dm9000.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572
  1. /*
  2. * Davicom DM9000 Fast Ethernet driver for Linux.
  3. * Copyright (C) 1997 Sten Wang
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16. *
  17. * Additional updates, Copyright:
  18. * Ben Dooks <ben@simtec.co.uk>
  19. * Sascha Hauer <s.hauer@pengutronix.de>
  20. */
  21. #include <linux/module.h>
  22. #include <linux/ioport.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/init.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/crc32.h>
  29. #include <linux/mii.h>
  30. #include <linux/ethtool.h>
  31. #include <linux/dm9000.h>
  32. #include <linux/delay.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/irq.h>
  35. #include <asm/delay.h>
  36. #include <asm/irq.h>
  37. #include <asm/io.h>
  38. #include "dm9000.h"
  39. /* Board/System/Debug information/definition ---------------- */
  40. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  41. #define CARDNAME "dm9000"
  42. #define DRV_VERSION "1.31"
  43. /*
  44. * Transmit timeout, default 5 seconds.
  45. */
  46. static int watchdog = 5000;
  47. module_param(watchdog, int, 0400);
  48. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  49. /* DM9000 register address locking.
  50. *
  51. * The DM9000 uses an address register to control where data written
  52. * to the data register goes. This means that the address register
  53. * must be preserved over interrupts or similar calls.
  54. *
  55. * During interrupt and other critical calls, a spinlock is used to
  56. * protect the system, but the calls themselves save the address
  57. * in the address register in case they are interrupting another
  58. * access to the device.
  59. *
  60. * For general accesses a lock is provided so that calls which are
  61. * allowed to sleep are serialised so that the address register does
  62. * not need to be saved. This lock also serves to serialise access
  63. * to the EEPROM and PHY access registers which are shared between
  64. * these two devices.
  65. */
  66. /* The driver supports the original DM9000E, and now the two newer
  67. * devices, DM9000A and DM9000B.
  68. */
  69. enum dm9000_type {
  70. TYPE_DM9000E, /* original DM9000 */
  71. TYPE_DM9000A,
  72. TYPE_DM9000B
  73. };
  74. /* Structure/enum declaration ------------------------------- */
  75. typedef struct board_info {
  76. void __iomem *io_addr; /* Register I/O base address */
  77. void __iomem *io_data; /* Data I/O address */
  78. u16 irq; /* IRQ */
  79. u16 tx_pkt_cnt;
  80. u16 queue_pkt_len;
  81. u16 queue_start_addr;
  82. u16 queue_ip_summed;
  83. u16 dbug_cnt;
  84. u8 io_mode; /* 0:word, 2:byte */
  85. u8 phy_addr;
  86. u8 imr_all;
  87. unsigned int flags;
  88. unsigned int in_suspend :1;
  89. int debug_level;
  90. enum dm9000_type type;
  91. void (*inblk)(void __iomem *port, void *data, int length);
  92. void (*outblk)(void __iomem *port, void *data, int length);
  93. void (*dumpblk)(void __iomem *port, int length);
  94. struct device *dev; /* parent device */
  95. struct resource *addr_res; /* resources found */
  96. struct resource *data_res;
  97. struct resource *addr_req; /* resources requested */
  98. struct resource *data_req;
  99. struct resource *irq_res;
  100. struct mutex addr_lock; /* phy and eeprom access lock */
  101. struct delayed_work phy_poll;
  102. struct net_device *ndev;
  103. spinlock_t lock;
  104. struct mii_if_info mii;
  105. u32 msg_enable;
  106. int rx_csum;
  107. int can_csum;
  108. int ip_summed;
  109. } board_info_t;
  110. /* debug code */
  111. #define dm9000_dbg(db, lev, msg...) do { \
  112. if ((lev) < CONFIG_DM9000_DEBUGLEVEL && \
  113. (lev) < db->debug_level) { \
  114. dev_dbg(db->dev, msg); \
  115. } \
  116. } while (0)
  117. static inline board_info_t *to_dm9000_board(struct net_device *dev)
  118. {
  119. return netdev_priv(dev);
  120. }
  121. /* DM9000 network board routine ---------------------------- */
  122. static void
  123. dm9000_reset(board_info_t * db)
  124. {
  125. dev_dbg(db->dev, "resetting device\n");
  126. /* RESET device */
  127. writeb(DM9000_NCR, db->io_addr);
  128. udelay(200);
  129. writeb(NCR_RST, db->io_data);
  130. udelay(200);
  131. }
  132. /*
  133. * Read a byte from I/O port
  134. */
  135. static u8
  136. ior(board_info_t * db, int reg)
  137. {
  138. writeb(reg, db->io_addr);
  139. return readb(db->io_data);
  140. }
  141. /*
  142. * Write a byte to I/O port
  143. */
  144. static void
  145. iow(board_info_t * db, int reg, int value)
  146. {
  147. writeb(reg, db->io_addr);
  148. writeb(value, db->io_data);
  149. }
  150. /* routines for sending block to chip */
  151. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  152. {
  153. writesb(reg, data, count);
  154. }
  155. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  156. {
  157. writesw(reg, data, (count+1) >> 1);
  158. }
  159. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  160. {
  161. writesl(reg, data, (count+3) >> 2);
  162. }
  163. /* input block from chip to memory */
  164. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  165. {
  166. readsb(reg, data, count);
  167. }
  168. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  169. {
