bnx2.c 201 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define PFX DRV_MODULE_NAME ": "
  57. #define DRV_MODULE_VERSION "2.0.2"
  58. #define DRV_MODULE_RELDATE "Aug 21, 2009"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] __devinitdata =
  68. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, 0);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] __devinitdata = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. smp_mb();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return (bp->tx_ring_size - diff);
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. mutex_lock(&bp->cnic_lock);
  364. cp->drv_state = 0;
  365. bnapi->cnic_present = 0;
  366. rcu_assign_pointer(bp->cnic_ops, NULL);
  367. mutex_unlock(&bp->cnic_lock);
  368. synchronize_rcu();
  369. return 0;
  370. }
  371. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  372. {
  373. struct bnx2 *bp = netdev_priv(dev);
  374. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  375. cp->drv_owner = THIS_MODULE;
  376. cp->chip_id = bp->chip_id;
  377. cp->pdev = bp->pdev;
  378. cp->io_base = bp->regview;
  379. cp->drv_ctl = bnx2_drv_ctl;
  380. cp->drv_register_cnic = bnx2_register_cnic;
  381. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  382. return cp;
  383. }
  384. EXPORT_SYMBOL(bnx2_cnic_probe);
  385. static void
  386. bnx2_cnic_stop(struct bnx2 *bp)
  387. {
  388. struct cnic_ops *c_ops;
  389. struct cnic_ctl_info info;
  390. mutex_lock(&bp->cnic_lock);
  391. c_ops = bp->cnic_ops;
  392. if (c_ops) {
  393. info.cmd = CNIC_CTL_STOP_CMD;
  394. c_ops->cnic_ctl(bp->cnic_data, &info);
  395. }
  396. mutex_unlock(&bp->cnic_lock);
  397. }
  398. static void
  399. bnx2_cnic_start(struct bnx2 *bp)
  400. {
  401. struct cnic_ops *c_ops;
  402. struct cnic_ctl_info info;
  403. mutex_lock(&bp->cnic_lock);
  404. c_ops = bp->cnic_ops;
  405. if (c_ops) {
  406. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  407. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  408. bnapi->cnic_tag = bnapi->last_status_idx;
  409. }
  410. info.cmd = CNIC_CTL_START_CMD;
  411. c_ops->cnic_ctl(bp->cnic_data, &info);
  412. }
  413. mutex_unlock(&bp->cnic_lock);
  414. }
  415. #else
  416. static void
  417. bnx2_cnic_stop(struct bnx2 *bp)
  418. {
  419. }
  420. static void
  421. bnx2_cnic_start(struct bnx2 *bp)
  422. {
  423. }
  424. #endif
  425. static int
  426. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  427. {
  428. u32 val1;
  429. int i, ret;
  430. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  431. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  432. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  433. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  434. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  435. udelay(40);
  436. }
  437. val1 = (bp->phy_addr << 21) | (reg << 16) |
  438. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  439. BNX2_EMAC_MDIO_COMM_START_BUSY;
  440. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  441. for (i = 0; i < 50; i++) {
  442. udelay(10);
  443. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  444. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  445. udelay(5);
  446. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  447. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  448. break;
  449. }
  450. }
  451. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  452. *val = 0x0;
  453. ret = -EBUSY;
  454. }
  455. else {
  456. *val = val1;
  457. ret = 0;
  458. }
  459. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  460. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  461. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  462. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  463. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  464. udelay(40);
  465. }
  466. return ret;
  467. }
  468. static int
  469. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  470. {
  471. u32 val1;
  472. int i, ret;
  473. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  474. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  475. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  476. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  477. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  478. udelay(40);
  479. }
  480. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  481. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  482. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  483. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  484. for (i = 0; i < 50; i++) {
  485. udelay(10);
  486. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  487. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  488. udelay(5);
  489. break;
  490. }
  491. }
  492. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  493. ret = -EBUSY;
  494. else
  495. ret = 0;
  496. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  497. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  498. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  499. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  500. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  501. udelay(40);
  502. }
  503. return ret;
  504. }
  505. static void
  506. bnx2_disable_int(struct bnx2 *bp)
  507. {
  508. int i;
  509. struct bnx2_napi *bnapi;
  510. for (i = 0; i < bp->irq_nvecs; i++) {
  511. bnapi = &bp->bnx2_napi[i];
  512. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  513. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  514. }
  515. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  516. }
  517. static void
  518. bnx2_enable_int(struct bnx2 *bp)
  519. {
  520. int i;
  521. struct bnx2_napi *bnapi;
  522. for (i = 0; i < bp->irq_nvecs; i++) {
  523. bnapi = &bp->bnx2_napi[i];
  524. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  525. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  526. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  527. bnapi->last_status_idx);
  528. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  529. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  530. bnapi->last_status_idx);
  531. }
  532. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  533. }
  534. static void
  535. bnx2_disable_int_sync(struct bnx2 *bp)
  536. {
  537. int i;
  538. atomic_inc(&bp->intr_sem);
  539. if (!netif_running(bp->dev))
  540. return;
  541. bnx2_disable_int(bp);
  542. for (i = 0; i < bp->irq_nvecs; i++)
  543. synchronize_irq(bp->irq_tbl[i].vector);
  544. }
  545. static void
  546. bnx2_napi_disable(struct bnx2 *bp)
  547. {
  548. int i;
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. napi_disable(&bp->bnx2_napi[i].napi);
  551. }
  552. static void
  553. bnx2_napi_enable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_enable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_netif_stop(struct bnx2 *bp)
  561. {
  562. bnx2_cnic_stop(bp);
  563. bnx2_disable_int_sync(bp);
  564. if (netif_running(bp->dev)) {
  565. bnx2_napi_disable(bp);
  566. netif_tx_disable(bp->dev);
  567. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  568. }
  569. }
  570. static void
  571. bnx2_netif_start(struct bnx2 *bp)
  572. {
  573. if (atomic_dec_and_test(&bp->intr_sem)) {
  574. if (netif_running(bp->dev)) {
  575. netif_tx_wake_all_queues(bp->dev);
  576. bnx2_napi_enable(bp);
  577. bnx2_enable_int(bp);
  578. bnx2_cnic_start(bp);
  579. }
  580. }
  581. }
  582. static void
  583. bnx2_free_tx_mem(struct bnx2 *bp)
  584. {
  585. int i;
  586. for (i = 0; i < bp->num_tx_rings; i++) {
  587. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  588. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  589. if (txr->tx_desc_ring) {
  590. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  591. txr->tx_desc_ring,
  592. txr->tx_desc_mapping);
  593. txr->tx_desc_ring = NULL;
  594. }
  595. kfree(txr->tx_buf_ring);
  596. txr->tx_buf_ring = NULL;
  597. }
  598. }
  599. static void
  600. bnx2_free_rx_mem(struct bnx2 *bp)
  601. {
  602. int i;
  603. for (i = 0; i < bp->num_rx_rings; i++) {
  604. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  605. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  606. int j;
  607. for (j = 0; j < bp->rx_max_ring; j++) {
  608. if (rxr->rx_desc_ring[j])
  609. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  610. rxr->rx_desc_ring[j],
  611. rxr->rx_desc_mapping[j]);
  612. rxr->rx_desc_ring[j] = NULL;
  613. }
  614. vfree(rxr->rx_buf_ring);
  615. rxr->rx_buf_ring = NULL;
  616. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  617. if (rxr->rx_pg_desc_ring[j])
  618. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  619. rxr->rx_pg_desc_ring[j],
  620. rxr->rx_pg_desc_mapping[j]);
  621. rxr->rx_pg_desc_ring[j] = NULL;
  622. }
  623. vfree(rxr->rx_pg_ring);
  624. rxr->rx_pg_ring = NULL;
  625. }
  626. }
  627. static int
  628. bnx2_alloc_tx_mem(struct bnx2 *bp)
  629. {
  630. int i;
  631. for (i = 0; i < bp->num_tx_rings; i++) {
  632. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  633. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  634. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  635. if (txr->tx_buf_ring == NULL)
  636. return -ENOMEM;
  637. txr->tx_desc_ring =
  638. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  639. &txr->tx_desc_mapping);
  640. if (txr->tx_desc_ring == NULL)
  641. return -ENOMEM;
  642. }
  643. return 0;
  644. }
  645. static int
  646. bnx2_alloc_rx_mem(struct bnx2 *bp)
  647. {
  648. int i;
  649. for (i = 0; i < bp->num_rx_rings; i++) {
  650. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  651. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  652. int j;
  653. rxr->rx_buf_ring =
  654. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  655. if (rxr->rx_buf_ring == NULL)
  656. return -ENOMEM;
  657. memset(rxr->rx_buf_ring, 0,
  658. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  659. for (j = 0; j < bp->rx_max_ring; j++) {
  660. rxr->rx_desc_ring[j] =
  661. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  662. &rxr->rx_desc_mapping[j]);
  663. if (rxr->rx_desc_ring[j] == NULL)
  664. return -ENOMEM;
  665. }
  666. if (bp->rx_pg_ring_size) {
  667. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  668. bp->rx_max_pg_ring);
  669. if (rxr->rx_pg_ring == NULL)
  670. return -ENOMEM;
  671. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  672. bp->rx_max_pg_ring);
  673. }
  674. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  675. rxr->rx_pg_desc_ring[j] =
  676. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  677. &rxr->rx_pg_desc_mapping[j]);
  678. if (rxr->rx_pg_desc_ring[j] == NULL)
  679. return -ENOMEM;
  680. }
  681. }
  682. return 0;
  683. }
  684. static void
  685. bnx2_free_mem(struct bnx2 *bp)
  686. {
  687. int i;
  688. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  689. bnx2_free_tx_mem(bp);
  690. bnx2_free_rx_mem(bp);
  691. for (i = 0; i < bp->ctx_pages; i++) {
  692. if (bp->ctx_blk[i]) {
  693. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  694. bp->ctx_blk[i],
  695. bp->ctx_blk_mapping[i]);
  696. bp->ctx_blk[i] = NULL;
  697. }
  698. }
  699. if (bnapi->status_blk.msi) {
  700. pci_free_consistent(bp->pdev, bp->status_stats_size,
  701. bnapi->status_blk.msi,
  702. bp->status_blk_mapping);
  703. bnapi->status_blk.msi = NULL;
  704. bp->stats_blk = NULL;
  705. }
  706. }
  707. static int
  708. bnx2_alloc_mem(struct bnx2 *bp)
  709. {
  710. int i, status_blk_size, err;
  711. struct bnx2_napi *bnapi;
  712. void *status_blk;
  713. /* Combine status and statistics blocks into one allocation. */
  714. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  715. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  716. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  717. BNX2_SBLK_MSIX_ALIGN_SIZE);
  718. bp->status_stats_size = status_blk_size +
  719. sizeof(struct statistics_block);
  720. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  721. &bp->status_blk_mapping);
  722. if (status_blk == NULL)
  723. goto alloc_mem_err;
  724. memset(status_blk, 0, bp->status_stats_size);
  725. bnapi = &bp->bnx2_napi[0];
  726. bnapi->status_blk.msi = status_blk;
  727. bnapi->hw_tx_cons_ptr =
  728. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  729. bnapi->hw_rx_cons_ptr =
  730. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  731. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  732. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  733. struct status_block_msix *sblk;
  734. bnapi = &bp->bnx2_napi[i];
  735. sblk = (void *) (status_blk +
  736. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  737. bnapi->status_blk.msix = sblk;
  738. bnapi->hw_tx_cons_ptr =
  739. &sblk->status_tx_quick_consumer_index;
  740. bnapi->hw_rx_cons_ptr =
  741. &sblk->status_rx_quick_consumer_index;
  742. bnapi->int_num = i << 24;
  743. }
  744. }
  745. bp->stats_blk = status_blk + status_blk_size;
  746. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  747. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  748. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  749. if (bp->ctx_pages == 0)
  750. bp->ctx_pages = 1;
  751. for (i = 0; i < bp->ctx_pages; i++) {
  752. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  753. BCM_PAGE_SIZE,
  754. &bp->ctx_blk_mapping[i]);
  755. if (bp->ctx_blk[i] == NULL)
  756. goto alloc_mem_err;
  757. }
  758. }
  759. err = bnx2_alloc_rx_mem(bp);
  760. if (err)
  761. goto alloc_mem_err;
  762. err = bnx2_alloc_tx_mem(bp);
  763. if (err)
  764. goto alloc_mem_err;
  765. return 0;
  766. alloc_mem_err:
  767. bnx2_free_mem(bp);
  768. return -ENOMEM;
  769. }
  770. static void
  771. bnx2_report_fw_link(struct bnx2 *bp)
  772. {
  773. u32 fw_link_status = 0;
  774. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  775. return;
  776. if (bp->link_up) {
  777. u32 bmsr;
  778. switch (bp->line_speed) {
  779. case SPEED_10:
  780. if (bp->duplex == DUPLEX_HALF)
  781. fw_link_status = BNX2_LINK_STATUS_10HALF;
  782. else
  783. fw_link_status = BNX2_LINK_STATUS_10FULL;
  784. break;
  785. case SPEED_100:
  786. if (bp->duplex == DUPLEX_HALF)
  787. fw_link_status = BNX2_LINK_STATUS_100HALF;
  788. else
  789. fw_link_status = BNX2_LINK_STATUS_100FULL;
  790. break;
  791. case SPEED_1000:
  792. if (bp->duplex == DUPLEX_HALF)
  793. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  794. else
  795. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  796. break;
  797. case SPEED_2500:
  798. if (bp->duplex == DUPLEX_HALF)
  799. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  800. else
  801. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  802. break;
  803. }
  804. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  805. if (bp->autoneg) {
  806. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  807. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  808. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  809. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  810. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  811. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  812. else
  813. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  814. }
  815. }
  816. else
  817. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  818. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  819. }
  820. static char *
  821. bnx2_xceiver_str(struct bnx2 *bp)
  822. {
  823. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  824. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  825. "Copper"));
  826. }
  827. static void
  828. bnx2_report_link(struct bnx2 *bp)
  829. {
  830. if (bp->link_up) {
  831. netif_carrier_on(bp->dev);
  832. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  833. bnx2_xceiver_str(bp));
  834. printk("%d Mbps ", bp->line_speed);
  835. if (bp->duplex == DUPLEX_FULL)
  836. printk("full duplex");
  837. else
  838. printk("half duplex");
  839. if (bp->flow_ctrl) {
  840. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  841. printk(", receive ");
  842. if (bp->flow_ctrl & FLOW_CTRL_TX)
  843. printk("& transmit ");
  844. }
  845. else {
  846. printk(", transmit ");
  847. }
  848. printk("flow control ON");
  849. }
  850. printk("\n");
  851. }
  852. else {
  853. netif_carrier_off(bp->dev);
  854. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  855. bnx2_xceiver_str(bp));
  856. }
  857. bnx2_report_fw_link(bp);
  858. }
  859. static void
  860. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  861. {
  862. u32 local_adv, remote_adv;
  863. bp->flow_ctrl = 0;
  864. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  865. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  866. if (bp->duplex == DUPLEX_FULL) {
  867. bp->flow_ctrl = bp->req_flow_ctrl;
  868. }
  869. return;
  870. }
  871. if (bp->duplex != DUPLEX_FULL) {
  872. return;
  873. }
  874. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  875. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  876. u32 val;
  877. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  878. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  879. bp->flow_ctrl |= FLOW_CTRL_TX;
  880. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  881. bp->flow_ctrl |= FLOW_CTRL_RX;
  882. return;
  883. }
  884. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  885. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  886. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  887. u32 new_local_adv = 0;
  888. u32 new_remote_adv = 0;
  889. if (local_adv & ADVERTISE_1000XPAUSE)
  890. new_local_adv |= ADVERTISE_PAUSE_CAP;
  891. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  892. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  893. if (remote_adv & ADVERTISE_1000XPAUSE)
  894. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  895. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  896. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  897. local_adv = new_local_adv;
  898. remote_adv = new_remote_adv;
  899. }
  900. /* See Table 28B-3 of 802.3ab-1999 spec. */
  901. if (local_adv & ADVERTISE_PAUSE_CAP) {
  902. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  903. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  904. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  905. }
  906. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  907. bp->flow_ctrl = FLOW_CTRL_RX;
  908. }
  909. }
  910. else {
  911. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  912. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  913. }
  914. }
  915. }
  916. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  917. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  918. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  919. bp->flow_ctrl = FLOW_CTRL_TX;
  920. }
  921. }
  922. }
  923. static int
  924. bnx2_5709s_linkup(struct bnx2 *bp)
  925. {
  926. u32 val, speed;
  927. bp->link_up = 1;
  928. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  929. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  930. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  931. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  932. bp->line_speed = bp->req_line_speed;
  933. bp->duplex = bp->req_duplex;
  934. return 0;
  935. }
  936. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  937. switch (speed) {
  938. case MII_BNX2_GP_TOP_AN_SPEED_10:
  939. bp->line_speed = SPEED_10;
  940. break;
  941. case MII_BNX2_GP_TOP_AN_SPEED_100:
  942. bp->line_speed = SPEED_100;
  943. break;
  944. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  945. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  946. bp->line_speed = SPEED_1000;
  947. break;
  948. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  949. bp->line_speed = SPEED_2500;
  950. break;
  951. }
  952. if (val & MII_BNX2_GP_TOP_AN_FD)
  953. bp->duplex = DUPLEX_FULL;
  954. else
  955. bp->duplex = DUPLEX_HALF;
  956. return 0;
  957. }
  958. static int
  959. bnx2_5708s_linkup(struct bnx2 *bp)
  960. {
  961. u32 val;
  962. bp->link_up = 1;
  963. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  964. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  965. case BCM5708S_1000X_STAT1_SPEED_10:
  966. bp->line_speed = SPEED_10;
  967. break;
  968. case BCM5708S_1000X_STAT1_SPEED_100:
  969. bp->line_speed = SPEED_100;
  970. break;
  971. case BCM5708S_1000X_STAT1_SPEED_1G:
  972. bp->line_speed = SPEED_1000;
  973. break;
