dev.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706
  1. /*
  2. * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
  3. * Copyright (C) 2006 Andrey Volkov, Varma Electronics
  4. * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/can.h>
  24. #include <linux/can/dev.h>
  25. #include <linux/can/netlink.h>
  26. #include <net/rtnetlink.h>
  27. #define MOD_DESC "CAN device driver interface"
  28. MODULE_DESCRIPTION(MOD_DESC);
  29. MODULE_LICENSE("GPL v2");
  30. MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
  31. #ifdef CONFIG_CAN_CALC_BITTIMING
  32. #define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
  33. /*
  34. * Bit-timing calculation derived from:
  35. *
  36. * Code based on LinCAN sources and H8S2638 project
  37. * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
  38. * Copyright 2005 Stanislav Marek
  39. * email: pisa@cmp.felk.cvut.cz
  40. *
  41. * Calculates proper bit-timing parameters for a specified bit-rate
  42. * and sample-point, which can then be used to set the bit-timing
  43. * registers of the CAN controller. You can find more information
  44. * in the header file linux/can/netlink.h.
  45. */
  46. static int can_update_spt(const struct can_bittiming_const *btc,
  47. int sampl_pt, int tseg, int *tseg1, int *tseg2)
  48. {
  49. *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
  50. if (*tseg2 < btc->tseg2_min)
  51. *tseg2 = btc->tseg2_min;
  52. if (*tseg2 > btc->tseg2_max)
  53. *tseg2 = btc->tseg2_max;
  54. *tseg1 = tseg - *tseg2;
  55. if (*tseg1 > btc->tseg1_max) {
  56. *tseg1 = btc->tseg1_max;
  57. *tseg2 = tseg - *tseg1;
  58. }
  59. return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
  60. }
  61. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
  62. {
  63. struct can_priv *priv = netdev_priv(dev);
  64. const struct can_bittiming_const *btc = priv->bittiming_const;
  65. long rate, best_rate = 0;
  66. long best_error = 1000000000, error = 0;
  67. int best_tseg = 0, best_brp = 0, brp = 0;
  68. int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
  69. int spt_error = 1000, spt = 0, sampl_pt;
  70. u64 v64;
  71. if (!priv->bittiming_const)
  72. return -ENOTSUPP;
  73. /* Use CIA recommended sample points */
  74. if (bt->sample_point) {
  75. sampl_pt = bt->sample_point;
  76. } else {
  77. if (bt->bitrate > 800000)
  78. sampl_pt = 750;
  79. else if (bt->bitrate > 500000)
  80. sampl_pt = 800;
  81. else
  82. sampl_pt = 875;
  83. }
  84. /* tseg even = round down, odd = round up */
  85. for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
  86. tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
  87. tsegall = 1 + tseg / 2;
  88. /* Compute all possible tseg choices (tseg=tseg1+tseg2) */
  89. brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
  90. /* chose brp step which is possible in system */
  91. brp = (brp / btc->brp_inc) * btc->brp_inc;
  92. if ((brp < btc->brp_min) || (brp > btc->brp_max))
  93. continue;
  94. rate = priv->clock.freq / (brp * tsegall);
  95. error = bt->bitrate - rate;
  96. /* tseg brp biterror */
  97. if (error < 0)
  98. error = -error;
  99. if (error > best_error)
  100. continue;
  101. best_error = error;
  102. if (error == 0) {
  103. spt = can_update_spt(btc, sampl_pt, tseg / 2,
  104. &tseg1, &tseg2);
  105. error = sampl_pt - spt;
  106. if (error < 0)
  107. error = -error;
  108. if (error > spt_error)
  109. continue;
  110. spt_error = error;
  111. }
  112. best_tseg = tseg / 2;
  113. best_brp = brp;
  114. best_rate = rate;
  115. if (error == 0)
  116. break;
  117. }
  118. if (best_error) {
  119. /* Error in one-tenth of a percent */
  120. error = (best_error * 1000) / bt->bitrate;
  121. if (error > CAN_CALC_MAX_ERROR) {
  122. dev_err(dev->dev.parent,
  123. "bitrate error %ld.%ld%% too high\n",
  124. error / 10, error % 10);
  125. return -EDOM;
  126. } else {
  127. dev_warn(dev->dev.parent, "bitrate error %ld.%ld%%\n",
  128. error / 10, error % 10);
  129. }
  130. }
  131. /* real sample point */
  132. bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
  133. &tseg1, &tseg2);
  134. v64 = (u64)best_brp * 1000000000UL;
  135. do_div(v64, priv->clock.freq);
  136. bt->tq = (u32)v64;
  137. bt->prop_seg = tseg1 / 2;
  138. bt->phase_seg1 = tseg1 - bt->prop_seg;
  139. bt->phase_seg2 = tseg2;
  140. bt->sjw = 1;
  141. bt->brp = best_brp;
  142. /* real bit-rate */
  143. bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
  144. return 0;
  145. }
  146. #else /* !CONFIG_CAN_CALC_BITTIMING */
  147. static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt)
  148. {
  149. dev_err(dev->dev.parent, "bit-timing calculation not available\n");
  150. return -EINVAL;
  151. }
  152. #endif /* CONFIG_CAN_CALC_BITTIMING */
  153. /*
  154. * Checks the validity of the specified bit-timing parameters prop_seg,
  155. * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
  156. * prescaler value brp. You can find more information in the header
  157. * file linux/can/netlink.h.
