rx_multicast;
  617. u64 rx_broadcast;
  618. u64 rx_packets;
  619. u64 rx_errors_total;
  620. u64 tx_errors_total;
  621. /* version 2 stats */
  622. u64 tx_deferral;
  623. u64 tx_packets;
  624. u64 rx_bytes;
  625. u64 tx_pause;
  626. u64 rx_pause;
  627. u64 rx_drop_frame;
  628. /* version 3 stats */
  629. u64 tx_unicast;
  630. u64 tx_multicast;
  631. u64 tx_broadcast;
  632. };
  633. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  634. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  635. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  636. /* diagnostics */
  637. #define NV_TEST_COUNT_BASE 3
  638. #define NV_TEST_COUNT_EXTENDED 4
  639. static const struct nv_ethtool_str nv_etests_str[] = {
  640. { "link (online/offline)" },
  641. { "register (offline) " },
  642. { "interrupt (offline) " },
  643. { "loopback (offline) " }
  644. };
  645. struct register_test {
  646. __u32 reg;
  647. __u32 mask;
  648. };
  649. static const struct register_test nv_registers_test[] = {
  650. { NvRegUnknownSetupReg6, 0x01 },
  651. { NvRegMisc1, 0x03c },
  652. { NvRegOffloadConfig, 0x03ff },
  653. { NvRegMulticastAddrA, 0xffffffff },
  654. { NvRegTxWatermark, 0x0ff },
  655. { NvRegWakeUpFlags, 0x07777 },
  656. { 0,0 }
  657. };
  658. struct nv_skb_map {
  659. struct sk_buff *skb;
  660. dma_addr_t dma;
  661. unsigned int dma_len:31;
  662. unsigned int dma_single:1;
  663. struct ring_desc_ex *first_tx_desc;
  664. struct nv_skb_map *next_tx_ctx;
  665. };
  666. /*
  667. * SMP locking:
  668. * All hardware access under netdev_priv(dev)->lock, except the performance
  669. * critical parts:
  670. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  671. * by the arch code for interrupts.
  672. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  673. * needs netdev_priv(dev)->lock :-(
  674. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  675. */
  676. /* in dev: base, irq */
  677. struct fe_priv {
  678. spinlock_t lock;
  679. struct net_device *dev;
  680. struct napi_struct napi;
  681. /* General data:
  682. * Locking: spin_lock(&np->lock); */
  683. struct nv_ethtool_stats estats;
  684. int in_shutdown;
  685. u32 linkspeed;
  686. int duplex;
  687. int autoneg;
  688. int fixed_mode;
  689. int phyaddr;
  690. int wolenabled;
  691. unsigned int phy_oui;
  692. unsigned int phy_model;
  693. unsigned int phy_rev;
  694. u16 gigabit;
  695. int intr_test;
  696. int recover_error;
  697. int quiet_count;
  698. /* General data: RO fields */
  699. dma_addr_t ring_addr;
  700. struct pci_dev *pci_dev;
  701. u32 orig_mac[2];
  702. u32 events;
  703. u32 irqmask;
  704. u32 desc_ver;
  705. u32 txrxctl_bits;
  706. u32 vlanctl_bits;
  707. u32 driver_data;
  708. u32 device_id;
  709. u32 register_size;
  710. int rx_csum;
  711. u32 mac_in_use;
  712. int mgmt_version;
  713. int mgmt_sema;
  714. void __iomem *base;
  715. /* rx specific fields.
  716. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  717. */
  718. union ring_type get_rx, put_rx, first_rx, last_rx;
  719. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  720. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  721. struct nv_skb_map *rx_skb;
  722. union ring_type rx_ring;
  723. unsigned int rx_buf_sz;
  724. unsigned int pkt_limit;
  725. struct timer_list oom_kick;
  726. struct timer_list nic_poll;
  727. struct timer_list stats_poll;
  728. u32 nic_poll_irq;
  729. int rx_ring_size;
  730. /* media detection workaround.
  731. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  732. */
  733. int need_linktimer;
  734. unsigned long link_timeout;
  735. /*
  736. * tx specific fields.
  737. */
  738. union ring_type get_tx, put_tx, first_tx, last_tx;
  739. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  740. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  741. struct nv_skb_map *tx_skb;
  742. union ring_type tx_ring;
  743. u32 tx_flags;
  744. int tx_ring_size;
  745. int tx_limit;
  746. u32 tx_pkts_in_progress;
  747. struct nv_skb_map *tx_change_owner;
  748. struct nv_skb_map *tx_end_flip;
  749. int tx_stop;
  750. /* vlan fields */
  751. struct vlan_group *vlangrp;
  752. /* msi/msi-x fields */
  753. u32 msi_flags;
  754. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  755. /* flow control */
  756. u32 pause_flags;
  757. /* power saved state */
  758. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  759. /* for different msi-x irq type */
  760. char name_rx[IFNAMSIZ + 3]; /* -rx */
  761. char name_tx[IFNAMSIZ + 3]; /* -tx */
  762. char name_other[IFNAMSIZ + 6]; /* -other */
  763. };
  764. /*
  765. * Maximum number of loops until we assume that a bit in the irq mask
  766. * is stuck. Overridable with module param.
  767. */
  768. static int max_interrupt_work = 4;
  769. /*
  770. * Optimization can be either throuput mode or cpu mode
  771. *
  772. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  773. * CPU Mode: Interrupts are controlled by a timer.
  774. */
  775. enum {
  776. NV_OPTIMIZATION_MODE_THROUGHPUT,
  777. NV_OPTIMIZATION_MODE_CPU,
  778. NV_OPTIMIZATION_MODE_DYNAMIC
  779. };
  780. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  781. /*
  782. * Poll interval for timer irq
  783. *
  784. * This interval determines how frequent an interrupt is generated.
  785. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  786. * Min = 0, and Max = 65535
  787. */
  788. static int poll_interval = -1;
  789. /*
  790. * MSI interrupts
  791. */
  792. enum {
  793. NV_MSI_INT_DISABLED,
  794. NV_MSI_INT_ENABLED
  795. };
  796. static int msi = NV_MSI_INT_ENABLED;
  797. /*
  798. * MSIX interrupts
  799. */
  800. enum {
  801. NV_MSIX_INT_DISABLED,
  802. NV_MSIX_INT_ENABLED
  803. };
  804. static int msix = NV_MSIX_INT_ENABLED;
  805. /*
  806. * DMA 64bit
  807. */
  808. enum {
  809. NV_DMA_64BIT_DISABLED,
  810. NV_DMA_64BIT_ENABLED
  811. };
  812. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  813. /*
  814. * Crossover Detection
  815. * Realtek 8201 phy + some OEM boards do not work properly.
  816. */
  817. enum {
  818. NV_CROSSOVER_DETECTION_DISABLED,
  819. NV_CROSSOVER_DETECTION_ENABLED
  820. };
  821. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  822. /*
  823. * Power down phy when interface is down (persists through reboot;
  824. * older Linux and other OSes may not power it up again)
  825. */
  826. static int phy_power_down = 0;
  827. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  828. {
  829. return netdev_priv(dev);
  830. }
  831. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  832. {
  833. return ((struct fe_priv *)netdev_priv(dev))->base;
  834. }
  835. static inline void pci_push(u8 __iomem *base)
  836. {
  837. /* force out pending posted writes */
  838. readl(base);
  839. }
  840. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  841. {
  842. return le32_to_cpu(prd->flaglen)
  843. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  844. }
  845. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  846. {
  847. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  848. }
  849. static bool nv_optimized(struct fe_priv *np)
  850. {
  851. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  852. return false;
  853. return true;
  854. }
  855. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  856. int delay, int delaymax, const char *msg)
  857. {
  858. u8 __iomem *base = get_hwbase(dev);
  859. pci_push(base);
  860. do {
  861. udelay(delay);
  862. delaymax -= delay;
  863. if (delaymax < 0) {
  864. if (msg)
  865. printk("%s", msg);
  866. return 1;
  867. }
  868. } while ((readl(base + offset) & mask) != target);
  869. return 0;
  870. }
  871. #define NV_SETUP_RX_RING 0x01
  872. #define NV_SETUP_TX_RING 0x02
  873. static inline u32 dma_low(dma_addr_t addr)
  874. {
  875. return addr;
  876. }
  877. static inline u32 dma_high(dma_addr_t addr)
  878. {
  879. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  880. }
  881. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  882. {
  883. struct fe_priv *np = get_nvpriv(dev);
  884. u8 __iomem *base = get_hwbase(dev);
  885. if (!nv_optimized(np)) {
  886. if (rxtx_flags & NV_SETUP_RX_RING) {
  887. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  888. }
  889. if (rxtx_flags & NV_SETUP_TX_RING) {
  890. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  891. }
  892. } else {
  893. if (rxtx_flags & NV_SETUP_RX_RING) {
  894. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  895. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  896. }
  897. if (rxtx_flags & NV_SETUP_TX_RING) {
  898. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  899. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  900. }
  901. }
  902. }
  903. static void free_rings(struct net_device *dev)
  904. {
  905. struct fe_priv *np = get_nvpriv(dev);
  906. if (!nv_optimized(np)) {
  907. if (np->rx_ring.orig)
  908. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  909. np->rx_ring.orig, np->ring_addr);
  910. } else {
  911. if (np->rx_ring.ex)
  912. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  913. np->rx_ring.ex, np->ring_addr);
  914. }
  915. if (np->rx_skb)
  916. kfree(np->rx_skb);
  917. if (np->tx_skb)
  918. kfree(np->tx_skb);
  919. }
  920. static int using_multi_irqs(struct net_device *dev)
  921. {
  922. struct fe_priv *np = get_nvpriv(dev);
  923. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  924. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  925. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  926. return 0;
  927. else
  928. return 1;
  929. }
  930. static void nv_txrx_gate(struct net_device *dev, bool gate)
  931. {
  932. struct fe_priv *np = get_nvpriv(dev);
  933. u8 __iomem *base = get_hwbase(dev);
  934. u32 powerstate;
  935. if (!np->mac_in_use &&
  936. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  937. powerstate = readl(base + NvRegPowerState2);
  938. if (gate)
  939. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  940. else
  941. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  942. writel(powerstate, base + NvRegPowerState2);
  943. }
  944. }
  945. static void nv_enable_irq(struct net_device *dev)
  946. {
  947. struct fe_priv *np = get_nvpriv(dev);
  948. if (!using_multi_irqs(dev)) {
  949. if (np->msi_flags & NV_MSI_X_ENABLED)
  950. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  951. else
  952. enable_irq(np->pci_dev->irq);
  953. } else {
  954. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  955. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  956. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  957. }
  958. }
  959. static void nv_disable_irq(struct net_device *dev)
  960. {
  961. struct fe_priv *np = get_nvpriv(dev);
  962. if (!using_multi_irqs(dev)) {
  963. if (np->msi_flags & NV_MSI_X_ENABLED)
  964. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  965. else
  966. disable_irq(np->pci_dev->irq);
  967. } else {
  968. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  969. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  970. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  971. }
  972. }
  973. /* In MSIX mode, a write to irqmask behaves as XOR */
  974. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  975. {
  976. u8 __iomem *base = get_hwbase(dev);
  977. writel(mask, base + NvRegIrqMask);
  978. }
  979. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  980. {
  981. struct fe_priv *np = get_nvpriv(dev);
  982. u8 __iomem *base = get_hwbase(dev);
  983. if (np->msi_flags & NV_MSI_X_ENABLED) {
  984. writel(mask, base + NvRegIrqMask);
  985. } else {
  986. if (np->msi_flags & NV_MSI_ENABLED)
  987. writel(0, base + NvRegMSIIrqMask);
  988. writel(0, base + NvRegIrqMask);
  989. }
  990. }
  991. static void nv_napi_enable(struct net_device *dev)
  992. {
  993. #ifdef CONFIG_FORCEDETH_NAPI
  994. struct fe_priv *np = get_nvpriv(dev);
  995. napi_enable(&np->napi);
  996. #endif
  997. }
  998. static void nv_napi_disable(struct net_device *dev)
  999. {
  1000. #ifdef CONFIG_FORCEDETH_NAPI
  1001. struct fe_priv *np = get_nvpriv(dev);
  1002. napi_disable(&np->napi);
  1003. #endif
  1004. }
  1005. #define MII_READ (-1)
  1006. /* mii_rw: read/write a register on the PHY.
  1007. *
  1008. * Caller must guarantee serialization
  1009. */
  1010. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1011. {
  1012. u8 __iomem *base = get_hwbase(dev);
  1013. u32 reg;
  1014. int retval;
  1015. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1016. reg = readl(base + NvRegMIIControl);
  1017. if (reg & NVREG_MIICTL_INUSE) {
  1018. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1019. udelay(NV_MIIBUSY_DELAY);
  1020. }
  1021. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1022. if (value != MII_READ) {
  1023. writel(value, base + NvRegMIIData);
  1024. reg |= NVREG_MIICTL_WRITE;
  1025. }
  1026. writel(reg, base + NvRegMIIControl);
  1027. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1028. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1029. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1030. dev->name, miireg, addr);
  1031. retval = -1;
  1032. } else if (value != MII_READ) {
  1033. /* it was a write operation - fewer failures are detectable */
  1034. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1035. dev->name, value, miireg, addr);
  1036. retval = 0;
  1037. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1038. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1039. dev->name, miireg, addr);
  1040. retval = -1;
  1041. } else {
  1042. retval = readl(base + NvRegMIIData);
  1043. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1044. dev->name, miireg, addr, retval);
  1045. }
  1046. return retval;
  1047. }
  1048. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1049. {
  1050. struct fe_priv *np = netdev_priv(dev);
  1051. u32 miicontrol;
  1052. unsigned int tries = 0;
  1053. miicontrol = BMCR_RESET | bmcr_setup;
  1054. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1055. return -1;
  1056. }
  1057. /* wait for 500ms */
  1058. msleep(500);
  1059. /* must wait till reset is deasserted */
  1060. while (miicontrol & BMCR_RESET) {
  1061. msleep(10);
  1062. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1063. /* FIXME: 100 tries seem excessive */
  1064. if (tries++ > 100)
  1065. return -1;
  1066. }
  1067. return 0;
  1068. }
  1069. static int phy_init(struct net_device *dev)
  1070. {
  1071. struct fe_priv *np = get_nvpriv(dev);
  1072. u8 __iomem *base = get_hwbase(dev);
  1073. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1074. /* phy errata for E3016 phy */
  1075. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1076. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1077. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1078. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1079. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1080. return PHY_ERROR;
  1081. }
  1082. }
  1083. if (np->phy_oui == PHY_OUI_REALTEK) {
  1084. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1085. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1086. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1087. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1088. return PHY_ERROR;
  1089. }
  1090. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1091. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1092. return PHY_ERROR;
  1093. }
  1094. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1095. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1096. return PHY_ERROR;
  1097. }
  1098. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1099. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1100. return PHY_ERROR;
  1101. }
  1102. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1103. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1104. return PHY_ERROR;
  1105. }
  1106. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1107. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1108. return PHY_ERROR;
  1109. }
  1110. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1111. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1112. return PHY_ERROR;
  1113. }
  1114. }
  1115. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1116. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1117. u32 powerstate = readl(base + NvRegPowerState2);
  1118. /* need to perform hw phy reset */
  1119. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1120. writel(powerstate, base + NvRegPowerState2);
  1121. msleep(25);
  1122. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1123. writel(powerstate, base + NvRegPowerState2);
  1124. msleep(25);
  1125. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1126. reg |= PHY_REALTEK_INIT9;
  1127. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1128. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1129. return PHY_ERROR;
  1130. }
  1131. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1132. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1133. return PHY_ERROR;
  1134. }
  1135. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1136. if (!(reg & PHY_REALTEK_INIT11)) {
  1137. reg |= PHY_REALTEK_INIT11;
  1138. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1139. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1140. return PHY_ERROR;
  1141. }
  1142. }
  1143. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1144. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1145. return PHY_ERROR;
  1146. }
  1147. }
  1148. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1149. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1150. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1151. phy_reserved |= PHY_REALTEK_INIT7;
  1152. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1153. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1154. return PHY_ERROR;
  1155. }
  1156. }
  1157. }
  1158. }
  1159. /* set advertise register */
  1160. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1161. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1162. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1163. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1164. return PHY_ERROR;
  1165. }
  1166. /* get phy interface type */
  1167. phyinterface = readl(base + NvRegPhyInterface);
  1168. /* see if gigabit phy */
  1169. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1170. if (mii_status & PHY_GIGABIT) {
  1171. np->gigabit = PHY_GIGABIT;
  1172. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1173. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1174. if (phyinterface & PHY_RGMII)
  1175. mii_control_1000 |= ADVERTISE_1000FULL;
  1176. else
  1177. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1178. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1179. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1180. return PHY_ERROR;
  1181. }
  1182. }
  1183. else
  1184. np->gigabit = 0;
  1185. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1186. mii_control |= BMCR_ANENABLE;
  1187. if (np->phy_oui == PHY_OUI_REALTEK &&
  1188. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1189. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1190. /* start autoneg since we already performed hw reset above */
  1191. mii_control |= BMCR_ANRESTART;
  1192. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1193. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1194. return PHY_ERROR;
  1195. }
  1196. } else {
  1197. /* reset the phy
  1198. * (certain phys need bmcr to be setup with reset)
  1199. */
  1200. if (phy_reset(dev, mii_control)) {
  1201. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1202. return PHY_ERROR;
  1203. }
  1204. }
  1205. /* phy vendor specific configuration */
  1206. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1207. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1208. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1209. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1210. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1211. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1212. return PHY_ERROR;
  1213. }
  1214. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1215. phy_reserved |= PHY_CICADA_INIT5;
  1216. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1217. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1218. return PHY_ERROR;
  1219. }
  1220. }
  1221. if (np->phy_oui == PHY_OUI_CICADA) {
  1222. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1223. phy_reserved |= PHY_CICADA_INIT6;
  1224. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1225. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1226. return PHY_ERROR;
  1227. }
  1228. }
  1229. if (np->phy_oui == PHY_OUI_VITESSE) {
  1230. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1231. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1232. return PHY_ERROR;
  1233. }
  1234. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1235. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1236. return PHY_ERROR;
  1237. }
  1238. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1239. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1240. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1241. return PHY_ERROR;
  1242. }
  1243. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1244. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1245. phy_reserved |= PHY_VITESSE_INIT3;
  1246. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1247. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1248. return PHY_ERROR;
  1249. }
  1250. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1251. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1252. return PHY_ERROR;
  1253. }
  1254. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1255. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1256. return PHY_ERROR;
  1257. }
  1258. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1259. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1260. phy_reserved |= PHY_VITESSE_INIT3;
  1261. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1262. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1263. return PHY_ERROR;
  1264. }
  1265. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1266. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1267. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1268. return PHY_ERROR;
  1269. }
  1270. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1271. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1272. return PHY_ERROR;
  1273. }
  1274. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1275. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1276. return PHY_ERROR;
  1277. }
  1278. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1279. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1280. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1281. return PHY_ERROR;
  1282. }
  1283. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1284. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1285. phy_reserved |= PHY_VITESSE_INIT8;
  1286. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1287. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1288. return PHY_ERROR;
  1289. }
  1290. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1291. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1292. return PHY_ERROR;
  1293. }
  1294. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1295. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1296. return PHY_ERROR;
  1297. }
  1298. }
  1299. if (np->phy_oui == PHY_OUI_REALTEK) {
  1300. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1301. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1302. /* reset could have cleared these out, set them back */