  974. case BCM5708S_1000X_STAT1_SPEED_2G5:
  975. bp->line_speed = SPEED_2500;
  976. break;
  977. }
  978. if (val & BCM5708S_1000X_STAT1_FD)
  979. bp->duplex = DUPLEX_FULL;
  980. else
  981. bp->duplex = DUPLEX_HALF;
  982. return 0;
  983. }
  984. static int
  985. bnx2_5706s_linkup(struct bnx2 *bp)
  986. {
  987. u32 bmcr, local_adv, remote_adv, common;
  988. bp->link_up = 1;
  989. bp->line_speed = SPEED_1000;
  990. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  991. if (bmcr & BMCR_FULLDPLX) {
  992. bp->duplex = DUPLEX_FULL;
  993. }
  994. else {
  995. bp->duplex = DUPLEX_HALF;
  996. }
  997. if (!(bmcr & BMCR_ANENABLE)) {
  998. return 0;
  999. }
  1000. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1001. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1002. common = local_adv & remote_adv;
  1003. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1004. if (common & ADVERTISE_1000XFULL) {
  1005. bp->duplex = DUPLEX_FULL;
  1006. }
  1007. else {
  1008. bp->duplex = DUPLEX_HALF;
  1009. }
  1010. }
  1011. return 0;
  1012. }
  1013. static int
  1014. bnx2_copper_linkup(struct bnx2 *bp)
  1015. {
  1016. u32 bmcr;
  1017. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1018. if (bmcr & BMCR_ANENABLE) {
  1019. u32 local_adv, remote_adv, common;
  1020. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1021. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1022. common = local_adv & (remote_adv >> 2);
  1023. if (common & ADVERTISE_1000FULL) {
  1024. bp->line_speed = SPEED_1000;
  1025. bp->duplex = DUPLEX_FULL;
  1026. }
  1027. else if (common & ADVERTISE_1000HALF) {
  1028. bp->line_speed = SPEED_1000;
  1029. bp->duplex = DUPLEX_HALF;
  1030. }
  1031. else {
  1032. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1033. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1034. common = local_adv & remote_adv;
  1035. if (common & ADVERTISE_100FULL) {
  1036. bp->line_speed = SPEED_100;
  1037. bp->duplex = DUPLEX_FULL;
  1038. }
  1039. else if (common & ADVERTISE_100HALF) {
  1040. bp->line_speed = SPEED_100;
  1041. bp->duplex = DUPLEX_HALF;
  1042. }
  1043. else if (common & ADVERTISE_10FULL) {
  1044. bp->line_speed = SPEED_10;
  1045. bp->duplex = DUPLEX_FULL;
  1046. }
  1047. else if (common & ADVERTISE_10HALF) {
  1048. bp->line_speed = SPEED_10;
  1049. bp->duplex = DUPLEX_HALF;
  1050. }
  1051. else {
  1052. bp->line_speed = 0;
  1053. bp->link_up = 0;
  1054. }
  1055. }
  1056. }
  1057. else {
  1058. if (bmcr & BMCR_SPEED100) {
  1059. bp->line_speed = SPEED_100;
  1060. }
  1061. else {
  1062. bp->line_speed = SPEED_10;
  1063. }
  1064. if (bmcr & BMCR_FULLDPLX) {
  1065. bp->duplex = DUPLEX_FULL;
  1066. }
  1067. else {
  1068. bp->duplex = DUPLEX_HALF;
  1069. }
  1070. }
  1071. return 0;
  1072. }
  1073. static void
  1074. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1075. {
  1076. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1077. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1078. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1079. val |= 0x02 << 8;
  1080. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1081. u32 lo_water, hi_water;
  1082. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1083. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1084. else
  1085. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1086. if (lo_water >= bp->rx_ring_size)
  1087. lo_water = 0;
  1088. hi_water = bp->rx_ring_size / 4;
  1089. if (hi_water <= lo_water)
  1090. lo_water = 0;
  1091. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1092. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1093. if (hi_water > 0xf)
  1094. hi_water = 0xf;
  1095. else if (hi_water == 0)
  1096. lo_water = 0;
  1097. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1098. }
  1099. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1100. }
  1101. static void
  1102. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1103. {
  1104. int i;
  1105. u32 cid;
  1106. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1107. if (i == 1)
  1108. cid = RX_RSS_CID;
  1109. bnx2_init_rx_context(bp, cid);
  1110. }
  1111. }
  1112. static void
  1113. bnx2_set_mac_link(struct bnx2 *bp)
  1114. {
  1115. u32 val;
  1116. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1117. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1118. (bp->duplex == DUPLEX_HALF)) {
  1119. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1120. }
  1121. /* Configure the EMAC mode register. */
  1122. val = REG_RD(bp, BNX2_EMAC_MODE);
  1123. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1124. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1125. BNX2_EMAC_MODE_25G_MODE);
  1126. if (bp->link_up) {
  1127. switch (bp->line_speed) {
  1128. case SPEED_10:
  1129. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1130. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1131. break;
  1132. }
  1133. /* fall through */
  1134. case SPEED_100:
  1135. val |= BNX2_EMAC_MODE_PORT_MII;
  1136. break;
  1137. case SPEED_2500:
  1138. val |= BNX2_EMAC_MODE_25G_MODE;
  1139. /* fall through */
  1140. case SPEED_1000:
  1141. val |= BNX2_EMAC_MODE_PORT_GMII;
  1142. break;
  1143. }
  1144. }
  1145. else {
  1146. val |= BNX2_EMAC_MODE_PORT_GMII;
  1147. }
  1148. /* Set the MAC to operate in the appropriate duplex mode. */
  1149. if (bp->duplex == DUPLEX_HALF)
  1150. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1151. REG_WR(bp, BNX2_EMAC_MODE, val);
  1152. /* Enable/disable rx PAUSE. */
  1153. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1154. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1155. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1156. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1157. /* Enable/disable tx PAUSE. */
  1158. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1159. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1160. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1161. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1162. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1163. /* Acknowledge the interrupt. */
  1164. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1165. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1166. bnx2_init_all_rx_contexts(bp);
  1167. }
  1168. static void
  1169. bnx2_enable_bmsr1(struct bnx2 *bp)
  1170. {
  1171. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1172. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1173. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1174. MII_BNX2_BLK_ADDR_GP_STATUS);
  1175. }
  1176. static void
  1177. bnx2_disable_bmsr1(struct bnx2 *bp)
  1178. {
  1179. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1180. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1181. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1182. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1183. }
  1184. static int
  1185. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1186. {
  1187. u32 up1;
  1188. int ret = 1;
  1189. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1190. return 0;
  1191. if (bp->autoneg & AUTONEG_SPEED)
  1192. bp->advertising |= ADVERTISED_2500baseX_Full;
  1193. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1194. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1195. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1196. if (!(up1 & BCM5708S_UP1_2G5)) {
  1197. up1 |= BCM5708S_UP1_2G5;
  1198. bnx2_write_phy(bp, bp->mii_up1, up1);
  1199. ret = 0;
  1200. }
  1201. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1202. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1203. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1204. return ret;
  1205. }
  1206. static int
  1207. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1208. {
  1209. u32 up1;
  1210. int ret = 0;
  1211. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1212. return 0;
  1213. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1214. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1215. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1216. if (up1 & BCM5708S_UP1_2G5) {
  1217. up1 &= ~BCM5708S_UP1_2G5;
  1218. bnx2_write_phy(bp, bp->mii_up1, up1);
  1219. ret = 1;
  1220. }
  1221. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1222. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1223. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1224. return ret;
  1225. }
  1226. static void
  1227. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1228. {
  1229. u32 bmcr;
  1230. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1231. return;
  1232. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1233. u32 val;
  1234. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1235. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1236. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1237. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1238. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1239. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1240. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1241. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1242. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1243. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1244. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1245. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1246. }
  1247. if (bp->autoneg & AUTONEG_SPEED) {
  1248. bmcr &= ~BMCR_ANENABLE;
  1249. if (bp->req_duplex == DUPLEX_FULL)
  1250. bmcr |= BMCR_FULLDPLX;
  1251. }
  1252. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1253. }
  1254. static void
  1255. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1256. {
  1257. u32 bmcr;
  1258. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1259. return;
  1260. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1261. u32 val;
  1262. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1263. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1264. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1265. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1266. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1267. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1268. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1269. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1270. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1271. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1272. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1273. }
  1274. if (bp->autoneg & AUTONEG_SPEED)
  1275. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1276. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1277. }
  1278. static void
  1279. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1280. {
  1281. u32 val;
  1282. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1283. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1284. if (start)
  1285. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1286. else
  1287. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1288. }
  1289. static int
  1290. bnx2_set_link(struct bnx2 *bp)
  1291. {
  1292. u32 bmsr;
  1293. u8 link_up;
  1294. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1295. bp->link_up = 1;
  1296. return 0;
  1297. }
  1298. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1299. return 0;
  1300. link_up = bp->link_up;
  1301. bnx2_enable_bmsr1(bp);
  1302. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1303. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1304. bnx2_disable_bmsr1(bp);
  1305. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1306. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1307. u32 val, an_dbg;
  1308. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1309. bnx2_5706s_force_link_dn(bp, 0);
  1310. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1311. }
  1312. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1313. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1314. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1315. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1316. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1317. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1318. bmsr |= BMSR_LSTATUS;
  1319. else
  1320. bmsr &= ~BMSR_LSTATUS;
  1321. }
  1322. if (bmsr & BMSR_LSTATUS) {
  1323. bp->link_up = 1;
  1324. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1325. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1326. bnx2_5706s_linkup(bp);
  1327. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1328. bnx2_5708s_linkup(bp);
  1329. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1330. bnx2_5709s_linkup(bp);
  1331. }
  1332. else {
  1333. bnx2_copper_linkup(bp);
  1334. }
  1335. bnx2_resolve_flow_ctrl(bp);
  1336. }
  1337. else {
  1338. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1339. (bp->autoneg & AUTONEG_SPEED))
  1340. bnx2_disable_forced_2g5(bp);
  1341. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1342. u32 bmcr;
  1343. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1344. bmcr |= BMCR_ANENABLE;
  1345. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1346. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1347. }
  1348. bp->link_up = 0;
  1349. }
  1350. if (bp->link_up != link_up) {
  1351. bnx2_report_link(bp);
  1352. }
  1353. bnx2_set_mac_link(bp);
  1354. return 0;
  1355. }
  1356. static int
  1357. bnx2_reset_phy(struct bnx2 *bp)
  1358. {
  1359. int i;
  1360. u32 reg;
  1361. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1362. #define PHY_RESET_MAX_WAIT 100
  1363. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1364. udelay(10);
  1365. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1366. if (!(reg & BMCR_RESET)) {
  1367. udelay(20);
  1368. break;
  1369. }
  1370. }
  1371. if (i == PHY_RESET_MAX_WAIT) {
  1372. return -EBUSY;
  1373. }
  1374. return 0;
  1375. }
  1376. static u32
  1377. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1378. {
  1379. u32 adv = 0;
  1380. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1381. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1382. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1383. adv = ADVERTISE_1000XPAUSE;
  1384. }
  1385. else {
  1386. adv = ADVERTISE_PAUSE_CAP;
  1387. }
  1388. }
  1389. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1390. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1391. adv = ADVERTISE_1000XPSE_ASYM;
  1392. }
  1393. else {
  1394. adv = ADVERTISE_PAUSE_ASYM;
  1395. }
  1396. }
  1397. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1398. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1399. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1400. }
  1401. else {
  1402. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1403. }
  1404. }
  1405. return adv;
  1406. }
  1407. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1408. static int
  1409. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1410. __releases(&bp->phy_lock)
  1411. __acquires(&bp->phy_lock)
  1412. {
  1413. u32 speed_arg = 0, pause_adv;
  1414. pause_adv = bnx2_phy_get_pause_adv(bp);
  1415. if (bp->autoneg & AUTONEG_SPEED) {
  1416. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1417. if (bp->advertising & ADVERTISED_10baseT_Half)
  1418. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1419. if (bp->advertising & ADVERTISED_10baseT_Full)
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1421. if (bp->advertising & ADVERTISED_100baseT_Half)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1423. if (bp->advertising & ADVERTISED_100baseT_Full)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1425. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1427. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1429. } else {
  1430. if (bp->req_line_speed == SPEED_2500)
  1431. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1432. else if (bp->req_line_speed == SPEED_1000)
  1433. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1434. else if (bp->req_line_speed == SPEED_100) {
  1435. if (bp->req_duplex == DUPLEX_FULL)
  1436. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1437. else
  1438. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1439. } else if (bp->req_line_speed == SPEED_10) {
  1440. if (bp->req_duplex == DUPLEX_FULL)
  1441. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1442. else
  1443. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1444. }
  1445. }
  1446. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1448. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1449. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1450. if (port == PORT_TP)
  1451. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1452. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1453. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1454. spin_unlock_bh(&bp->phy_lock);
  1455. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1456. spin_lock_bh(&bp->phy_lock);
  1457. return 0;
  1458. }
  1459. static int
  1460. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1461. __releases(&bp->phy_lock)
  1462. __acquires(&bp->phy_lock)
  1463. {
  1464. u32 adv, bmcr;
  1465. u32 new_adv = 0;
  1466. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1467. return (bnx2_setup_remote_phy(bp, port));
  1468. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1469. u32 new_bmcr;
  1470. int force_link_down = 0;
  1471. if (bp->req_line_speed == SPEED_2500) {
  1472. if (!bnx2_test_and_enable_2g5(bp))
  1473. force_link_down = 1;
  1474. } else if (bp->req_line_speed == SPEED_1000) {
  1475. if (bnx2_test_and_disable_2g5(bp))
  1476. force_link_down = 1;
  1477. }
  1478. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1479. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1480. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1481. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1482. new_bmcr |= BMCR_SPEED1000;
  1483. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1484. if (bp->req_line_speed == SPEED_2500)
  1485. bnx2_enable_forced_2g5(bp);
  1486. else if (bp->req_line_speed == SPEED_1000) {
  1487. bnx2_disable_forced_2g5(bp);
  1488. new_bmcr &= ~0x2000;
  1489. }
  1490. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1491. if (bp->req_line_speed == SPEED_2500)
  1492. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1493. else
  1494. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1495. }
  1496. if (bp->req_duplex == DUPLEX_FULL) {
  1497. adv |= ADVERTISE_1000XFULL;
  1498. new_bmcr |= BMCR_FULLDPLX;
  1499. }
  1500. else {
  1501. adv |= ADVERTISE_1000XHALF;
  1502. new_bmcr &= ~BMCR_FULLDPLX;
  1503. }
  1504. if ((new_bmcr != bmcr) || (force_link_down)) {
  1505. /* Force a link down visible on the other side */
  1506. if (bp->link_up) {
  1507. bnx2_write_phy(bp, bp->mii_adv, adv &
  1508. ~(ADVERTISE_1000XFULL |
  1509. ADVERTISE_1000XHALF));
  1510. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1511. BMCR_ANRESTART | BMCR_ANENABLE);
  1512. bp->link_up = 0;
  1513. netif_carrier_off(bp->dev);
  1514. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1515. bnx2_report_link(bp);
  1516. }
  1517. bnx2_write_phy(bp, bp->mii_adv, adv);
  1518. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1519. } else {
  1520. bnx2_resolve_flow_ctrl(bp);
  1521. bnx2_set_mac_link(bp);
  1522. }
  1523. return 0;
  1524. }
  1525. bnx2_test_and_enable_2g5(bp);
  1526. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1527. new_adv |= ADVERTISE_1000XFULL;
  1528. new_adv |= bnx2_phy_get_pause_adv(bp);
  1529. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1530. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1531. bp->serdes_an_pending = 0;
  1532. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1533. /* Force a link down visible on the other side */
  1534. if (bp->link_up) {
  1535. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1536. spin_unlock_bh(&bp->phy_lock);
  1537. msleep(20);
  1538. spin_lock_bh(&bp->phy_lock);
  1539. }
  1540. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1541. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1542. BMCR_ANENABLE);
  1543. /* Speed up link-up time when the link partner
  1544. * does not autonegotiate which is very common
  1545. * in blade servers. Some blade servers use
  1546. * IPMI for kerboard input and it's important
  1547. * to minimize link disruptions. Autoneg. involves
  1548. * exchanging base pages plus 3 next pages and
  1549. * normally completes in about 120 msec.