  158. */
  159. static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt)
  160. {
  161. struct can_priv *priv = netdev_priv(dev);
  162. const struct can_bittiming_const *btc = priv->bittiming_const;
  163. int tseg1, alltseg;
  164. u64 brp64;
  165. if (!priv->bittiming_const)
  166. return -ENOTSUPP;
  167. tseg1 = bt->prop_seg + bt->phase_seg1;
  168. if (!bt->sjw)
  169. bt->sjw = 1;
  170. if (bt->sjw > btc->sjw_max ||
  171. tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
  172. bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
  173. return -ERANGE;
  174. brp64 = (u64)priv->clock.freq * (u64)bt->tq;
  175. if (btc->brp_inc > 1)
  176. do_div(brp64, btc->brp_inc);
  177. brp64 += 500000000UL - 1;
  178. do_div(brp64, 1000000000UL); /* the practicable BRP */
  179. if (btc->brp_inc > 1)
  180. brp64 *= btc->brp_inc;
  181. bt->brp = (u32)brp64;
  182. if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
  183. return -EINVAL;
  184. alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
  185. bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
  186. bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
  187. return 0;
  188. }
  189. int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt)
  190. {
  191. struct can_priv *priv = netdev_priv(dev);
  192. int err;
  193. /* Check if the CAN device has bit-timing parameters */
  194. if (priv->bittiming_const) {
  195. /* Non-expert mode? Check if the bitrate has been pre-defined */
  196. if (!bt->tq)
  197. /* Determine bit-timing parameters */
  198. err = can_calc_bittiming(dev, bt);
  199. else
  200. /* Check bit-timing params and calculate proper brp */
  201. err = can_fixup_bittiming(dev, bt);
  202. if (err)
  203. return err;
  204. }
  205. return 0;
  206. }
  207. /*
  208. * Local echo of CAN messages
  209. *
  210. * CAN network devices *should* support a local echo functionality
  211. * (see Documentation/networking/can.txt). To test the handling of CAN
  212. * interfaces that do not support the local echo both driver types are
  213. * implemented. In the case that the driver does not support the echo
  214. * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
  215. * to perform the echo as a fallback solution.
  216. */
  217. static void can_flush_echo_skb(struct net_device *dev)
  218. {
  219. struct can_priv *priv = netdev_priv(dev);
  220. struct net_device_stats *stats = &dev->stats;
  221. int i;
  222. for (i = 0; i < CAN_ECHO_SKB_MAX; i++) {
  223. if (priv->echo_skb[i]) {
  224. kfree_skb(priv->echo_skb[i]);
  225. priv->echo_skb[i] = NULL;
  226. stats->tx_dropped++;
  227. stats->tx_aborted_errors++;
  228. }
  229. }
  230. }
  231. /*
  232. * Put the skb on the stack to be looped backed locally lateron
  233. *
  234. * The function is typically called in the start_xmit function
  235. * of the device driver. The driver must protect access to
  236. * priv->echo_skb, if necessary.