  1303. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1304. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1305. return PHY_ERROR;
  1306. }
  1307. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1308. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1309. return PHY_ERROR;
  1310. }
  1311. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1312. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1313. return PHY_ERROR;
  1314. }
  1315. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1316. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1317. return PHY_ERROR;
  1318. }
  1319. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1320. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1321. return PHY_ERROR;
  1322. }
  1323. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1324. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1325. return PHY_ERROR;
  1326. }
  1327. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1328. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1329. return PHY_ERROR;
  1330. }
  1331. }
  1332. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1333. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1334. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1335. phy_reserved |= PHY_REALTEK_INIT7;
  1336. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1337. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1338. return PHY_ERROR;
  1339. }
  1340. }
  1341. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1342. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1343. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1344. return PHY_ERROR;
  1345. }
  1346. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1347. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1348. phy_reserved |= PHY_REALTEK_INIT3;
  1349. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1350. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1351. return PHY_ERROR;
  1352. }
  1353. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1354. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1355. return PHY_ERROR;
  1356. }
  1357. }
  1358. }
  1359. }
  1360. /* some phys clear out pause advertisment on reset, set it back */
  1361. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1362. /* restart auto negotiation, power down phy */
  1363. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1364. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1365. if (phy_power_down) {
  1366. mii_control |= BMCR_PDOWN;
  1367. }
  1368. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1369. return PHY_ERROR;
  1370. }
  1371. return 0;
  1372. }
  1373. static void nv_start_rx(struct net_device *dev)
  1374. {
  1375. struct fe_priv *np = netdev_priv(dev);
  1376. u8 __iomem *base = get_hwbase(dev);
  1377. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1378. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1379. /* Already running? Stop it. */
  1380. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1381. rx_ctrl &= ~NVREG_RCVCTL_START;
  1382. writel(rx_ctrl, base + NvRegReceiverControl);
  1383. pci_push(base);
  1384. }
  1385. writel(np->linkspeed, base + NvRegLinkSpeed);
  1386. pci_push(base);
  1387. rx_ctrl |= NVREG_RCVCTL_START;
  1388. if (np->mac_in_use)
  1389. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1390. writel(rx_ctrl, base + NvRegReceiverControl);
  1391. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1392. dev->name, np->duplex, np->linkspeed);
  1393. pci_push(base);
  1394. }
  1395. static void nv_stop_rx(struct net_device *dev)
  1396. {
  1397. struct fe_priv *np = netdev_priv(dev);
  1398. u8 __iomem *base = get_hwbase(dev);
  1399. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1400. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1401. if (!np->mac_in_use)
  1402. rx_ctrl &= ~NVREG_RCVCTL_START;
  1403. else
  1404. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1405. writel(rx_ctrl, base + NvRegReceiverControl);
  1406. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1407. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1408. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1409. udelay(NV_RXSTOP_DELAY2);
  1410. if (!np->mac_in_use)
  1411. writel(0, base + NvRegLinkSpeed);
  1412. }
  1413. static void nv_start_tx(struct net_device *dev)
  1414. {
  1415. struct fe_priv *np = netdev_priv(dev);
  1416. u8 __iomem *base = get_hwbase(dev);
  1417. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1418. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1419. tx_ctrl |= NVREG_XMITCTL_START;
  1420. if (np->mac_in_use)
  1421. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1422. writel(tx_ctrl, base + NvRegTransmitterControl);
  1423. pci_push(base);
  1424. }
  1425. static void nv_stop_tx(struct net_device *dev)
  1426. {
  1427. struct fe_priv *np = netdev_priv(dev);
  1428. u8 __iomem *base = get_hwbase(dev);
  1429. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1430. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1431. if (!np->mac_in_use)
  1432. tx_ctrl &= ~NVREG_XMITCTL_START;
  1433. else
  1434. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1435. writel(tx_ctrl, base + NvRegTransmitterControl);
  1436. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1437. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1438. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1439. udelay(NV_TXSTOP_DELAY2);
  1440. if (!np->mac_in_use)
  1441. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1442. base + NvRegTransmitPoll);
  1443. }
  1444. static void nv_start_rxtx(struct net_device *dev)
  1445. {
  1446. nv_start_rx(dev);
  1447. nv_start_tx(dev);
  1448. }
  1449. static void nv_stop_rxtx(struct net_device *dev)
  1450. {
  1451. nv_stop_rx(dev);
  1452. nv_stop_tx(dev);
  1453. }
  1454. static void nv_txrx_reset(struct net_device *dev)
  1455. {
  1456. struct fe_priv *np = netdev_priv(dev);
  1457. u8 __iomem *base = get_hwbase(dev);
  1458. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1459. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1460. pci_push(base);
  1461. udelay(NV_TXRX_RESET_DELAY);
  1462. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1463. pci_push(base);
  1464. }
  1465. static void nv_mac_reset(struct net_device *dev)
  1466. {
  1467. struct fe_priv *np = netdev_priv(dev);
  1468. u8 __iomem *base = get_hwbase(dev);
  1469. u32 temp1, temp2, temp3;
  1470. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1471. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1472. pci_push(base);
  1473. /* save registers since they will be cleared on reset */
  1474. temp1 = readl(base + NvRegMacAddrA);
  1475. temp2 = readl(base + NvRegMacAddrB);
  1476. temp3 = readl(base + NvRegTransmitPoll);
  1477. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1478. pci_push(base);
  1479. udelay(NV_MAC_RESET_DELAY);
  1480. writel(0, base + NvRegMacReset);
  1481. pci_push(base);
  1482. udelay(NV_MAC_RESET_DELAY);
  1483. /* restore saved registers */
  1484. writel(temp1, base + NvRegMacAddrA);
  1485. writel(temp2, base + NvRegMacAddrB);
  1486. writel(temp3, base + NvRegTransmitPoll);
  1487. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1488. pci_push(base);
  1489. }
  1490. static void nv_get_hw_stats(struct net_device *dev)
  1491. {
  1492. struct fe_priv *np = netdev_priv(dev);
  1493. u8 __iomem *base = get_hwbase(dev);
  1494. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1495. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1496. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1497. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1498. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1499. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1500. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1501. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1502. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1503. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1504. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1505. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1506. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1507. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1508. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1509. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1510. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1511. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1512. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1513. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1514. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1515. np->estats.rx_packets =
  1516. np->estats.rx_unicast +
  1517. np->estats.rx_multicast +
  1518. np->estats.rx_broadcast;
  1519. np->estats.rx_errors_total =
  1520. np->estats.rx_crc_errors +
  1521. np->estats.rx_over_errors +
  1522. np->estats.rx_frame_error +
  1523. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1524. np->estats.rx_late_collision +
  1525. np->estats.rx_runt +
  1526. np->estats.rx_frame_too_long;
  1527. np->estats.tx_errors_total =
  1528. np->estats.tx_late_collision +
  1529. np->estats.tx_fifo_errors +
  1530. np->estats.tx_carrier_errors +
  1531. np->estats.tx_excess_deferral +
  1532. np->estats.tx_retry_error;
  1533. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1534. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1535. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1536. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1537. np->estats.tx_pause += readl(base + NvRegTxPause);
  1538. np->estats.rx_pause += readl(base + NvRegRxPause);
  1539. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1540. }
  1541. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1542. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1543. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1544. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1545. }
  1546. }
  1547. /*
  1548. * nv_get_stats: dev->get_stats function
  1549. * Get latest stats value from the nic.
  1550. * Called with read_lock(&dev_base_lock) held for read -
  1551. * only synchronized against unregister_netdevice.
  1552. */
  1553. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1554. {
  1555. struct fe_priv *np = netdev_priv(dev);
  1556. /* If the nic supports hw counters then retrieve latest values */
  1557. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1558. nv_get_hw_stats(dev);
  1559. /* copy to net_device stats */
  1560. dev->stats.tx_bytes = np->estats.tx_bytes;
  1561. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1562. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1563. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1564. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1565. dev->stats.rx_errors = np->estats.rx_errors_total;
  1566. dev->stats.tx_errors = np->estats.tx_errors_total;
  1567. }
  1568. return &dev->stats;
  1569. }
  1570. /*
  1571. * nv_alloc_rx: fill rx ring entries.
  1572. * Return 1 if the allocations for the skbs failed and the
  1573. * rx engine is without Available descriptors
  1574. */
  1575. static int nv_alloc_rx(struct net_device *dev)
  1576. {
  1577. struct fe_priv *np = netdev_priv(dev);
  1578. struct ring_desc* less_rx;
  1579. less_rx = np->get_rx.orig;
  1580. if (less_rx-- == np->first_rx.orig)
  1581. less_rx = np->last_rx.orig;
  1582. while (np->put_rx.orig != less_rx) {
  1583. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1584. if (skb) {
  1585. np->put_rx_ctx->skb = skb;
  1586. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1587. skb->data,
  1588. skb_tailroom(skb),
  1589. PCI_DMA_FROMDEVICE);
  1590. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1591. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1592. wmb();
  1593. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1594. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1595. np->put_rx.orig = np->first_rx.orig;
  1596. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1597. np->put_rx_ctx = np->first_rx_ctx;
  1598. } else {
  1599. return 1;
  1600. }
  1601. }
  1602. return 0;
  1603. }
  1604. static int nv_alloc_rx_optimized(struct net_device *dev)
  1605. {
  1606. struct fe_priv *np = netdev_priv(dev);
  1607. struct ring_desc_ex* less_rx;
  1608. less_rx = np->get_rx.ex;
  1609. if (less_rx-- == np->first_rx.ex)
  1610. less_rx = np->last_rx.ex;
  1611. while (np->put_rx.ex != less_rx) {
  1612. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1613. if (skb) {
  1614. np->put_rx_ctx->skb = skb;
  1615. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1616. skb->data,
  1617. skb_tailroom(skb),
  1618. PCI_DMA_FROMDEVICE);
  1619. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1620. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1621. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1622. wmb();
  1623. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1624. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1625. np->put_rx.ex = np->first_rx.ex;
  1626. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1627. np->put_rx_ctx = np->first_rx_ctx;
  1628. } else {
  1629. return 1;
  1630. }
  1631. }
  1632. return 0;
  1633. }
  1634. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1635. #ifdef CONFIG_FORCEDETH_NAPI
  1636. static void nv_do_rx_refill(unsigned long data)
  1637. {
  1638. struct net_device *dev = (struct net_device *) data;
  1639. struct fe_priv *np = netdev_priv(dev);
  1640. /* Just reschedule NAPI rx processing */
  1641. napi_schedule(&np->napi);
  1642. }
  1643. #else
  1644. static void nv_do_rx_refill(unsigned long data)
  1645. {
  1646. struct net_device *dev = (struct net_device *) data;
  1647. struct fe_priv *np = netdev_priv(dev);
  1648. int retcode;
  1649. if (!using_multi_irqs(dev)) {
  1650. if (np->msi_flags & NV_MSI_X_ENABLED)
  1651. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1652. else
  1653. disable_irq(np->pci_dev->irq);
  1654. } else {
  1655. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1656. }
  1657. if (!nv_optimized(np))
  1658. retcode = nv_alloc_rx(dev);
  1659. else
  1660. retcode = nv_alloc_rx_optimized(dev);
  1661. if (retcode) {
  1662. spin_lock_irq(&np->lock);
  1663. if (!np->in_shutdown)
  1664. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1665. spin_unlock_irq(&np->lock);
  1666. }
  1667. if (!using_multi_irqs(dev)) {
  1668. if (np->msi_flags & NV_MSI_X_ENABLED)
  1669. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1670. else
  1671. enable_irq(np->pci_dev->irq);
  1672. } else {
  1673. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1674. }
  1675. }
  1676. #endif
  1677. static void nv_init_rx(struct net_device *dev)
  1678. {
  1679. struct fe_priv *np = netdev_priv(dev);
  1680. int i;
  1681. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1682. if (!nv_optimized(np))
  1683. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1684. else
  1685. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1686. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1687. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1688. for (i = 0; i < np->rx_ring_size; i++) {
  1689. if (!nv_optimized(np)) {
  1690. np->rx_ring.orig[i].flaglen = 0;
  1691. np->rx_ring.orig[i].buf = 0;
  1692. } else {
  1693. np->rx_ring.ex[i].flaglen = 0;
  1694. np->rx_ring.ex[i].txvlan = 0;
  1695. np->rx_ring.ex[i].bufhigh = 0;
  1696. np->rx_ring.ex[i].buflow = 0;
  1697. }
  1698. np->rx_skb[i].skb = NULL;
  1699. np->rx_skb[i].dma = 0;
  1700. }
  1701. }
  1702. static void nv_init_tx(struct net_device *dev)
  1703. {
  1704. struct fe_priv *np = netdev_priv(dev);
  1705. int i;
  1706. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1707. if (!nv_optimized(np))
  1708. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1709. else
  1710. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1711. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1712. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1713. np->tx_pkts_in_progress = 0;
  1714. np->tx_change_owner = NULL;
  1715. np->tx_end_flip = NULL;
  1716. np->tx_stop = 0;
  1717. for (i = 0; i < np->tx_ring_size; i++) {
  1718. if (!nv_optimized(np)) {
  1719. np->tx_ring.orig[i].flaglen = 0;
  1720. np->tx_ring.orig[i].buf = 0;
  1721. } else {
  1722. np->tx_ring.ex[i].flaglen = 0;
  1723. np->tx_ring.ex[i].txvlan = 0;
  1724. np->tx_ring.ex[i].bufhigh = 0;
  1725. np->tx_ring.ex[i].buflow = 0;
  1726. }
  1727. np->tx_skb[i].skb = NULL;
  1728. np->tx_skb[i].dma = 0;
  1729. np->tx_skb[i].dma_len = 0;
  1730. np->tx_skb[i].dma_single = 0;
  1731. np->tx_skb[i].first_tx_desc = NULL;
  1732. np->tx_skb[i].next_tx_ctx = NULL;
  1733. }
  1734. }
  1735. static int nv_init_ring(struct net_device *dev)
  1736. {
  1737. struct fe_priv *np = netdev_priv(dev);
  1738. nv_init_tx(dev);
  1739. nv_init_rx(dev);
  1740. if (!nv_optimized(np))
  1741. return nv_alloc_rx(dev);
  1742. else
  1743. return nv_alloc_rx_optimized(dev);
  1744. }
  1745. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1746. {
  1747. if (tx_skb->dma) {
  1748. if (tx_skb->dma_single)
  1749. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1750. tx_skb->dma_len,
  1751. PCI_DMA_TODEVICE);
  1752. else
  1753. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1754. tx_skb->dma_len,
  1755. PCI_DMA_TODEVICE);
  1756. tx_skb->dma = 0;
  1757. }
  1758. }
  1759. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1760. {
  1761. nv_unmap_txskb(np, tx_skb);
  1762. if (tx_skb->skb) {
  1763. dev_kfree_skb_any(tx_skb->skb);
  1764. tx_skb->skb = NULL;
  1765. return 1;
  1766. }
  1767. return 0;
  1768. }
  1769. static void nv_drain_tx(struct net_device *dev)
  1770. {
  1771. struct fe_priv *np = netdev_priv(dev);
  1772. unsigned int i;
  1773. for (i = 0; i < np->tx_ring_size; i++) {
  1774. if (!nv_optimized(np)) {
  1775. np->tx_ring.orig[i].flaglen = 0;
  1776. np->tx_ring.orig[i].buf = 0;
  1777. } else {
  1778. np->tx_ring.ex[i].flaglen = 0;
  1779. np->tx_ring.ex[i].txvlan = 0;
  1780. np->tx_ring.ex[i].bufhigh = 0;
  1781. np->tx_ring.ex[i].buflow = 0;
  1782. }
  1783. if (nv_release_txskb(np, &np->tx_skb[i]))
  1784. dev->stats.tx_dropped++;
  1785. np->tx_skb[i].dma = 0;
  1786. np->tx_skb[i].dma_len = 0;
  1787. np->tx_skb[i].dma_single = 0;
  1788. np->tx_skb[i].first_tx_desc = NULL;
  1789. np->tx_skb[i].next_tx_ctx = NULL;
  1790. }
  1791. np->tx_pkts_in_progress = 0;
  1792. np->tx_change_owner = NULL;
  1793. np->tx_end_flip = NULL;
  1794. }
  1795. static void nv_drain_rx(struct net_device *dev)
  1796. {
  1797. struct fe_priv *np = netdev_priv(dev);
  1798. int i;
  1799. for (i = 0; i < np->rx_ring_size; i++) {
  1800. if (!nv_optimized(np)) {
  1801. np->rx_ring.orig[i].flaglen = 0;
  1802. np->rx_ring.orig[i].buf = 0;
  1803. } else {
  1804. np->rx_ring.ex[i].flaglen = 0;
  1805. np->rx_ring.ex[i].txvlan = 0;
  1806. np->rx_ring.ex[i].bufhigh = 0;
  1807. np->rx_ring.ex[i].buflow = 0;
  1808. }
  1809. wmb();
  1810. if (np->rx_skb[i].skb) {
  1811. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1812. (skb_end_pointer(np->rx_skb[i].skb) -
  1813. np->rx_skb[i].skb->data),
  1814. PCI_DMA_FROMDEVICE);
  1815. dev_kfree_skb(np->rx_skb[i].skb);
  1816. np->rx_skb[i].skb = NULL;
  1817. }
  1818. }
  1819. }
  1820. static void nv_drain_rxtx(struct net_device *dev)
  1821. {
  1822. nv_drain_tx(dev);
  1823. nv_drain_rx(dev);
  1824. }
  1825. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1826. {
  1827. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1828. }
  1829. static void nv_legacybackoff_reseed(struct net_device *dev)
  1830. {
  1831. u8 __iomem *base = get_hwbase(dev);
  1832. u32 reg;
  1833. u32 low;
  1834. int tx_status = 0;
  1835. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1836. get_random_bytes(&low, sizeof(low));
  1837. reg |= low & NVREG_SLOTTIME_MASK;
  1838. /* Need to stop tx before change takes effect.
  1839. * Caller has already gained np->lock.
  1840. */
  1841. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1842. if (tx_status)
  1843. nv_stop_tx(dev);
  1844. nv_stop_rx(dev);
  1845. writel(reg, base + NvRegSlotTime);
  1846. if (tx_status)
  1847. nv_start_tx(dev);
  1848. nv_start_rx(dev);
  1849. }
  1850. /* Gear Backoff Seeds */
  1851. #define BACKOFF_SEEDSET_ROWS 8
  1852. #define BACKOFF_SEEDSET_LFSRS 15
  1853. /* Known Good seed sets */
  1854. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1855. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1856. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1857. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1858. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1859. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1860. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1861. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1862. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1863. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1864. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1865. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1866. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1867. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1868. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1869. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1870. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1871. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1872. static void nv_gear_backoff_reseed(struct net_device *dev)
  1873. {
  1874. u8 __iomem *base = get_hwbase(dev);
  1875. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1876. u32 temp, seedset, combinedSeed;
  1877. int i;
  1878. /* Setup seed for free running LFSR */
  1879. /* We are going to read the time stamp counter 3 times
  1880. and swizzle bits around to increase randomness */
  1881. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1882. miniseed1 &= 0x0fff;
  1883. if (miniseed1 == 0)
  1884. miniseed1 = 0xabc;
  1885. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1886. miniseed2 &= 0x0fff;
  1887. if (miniseed2 == 0)
  1888. miniseed2 = 0xabc;
  1889. miniseed2_reversed =
  1890. ((miniseed2 & 0xF00) >> 8) |
  1891. (miniseed2 & 0x0F0) |
  1892. ((miniseed2 & 0x00F) << 8);
  1893. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1894. miniseed3 &= 0x0fff;
  1895. if (miniseed3 == 0)
  1896. miniseed3 = 0xabc;
  1897. miniseed3_reversed =
  1898. ((miniseed3 & 0xF00) >> 8) |
  1899. (miniseed3 & 0x0F0) |
  1900. ((miniseed3 & 0x00F) << 8);
  1901. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1902. (miniseed2 ^ miniseed3_reversed);
  1903. /* Seeds can not be zero */
  1904. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1905. combinedSeed |= 0x08;
  1906. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1907. combinedSeed |= 0x8000;
  1908. /* No need to disable tx here */
  1909. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1910. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1911. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1912. writel(temp,base + NvRegBackOffControl);
  1913. /* Setup seeds for all gear LFSRs. */
  1914. get_random_bytes(&seedset, sizeof(seedset));
  1915. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1916. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1917. {
  1918. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1919. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1920. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1921. writel(temp, base + NvRegBackOffControl);
  1922. }
  1923. }
  1924. /*
  1925. * nv_start_xmit: dev->hard_start_xmit function
  1926. * Called with netif_tx_lock held.