  1550. */
  1551. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1552. bp->serdes_an_pending = 1;
  1553. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1554. } else {
  1555. bnx2_resolve_flow_ctrl(bp);
  1556. bnx2_set_mac_link(bp);
  1557. }
  1558. return 0;
  1559. }
  1560. #define ETHTOOL_ALL_FIBRE_SPEED \
  1561. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1562. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1563. (ADVERTISED_1000baseT_Full)
  1564. #define ETHTOOL_ALL_COPPER_SPEED \
  1565. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1566. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1567. ADVERTISED_1000baseT_Full)
  1568. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1569. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1570. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1571. static void
  1572. bnx2_set_default_remote_link(struct bnx2 *bp)
  1573. {
  1574. u32 link;
  1575. if (bp->phy_port == PORT_TP)
  1576. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1577. else
  1578. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1579. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1580. bp->req_line_speed = 0;
  1581. bp->autoneg |= AUTONEG_SPEED;
  1582. bp->advertising = ADVERTISED_Autoneg;
  1583. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1584. bp->advertising |= ADVERTISED_10baseT_Half;
  1585. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1586. bp->advertising |= ADVERTISED_10baseT_Full;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1588. bp->advertising |= ADVERTISED_100baseT_Half;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1590. bp->advertising |= ADVERTISED_100baseT_Full;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1592. bp->advertising |= ADVERTISED_1000baseT_Full;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1594. bp->advertising |= ADVERTISED_2500baseX_Full;
  1595. } else {
  1596. bp->autoneg = 0;
  1597. bp->advertising = 0;
  1598. bp->req_duplex = DUPLEX_FULL;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1600. bp->req_line_speed = SPEED_10;
  1601. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1602. bp->req_duplex = DUPLEX_HALF;
  1603. }
  1604. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1605. bp->req_line_speed = SPEED_100;
  1606. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1607. bp->req_duplex = DUPLEX_HALF;
  1608. }
  1609. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1610. bp->req_line_speed = SPEED_1000;
  1611. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1612. bp->req_line_speed = SPEED_2500;
  1613. }
  1614. }
  1615. static void
  1616. bnx2_set_default_link(struct bnx2 *bp)
  1617. {
  1618. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1619. bnx2_set_default_remote_link(bp);
  1620. return;
  1621. }
  1622. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1623. bp->req_line_speed = 0;
  1624. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1625. u32 reg;
  1626. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1627. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1628. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1629. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1630. bp->autoneg = 0;
  1631. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1632. bp->req_duplex = DUPLEX_FULL;
  1633. }
  1634. } else
  1635. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1636. }
  1637. static void
  1638. bnx2_send_heart_beat(struct bnx2 *bp)
  1639. {
  1640. u32 msg;
  1641. u32 addr;
  1642. spin_lock(&bp->indirect_lock);
  1643. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1644. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1645. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1646. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1647. spin_unlock(&bp->indirect_lock);
  1648. }
  1649. static void
  1650. bnx2_remote_phy_event(struct bnx2 *bp)
  1651. {
  1652. u32 msg;
  1653. u8 link_up = bp->link_up;
  1654. u8 old_port;
  1655. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1656. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1657. bnx2_send_heart_beat(bp);
  1658. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1659. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1660. bp->link_up = 0;
  1661. else {
  1662. u32 speed;
  1663. bp->link_up = 1;
  1664. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1665. bp->duplex = DUPLEX_FULL;
  1666. switch (speed) {
  1667. case BNX2_LINK_STATUS_10HALF:
  1668. bp->duplex = DUPLEX_HALF;
  1669. case BNX2_LINK_STATUS_10FULL:
  1670. bp->line_speed = SPEED_10;
  1671. break;
  1672. case BNX2_LINK_STATUS_100HALF:
  1673. bp->duplex = DUPLEX_HALF;
  1674. case BNX2_LINK_STATUS_100BASE_T4:
  1675. case BNX2_LINK_STATUS_100FULL:
  1676. bp->line_speed = SPEED_100;
  1677. break;
  1678. case BNX2_LINK_STATUS_1000HALF:
  1679. bp->duplex = DUPLEX_HALF;
  1680. case BNX2_LINK_STATUS_1000FULL:
  1681. bp->line_speed = SPEED_1000;
  1682. break;
  1683. case BNX2_LINK_STATUS_2500HALF:
  1684. bp->duplex = DUPLEX_HALF;
  1685. case BNX2_LINK_STATUS_2500FULL:
  1686. bp->line_speed = SPEED_2500;
  1687. break;
  1688. default:
  1689. bp->line_speed = 0;
  1690. break;
  1691. }
  1692. bp->flow_ctrl = 0;
  1693. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1694. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1695. if (bp->duplex == DUPLEX_FULL)
  1696. bp->flow_ctrl = bp->req_flow_ctrl;
  1697. } else {
  1698. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1699. bp->flow_ctrl |= FLOW_CTRL_TX;
  1700. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1701. bp->flow_ctrl |= FLOW_CTRL_RX;
  1702. }
  1703. old_port = bp->phy_port;
  1704. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1705. bp->phy_port = PORT_FIBRE;
  1706. else
  1707. bp->phy_port = PORT_TP;
  1708. if (old_port != bp->phy_port)
  1709. bnx2_set_default_link(bp);
  1710. }
  1711. if (bp->link_up != link_up)
  1712. bnx2_report_link(bp);
  1713. bnx2_set_mac_link(bp);
  1714. }
  1715. static int
  1716. bnx2_set_remote_link(struct bnx2 *bp)
  1717. {
  1718. u32 evt_code;
  1719. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1720. switch (evt_code) {
  1721. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1722. bnx2_remote_phy_event(bp);
  1723. break;
  1724. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1725. default:
  1726. bnx2_send_heart_beat(bp);
  1727. break;
  1728. }
  1729. return 0;
  1730. }
  1731. static int
  1732. bnx2_setup_copper_phy(struct bnx2 *bp)
  1733. __releases(&bp->phy_lock)
  1734. __acquires(&bp->phy_lock)
  1735. {
  1736. u32 bmcr;
  1737. u32 new_bmcr;
  1738. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1739. if (bp->autoneg & AUTONEG_SPEED) {
  1740. u32 adv_reg, adv1000_reg;
  1741. u32 new_adv_reg = 0;
  1742. u32 new_adv1000_reg = 0;
  1743. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1744. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1745. ADVERTISE_PAUSE_ASYM);
  1746. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1747. adv1000_reg &= PHY_ALL_1000_SPEED;
  1748. if (bp->advertising & ADVERTISED_10baseT_Half)
  1749. new_adv_reg |= ADVERTISE_10HALF;
  1750. if (bp->advertising & ADVERTISED_10baseT_Full)
  1751. new_adv_reg |= ADVERTISE_10FULL;
  1752. if (bp->advertising & ADVERTISED_100baseT_Half)
  1753. new_adv_reg |= ADVERTISE_100HALF;
  1754. if (bp->advertising & ADVERTISED_100baseT_Full)
  1755. new_adv_reg |= ADVERTISE_100FULL;
  1756. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1757. new_adv1000_reg |= ADVERTISE_1000FULL;
  1758. new_adv_reg |= ADVERTISE_CSMA;
  1759. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1760. if ((adv1000_reg != new_adv1000_reg) ||
  1761. (adv_reg != new_adv_reg) ||
  1762. ((bmcr & BMCR_ANENABLE) == 0)) {
  1763. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1764. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1765. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1766. BMCR_ANENABLE);
  1767. }
  1768. else if (bp->link_up) {
  1769. /* Flow ctrl may have changed from auto to forced */
  1770. /* or vice-versa. */
  1771. bnx2_resolve_flow_ctrl(bp);
  1772. bnx2_set_mac_link(bp);
  1773. }
  1774. return 0;
  1775. }
  1776. new_bmcr = 0;
  1777. if (bp->req_line_speed == SPEED_100) {
  1778. new_bmcr |= BMCR_SPEED100;
  1779. }
  1780. if (bp->req_duplex == DUPLEX_FULL) {
  1781. new_bmcr |= BMCR_FULLDPLX;
  1782. }
  1783. if (new_bmcr != bmcr) {
  1784. u32 bmsr;
  1785. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1786. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1787. if (bmsr & BMSR_LSTATUS) {
  1788. /* Force link down */
  1789. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1790. spin_unlock_bh(&bp->phy_lock);
  1791. msleep(50);
  1792. spin_lock_bh(&bp->phy_lock);
  1793. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1794. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1795. }
  1796. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1797. /* Normally, the new speed is setup after the link has
  1798. * gone down and up again. In some cases, link will not go
  1799. * down so we need to set up the new speed here.
  1800. */
  1801. if (bmsr & BMSR_LSTATUS) {
  1802. bp->line_speed = bp->req_line_speed;
  1803. bp->duplex = bp->req_duplex;
  1804. bnx2_resolve_flow_ctrl(bp);
  1805. bnx2_set_mac_link(bp);
  1806. }
  1807. } else {
  1808. bnx2_resolve_flow_ctrl(bp);
  1809. bnx2_set_mac_link(bp);
  1810. }
  1811. return 0;
  1812. }
  1813. static int
  1814. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1815. __releases(&bp->phy_lock)
  1816. __acquires(&bp->phy_lock)
  1817. {
  1818. if (bp->loopback == MAC_LOOPBACK)
  1819. return 0;
  1820. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1821. return (bnx2_setup_serdes_phy(bp, port));
  1822. }
  1823. else {
  1824. return (bnx2_setup_copper_phy(bp));
  1825. }
  1826. }
  1827. static int
  1828. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1829. {
  1830. u32 val;
  1831. bp->mii_bmcr = MII_BMCR + 0x10;
  1832. bp->mii_bmsr = MII_BMSR + 0x10;
  1833. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1834. bp->mii_adv = MII_ADVERTISE + 0x10;
  1835. bp->mii_lpa = MII_LPA + 0x10;
  1836. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1837. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1838. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1839. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1840. if (reset_phy)
  1841. bnx2_reset_phy(bp);
  1842. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1843. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1844. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1845. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1846. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1848. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1849. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1850. val |= BCM5708S_UP1_2G5;
  1851. else
  1852. val &= ~BCM5708S_UP1_2G5;
  1853. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1854. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1855. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1856. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1857. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1858. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1859. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1860. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1861. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1862. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1863. return 0;
  1864. }
  1865. static int
  1866. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1867. {
  1868. u32 val;
  1869. if (reset_phy)
  1870. bnx2_reset_phy(bp);
  1871. bp->mii_up1 = BCM5708S_UP1;
  1872. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1873. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1874. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1875. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1876. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1877. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1878. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1879. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1880. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1881. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1882. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1883. val |= BCM5708S_UP1_2G5;
  1884. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1885. }
  1886. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1887. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1888. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1889. /* increase tx signal amplitude */
  1890. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1891. BCM5708S_BLK_ADDR_TX_MISC);
  1892. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1893. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1894. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1895. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1896. }
  1897. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1898. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1899. if (val) {
  1900. u32 is_backplane;
  1901. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1902. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1903. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1904. BCM5708S_BLK_ADDR_TX_MISC);
  1905. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1906. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1907. BCM5708S_BLK_ADDR_DIG);
  1908. }
  1909. }
  1910. return 0;
  1911. }
  1912. static int
  1913. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1914. {
  1915. if (reset_phy)
  1916. bnx2_reset_phy(bp);
  1917. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1918. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1919. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1920. if (bp->dev->mtu > 1500) {
  1921. u32 val;
  1922. /* Set extended packet length bit */
  1923. bnx2_write_phy(bp, 0x18, 0x7);
  1924. bnx2_read_phy(bp, 0x18, &val);
  1925. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1926. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1927. bnx2_read_phy(bp, 0x1c, &val);
  1928. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1929. }
  1930. else {
  1931. u32 val;
  1932. bnx2_write_phy(bp, 0x18, 0x7);
  1933. bnx2_read_phy(bp, 0x18, &val);
  1934. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1935. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1936. bnx2_read_phy(bp, 0x1c, &val);
  1937. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1938. }
  1939. return 0;
  1940. }
  1941. static int
  1942. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1943. {
  1944. u32 val;
  1945. if (reset_phy)
  1946. bnx2_reset_phy(bp);
  1947. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1948. bnx2_write_phy(bp, 0x18, 0x0c00);
  1949. bnx2_write_phy(bp, 0x17, 0x000a);
  1950. bnx2_write_phy(bp, 0x15, 0x310b);
  1951. bnx2_write_phy(bp, 0x17, 0x201f);
  1952. bnx2_write_phy(bp, 0x15, 0x9506);
  1953. bnx2_write_phy(bp, 0x17, 0x401f);
  1954. bnx2_write_phy(bp, 0x15, 0x14e2);
  1955. bnx2_write_phy(bp, 0x18, 0x0400);
  1956. }
  1957. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1958. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1959. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1960. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1961. val &= ~(1 << 8);
  1962. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1963. }
  1964. if (bp->dev->mtu > 1500) {
  1965. /* Set extended packet length bit */
  1966. bnx2_write_phy(bp, 0x18, 0x7);
  1967. bnx2_read_phy(bp, 0x18, &val);
  1968. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1969. bnx2_read_phy(bp, 0x10, &val);
  1970. bnx2_write_phy(bp, 0x10, val | 0x1);
  1971. }
  1972. else {
  1973. bnx2_write_phy(bp, 0x18, 0x7);
  1974. bnx2_read_phy(bp, 0x18, &val);
  1975. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1976. bnx2_read_phy(bp, 0x10, &val);
  1977. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1978. }
  1979. /* ethernet@wirespeed */
  1980. bnx2_write_phy(bp, 0x18, 0x7007);
  1981. bnx2_read_phy(bp, 0x18, &val);
  1982. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1983. return 0;
  1984. }
  1985. static int
  1986. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1987. __releases(&bp->phy_lock)
  1988. __acquires(&bp->phy_lock)
  1989. {
  1990. u32 val;
  1991. int rc = 0;
  1992. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1993. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1994. bp->mii_bmcr = MII_BMCR;
  1995. bp->mii_bmsr = MII_BMSR;
  1996. bp->mii_bmsr1 = MII_BMSR;
  1997. bp->mii_adv = MII_ADVERTISE;
  1998. bp->mii_lpa = MII_LPA;
  1999. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2000. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2001. goto setup_phy;
  2002. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2003. bp->phy_id = val << 16;
  2004. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2005. bp->phy_id |= val & 0xffff;
  2006. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2007. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2008. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2009. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2010. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2011. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2012. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2013. }
  2014. else {
  2015. rc = bnx2_init_copper_phy(bp, reset_phy);
  2016. }
  2017. setup_phy:
  2018. if (!rc)
  2019. rc = bnx2_setup_phy(bp, bp->phy_port);
  2020. return rc;
  2021. }
  2022. static int
  2023. bnx2_set_mac_loopback(struct bnx2 *bp)
  2024. {
  2025. u32 mac_mode;
  2026. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2027. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2028. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2029. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2030. bp->link_up = 1;
  2031. return 0;
  2032. }
  2033. static int bnx2_test_link(struct bnx2 *);
  2034. static int
  2035. bnx2_set_phy_loopback(struct bnx2 *bp)
  2036. {
  2037. u32 mac_mode;
  2038. int rc, i;
  2039. spin_lock_bh(&bp->phy_lock);
  2040. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2041. BMCR_SPEED1000);
  2042. spin_unlock_bh(&bp->phy_lock);
  2043. if (rc)
  2044. return rc;
  2045. for (i = 0; i < 10; i++) {
  2046. if (bnx2_test_link(bp) == 0)
  2047. break;
  2048. msleep(100);
  2049. }
  2050. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2051. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2052. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2053. BNX2_EMAC_MODE_25G_MODE);
  2054. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2055. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2056. bp->link_up = 1;
  2057. return 0;
  2058. }
  2059. static int
  2060. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2061. {
  2062. int i;
  2063. u32 val;
  2064. bp->fw_wr_seq++;
  2065. msg_data |= bp->fw_wr_seq;
  2066. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2067. if (!ack)
  2068. return 0;
  2069. /* wait for an acknowledgement. */
  2070. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2071. msleep(10);
  2072. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2073. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2074. break;
  2075. }
  2076. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2077. return 0;
  2078. /* If we timed out, inform the firmware that this is the case. */
  2079. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2080. if (!silent)
  2081. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2082. "%x\n", msg_data);
  2083. msg_data &= ~BNX2_DRV_MSG_CODE;
  2084. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2085. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2086. return -EBUSY;
  2087. }
  2088. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2089. return -EIO;
  2090. return 0;
  2091. }
  2092. static int
  2093. bnx2_init_5709_context(struct bnx2 *bp)
  2094. {
  2095. int i, ret = 0;
  2096. u32 val;
  2097. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2098. val |= (BCM_PAGE_BITS - 8) << 16;
  2099. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2100. for (i = 0; i < 10; i++) {
  2101. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2102. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2103. break;
  2104. udelay(2);
  2105. }