  170. readsw(reg, data, (count+1) >> 1);
  171. }
  172. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  173. {
  174. readsl(reg, data, (count+3) >> 2);
  175. }
  176. /* dump block from chip to null */
  177. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  178. {
  179. int i;
  180. int tmp;
  181. for (i = 0; i < count; i++)
  182. tmp = readb(reg);
  183. }
  184. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  185. {
  186. int i;
  187. int tmp;
  188. count = (count + 1) >> 1;
  189. for (i = 0; i < count; i++)
  190. tmp = readw(reg);
  191. }
  192. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  193. {
  194. int i;
  195. int tmp;
  196. count = (count + 3) >> 2;
  197. for (i = 0; i < count; i++)
  198. tmp = readl(reg);
  199. }
  200. /* dm9000_set_io
  201. *
  202. * select the specified set of io routines to use with the
  203. * device
  204. */
  205. static void dm9000_set_io(struct board_info *db, int byte_width)
  206. {
  207. /* use the size of the data resource to work out what IO
  208. * routines we want to use
  209. */
  210. switch (byte_width) {
  211. case 1:
  212. db->dumpblk = dm9000_dumpblk_8bit;
  213. db->outblk = dm9000_outblk_8bit;
  214. db->inblk = dm9000_inblk_8bit;
  215. break;
  216. case 3:
  217. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  218. case 2:
  219. db->dumpblk = dm9000_dumpblk_16bit;
  220. db->outblk = dm9000_outblk_16bit;
  221. db->inblk = dm9000_inblk_16bit;
  222. break;
  223. case 4:
  224. default:
  225. db->dumpblk = dm9000_dumpblk_32bit;
  226. db->outblk = dm9000_outblk_32bit;
  227. db->inblk = dm9000_inblk_32bit;
  228. break;
  229. }
  230. }
  231. static void dm9000_schedule_poll(board_info_t *db)
  232. {
  233. if (db->type == TYPE_DM9000E)
  234. schedule_delayed_work(&db->phy_poll, HZ * 2);
  235. }
  236. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  237. {
  238. board_info_t *dm = to_dm9000_board(dev);
  239. if (!netif_running(dev))
  240. return -EINVAL;
  241. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  242. }
  243. static unsigned int
  244. dm9000_read_locked(board_info_t *db, int reg)
  245. {
  246. unsigned long flags;
  247. unsigned int ret;
  248. spin_lock_irqsave(&db->lock, flags);
  249. ret = ior(db, reg);
  250. spin_unlock_irqrestore(&db->lock, flags);
  251. return ret;
  252. }
  253. static int dm9000_wait_eeprom(board_info_t *db)
  254. {
  255. unsigned int status;
  256. int timeout = 8; /* wait max 8msec */
  257. /* The DM9000 data sheets say we should be able to
  258. * poll the ERRE bit in EPCR to wait for the EEPROM
  259. * operation. From testing several chips, this bit
  260. * does not seem to work.
  261. *
  262. * We attempt to use the bit, but fall back to the
  263. * timeout (which is why we do not return an error
  264. * on expiry) to say that the EEPROM operation has
  265. * completed.
  266. */
  267. while (1) {
  268. status = dm9000_read_locked(db, DM9000_EPCR);
  269. if ((status & EPCR_ERRE) == 0)
  270. break;
  271. msleep(1);
  272. if (timeout-- < 0) {
  273. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  274. break;
  275. }
  276. }
  277. return 0;
  278. }
  279. /*
  280. * Read a word data from EEPROM
  281. */
  282. static void
  283. dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
  284. {
  285. unsigned long flags;
  286. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  287. to[0] = 0xff;
  288. to[1] = 0xff;
  289. return;
  290. }
  291. mutex_lock(&db->addr_lock);
  292. spin_lock_irqsave(&db->lock, flags);
  293. iow(db, DM9000_EPAR, offset);
  294. iow(db, DM9000_EPCR, EPCR_ERPRR);
  295. spin_unlock_irqrestore(&db->lock, flags);
  296. dm9000_wait_eeprom(db);
  297. /* delay for at-least 150uS */
  298. msleep(1);
  299. spin_lock_irqsave(&db->lock, flags);
  300. iow(db, DM9000_EPCR, 0x0);
  301. to[0] = ior(db, DM9000_EPDRL);
  302. to[1] = ior(db, DM9000_EPDRH);
  303. spin_unlock_irqrestore(&db->lock, flags);
  304. mutex_unlock(&db->addr_lock);
  305. }
  306. /*
  307. * Write a word data to SROM
  308. */
  309. static void
  310. dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
  311. {
  312. unsigned long flags;
  313. if (db->flags & DM9000_PLATF_NO_EEPROM)
  314. return;
  315. mutex_lock(&db->addr_lock);
  316. spin_lock_irqsave(&db->lock, flags);
  317. iow(db, DM9000_EPAR, offset);
  318. iow(db, DM9000_EPDRH, data[1]);
  319. iow(db, DM9000_EPDRL, data[0]);
  320. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  321. spin_unlock_irqrestore(&db->lock, flags);
  322. dm9000_wait_eeprom(db);
  323. mdelay(1); /* wait at least 150uS to clear */
  324. spin_lock_irqsave(&db->lock, flags);
  325. iow(db, DM9000_EPCR, 0);
  326. spin_unlock_irqrestore(&db->lock, flags);
  327. mutex_unlock(&db->addr_lock);
  328. }
  329. /* ethtool ops */
  330. static void dm9000_get_drvinfo(struct net_device *dev,
  331. struct ethtool_drvinfo *info)
  332. {
  333. board_info_t *dm = to_dm9000_board(dev);
  334. strcpy(info->driver, CARDNAME);
  335. strcpy(info->version, DRV_VERSION);
  336. strcpy(info->bus_info, to_platform_device(dm->dev)->name);
  337. }
  338. static u32 dm9000_get_msglevel(struct net_device *dev)