  237. */
  238. void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, int idx)
  239. {
  240. struct can_priv *priv = netdev_priv(dev);
  241. /* check flag whether this packet has to be looped back */
  242. if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK) {
  243. kfree_skb(skb);
  244. return;
  245. }
  246. if (!priv->echo_skb[idx]) {
  247. struct sock *srcsk = skb->sk;
  248. if (atomic_read(&skb->users) != 1) {
  249. struct sk_buff *old_skb = skb;
  250. skb = skb_clone(old_skb, GFP_ATOMIC);
  251. kfree_skb(old_skb);
  252. if (!skb)
  253. return;
  254. } else
  255. skb_orphan(skb);
  256. skb->sk = srcsk;
  257. /* make settings for echo to reduce code in irq context */
  258. skb->protocol = htons(ETH_P_CAN);
  259. skb->pkt_type = PACKET_BROADCAST;
  260. skb->ip_summed = CHECKSUM_UNNECESSARY;
  261. skb->dev = dev;
  262. /* save this skb for tx interrupt echo handling */
  263. priv->echo_skb[idx] = skb;
  264. } else {
  265. /* locking problem with netif_stop_queue() ?? */
  266. dev_err(dev->dev.parent, "%s: BUG! echo_skb is occupied!\n",
  267. __func__);
  268. kfree_skb(skb);
  269. }
  270. }
  271. EXPORT_SYMBOL_GPL(can_put_echo_skb);
  272. /*
  273. * Get the skb from the stack and loop it back locally
  274. *
  275. * The function is typically called when the TX done interrupt
  276. * is handled in the device driver. The driver must protect
  277. * access to priv->echo_skb, if necessary.
  278. */
  279. void can_get_echo_skb(struct net_device *dev, int idx)
  280. {
  281. struct can_priv *priv = netdev_priv(dev);
  282. if (priv->echo_skb[idx]) {
  283. netif_rx(priv->echo_skb[idx]);
  284. priv->echo_skb[idx] = NULL;
  285. }
  286. }
  287. EXPORT_SYMBOL_GPL(can_get_echo_skb);
  288. /*
  289. * Remove the skb from the stack and free it.
  290. *
  291. * The function is typically called when TX failed.
  292. */
  293. void can_free_echo_skb(struct net_device *dev, int idx)
  294. {
  295. struct can_priv *priv = netdev_priv(dev);
  296. if (priv->echo_skb[idx]) {
  297. kfree_skb(priv->echo_skb[idx]);
  298. priv->echo_skb[idx] = NULL;
  299. }
  300. }
  301. EXPORT_SYMBOL_GPL(can_free_echo_skb);
  302. /*
  303. * CAN device restart for bus-off recovery
  304. */
  305. void can_restart(unsigned long data)
  306. {
  307. struct net_device *dev = (struct net_device *)data;
  308. struct can_priv *priv = netdev_priv(dev);
  309. struct net_device_stats *stats = &dev->stats;
  310. struct sk_buff *skb;
  311. struct can_frame *cf;
  312. int err;
  313. BUG_ON(netif_carrier_ok(dev));
  314. /*
  315. * No synchronization needed because the device is bus-off and
  316. * no messages can come in or go out.
  317. */
  318. can_flush_echo_skb(dev);
  319. /* send restart message upstream */
  320. skb = dev_alloc_skb(sizeof(struct can_frame));
  321. if (skb == NULL) {
  322. err = -ENOMEM;
  323. goto restart;
  324. }
  325. skb->dev = dev;
  326. skb->protocol = htons(ETH_P_CAN);
  327. cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
  328. memset(cf, 0, sizeof(struct can_frame));
  329. cf->can_id = CAN_ERR_FLAG | CAN_ERR_RESTARTED;
  330. cf->can_dlc = CAN_ERR_DLC;
  331. netif_rx(skb);
  332. stats->rx_packets++;
  333. stats->rx_bytes += cf->can_dlc;
  334. restart:
  335. dev_dbg(dev->dev.parent, "restarted\n");
  336. priv->can_stats.restarts++;
  337. /* Now restart the device */
  338. err = priv->do_set_mode(dev, CAN_MODE_START);
  339. netif_carrier_on(dev);
  340. if (err)
  341. dev_err(dev->dev.parent, "Error %d during restart", err);
  342. }
  343. int can_restart_now(struct net_device *dev)
  344. {
  345. struct can_priv *priv = netdev_priv(dev);
  346. /*
  347. * A manual restart is only permitted if automatic restart is
  348. * disabled and the device is in the bus-off state
  349. */
  350. if (priv->restart_ms)
  351. return -EINVAL;
  352. if (priv->state != CAN_STATE_BUS_OFF)
  353. return -EBUSY;
  354. /* Runs as soon as possible in the timer context */
  355. mod_timer(&priv->restart_timer, jiffies);
  356. return 0;
  357. }
  358. /*
  359. * CAN bus-off
  360. *
  361. * This functions should be called when the device goes bus-off to
  362. * tell the netif layer that no more packets can be sent or received.
  363. * If enabled, a timer is started to trigger bus-off recovery.