  2106. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2107. return -EBUSY;
  2108. for (i = 0; i < bp->ctx_pages; i++) {
  2109. int j;
  2110. if (bp->ctx_blk[i])
  2111. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2112. else
  2113. return -ENOMEM;
  2114. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2115. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2116. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2117. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2118. (u64) bp->ctx_blk_mapping[i] >> 32);
  2119. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2120. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2121. for (j = 0; j < 10; j++) {
  2122. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2123. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2124. break;
  2125. udelay(5);
  2126. }
  2127. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2128. ret = -EBUSY;
  2129. break;
  2130. }
  2131. }
  2132. return ret;
  2133. }
  2134. static void
  2135. bnx2_init_context(struct bnx2 *bp)
  2136. {
  2137. u32 vcid;
  2138. vcid = 96;
  2139. while (vcid) {
  2140. u32 vcid_addr, pcid_addr, offset;
  2141. int i;
  2142. vcid--;
  2143. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2144. u32 new_vcid;
  2145. vcid_addr = GET_PCID_ADDR(vcid);
  2146. if (vcid & 0x8) {
  2147. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2148. }
  2149. else {
  2150. new_vcid = vcid;
  2151. }
  2152. pcid_addr = GET_PCID_ADDR(new_vcid);
  2153. }
  2154. else {
  2155. vcid_addr = GET_CID_ADDR(vcid);
  2156. pcid_addr = vcid_addr;
  2157. }
  2158. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2159. vcid_addr += (i << PHY_CTX_SHIFT);
  2160. pcid_addr += (i << PHY_CTX_SHIFT);
  2161. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2162. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2163. /* Zero out the context. */
  2164. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2165. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2166. }
  2167. }
  2168. }
  2169. static int
  2170. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2171. {
  2172. u16 *good_mbuf;
  2173. u32 good_mbuf_cnt;
  2174. u32 val;
  2175. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2176. if (good_mbuf == NULL) {
  2177. printk(KERN_ERR PFX "Failed to allocate memory in "
  2178. "bnx2_alloc_bad_rbuf\n");
  2179. return -ENOMEM;
  2180. }
  2181. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2182. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2183. good_mbuf_cnt = 0;
  2184. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2185. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2186. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2187. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2188. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2189. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2190. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2191. /* The addresses with Bit 9 set are bad memory blocks. */
  2192. if (!(val & (1 << 9))) {
  2193. good_mbuf[good_mbuf_cnt] = (u16) val;
  2194. good_mbuf_cnt++;
  2195. }
  2196. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2197. }
  2198. /* Free the good ones back to the mbuf pool thus discarding
  2199. * all the bad ones. */
  2200. while (good_mbuf_cnt) {
  2201. good_mbuf_cnt--;
  2202. val = good_mbuf[good_mbuf_cnt];
  2203. val = (val << 9) | val | 1;
  2204. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2205. }
  2206. kfree(good_mbuf);
  2207. return 0;
  2208. }
  2209. static void
  2210. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2211. {
  2212. u32 val;
  2213. val = (mac_addr[0] << 8) | mac_addr[1];
  2214. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2215. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2216. (mac_addr[4] << 8) | mac_addr[5];
  2217. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2218. }
  2219. static inline int
  2220. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2221. {
  2222. dma_addr_t mapping;
  2223. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2224. struct rx_bd *rxbd =
  2225. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2226. struct page *page = alloc_page(GFP_ATOMIC);
  2227. if (!page)
  2228. return -ENOMEM;
  2229. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2230. PCI_DMA_FROMDEVICE);
  2231. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2232. __free_page(page);
  2233. return -EIO;
  2234. }
  2235. rx_pg->page = page;
  2236. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2237. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2238. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2239. return 0;
  2240. }
  2241. static void
  2242. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2243. {
  2244. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2245. struct page *page = rx_pg->page;
  2246. if (!page)
  2247. return;
  2248. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2249. PCI_DMA_FROMDEVICE);
  2250. __free_page(page);
  2251. rx_pg->page = NULL;
  2252. }
  2253. static inline int
  2254. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2255. {
  2256. struct sk_buff *skb;
  2257. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2258. dma_addr_t mapping;
  2259. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2260. unsigned long align;
  2261. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2262. if (skb == NULL) {
  2263. return -ENOMEM;
  2264. }
  2265. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2266. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2267. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2268. PCI_DMA_FROMDEVICE);
  2269. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2270. dev_kfree_skb(skb);
  2271. return -EIO;
  2272. }
  2273. rx_buf->skb = skb;
  2274. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2275. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2276. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2277. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2278. return 0;
  2279. }
  2280. static int
  2281. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2282. {
  2283. struct status_block *sblk = bnapi->status_blk.msi;
  2284. u32 new_link_state, old_link_state;
  2285. int is_set = 1;
  2286. new_link_state = sblk->status_attn_bits & event;
  2287. old_link_state = sblk->status_attn_bits_ack & event;
  2288. if (new_link_state != old_link_state) {
  2289. if (new_link_state)
  2290. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2291. else
  2292. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2293. } else
  2294. is_set = 0;
  2295. return is_set;
  2296. }
  2297. static void
  2298. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2299. {
  2300. spin_lock(&bp->phy_lock);
  2301. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2302. bnx2_set_link(bp);
  2303. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2304. bnx2_set_remote_link(bp);
  2305. spin_unlock(&bp->phy_lock);
  2306. }
  2307. static inline u16
  2308. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2309. {
  2310. u16 cons;
  2311. /* Tell compiler that status block fields can change. */
  2312. barrier();
  2313. cons = *bnapi->hw_tx_cons_ptr;
  2314. barrier();
  2315. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2316. cons++;
  2317. return cons;
  2318. }
  2319. static int
  2320. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2321. {
  2322. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2323. u16 hw_cons, sw_cons, sw_ring_cons;
  2324. int tx_pkt = 0, index;
  2325. struct netdev_queue *txq;
  2326. index = (bnapi - bp->bnx2_napi);
  2327. txq = netdev_get_tx_queue(bp->dev, index);
  2328. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2329. sw_cons = txr->tx_cons;
  2330. while (sw_cons != hw_cons) {
  2331. struct sw_tx_bd *tx_buf;
  2332. struct sk_buff *skb;
  2333. int i, last;
  2334. sw_ring_cons = TX_RING_IDX(sw_cons);
  2335. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2336. skb = tx_buf->skb;
  2337. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2338. prefetch(&skb->end);
  2339. /* partial BD completions possible with TSO packets */
  2340. if (tx_buf->is_gso) {
  2341. u16 last_idx, last_ring_idx;
  2342. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2343. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2344. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2345. last_idx++;
  2346. }
  2347. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2348. break;
  2349. }
  2350. }
  2351. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  2352. tx_buf->skb = NULL;
  2353. last = tx_buf->nr_frags;
  2354. for (i = 0; i < last; i++) {
  2355. sw_cons = NEXT_TX_BD(sw_cons);
  2356. }
  2357. sw_cons = NEXT_TX_BD(sw_cons);
  2358. dev_kfree_skb(skb);
  2359. tx_pkt++;
  2360. if (tx_pkt == budget)
  2361. break;
  2362. if (hw_cons == sw_cons)
  2363. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2364. }
  2365. txr->hw_tx_cons = hw_cons;
  2366. txr->tx_cons = sw_cons;
  2367. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2368. * before checking for netif_tx_queue_stopped(). Without the
  2369. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2370. * will miss it and cause the queue to be stopped forever.
  2371. */
  2372. smp_mb();
  2373. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2374. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2375. __netif_tx_lock(txq, smp_processor_id());
  2376. if ((netif_tx_queue_stopped(txq)) &&
  2377. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2378. netif_tx_wake_queue(txq);
  2379. __netif_tx_unlock(txq);
  2380. }
  2381. return tx_pkt;
  2382. }
  2383. static void
  2384. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2385. struct sk_buff *skb, int count)
  2386. {
  2387. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2388. struct rx_bd *cons_bd, *prod_bd;
  2389. int i;
  2390. u16 hw_prod, prod;
  2391. u16 cons = rxr->rx_pg_cons;
  2392. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2393. /* The caller was unable to allocate a new page to replace the
  2394. * last one in the frags array, so we need to recycle that page
  2395. * and then free the skb.
  2396. */
  2397. if (skb) {
  2398. struct page *page;
  2399. struct skb_shared_info *shinfo;
  2400. shinfo = skb_shinfo(skb);
  2401. shinfo->nr_frags--;
  2402. page = shinfo->frags[shinfo->nr_frags].page;
  2403. shinfo->frags[shinfo->nr_frags].page = NULL;
  2404. cons_rx_pg->page = page;
  2405. dev_kfree_skb(skb);
  2406. }
  2407. hw_prod = rxr->rx_pg_prod;
  2408. for (i = 0; i < count; i++) {
  2409. prod = RX_PG_RING_IDX(hw_prod);
  2410. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2411. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2412. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2413. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2414. if (prod != cons) {
  2415. prod_rx_pg->page = cons_rx_pg->page;
  2416. cons_rx_pg->page = NULL;
  2417. pci_unmap_addr_set(prod_rx_pg, mapping,
  2418. pci_unmap_addr(cons_rx_pg, mapping));
  2419. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2420. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2421. }
  2422. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2423. hw_prod = NEXT_RX_BD(hw_prod);
  2424. }
  2425. rxr->rx_pg_prod = hw_prod;
  2426. rxr->rx_pg_cons = cons;
  2427. }
  2428. static inline void
  2429. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2430. struct sk_buff *skb, u16 cons, u16 prod)
  2431. {
  2432. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2433. struct rx_bd *cons_bd, *prod_bd;
  2434. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2435. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2436. pci_dma_sync_single_for_device(bp->pdev,
  2437. pci_unmap_addr(cons_rx_buf, mapping),
  2438. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2439. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2440. prod_rx_buf->skb = skb;
  2441. if (cons == prod)
  2442. return;
  2443. pci_unmap_addr_set(prod_rx_buf, mapping,
  2444. pci_unmap_addr(cons_rx_buf, mapping));
  2445. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2446. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2447. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2448. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2449. }
  2450. static int
  2451. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2452. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2453. u32 ring_idx)
  2454. {
  2455. int err;
  2456. u16 prod = ring_idx & 0xffff;
  2457. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2458. if (unlikely(err)) {
  2459. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2460. if (hdr_len) {
  2461. unsigned int raw_len = len + 4;
  2462. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2463. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2464. }
  2465. return err;
  2466. }
  2467. skb_reserve(skb, BNX2_RX_OFFSET);
  2468. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2469. PCI_DMA_FROMDEVICE);
  2470. if (hdr_len == 0) {
  2471. skb_put(skb, len);
  2472. return 0;
  2473. } else {
  2474. unsigned int i, frag_len, frag_size, pages;
  2475. struct sw_pg *rx_pg;
  2476. u16 pg_cons = rxr->rx_pg_cons;
  2477. u16 pg_prod = rxr->rx_pg_prod;
  2478. frag_size = len + 4 - hdr_len;
  2479. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2480. skb_put(skb, hdr_len);
  2481. for (i = 0; i < pages; i++) {
  2482. dma_addr_t mapping_old;
  2483. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2484. if (unlikely(frag_len <= 4)) {
  2485. unsigned int tail = 4 - frag_len;
  2486. rxr->rx_pg_cons = pg_cons;
  2487. rxr->rx_pg_prod = pg_prod;
  2488. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2489. pages - i);
  2490. skb->len -= tail;
  2491. if (i == 0) {
  2492. skb->tail -= tail;
  2493. } else {
  2494. skb_frag_t *frag =
  2495. &skb_shinfo(skb)->frags[i - 1];
  2496. frag->size -= tail;
  2497. skb->data_len -= tail;
  2498. skb->truesize -= tail;
  2499. }
  2500. return 0;
  2501. }
  2502. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2503. /* Don't unmap yet. If we're unable to allocate a new
  2504. * page, we need to recycle the page and the DMA addr.
  2505. */
  2506. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2507. if (i == pages - 1)
  2508. frag_len -= 4;
  2509. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2510. rx_pg->page = NULL;
  2511. err = bnx2_alloc_rx_page(bp, rxr,
  2512. RX_PG_RING_IDX(pg_prod));
  2513. if (unlikely(err)) {
  2514. rxr->rx_pg_cons = pg_cons;
  2515. rxr->rx_pg_prod = pg_prod;
  2516. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2517. pages - i);
  2518. return err;
  2519. }
  2520. pci_unmap_page(bp->pdev, mapping_old,
  2521. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2522. frag_size -= frag_len;
  2523. skb->data_len += frag_len;
  2524. skb->truesize += frag_len;
  2525. skb->len += frag_len;
  2526. pg_prod = NEXT_RX_BD(pg_prod);
  2527. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2528. }
  2529. rxr->rx_pg_prod = pg_prod;
  2530. rxr->rx_pg_cons = pg_cons;
  2531. }
  2532. return 0;
  2533. }
  2534. static inline u16
  2535. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2536. {
  2537. u16 cons;
  2538. /* Tell compiler that status block fields can change. */
  2539. barrier();
  2540. cons = *bnapi->hw_rx_cons_ptr;
  2541. barrier();
  2542. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2543. cons++;
  2544. return cons;
  2545. }
  2546. static int
  2547. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2548. {
  2549. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2550. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2551. struct l2_fhdr *rx_hdr;
  2552. int rx_pkt = 0, pg_ring_used = 0;
  2553. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2554. sw_cons = rxr->rx_cons;
  2555. sw_prod = rxr->rx_prod;
  2556. /* Memory barrier necessary as speculative reads of the rx
  2557. * buffer can be ahead of the index in the status block
  2558. */
  2559. rmb();
  2560. while (sw_cons != hw_cons) {
  2561. unsigned int len, hdr_len;
  2562. u32 status;
  2563. struct sw_bd *rx_buf;
  2564. struct sk_buff *skb;
  2565. dma_addr_t dma_addr;
  2566. u16 vtag = 0;
  2567. int hw_vlan __maybe_unused = 0;
  2568. sw_ring_cons = RX_RING_IDX(sw_cons);
  2569. sw_ring_prod = RX_RING_IDX(sw_prod);
  2570. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2571. skb = rx_buf->skb;
  2572. rx_buf->skb = NULL;
  2573. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2574. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2575. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2576. PCI_DMA_FROMDEVICE);
  2577. rx_hdr = (struct l2_fhdr *) skb->data;
  2578. len = rx_hdr->l2_fhdr_pkt_len;
  2579. status = rx_hdr->l2_fhdr_status;
  2580. hdr_len = 0;
  2581. if (status & L2_FHDR_STATUS_SPLIT) {
  2582. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2583. pg_ring_used = 1;
  2584. } else if (len > bp->rx_jumbo_thresh) {
  2585. hdr_len = bp->rx_jumbo_thresh;
  2586. pg_ring_used = 1;
  2587. }
  2588. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2589. L2_FHDR_ERRORS_PHY_DECODE |
  2590. L2_FHDR_ERRORS_ALIGNMENT |
  2591. L2_FHDR_ERRORS_TOO_SHORT |
  2592. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2593. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2594. sw_ring_prod);
  2595. if (pg_ring_used) {
  2596. int pages;
  2597. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2598. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2599. }
  2600. goto next_rx;
  2601. }
  2602. len -= 4;
  2603. if (len <= bp->rx_copy_thresh) {
  2604. struct sk_buff *new_skb;
  2605. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2606. if (new_skb == NULL) {
  2607. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2608. sw_ring_prod);
  2609. goto next_rx;
  2610. }
  2611. /* aligned copy */
  2612. skb_copy_from_linear_data_offset(skb,
  2613. BNX2_RX_OFFSET - 6,
  2614. new_skb->data, len + 6);
  2615. skb_reserve(new_skb, 6);
  2616. skb_put(new_skb, len);
  2617. bnx2_reuse_rx_skb(bp, rxr, skb,
  2618. sw_ring_cons, sw_ring_prod);
  2619. skb = new_skb;
  2620. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2621. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2622. goto next_rx;
  2623. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2624. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2625. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2626. #ifdef BCM_VLAN
  2627. if (bp->vlgrp)
  2628. hw_vlan = 1;
  2629. else
  2630. #endif
  2631. {
  2632. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2633. __skb_push(skb, 4);
  2634. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2635. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2636. ve->h_vlan_TCI = htons(vtag);
  2637. len += 4;
  2638. }
  2639. }
  2640. skb->protocol = eth_type_trans(skb, bp->dev);
  2641. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2642. (ntohs(skb->protocol) != 0x8100)) {
  2643. dev_kfree_skb(skb);
  2644. goto next_rx;
  2645. }
  2646. skb->ip_summed = CHECKSUM_NONE;
  2647. if (bp->rx_csum &&
  2648. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2649. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2650. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2651. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2652. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2653. }
  2654. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2655. #ifdef BCM_VLAN
  2656. if (hw_vlan)
  2657. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2658. else
  2659. #endif
  2660. netif_receive_skb(skb);
  2661. rx_pkt++;
  2662. next_rx:
  2663. sw_cons = NEXT_RX_BD(sw_cons);
  2664. sw_prod = NEXT_RX_BD(sw_prod);
  2665. if ((rx_pkt == budget))
  2666. break;
  2667. /* Refresh hw_cons to see if there is new work */
  2668. if (sw_cons == hw_cons) {
  2669. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2670. rmb();
  2671. }
  2672. }
  2673. rxr->rx_cons = sw_cons;
  2674. rxr->rx_prod = sw_prod;
  2675. if (pg_ring_used)
  2676. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2677. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2678. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2679. mmiowb();
  2680. return rx_pkt;
  2681. }
  2682. /* MSI ISR - The only difference between this and the INTx ISR
  2683. * is that the MSI interrupt is always serviced.