  1927. */
  1928. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1929. {
  1930. struct fe_priv *np = netdev_priv(dev);
  1931. u32 tx_flags = 0;
  1932. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1933. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1934. unsigned int i;
  1935. u32 offset = 0;
  1936. u32 bcnt;
  1937. u32 size = skb->len-skb->data_len;
  1938. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1939. u32 empty_slots;
  1940. struct ring_desc* put_tx;
  1941. struct ring_desc* start_tx;
  1942. struct ring_desc* prev_tx;
  1943. struct nv_skb_map* prev_tx_ctx;
  1944. unsigned long flags;
  1945. /* add fragments to entries count */
  1946. for (i = 0; i < fragments; i++) {
  1947. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1948. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1949. }
  1950. spin_lock_irqsave(&np->lock, flags);
  1951. empty_slots = nv_get_empty_tx_slots(np);
  1952. if (unlikely(empty_slots <= entries)) {
  1953. netif_stop_queue(dev);
  1954. np->tx_stop = 1;
  1955. spin_unlock_irqrestore(&np->lock, flags);
  1956. return NETDEV_TX_BUSY;
  1957. }
  1958. spin_unlock_irqrestore(&np->lock, flags);
  1959. start_tx = put_tx = np->put_tx.orig;
  1960. /* setup the header buffer */
  1961. do {
  1962. prev_tx = put_tx;
  1963. prev_tx_ctx = np->put_tx_ctx;
  1964. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1965. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1966. PCI_DMA_TODEVICE);
  1967. np->put_tx_ctx->dma_len = bcnt;
  1968. np->put_tx_ctx->dma_single = 1;
  1969. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1970. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1971. tx_flags = np->tx_flags;
  1972. offset += bcnt;
  1973. size -= bcnt;
  1974. if (unlikely(put_tx++ == np->last_tx.orig))
  1975. put_tx = np->first_tx.orig;
  1976. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1977. np->put_tx_ctx = np->first_tx_ctx;
  1978. } while (size);
  1979. /* setup the fragments */
  1980. for (i = 0; i < fragments; i++) {
  1981. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1982. u32 size = frag->size;
  1983. offset = 0;
  1984. do {
  1985. prev_tx = put_tx;
  1986. prev_tx_ctx = np->put_tx_ctx;
  1987. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1988. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1989. PCI_DMA_TODEVICE);
  1990. np->put_tx_ctx->dma_len = bcnt;
  1991. np->put_tx_ctx->dma_single = 0;
  1992. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1993. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1994. offset += bcnt;
  1995. size -= bcnt;
  1996. if (unlikely(put_tx++ == np->last_tx.orig))
  1997. put_tx = np->first_tx.orig;
  1998. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1999. np->put_tx_ctx = np->first_tx_ctx;
  2000. } while (size);
  2001. }
  2002. /* set last fragment flag */
  2003. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  2004. /* save skb in this slot's context area */
  2005. prev_tx_ctx->skb = skb;
  2006. if (skb_is_gso(skb))
  2007. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2008. else
  2009. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2010. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2011. spin_lock_irqsave(&np->lock, flags);
  2012. /* set tx flags */
  2013. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2014. np->put_tx.orig = put_tx;
  2015. spin_unlock_irqrestore(&np->lock, flags);
  2016. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  2017. dev->name, entries, tx_flags_extra);
  2018. {
  2019. int j;
  2020. for (j=0; j<64; j++) {
  2021. if ((j%16) == 0)
  2022. dprintk("\n%03x:", j);
  2023. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2024. }
  2025. dprintk("\n");
  2026. }
  2027. dev->trans_start = jiffies;
  2028. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2029. return NETDEV_TX_OK;
  2030. }
  2031. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  2032. struct net_device *dev)
  2033. {
  2034. struct fe_priv *np = netdev_priv(dev);
  2035. u32 tx_flags = 0;
  2036. u32 tx_flags_extra;
  2037. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2038. unsigned int i;
  2039. u32 offset = 0;
  2040. u32 bcnt;
  2041. u32 size = skb->len-skb->data_len;
  2042. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2043. u32 empty_slots;
  2044. struct ring_desc_ex* put_tx;
  2045. struct ring_desc_ex* start_tx;
  2046. struct ring_desc_ex* prev_tx;
  2047. struct nv_skb_map* prev_tx_ctx;
  2048. struct nv_skb_map* start_tx_ctx;
  2049. unsigned long flags;
  2050. /* add fragments to entries count */
  2051. for (i = 0; i < fragments; i++) {
  2052. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2053. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2054. }
  2055. spin_lock_irqsave(&np->lock, flags);
  2056. empty_slots = nv_get_empty_tx_slots(np);
  2057. if (unlikely(empty_slots <= entries)) {
  2058. netif_stop_queue(dev);
  2059. np->tx_stop = 1;
  2060. spin_unlock_irqrestore(&np->lock, flags);
  2061. return NETDEV_TX_BUSY;
  2062. }
  2063. spin_unlock_irqrestore(&np->lock, flags);
  2064. start_tx = put_tx = np->put_tx.ex;
  2065. start_tx_ctx = np->put_tx_ctx;
  2066. /* setup the header buffer */
  2067. do {
  2068. prev_tx = put_tx;
  2069. prev_tx_ctx = np->put_tx_ctx;
  2070. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2071. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2072. PCI_DMA_TODEVICE);
  2073. np->put_tx_ctx->dma_len = bcnt;
  2074. np->put_tx_ctx->dma_single = 1;
  2075. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2076. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2077. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2078. tx_flags = NV_TX2_VALID;
  2079. offset += bcnt;
  2080. size -= bcnt;
  2081. if (unlikely(put_tx++ == np->last_tx.ex))
  2082. put_tx = np->first_tx.ex;
  2083. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2084. np->put_tx_ctx = np->first_tx_ctx;
  2085. } while (size);
  2086. /* setup the fragments */
  2087. for (i = 0; i < fragments; i++) {
  2088. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2089. u32 size = frag->size;
  2090. offset = 0;
  2091. do {
  2092. prev_tx = put_tx;
  2093. prev_tx_ctx = np->put_tx_ctx;
  2094. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2095. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2096. PCI_DMA_TODEVICE);
  2097. np->put_tx_ctx->dma_len = bcnt;
  2098. np->put_tx_ctx->dma_single = 0;
  2099. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2100. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2101. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2102. offset += bcnt;
  2103. size -= bcnt;
  2104. if (unlikely(put_tx++ == np->last_tx.ex))
  2105. put_tx = np->first_tx.ex;
  2106. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2107. np->put_tx_ctx = np->first_tx_ctx;
  2108. } while (size);
  2109. }
  2110. /* set last fragment flag */
  2111. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2112. /* save skb in this slot's context area */
  2113. prev_tx_ctx->skb = skb;
  2114. if (skb_is_gso(skb))
  2115. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2116. else
  2117. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2118. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2119. /* vlan tag */
  2120. if (likely(!np->vlangrp)) {
  2121. start_tx->txvlan = 0;
  2122. } else {
  2123. if (vlan_tx_tag_present(skb))
  2124. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2125. else
  2126. start_tx->txvlan = 0;
  2127. }
  2128. spin_lock_irqsave(&np->lock, flags);
  2129. if (np->tx_limit) {
  2130. /* Limit the number of outstanding tx. Setup all fragments, but
  2131. * do not set the VALID bit on the first descriptor. Save a pointer
  2132. * to that descriptor and also for next skb_map element.
  2133. */
  2134. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2135. if (!np->tx_change_owner)
  2136. np->tx_change_owner = start_tx_ctx;
  2137. /* remove VALID bit */
  2138. tx_flags &= ~NV_TX2_VALID;
  2139. start_tx_ctx->first_tx_desc = start_tx;
  2140. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2141. np->tx_end_flip = np->put_tx_ctx;
  2142. } else {
  2143. np->tx_pkts_in_progress++;
  2144. }
  2145. }
  2146. /* set tx flags */
  2147. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2148. np->put_tx.ex = put_tx;
  2149. spin_unlock_irqrestore(&np->lock, flags);
  2150. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2151. dev->name, entries, tx_flags_extra);
  2152. {
  2153. int j;
  2154. for (j=0; j<64; j++) {
  2155. if ((j%16) == 0)
  2156. dprintk("\n%03x:", j);
  2157. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2158. }
  2159. dprintk("\n");
  2160. }
  2161. dev->trans_start = jiffies;
  2162. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2163. return NETDEV_TX_OK;
  2164. }
  2165. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2166. {
  2167. struct fe_priv *np = netdev_priv(dev);
  2168. np->tx_pkts_in_progress--;
  2169. if (np->tx_change_owner) {
  2170. np->tx_change_owner->first_tx_desc->flaglen |=
  2171. cpu_to_le32(NV_TX2_VALID);
  2172. np->tx_pkts_in_progress++;
  2173. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2174. if (np->tx_change_owner == np->tx_end_flip)
  2175. np->tx_change_owner = NULL;
  2176. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2177. }
  2178. }
  2179. /*
  2180. * nv_tx_done: check for completed packets, release the skbs.
  2181. *
  2182. * Caller must own np->lock.
  2183. */
  2184. static int nv_tx_done(struct net_device *dev, int limit)
  2185. {
  2186. struct fe_priv *np = netdev_priv(dev);
  2187. u32 flags;
  2188. int tx_work = 0;
  2189. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2190. while ((np->get_tx.orig != np->put_tx.orig) &&
  2191. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2192. (tx_work < limit)) {
  2193. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2194. dev->name, flags);
  2195. nv_unmap_txskb(np, np->get_tx_ctx);
  2196. if (np->desc_ver == DESC_VER_1) {
  2197. if (flags & NV_TX_LASTPACKET) {
  2198. if (flags & NV_TX_ERROR) {
  2199. if (flags & NV_TX_UNDERFLOW)
  2200. dev->stats.tx_fifo_errors++;
  2201. if (flags & NV_TX_CARRIERLOST)
  2202. dev->stats.tx_carrier_errors++;
  2203. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2204. nv_legacybackoff_reseed(dev);
  2205. dev->stats.tx_errors++;
  2206. } else {
  2207. dev->stats.tx_packets++;
  2208. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2209. }
  2210. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2211. np->get_tx_ctx->skb = NULL;
  2212. tx_work++;
  2213. }
  2214. } else {
  2215. if (flags & NV_TX2_LASTPACKET) {
  2216. if (flags & NV_TX2_ERROR) {
  2217. if (flags & NV_TX2_UNDERFLOW)
  2218. dev->stats.tx_fifo_errors++;
  2219. if (flags & NV_TX2_CARRIERLOST)
  2220. dev->stats.tx_carrier_errors++;
  2221. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2222. nv_legacybackoff_reseed(dev);
  2223. dev->stats.tx_errors++;
  2224. } else {
  2225. dev->stats.tx_packets++;
  2226. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2227. }
  2228. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2229. np->get_tx_ctx->skb = NULL;
  2230. tx_work++;
  2231. }
  2232. }
  2233. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2234. np->get_tx.orig = np->first_tx.orig;
  2235. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2236. np->get_tx_ctx = np->first_tx_ctx;
  2237. }
  2238. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2239. np->tx_stop = 0;
  2240. netif_wake_queue(dev);
  2241. }
  2242. return tx_work;
  2243. }
  2244. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2245. {
  2246. struct fe_priv *np = netdev_priv(dev);
  2247. u32 flags;
  2248. int tx_work = 0;
  2249. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2250. while ((np->get_tx.ex != np->put_tx.ex) &&
  2251. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2252. (tx_work < limit)) {
  2253. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2254. dev->name, flags);
  2255. nv_unmap_txskb(np, np->get_tx_ctx);
  2256. if (flags & NV_TX2_LASTPACKET) {
  2257. if (!(flags & NV_TX2_ERROR))
  2258. dev->stats.tx_packets++;
  2259. else {
  2260. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2261. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2262. nv_gear_backoff_reseed(dev);
  2263. else
  2264. nv_legacybackoff_reseed(dev);
  2265. }
  2266. }
  2267. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2268. np->get_tx_ctx->skb = NULL;
  2269. tx_work++;
  2270. if (np->tx_limit) {
  2271. nv_tx_flip_ownership(dev);
  2272. }
  2273. }
  2274. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2275. np->get_tx.ex = np->first_tx.ex;
  2276. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2277. np->get_tx_ctx = np->first_tx_ctx;
  2278. }
  2279. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2280. np->tx_stop = 0;
  2281. netif_wake_queue(dev);
  2282. }
  2283. return tx_work;
  2284. }
  2285. /*
  2286. * nv_tx_timeout: dev->tx_timeout function
  2287. * Called with netif_tx_lock held.
  2288. */
  2289. static void nv_tx_timeout(struct net_device *dev)
  2290. {
  2291. struct fe_priv *np = netdev_priv(dev);
  2292. u8 __iomem *base = get_hwbase(dev);
  2293. u32 status;
  2294. union ring_type put_tx;
  2295. int saved_tx_limit;
  2296. if (np->msi_flags & NV_MSI_X_ENABLED)
  2297. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2298. else
  2299. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2300. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2301. {
  2302. int i;
  2303. printk(KERN_INFO "%s: Ring at %lx\n",
  2304. dev->name, (unsigned long)np->ring_addr);
  2305. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2306. for (i=0;i<=np->register_size;i+= 32) {
  2307. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2308. i,
  2309. readl(base + i + 0), readl(base + i + 4),
  2310. readl(base + i + 8), readl(base + i + 12),
  2311. readl(base + i + 16), readl(base + i + 20),
  2312. readl(base + i + 24), readl(base + i + 28));
  2313. }
  2314. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2315. for (i=0;i<np->tx_ring_size;i+= 4) {
  2316. if (!nv_optimized(np)) {
  2317. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2318. i,
  2319. le32_to_cpu(np->tx_ring.orig[i].buf),
  2320. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2321. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2322. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2323. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2324. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2325. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2326. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2327. } else {
  2328. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2329. i,
  2330. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2331. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2332. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2333. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2334. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2335. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2336. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2337. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2338. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2339. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2340. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2341. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2342. }
  2343. }
  2344. }
  2345. spin_lock_irq(&np->lock);
  2346. /* 1) stop tx engine */
  2347. nv_stop_tx(dev);
  2348. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2349. saved_tx_limit = np->tx_limit;
  2350. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2351. np->tx_stop = 0; /* prevent waking tx queue */
  2352. if (!nv_optimized(np))
  2353. nv_tx_done(dev, np->tx_ring_size);
  2354. else
  2355. nv_tx_done_optimized(dev, np->tx_ring_size);
  2356. /* save current HW postion */
  2357. if (np->tx_change_owner)
  2358. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2359. else
  2360. put_tx = np->put_tx;
  2361. /* 3) clear all tx state */
  2362. nv_drain_tx(dev);
  2363. nv_init_tx(dev);
  2364. /* 4) restore state to current HW position */
  2365. np->get_tx = np->put_tx = put_tx;
  2366. np->tx_limit = saved_tx_limit;
  2367. /* 5) restart tx engine */
  2368. nv_start_tx(dev);
  2369. netif_wake_queue(dev);
  2370. spin_unlock_irq(&np->lock);
  2371. }
  2372. /*
  2373. * Called when the nic notices a mismatch between the actual data len on the
  2374. * wire and the len indicated in the 802 header
  2375. */
  2376. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2377. {
  2378. int hdrlen; /* length of the 802 header */
  2379. int protolen; /* length as stored in the proto field */
  2380. /* 1) calculate len according to header */
  2381. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2382. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2383. hdrlen = VLAN_HLEN;
  2384. } else {
  2385. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2386. hdrlen = ETH_HLEN;
  2387. }
  2388. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2389. dev->name, datalen, protolen, hdrlen);
  2390. if (protolen > ETH_DATA_LEN)
  2391. return datalen; /* Value in proto field not a len, no checks possible */
  2392. protolen += hdrlen;
  2393. /* consistency checks: */
  2394. if (datalen > ETH_ZLEN) {
  2395. if (datalen >= protolen) {
  2396. /* more data on wire than in 802 header, trim of
  2397. * additional data.
  2398. */
  2399. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2400. dev->name, protolen);
  2401. return protolen;
  2402. } else {
  2403. /* less data on wire than mentioned in header.
  2404. * Discard the packet.
  2405. */
  2406. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2407. dev->name);
  2408. return -1;
  2409. }
  2410. } else {
  2411. /* short packet. Accept only if 802 values are also short */
  2412. if (protolen > ETH_ZLEN) {
  2413. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2414. dev->name);
  2415. return -1;
  2416. }
  2417. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2418. dev->name, datalen);
  2419. return datalen;
  2420. }
  2421. }
  2422. static int nv_rx_process(struct net_device *dev, int limit)
  2423. {
  2424. struct fe_priv *np = netdev_priv(dev);
  2425. u32 flags;
  2426. int rx_work = 0;
  2427. struct sk_buff *skb;
  2428. int len;
  2429. while((np->get_rx.orig != np->put_rx.orig) &&
  2430. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2431. (rx_work < limit)) {
  2432. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2433. dev->name, flags);
  2434. /*
  2435. * the packet is for us - immediately tear down the pci mapping.
  2436. * TODO: check if a prefetch of the first cacheline improves
  2437. * the performance.
  2438. */
  2439. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2440. np->get_rx_ctx->dma_len,
  2441. PCI_DMA_FROMDEVICE);
  2442. skb = np->get_rx_ctx->skb;
  2443. np->get_rx_ctx->skb = NULL;
  2444. {
  2445. int j;
  2446. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2447. for (j=0; j<64; j++) {
  2448. if ((j%16) == 0)
  2449. dprintk("\n%03x:", j);
  2450. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2451. }
  2452. dprintk("\n");
  2453. }
  2454. /* look at what we actually got: */
  2455. if (np->desc_ver == DESC_VER_1) {
  2456. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2457. len = flags & LEN_MASK_V1;
  2458. if (unlikely(flags & NV_RX_ERROR)) {
  2459. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2460. len = nv_getlen(dev, skb->data, len);
  2461. if (len < 0) {
  2462. dev->stats.rx_errors++;
  2463. dev_kfree_skb(skb);
  2464. goto next_pkt;
  2465. }
  2466. }
  2467. /* framing errors are soft errors */
  2468. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2469. if (flags & NV_RX_SUBSTRACT1) {
  2470. len--;
  2471. }
  2472. }
  2473. /* the rest are hard errors */
  2474. else {
  2475. if (flags & NV_RX_MISSEDFRAME)
  2476. dev->stats.rx_missed_errors++;
  2477. if (flags & NV_RX_CRCERR)
  2478. dev->stats.rx_crc_errors++;
  2479. if (flags & NV_RX_OVERFLOW)
  2480. dev->stats.rx_over_errors++;
  2481. dev->stats.rx_errors++;
  2482. dev_kfree_skb(skb);
  2483. goto next_pkt;
  2484. }
  2485. }
  2486. } else {
  2487. dev_kfree_skb(skb);
  2488. goto next_pkt;
  2489. }
  2490. } else {
  2491. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2492. len = flags & LEN_MASK_V2;
  2493. if (unlikely(flags & NV_RX2_ERROR)) {
  2494. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2495. len = nv_getlen(dev, skb->data, len);
  2496. if (len < 0) {
  2497. dev->stats.rx_errors++;
  2498. dev_kfree_skb(skb);
  2499. goto next_pkt;
  2500. }
  2501. }
  2502. /* framing errors are soft errors */
  2503. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2504. if (flags & NV_RX2_SUBSTRACT1) {
  2505. len--;
  2506. }
  2507. }
  2508. /* the rest are hard errors */
  2509. else {
  2510. if (flags & NV_RX2_CRCERR)
  2511. dev->stats.rx_crc_errors++;
  2512. if (flags & NV_RX2_OVERFLOW)
  2513. dev->stats.rx_over_errors++;
  2514. dev->stats.rx_errors++;
  2515. dev_kfree_skb(skb);
  2516. goto next_pkt;
  2517. }
  2518. }
  2519. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2520. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2521. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2522. } else {
  2523. dev_kfree_skb(skb);
  2524. goto next_pkt;
  2525. }
  2526. }
  2527. /* got a valid packet - forward it to the network core */
  2528. skb_put(skb, len);
  2529. skb->protocol = eth_type_trans(skb, dev);
  2530. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2531. dev->name, len, skb->protocol);
  2532. #ifdef CONFIG_FORCEDETH_NAPI
  2533. netif_receive_skb(skb);
  2534. #else
  2535. netif_rx(skb);
  2536. #endif
  2537. dev->stats.rx_packets++;
  2538. dev->stats.rx_bytes += len;
  2539. next_pkt:
  2540. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2541. np->get_rx.orig = np->first_rx.orig;
  2542. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2543. np->get_rx_ctx = np->first_rx_ctx;
  2544. rx_work++;
  2545. }
  2546. return rx_work;
  2547. }
  2548. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2549. {
  2550. struct fe_priv *np = netdev_priv(dev);
  2551. u32 flags;
  2552. u32 vlanflags = 0;
  2553. int rx_work = 0;
  2554. struct sk_buff *skb;
  2555. int len;
  2556. while((np->get_rx.ex != np->put_rx.ex) &&
  2557. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2558. (rx_work < limit)) {
  2559. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2560. dev->name, flags);
  2561. /*
  2562. * the packet is for us - immediately tear down the pci mapping.