  339. {
  340. board_info_t *dm = to_dm9000_board(dev);
  341. return dm->msg_enable;
  342. }
  343. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  344. {
  345. board_info_t *dm = to_dm9000_board(dev);
  346. dm->msg_enable = value;
  347. }
  348. static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  349. {
  350. board_info_t *dm = to_dm9000_board(dev);
  351. mii_ethtool_gset(&dm->mii, cmd);
  352. return 0;
  353. }
  354. static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  355. {
  356. board_info_t *dm = to_dm9000_board(dev);
  357. return mii_ethtool_sset(&dm->mii, cmd);
  358. }
  359. static int dm9000_nway_reset(struct net_device *dev)
  360. {
  361. board_info_t *dm = to_dm9000_board(dev);
  362. return mii_nway_restart(&dm->mii);
  363. }
  364. static uint32_t dm9000_get_rx_csum(struct net_device *dev)
  365. {
  366. board_info_t *dm = to_dm9000_board(dev);
  367. return dm->rx_csum;
  368. }
  369. static int dm9000_set_rx_csum(struct net_device *dev, uint32_t data)
  370. {
  371. board_info_t *dm = to_dm9000_board(dev);
  372. unsigned long flags;
  373. if (dm->can_csum) {
  374. dm->rx_csum = data;
  375. spin_lock_irqsave(&dm->lock, flags);
  376. iow(dm, DM9000_RCSR, dm->rx_csum ? RCSR_CSUM : 0);
  377. spin_unlock_irqrestore(&dm->lock, flags);
  378. return 0;
  379. }
  380. return -EOPNOTSUPP;
  381. }
  382. static int dm9000_set_tx_csum(struct net_device *dev, uint32_t data)
  383. {
  384. board_info_t *dm = to_dm9000_board(dev);
  385. int ret = -EOPNOTSUPP;
  386. if (dm->can_csum)
  387. ret = ethtool_op_set_tx_csum(dev, data);
  388. return ret;
  389. }
  390. static u32 dm9000_get_link(struct net_device *dev)
  391. {
  392. board_info_t *dm = to_dm9000_board(dev);
  393. u32 ret;
  394. if (dm->flags & DM9000_PLATF_EXT_PHY)
  395. ret = mii_link_ok(&dm->mii);
  396. else
  397. ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
  398. return ret;
  399. }
  400. #define DM_EEPROM_MAGIC (0x444D394B)
  401. static int dm9000_get_eeprom_len(struct net_device *dev)
  402. {
  403. return 128;
  404. }
  405. static int dm9000_get_eeprom(struct net_device *dev,
  406. struct ethtool_eeprom *ee, u8 *data)
  407. {
  408. board_info_t *dm = to_dm9000_board(dev);
  409. int offset = ee->offset;
  410. int len = ee->len;
  411. int i;
  412. /* EEPROM access is aligned to two bytes */
  413. if ((len & 1) != 0 || (offset & 1) != 0)
  414. return -EINVAL;
  415. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  416. return -ENOENT;
  417. ee->magic = DM_EEPROM_MAGIC;
  418. for (i = 0; i < len; i += 2)
  419. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  420. return 0;
  421. }
  422. static int dm9000_set_eeprom(struct net_device *dev,
  423. struct ethtool_eeprom *ee, u8 *data)
  424. {
  425. board_info_t *dm = to_dm9000_board(dev);
  426. int offset = ee->offset;
  427. int len = ee->len;
  428. int i;
  429. /* EEPROM access is aligned to two bytes */
  430. if ((len & 1) != 0 || (offset & 1) != 0)
  431. return -EINVAL;
  432. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  433. return -ENOENT;
  434. if (ee->magic != DM_EEPROM_MAGIC)
  435. return -EINVAL;
  436. for (i = 0; i < len; i += 2)
  437. dm9000_write_eeprom(dm, (offset + i) / 2, data + i);
  438. return 0;
  439. }
  440. static const struct ethtool_ops dm9000_ethtool_ops = {
  441. .get_drvinfo = dm9000_get_drvinfo,
  442. .get_settings = dm9000_get_settings,
  443. .set_settings = dm9000_set_settings,
  444. .get_msglevel = dm9000_get_msglevel,
  445. .set_msglevel = dm9000_set_msglevel,
  446. .nway_reset = dm9000_nway_reset,
  447. .get_link = dm9000_get_link,
  448. .get_eeprom_len = dm9000_get_eeprom_len,
  449. .get_eeprom = dm9000_get_eeprom,
  450. .set_eeprom = dm9000_set_eeprom,
  451. .get_rx_csum = dm9000_get_rx_csum,
  452. .set_rx_csum = dm9000_set_rx_csum,
  453. .get_tx_csum = ethtool_op_get_tx_csum,
  454. .set_tx_csum = dm9000_set_tx_csum,
  455. };
  456. static void dm9000_show_carrier(board_info_t *db,
  457. unsigned carrier, unsigned nsr)
  458. {
  459. struct net_device *ndev = db->ndev;
  460. unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
  461. if (carrier)
  462. dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
  463. ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
  464. (ncr & NCR_FDX) ? "full" : "half");
  465. else
  466. dev_info(db->dev, "%s: link down\n", ndev->name);
  467. }
  468. static void
  469. dm9000_poll_work(struct work_struct *w)
  470. {
  471. struct delayed_work *dw = to_delayed_work(w);
  472. board_info_t *db = container_of(dw, board_info_t, phy_poll);
  473. struct net_device *ndev = db->ndev;
  474. if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
  475. !(db->flags & DM9000_PLATF_EXT_PHY)) {
  476. unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
  477. unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
  478. unsigned new_carrier;
  479. new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
  480. if (old_carrier != new_carrier) {
  481. if (netif_msg_link(db))
  482. dm9000_show_carrier(db, new_carrier, nsr);
  483. if (!new_carrier)
  484. netif_carrier_off(ndev);
  485. else
  486. netif_carrier_on(ndev);
  487. }
  488. } else