  2684. */
  2685. static irqreturn_t
  2686. bnx2_msi(int irq, void *dev_instance)
  2687. {
  2688. struct bnx2_napi *bnapi = dev_instance;
  2689. struct bnx2 *bp = bnapi->bp;
  2690. prefetch(bnapi->status_blk.msi);
  2691. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2692. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2693. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2694. /* Return here if interrupt is disabled. */
  2695. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2696. return IRQ_HANDLED;
  2697. napi_schedule(&bnapi->napi);
  2698. return IRQ_HANDLED;
  2699. }
  2700. static irqreturn_t
  2701. bnx2_msi_1shot(int irq, void *dev_instance)
  2702. {
  2703. struct bnx2_napi *bnapi = dev_instance;
  2704. struct bnx2 *bp = bnapi->bp;
  2705. prefetch(bnapi->status_blk.msi);
  2706. /* Return here if interrupt is disabled. */
  2707. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2708. return IRQ_HANDLED;
  2709. napi_schedule(&bnapi->napi);
  2710. return IRQ_HANDLED;
  2711. }
  2712. static irqreturn_t
  2713. bnx2_interrupt(int irq, void *dev_instance)
  2714. {
  2715. struct bnx2_napi *bnapi = dev_instance;
  2716. struct bnx2 *bp = bnapi->bp;
  2717. struct status_block *sblk = bnapi->status_blk.msi;
  2718. /* When using INTx, it is possible for the interrupt to arrive
  2719. * at the CPU before the status block posted prior to the
  2720. * interrupt. Reading a register will flush the status block.
  2721. * When using MSI, the MSI message will always complete after
  2722. * the status block write.
  2723. */
  2724. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2725. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2726. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2727. return IRQ_NONE;
  2728. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2729. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2730. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2731. /* Read back to deassert IRQ immediately to avoid too many
  2732. * spurious interrupts.
  2733. */
  2734. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2735. /* Return here if interrupt is shared and is disabled. */
  2736. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2737. return IRQ_HANDLED;
  2738. if (napi_schedule_prep(&bnapi->napi)) {
  2739. bnapi->last_status_idx = sblk->status_idx;
  2740. __napi_schedule(&bnapi->napi);
  2741. }
  2742. return IRQ_HANDLED;
  2743. }
  2744. static inline int
  2745. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2746. {
  2747. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2748. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2749. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2750. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2751. return 1;
  2752. return 0;
  2753. }
  2754. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2755. STATUS_ATTN_BITS_TIMER_ABORT)
  2756. static inline int
  2757. bnx2_has_work(struct bnx2_napi *bnapi)
  2758. {
  2759. struct status_block *sblk = bnapi->status_blk.msi;
  2760. if (bnx2_has_fast_work(bnapi))
  2761. return 1;
  2762. #ifdef BCM_CNIC
  2763. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2764. return 1;
  2765. #endif
  2766. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2767. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2768. return 1;
  2769. return 0;
  2770. }
  2771. static void
  2772. bnx2_chk_missed_msi(struct bnx2 *bp)
  2773. {
  2774. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2775. u32 msi_ctrl;
  2776. if (bnx2_has_work(bnapi)) {
  2777. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2778. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2779. return;
  2780. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2781. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2782. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2783. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2784. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2785. }
  2786. }
  2787. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2788. }
  2789. #ifdef BCM_CNIC
  2790. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2791. {
  2792. struct cnic_ops *c_ops;
  2793. if (!bnapi->cnic_present)
  2794. return;
  2795. rcu_read_lock();
  2796. c_ops = rcu_dereference(bp->cnic_ops);
  2797. if (c_ops)
  2798. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2799. bnapi->status_blk.msi);
  2800. rcu_read_unlock();
  2801. }
  2802. #endif
  2803. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2804. {
  2805. struct status_block *sblk = bnapi->status_blk.msi;
  2806. u32 status_attn_bits = sblk->status_attn_bits;
  2807. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2808. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2809. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2810. bnx2_phy_int(bp, bnapi);
  2811. /* This is needed to take care of transient status
  2812. * during link changes.
  2813. */
  2814. REG_WR(bp, BNX2_HC_COMMAND,
  2815. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2816. REG_RD(bp, BNX2_HC_COMMAND);
  2817. }
  2818. }
  2819. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2820. int work_done, int budget)
  2821. {
  2822. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2823. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2824. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2825. bnx2_tx_int(bp, bnapi, 0);
  2826. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2827. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2828. return work_done;
  2829. }
  2830. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2831. {
  2832. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2833. struct bnx2 *bp = bnapi->bp;
  2834. int work_done = 0;
  2835. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2836. while (1) {
  2837. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2838. if (unlikely(work_done >= budget))
  2839. break;
  2840. bnapi->last_status_idx = sblk->status_idx;
  2841. /* status idx must be read before checking for more work. */
  2842. rmb();
  2843. if (likely(!bnx2_has_fast_work(bnapi))) {
  2844. napi_complete(napi);
  2845. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2846. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2847. bnapi->last_status_idx);
  2848. break;
  2849. }
  2850. }
  2851. return work_done;
  2852. }
  2853. static int bnx2_poll(struct napi_struct *napi, int budget)
  2854. {
  2855. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2856. struct bnx2 *bp = bnapi->bp;
  2857. int work_done = 0;
  2858. struct status_block *sblk = bnapi->status_blk.msi;
  2859. while (1) {
  2860. bnx2_poll_link(bp, bnapi);
  2861. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2862. #ifdef BCM_CNIC
  2863. bnx2_poll_cnic(bp, bnapi);
  2864. #endif
  2865. /* bnapi->last_status_idx is used below to tell the hw how
  2866. * much work has been processed, so we must read it before
  2867. * checking for more work.
  2868. */
  2869. bnapi->last_status_idx = sblk->status_idx;
  2870. if (unlikely(work_done >= budget))
  2871. break;
  2872. rmb();
  2873. if (likely(!bnx2_has_work(bnapi))) {
  2874. napi_complete(napi);
  2875. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2876. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2877. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2878. bnapi->last_status_idx);
  2879. break;
  2880. }
  2881. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2882. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2883. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2884. bnapi->last_status_idx);
  2885. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2886. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2887. bnapi->last_status_idx);
  2888. break;
  2889. }
  2890. }
  2891. return work_done;
  2892. }
  2893. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2894. * from set_multicast.
  2895. */
  2896. static void
  2897. bnx2_set_rx_mode(struct net_device *dev)
  2898. {
  2899. struct bnx2 *bp = netdev_priv(dev);
  2900. u32 rx_mode, sort_mode;
  2901. struct netdev_hw_addr *ha;
  2902. int i;
  2903. if (!netif_running(dev))
  2904. return;
  2905. spin_lock_bh(&bp->phy_lock);
  2906. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2907. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2908. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2909. #ifdef BCM_VLAN
  2910. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2911. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2912. #else
  2913. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2914. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2915. #endif
  2916. if (dev->flags & IFF_PROMISC) {
  2917. /* Promiscuous mode. */
  2918. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2919. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2920. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2921. }
  2922. else if (dev->flags & IFF_ALLMULTI) {
  2923. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2924. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2925. 0xffffffff);
  2926. }
  2927. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2928. }
  2929. else {
  2930. /* Accept one or more multicast(s). */
  2931. struct dev_mc_list *mclist;
  2932. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2933. u32 regidx;
  2934. u32 bit;
  2935. u32 crc;
  2936. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2937. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2938. i++, mclist = mclist->next) {
  2939. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2940. bit = crc & 0xff;
  2941. regidx = (bit & 0xe0) >> 5;
  2942. bit &= 0x1f;
  2943. mc_filter[regidx] |= (1 << bit);
  2944. }
  2945. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2946. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2947. mc_filter[i]);
  2948. }
  2949. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2950. }
  2951. if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
  2952. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2953. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2954. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2955. } else if (!(dev->flags & IFF_PROMISC)) {
  2956. /* Add all entries into to the match filter list */
  2957. i = 0;
  2958. list_for_each_entry(ha, &dev->uc.list, list) {
  2959. bnx2_set_mac_addr(bp, ha->addr,
  2960. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2961. sort_mode |= (1 <<
  2962. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2963. i++;
  2964. }
  2965. }
  2966. if (rx_mode != bp->rx_mode) {
  2967. bp->rx_mode = rx_mode;
  2968. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2969. }
  2970. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2971. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2972. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2973. spin_unlock_bh(&bp->phy_lock);
  2974. }
  2975. static int __devinit
  2976. check_fw_section(const struct firmware *fw,
  2977. const struct bnx2_fw_file_section *section,
  2978. u32 alignment, bool non_empty)
  2979. {
  2980. u32 offset = be32_to_cpu(section->offset);
  2981. u32 len = be32_to_cpu(section->len);
  2982. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2983. return -EINVAL;
  2984. if ((non_empty && len == 0) || len > fw->size - offset ||
  2985. len & (alignment - 1))
  2986. return -EINVAL;
  2987. return 0;
  2988. }
  2989. static int __devinit
  2990. check_mips_fw_entry(const struct firmware *fw,
  2991. const struct bnx2_mips_fw_file_entry *entry)
  2992. {
  2993. if (check_fw_section(fw, &entry->text, 4, true) ||
  2994. check_fw_section(fw, &entry->data, 4, false) ||
  2995. check_fw_section(fw, &entry->rodata, 4, false))
  2996. return -EINVAL;
  2997. return 0;
  2998. }
  2999. static int __devinit
  3000. bnx2_request_firmware(struct bnx2 *bp)
  3001. {
  3002. const char *mips_fw_file, *rv2p_fw_file;
  3003. const struct bnx2_mips_fw_file *mips_fw;
  3004. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3005. int rc;
  3006. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3007. mips_fw_file = FW_MIPS_FILE_09;
  3008. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3009. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3010. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3011. else
  3012. rv2p_fw_file = FW_RV2P_FILE_09;
  3013. } else {
  3014. mips_fw_file = FW_MIPS_FILE_06;
  3015. rv2p_fw_file = FW_RV2P_FILE_06;
  3016. }
  3017. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3018. if (rc) {
  3019. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3020. mips_fw_file);
  3021. return rc;
  3022. }
  3023. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3024. if (rc) {
  3025. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3026. rv2p_fw_file);
  3027. return rc;
  3028. }
  3029. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3030. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3031. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3032. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3033. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3034. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3035. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3036. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3037. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3038. mips_fw_file);
  3039. return -EINVAL;
  3040. }
  3041. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3042. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3043. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3044. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3045. rv2p_fw_file);
  3046. return -EINVAL;
  3047. }
  3048. return 0;
  3049. }
  3050. static u32
  3051. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3052. {
  3053. switch (idx) {
  3054. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3055. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3056. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3057. break;
  3058. }
  3059. return rv2p_code;
  3060. }
  3061. static int
  3062. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3063. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3064. {
  3065. u32 rv2p_code_len, file_offset;
  3066. __be32 *rv2p_code;
  3067. int i;
  3068. u32 val, cmd, addr;
  3069. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3070. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3071. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3072. if (rv2p_proc == RV2P_PROC1) {
  3073. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3074. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3075. } else {
  3076. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3077. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3078. }
  3079. for (i = 0; i < rv2p_code_len; i += 8) {
  3080. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3081. rv2p_code++;
  3082. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3083. rv2p_code++;
  3084. val = (i / 8) | cmd;
  3085. REG_WR(bp, addr, val);
  3086. }
  3087. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3088. for (i = 0; i < 8; i++) {
  3089. u32 loc, code;
  3090. loc = be32_to_cpu(fw_entry->fixup[i]);
  3091. if (loc && ((loc * 4) < rv2p_code_len)) {
  3092. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3093. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3094. code = be32_to_cpu(*(rv2p_code + loc));
  3095. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3096. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3097. val = (loc / 2) | cmd;
  3098. REG_WR(bp, addr, val);
  3099. }
  3100. }
  3101. /* Reset the processor, un-stall is done later. */
  3102. if (rv2p_proc == RV2P_PROC1) {
  3103. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3104. }
  3105. else {
  3106. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3107. }
  3108. return 0;
  3109. }
  3110. static int
  3111. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3112. const struct bnx2_mips_fw_file_entry *fw_entry)
  3113. {
  3114. u32 addr, len, file_offset;
  3115. __be32 *data;
  3116. u32 offset;
  3117. u32 val;
  3118. /* Halt the CPU. */
  3119. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3120. val |= cpu_reg->mode_value_halt;
  3121. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3122. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3123. /* Load the Text area. */
  3124. addr = be32_to_cpu(fw_entry->text.addr);
  3125. len = be32_to_cpu(fw_entry->text.len);
  3126. file_offset = be32_to_cpu(fw_entry->text.offset);
  3127. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3128. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3129. if (len) {
  3130. int j;
  3131. for (j = 0; j < (len / 4); j++, offset += 4)
  3132. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3133. }
  3134. /* Load the Data area. */
  3135. addr = be32_to_cpu(fw_entry->data.addr);
  3136. len = be32_to_cpu(fw_entry->data.len);
  3137. file_offset = be32_to_cpu(fw_entry->data.offset);
  3138. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3139. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3140. if (len) {
  3141. int j;
  3142. for (j = 0; j < (len / 4); j++, offset += 4)
  3143. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3144. }
  3145. /* Load the Read-Only area. */
  3146. addr = be32_to_cpu(fw_entry->rodata.addr);
  3147. len = be32_to_cpu(fw_entry->rodata.len);
  3148. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3149. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3150. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3151. if (len) {
  3152. int j;
  3153. for (j = 0; j < (len / 4); j++, offset += 4)
  3154. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3155. }
  3156. /* Clear the pre-fetch instruction. */
  3157. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3158. val = be32_to_cpu(fw_entry->start_addr);
  3159. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3160. /* Start the CPU. */
  3161. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3162. val &= ~cpu_reg->mode_value_halt;
  3163. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3164. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3165. return 0;
  3166. }
  3167. static int
  3168. bnx2_init_cpus(struct bnx2 *bp)
  3169. {
  3170. const struct bnx2_mips_fw_file *mips_fw =
  3171. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3172. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3173. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3174. int rc;
  3175. /* Initialize the RV2P processor. */
  3176. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3177. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3178. /* Initialize the RX Processor. */
  3179. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3180. if (rc)
  3181. goto init_cpu_err;
  3182. /* Initialize the TX Processor. */
  3183. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3184. if (rc)
  3185. goto init_cpu_err;
  3186. /* Initialize the TX Patch-up Processor. */
  3187. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3188. if (rc)
  3189. goto init_cpu_err;
  3190. /* Initialize the Completion Processor. */
  3191. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3192. if (rc)
  3193. goto init_cpu_err;
  3194. /* Initialize the Command Processor. */
  3195. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3196. init_cpu_err:
  3197. return rc;
  3198. }
  3199. static int
  3200. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3201. {
  3202. u16 pmcsr;
  3203. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3204. switch (state) {
  3205. case PCI_D0: {
  3206. u32 val;
  3207. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3208. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3209. PCI_PM_CTRL_PME_STATUS);
  3210. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3211. /* delay required during transition out of D3hot */
  3212. msleep(20);
  3213. val = REG_RD(bp, BNX2_EMAC_MODE);
  3214. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3215. val &= ~BNX2_EMAC_MODE_MPKT;
  3216. REG_WR(bp, BNX2_EMAC_MODE, val);
  3217. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3218. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3219. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3220. break;
  3221. }
  3222. case PCI_D3hot: {
  3223. int i;
  3224. u32 val, wol_msg;
  3225. if (bp->wol) {
  3226. u32 advertising;
  3227. u8 autoneg;
  3228. autoneg = bp->autoneg;
  3229. advertising = bp->advertising;
  3230. if (bp->phy_port == PORT_TP) {
  3231. bp->autoneg = AUTONEG_SPEED;
  3232. bp->advertising = ADVERTISED_10baseT_Half |
  3233. ADVERTISED_10baseT_Full |
  3234. ADVERTISED_100baseT_Half |
  3235. ADVERTISED_100baseT_Full |
  3236. ADVERTISED_Autoneg;
  3237. }
  3238. spin_lock_bh(&bp->phy_lock);
  3239. bnx2_setup_phy(bp, bp->phy_port);
  3240. spin_unlock_bh(&bp->phy_lock);
  3241. bp->autoneg = autoneg;
  3242. bp->advertising = advertising;
  3243. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3244. val = REG_RD(bp, BNX2_EMAC_MODE);
  3245. /* Enable port mode. */
  3246. val &= ~BNX2_EMAC_MODE_PORT;
  3247. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3248. BNX2_EMAC_MODE_ACPI_RCVD |
  3249. BNX2_EMAC_MODE_MPKT;
  3250. if (bp->phy_port == PORT_TP)
  3251. val |= BNX2_EMAC_MODE_PORT_MII;
  3252. else {
  3253. val |= BNX2_EMAC_MODE_PORT_GMII;
  3254. if (bp->line_speed == SPEED_2500)
  3255. val |= BNX2_EMAC_MODE_25G_MODE;
  3256. }
  3257. REG_WR(bp, BNX2_EMAC_MODE, val);
  3258. /* receive all multicast */
  3259. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3260. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3261. 0xffffffff);
  3262. }
  3263. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3264. BNX2_EMAC_RX_MODE_SORT_MODE);
  3265. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3266. BNX2_RPM_SORT_USER0_MC_EN;
  3267. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3268. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3269. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3270. BNX2_RPM_SORT_USER0_ENA);
  3271. /* Need to enable EMAC and RPM for WOL. */
  3272. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3273. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3274. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3275. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3276. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3277. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3278. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3279. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3280. }
  3281. else {
  3282. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3283. }
  3284. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3285. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3286. 1, 0);
  3287. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3288. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3289. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3290. if (bp->wol)
  3291. pmcsr |= 3;
  3292. }
  3293. else {
  3294. pmcsr |= 3;
  3295. }
  3296. if (bp->wol) {
  3297. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3298. }
  3299. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3300. pmcsr);
  3301. /* No more memory access after this point until
  3302. * device is brought back to D0.