  2563. * TODO: check if a prefetch of the first cacheline improves
  2564. * the performance.
  2565. */
  2566. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2567. np->get_rx_ctx->dma_len,
  2568. PCI_DMA_FROMDEVICE);
  2569. skb = np->get_rx_ctx->skb;
  2570. np->get_rx_ctx->skb = NULL;
  2571. {
  2572. int j;
  2573. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2574. for (j=0; j<64; j++) {
  2575. if ((j%16) == 0)
  2576. dprintk("\n%03x:", j);
  2577. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2578. }
  2579. dprintk("\n");
  2580. }
  2581. /* look at what we actually got: */
  2582. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2583. len = flags & LEN_MASK_V2;
  2584. if (unlikely(flags & NV_RX2_ERROR)) {
  2585. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2586. len = nv_getlen(dev, skb->data, len);
  2587. if (len < 0) {
  2588. dev_kfree_skb(skb);
  2589. goto next_pkt;
  2590. }
  2591. }
  2592. /* framing errors are soft errors */
  2593. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2594. if (flags & NV_RX2_SUBSTRACT1) {
  2595. len--;
  2596. }
  2597. }
  2598. /* the rest are hard errors */
  2599. else {
  2600. dev_kfree_skb(skb);
  2601. goto next_pkt;
  2602. }
  2603. }
  2604. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2605. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2606. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2607. /* got a valid packet - forward it to the network core */
  2608. skb_put(skb, len);
  2609. skb->protocol = eth_type_trans(skb, dev);
  2610. prefetch(skb->data);
  2611. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2612. dev->name, len, skb->protocol);
  2613. if (likely(!np->vlangrp)) {
  2614. #ifdef CONFIG_FORCEDETH_NAPI
  2615. netif_receive_skb(skb);
  2616. #else
  2617. netif_rx(skb);
  2618. #endif
  2619. } else {
  2620. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2621. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2622. #ifdef CONFIG_FORCEDETH_NAPI
  2623. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2624. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2625. #else
  2626. vlan_hwaccel_rx(skb, np->vlangrp,
  2627. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2628. #endif
  2629. } else {
  2630. #ifdef CONFIG_FORCEDETH_NAPI
  2631. netif_receive_skb(skb);
  2632. #else
  2633. netif_rx(skb);
  2634. #endif
  2635. }
  2636. }
  2637. dev->stats.rx_packets++;
  2638. dev->stats.rx_bytes += len;
  2639. } else {
  2640. dev_kfree_skb(skb);
  2641. }
  2642. next_pkt:
  2643. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2644. np->get_rx.ex = np->first_rx.ex;
  2645. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2646. np->get_rx_ctx = np->first_rx_ctx;
  2647. rx_work++;
  2648. }
  2649. return rx_work;
  2650. }
  2651. static void set_bufsize(struct net_device *dev)
  2652. {
  2653. struct fe_priv *np = netdev_priv(dev);
  2654. if (dev->mtu <= ETH_DATA_LEN)
  2655. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2656. else
  2657. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2658. }
  2659. /*
  2660. * nv_change_mtu: dev->change_mtu function
  2661. * Called with dev_base_lock held for read.
  2662. */
  2663. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2664. {
  2665. struct fe_priv *np = netdev_priv(dev);
  2666. int old_mtu;
  2667. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2668. return -EINVAL;
  2669. old_mtu = dev->mtu;
  2670. dev->mtu = new_mtu;
  2671. /* return early if the buffer sizes will not change */
  2672. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2673. return 0;
  2674. if (old_mtu == new_mtu)
  2675. return 0;
  2676. /* synchronized against open : rtnl_lock() held by caller */
  2677. if (netif_running(dev)) {
  2678. u8 __iomem *base = get_hwbase(dev);
  2679. /*
  2680. * It seems that the nic preloads valid ring entries into an
  2681. * internal buffer. The procedure for flushing everything is
  2682. * guessed, there is probably a simpler approach.
  2683. * Changing the MTU is a rare event, it shouldn't matter.
  2684. */
  2685. nv_disable_irq(dev);
  2686. nv_napi_disable(dev);
  2687. netif_tx_lock_bh(dev);
  2688. netif_addr_lock(dev);
  2689. spin_lock(&np->lock);
  2690. /* stop engines */
  2691. nv_stop_rxtx(dev);
  2692. nv_txrx_reset(dev);
  2693. /* drain rx queue */
  2694. nv_drain_rxtx(dev);
  2695. /* reinit driver view of the rx queue */
  2696. set_bufsize(dev);
  2697. if (nv_init_ring(dev)) {
  2698. if (!np->in_shutdown)
  2699. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2700. }
  2701. /* reinit nic view of the rx queue */
  2702. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2703. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2704. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2705. base + NvRegRingSizes);
  2706. pci_push(base);
  2707. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2708. pci_push(base);
  2709. /* restart rx engine */
  2710. nv_start_rxtx(dev);
  2711. spin_unlock(&np->lock);
  2712. netif_addr_unlock(dev);
  2713. netif_tx_unlock_bh(dev);
  2714. nv_napi_enable(dev);
  2715. nv_enable_irq(dev);
  2716. }
  2717. return 0;
  2718. }
  2719. static void nv_copy_mac_to_hw(struct net_device *dev)
  2720. {
  2721. u8 __iomem *base = get_hwbase(dev);
  2722. u32 mac[2];
  2723. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2724. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2725. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2726. writel(mac[0], base + NvRegMacAddrA);
  2727. writel(mac[1], base + NvRegMacAddrB);
  2728. }
  2729. /*
  2730. * nv_set_mac_address: dev->set_mac_address function
  2731. * Called with rtnl_lock() held.
  2732. */
  2733. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2734. {
  2735. struct fe_priv *np = netdev_priv(dev);
  2736. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2737. if (!is_valid_ether_addr(macaddr->sa_data))
  2738. return -EADDRNOTAVAIL;
  2739. /* synchronized against open : rtnl_lock() held by caller */
  2740. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2741. if (netif_running(dev)) {
  2742. netif_tx_lock_bh(dev);
  2743. netif_addr_lock(dev);
  2744. spin_lock_irq(&np->lock);
  2745. /* stop rx engine */
  2746. nv_stop_rx(dev);
  2747. /* set mac address */
  2748. nv_copy_mac_to_hw(dev);
  2749. /* restart rx engine */
  2750. nv_start_rx(dev);
  2751. spin_unlock_irq(&np->lock);
  2752. netif_addr_unlock(dev);
  2753. netif_tx_unlock_bh(dev);
  2754. } else {
  2755. nv_copy_mac_to_hw(dev);
  2756. }
  2757. return 0;
  2758. }
  2759. /*
  2760. * nv_set_multicast: dev->set_multicast function
  2761. * Called with netif_tx_lock held.
  2762. */
  2763. static void nv_set_multicast(struct net_device *dev)
  2764. {
  2765. struct fe_priv *np = netdev_priv(dev);
  2766. u8 __iomem *base = get_hwbase(dev);
  2767. u32 addr[2];
  2768. u32 mask[2];
  2769. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2770. memset(addr, 0, sizeof(addr));
  2771. memset(mask, 0, sizeof(mask));
  2772. if (dev->flags & IFF_PROMISC) {
  2773. pff |= NVREG_PFF_PROMISC;
  2774. } else {
  2775. pff |= NVREG_PFF_MYADDR;
  2776. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2777. u32 alwaysOff[2];
  2778. u32 alwaysOn[2];
  2779. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2780. if (dev->flags & IFF_ALLMULTI) {
  2781. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2782. } else {
  2783. struct dev_mc_list *walk;
  2784. walk = dev->mc_list;
  2785. while (walk != NULL) {
  2786. u32 a, b;
  2787. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2788. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2789. alwaysOn[0] &= a;
  2790. alwaysOff[0] &= ~a;
  2791. alwaysOn[1] &= b;
  2792. alwaysOff[1] &= ~b;
  2793. walk = walk->next;
  2794. }
  2795. }
  2796. addr[0] = alwaysOn[0];
  2797. addr[1] = alwaysOn[1];
  2798. mask[0] = alwaysOn[0] | alwaysOff[0];
  2799. mask[1] = alwaysOn[1] | alwaysOff[1];
  2800. } else {
  2801. mask[0] = NVREG_MCASTMASKA_NONE;
  2802. mask[1] = NVREG_MCASTMASKB_NONE;
  2803. }
  2804. }
  2805. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2806. pff |= NVREG_PFF_ALWAYS;
  2807. spin_lock_irq(&np->lock);
  2808. nv_stop_rx(dev);
  2809. writel(addr[0], base + NvRegMulticastAddrA);
  2810. writel(addr[1], base + NvRegMulticastAddrB);
  2811. writel(mask[0], base + NvRegMulticastMaskA);
  2812. writel(mask[1], base + NvRegMulticastMaskB);
  2813. writel(pff, base + NvRegPacketFilterFlags);
  2814. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2815. dev->name);
  2816. nv_start_rx(dev);
  2817. spin_unlock_irq(&np->lock);
  2818. }
  2819. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2820. {
  2821. struct fe_priv *np = netdev_priv(dev);
  2822. u8 __iomem *base = get_hwbase(dev);
  2823. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2824. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2825. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2826. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2827. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2828. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2829. } else {
  2830. writel(pff, base + NvRegPacketFilterFlags);
  2831. }
  2832. }
  2833. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2834. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2835. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2836. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2837. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2838. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2839. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2840. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2841. /* limit the number of tx pause frames to a default of 8 */
  2842. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2843. }
  2844. writel(pause_enable, base + NvRegTxPauseFrame);
  2845. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2846. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2847. } else {
  2848. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2849. writel(regmisc, base + NvRegMisc1);
  2850. }
  2851. }
  2852. }
  2853. /**
  2854. * nv_update_linkspeed: Setup the MAC according to the link partner
  2855. * @dev: Network device to be configured
  2856. *
  2857. * The function queries the PHY and checks if there is a link partner.
  2858. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2859. * set to 10 MBit HD.
  2860. *
  2861. * The function returns 0 if there is no link partner and 1 if there is
  2862. * a good link partner.
  2863. */
  2864. static int nv_update_linkspeed(struct net_device *dev)
  2865. {
  2866. struct fe_priv *np = netdev_priv(dev);
  2867. u8 __iomem *base = get_hwbase(dev);
  2868. int adv = 0;
  2869. int lpa = 0;
  2870. int adv_lpa, adv_pause, lpa_pause;
  2871. int newls = np->linkspeed;
  2872. int newdup = np->duplex;
  2873. int mii_status;
  2874. int retval = 0;
  2875. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2876. u32 txrxFlags = 0;
  2877. u32 phy_exp;
  2878. /* BMSR_LSTATUS is latched, read it twice:
  2879. * we want the current value.
  2880. */
  2881. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2882. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2883. if (!(mii_status & BMSR_LSTATUS)) {
  2884. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2885. dev->name);
  2886. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2887. newdup = 0;
  2888. retval = 0;
  2889. goto set_speed;
  2890. }
  2891. if (np->autoneg == 0) {
  2892. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2893. dev->name, np->fixed_mode);
  2894. if (np->fixed_mode & LPA_100FULL) {
  2895. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2896. newdup = 1;
  2897. } else if (np->fixed_mode & LPA_100HALF) {
  2898. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2899. newdup = 0;
  2900. } else if (np->fixed_mode & LPA_10FULL) {
  2901. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2902. newdup = 1;
  2903. } else {
  2904. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2905. newdup = 0;
  2906. }
  2907. retval = 1;
  2908. goto set_speed;
  2909. }
  2910. /* check auto negotiation is complete */
  2911. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2912. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2913. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2914. newdup = 0;
  2915. retval = 0;
  2916. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2917. goto set_speed;
  2918. }
  2919. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2920. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2921. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2922. dev->name, adv, lpa);
  2923. retval = 1;
  2924. if (np->gigabit == PHY_GIGABIT) {
  2925. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2926. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2927. if ((control_1000 & ADVERTISE_1000FULL) &&
  2928. (status_1000 & LPA_1000FULL)) {
  2929. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2930. dev->name);
  2931. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2932. newdup = 1;
  2933. goto set_speed;
  2934. }
  2935. }
  2936. /* FIXME: handle parallel detection properly */
  2937. adv_lpa = lpa & adv;
  2938. if (adv_lpa & LPA_100FULL) {
  2939. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2940. newdup = 1;
  2941. } else if (adv_lpa & LPA_100HALF) {
  2942. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2943. newdup = 0;
  2944. } else if (adv_lpa & LPA_10FULL) {
  2945. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2946. newdup = 1;
  2947. } else if (adv_lpa & LPA_10HALF) {
  2948. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2949. newdup = 0;
  2950. } else {
  2951. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2952. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2953. newdup = 0;
  2954. }
  2955. set_speed:
  2956. if (np->duplex == newdup && np->linkspeed == newls)
  2957. return retval;
  2958. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2959. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2960. np->duplex = newdup;
  2961. np->linkspeed = newls;
  2962. /* The transmitter and receiver must be restarted for safe update */
  2963. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2964. txrxFlags |= NV_RESTART_TX;
  2965. nv_stop_tx(dev);
  2966. }
  2967. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2968. txrxFlags |= NV_RESTART_RX;
  2969. nv_stop_rx(dev);
  2970. }
  2971. if (np->gigabit == PHY_GIGABIT) {
  2972. phyreg = readl(base + NvRegSlotTime);
  2973. phyreg &= ~(0x3FF00);
  2974. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2975. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2976. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2977. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2978. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2979. writel(phyreg, base + NvRegSlotTime);
  2980. }
  2981. phyreg = readl(base + NvRegPhyInterface);
  2982. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2983. if (np->duplex == 0)
  2984. phyreg |= PHY_HALF;
  2985. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2986. phyreg |= PHY_100;
  2987. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2988. phyreg |= PHY_1000;
  2989. writel(phyreg, base + NvRegPhyInterface);
  2990. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2991. if (phyreg & PHY_RGMII) {
  2992. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2993. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2994. } else {
  2995. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2996. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2997. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2998. else
  2999. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  3000. } else {
  3001. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  3002. }
  3003. }
  3004. } else {
  3005. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  3006. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  3007. else
  3008. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  3009. }
  3010. writel(txreg, base + NvRegTxDeferral);
  3011. if (np->desc_ver == DESC_VER_1) {
  3012. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  3013. } else {
  3014. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3015. txreg = NVREG_TX_WM_DESC2_3_1000;
  3016. else
  3017. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3018. }
  3019. writel(txreg, base + NvRegTxWatermark);
  3020. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  3021. base + NvRegMisc1);
  3022. pci_push(base);
  3023. writel(np->linkspeed, base + NvRegLinkSpeed);
  3024. pci_push(base);
  3025. pause_flags = 0;
  3026. /* setup pause frame */
  3027. if (np->duplex != 0) {
  3028. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3029. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  3030. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  3031. switch (adv_pause) {
  3032. case ADVERTISE_PAUSE_CAP:
  3033. if (lpa_pause & LPA_PAUSE_CAP) {
  3034. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3035. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3036. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3037. }
  3038. break;
  3039. case ADVERTISE_PAUSE_ASYM:
  3040. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3041. {
  3042. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3043. }
  3044. break;
  3045. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3046. if (lpa_pause & LPA_PAUSE_CAP)
  3047. {
  3048. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3049. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3050. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3051. }
  3052. if (lpa_pause == LPA_PAUSE_ASYM)
  3053. {
  3054. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3055. }
  3056. break;
  3057. }
  3058. } else {
  3059. pause_flags = np->pause_flags;
  3060. }
  3061. }
  3062. nv_update_pause(dev, pause_flags);
  3063. if (txrxFlags & NV_RESTART_TX)
  3064. nv_start_tx(dev);
  3065. if (txrxFlags & NV_RESTART_RX)
  3066. nv_start_rx(dev);
  3067. return retval;
  3068. }
  3069. static void nv_linkchange(struct net_device *dev)
  3070. {
  3071. if (nv_update_linkspeed(dev)) {
  3072. if (!netif_carrier_ok(dev)) {
  3073. netif_carrier_on(dev);
  3074. printk(KERN_INFO "%s: link up.\n", dev->name);
  3075. nv_txrx_gate(dev, false);
  3076. nv_start_rx(dev);
  3077. }
  3078. } else {
  3079. if (netif_carrier_ok(dev)) {
  3080. netif_carrier_off(dev);
  3081. printk(KERN_INFO "%s: link down.\n", dev->name);
  3082. nv_txrx_gate(dev, true);
  3083. nv_stop_rx(dev);
  3084. }
  3085. }
  3086. }
  3087. static void nv_link_irq(struct net_device *dev)
  3088. {
  3089. u8 __iomem *base = get_hwbase(dev);
  3090. u32 miistat;
  3091. miistat = readl(base + NvRegMIIStatus);
  3092. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3093. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3094. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3095. nv_linkchange(dev);
  3096. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3097. }
  3098. static void nv_msi_workaround(struct fe_priv *np)
  3099. {
  3100. /* Need to toggle the msi irq mask within the ethernet device,
  3101. * otherwise, future interrupts will not be detected.
  3102. */
  3103. if (np->msi_flags & NV_MSI_ENABLED) {
  3104. u8 __iomem *base = np->base;
  3105. writel(0, base + NvRegMSIIrqMask);
  3106. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3107. }
  3108. }
  3109. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3110. {
  3111. struct fe_priv *np = netdev_priv(dev);
  3112. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3113. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3114. /* transition to poll based interrupts */
  3115. np->quiet_count = 0;
  3116. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3117. np->irqmask = NVREG_IRQMASK_CPU;
  3118. return 1;
  3119. }
  3120. } else {
  3121. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3122. np->quiet_count++;
  3123. } else {
  3124. /* reached a period of low activity, switch
  3125. to per tx/rx packet interrupts */
  3126. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3127. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3128. return 1;
  3129. }
  3130. }
  3131. }
  3132. }
  3133. return 0;
  3134. }
  3135. static irqreturn_t nv_nic_irq(int foo, void *data)
  3136. {
  3137. struct net_device *dev = (struct net_device *) data;
  3138. struct fe_priv *np = netdev_priv(dev);
  3139. u8 __iomem *base = get_hwbase(dev);
  3140. #ifndef CONFIG_FORCEDETH_NAPI
  3141. int total_work = 0;
  3142. int loop_count = 0;
  3143. #endif
  3144. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3145. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3146. np->events = readl(base + NvRegIrqStatus);
  3147. writel(np->events, base + NvRegIrqStatus);
  3148. } else {
  3149. np->events = readl(base + NvRegMSIXIrqStatus);
  3150. writel(np->events, base + NvRegMSIXIrqStatus);
  3151. }
  3152. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3153. if (!(np->events & np->irqmask))
  3154. return IRQ_NONE;
  3155. nv_msi_workaround(np);
  3156. #ifdef CONFIG_FORCEDETH_NAPI
  3157. if (napi_schedule_prep(&np->napi)) {
  3158. /*
  3159. * Disable further irq's (msix not enabled with napi)
  3160. */
  3161. writel(0, base + NvRegIrqMask);
  3162. __napi_schedule(&np->napi);
  3163. }
  3164. #else
  3165. do
  3166. {
  3167. int work = 0;
  3168. if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
  3169. if (unlikely(nv_alloc_rx(dev))) {
  3170. spin_lock(&np->lock);
  3171. if (!np->in_shutdown)
  3172. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3173. spin_unlock(&np->lock);
  3174. }
  3175. }
  3176. spin_lock(&np->lock);
  3177. work += nv_tx_done(dev, TX_WORK_PER_LOOP);
  3178. spin_unlock(&np->lock);
  3179. if (!work)
  3180. break;
  3181. total_work += work;
  3182. loop_count++;
  3183. }
  3184. while (loop_count < max_interrupt_work);
  3185. if (nv_change_interrupt_mode(dev, total_work)) {
  3186. /* setup new irq mask */
  3187. writel(np->irqmask, base + NvRegIrqMask);
  3188. }
  3189. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3190. spin_lock(&np->lock);
  3191. nv_link_irq(dev);
  3192. spin_unlock(&np->lock);
  3193. }
  3194. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3195. spin_lock(&np->lock);
  3196. nv_linkchange(dev);
  3197. spin_unlock(&np->lock);
  3198. np->link_timeout = jiffies + LINK_TIMEOUT;
  3199. }
  3200. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3201. spin_lock(&np->lock);
  3202. /* disable interrupts on the nic */
  3203. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3204. writel(0, base + NvRegIrqMask);
  3205. else
  3206. writel(np->irqmask, base + NvRegIrqMask);
  3207. pci_push(base);
  3208. if (!np->in_shutdown) {
  3209. np->nic_poll_irq = np->irqmask;
  3210. np->recover_error = 1;
  3211. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3212. }
  3213. spin_unlock(&np->lock);
  3214. }
  3215. #endif
  3216. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3217. return IRQ_HANDLED;
  3218. }
  3219. /**
  3220. * All _optimized functions are used to help increase performance
  3221. * (reduce CPU and increase throughput). They use descripter version 3,
  3222. * compiler directives, and reduce memory accesses.