  489. mii_check_media(&db->mii, netif_msg_link(db), 0);
  490. if (netif_running(ndev))
  491. dm9000_schedule_poll(db);
  492. }
  493. /* dm9000_release_board
  494. *
  495. * release a board, and any mapped resources
  496. */
  497. static void
  498. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  499. {
  500. /* unmap our resources */
  501. iounmap(db->io_addr);
  502. iounmap(db->io_data);
  503. /* release the resources */
  504. release_resource(db->data_req);
  505. kfree(db->data_req);
  506. release_resource(db->addr_req);
  507. kfree(db->addr_req);
  508. }
  509. static unsigned char dm9000_type_to_char(enum dm9000_type type)
  510. {
  511. switch (type) {
  512. case TYPE_DM9000E: return 'e';
  513. case TYPE_DM9000A: return 'a';
  514. case TYPE_DM9000B: return 'b';
  515. }
  516. return '?';
  517. }
  518. /*
  519. * Set DM9000 multicast address
  520. */
  521. static void
  522. dm9000_hash_table(struct net_device *dev)
  523. {
  524. board_info_t *db = netdev_priv(dev);
  525. struct dev_mc_list *mcptr = dev->mc_list;
  526. int mc_cnt = dev->mc_count;
  527. int i, oft;
  528. u32 hash_val;
  529. u16 hash_table[4];
  530. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  531. unsigned long flags;
  532. dm9000_dbg(db, 1, "entering %s\n", __func__);
  533. spin_lock_irqsave(&db->lock, flags);
  534. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  535. iow(db, oft, dev->dev_addr[i]);
  536. /* Clear Hash Table */
  537. for (i = 0; i < 4; i++)
  538. hash_table[i] = 0x0;
  539. /* broadcast address */
  540. hash_table[3] = 0x8000;
  541. if (dev->flags & IFF_PROMISC)
  542. rcr |= RCR_PRMSC;
  543. if (dev->flags & IFF_ALLMULTI)
  544. rcr |= RCR_ALL;
  545. /* the multicast address in Hash Table : 64 bits */
  546. for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) {
  547. hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f;
  548. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  549. }
  550. /* Write the hash table to MAC MD table */
  551. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  552. iow(db, oft++, hash_table[i]);
  553. iow(db, oft++, hash_table[i] >> 8);
  554. }
  555. iow(db, DM9000_RCR, rcr);
  556. spin_unlock_irqrestore(&db->lock, flags);
  557. }
  558. /*
  559. * Initilize dm9000 board
  560. */
  561. static void
  562. dm9000_init_dm9000(struct net_device *dev)
  563. {
  564. board_info_t *db = netdev_priv(dev);
  565. unsigned int imr;
  566. dm9000_dbg(db, 1, "entering %s\n", __func__);
  567. /* I/O mode */
  568. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  569. /* Checksum mode */
  570. dm9000_set_rx_csum(dev, db->rx_csum);
  571. /* GPIO0 on pre-activate PHY */
  572. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  573. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  574. iow(db, DM9000_GPR, 0); /* Enable PHY */
  575. if (db->flags & DM9000_PLATF_EXT_PHY)
  576. iow(db, DM9000_NCR, NCR_EXT_PHY);
  577. /* Program operating register */
  578. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  579. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  580. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  581. iow(db, DM9000_SMCR, 0); /* Special Mode */
  582. /* clear TX status */
  583. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  584. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  585. /* Set address filter table */
  586. dm9000_hash_table(dev);
  587. imr = IMR_PAR | IMR_PTM | IMR_PRM;
  588. if (db->type != TYPE_DM9000E)
  589. imr |= IMR_LNKCHNG;
  590. db->imr_all = imr;
  591. /* Enable TX/RX interrupt mask */
  592. iow(db, DM9000_IMR, imr);
  593. /* Init Driver variable */
  594. db->tx_pkt_cnt = 0;
  595. db->queue_pkt_len = 0;
  596. dev->trans_start = 0;
  597. }
  598. /* Our watchdog timed out. Called by the networking layer */
  599. static void dm9000_timeout(struct net_device *dev)
  600. {
  601. board_info_t *db = netdev_priv(dev);
  602. u8 reg_save;
  603. unsigned long flags;
  604. /* Save previous register address */
  605. reg_save = readb(db->io_addr);
  606. spin_lock_irqsave(&db->lock, flags);
  607. netif_stop_queue(dev);
  608. dm9000_reset(db);
  609. dm9000_init_dm9000(dev);
  610. /* We can accept TX packets again */
  611. dev->trans_start = jiffies;
  612. netif_wake_queue(dev);
  613. /* Restore previous register address */
  614. writeb(reg_save, db->io_addr);
  615. spin_unlock_irqrestore(&db->lock, flags);
  616. }
  617. static void dm9000_send_packet(struct net_device *dev,
  618. int ip_summed,
  619. u16 pkt_len)
  620. {
  621. board_info_t *dm = to_dm9000_board(dev);
  622. /* The DM9000 is not smart enough to leave fragmented packets alone. */
  623. if (dm->ip_summed != ip_summed) {
  624. if (ip_summed == CHECKSUM_NONE)
  625. iow(dm, DM9000_TCCR, 0);
  626. else
  627. iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
  628. dm->ip_summed = ip_summed;
  629. }
  630. /* Set TX length to DM9000 */
  631. iow(dm, DM9000_TXPLL, pkt_len);
  632. iow(dm, DM9000_TXPLH, pkt_len >> 8);
  633. /* Issue TX polling command */
  634. iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  635. }
  636. /*
  637. * Hardware start transmission.
  638. * Send a packet to media from the upper layer.