  364. */
  365. void can_bus_off(struct net_device *dev)
  366. {
  367. struct can_priv *priv = netdev_priv(dev);
  368. dev_dbg(dev->dev.parent, "bus-off\n");
  369. netif_carrier_off(dev);
  370. priv->can_stats.bus_off++;
  371. if (priv->restart_ms)
  372. mod_timer(&priv->restart_timer,
  373. jiffies + (priv->restart_ms * HZ) / 1000);
  374. }
  375. EXPORT_SYMBOL_GPL(can_bus_off);
  376. static void can_setup(struct net_device *dev)
  377. {
  378. dev->type = ARPHRD_CAN;
  379. dev->mtu = sizeof(struct can_frame);
  380. dev->hard_header_len = 0;
  381. dev->addr_len = 0;
  382. dev->tx_queue_len = 10;
  383. /* New-style flags. */
  384. dev->flags = IFF_NOARP;
  385. dev->features = NETIF_F_NO_CSUM;
  386. }
  387. /*
  388. * Allocate and setup space for the CAN network device
  389. */
  390. struct net_device *alloc_candev(int sizeof_priv)
  391. {
  392. struct net_device *dev;
  393. struct can_priv *priv;
  394. dev = alloc_netdev(sizeof_priv, "can%d", can_setup);
  395. if (!dev)
  396. return NULL;
  397. priv = netdev_priv(dev);
  398. priv->state = CAN_STATE_STOPPED;
  399. init_timer(&priv->restart_timer);
  400. return dev;
  401. }
  402. EXPORT_SYMBOL_GPL(alloc_candev);
  403. /*
  404. * Free space of the CAN network device
  405. */
  406. void free_candev(struct net_device *dev)
  407. {
  408. free_netdev(dev);
  409. }
  410. EXPORT_SYMBOL_GPL(free_candev);
  411. /*
  412. * Common open function when the device gets opened.
  413. *
  414. * This function should be called in the open function of the device
  415. * driver.
  416. */
  417. int open_candev(struct net_device *dev)
  418. {
  419. struct can_priv *priv = netdev_priv(dev);
  420. if (!priv->bittiming.tq && !priv->bittiming.bitrate) {
  421. dev_err(dev->dev.parent, "bit-timing not yet defined\n");
  422. return -EINVAL;
  423. }
  424. /* Switch carrier on if device was stopped while in bus-off state */
  425. if (!netif_carrier_ok(dev))
  426. netif_carrier_on(dev);
  427. setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
  428. return 0;
  429. }
  430. EXPORT_SYMBOL_GPL(open_candev);
  431. /*
  432. * Common close function for cleanup before the device gets closed.
  433. *
  434. * This function should be called in the close function of the device
  435. * driver.
  436. */
  437. void close_candev(struct net_device *dev)
  438. {
  439. struct can_priv *priv = netdev_priv(dev);
  440. if (del_timer_sync(&priv->restart_timer))
  441. dev_put(dev);
  442. can_flush_echo_skb(dev);
  443. }
  444. EXPORT_SYMBOL_GPL(close_candev);
  445. /*
  446. * CAN netlink interface
  447. */
  448. static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
  449. [IFLA_CAN_STATE] = { .type = NLA_U32 },
  450. [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) },
  451. [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 },
  452. [IFLA_CAN_RESTART] = { .type = NLA_U32 },
  453. [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) },
  454. [IFLA_CAN_BITTIMING_CONST]
  455. = { .len = sizeof(struct can_bittiming_const) },
  456. [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) },
  457. };
  458. static int can_changelink(struct net_device *dev,
  459. struct nlattr *tb[], struct nlattr *data[])
  460. {
  461. struct can_priv *priv = netdev_priv(dev);
  462. int err;
  463. /* We need synchronization with dev->stop() */
  464. ASSERT_RTNL();
  465. if (data[IFLA_CAN_CTRLMODE]) {
  466. struct can_ctrlmode *cm;
  467. /* Do not allow changing controller mode while running */
  468. if (dev->flags & IFF_UP)
  469. return -EBUSY;
  470. cm = nla_data(data[IFLA_CAN_CTRLMODE]);
  471. priv->ctrlmode &= ~cm->mask;
  472. priv->ctrlmode |= cm->flags;
  473. }
  474. if (data[IFLA_CAN_BITTIMING]) {
  475. struct can_bittiming bt;
  476. /* Do not allow changing bittiming while running */
  477. if (dev->flags & IFF_UP)
  478. return -EBUSY;
  479. memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
  480. if ((!bt.bitrate && !bt.tq) || (bt.bitrate && bt.tq))
  481. return -EINVAL;
  482. err = can_get_bittiming(dev, &bt);