  3223. */
  3224. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3225. {
  3226. struct net_device *dev = (struct net_device *) data;
  3227. struct fe_priv *np = netdev_priv(dev);
  3228. u8 __iomem *base = get_hwbase(dev);
  3229. #ifndef CONFIG_FORCEDETH_NAPI
  3230. int total_work = 0;
  3231. int loop_count = 0;
  3232. #endif
  3233. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3234. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3235. np->events = readl(base + NvRegIrqStatus);
  3236. writel(np->events, base + NvRegIrqStatus);
  3237. } else {
  3238. np->events = readl(base + NvRegMSIXIrqStatus);
  3239. writel(np->events, base + NvRegMSIXIrqStatus);
  3240. }
  3241. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3242. if (!(np->events & np->irqmask))
  3243. return IRQ_NONE;
  3244. nv_msi_workaround(np);
  3245. #ifdef CONFIG_FORCEDETH_NAPI
  3246. if (napi_schedule_prep(&np->napi)) {
  3247. /*
  3248. * Disable further irq's (msix not enabled with napi)
  3249. */
  3250. writel(0, base + NvRegIrqMask);
  3251. __napi_schedule(&np->napi);
  3252. }
  3253. #else
  3254. do
  3255. {
  3256. int work = 0;
  3257. if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
  3258. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3259. spin_lock(&np->lock);
  3260. if (!np->in_shutdown)
  3261. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3262. spin_unlock(&np->lock);
  3263. }
  3264. }
  3265. spin_lock(&np->lock);
  3266. work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3267. spin_unlock(&np->lock);
  3268. if (!work)
  3269. break;
  3270. total_work += work;
  3271. loop_count++;
  3272. }
  3273. while (loop_count < max_interrupt_work);
  3274. if (nv_change_interrupt_mode(dev, total_work)) {
  3275. /* setup new irq mask */
  3276. writel(np->irqmask, base + NvRegIrqMask);
  3277. }
  3278. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3279. spin_lock(&np->lock);
  3280. nv_link_irq(dev);
  3281. spin_unlock(&np->lock);
  3282. }
  3283. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3284. spin_lock(&np->lock);
  3285. nv_linkchange(dev);
  3286. spin_unlock(&np->lock);
  3287. np->link_timeout = jiffies + LINK_TIMEOUT;
  3288. }
  3289. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3290. spin_lock(&np->lock);
  3291. /* disable interrupts on the nic */
  3292. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3293. writel(0, base + NvRegIrqMask);
  3294. else
  3295. writel(np->irqmask, base + NvRegIrqMask);
  3296. pci_push(base);
  3297. if (!np->in_shutdown) {
  3298. np->nic_poll_irq = np->irqmask;
  3299. np->recover_error = 1;
  3300. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3301. }
  3302. spin_unlock(&np->lock);
  3303. }
  3304. #endif
  3305. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3306. return IRQ_HANDLED;
  3307. }
  3308. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3309. {
  3310. struct net_device *dev = (struct net_device *) data;
  3311. struct fe_priv *np = netdev_priv(dev);
  3312. u8 __iomem *base = get_hwbase(dev);
  3313. u32 events;
  3314. int i;
  3315. unsigned long flags;
  3316. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3317. for (i=0; ; i++) {
  3318. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3319. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3320. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3321. if (!(events & np->irqmask))
  3322. break;
  3323. spin_lock_irqsave(&np->lock, flags);
  3324. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3325. spin_unlock_irqrestore(&np->lock, flags);
  3326. if (unlikely(i > max_interrupt_work)) {
  3327. spin_lock_irqsave(&np->lock, flags);
  3328. /* disable interrupts on the nic */
  3329. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3330. pci_push(base);
  3331. if (!np->in_shutdown) {
  3332. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3333. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3334. }
  3335. spin_unlock_irqrestore(&np->lock, flags);
  3336. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3337. break;
  3338. }
  3339. }
  3340. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3341. return IRQ_RETVAL(i);
  3342. }
  3343. #ifdef CONFIG_FORCEDETH_NAPI
  3344. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3345. {
  3346. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3347. struct net_device *dev = np->dev;
  3348. u8 __iomem *base = get_hwbase(dev);
  3349. unsigned long flags;
  3350. int retcode;
  3351. int tx_work, rx_work;
  3352. if (!nv_optimized(np)) {
  3353. spin_lock_irqsave(&np->lock, flags);
  3354. tx_work = nv_tx_done(dev, np->tx_ring_size);
  3355. spin_unlock_irqrestore(&np->lock, flags);
  3356. rx_work = nv_rx_process(dev, budget);
  3357. retcode = nv_alloc_rx(dev);
  3358. } else {
  3359. spin_lock_irqsave(&np->lock, flags);
  3360. tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
  3361. spin_unlock_irqrestore(&np->lock, flags);
  3362. rx_work = nv_rx_process_optimized(dev, budget);
  3363. retcode = nv_alloc_rx_optimized(dev);
  3364. }
  3365. if (retcode) {
  3366. spin_lock_irqsave(&np->lock, flags);
  3367. if (!np->in_shutdown)
  3368. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3369. spin_unlock_irqrestore(&np->lock, flags);
  3370. }
  3371. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3372. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3373. spin_lock_irqsave(&np->lock, flags);
  3374. nv_link_irq(dev);
  3375. spin_unlock_irqrestore(&np->lock, flags);
  3376. }
  3377. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3378. spin_lock_irqsave(&np->lock, flags);
  3379. nv_linkchange(dev);
  3380. spin_unlock_irqrestore(&np->lock, flags);
  3381. np->link_timeout = jiffies + LINK_TIMEOUT;
  3382. }
  3383. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3384. spin_lock_irqsave(&np->lock, flags);
  3385. if (!np->in_shutdown) {
  3386. np->nic_poll_irq = np->irqmask;
  3387. np->recover_error = 1;
  3388. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3389. }
  3390. spin_unlock_irqrestore(&np->lock, flags);
  3391. napi_complete(napi);
  3392. return rx_work;
  3393. }
  3394. if (rx_work < budget) {
  3395. /* re-enable interrupts
  3396. (msix not enabled in napi) */
  3397. napi_complete(napi);
  3398. writel(np->irqmask, base + NvRegIrqMask);
  3399. }
  3400. return rx_work;
  3401. }
  3402. #endif
  3403. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3404. {
  3405. struct net_device *dev = (struct net_device *) data;
  3406. struct fe_priv *np = netdev_priv(dev);
  3407. u8 __iomem *base = get_hwbase(dev);
  3408. u32 events;
  3409. int i;
  3410. unsigned long flags;
  3411. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3412. for (i=0; ; i++) {
  3413. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3414. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3415. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3416. if (!(events & np->irqmask))
  3417. break;
  3418. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3419. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3420. spin_lock_irqsave(&np->lock, flags);
  3421. if (!np->in_shutdown)
  3422. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3423. spin_unlock_irqrestore(&np->lock, flags);
  3424. }
  3425. }
  3426. if (unlikely(i > max_interrupt_work)) {
  3427. spin_lock_irqsave(&np->lock, flags);
  3428. /* disable interrupts on the nic */
  3429. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3430. pci_push(base);
  3431. if (!np->in_shutdown) {
  3432. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3433. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3434. }
  3435. spin_unlock_irqrestore(&np->lock, flags);
  3436. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3437. break;
  3438. }
  3439. }
  3440. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3441. return IRQ_RETVAL(i);
  3442. }
  3443. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3444. {
  3445. struct net_device *dev = (struct net_device *) data;
  3446. struct fe_priv *np = netdev_priv(dev);
  3447. u8 __iomem *base = get_hwbase(dev);
  3448. u32 events;
  3449. int i;
  3450. unsigned long flags;
  3451. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3452. for (i=0; ; i++) {
  3453. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3454. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3455. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3456. if (!(events & np->irqmask))
  3457. break;
  3458. /* check tx in case we reached max loop limit in tx isr */
  3459. spin_lock_irqsave(&np->lock, flags);
  3460. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3461. spin_unlock_irqrestore(&np->lock, flags);
  3462. if (events & NVREG_IRQ_LINK) {
  3463. spin_lock_irqsave(&np->lock, flags);
  3464. nv_link_irq(dev);
  3465. spin_unlock_irqrestore(&np->lock, flags);
  3466. }
  3467. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3468. spin_lock_irqsave(&np->lock, flags);
  3469. nv_linkchange(dev);
  3470. spin_unlock_irqrestore(&np->lock, flags);
  3471. np->link_timeout = jiffies + LINK_TIMEOUT;
  3472. }
  3473. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3474. spin_lock_irq(&np->lock);
  3475. /* disable interrupts on the nic */
  3476. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3477. pci_push(base);
  3478. if (!np->in_shutdown) {
  3479. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3480. np->recover_error = 1;
  3481. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3482. }
  3483. spin_unlock_irq(&np->lock);
  3484. break;
  3485. }
  3486. if (unlikely(i > max_interrupt_work)) {
  3487. spin_lock_irqsave(&np->lock, flags);
  3488. /* disable interrupts on the nic */
  3489. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3490. pci_push(base);
  3491. if (!np->in_shutdown) {
  3492. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3493. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3494. }
  3495. spin_unlock_irqrestore(&np->lock, flags);
  3496. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3497. break;
  3498. }
  3499. }
  3500. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3501. return IRQ_RETVAL(i);
  3502. }
  3503. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3504. {
  3505. struct net_device *dev = (struct net_device *) data;
  3506. struct fe_priv *np = netdev_priv(dev);
  3507. u8 __iomem *base = get_hwbase(dev);
  3508. u32 events;
  3509. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3510. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3511. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3512. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3513. } else {
  3514. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3515. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3516. }
  3517. pci_push(base);
  3518. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3519. if (!(events & NVREG_IRQ_TIMER))
  3520. return IRQ_RETVAL(0);
  3521. nv_msi_workaround(np);
  3522. spin_lock(&np->lock);
  3523. np->intr_test = 1;
  3524. spin_unlock(&np->lock);
  3525. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3526. return IRQ_RETVAL(1);
  3527. }
  3528. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3529. {
  3530. u8 __iomem *base = get_hwbase(dev);
  3531. int i;
  3532. u32 msixmap = 0;
  3533. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3534. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3535. * the remaining 8 interrupts.
  3536. */
  3537. for (i = 0; i < 8; i++) {
  3538. if ((irqmask >> i) & 0x1) {
  3539. msixmap |= vector << (i << 2);
  3540. }
  3541. }
  3542. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3543. msixmap = 0;
  3544. for (i = 0; i < 8; i++) {
  3545. if ((irqmask >> (i + 8)) & 0x1) {
  3546. msixmap |= vector << (i << 2);
  3547. }
  3548. }
  3549. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3550. }
  3551. static int nv_request_irq(struct net_device *dev, int intr_test)
  3552. {
  3553. struct fe_priv *np = get_nvpriv(dev);
  3554. u8 __iomem *base = get_hwbase(dev);
  3555. int ret = 1;
  3556. int i;
  3557. irqreturn_t (*handler)(int foo, void *data);
  3558. if (intr_test) {
  3559. handler = nv_nic_irq_test;
  3560. } else {
  3561. if (nv_optimized(np))
  3562. handler = nv_nic_irq_optimized;
  3563. else
  3564. handler = nv_nic_irq;
  3565. }
  3566. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3567. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3568. np->msi_x_entry[i].entry = i;
  3569. }
  3570. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3571. np->msi_flags |= NV_MSI_X_ENABLED;
  3572. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3573. /* Request irq for rx handling */
  3574. sprintf(np->name_rx, "%s-rx", dev->name);
  3575. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3576. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3577. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3578. pci_disable_msix(np->pci_dev);
  3579. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3580. goto out_err;
  3581. }
  3582. /* Request irq for tx handling */
  3583. sprintf(np->name_tx, "%s-tx", dev->name);
  3584. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3585. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3586. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3587. pci_disable_msix(np->pci_dev);
  3588. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3589. goto out_free_rx;
  3590. }
  3591. /* Request irq for link and timer handling */
  3592. sprintf(np->name_other, "%s-other", dev->name);
  3593. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3594. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3595. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3596. pci_disable_msix(np->pci_dev);
  3597. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3598. goto out_free_tx;
  3599. }
  3600. /* map interrupts to their respective vector */
  3601. writel(0, base + NvRegMSIXMap0);
  3602. writel(0, base + NvRegMSIXMap1);
  3603. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3604. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3605. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3606. } else {
  3607. /* Request irq for all interrupts */
  3608. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3609. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3610. pci_disable_msix(np->pci_dev);
  3611. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3612. goto out_err;
  3613. }
  3614. /* map interrupts to vector 0 */
  3615. writel(0, base + NvRegMSIXMap0);
  3616. writel(0, base + NvRegMSIXMap1);
  3617. }
  3618. }
  3619. }
  3620. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3621. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3622. np->msi_flags |= NV_MSI_ENABLED;
  3623. dev->irq = np->pci_dev->irq;
  3624. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3625. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3626. pci_disable_msi(np->pci_dev);
  3627. np->msi_flags &= ~NV_MSI_ENABLED;
  3628. dev->irq = np->pci_dev->irq;
  3629. goto out_err;
  3630. }
  3631. /* map interrupts to vector 0 */
  3632. writel(0, base + NvRegMSIMap0);
  3633. writel(0, base + NvRegMSIMap1);
  3634. /* enable msi vector 0 */
  3635. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3636. }
  3637. }
  3638. if (ret != 0) {
  3639. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3640. goto out_err;
  3641. }
  3642. return 0;
  3643. out_free_tx:
  3644. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3645. out_free_rx:
  3646. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3647. out_err:
  3648. return 1;
  3649. }
  3650. static void nv_free_irq(struct net_device *dev)
  3651. {
  3652. struct fe_priv *np = get_nvpriv(dev);
  3653. int i;
  3654. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3655. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3656. free_irq(np->msi_x_entry[i].vector, dev);
  3657. }
  3658. pci_disable_msix(np->pci_dev);
  3659. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3660. } else {
  3661. free_irq(np->pci_dev->irq, dev);
  3662. if (np->msi_flags & NV_MSI_ENABLED) {
  3663. pci_disable_msi(np->pci_dev);
  3664. np->msi_flags &= ~NV_MSI_ENABLED;
  3665. }
  3666. }
  3667. }
  3668. static void nv_do_nic_poll(unsigned long data)
  3669. {
  3670. struct net_device *dev = (struct net_device *) data;
  3671. struct fe_priv *np = netdev_priv(dev);
  3672. u8 __iomem *base = get_hwbase(dev);
  3673. u32 mask = 0;
  3674. /*
  3675. * First disable irq(s) and then
  3676. * reenable interrupts on the nic, we have to do this before calling
  3677. * nv_nic_irq because that may decide to do otherwise
  3678. */
  3679. if (!using_multi_irqs(dev)) {
  3680. if (np->msi_flags & NV_MSI_X_ENABLED)
  3681. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3682. else
  3683. disable_irq_lockdep(np->pci_dev->irq);
  3684. mask = np->irqmask;
  3685. } else {
  3686. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3687. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3688. mask |= NVREG_IRQ_RX_ALL;
  3689. }
  3690. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3691. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3692. mask |= NVREG_IRQ_TX_ALL;
  3693. }
  3694. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3695. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3696. mask |= NVREG_IRQ_OTHER;
  3697. }
  3698. }
  3699. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3700. if (np->recover_error) {
  3701. np->recover_error = 0;
  3702. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3703. if (netif_running(dev)) {
  3704. netif_tx_lock_bh(dev);
  3705. netif_addr_lock(dev);
  3706. spin_lock(&np->lock);
  3707. /* stop engines */
  3708. nv_stop_rxtx(dev);
  3709. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3710. nv_mac_reset(dev);
  3711. nv_txrx_reset(dev);
  3712. /* drain rx queue */
  3713. nv_drain_rxtx(dev);
  3714. /* reinit driver view of the rx queue */
  3715. set_bufsize(dev);
  3716. if (nv_init_ring(dev)) {
  3717. if (!np->in_shutdown)
  3718. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3719. }
  3720. /* reinit nic view of the rx queue */
  3721. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3722. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3723. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3724. base + NvRegRingSizes);
  3725. pci_push(base);
  3726. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3727. pci_push(base);
  3728. /* clear interrupts */
  3729. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3730. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3731. else
  3732. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3733. /* restart rx engine */
  3734. nv_start_rxtx(dev);
  3735. spin_unlock(&np->lock);
  3736. netif_addr_unlock(dev);
  3737. netif_tx_unlock_bh(dev);
  3738. }
  3739. }
  3740. writel(mask, base + NvRegIrqMask);
  3741. pci_push(base);
  3742. if (!using_multi_irqs(dev)) {
  3743. np->nic_poll_irq = 0;
  3744. if (nv_optimized(np))
  3745. nv_nic_irq_optimized(0, dev);
  3746. else
  3747. nv_nic_irq(0, dev);
  3748. if (np->msi_flags & NV_MSI_X_ENABLED)
  3749. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3750. else
  3751. enable_irq_lockdep(np->pci_dev->irq);
  3752. } else {
  3753. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3754. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3755. nv_nic_irq_rx(0, dev);
  3756. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3757. }
  3758. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3759. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3760. nv_nic_irq_tx(0, dev);
  3761. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3762. }
  3763. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3764. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3765. nv_nic_irq_other(0, dev);
  3766. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3767. }
  3768. }
  3769. }
  3770. #ifdef CONFIG_NET_POLL_CONTROLLER
  3771. static void nv_poll_controller(struct net_device *dev)
  3772. {
  3773. nv_do_nic_poll((unsigned long) dev);
  3774. }
  3775. #endif
  3776. static void nv_do_stats_poll(unsigned long data)
  3777. {
  3778. struct net_device *dev = (struct net_device *) data;
  3779. struct fe_priv *np = netdev_priv(dev);
  3780. nv_get_hw_stats(dev);
  3781. if (!np->in_shutdown)
  3782. mod_timer(&np->stats_poll,
  3783. round_jiffies(jiffies + STATS_INTERVAL));
  3784. }
  3785. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3786. {
  3787. struct fe_priv *np = netdev_priv(dev);
  3788. strcpy(info->driver, DRV_NAME);
  3789. strcpy(info->version, FORCEDETH_VERSION);
  3790. strcpy(info->bus_info, pci_name(np->pci_dev));
  3791. }
  3792. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3793. {
  3794. struct fe_priv *np = netdev_priv(dev);
  3795. wolinfo->supported = WAKE_MAGIC;
  3796. spin_lock_irq(&np->lock);
  3797. if (np->wolenabled)
  3798. wolinfo->wolopts = WAKE_MAGIC;
  3799. spin_unlock_irq(&np->lock);
  3800. }
  3801. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3802. {
  3803. struct fe_priv *np = netdev_priv(dev);
  3804. u8 __iomem *base = get_hwbase(dev);
  3805. u32 flags = 0;
  3806. if (wolinfo->wolopts == 0) {
  3807. np->wolenabled = 0;
  3808. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3809. np->wolenabled = 1;
  3810. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3811. }
  3812. if (netif_running(dev)) {
  3813. spin_lock_irq(&np->lock);
  3814. writel(flags, base + NvRegWakeUpFlags);
  3815. spin_unlock_irq(&np->lock);
  3816. }
  3817. return 0;
  3818. }
  3819. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3820. {
  3821. struct fe_priv *np = netdev_priv(dev);
  3822. int adv;
  3823. spin_lock_irq(&np->lock);
  3824. ecmd->port = PORT_MII;
  3825. if (!netif_running(dev)) {
  3826. /* We do not track link speed / duplex setting if the
  3827. * interface is disabled. Force a link check */
  3828. if (nv_update_linkspeed(dev)) {
  3829. if (!netif_carrier_ok(dev))
  3830. netif_carrier_on(dev);
  3831. } else {
  3832. if (netif_carrier_ok(dev))
  3833. netif_carrier_off(dev);
  3834. }
  3835. }
  3836. if (netif_carrier_ok(dev)) {
  3837. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3838. case NVREG_LINKSPEED_10:
  3839. ecmd->speed = SPEED_10;
  3840. break;
  3841. case NVREG_LINKSPEED_100:
  3842. ecmd->speed = SPEED_100;
  3843. break;
  3844. case NVREG_LINKSPEED_1000:
  3845. ecmd->speed = SPEED_1000;
  3846. break;
  3847. }
  3848. ecmd->duplex = DUPLEX_HALF;
  3849. if (np->duplex)
  3850. ecmd->duplex = DUPLEX_FULL;
  3851. } else {
  3852. ecmd->speed = -1;
  3853. ecmd->duplex = -1;
  3854. }
  3855. ecmd->autoneg = np->autoneg;
  3856. ecmd->advertising = ADVERTISED_MII;
  3857. if (np->autoneg) {
  3858. ecmd->advertising |= ADVERTISED_Autoneg;
  3859. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3860. if (adv & ADVERTISE_10HALF)
  3861. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3862. if (adv & ADVERTISE_10FULL)
  3863. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3864. if (adv & ADVERTISE_100HALF)
  3865. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3866. if (adv & ADVERTISE_100FULL)
  3867. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3868. if (np->gigabit == PHY_GIGABIT) {
  3869. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3870. if (adv & ADVERTISE_1000FULL)
  3871. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3872. }
  3873. }
  3874. ecmd->supported = (SUPPORTED_Autoneg |
  3875. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3876. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3877. SUPPORTED_MII);
  3878. if (np->gigabit == PHY_GIGABIT)
  3879. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3880. ecmd->phy_address = np->phyaddr;
  3881. ecmd->transceiver = XCVR_EXTERNAL;
  3882. /* ignore maxtxpkt, maxrxpkt for now */
  3883. spin_unlock_irq(&np->lock);
  3884. return 0;
  3885. }
  3886. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3887. {
  3888. struct fe_priv *np = netdev_priv(dev);
  3889. if (ecmd->port != PORT_MII)
  3890. return -EINVAL;
  3891. if (ecmd->transceiver != XCVR_EXTERNAL)
  3892. return -EINVAL;
  3893. if (ecmd->phy_address != np->phyaddr) {
  3894. /* TODO: support switching between multiple phys. Should be
  3895. * trivial, but not enabled due to lack of test hardware. */
  3896. return -EINVAL;
  3897. }
  3898. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3899. u32 mask;
  3900. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3901. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3902. if (np->gigabit == PHY_GIGABIT)
  3903. mask |= ADVERTISED_1000baseT_Full;
  3904. if ((ecmd->advertising & mask) == 0)
  3905. return -EINVAL;
  3906. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3907. /* Note: autonegotiation disable, speed 1000 intentionally
  3908. * forbidden - noone should need that. */
  3909. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3910. return -EINVAL;
  3911. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3912. return -EINVAL;
  3913. } else {
  3914. return -EINVAL;
  3915. }
  3916. netif_carrier_off(dev);
  3917. if (netif_running(dev)) {
  3918. unsigned long flags;
  3919. nv_disable_irq(dev);
  3920. netif_tx_lock_bh(dev);
  3921. netif_addr_lock(dev);
  3922. /* with plain spinlock lockdep complains */
  3923. spin_lock_irqsave(&np->lock, flags);
  3924. /* stop engines */
  3925. /* FIXME:
  3926. * this can take some time, and interrupts are disabled
  3927. * due to spin_lock_irqsave, but let's hope no daemon
  3928. * is going to change the settings very often...