  639. */
  640. static int
  641. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  642. {
  643. unsigned long flags;
  644. board_info_t *db = netdev_priv(dev);
  645. dm9000_dbg(db, 3, "%s:\n", __func__);
  646. if (db->tx_pkt_cnt > 1)
  647. return NETDEV_TX_BUSY;
  648. spin_lock_irqsave(&db->lock, flags);
  649. /* Move data to DM9000 TX RAM */
  650. writeb(DM9000_MWCMD, db->io_addr);
  651. (db->outblk)(db->io_data, skb->data, skb->len);
  652. dev->stats.tx_bytes += skb->len;
  653. db->tx_pkt_cnt++;
  654. /* TX control: First packet immediately send, second packet queue */
  655. if (db->tx_pkt_cnt == 1) {
  656. dm9000_send_packet(dev, skb->ip_summed, skb->len);
  657. } else {
  658. /* Second packet */
  659. db->queue_pkt_len = skb->len;
  660. db->queue_ip_summed = skb->ip_summed;
  661. netif_stop_queue(dev);
  662. }
  663. spin_unlock_irqrestore(&db->lock, flags);
  664. /* free this SKB */
  665. dev_kfree_skb(skb);
  666. return NETDEV_TX_OK;
  667. }
  668. /*
  669. * DM9000 interrupt handler
  670. * receive the packet to upper layer, free the transmitted packet
  671. */
  672. static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
  673. {
  674. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  675. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  676. /* One packet sent complete */
  677. db->tx_pkt_cnt--;
  678. dev->stats.tx_packets++;
  679. if (netif_msg_tx_done(db))
  680. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  681. /* Queue packet check & send */
  682. if (db->tx_pkt_cnt > 0)
  683. dm9000_send_packet(dev, db->queue_ip_summed,
  684. db->queue_pkt_len);
  685. netif_wake_queue(dev);
  686. }
  687. }
  688. struct dm9000_rxhdr {
  689. u8 RxPktReady;
  690. u8 RxStatus;
  691. __le16 RxLen;
  692. } __attribute__((__packed__));
  693. /*
  694. * Received a packet and pass to upper layer
  695. */
  696. static void
  697. dm9000_rx(struct net_device *dev)
  698. {
  699. board_info_t *db = netdev_priv(dev);
  700. struct dm9000_rxhdr rxhdr;
  701. struct sk_buff *skb;
  702. u8 rxbyte, *rdptr;
  703. bool GoodPacket;
  704. int RxLen;
  705. /* Check packet ready or not */
  706. do {
  707. ior(db, DM9000_MRCMDX); /* Dummy read */
  708. /* Get most updated data */
  709. rxbyte = readb(db->io_data);
  710. /* Status check: this byte must be 0 or 1 */
  711. if (rxbyte & DM9000_PKT_ERR) {
  712. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  713. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  714. iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
  715. return;
  716. }
  717. if (!(rxbyte & DM9000_PKT_RDY))
  718. return;
  719. /* A packet ready now & Get status/length */
  720. GoodPacket = true;
  721. writeb(DM9000_MRCMD, db->io_addr);
  722. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  723. RxLen = le16_to_cpu(rxhdr.RxLen);
  724. if (netif_msg_rx_status(db))
  725. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  726. rxhdr.RxStatus, RxLen);
  727. /* Packet Status check */
  728. if (RxLen < 0x40) {
  729. GoodPacket = false;
  730. if (netif_msg_rx_err(db))
  731. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  732. }
  733. if (RxLen > DM9000_PKT_MAX) {
  734. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  735. }
  736. /* rxhdr.RxStatus is identical to RSR register. */
  737. if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
  738. RSR_PLE | RSR_RWTO |
  739. RSR_LCS | RSR_RF)) {
  740. GoodPacket = false;
  741. if (rxhdr.RxStatus & RSR_FOE) {
  742. if (netif_msg_rx_err(db))
  743. dev_dbg(db->dev, "fifo error\n");
  744. dev->stats.rx_fifo_errors++;
  745. }
  746. if (rxhdr.RxStatus & RSR_CE) {
  747. if (netif_msg_rx_err(db))
  748. dev_dbg(db->dev, "crc error\n");
  749. dev->stats.rx_crc_errors++;
  750. }
  751. if (rxhdr.RxStatus & RSR_RF) {
  752. if (netif_msg_rx_err(db))
  753. dev_dbg(db->dev, "length error\n");
  754. dev->stats.rx_length_errors++;
  755. }
  756. }
  757. /* Move data from DM9000 */
  758. if (GoodPacket
  759. && ((skb = dev_alloc_skb(RxLen + 4)) != NULL)) {
  760. skb_reserve(skb, 2);
  761. rdptr = (u8 *) skb_put(skb, RxLen - 4);
  762. /* Read received packet from RX SRAM */
  763. (db->inblk)(db->io_data, rdptr, RxLen);
  764. dev->stats.rx_bytes += RxLen;
  765. /* Pass to upper layer */
  766. skb->protocol = eth_type_trans(skb, dev);
  767. if (db->rx_csum) {
  768. if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
  769. skb->ip_summed = CHECKSUM_UNNECESSARY;
  770. else
  771. skb->ip_summed = CHECKSUM_NONE;
  772. }
  773. netif_rx(skb);
  774. dev->stats.rx_packets++;
  775. } else {
  776. /* need to dump the packet's data */
  777. (db->dumpblk)(db->io_data, RxLen);
  778. }
  779. } while (rxbyte & DM9000_PKT_RDY);
  780. }
  781. static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
  782. {
  783. struct net_device *dev = dev_id;
  784. board_info_t *db = netdev_priv(dev);
  785. int int_status;
  786. unsigned long flags;
  787. u8 reg_save;
  788. dm9000_dbg(db, 3, "entering %s\n", __func__);
  789. /* A real interrupt coming */
  790. /* holders of db->lock must always block IRQs */
  791. spin_lock_irqsave(&db->lock, flags);
  792. /* Save previous register address */
  793. reg_save = readb(db->io_addr);
  794. /* Disable all interrupts */
  795. iow(db, DM9000_IMR, IMR_PAR);
  796. /* Got DM9000 interrupt status */
  797. int_status = ior(db, DM9000_ISR); /* Got ISR */
  798. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  799. if (netif_msg_intr(db))
  800. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  801. /* Received the coming packet */
  802. if (int_status & ISR_PRS)
  803. dm9000_rx(dev);
  804. /* Trnasmit Interrupt check */
  805. if (int_status & ISR_PTS)
  806. dm9000_tx_done(dev, db);
  807. if (db->type != TYPE_DM9000E) {
  808. if (int_status & ISR_LNKCHNG) {
  809. /* fire a link-change request */
  810. schedule_delayed_work(&db->phy_poll, 1);
  811. }
  812. }
  813. /* Re-enable interrupt mask */
  814. iow(db, DM9000_IMR, db->imr_all);
  815. /* Restore previous register address */
  816. writeb(reg_save, db->io_addr);
  817. spin_unlock_irqrestore(&db->lock, flags);
  818. return IRQ_HANDLED;
  819. }
  820. #ifdef CONFIG_NET_POLL_CONTROLLER
  821. /*
  822. *Used by netconsole
  823. */
  824. static void dm9000_poll_controller(struct net_device *dev)
  825. {
  826. disable_irq(dev->irq);
  827. dm9000_interrupt(dev->irq, dev);
  828. enable_irq(dev->irq);
  829. }
  830. #endif
  831. /*
  832. * Open the interface.