  3303. */
  3304. udelay(50);
  3305. break;
  3306. }
  3307. default:
  3308. return -EINVAL;
  3309. }
  3310. return 0;
  3311. }
  3312. static int
  3313. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3314. {
  3315. u32 val;
  3316. int j;
  3317. /* Request access to the flash interface. */
  3318. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3319. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3320. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3321. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3322. break;
  3323. udelay(5);
  3324. }
  3325. if (j >= NVRAM_TIMEOUT_COUNT)
  3326. return -EBUSY;
  3327. return 0;
  3328. }
  3329. static int
  3330. bnx2_release_nvram_lock(struct bnx2 *bp)
  3331. {
  3332. int j;
  3333. u32 val;
  3334. /* Relinquish nvram interface. */
  3335. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3336. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3337. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3338. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3339. break;
  3340. udelay(5);
  3341. }
  3342. if (j >= NVRAM_TIMEOUT_COUNT)
  3343. return -EBUSY;
  3344. return 0;
  3345. }
  3346. static int
  3347. bnx2_enable_nvram_write(struct bnx2 *bp)
  3348. {
  3349. u32 val;
  3350. val = REG_RD(bp, BNX2_MISC_CFG);
  3351. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3352. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3353. int j;
  3354. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3355. REG_WR(bp, BNX2_NVM_COMMAND,
  3356. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3357. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3358. udelay(5);
  3359. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3360. if (val & BNX2_NVM_COMMAND_DONE)
  3361. break;
  3362. }
  3363. if (j >= NVRAM_TIMEOUT_COUNT)
  3364. return -EBUSY;
  3365. }
  3366. return 0;
  3367. }
  3368. static void
  3369. bnx2_disable_nvram_write(struct bnx2 *bp)
  3370. {
  3371. u32 val;
  3372. val = REG_RD(bp, BNX2_MISC_CFG);
  3373. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3374. }
  3375. static void
  3376. bnx2_enable_nvram_access(struct bnx2 *bp)
  3377. {
  3378. u32 val;
  3379. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3380. /* Enable both bits, even on read. */
  3381. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3382. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3383. }
  3384. static void
  3385. bnx2_disable_nvram_access(struct bnx2 *bp)
  3386. {
  3387. u32 val;
  3388. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3389. /* Disable both bits, even after read. */
  3390. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3391. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3392. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3393. }
  3394. static int
  3395. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3396. {
  3397. u32 cmd;
  3398. int j;
  3399. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3400. /* Buffered flash, no erase needed */
  3401. return 0;
  3402. /* Build an erase command */
  3403. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3404. BNX2_NVM_COMMAND_DOIT;
  3405. /* Need to clear DONE bit separately. */
  3406. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3407. /* Address of the NVRAM to read from. */
  3408. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3409. /* Issue an erase command. */
  3410. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3411. /* Wait for completion. */
  3412. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3413. u32 val;
  3414. udelay(5);
  3415. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3416. if (val & BNX2_NVM_COMMAND_DONE)
  3417. break;
  3418. }
  3419. if (j >= NVRAM_TIMEOUT_COUNT)
  3420. return -EBUSY;
  3421. return 0;
  3422. }
  3423. static int
  3424. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3425. {
  3426. u32 cmd;
  3427. int j;
  3428. /* Build the command word. */
  3429. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3430. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3431. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3432. offset = ((offset / bp->flash_info->page_size) <<
  3433. bp->flash_info->page_bits) +
  3434. (offset % bp->flash_info->page_size);
  3435. }
  3436. /* Need to clear DONE bit separately. */
  3437. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3438. /* Address of the NVRAM to read from. */
  3439. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3440. /* Issue a read command. */
  3441. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3442. /* Wait for completion. */
  3443. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3444. u32 val;
  3445. udelay(5);
  3446. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3447. if (val & BNX2_NVM_COMMAND_DONE) {
  3448. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3449. memcpy(ret_val, &v, 4);
  3450. break;
  3451. }
  3452. }
  3453. if (j >= NVRAM_TIMEOUT_COUNT)
  3454. return -EBUSY;
  3455. return 0;
  3456. }
  3457. static int
  3458. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3459. {
  3460. u32 cmd;
  3461. __be32 val32;
  3462. int j;
  3463. /* Build the command word. */
  3464. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3465. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3466. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3467. offset = ((offset / bp->flash_info->page_size) <<
  3468. bp->flash_info->page_bits) +
  3469. (offset % bp->flash_info->page_size);
  3470. }
  3471. /* Need to clear DONE bit separately. */
  3472. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3473. memcpy(&val32, val, 4);
  3474. /* Write the data. */
  3475. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3476. /* Address of the NVRAM to write to. */
  3477. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3478. /* Issue the write command. */
  3479. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3480. /* Wait for completion. */
  3481. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3482. udelay(5);
  3483. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3484. break;
  3485. }
  3486. if (j >= NVRAM_TIMEOUT_COUNT)
  3487. return -EBUSY;
  3488. return 0;
  3489. }
  3490. static int
  3491. bnx2_init_nvram(struct bnx2 *bp)
  3492. {
  3493. u32 val;
  3494. int j, entry_count, rc = 0;
  3495. const struct flash_spec *flash;
  3496. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3497. bp->flash_info = &flash_5709;
  3498. goto get_flash_size;
  3499. }
  3500. /* Determine the selected interface. */
  3501. val = REG_RD(bp, BNX2_NVM_CFG1);
  3502. entry_count = ARRAY_SIZE(flash_table);
  3503. if (val & 0x40000000) {
  3504. /* Flash interface has been reconfigured */
  3505. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3506. j++, flash++) {
  3507. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3508. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3509. bp->flash_info = flash;
  3510. break;
  3511. }
  3512. }
  3513. }
  3514. else {
  3515. u32 mask;
  3516. /* Not yet been reconfigured */
  3517. if (val & (1 << 23))
  3518. mask = FLASH_BACKUP_STRAP_MASK;
  3519. else
  3520. mask = FLASH_STRAP_MASK;
  3521. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3522. j++, flash++) {
  3523. if ((val & mask) == (flash->strapping & mask)) {
  3524. bp->flash_info = flash;
  3525. /* Request access to the flash interface. */
  3526. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3527. return rc;
  3528. /* Enable access to flash interface */
  3529. bnx2_enable_nvram_access(bp);
  3530. /* Reconfigure the flash interface */
  3531. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3532. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3533. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3534. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3535. /* Disable access to flash interface */
  3536. bnx2_disable_nvram_access(bp);
  3537. bnx2_release_nvram_lock(bp);
  3538. break;
  3539. }
  3540. }
  3541. } /* if (val & 0x40000000) */
  3542. if (j == entry_count) {
  3543. bp->flash_info = NULL;
  3544. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3545. return -ENODEV;
  3546. }
  3547. get_flash_size:
  3548. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3549. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3550. if (val)
  3551. bp->flash_size = val;
  3552. else
  3553. bp->flash_size = bp->flash_info->total_size;
  3554. return rc;
  3555. }
  3556. static int
  3557. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3558. int buf_size)
  3559. {
  3560. int rc = 0;
  3561. u32 cmd_flags, offset32, len32, extra;
  3562. if (buf_size == 0)
  3563. return 0;
  3564. /* Request access to the flash interface. */
  3565. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3566. return rc;
  3567. /* Enable access to flash interface */
  3568. bnx2_enable_nvram_access(bp);
  3569. len32 = buf_size;
  3570. offset32 = offset;
  3571. extra = 0;
  3572. cmd_flags = 0;
  3573. if (offset32 & 3) {
  3574. u8 buf[4];
  3575. u32 pre_len;
  3576. offset32 &= ~3;
  3577. pre_len = 4 - (offset & 3);
  3578. if (pre_len >= len32) {
  3579. pre_len = len32;
  3580. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3581. BNX2_NVM_COMMAND_LAST;
  3582. }
  3583. else {
  3584. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3585. }
  3586. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3587. if (rc)
  3588. return rc;
  3589. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3590. offset32 += 4;
  3591. ret_buf += pre_len;
  3592. len32 -= pre_len;
  3593. }
  3594. if (len32 & 3) {
  3595. extra = 4 - (len32 & 3);
  3596. len32 = (len32 + 4) & ~3;
  3597. }
  3598. if (len32 == 4) {
  3599. u8 buf[4];
  3600. if (cmd_flags)
  3601. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3602. else
  3603. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3604. BNX2_NVM_COMMAND_LAST;
  3605. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3606. memcpy(ret_buf, buf, 4 - extra);
  3607. }
  3608. else if (len32 > 0) {
  3609. u8 buf[4];
  3610. /* Read the first word. */
  3611. if (cmd_flags)
  3612. cmd_flags = 0;
  3613. else
  3614. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3615. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3616. /* Advance to the next dword. */
  3617. offset32 += 4;
  3618. ret_buf += 4;
  3619. len32 -= 4;
  3620. while (len32 > 4 && rc == 0) {
  3621. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3622. /* Advance to the next dword. */
  3623. offset32 += 4;
  3624. ret_buf += 4;
  3625. len32 -= 4;
  3626. }
  3627. if (rc)
  3628. return rc;
  3629. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3630. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3631. memcpy(ret_buf, buf, 4 - extra);
  3632. }
  3633. /* Disable access to flash interface */
  3634. bnx2_disable_nvram_access(bp);
  3635. bnx2_release_nvram_lock(bp);
  3636. return rc;
  3637. }
  3638. static int
  3639. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3640. int buf_size)
  3641. {
  3642. u32 written, offset32, len32;
  3643. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3644. int rc = 0;
  3645. int align_start, align_end;
  3646. buf = data_buf;
  3647. offset32 = offset;
  3648. len32 = buf_size;
  3649. align_start = align_end = 0;
  3650. if ((align_start = (offset32 & 3))) {
  3651. offset32 &= ~3;
  3652. len32 += align_start;
  3653. if (len32 < 4)
  3654. len32 = 4;
  3655. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3656. return rc;
  3657. }
  3658. if (len32 & 3) {
  3659. align_end = 4 - (len32 & 3);
  3660. len32 += align_end;
  3661. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3662. return rc;
  3663. }
  3664. if (align_start || align_end) {
  3665. align_buf = kmalloc(len32, GFP_KERNEL);
  3666. if (align_buf == NULL)
  3667. return -ENOMEM;
  3668. if (align_start) {
  3669. memcpy(align_buf, start, 4);
  3670. }
  3671. if (align_end) {
  3672. memcpy(align_buf + len32 - 4, end, 4);
  3673. }
  3674. memcpy(align_buf + align_start, data_buf, buf_size);
  3675. buf = align_buf;
  3676. }
  3677. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3678. flash_buffer = kmalloc(264, GFP_KERNEL);
  3679. if (flash_buffer == NULL) {
  3680. rc = -ENOMEM;
  3681. goto nvram_write_end;
  3682. }
  3683. }
  3684. written = 0;
  3685. while ((written < len32) && (rc == 0)) {
  3686. u32 page_start, page_end, data_start, data_end;
  3687. u32 addr, cmd_flags;
  3688. int i;
  3689. /* Find the page_start addr */
  3690. page_start = offset32 + written;
  3691. page_start -= (page_start % bp->flash_info->page_size);
  3692. /* Find the page_end addr */
  3693. page_end = page_start + bp->flash_info->page_size;
  3694. /* Find the data_start addr */
  3695. data_start = (written == 0) ? offset32 : page_start;
  3696. /* Find the data_end addr */
  3697. data_end = (page_end > offset32 + len32) ?
  3698. (offset32 + len32) : page_end;
  3699. /* Request access to the flash interface. */
  3700. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3701. goto nvram_write_end;
  3702. /* Enable access to flash interface */
  3703. bnx2_enable_nvram_access(bp);
  3704. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3705. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3706. int j;
  3707. /* Read the whole page into the buffer
  3708. * (non-buffer flash only) */
  3709. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3710. if (j == (bp->flash_info->page_size - 4)) {
  3711. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3712. }
  3713. rc = bnx2_nvram_read_dword(bp,
  3714. page_start + j,
  3715. &flash_buffer[j],
  3716. cmd_flags);
  3717. if (rc)
  3718. goto nvram_write_end;
  3719. cmd_flags = 0;
  3720. }
  3721. }
  3722. /* Enable writes to flash interface (unlock write-protect) */
  3723. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3724. goto nvram_write_end;
  3725. /* Loop to write back the buffer data from page_start to
  3726. * data_start */
  3727. i = 0;
  3728. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3729. /* Erase the page */
  3730. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3731. goto nvram_write_end;
  3732. /* Re-enable the write again for the actual write */
  3733. bnx2_enable_nvram_write(bp);
  3734. for (addr = page_start; addr < data_start;
  3735. addr += 4, i += 4) {
  3736. rc = bnx2_nvram_write_dword(bp, addr,
  3737. &flash_buffer[i], cmd_flags);
  3738. if (rc != 0)
  3739. goto nvram_write_end;
  3740. cmd_flags = 0;
  3741. }
  3742. }
  3743. /* Loop to write the new data from data_start to data_end */
  3744. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3745. if ((addr == page_end - 4) ||
  3746. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3747. (addr == data_end - 4))) {
  3748. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3749. }
  3750. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3751. cmd_flags);
  3752. if (rc != 0)
  3753. goto nvram_write_end;
  3754. cmd_flags = 0;
  3755. buf += 4;
  3756. }
  3757. /* Loop to write back the buffer data from data_end
  3758. * to page_end */
  3759. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3760. for (addr = data_end; addr < page_end;
  3761. addr += 4, i += 4) {
  3762. if (addr == page_end-4) {
  3763. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3764. }
  3765. rc = bnx2_nvram_write_dword(bp, addr,
  3766. &flash_buffer[i], cmd_flags);
  3767. if (rc != 0)
  3768. goto nvram_write_end;
  3769. cmd_flags = 0;
  3770. }
  3771. }
  3772. /* Disable writes to flash interface (lock write-protect) */
  3773. bnx2_disable_nvram_write(bp);
  3774. /* Disable access to flash interface */
  3775. bnx2_disable_nvram_access(bp);
  3776. bnx2_release_nvram_lock(bp);
  3777. /* Increment written */
  3778. written += data_end - data_start;
  3779. }
  3780. nvram_write_end:
  3781. kfree(flash_buffer);
  3782. kfree(align_buf);
  3783. return rc;
  3784. }
  3785. static void
  3786. bnx2_init_fw_cap(struct bnx2 *bp)
  3787. {
  3788. u32 val, sig = 0;
  3789. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3790. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3791. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3792. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3793. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3794. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3795. return;
  3796. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3797. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3798. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3799. }
  3800. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3801. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3802. u32 link;
  3803. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3804. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3805. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3806. bp->phy_port = PORT_FIBRE;
  3807. else
  3808. bp->phy_port = PORT_TP;
  3809. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3810. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3811. }
  3812. if (netif_running(bp->dev) && sig)
  3813. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3814. }
  3815. static void
  3816. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3817. {
  3818. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3819. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3820. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3821. }
  3822. static int
  3823. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3824. {
  3825. u32 val;
  3826. int i, rc = 0;
  3827. u8 old_port;
  3828. /* Wait for the current PCI transaction to complete before
  3829. * issuing a reset. */
  3830. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3831. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3832. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3833. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3834. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3835. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3836. udelay(5);
  3837. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3838. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3839. /* Deposit a driver reset signature so the firmware knows that
  3840. * this is a soft reset. */
  3841. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3842. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3843. /* Do a dummy read to force the chip to complete all current transaction
  3844. * before we issue a reset. */
  3845. val = REG_RD(bp, BNX2_MISC_ID);
  3846. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3847. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3848. REG_RD(bp, BNX2_MISC_COMMAND);
  3849. udelay(5);
  3850. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3851. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3852. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3853. } else {
  3854. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3855. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3856. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3857. /* Chip reset. */
  3858. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3859. /* Reading back any register after chip reset will hang the
  3860. * bus on 5706 A0 and A1. The msleep below provides plenty
  3861. * of margin for write posting.