  3929. * Worst case:
  3930. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3931. * + some minor delays, which is up to a second approximately
  3932. */
  3933. nv_stop_rxtx(dev);
  3934. spin_unlock_irqrestore(&np->lock, flags);
  3935. netif_addr_unlock(dev);
  3936. netif_tx_unlock_bh(dev);
  3937. }
  3938. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3939. int adv, bmcr;
  3940. np->autoneg = 1;
  3941. /* advertise only what has been requested */
  3942. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3943. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3944. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3945. adv |= ADVERTISE_10HALF;
  3946. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3947. adv |= ADVERTISE_10FULL;
  3948. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3949. adv |= ADVERTISE_100HALF;
  3950. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3951. adv |= ADVERTISE_100FULL;
  3952. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3953. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3954. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3955. adv |= ADVERTISE_PAUSE_ASYM;
  3956. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3957. if (np->gigabit == PHY_GIGABIT) {
  3958. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3959. adv &= ~ADVERTISE_1000FULL;
  3960. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3961. adv |= ADVERTISE_1000FULL;
  3962. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3963. }
  3964. if (netif_running(dev))
  3965. printk(KERN_INFO "%s: link down.\n", dev->name);
  3966. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3967. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3968. bmcr |= BMCR_ANENABLE;
  3969. /* reset the phy in order for settings to stick,
  3970. * and cause autoneg to start */
  3971. if (phy_reset(dev, bmcr)) {
  3972. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3973. return -EINVAL;
  3974. }
  3975. } else {
  3976. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3977. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3978. }
  3979. } else {
  3980. int adv, bmcr;
  3981. np->autoneg = 0;
  3982. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3983. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3984. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3985. adv |= ADVERTISE_10HALF;
  3986. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3987. adv |= ADVERTISE_10FULL;
  3988. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3989. adv |= ADVERTISE_100HALF;
  3990. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3991. adv |= ADVERTISE_100FULL;
  3992. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3993. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3994. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3995. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3996. }
  3997. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3998. adv |= ADVERTISE_PAUSE_ASYM;
  3999. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4000. }
  4001. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4002. np->fixed_mode = adv;
  4003. if (np->gigabit == PHY_GIGABIT) {
  4004. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  4005. adv &= ~ADVERTISE_1000FULL;
  4006. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  4007. }
  4008. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4009. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  4010. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  4011. bmcr |= BMCR_FULLDPLX;
  4012. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  4013. bmcr |= BMCR_SPEED100;
  4014. if (np->phy_oui == PHY_OUI_MARVELL) {
  4015. /* reset the phy in order for forced mode settings to stick */
  4016. if (phy_reset(dev, bmcr)) {
  4017. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4018. return -EINVAL;
  4019. }
  4020. } else {
  4021. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4022. if (netif_running(dev)) {
  4023. /* Wait a bit and then reconfigure the nic. */
  4024. udelay(10);
  4025. nv_linkchange(dev);
  4026. }
  4027. }
  4028. }
  4029. if (netif_running(dev)) {
  4030. nv_start_rxtx(dev);
  4031. nv_enable_irq(dev);
  4032. }
  4033. return 0;
  4034. }
  4035. #define FORCEDETH_REGS_VER 1
  4036. static int nv_get_regs_len(struct net_device *dev)
  4037. {
  4038. struct fe_priv *np = netdev_priv(dev);
  4039. return np->register_size;
  4040. }
  4041. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4042. {
  4043. struct fe_priv *np = netdev_priv(dev);
  4044. u8 __iomem *base = get_hwbase(dev);
  4045. u32 *rbuf = buf;
  4046. int i;
  4047. regs->version = FORCEDETH_REGS_VER;
  4048. spin_lock_irq(&np->lock);
  4049. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4050. rbuf[i] = readl(base + i*sizeof(u32));
  4051. spin_unlock_irq(&np->lock);
  4052. }
  4053. static int nv_nway_reset(struct net_device *dev)
  4054. {
  4055. struct fe_priv *np = netdev_priv(dev);
  4056. int ret;
  4057. if (np->autoneg) {
  4058. int bmcr;
  4059. netif_carrier_off(dev);
  4060. if (netif_running(dev)) {
  4061. nv_disable_irq(dev);
  4062. netif_tx_lock_bh(dev);
  4063. netif_addr_lock(dev);
  4064. spin_lock(&np->lock);
  4065. /* stop engines */
  4066. nv_stop_rxtx(dev);
  4067. spin_unlock(&np->lock);
  4068. netif_addr_unlock(dev);
  4069. netif_tx_unlock_bh(dev);
  4070. printk(KERN_INFO "%s: link down.\n", dev->name);
  4071. }
  4072. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4073. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4074. bmcr |= BMCR_ANENABLE;
  4075. /* reset the phy in order for settings to stick*/
  4076. if (phy_reset(dev, bmcr)) {
  4077. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4078. return -EINVAL;
  4079. }
  4080. } else {
  4081. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4082. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4083. }
  4084. if (netif_running(dev)) {
  4085. nv_start_rxtx(dev);
  4086. nv_enable_irq(dev);
  4087. }
  4088. ret = 0;
  4089. } else {
  4090. ret = -EINVAL;
  4091. }
  4092. return ret;
  4093. }
  4094. static int nv_set_tso(struct net_device *dev, u32 value)
  4095. {
  4096. struct fe_priv *np = netdev_priv(dev);
  4097. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4098. return ethtool_op_set_tso(dev, value);
  4099. else
  4100. return -EOPNOTSUPP;
  4101. }
  4102. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4103. {
  4104. struct fe_priv *np = netdev_priv(dev);
  4105. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4106. ring->rx_mini_max_pending = 0;
  4107. ring->rx_jumbo_max_pending = 0;
  4108. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4109. ring->rx_pending = np->rx_ring_size;
  4110. ring->rx_mini_pending = 0;
  4111. ring->rx_jumbo_pending = 0;
  4112. ring->tx_pending = np->tx_ring_size;
  4113. }
  4114. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4115. {
  4116. struct fe_priv *np = netdev_priv(dev);
  4117. u8 __iomem *base = get_hwbase(dev);
  4118. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4119. dma_addr_t ring_addr;
  4120. if (ring->rx_pending < RX_RING_MIN ||
  4121. ring->tx_pending < TX_RING_MIN ||
  4122. ring->rx_mini_pending != 0 ||
  4123. ring->rx_jumbo_pending != 0 ||
  4124. (np->desc_ver == DESC_VER_1 &&
  4125. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4126. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4127. (np->desc_ver != DESC_VER_1 &&
  4128. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4129. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4130. return -EINVAL;
  4131. }
  4132. /* allocate new rings */
  4133. if (!nv_optimized(np)) {
  4134. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4135. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4136. &ring_addr);
  4137. } else {
  4138. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4139. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4140. &ring_addr);
  4141. }
  4142. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4143. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4144. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4145. /* fall back to old rings */
  4146. if (!nv_optimized(np)) {
  4147. if (rxtx_ring)
  4148. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4149. rxtx_ring, ring_addr);
  4150. } else {
  4151. if (rxtx_ring)
  4152. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4153. rxtx_ring, ring_addr);
  4154. }
  4155. if (rx_skbuff)
  4156. kfree(rx_skbuff);
  4157. if (tx_skbuff)
  4158. kfree(tx_skbuff);
  4159. goto exit;
  4160. }
  4161. if (netif_running(dev)) {
  4162. nv_disable_irq(dev);
  4163. nv_napi_disable(dev);
  4164. netif_tx_lock_bh(dev);
  4165. netif_addr_lock(dev);
  4166. spin_lock(&np->lock);
  4167. /* stop engines */
  4168. nv_stop_rxtx(dev);
  4169. nv_txrx_reset(dev);
  4170. /* drain queues */
  4171. nv_drain_rxtx(dev);
  4172. /* delete queues */
  4173. free_rings(dev);
  4174. }
  4175. /* set new values */
  4176. np->rx_ring_size = ring->rx_pending;
  4177. np->tx_ring_size = ring->tx_pending;
  4178. if (!nv_optimized(np)) {
  4179. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4180. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4181. } else {
  4182. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4183. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4184. }
  4185. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4186. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4187. np->ring_addr = ring_addr;
  4188. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4189. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4190. if (netif_running(dev)) {
  4191. /* reinit driver view of the queues */
  4192. set_bufsize(dev);
  4193. if (nv_init_ring(dev)) {
  4194. if (!np->in_shutdown)
  4195. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4196. }
  4197. /* reinit nic view of the queues */
  4198. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4199. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4200. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4201. base + NvRegRingSizes);
  4202. pci_push(base);
  4203. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4204. pci_push(base);
  4205. /* restart engines */
  4206. nv_start_rxtx(dev);
  4207. spin_unlock(&np->lock);
  4208. netif_addr_unlock(dev);
  4209. netif_tx_unlock_bh(dev);
  4210. nv_napi_enable(dev);
  4211. nv_enable_irq(dev);
  4212. }
  4213. return 0;
  4214. exit:
  4215. return -ENOMEM;
  4216. }
  4217. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4218. {
  4219. struct fe_priv *np = netdev_priv(dev);
  4220. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4221. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4222. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4223. }
  4224. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4225. {
  4226. struct fe_priv *np = netdev_priv(dev);
  4227. int adv, bmcr;
  4228. if ((!np->autoneg && np->duplex == 0) ||
  4229. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4230. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4231. dev->name);
  4232. return -EINVAL;
  4233. }
  4234. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4235. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4236. return -EINVAL;
  4237. }
  4238. netif_carrier_off(dev);
  4239. if (netif_running(dev)) {
  4240. nv_disable_irq(dev);
  4241. netif_tx_lock_bh(dev);
  4242. netif_addr_lock(dev);
  4243. spin_lock(&np->lock);
  4244. /* stop engines */
  4245. nv_stop_rxtx(dev);
  4246. spin_unlock(&np->lock);
  4247. netif_addr_unlock(dev);
  4248. netif_tx_unlock_bh(dev);
  4249. }
  4250. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4251. if (pause->rx_pause)
  4252. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4253. if (pause->tx_pause)
  4254. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4255. if (np->autoneg && pause->autoneg) {
  4256. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4257. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4258. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4259. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4260. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4261. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4262. adv |= ADVERTISE_PAUSE_ASYM;
  4263. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4264. if (netif_running(dev))
  4265. printk(KERN_INFO "%s: link down.\n", dev->name);
  4266. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4267. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4268. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4269. } else {
  4270. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4271. if (pause->rx_pause)
  4272. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4273. if (pause->tx_pause)
  4274. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4275. if (!netif_running(dev))
  4276. nv_update_linkspeed(dev);
  4277. else
  4278. nv_update_pause(dev, np->pause_flags);
  4279. }
  4280. if (netif_running(dev)) {
  4281. nv_start_rxtx(dev);
  4282. nv_enable_irq(dev);
  4283. }
  4284. return 0;
  4285. }
  4286. static u32 nv_get_rx_csum(struct net_device *dev)
  4287. {
  4288. struct fe_priv *np = netdev_priv(dev);
  4289. return (np->rx_csum) != 0;
  4290. }
  4291. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4292. {
  4293. struct fe_priv *np = netdev_priv(dev);
  4294. u8 __iomem *base = get_hwbase(dev);
  4295. int retcode = 0;
  4296. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4297. if (data) {
  4298. np->rx_csum = 1;
  4299. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4300. } else {
  4301. np->rx_csum = 0;
  4302. /* vlan is dependent on rx checksum offload */
  4303. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4304. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4305. }
  4306. if (netif_running(dev)) {
  4307. spin_lock_irq(&np->lock);
  4308. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4309. spin_unlock_irq(&np->lock);
  4310. }
  4311. } else {
  4312. return -EINVAL;
  4313. }
  4314. return retcode;
  4315. }
  4316. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4317. {
  4318. struct fe_priv *np = netdev_priv(dev);
  4319. if (np->driver_data & DEV_HAS_CHECKSUM)
  4320. return ethtool_op_set_tx_csum(dev, data);
  4321. else
  4322. return -EOPNOTSUPP;
  4323. }
  4324. static int nv_set_sg(struct net_device *dev, u32 data)
  4325. {
  4326. struct fe_priv *np = netdev_priv(dev);
  4327. if (np->driver_data & DEV_HAS_CHECKSUM)
  4328. return ethtool_op_set_sg(dev, data);
  4329. else
  4330. return -EOPNOTSUPP;
  4331. }
  4332. static int nv_get_sset_count(struct net_device *dev, int sset)
  4333. {
  4334. struct fe_priv *np = netdev_priv(dev);
  4335. switch (sset) {
  4336. case ETH_SS_TEST:
  4337. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4338. return NV_TEST_COUNT_EXTENDED;
  4339. else
  4340. return NV_TEST_COUNT_BASE;
  4341. case ETH_SS_STATS:
  4342. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4343. return NV_DEV_STATISTICS_V3_COUNT;
  4344. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4345. return NV_DEV_STATISTICS_V2_COUNT;
  4346. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4347. return NV_DEV_STATISTICS_V1_COUNT;
  4348. else
  4349. return 0;
  4350. default:
  4351. return -EOPNOTSUPP;
  4352. }
  4353. }
  4354. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4355. {
  4356. struct fe_priv *np = netdev_priv(dev);
  4357. /* update stats */
  4358. nv_do_stats_poll((unsigned long)dev);
  4359. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4360. }
  4361. static int nv_link_test(struct net_device *dev)
  4362. {
  4363. struct fe_priv *np = netdev_priv(dev);
  4364. int mii_status;
  4365. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4366. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4367. /* check phy link status */
  4368. if (!(mii_status & BMSR_LSTATUS))
  4369. return 0;
  4370. else
  4371. return 1;
  4372. }
  4373. static int nv_register_test(struct net_device *dev)
  4374. {
  4375. u8 __iomem *base = get_hwbase(dev);
  4376. int i = 0;
  4377. u32 orig_read, new_read;
  4378. do {
  4379. orig_read = readl(base + nv_registers_test[i].reg);
  4380. /* xor with mask to toggle bits */
  4381. orig_read ^= nv_registers_test[i].mask;
  4382. writel(orig_read, base + nv_registers_test[i].reg);
  4383. new_read = readl(base + nv_registers_test[i].reg);
  4384. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4385. return 0;
  4386. /* restore original value */
  4387. orig_read ^= nv_registers_test[i].mask;
  4388. writel(orig_read, base + nv_registers_test[i].reg);
  4389. } while (nv_registers_test[++i].reg != 0);
  4390. return 1;
  4391. }
  4392. static int nv_interrupt_test(struct net_device *dev)
  4393. {
  4394. struct fe_priv *np = netdev_priv(dev);
  4395. u8 __iomem *base = get_hwbase(dev);
  4396. int ret = 1;
  4397. int testcnt;
  4398. u32 save_msi_flags, save_poll_interval = 0;
  4399. if (netif_running(dev)) {
  4400. /* free current irq */
  4401. nv_free_irq(dev);
  4402. save_poll_interval = readl(base+NvRegPollingInterval);
  4403. }
  4404. /* flag to test interrupt handler */
  4405. np->intr_test = 0;
  4406. /* setup test irq */
  4407. save_msi_flags = np->msi_flags;
  4408. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4409. np->msi_flags |= 0x001; /* setup 1 vector */
  4410. if (nv_request_irq(dev, 1))
  4411. return 0;
  4412. /* setup timer interrupt */
  4413. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4414. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4415. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4416. /* wait for at least one interrupt */
  4417. msleep(100);
  4418. spin_lock_irq(&np->lock);
  4419. /* flag should be set within ISR */
  4420. testcnt = np->intr_test;
  4421. if (!testcnt)
  4422. ret = 2;
  4423. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4424. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4425. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4426. else
  4427. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4428. spin_unlock_irq(&np->lock);
  4429. nv_free_irq(dev);
  4430. np->msi_flags = save_msi_flags;
  4431. if (netif_running(dev)) {
  4432. writel(save_poll_interval, base + NvRegPollingInterval);
  4433. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4434. /* restore original irq */
  4435. if (nv_request_irq(dev, 0))
  4436. return 0;
  4437. }
  4438. return ret;
  4439. }
  4440. static int nv_loopback_test(struct net_device *dev)
  4441. {
  4442. struct fe_priv *np = netdev_priv(dev);
  4443. u8 __iomem *base = get_hwbase(dev);
  4444. struct sk_buff *tx_skb, *rx_skb;
  4445. dma_addr_t test_dma_addr;
  4446. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4447. u32 flags;
  4448. int len, i, pkt_len;
  4449. u8 *pkt_data;
  4450. u32 filter_flags = 0;
  4451. u32 misc1_flags = 0;
  4452. int ret = 1;
  4453. if (netif_running(dev)) {
  4454. nv_disable_irq(dev);
  4455. filter_flags = readl(base + NvRegPacketFilterFlags);
  4456. misc1_flags = readl(base + NvRegMisc1);
  4457. } else {
  4458. nv_txrx_reset(dev);
  4459. }
  4460. /* reinit driver view of the rx queue */
  4461. set_bufsize(dev);
  4462. nv_init_ring(dev);
  4463. /* setup hardware for loopback */
  4464. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4465. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4466. /* reinit nic view of the rx queue */
  4467. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4468. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4469. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4470. base + NvRegRingSizes);
  4471. pci_push(base);
  4472. /* restart rx engine */
  4473. nv_start_rxtx(dev);
  4474. /* setup packet for tx */
  4475. pkt_len = ETH_DATA_LEN;
  4476. tx_skb = dev_alloc_skb(pkt_len);
  4477. if (!tx_skb) {
  4478. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4479. " of %s\n", dev->name);
  4480. ret = 0;
  4481. goto out;
  4482. }
  4483. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4484. skb_tailroom(tx_skb),
  4485. PCI_DMA_FROMDEVICE);
  4486. pkt_data = skb_put(tx_skb, pkt_len);
  4487. for (i = 0; i < pkt_len; i++)
  4488. pkt_data[i] = (u8)(i & 0xff);
  4489. if (!nv_optimized(np)) {
  4490. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4491. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4492. } else {
  4493. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4494. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4495. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4496. }
  4497. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4498. pci_push(get_hwbase(dev));
  4499. msleep(500);
  4500. /* check for rx of the packet */
  4501. if (!nv_optimized(np)) {
  4502. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4503. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4504. } else {
  4505. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4506. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4507. }
  4508. if (flags & NV_RX_AVAIL) {
  4509. ret = 0;
  4510. } else if (np->desc_ver == DESC_VER_1) {
  4511. if (flags & NV_RX_ERROR)
  4512. ret = 0;
  4513. } else {
  4514. if (flags & NV_RX2_ERROR) {
  4515. ret = 0;
  4516. }
  4517. }
  4518. if (ret) {
  4519. if (len != pkt_len) {
  4520. ret = 0;
  4521. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4522. dev->name, len, pkt_len);
  4523. } else {
  4524. rx_skb = np->rx_skb[0].skb;
  4525. for (i = 0; i < pkt_len; i++) {
  4526. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4527. ret = 0;
  4528. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4529. dev->name, i);
  4530. break;
  4531. }
  4532. }
  4533. }
  4534. } else {
  4535. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4536. }
  4537. pci_unmap_single(np->pci_dev, test_dma_addr,
  4538. (skb_end_pointer(tx_skb) - tx_skb->data),
  4539. PCI_DMA_TODEVICE);
  4540. dev_kfree_skb_any(tx_skb);
  4541. out:
  4542. /* stop engines */
  4543. nv_stop_rxtx(dev);
  4544. nv_txrx_reset(dev);
  4545. /* drain rx queue */
  4546. nv_drain_rxtx(dev);
  4547. if (netif_running(dev)) {
  4548. writel(misc1_flags, base + NvRegMisc1);