  833. * The interface is opened whenever "ifconfig" actives it.
  834. */
  835. static int
  836. dm9000_open(struct net_device *dev)
  837. {
  838. board_info_t *db = netdev_priv(dev);
  839. unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
  840. if (netif_msg_ifup(db))
  841. dev_dbg(db->dev, "enabling %s\n", dev->name);
  842. /* If there is no IRQ type specified, default to something that
  843. * may work, and tell the user that this is a problem */
  844. if (irqflags == IRQF_TRIGGER_NONE)
  845. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  846. irqflags |= IRQF_SHARED;
  847. if (request_irq(dev->irq, &dm9000_interrupt, irqflags, dev->name, dev))
  848. return -EAGAIN;
  849. /* Initialize DM9000 board */
  850. dm9000_reset(db);
  851. dm9000_init_dm9000(dev);
  852. /* Init driver variable */
  853. db->dbug_cnt = 0;
  854. mii_check_media(&db->mii, netif_msg_link(db), 1);
  855. netif_start_queue(dev);
  856. dm9000_schedule_poll(db);
  857. return 0;
  858. }
  859. /*
  860. * Sleep, either by using msleep() or if we are suspending, then
  861. * use mdelay() to sleep.
  862. */
  863. static void dm9000_msleep(board_info_t *db, unsigned int ms)
  864. {
  865. if (db->in_suspend)
  866. mdelay(ms);
  867. else
  868. msleep(ms);
  869. }
  870. /*
  871. * Read a word from phyxcer
  872. */
  873. static int
  874. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  875. {
  876. board_info_t *db = netdev_priv(dev);
  877. unsigned long flags;
  878. unsigned int reg_save;
  879. int ret;
  880. mutex_lock(&db->addr_lock);
  881. spin_lock_irqsave(&db->lock,flags);
  882. /* Save previous register address */
  883. reg_save = readb(db->io_addr);
  884. /* Fill the phyxcer register into REG_0C */
  885. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  886. iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */
  887. writeb(reg_save, db->io_addr);
  888. spin_unlock_irqrestore(&db->lock,flags);
  889. dm9000_msleep(db, 1); /* Wait read complete */
  890. spin_lock_irqsave(&db->lock,flags);
  891. reg_save = readb(db->io_addr);
  892. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  893. /* The read data keeps on REG_0D & REG_0E */
  894. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  895. /* restore the previous address */
  896. writeb(reg_save, db->io_addr);
  897. spin_unlock_irqrestore(&db->lock,flags);
  898. mutex_unlock(&db->addr_lock);
  899. dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
  900. return ret;
  901. }
  902. /*
  903. * Write a word to phyxcer
  904. */
  905. static void
  906. dm9000_phy_write(struct net_device *dev,
  907. int phyaddr_unused, int reg, int value)
  908. {
  909. board_info_t *db = netdev_priv(dev);
  910. unsigned long flags;
  911. unsigned long reg_save;
  912. dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
  913. mutex_lock(&db->addr_lock);
  914. spin_lock_irqsave(&db->lock,flags);
  915. /* Save previous register address */
  916. reg_save = readb(db->io_addr);
  917. /* Fill the phyxcer register into REG_0C */
  918. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  919. /* Fill the written data into REG_0D & REG_0E */
  920. iow(db, DM9000_EPDRL, value);
  921. iow(db, DM9000_EPDRH, value >> 8);
  922. iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */
  923. writeb(reg_save, db->io_addr);
  924. spin_unlock_irqrestore(&db->lock, flags);
  925. dm9000_msleep(db, 1); /* Wait write complete */
  926. spin_lock_irqsave(&db->lock,flags);
  927. reg_save = readb(db->io_addr);
  928. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  929. /* restore the previous address */
  930. writeb(reg_save, db->io_addr);
  931. spin_unlock_irqrestore(&db->lock, flags);
  932. mutex_unlock(&db->addr_lock);
  933. }
  934. static void
  935. dm9000_shutdown(struct net_device *dev)
  936. {
  937. board_info_t *db = netdev_priv(dev);
  938. /* RESET device */
  939. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  940. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  941. iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
  942. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  943. }
  944. /*
  945. * Stop the interface.