  3862. */
  3863. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3864. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3865. msleep(20);
  3866. /* Reset takes approximate 30 usec */
  3867. for (i = 0; i < 10; i++) {
  3868. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3869. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3870. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3871. break;
  3872. udelay(10);
  3873. }
  3874. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3875. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3876. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3877. return -EBUSY;
  3878. }
  3879. }
  3880. /* Make sure byte swapping is properly configured. */
  3881. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3882. if (val != 0x01020304) {
  3883. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3884. return -ENODEV;
  3885. }
  3886. /* Wait for the firmware to finish its initialization. */
  3887. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3888. if (rc)
  3889. return rc;
  3890. spin_lock_bh(&bp->phy_lock);
  3891. old_port = bp->phy_port;
  3892. bnx2_init_fw_cap(bp);
  3893. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3894. old_port != bp->phy_port)
  3895. bnx2_set_default_remote_link(bp);
  3896. spin_unlock_bh(&bp->phy_lock);
  3897. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3898. /* Adjust the voltage regular to two steps lower. The default
  3899. * of this register is 0x0000000e. */
  3900. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3901. /* Remove bad rbuf memory from the free pool. */
  3902. rc = bnx2_alloc_bad_rbuf(bp);
  3903. }
  3904. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3905. bnx2_setup_msix_tbl(bp);
  3906. return rc;
  3907. }
  3908. static int
  3909. bnx2_init_chip(struct bnx2 *bp)
  3910. {
  3911. u32 val, mtu;
  3912. int rc, i;
  3913. /* Make sure the interrupt is not active. */
  3914. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3915. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3916. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3917. #ifdef __BIG_ENDIAN
  3918. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3919. #endif
  3920. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3921. DMA_READ_CHANS << 12 |
  3922. DMA_WRITE_CHANS << 16;
  3923. val |= (0x2 << 20) | (1 << 11);
  3924. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3925. val |= (1 << 23);
  3926. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3927. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3928. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3929. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3930. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3931. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3932. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3933. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3934. }
  3935. if (bp->flags & BNX2_FLAG_PCIX) {
  3936. u16 val16;
  3937. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3938. &val16);
  3939. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3940. val16 & ~PCI_X_CMD_ERO);
  3941. }
  3942. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3943. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3944. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3945. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3946. /* Initialize context mapping and zero out the quick contexts. The
  3947. * context block must have already been enabled. */
  3948. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3949. rc = bnx2_init_5709_context(bp);
  3950. if (rc)
  3951. return rc;
  3952. } else
  3953. bnx2_init_context(bp);
  3954. if ((rc = bnx2_init_cpus(bp)) != 0)
  3955. return rc;
  3956. bnx2_init_nvram(bp);
  3957. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3958. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3959. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3960. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3961. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3962. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3963. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3964. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3965. }
  3966. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3967. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3968. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3969. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3970. val = (BCM_PAGE_BITS - 8) << 24;
  3971. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3972. /* Configure page size. */
  3973. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3974. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3975. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3976. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3977. val = bp->mac_addr[0] +
  3978. (bp->mac_addr[1] << 8) +
  3979. (bp->mac_addr[2] << 16) +
  3980. bp->mac_addr[3] +
  3981. (bp->mac_addr[4] << 8) +
  3982. (bp->mac_addr[5] << 16);
  3983. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3984. /* Program the MTU. Also include 4 bytes for CRC32. */
  3985. mtu = bp->dev->mtu;
  3986. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3987. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3988. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3989. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3990. if (mtu < 1500)
  3991. mtu = 1500;
  3992. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3993. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3994. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3995. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  3996. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  3997. bp->bnx2_napi[i].last_status_idx = 0;
  3998. bp->idle_chk_status_idx = 0xffff;
  3999. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4000. /* Set up how to generate a link change interrupt. */
  4001. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4002. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4003. (u64) bp->status_blk_mapping & 0xffffffff);
  4004. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4005. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4006. (u64) bp->stats_blk_mapping & 0xffffffff);
  4007. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4008. (u64) bp->stats_blk_mapping >> 32);
  4009. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4010. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4011. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4012. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4013. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4014. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4015. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4016. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4017. REG_WR(bp, BNX2_HC_COM_TICKS,
  4018. (bp->com_ticks_int << 16) | bp->com_ticks);
  4019. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4020. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4021. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4022. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4023. else
  4024. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4025. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4026. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4027. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4028. else {
  4029. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4030. BNX2_HC_CONFIG_COLLECT_STATS;
  4031. }
  4032. if (bp->irq_nvecs > 1) {
  4033. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4034. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4035. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4036. }
  4037. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4038. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4039. REG_WR(bp, BNX2_HC_CONFIG, val);
  4040. for (i = 1; i < bp->irq_nvecs; i++) {
  4041. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4042. BNX2_HC_SB_CONFIG_1;
  4043. REG_WR(bp, base,
  4044. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4045. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4046. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4047. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4048. (bp->tx_quick_cons_trip_int << 16) |
  4049. bp->tx_quick_cons_trip);
  4050. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4051. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4052. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4053. (bp->rx_quick_cons_trip_int << 16) |
  4054. bp->rx_quick_cons_trip);
  4055. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4056. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4057. }
  4058. /* Clear internal stats counters. */
  4059. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4060. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4061. /* Initialize the receive filter. */
  4062. bnx2_set_rx_mode(bp->dev);
  4063. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4064. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4065. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4066. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4067. }
  4068. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4069. 1, 0);
  4070. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4071. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4072. udelay(20);
  4073. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4074. return rc;
  4075. }
  4076. static void
  4077. bnx2_clear_ring_states(struct bnx2 *bp)
  4078. {
  4079. struct bnx2_napi *bnapi;
  4080. struct bnx2_tx_ring_info *txr;
  4081. struct bnx2_rx_ring_info *rxr;
  4082. int i;
  4083. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4084. bnapi = &bp->bnx2_napi[i];
  4085. txr = &bnapi->tx_ring;
  4086. rxr = &bnapi->rx_ring;
  4087. txr->tx_cons = 0;
  4088. txr->hw_tx_cons = 0;
  4089. rxr->rx_prod_bseq = 0;
  4090. rxr->rx_prod = 0;
  4091. rxr->rx_cons = 0;
  4092. rxr->rx_pg_prod = 0;
  4093. rxr->rx_pg_cons = 0;
  4094. }
  4095. }
  4096. static void
  4097. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4098. {
  4099. u32 val, offset0, offset1, offset2, offset3;
  4100. u32 cid_addr = GET_CID_ADDR(cid);
  4101. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4102. offset0 = BNX2_L2CTX_TYPE_XI;
  4103. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4104. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4105. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4106. } else {
  4107. offset0 = BNX2_L2CTX_TYPE;
  4108. offset1 = BNX2_L2CTX_CMD_TYPE;
  4109. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4110. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4111. }
  4112. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4113. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4114. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4115. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4116. val = (u64) txr->tx_desc_mapping >> 32;
  4117. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4118. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4119. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4120. }
  4121. static void
  4122. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4123. {
  4124. struct tx_bd *txbd;
  4125. u32 cid = TX_CID;
  4126. struct bnx2_napi *bnapi;
  4127. struct bnx2_tx_ring_info *txr;
  4128. bnapi = &bp->bnx2_napi[ring_num];
  4129. txr = &bnapi->tx_ring;
  4130. if (ring_num == 0)
  4131. cid = TX_CID;
  4132. else
  4133. cid = TX_TSS_CID + ring_num - 1;
  4134. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4135. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4136. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4137. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4138. txr->tx_prod = 0;
  4139. txr->tx_prod_bseq = 0;
  4140. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4141. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4142. bnx2_init_tx_context(bp, cid, txr);
  4143. }
  4144. static void
  4145. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4146. int num_rings)
  4147. {
  4148. int i;
  4149. struct rx_bd *rxbd;
  4150. for (i = 0; i < num_rings; i++) {
  4151. int j;
  4152. rxbd = &rx_ring[i][0];
  4153. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4154. rxbd->rx_bd_len = buf_size;
  4155. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4156. }
  4157. if (i == (num_rings - 1))
  4158. j = 0;
  4159. else
  4160. j = i + 1;
  4161. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4162. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4163. }
  4164. }
  4165. static void
  4166. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4167. {
  4168. int i;
  4169. u16 prod, ring_prod;
  4170. u32 cid, rx_cid_addr, val;
  4171. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4172. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4173. if (ring_num == 0)
  4174. cid = RX_CID;
  4175. else
  4176. cid = RX_RSS_CID + ring_num - 1;
  4177. rx_cid_addr = GET_CID_ADDR(cid);
  4178. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4179. bp->rx_buf_use_size, bp->rx_max_ring);
  4180. bnx2_init_rx_context(bp, cid);
  4181. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4182. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4183. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4184. }
  4185. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4186. if (bp->rx_pg_ring_size) {
  4187. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4188. rxr->rx_pg_desc_mapping,
  4189. PAGE_SIZE, bp->rx_max_pg_ring);
  4190. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4191. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4192. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4193. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4194. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4195. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4196. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4197. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4198. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4199. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4200. }
  4201. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4202. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4203. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4204. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4205. ring_prod = prod = rxr->rx_pg_prod;
  4206. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4207. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
  4208. break;
  4209. prod = NEXT_RX_BD(prod);
  4210. ring_prod = RX_PG_RING_IDX(prod);
  4211. }
  4212. rxr->rx_pg_prod = prod;
  4213. ring_prod = prod = rxr->rx_prod;
  4214. for (i = 0; i < bp->rx_ring_size; i++) {
  4215. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
  4216. break;
  4217. prod = NEXT_RX_BD(prod);
  4218. ring_prod = RX_RING_IDX(prod);
  4219. }
  4220. rxr->rx_prod = prod;
  4221. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4222. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4223. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4224. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4225. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4226. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4227. }
  4228. static void
  4229. bnx2_init_all_rings(struct bnx2 *bp)
  4230. {
  4231. int i;
  4232. u32 val;
  4233. bnx2_clear_ring_states(bp);
  4234. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4235. for (i = 0; i < bp->num_tx_rings; i++)
  4236. bnx2_init_tx_ring(bp, i);
  4237. if (bp->num_tx_rings > 1)
  4238. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4239. (TX_TSS_CID << 7));
  4240. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4241. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4242. for (i = 0; i < bp->num_rx_rings; i++)
  4243. bnx2_init_rx_ring(bp, i);
  4244. if (bp->num_rx_rings > 1) {
  4245. u32 tbl_32;
  4246. u8 *tbl = (u8 *) &tbl_32;
  4247. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4248. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4249. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4250. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4251. if ((i % 4) == 3)
  4252. bnx2_reg_wr_ind(bp,
  4253. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4254. cpu_to_be32(tbl_32));
  4255. }
  4256. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4257. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4258. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4259. }
  4260. }
  4261. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4262. {
  4263. u32 max, num_rings = 1;
  4264. while (ring_size > MAX_RX_DESC_CNT) {
  4265. ring_size -= MAX_RX_DESC_CNT;
  4266. num_rings++;
  4267. }
  4268. /* round to next power of 2 */
  4269. max = max_size;
  4270. while ((max & num_rings) == 0)
  4271. max >>= 1;
  4272. if (num_rings != max)
  4273. max <<= 1;
  4274. return max;
  4275. }
  4276. static void
  4277. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4278. {
  4279. u32 rx_size, rx_space, jumbo_size;
  4280. /* 8 for CRC and VLAN */
  4281. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4282. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4283. sizeof(struct skb_shared_info);
  4284. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4285. bp->rx_pg_ring_size = 0;
  4286. bp->rx_max_pg_ring = 0;
  4287. bp->rx_max_pg_ring_idx = 0;
  4288. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4289. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4290. jumbo_size = size * pages;
  4291. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4292. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4293. bp->rx_pg_ring_size = jumbo_size;
  4294. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4295. MAX_RX_PG_RINGS);
  4296. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4297. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4298. bp->rx_copy_thresh = 0;
  4299. }
  4300. bp->rx_buf_use_size = rx_size;
  4301. /* hw alignment */
  4302. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4303. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4304. bp->rx_ring_size = size;
  4305. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4306. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4307. }
  4308. static void
  4309. bnx2_free_tx_skbs(struct bnx2 *bp)
  4310. {
  4311. int i;
  4312. for (i = 0; i < bp->num_tx_rings; i++) {
  4313. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4314. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4315. int j;
  4316. if (txr->tx_buf_ring == NULL)
  4317. continue;
  4318. for (j = 0; j < TX_DESC_CNT; ) {
  4319. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4320. struct sk_buff *skb = tx_buf->skb;
  4321. if (skb == NULL) {
  4322. j++;
  4323. continue;
  4324. }
  4325. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4326. tx_buf->skb = NULL;
  4327. j += skb_shinfo(skb)->nr_frags + 1;
  4328. dev_kfree_skb(skb);
  4329. }
  4330. }
  4331. }
  4332. static void
  4333. bnx2_free_rx_skbs(struct bnx2 *bp)
  4334. {
  4335. int i;
  4336. for (i = 0; i < bp->num_rx_rings; i++) {
  4337. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4338. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4339. int j;
  4340. if (rxr->rx_buf_ring == NULL)
  4341. return;
  4342. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4343. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4344. struct sk_buff *skb = rx_buf->skb;
  4345. if (skb == NULL)
  4346. continue;
  4347. pci_unmap_single(bp->pdev,
  4348. pci_unmap_addr(rx_buf, mapping),
  4349. bp->rx_buf_use_size,
  4350. PCI_DMA_FROMDEVICE);
  4351. rx_buf->skb = NULL;
  4352. dev_kfree_skb(skb);
  4353. }
  4354. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4355. bnx2_free_rx_page(bp, rxr, j);
  4356. }
  4357. }
  4358. static void
  4359. bnx2_free_skbs(struct bnx2 *bp)
  4360. {
  4361. bnx2_free_tx_skbs(bp);
  4362. bnx2_free_rx_skbs(bp);
  4363. }
  4364. static int
  4365. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4366. {
  4367. int rc;
  4368. rc = bnx2_reset_chip(bp, reset_code);
  4369. bnx2_free_skbs(bp);
  4370. if (rc)
  4371. return rc;
  4372. if ((rc = bnx2_init_chip(bp)) != 0)
  4373. return rc;
  4374. bnx2_init_all_rings(bp);
  4375. return 0;
  4376. }
  4377. static int
  4378. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4379. {
  4380. int rc;
  4381. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4382. return rc;
  4383. spin_lock_bh(&bp->phy_lock);
  4384. bnx2_init_phy(bp, reset_phy);
  4385. bnx2_set_link(bp);
  4386. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4387. bnx2_remote_phy_event(bp);
  4388. spin_unlock_bh(&bp->phy_lock);
  4389. return 0;
  4390. }
  4391. static int
  4392. bnx2_shutdown_chip(struct bnx2 *bp)
  4393. {
  4394. u32 reset_code;
  4395. if (bp->flags & BNX2_FLAG_NO_WOL)
  4396. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4397. else if (bp->wol)
  4398. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4399. else
  4400. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4401. return bnx2_reset_chip(bp, reset_code);