  4549. writel(filter_flags, base + NvRegPacketFilterFlags);
  4550. nv_enable_irq(dev);
  4551. }
  4552. return ret;
  4553. }
  4554. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4555. {
  4556. struct fe_priv *np = netdev_priv(dev);
  4557. u8 __iomem *base = get_hwbase(dev);
  4558. int result;
  4559. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4560. if (!nv_link_test(dev)) {
  4561. test->flags |= ETH_TEST_FL_FAILED;
  4562. buffer[0] = 1;
  4563. }
  4564. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4565. if (netif_running(dev)) {
  4566. netif_stop_queue(dev);
  4567. nv_napi_disable(dev);
  4568. netif_tx_lock_bh(dev);
  4569. netif_addr_lock(dev);
  4570. spin_lock_irq(&np->lock);
  4571. nv_disable_hw_interrupts(dev, np->irqmask);
  4572. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4573. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4574. } else {
  4575. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4576. }
  4577. /* stop engines */
  4578. nv_stop_rxtx(dev);
  4579. nv_txrx_reset(dev);
  4580. /* drain rx queue */
  4581. nv_drain_rxtx(dev);
  4582. spin_unlock_irq(&np->lock);
  4583. netif_addr_unlock(dev);
  4584. netif_tx_unlock_bh(dev);
  4585. }
  4586. if (!nv_register_test(dev)) {
  4587. test->flags |= ETH_TEST_FL_FAILED;
  4588. buffer[1] = 1;
  4589. }
  4590. result = nv_interrupt_test(dev);
  4591. if (result != 1) {
  4592. test->flags |= ETH_TEST_FL_FAILED;
  4593. buffer[2] = 1;
  4594. }
  4595. if (result == 0) {
  4596. /* bail out */
  4597. return;
  4598. }
  4599. if (!nv_loopback_test(dev)) {
  4600. test->flags |= ETH_TEST_FL_FAILED;
  4601. buffer[3] = 1;
  4602. }
  4603. if (netif_running(dev)) {
  4604. /* reinit driver view of the rx queue */
  4605. set_bufsize(dev);
  4606. if (nv_init_ring(dev)) {
  4607. if (!np->in_shutdown)
  4608. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4609. }
  4610. /* reinit nic view of the rx queue */
  4611. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4612. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4613. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4614. base + NvRegRingSizes);
  4615. pci_push(base);
  4616. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4617. pci_push(base);
  4618. /* restart rx engine */
  4619. nv_start_rxtx(dev);
  4620. netif_start_queue(dev);
  4621. nv_napi_enable(dev);
  4622. nv_enable_hw_interrupts(dev, np->irqmask);
  4623. }
  4624. }
  4625. }
  4626. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4627. {
  4628. switch (stringset) {
  4629. case ETH_SS_STATS:
  4630. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4631. break;
  4632. case ETH_SS_TEST:
  4633. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4634. break;
  4635. }
  4636. }
  4637. static const struct ethtool_ops ops = {
  4638. .get_drvinfo = nv_get_drvinfo,
  4639. .get_link = ethtool_op_get_link,
  4640. .get_wol = nv_get_wol,
  4641. .set_wol = nv_set_wol,
  4642. .get_settings = nv_get_settings,
  4643. .set_settings = nv_set_settings,
  4644. .get_regs_len = nv_get_regs_len,
  4645. .get_regs = nv_get_regs,
  4646. .nway_reset = nv_nway_reset,
  4647. .set_tso = nv_set_tso,
  4648. .get_ringparam = nv_get_ringparam,
  4649. .set_ringparam = nv_set_ringparam,
  4650. .get_pauseparam = nv_get_pauseparam,
  4651. .set_pauseparam = nv_set_pauseparam,
  4652. .get_rx_csum = nv_get_rx_csum,
  4653. .set_rx_csum = nv_set_rx_csum,
  4654. .set_tx_csum = nv_set_tx_csum,
  4655. .set_sg = nv_set_sg,
  4656. .get_strings = nv_get_strings,
  4657. .get_ethtool_stats = nv_get_ethtool_stats,
  4658. .get_sset_count = nv_get_sset_count,
  4659. .self_test = nv_self_test,
  4660. };
  4661. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4662. {
  4663. struct fe_priv *np = get_nvpriv(dev);
  4664. spin_lock_irq(&np->lock);
  4665. /* save vlan group */
  4666. np->vlangrp = grp;
  4667. if (grp) {
  4668. /* enable vlan on MAC */
  4669. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4670. } else {
  4671. /* disable vlan on MAC */
  4672. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4673. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4674. }
  4675. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4676. spin_unlock_irq(&np->lock);
  4677. }
  4678. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4679. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4680. {
  4681. struct fe_priv *np = netdev_priv(dev);
  4682. u8 __iomem *base = get_hwbase(dev);
  4683. int i;
  4684. u32 tx_ctrl, mgmt_sema;
  4685. for (i = 0; i < 10; i++) {
  4686. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4687. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4688. break;
  4689. msleep(500);
  4690. }
  4691. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4692. return 0;
  4693. for (i = 0; i < 2; i++) {
  4694. tx_ctrl = readl(base + NvRegTransmitterControl);
  4695. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4696. writel(tx_ctrl, base + NvRegTransmitterControl);
  4697. /* verify that semaphore was acquired */
  4698. tx_ctrl = readl(base + NvRegTransmitterControl);
  4699. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4700. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4701. np->mgmt_sema = 1;
  4702. return 1;
  4703. }
  4704. else
  4705. udelay(50);
  4706. }
  4707. return 0;
  4708. }
  4709. static void nv_mgmt_release_sema(struct net_device *dev)
  4710. {
  4711. struct fe_priv *np = netdev_priv(dev);
  4712. u8 __iomem *base = get_hwbase(dev);
  4713. u32 tx_ctrl;
  4714. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4715. if (np->mgmt_sema) {
  4716. tx_ctrl = readl(base + NvRegTransmitterControl);
  4717. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4718. writel(tx_ctrl, base + NvRegTransmitterControl);
  4719. }
  4720. }
  4721. }
  4722. static int nv_mgmt_get_version(struct net_device *dev)
  4723. {
  4724. struct fe_priv *np = netdev_priv(dev);
  4725. u8 __iomem *base = get_hwbase(dev);
  4726. u32 data_ready = readl(base + NvRegTransmitterControl);
  4727. u32 data_ready2 = 0;
  4728. unsigned long start;
  4729. int ready = 0;
  4730. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4731. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4732. start = jiffies;
  4733. while (time_before(jiffies, start + 5*HZ)) {
  4734. data_ready2 = readl(base + NvRegTransmitterControl);
  4735. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4736. ready = 1;
  4737. break;
  4738. }
  4739. schedule_timeout_uninterruptible(1);
  4740. }
  4741. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4742. return 0;
  4743. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4744. return 1;
  4745. }
  4746. static int nv_open(struct net_device *dev)
  4747. {
  4748. struct fe_priv *np = netdev_priv(dev);
  4749. u8 __iomem *base = get_hwbase(dev);
  4750. int ret = 1;
  4751. int oom, i;
  4752. u32 low;
  4753. dprintk(KERN_DEBUG "nv_open: begin\n");
  4754. /* power up phy */
  4755. mii_rw(dev, np->phyaddr, MII_BMCR,
  4756. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4757. nv_txrx_gate(dev, false);
  4758. /* erase previous misconfiguration */
  4759. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4760. nv_mac_reset(dev);
  4761. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4762. writel(0, base + NvRegMulticastAddrB);
  4763. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4764. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4765. writel(0, base + NvRegPacketFilterFlags);
  4766. writel(0, base + NvRegTransmitterControl);
  4767. writel(0, base + NvRegReceiverControl);
  4768. writel(0, base + NvRegAdapterControl);
  4769. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4770. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4771. /* initialize descriptor rings */
  4772. set_bufsize(dev);
  4773. oom = nv_init_ring(dev);
  4774. writel(0, base + NvRegLinkSpeed);
  4775. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4776. nv_txrx_reset(dev);
  4777. writel(0, base + NvRegUnknownSetupReg6);
  4778. np->in_shutdown = 0;
  4779. /* give hw rings */
  4780. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4781. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4782. base + NvRegRingSizes);
  4783. writel(np->linkspeed, base + NvRegLinkSpeed);
  4784. if (np->desc_ver == DESC_VER_1)
  4785. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4786. else
  4787. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4788. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4789. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4790. pci_push(base);
  4791. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4792. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4793. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4794. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4795. writel(0, base + NvRegMIIMask);
  4796. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4797. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4798. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4799. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4800. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4801. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4802. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4803. get_random_bytes(&low, sizeof(low));
  4804. low &= NVREG_SLOTTIME_MASK;
  4805. if (np->desc_ver == DESC_VER_1) {
  4806. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4807. } else {
  4808. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4809. /* setup legacy backoff */
  4810. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4811. } else {
  4812. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4813. nv_gear_backoff_reseed(dev);
  4814. }
  4815. }
  4816. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4817. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4818. if (poll_interval == -1) {
  4819. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4820. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4821. else
  4822. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4823. }
  4824. else
  4825. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4826. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4827. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4828. base + NvRegAdapterControl);
  4829. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4830. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4831. if (np->wolenabled)
  4832. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4833. i = readl(base + NvRegPowerState);
  4834. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4835. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4836. pci_push(base);
  4837. udelay(10);
  4838. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4839. nv_disable_hw_interrupts(dev, np->irqmask);
  4840. pci_push(base);
  4841. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4842. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4843. pci_push(base);
  4844. if (nv_request_irq(dev, 0)) {
  4845. goto out_drain;
  4846. }
  4847. /* ask for interrupts */
  4848. nv_enable_hw_interrupts(dev, np->irqmask);
  4849. spin_lock_irq(&np->lock);
  4850. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4851. writel(0, base + NvRegMulticastAddrB);
  4852. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4853. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4854. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4855. /* One manual link speed update: Interrupts are enabled, future link
  4856. * speed changes cause interrupts and are handled by nv_link_irq().
  4857. */
  4858. {
  4859. u32 miistat;
  4860. miistat = readl(base + NvRegMIIStatus);
  4861. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4862. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4863. }
  4864. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4865. * to init hw */
  4866. np->linkspeed = 0;
  4867. ret = nv_update_linkspeed(dev);
  4868. nv_start_rxtx(dev);
  4869. netif_start_queue(dev);
  4870. nv_napi_enable(dev);
  4871. if (ret) {
  4872. netif_carrier_on(dev);
  4873. } else {
  4874. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4875. netif_carrier_off(dev);
  4876. }
  4877. if (oom)
  4878. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4879. /* start statistics timer */
  4880. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4881. mod_timer(&np->stats_poll,
  4882. round_jiffies(jiffies + STATS_INTERVAL));
  4883. spin_unlock_irq(&np->lock);
  4884. return 0;
  4885. out_drain:
  4886. nv_drain_rxtx(dev);
  4887. return ret;
  4888. }
  4889. static int nv_close(struct net_device *dev)
  4890. {
  4891. struct fe_priv *np = netdev_priv(dev);
  4892. u8 __iomem *base;
  4893. spin_lock_irq(&np->lock);
  4894. np->in_shutdown = 1;
  4895. spin_unlock_irq(&np->lock);
  4896. nv_napi_disable(dev);
  4897. synchronize_irq(np->pci_dev->irq);
  4898. del_timer_sync(&np->oom_kick);
  4899. del_timer_sync(&np->nic_poll);
  4900. del_timer_sync(&np->stats_poll);
  4901. netif_stop_queue(dev);
  4902. spin_lock_irq(&np->lock);
  4903. nv_stop_rxtx(dev);
  4904. nv_txrx_reset(dev);
  4905. /* disable interrupts on the nic or we will lock up */
  4906. base = get_hwbase(dev);
  4907. nv_disable_hw_interrupts(dev, np->irqmask);
  4908. pci_push(base);
  4909. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4910. spin_unlock_irq(&np->lock);
  4911. nv_free_irq(dev);
  4912. nv_drain_rxtx(dev);
  4913. if (np->wolenabled || !phy_power_down) {
  4914. nv_txrx_gate(dev, false);
  4915. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4916. nv_start_rx(dev);
  4917. } else {
  4918. /* power down phy */
  4919. mii_rw(dev, np->phyaddr, MII_BMCR,
  4920. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4921. nv_txrx_gate(dev, true);
  4922. }
  4923. /* FIXME: power down nic */
  4924. return 0;
  4925. }
  4926. static const struct net_device_ops nv_netdev_ops = {
  4927. .ndo_open = nv_open,
  4928. .ndo_stop = nv_close,
  4929. .ndo_get_stats = nv_get_stats,
  4930. .ndo_start_xmit = nv_start_xmit,
  4931. .ndo_tx_timeout = nv_tx_timeout,
  4932. .ndo_change_mtu = nv_change_mtu,
  4933. .ndo_validate_addr = eth_validate_addr,
  4934. .ndo_set_mac_address = nv_set_mac_address,
  4935. .ndo_set_multicast_list = nv_set_multicast,
  4936. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4937. #ifdef CONFIG_NET_POLL_CONTROLLER
  4938. .ndo_poll_controller = nv_poll_controller,
  4939. #endif
  4940. };
  4941. static const struct net_device_ops nv_netdev_ops_optimized = {
  4942. .ndo_open = nv_open,
  4943. .ndo_stop = nv_close,
  4944. .ndo_get_stats = nv_get_stats,
  4945. .ndo_start_xmit = nv_start_xmit_optimized,
  4946. .ndo_tx_timeout = nv_tx_timeout,
  4947. .ndo_change_mtu = nv_change_mtu,
  4948. .ndo_validate_addr = eth_validate_addr,
  4949. .ndo_set_mac_address = nv_set_mac_address,
  4950. .ndo_set_multicast_list = nv_set_multicast,
  4951. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4952. #ifdef CONFIG_NET_POLL_CONTROLLER
  4953. .ndo_poll_controller = nv_poll_controller,
  4954. #endif
  4955. };
  4956. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4957. {
  4958. struct net_device *dev;
  4959. struct fe_priv *np;
  4960. unsigned long addr;
  4961. u8 __iomem *base;
  4962. int err, i;
  4963. u32 powerstate, txreg;
  4964. u32 phystate_orig = 0, phystate;
  4965. int phyinitialized = 0;
  4966. static int printed_version;
  4967. if (!printed_version++)
  4968. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4969. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4970. dev = alloc_etherdev(sizeof(struct fe_priv));
  4971. err = -ENOMEM;
  4972. if (!dev)
  4973. goto out;
  4974. np = netdev_priv(dev);
  4975. np->dev = dev;
  4976. np->pci_dev = pci_dev;
  4977. spin_lock_init(&np->lock);
  4978. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4979. init_timer(&np->oom_kick);
  4980. np->oom_kick.data = (unsigned long) dev;
  4981. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4982. init_timer(&np->nic_poll);
  4983. np->nic_poll.data = (unsigned long) dev;
  4984. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4985. init_timer(&np->stats_poll);
  4986. np->stats_poll.data = (unsigned long) dev;
  4987. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4988. err = pci_enable_device(pci_dev);
  4989. if (err)
  4990. goto out_free;
  4991. pci_set_master(pci_dev);
  4992. err = pci_request_regions(pci_dev, DRV_NAME);
  4993. if (err < 0)
  4994. goto out_disable;
  4995. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4996. np->register_size = NV_PCI_REGSZ_VER3;
  4997. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4998. np->register_size = NV_PCI_REGSZ_VER2;
  4999. else
  5000. np->register_size = NV_PCI_REGSZ_VER1;
  5001. err = -EINVAL;
  5002. addr = 0;
  5003. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  5004. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  5005. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  5006. pci_resource_len(pci_dev, i),
  5007. pci_resource_flags(pci_dev, i));
  5008. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  5009. pci_resource_len(pci_dev, i) >= np->register_size) {
  5010. addr = pci_resource_start(pci_dev, i);
  5011. break;
  5012. }
  5013. }
  5014. if (i == DEVICE_COUNT_RESOURCE) {
  5015. dev_printk(KERN_INFO, &pci_dev->dev,
  5016. "Couldn't find register window\n");
  5017. goto out_relreg;
  5018. }
  5019. /* copy of driver data */
  5020. np->driver_data = id->driver_data;
  5021. /* copy of device id */
  5022. np->device_id = id->device;
  5023. /* handle different descriptor versions */
  5024. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  5025. /* packet format 3: supports 40-bit addressing */
  5026. np->desc_ver = DESC_VER_3;
  5027. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  5028. if (dma_64bit) {
  5029. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  5030. dev_printk(KERN_INFO, &pci_dev->dev,
  5031. "64-bit DMA failed, using 32-bit addressing\n");
  5032. else
  5033. dev->features |= NETIF_F_HIGHDMA;
  5034. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  5035. dev_printk(KERN_INFO, &pci_dev->dev,
  5036. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  5037. }
  5038. }
  5039. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5040. /* packet format 2: supports jumbo frames */
  5041. np->desc_ver = DESC_VER_2;
  5042. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5043. } else {
  5044. /* original packet format */
  5045. np->desc_ver = DESC_VER_1;
  5046. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5047. }
  5048. np->pkt_limit = NV_PKTLIMIT_1;
  5049. if (id->driver_data & DEV_HAS_LARGEDESC)
  5050. np->pkt_limit = NV_PKTLIMIT_2;
  5051. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5052. np->rx_csum = 1;
  5053. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5054. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5055. dev->features |= NETIF_F_TSO;
  5056. }
  5057. np->vlanctl_bits = 0;
  5058. if (id->driver_data & DEV_HAS_VLAN) {
  5059. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5060. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5061. }
  5062. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5063. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5064. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5065. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5066. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5067. }
  5068. err = -ENOMEM;
  5069. np->base = ioremap(addr, np->register_size);
  5070. if (!np->base)
  5071. goto out_relreg;
  5072. dev->base_addr = (unsigned long)np->base;
  5073. dev->irq = pci_dev->irq;
  5074. np->rx_ring_size = RX_RING_DEFAULT;
  5075. np->tx_ring_size = TX_RING_DEFAULT;
  5076. if (!nv_optimized(np)) {
  5077. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5078. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5079. &np->ring_addr);
  5080. if (!np->rx_ring.orig)
  5081. goto out_unmap;
  5082. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5083. } else {
  5084. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5085. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5086. &np->ring_addr);
  5087. if (!np->rx_ring.ex)
  5088. goto out_unmap;
  5089. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5090. }
  5091. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5092. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5093. if (!np->rx_skb || !np->tx_skb)
  5094. goto out_freering;
  5095. if (!nv_optimized(np))
  5096. dev->netdev_ops = &nv_netdev_ops;
  5097. else
  5098. dev->netdev_ops = &nv_netdev_ops_optimized;
  5099. #ifdef CONFIG_FORCEDETH_NAPI
  5100. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5101. #endif
  5102. SET_ETHTOOL_OPS(dev, &ops);
  5103. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5104. pci_set_drvdata(pci_dev, dev);
  5105. /* read the mac address */
  5106. base = get_hwbase(dev);
  5107. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5108. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5109. /* check the workaround bit for correct mac address order */
  5110. txreg = readl(base + NvRegTransmitPoll);
  5111. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5112. /* mac address is already in correct order */
  5113. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5114. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5115. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5116. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5117. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5118. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5119. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5120. /* mac address is already in correct order */
  5121. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5122. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5123. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5124. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5125. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5126. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5127. /*
  5128. * Set orig mac address back to the reversed version.