  946. * The interface is stopped when it is brought.
  947. */
  948. static int
  949. dm9000_stop(struct net_device *ndev)
  950. {
  951. board_info_t *db = netdev_priv(ndev);
  952. if (netif_msg_ifdown(db))
  953. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  954. cancel_delayed_work_sync(&db->phy_poll);
  955. netif_stop_queue(ndev);
  956. netif_carrier_off(ndev);
  957. /* free interrupt */
  958. free_irq(ndev->irq, ndev);
  959. dm9000_shutdown(ndev);
  960. return 0;
  961. }
  962. static const struct net_device_ops dm9000_netdev_ops = {
  963. .ndo_open = dm9000_open,
  964. .ndo_stop = dm9000_stop,
  965. .ndo_start_xmit = dm9000_start_xmit,
  966. .ndo_tx_timeout = dm9000_timeout,
  967. .ndo_set_multicast_list = dm9000_hash_table,
  968. .ndo_do_ioctl = dm9000_ioctl,
  969. .ndo_change_mtu = eth_change_mtu,
  970. .ndo_validate_addr = eth_validate_addr,
  971. .ndo_set_mac_address = eth_mac_addr,
  972. #ifdef CONFIG_NET_POLL_CONTROLLER
  973. .ndo_poll_controller = dm9000_poll_controller,
  974. #endif
  975. };
  976. /*
  977. * Search DM9000 board, allocate space and register it
  978. */
  979. static int __devinit
  980. dm9000_probe(struct platform_device *pdev)
  981. {
  982. struct dm9000_plat_data *pdata = pdev->dev.platform_data;
  983. struct board_info *db; /* Point a board information structure */
  984. struct net_device *ndev;
  985. const unsigned char *mac_src;
  986. int ret = 0;
  987. int iosize;
  988. int i;
  989. u32 id_val;
  990. /* Init network device */
  991. ndev = alloc_etherdev(sizeof(struct board_info));
  992. if (!ndev) {
  993. dev_err(&pdev->dev, "could not allocate device.\n");
  994. return -ENOMEM;
  995. }
  996. SET_NETDEV_DEV(ndev, &pdev->dev);
  997. dev_dbg(&pdev->dev, "dm9000_probe()\n");
  998. /* setup board info structure */
  999. db = netdev_priv(ndev);
  1000. db->dev = &pdev->dev;
  1001. db->ndev = ndev;
  1002. spin_lock_init(&db->lock);
  1003. mutex_init(&db->addr_lock);
  1004. INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
  1005. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1006. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1007. db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1008. if (db->addr_res == NULL || db->data_res == NULL ||
  1009. db->irq_res == NULL) {
  1010. dev_err(db->dev, "insufficient resources\n");
  1011. ret = -ENOENT;
  1012. goto out;
  1013. }
  1014. iosize = resource_size(db->addr_res);
  1015. db->addr_req = request_mem_region(db->addr_res->start, iosize,
  1016. pdev->name);
  1017. if (db->addr_req == NULL) {
  1018. dev_err(db->dev, "cannot claim address reg area\n");
  1019. ret = -EIO;
  1020. goto out;
  1021. }
  1022. db->io_addr = ioremap(db->addr_res->start, iosize);
  1023. if (db->io_addr == NULL) {
  1024. dev_err(db->dev, "failed to ioremap address reg\n");
  1025. ret = -EINVAL;
  1026. goto out;
  1027. }
  1028. iosize = resource_size(db->data_res);
  1029. db->data_req = request_mem_region(db->data_res->start, iosize,
  1030. pdev->name);
  1031. if (db->data_req == NULL) {
  1032. dev_err(db->dev, "cannot claim data reg area\n");
  1033. ret = -EIO;
  1034. goto out;
  1035. }
  1036. db->io_data = ioremap(db->data_res->start, iosize);
  1037. if (db->io_data == NULL) {
  1038. dev_err(db->dev, "failed to ioremap data reg\n");
  1039. ret = -EINVAL;
  1040. goto out;
  1041. }
  1042. /* fill in parameters for net-dev structure */
  1043. ndev->base_addr = (unsigned long)db->io_addr;
  1044. ndev->irq = db->irq_res->start;
  1045. /* ensure at least we have a default set of IO routines */
  1046. dm9000_set_io(db, iosize);
  1047. /* check to see if anything is being over-ridden */
  1048. if (pdata != NULL) {
  1049. /* check to see if the driver wants to over-ride the
  1050. * default IO width */
  1051. if (pdata->flags & DM9000_PLATF_8BITONLY)
  1052. dm9000_set_io(db, 1);
  1053. if (pdata->flags & DM9000_PLATF_16BITONLY)
  1054. dm9000_set_io(db, 2);
  1055. if (pdata->flags & DM9000_PLATF_32BITONLY)
  1056. dm9000_set_io(db, 4);
  1057. /* check to see if there are any IO routine
  1058. * over-rides */
  1059. if (pdata->inblk != NULL)
  1060. db->inblk = pdata->inblk;
  1061. if (pdata->outblk != NULL)
  1062. db->outblk = pdata->outblk;
  1063. if (pdata->dumpblk != NULL)
  1064. db->dumpblk = pdata->dumpblk;
  1065. db->flags = pdata->flags;
  1066. }
  1067. #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
  1068. db->flags |= DM9000_PLATF_SIMPLE_PHY;
  1069. #endif
  1070. dm9000_reset(db);
  1071. /* try multiple times, DM9000 sometimes gets the read wrong */
  1072. for (i = 0; i < 8; i++) {
  1073. id_val = ior(db, DM9000_VIDL);
  1074. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  1075. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  1076. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  1077. if (id_val == DM9000_ID)
  1078. break;
  1079. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  1080. }