  483. if (err)
  484. return err;
  485. memcpy(&priv->bittiming, &bt, sizeof(bt));
  486. if (priv->do_set_bittiming) {
  487. /* Finally, set the bit-timing registers */
  488. err = priv->do_set_bittiming(dev);
  489. if (err)
  490. return err;
  491. }
  492. }
  493. if (data[IFLA_CAN_RESTART_MS]) {
  494. /* Do not allow changing restart delay while running */
  495. if (dev->flags & IFF_UP)
  496. return -EBUSY;
  497. priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
  498. }
  499. if (data[IFLA_CAN_RESTART]) {
  500. /* Do not allow a restart while not running */
  501. if (!(dev->flags & IFF_UP))
  502. return -EINVAL;
  503. err = can_restart_now(dev);
  504. if (err)
  505. return err;
  506. }
  507. return 0;
  508. }
  509. static size_t can_get_size(const struct net_device *dev)
  510. {
  511. struct can_priv *priv = netdev_priv(dev);
  512. size_t size;
  513. size = nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */
  514. size += sizeof(struct can_ctrlmode); /* IFLA_CAN_CTRLMODE */
  515. size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */
  516. size += sizeof(struct can_bittiming); /* IFLA_CAN_BITTIMING */
  517. size += sizeof(struct can_clock); /* IFLA_CAN_CLOCK */
  518. if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */
  519. size += sizeof(struct can_bittiming_const);
  520. return size;
  521. }
  522. static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
  523. {
  524. struct can_priv *priv = netdev_priv(dev);
  525. struct can_ctrlmode cm = {.flags = priv->ctrlmode};
  526. enum can_state state = priv->state;
  527. if (priv->do_get_state)
  528. priv->do_get_state(dev, &state);
  529. NLA_PUT_U32(skb, IFLA_CAN_STATE, state);
  530. NLA_PUT(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm);
  531. NLA_PUT_U32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms);
  532. NLA_PUT(skb, IFLA_CAN_BITTIMING,
  533. sizeof(priv->bittiming), &priv->bittiming);
  534. NLA_PUT(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock);
  535. if (priv->bittiming_const)
  536. NLA_PUT(skb, IFLA_CAN_BITTIMING_CONST,
  537. sizeof(*priv->bittiming_const), priv->bittiming_const);
  538. return 0;
  539. nla_put_failure:
  540. return -EMSGSIZE;
  541. }
  542. static size_t can_get_xstats_size(const struct net_device *dev)
  543. {
  544. return sizeof(struct can_device_stats);
  545. }
  546. static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
  547. {
  548. struct can_priv *priv = netdev_priv(dev);
  549. NLA_PUT(skb, IFLA_INFO_XSTATS,
  550. sizeof(priv->can_stats), &priv->can_stats);
  551. return 0;
  552. nla_put_failure:
  553. return -EMSGSIZE;
  554. }
  555. static int can_newlink(struct net_device *dev,
  556. struct nlattr *tb[], struct nlattr *data[])
  557. {
  558. return -EOPNOTSUPP;
  559. }
  560. static struct rtnl_link_ops can_link_ops __read_mostly = {
  561. .kind = "can",
  562. .maxtype = IFLA_CAN_MAX,
  563. .policy = can_policy,
  564. .setup = can_setup,
  565. .newlink = can_newlink,
  566. .changelink = can_changelink,
  567. .get_size = can_get_size,
  568. .fill_info = can_fill_info,
  569. .get_xstats_size = can_get_xstats_size,
  570. .fill_xstats = can_fill_xstats,
  571. };
  572. /*
  573. * Register the CAN network device
  574. */
  575. int register_candev(struct net_device *dev)
  576. {
  577. dev->rtnl_link_ops = &can_link_ops;
  578. return register_netdev(dev);
  579. }
  580. EXPORT_SYMBOL_GPL(register_candev);
  581. /*
  582. * Unregister the CAN network device
  583. */
  584. void unregister_candev(struct net_device *dev)
  585. {
  586. unregister_netdev(dev);
  587. }
  588. EXPORT_SYMBOL_GPL(unregister_candev);
  589. static __init int can_dev_init(void)
  590. {
  591. int err;
  592. err = rtnl_link_register(&can_link_ops);
  593. if (!err)
  594. printk(KERN_INFO MOD_DESC "\n");
  595. return err;
  596. }
  597. module_init(can_dev_init);
  598. static __exit void can_dev_exit(void)
  599. {
  600. rtnl_link_unregister(&can_link_ops);
  601. }
  602. module_exit(can_dev_exit);
  603. MODULE_ALIAS_RTNL_LINK("can");