  5129. * This flag will be cleared during low power transition.
  5130. * Therefore, we should always put back the reversed address.
  5131. */
  5132. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5133. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5134. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5135. } else {
  5136. /* need to reverse mac address to correct order */
  5137. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5138. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5139. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5140. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5141. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5142. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5143. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5144. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5145. }
  5146. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5147. if (!is_valid_ether_addr(dev->perm_addr)) {
  5148. /*
  5149. * Bad mac address. At least one bios sets the mac address
  5150. * to 01:23:45:67:89:ab
  5151. */
  5152. dev_printk(KERN_ERR, &pci_dev->dev,
  5153. "Invalid Mac address detected: %pM\n",
  5154. dev->dev_addr);
  5155. dev_printk(KERN_ERR, &pci_dev->dev,
  5156. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5157. random_ether_addr(dev->dev_addr);
  5158. }
  5159. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5160. pci_name(pci_dev), dev->dev_addr);
  5161. /* set mac address */
  5162. nv_copy_mac_to_hw(dev);
  5163. /* Workaround current PCI init glitch: wakeup bits aren't
  5164. * being set from PCI PM capability.
  5165. */
  5166. device_init_wakeup(&pci_dev->dev, 1);
  5167. /* disable WOL */
  5168. writel(0, base + NvRegWakeUpFlags);
  5169. np->wolenabled = 0;
  5170. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5171. /* take phy and nic out of low power mode */
  5172. powerstate = readl(base + NvRegPowerState2);
  5173. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5174. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  5175. pci_dev->revision >= 0xA3)
  5176. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5177. writel(powerstate, base + NvRegPowerState2);
  5178. }
  5179. if (np->desc_ver == DESC_VER_1) {
  5180. np->tx_flags = NV_TX_VALID;
  5181. } else {
  5182. np->tx_flags = NV_TX2_VALID;
  5183. }
  5184. np->msi_flags = 0;
  5185. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5186. np->msi_flags |= NV_MSI_CAPABLE;
  5187. }
  5188. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5189. /* msix has had reported issues when modifying irqmask
  5190. as in the case of napi, therefore, disable for now
  5191. */
  5192. #ifndef CONFIG_FORCEDETH_NAPI
  5193. np->msi_flags |= NV_MSI_X_CAPABLE;
  5194. #endif
  5195. }
  5196. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5197. np->irqmask = NVREG_IRQMASK_CPU;
  5198. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5199. np->msi_flags |= 0x0001;
  5200. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5201. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5202. /* start off in throughput mode */
  5203. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5204. /* remove support for msix mode */
  5205. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5206. } else {
  5207. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5208. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5209. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5210. np->msi_flags |= 0x0003;
  5211. }
  5212. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5213. np->irqmask |= NVREG_IRQ_TIMER;
  5214. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5215. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5216. np->need_linktimer = 1;
  5217. np->link_timeout = jiffies + LINK_TIMEOUT;
  5218. } else {
  5219. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5220. np->need_linktimer = 0;
  5221. }
  5222. /* Limit the number of tx's outstanding for hw bug */
  5223. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5224. np->tx_limit = 1;
  5225. if ((id->driver_data & DEV_NEED_TX_LIMIT2) &&
  5226. pci_dev->revision >= 0xA2)
  5227. np->tx_limit = 0;
  5228. }
  5229. /* clear phy state and temporarily halt phy interrupts */
  5230. writel(0, base + NvRegMIIMask);
  5231. phystate = readl(base + NvRegAdapterControl);
  5232. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5233. phystate_orig = 1;
  5234. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5235. writel(phystate, base + NvRegAdapterControl);
  5236. }
  5237. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5238. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5239. /* management unit running on the mac? */
  5240. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5241. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5242. nv_mgmt_acquire_sema(dev) &&
  5243. nv_mgmt_get_version(dev)) {
  5244. np->mac_in_use = 1;
  5245. if (np->mgmt_version > 0) {
  5246. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5247. }
  5248. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5249. pci_name(pci_dev), np->mac_in_use);
  5250. /* management unit setup the phy already? */
  5251. if (np->mac_in_use &&
  5252. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5253. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5254. /* phy is inited by mgmt unit */
  5255. phyinitialized = 1;
  5256. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5257. pci_name(pci_dev));
  5258. } else {
  5259. /* we need to init the phy */
  5260. }
  5261. }
  5262. }
  5263. /* find a suitable phy */
  5264. for (i = 1; i <= 32; i++) {
  5265. int id1, id2;
  5266. int phyaddr = i & 0x1F;
  5267. spin_lock_irq(&np->lock);
  5268. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5269. spin_unlock_irq(&np->lock);
  5270. if (id1 < 0 || id1 == 0xffff)
  5271. continue;
  5272. spin_lock_irq(&np->lock);
  5273. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5274. spin_unlock_irq(&np->lock);
  5275. if (id2 < 0 || id2 == 0xffff)
  5276. continue;
  5277. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5278. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5279. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5280. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5281. pci_name(pci_dev), id1, id2, phyaddr);
  5282. np->phyaddr = phyaddr;
  5283. np->phy_oui = id1 | id2;
  5284. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5285. if (np->phy_oui == PHY_OUI_REALTEK2)
  5286. np->phy_oui = PHY_OUI_REALTEK;
  5287. /* Setup phy revision for Realtek */
  5288. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5289. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5290. break;
  5291. }
  5292. if (i == 33) {
  5293. dev_printk(KERN_INFO, &pci_dev->dev,
  5294. "open: Could not find a valid PHY.\n");
  5295. goto out_error;
  5296. }
  5297. if (!phyinitialized) {
  5298. /* reset it */
  5299. phy_init(dev);
  5300. } else {
  5301. /* see if it is a gigabit phy */
  5302. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5303. if (mii_status & PHY_GIGABIT) {
  5304. np->gigabit = PHY_GIGABIT;
  5305. }
  5306. }
  5307. /* set default link speed settings */
  5308. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5309. np->duplex = 0;
  5310. np->autoneg = 1;
  5311. err = register_netdev(dev);
  5312. if (err) {
  5313. dev_printk(KERN_INFO, &pci_dev->dev,
  5314. "unable to register netdev: %d\n", err);
  5315. goto out_error;
  5316. }
  5317. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5318. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5319. dev->name,
  5320. np->phy_oui,
  5321. np->phyaddr,
  5322. dev->dev_addr[0],
  5323. dev->dev_addr[1],
  5324. dev->dev_addr[2],
  5325. dev->dev_addr[3],
  5326. dev->dev_addr[4],
  5327. dev->dev_addr[5]);
  5328. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5329. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5330. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5331. "csum " : "",
  5332. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5333. "vlan " : "",
  5334. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5335. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5336. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5337. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5338. np->need_linktimer ? "lnktim " : "",
  5339. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5340. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5341. np->desc_ver);
  5342. return 0;
  5343. out_error:
  5344. if (phystate_orig)
  5345. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5346. pci_set_drvdata(pci_dev, NULL);
  5347. out_freering:
  5348. free_rings(dev);
  5349. out_unmap:
  5350. iounmap(get_hwbase(dev));
  5351. out_relreg:
  5352. pci_release_regions(pci_dev);
  5353. out_disable:
  5354. pci_disable_device(pci_dev);
  5355. out_free:
  5356. free_netdev(dev);
  5357. out:
  5358. return err;
  5359. }
  5360. static void nv_restore_phy(struct net_device *dev)
  5361. {
  5362. struct fe_priv *np = netdev_priv(dev);
  5363. u16 phy_reserved, mii_control;
  5364. if (np->phy_oui == PHY_OUI_REALTEK &&
  5365. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5366. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5367. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5368. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5369. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5370. phy_reserved |= PHY_REALTEK_INIT8;
  5371. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5372. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5373. /* restart auto negotiation */
  5374. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5375. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5376. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5377. }
  5378. }
  5379. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5380. {
  5381. struct net_device *dev = pci_get_drvdata(pci_dev);
  5382. struct fe_priv *np = netdev_priv(dev);
  5383. u8 __iomem *base = get_hwbase(dev);
  5384. /* special op: write back the misordered MAC address - otherwise
  5385. * the next nv_probe would see a wrong address.
  5386. */
  5387. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5388. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5389. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5390. base + NvRegTransmitPoll);
  5391. }
  5392. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5393. {
  5394. struct net_device *dev = pci_get_drvdata(pci_dev);
  5395. unregister_netdev(dev);
  5396. nv_restore_mac_addr(pci_dev);
  5397. /* restore any phy related changes */
  5398. nv_restore_phy(dev);
  5399. nv_mgmt_release_sema(dev);
  5400. /* free all structures */
  5401. free_rings(dev);
  5402. iounmap(get_hwbase(dev));
  5403. pci_release_regions(pci_dev);
  5404. pci_disable_device(pci_dev);
  5405. free_netdev(dev);
  5406. pci_set_drvdata(pci_dev, NULL);
  5407. }
  5408. #ifdef CONFIG_PM
  5409. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5410. {
  5411. struct net_device *dev = pci_get_drvdata(pdev);
  5412. struct fe_priv *np = netdev_priv(dev);
  5413. u8 __iomem *base = get_hwbase(dev);
  5414. int i;
  5415. if (netif_running(dev)) {
  5416. // Gross.
  5417. nv_close(dev);
  5418. }
  5419. netif_device_detach(dev);
  5420. /* save non-pci configuration space */
  5421. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5422. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5423. pci_save_state(pdev);
  5424. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5425. pci_disable_device(pdev);
  5426. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5427. return 0;
  5428. }
  5429. static int nv_resume(struct pci_dev *pdev)
  5430. {
  5431. struct net_device *dev = pci_get_drvdata(pdev);
  5432. struct fe_priv *np = netdev_priv(dev);
  5433. u8 __iomem *base = get_hwbase(dev);
  5434. int i, rc = 0;
  5435. pci_set_power_state(pdev, PCI_D0);
  5436. pci_restore_state(pdev);
  5437. /* ack any pending wake events, disable PME */
  5438. pci_enable_wake(pdev, PCI_D0, 0);
  5439. /* restore non-pci configuration space */
  5440. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5441. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5442. if (np->driver_data & DEV_NEED_MSI_FIX)
  5443. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5444. /* restore phy state, including autoneg */
  5445. phy_init(dev);
  5446. netif_device_attach(dev);
  5447. if (netif_running(dev)) {
  5448. rc = nv_open(dev);
  5449. nv_set_multicast(dev);
  5450. }
  5451. return rc;
  5452. }
  5453. static void nv_shutdown(struct pci_dev *pdev)
  5454. {
  5455. struct net_device *dev = pci_get_drvdata(pdev);
  5456. struct fe_priv *np = netdev_priv(dev);
  5457. if (netif_running(dev))
  5458. nv_close(dev);
  5459. /*
  5460. * Restore the MAC so a kernel started by kexec won't get confused.
  5461. * If we really go for poweroff, we must not restore the MAC,
  5462. * otherwise the MAC for WOL will be reversed at least on some boards.
  5463. */
  5464. if (system_state != SYSTEM_POWER_OFF) {
  5465. nv_restore_mac_addr(pdev);
  5466. }
  5467. pci_disable_device(pdev);
  5468. /*
  5469. * Apparently it is not possible to reinitialise from D3 hot,
  5470. * only put the device into D3 if we really go for poweroff.
  5471. */
  5472. if (system_state == SYSTEM_POWER_OFF) {
  5473. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5474. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5475. pci_set_power_state(pdev, PCI_D3hot);
  5476. }
  5477. }
  5478. #else
  5479. #define nv_suspend NULL
  5480. #define nv_shutdown NULL
  5481. #define nv_resume NULL
  5482. #endif /* CONFIG_PM */
  5483. static struct pci_device_id pci_tbl[] = {
  5484. { /* nForce Ethernet Controller */
  5485. PCI_DEVICE(0x10DE, 0x01C3),
  5486. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5487. },
  5488. { /* nForce2 Ethernet Controller */
  5489. PCI_DEVICE(0x10DE, 0x0066),
  5490. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5491. },
  5492. { /* nForce3 Ethernet Controller */
  5493. PCI_DEVICE(0x10DE, 0x00D6),
  5494. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5495. },
  5496. { /* nForce3 Ethernet Controller */
  5497. PCI_DEVICE(0x10DE, 0x0086),
  5498. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5499. },
  5500. { /* nForce3 Ethernet Controller */
  5501. PCI_DEVICE(0x10DE, 0x008C),
  5502. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5503. },
  5504. { /* nForce3 Ethernet Controller */
  5505. PCI_DEVICE(0x10DE, 0x00E6),
  5506. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5507. },
  5508. { /* nForce3 Ethernet Controller */
  5509. PCI_DEVICE(0x10DE, 0x00DF),
  5510. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5511. },
  5512. { /* CK804 Ethernet Controller */
  5513. PCI_DEVICE(0x10DE, 0x0056),
  5514. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5515. },
  5516. { /* CK804 Ethernet Controller */
  5517. PCI_DEVICE(0x10DE, 0x0057),
  5518. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5519. },
  5520. { /* MCP04 Ethernet Controller */
  5521. PCI_DEVICE(0x10DE, 0x0037),
  5522. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5523. },
  5524. { /* MCP04 Ethernet Controller */
  5525. PCI_DEVICE(0x10DE, 0x0038),
  5526. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5527. },
  5528. { /* MCP51 Ethernet Controller */
  5529. PCI_DEVICE(0x10DE, 0x0268),
  5530. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5531. },
  5532. { /* MCP51 Ethernet Controller */
  5533. PCI_DEVICE(0x10DE, 0x0269),
  5534. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5535. },
  5536. { /* MCP55 Ethernet Controller */
  5537. PCI_DEVICE(0x10DE, 0x0372),
  5538. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5539. },
  5540. { /* MCP55 Ethernet Controller */
  5541. PCI_DEVICE(0x10DE, 0x0373),
  5542. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5543. },
  5544. { /* MCP61 Ethernet Controller */
  5545. PCI_DEVICE(0x10DE, 0x03E5),
  5546. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5547. },
  5548. { /* MCP61 Ethernet Controller */
  5549. PCI_DEVICE(0x10DE, 0x03E6),
  5550. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5551. },
  5552. { /* MCP61 Ethernet Controller */
  5553. PCI_DEVICE(0x10DE, 0x03EE),
  5554. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5555. },
  5556. { /* MCP61 Ethernet Controller */
  5557. PCI_DEVICE(0x10DE, 0x03EF),
  5558. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5559. },
  5560. { /* MCP65 Ethernet Controller */
  5561. PCI_DEVICE(0x10DE, 0x0450),
  5562. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5563. },
  5564. { /* MCP65 Ethernet Controller */
  5565. PCI_DEVICE(0x10DE, 0x0451),
  5566. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5567. },
  5568. { /* MCP65 Ethernet Controller */
  5569. PCI_DEVICE(0x10DE, 0x0452),
  5570. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5571. },
  5572. { /* MCP65 Ethernet Controller */
  5573. PCI_DEVICE(0x10DE, 0x0453),
  5574. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5575. },
  5576. { /* MCP67 Ethernet Controller */
  5577. PCI_DEVICE(0x10DE, 0x054C),
  5578. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5579. },
  5580. { /* MCP67 Ethernet Controller */
  5581. PCI_DEVICE(0x10DE, 0x054D),
  5582. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5583. },
  5584. { /* MCP67 Ethernet Controller */
  5585. PCI_DEVICE(0x10DE, 0x054E),
  5586. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5587. },
  5588. { /* MCP67 Ethernet Controller */
  5589. PCI_DEVICE(0x10DE, 0x054F),
  5590. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5591. },
  5592. { /* MCP73 Ethernet Controller */
  5593. PCI_DEVICE(0x10DE, 0x07DC),
  5594. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5595. },
  5596. { /* MCP73 Ethernet Controller */
  5597. PCI_DEVICE(0x10DE, 0x07DD),
  5598. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5599. },
  5600. { /* MCP73 Ethernet Controller */
  5601. PCI_DEVICE(0x10DE, 0x07DE),
  5602. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5603. },
  5604. { /* MCP73 Ethernet Controller */
  5605. PCI_DEVICE(0x10DE, 0x07DF),
  5606. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5607. },
  5608. { /* MCP77 Ethernet Controller */
  5609. PCI_DEVICE(0x10DE, 0x0760),
  5610. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5611. },
  5612. { /* MCP77 Ethernet Controller */
  5613. PCI_DEVICE(0x10DE, 0x0761),
  5614. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5615. },
  5616. { /* MCP77 Ethernet Controller */
  5617. PCI_DEVICE(0x10DE, 0x0762),
  5618. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5619. },
  5620. { /* MCP77 Ethernet Controller */
  5621. PCI_DEVICE(0x10DE, 0x0763),
  5622. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5623. },
  5624. { /* MCP79 Ethernet Controller */
  5625. PCI_DEVICE(0x10DE, 0x0AB0),
  5626. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5627. },
  5628. { /* MCP79 Ethernet Controller */
  5629. PCI_DEVICE(0x10DE, 0x0AB1),
  5630. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5631. },
  5632. { /* MCP79 Ethernet Controller */
  5633. PCI_DEVICE(0x10DE, 0x0AB2),
  5634. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5635. },
  5636. { /* MCP79 Ethernet Controller */
  5637. PCI_DEVICE(0x10DE, 0x0AB3),
  5638. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5639. },
  5640. { /* MCP89 Ethernet Controller */
  5641. PCI_DEVICE(0x10DE, 0x0D7D),
  5642. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5643. },
  5644. {0,},
  5645. };
  5646. static struct pci_driver driver = {
  5647. .name = DRV_NAME,
  5648. .id_table = pci_tbl,
  5649. .probe = nv_probe,
  5650. .remove = __devexit_p(nv_remove),
  5651. .suspend = nv_suspend,
  5652. .resume = nv_resume,
  5653. .shutdown = nv_shutdown,
  5654. };
  5655. static int __init init_nic(void)
  5656. {
  5657. return pci_register_driver(&driver);
  5658. }
  5659. static void __exit exit_nic(void)
  5660. {
  5661. pci_unregister_driver(&driver);
  5662. }
  5663. module_param(max_interrupt_work, int, 0);
  5664. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5665. module_param(optimization_mode, int, 0);
  5666. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5667. module_param(poll_interval, int, 0);
  5668. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5669. module_param(msi, int, 0);
  5670. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5671. module_param(msix, int, 0);
  5672. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5673. module_param(dma_64bit, int, 0);
  5674. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5675. module_param(phy_cross, int, 0);
  5676. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5677. module_param(phy_power_down, int, 0);
  5678. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5679. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5680. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5681. MODULE_LICENSE("GPL");
  5682. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5683. module_init(init_nic);
  5684. module_exit(exit_nic);