  1081. if (id_val != DM9000_ID) {
  1082. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  1083. ret = -ENODEV;
  1084. goto out;
  1085. }
  1086. /* Identify what type of DM9000 we are working on */
  1087. id_val = ior(db, DM9000_CHIPR);
  1088. dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
  1089. switch (id_val) {
  1090. case CHIPR_DM9000A:
  1091. db->type = TYPE_DM9000A;
  1092. break;
  1093. case CHIPR_DM9000B:
  1094. db->type = TYPE_DM9000B;
  1095. break;
  1096. default:
  1097. dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
  1098. db->type = TYPE_DM9000E;
  1099. }
  1100. /* dm9000a/b are capable of hardware checksum offload */
  1101. if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
  1102. db->can_csum = 1;
  1103. db->rx_csum = 1;
  1104. ndev->features |= NETIF_F_IP_CSUM;
  1105. }
  1106. /* from this point we assume that we have found a DM9000 */
  1107. /* driver system function */
  1108. ether_setup(ndev);
  1109. ndev->netdev_ops = &dm9000_netdev_ops;
  1110. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  1111. ndev->ethtool_ops = &dm9000_ethtool_ops;
  1112. db->msg_enable = NETIF_MSG_LINK;
  1113. db->mii.phy_id_mask = 0x1f;
  1114. db->mii.reg_num_mask = 0x1f;
  1115. db->mii.force_media = 0;
  1116. db->mii.full_duplex = 0;
  1117. db->mii.dev = ndev;
  1118. db->mii.mdio_read = dm9000_phy_read;
  1119. db->mii.mdio_write = dm9000_phy_write;
  1120. mac_src = "eeprom";
  1121. /* try reading the node address from the attached EEPROM */
  1122. for (i = 0; i < 6; i += 2)
  1123. dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
  1124. if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
  1125. mac_src = "platform data";
  1126. memcpy(ndev->dev_addr, pdata->dev_addr, 6);
  1127. }
  1128. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1129. /* try reading from mac */
  1130. mac_src = "chip";
  1131. for (i = 0; i < 6; i++)
  1132. ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
  1133. }
  1134. if (!is_valid_ether_addr(ndev->dev_addr))
  1135. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
  1136. "set using ifconfig\n", ndev->name);
  1137. platform_set_drvdata(pdev, ndev);
  1138. ret = register_netdev(ndev);
  1139. if (ret == 0)
  1140. printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
  1141. ndev->name, dm9000_type_to_char(db->type),
  1142. db->io_addr, db->io_data, ndev->irq,
  1143. ndev->dev_addr, mac_src);
  1144. return 0;
  1145. out:
  1146. dev_err(db->dev, "not found (%d).\n", ret);
  1147. dm9000_release_board(pdev, db);
  1148. free_netdev(ndev);
  1149. return ret;
  1150. }
  1151. static int
  1152. dm9000_drv_suspend(struct device *dev)
  1153. {
  1154. struct platform_device *pdev = to_platform_device(dev);
  1155. struct net_device *ndev = platform_get_drvdata(pdev);
  1156. board_info_t *db;
  1157. if (ndev) {
  1158. db = netdev_priv(ndev);
  1159. db->in_suspend = 1;
  1160. if (netif_running(ndev)) {
  1161. netif_device_detach(ndev);
  1162. dm9000_shutdown(ndev);
  1163. }
  1164. }
  1165. return 0;
  1166. }
  1167. static int
  1168. dm9000_drv_resume(struct device *dev)
  1169. {
  1170. struct platform_device *pdev = to_platform_device(dev);
  1171. struct net_device *ndev = platform_get_drvdata(pdev);
  1172. board_info_t *db = netdev_priv(ndev);
  1173. if (ndev) {
  1174. if (netif_running(ndev)) {
  1175. dm9000_reset(db);
  1176. dm9000_init_dm9000(ndev);
  1177. netif_device_attach(ndev);
  1178. }
  1179. db->in_suspend = 0;
  1180. }
  1181. return 0;
  1182. }
  1183. static struct dev_pm_ops dm9000_drv_pm_ops = {
  1184. .suspend = dm9000_drv_suspend,
  1185. .resume = dm9000_drv_resume,
  1186. };
  1187. static int __devexit
  1188. dm9000_drv_remove(struct platform_device *pdev)
  1189. {
  1190. struct net_device *ndev = platform_get_drvdata(pdev);
  1191. platform_set_drvdata(pdev, NULL);
  1192. unregister_netdev(ndev);
  1193. dm9000_release_board(pdev, (board_info_t *) netdev_priv(ndev));
  1194. free_netdev(ndev); /* free device structure */
  1195. dev_dbg(&pdev->dev, "released and freed device\n");
  1196. return 0;
  1197. }
  1198. static struct platform_driver dm9000_driver = {
  1199. .driver = {
  1200. .name = "dm9000",
  1201. .owner = THIS_MODULE,
  1202. .pm = &dm9000_drv_pm_ops,
  1203. },
  1204. .probe = dm9000_probe,
  1205. .remove = __devexit_p(dm9000_drv_remove),
  1206. };
  1207. static int __init
  1208. dm9000_init(void)
  1209. {
  1210. printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
  1211. return platform_driver_register(&dm9000_driver);
  1212. }
  1213. static void __exit
  1214. dm9000_cleanup(void)
  1215. {
  1216. platform_driver_unregister(&dm9000_driver);
  1217. }
  1218. module_init(dm9000_init);
  1219. module_exit(dm9000_cleanup);
  1220. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1221. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1222. MODULE_LICENSE("GPL");
  1223. MODULE_ALIAS("platform:dm9000");