  4402. }
  4403. static int
  4404. bnx2_test_registers(struct bnx2 *bp)
  4405. {
  4406. int ret;
  4407. int i, is_5709;
  4408. static const struct {
  4409. u16 offset;
  4410. u16 flags;
  4411. #define BNX2_FL_NOT_5709 1
  4412. u32 rw_mask;
  4413. u32 ro_mask;
  4414. } reg_tbl[] = {
  4415. { 0x006c, 0, 0x00000000, 0x0000003f },
  4416. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4417. { 0x0094, 0, 0x00000000, 0x00000000 },
  4418. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4419. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4420. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4421. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4422. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4423. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4424. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4425. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4426. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4427. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4428. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4429. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4430. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4431. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4432. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4433. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4434. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4435. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4436. { 0x1000, 0, 0x00000000, 0x00000001 },
  4437. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4438. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4439. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4440. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4441. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4442. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4443. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4444. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4445. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4446. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4447. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4448. { 0x1800, 0, 0x00000000, 0x00000001 },
  4449. { 0x1804, 0, 0x00000000, 0x00000003 },
  4450. { 0x2800, 0, 0x00000000, 0x00000001 },
  4451. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4452. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4453. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4454. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4455. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4456. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4457. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4458. { 0x2840, 0, 0x00000000, 0xffffffff },
  4459. { 0x2844, 0, 0x00000000, 0xffffffff },
  4460. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4461. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4462. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4463. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4464. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4465. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4466. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4467. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4468. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4469. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4470. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4471. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4472. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4473. { 0x5004, 0, 0x00000000, 0x0000007f },
  4474. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4475. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4476. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4477. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4478. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4479. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4480. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4481. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4482. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4483. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4484. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4485. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4486. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4487. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4488. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4489. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4490. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4491. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4492. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4493. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4494. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4495. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4496. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4497. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4498. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4499. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4500. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4501. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4502. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4503. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4504. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4505. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4506. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4507. { 0xffff, 0, 0x00000000, 0x00000000 },
  4508. };
  4509. ret = 0;
  4510. is_5709 = 0;
  4511. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4512. is_5709 = 1;
  4513. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4514. u32 offset, rw_mask, ro_mask, save_val, val;
  4515. u16 flags = reg_tbl[i].flags;
  4516. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4517. continue;
  4518. offset = (u32) reg_tbl[i].offset;
  4519. rw_mask = reg_tbl[i].rw_mask;
  4520. ro_mask = reg_tbl[i].ro_mask;
  4521. save_val = readl(bp->regview + offset);
  4522. writel(0, bp->regview + offset);
  4523. val = readl(bp->regview + offset);
  4524. if ((val & rw_mask) != 0) {
  4525. goto reg_test_err;
  4526. }
  4527. if ((val & ro_mask) != (save_val & ro_mask)) {
  4528. goto reg_test_err;
  4529. }
  4530. writel(0xffffffff, bp->regview + offset);
  4531. val = readl(bp->regview + offset);
  4532. if ((val & rw_mask) != rw_mask) {
  4533. goto reg_test_err;
  4534. }
  4535. if ((val & ro_mask) != (save_val & ro_mask)) {
  4536. goto reg_test_err;
  4537. }
  4538. writel(save_val, bp->regview + offset);
  4539. continue;
  4540. reg_test_err:
  4541. writel(save_val, bp->regview + offset);
  4542. ret = -ENODEV;
  4543. break;
  4544. }
  4545. return ret;
  4546. }
  4547. static int
  4548. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4549. {
  4550. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4551. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4552. int i;
  4553. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4554. u32 offset;
  4555. for (offset = 0; offset < size; offset += 4) {
  4556. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4557. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4558. test_pattern[i]) {
  4559. return -ENODEV;
  4560. }
  4561. }
  4562. }
  4563. return 0;
  4564. }
  4565. static int
  4566. bnx2_test_memory(struct bnx2 *bp)
  4567. {
  4568. int ret = 0;
  4569. int i;
  4570. static struct mem_entry {
  4571. u32 offset;
  4572. u32 len;
  4573. } mem_tbl_5706[] = {
  4574. { 0x60000, 0x4000 },
  4575. { 0xa0000, 0x3000 },
  4576. { 0xe0000, 0x4000 },
  4577. { 0x120000, 0x4000 },
  4578. { 0x1a0000, 0x4000 },
  4579. { 0x160000, 0x4000 },
  4580. { 0xffffffff, 0 },
  4581. },
  4582. mem_tbl_5709[] = {
  4583. { 0x60000, 0x4000 },
  4584. { 0xa0000, 0x3000 },
  4585. { 0xe0000, 0x4000 },
  4586. { 0x120000, 0x4000 },
  4587. { 0x1a0000, 0x4000 },
  4588. { 0xffffffff, 0 },
  4589. };
  4590. struct mem_entry *mem_tbl;
  4591. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4592. mem_tbl = mem_tbl_5709;
  4593. else
  4594. mem_tbl = mem_tbl_5706;
  4595. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4596. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4597. mem_tbl[i].len)) != 0) {
  4598. return ret;
  4599. }
  4600. }
  4601. return ret;
  4602. }
  4603. #define BNX2_MAC_LOOPBACK 0
  4604. #define BNX2_PHY_LOOPBACK 1
  4605. static int
  4606. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4607. {
  4608. unsigned int pkt_size, num_pkts, i;
  4609. struct sk_buff *skb, *rx_skb;
  4610. unsigned char *packet;
  4611. u16 rx_start_idx, rx_idx;
  4612. dma_addr_t map;
  4613. struct tx_bd *txbd;
  4614. struct sw_bd *rx_buf;
  4615. struct l2_fhdr *rx_hdr;
  4616. int ret = -ENODEV;
  4617. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4618. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4619. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4620. tx_napi = bnapi;
  4621. txr = &tx_napi->tx_ring;
  4622. rxr = &bnapi->rx_ring;
  4623. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4624. bp->loopback = MAC_LOOPBACK;
  4625. bnx2_set_mac_loopback(bp);
  4626. }
  4627. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4628. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4629. return 0;
  4630. bp->loopback = PHY_LOOPBACK;
  4631. bnx2_set_phy_loopback(bp);
  4632. }
  4633. else
  4634. return -EINVAL;
  4635. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4636. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4637. if (!skb)
  4638. return -ENOMEM;
  4639. packet = skb_put(skb, pkt_size);
  4640. memcpy(packet, bp->dev->dev_addr, 6);
  4641. memset(packet + 6, 0x0, 8);
  4642. for (i = 14; i < pkt_size; i++)
  4643. packet[i] = (unsigned char) (i & 0xff);
  4644. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  4645. dev_kfree_skb(skb);
  4646. return -EIO;
  4647. }
  4648. map = skb_shinfo(skb)->dma_head;
  4649. REG_WR(bp, BNX2_HC_COMMAND,
  4650. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4651. REG_RD(bp, BNX2_HC_COMMAND);
  4652. udelay(5);
  4653. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4654. num_pkts = 0;
  4655. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4656. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4657. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4658. txbd->tx_bd_mss_nbytes = pkt_size;
  4659. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4660. num_pkts++;
  4661. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4662. txr->tx_prod_bseq += pkt_size;
  4663. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4664. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4665. udelay(100);
  4666. REG_WR(bp, BNX2_HC_COMMAND,
  4667. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4668. REG_RD(bp, BNX2_HC_COMMAND);
  4669. udelay(5);
  4670. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4671. dev_kfree_skb(skb);
  4672. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4673. goto loopback_test_done;
  4674. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4675. if (rx_idx != rx_start_idx + num_pkts) {
  4676. goto loopback_test_done;
  4677. }
  4678. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4679. rx_skb = rx_buf->skb;
  4680. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4681. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4682. pci_dma_sync_single_for_cpu(bp->pdev,
  4683. pci_unmap_addr(rx_buf, mapping),
  4684. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4685. if (rx_hdr->l2_fhdr_status &
  4686. (L2_FHDR_ERRORS_BAD_CRC |
  4687. L2_FHDR_ERRORS_PHY_DECODE |
  4688. L2_FHDR_ERRORS_ALIGNMENT |
  4689. L2_FHDR_ERRORS_TOO_SHORT |
  4690. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4691. goto loopback_test_done;
  4692. }
  4693. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4694. goto loopback_test_done;
  4695. }
  4696. for (i = 14; i < pkt_size; i++) {
  4697. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4698. goto loopback_test_done;
  4699. }
  4700. }
  4701. ret = 0;
  4702. loopback_test_done:
  4703. bp->loopback = 0;
  4704. return ret;
  4705. }
  4706. #define BNX2_MAC_LOOPBACK_FAILED 1
  4707. #define BNX2_PHY_LOOPBACK_FAILED 2
  4708. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4709. BNX2_PHY_LOOPBACK_FAILED)
  4710. static int
  4711. bnx2_test_loopback(struct bnx2 *bp)
  4712. {
  4713. int rc = 0;
  4714. if (!netif_running(bp->dev))
  4715. return BNX2_LOOPBACK_FAILED;
  4716. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4717. spin_lock_bh(&bp->phy_lock);
  4718. bnx2_init_phy(bp, 1);
  4719. spin_unlock_bh(&bp->phy_lock);
  4720. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4721. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4722. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4723. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4724. return rc;
  4725. }
  4726. #define NVRAM_SIZE 0x200
  4727. #define CRC32_RESIDUAL 0xdebb20e3
  4728. static int
  4729. bnx2_test_nvram(struct bnx2 *bp)
  4730. {
  4731. __be32 buf[NVRAM_SIZE / 4];
  4732. u8 *data = (u8 *) buf;
  4733. int rc = 0;
  4734. u32 magic, csum;
  4735. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4736. goto test_nvram_done;
  4737. magic = be32_to_cpu(buf[0]);
  4738. if (magic != 0x669955aa) {
  4739. rc = -ENODEV;
  4740. goto test_nvram_done;
  4741. }
  4742. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4743. goto test_nvram_done;
  4744. csum = ether_crc_le(0x100, data);
  4745. if (csum != CRC32_RESIDUAL) {
  4746. rc = -ENODEV;
  4747. goto test_nvram_done;
  4748. }
  4749. csum = ether_crc_le(0x100, data + 0x100);
  4750. if (csum != CRC32_RESIDUAL) {
  4751. rc = -ENODEV;
  4752. }
  4753. test_nvram_done:
  4754. return rc;
  4755. }
  4756. static int
  4757. bnx2_test_link(struct bnx2 *bp)
  4758. {
  4759. u32 bmsr;
  4760. if (!netif_running(bp->dev))
  4761. return -ENODEV;
  4762. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4763. if (bp->link_up)
  4764. return 0;
  4765. return -ENODEV;
  4766. }
  4767. spin_lock_bh(&bp->phy_lock);
  4768. bnx2_enable_bmsr1(bp);
  4769. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4770. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4771. bnx2_disable_bmsr1(bp);
  4772. spin_unlock_bh(&bp->phy_lock);
  4773. if (bmsr & BMSR_LSTATUS) {
  4774. return 0;
  4775. }
  4776. return -ENODEV;
  4777. }
  4778. static int
  4779. bnx2_test_intr(struct bnx2 *bp)
  4780. {
  4781. int i;
  4782. u16 status_idx;
  4783. if (!netif_running(bp->dev))
  4784. return -ENODEV;
  4785. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4786. /* This register is not touched during run-time. */
  4787. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4788. REG_RD(bp, BNX2_HC_COMMAND);
  4789. for (i = 0; i < 10; i++) {
  4790. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4791. status_idx) {
  4792. break;
  4793. }
  4794. msleep_interruptible(10);
  4795. }
  4796. if (i < 10)
  4797. return 0;
  4798. return -ENODEV;
  4799. }
  4800. /* Determining link for parallel detection. */
  4801. static int
  4802. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4803. {
  4804. u32 mode_ctl, an_dbg, exp;
  4805. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4806. return 0;
  4807. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4808. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4809. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4810. return 0;
  4811. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4812. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4813. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4814. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4815. return 0;
  4816. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4817. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4818. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4819. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4820. return 0;
  4821. return 1;
  4822. }
  4823. static void
  4824. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4825. {
  4826. int check_link = 1;
  4827. spin_lock(&bp->phy_lock);
  4828. if (bp->serdes_an_pending) {
  4829. bp->serdes_an_pending--;
  4830. check_link = 0;
  4831. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4832. u32 bmcr;
  4833. bp->current_interval = BNX2_TIMER_INTERVAL;
  4834. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4835. if (bmcr & BMCR_ANENABLE) {
  4836. if (bnx2_5706_serdes_has_link(bp)) {
  4837. bmcr &= ~BMCR_ANENABLE;
  4838. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4839. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4840. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4841. }
  4842. }
  4843. }
  4844. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4845. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4846. u32 phy2;
  4847. bnx2_write_phy(bp, 0x17, 0x0f01);
  4848. bnx2_read_phy(bp, 0x15, &phy2);
  4849. if (phy2 & 0x20) {
  4850. u32 bmcr;
  4851. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4852. bmcr |= BMCR_ANENABLE;
  4853. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4854. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4855. }
  4856. } else
  4857. bp->current_interval = BNX2_TIMER_INTERVAL;
  4858. if (check_link) {
  4859. u32 val;
  4860. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4861. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4862. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4863. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4864. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4865. bnx2_5706s_force_link_dn(bp, 1);
  4866. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4867. } else
  4868. bnx2_set_link(bp);
  4869. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4870. bnx2_set_link(bp);
  4871. }
  4872. spin_unlock(&bp->phy_lock);
  4873. }
  4874. static void
  4875. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4876. {
  4877. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4878. return;
  4879. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4880. bp->serdes_an_pending = 0;
  4881. return;
  4882. }
  4883. spin_lock(&bp->phy_lock);
  4884. if (bp->serdes_an_pending)
  4885. bp->serdes_an_pending--;
  4886. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4887. u32 bmcr;
  4888. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4889. if (bmcr & BMCR_ANENABLE) {
  4890. bnx2_enable_forced_2g5(bp);
  4891. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4892. } else {
  4893. bnx2_disable_forced_2g5(bp);
  4894. bp->serdes_an_pending = 2;
  4895. bp->current_interval = BNX2_TIMER_INTERVAL;
  4896. }
  4897. } else
  4898. bp->current_interval = BNX2_TIMER_INTERVAL;
  4899. spin_unlock(&bp->phy_lock);
  4900. }
  4901. static void
  4902. bnx2_timer(unsigned long data)
  4903. {
  4904. struct bnx2 *bp = (struct bnx2 *) data;
  4905. if (!netif_running(bp->dev))
  4906. return;
  4907. if (atomic_read(&bp->intr_sem) != 0)
  4908. goto bnx2_restart_timer;
  4909. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4910. BNX2_FLAG_USING_MSI)
  4911. bnx2_chk_missed_msi(bp);
  4912. bnx2_send_heart_beat(bp);
  4913. bp->stats_blk->stat_FwRxDrop =
  4914. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4915. /* workaround occasional corrupted counters */
  4916. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4917. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4918. BNX2_HC_COMMAND_STATS_NOW);
  4919. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4920. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4921. bnx2_5706_serdes_timer(bp);
  4922. else
  4923. bnx2_5708_serdes_timer(bp);
  4924. }
  4925. bnx2_restart_timer:
  4926. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4927. }
  4928. static int
  4929. bnx2_request_irq(struct bnx2 *bp)
  4930. {
  4931. unsigned long flags;
  4932. struct bnx2_irq *irq;
  4933. int rc = 0, i;
  4934. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4935. flags = 0;
  4936. else
  4937. flags = IRQF_SHARED;
  4938. for (i = 0; i < bp->irq_nvecs; i++) {
  4939. irq = &bp->irq_tbl[i];
  4940. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4941. &bp->bnx2_napi[i]);
  4942. if (rc)
  4943. break;
  4944. irq->requested = 1;
  4945. }
  4946. return rc;
  4947. }
  4948. static void
  4949. bnx2_free_irq(struct bnx2 *bp)
  4950. {
  4951. struct bnx2_irq *irq;
  4952. int i;
  4953. for (i = 0; i < bp->irq_nvecs; i++) {
  4954. irq = &bp->irq_tbl[i];
  4955. if (irq->requested)
  4956. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4957. irq->requested = 0;
  4958. }
  4959. if (bp->flags & BNX2_FLAG_USING_MSI)
  4960. pci_disable_msi(bp->pdev);
  4961. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4962. pci_disable_msix(bp->pdev);
  4963. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4964. }
  4965. static void
  4966. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4967. {
  4968. int i, rc;
  4969. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4970. struct net_device *dev = bp->dev;
  4971. const int len = sizeof(bp->irq_tbl[0].name);
  4972. bnx2_setup_msix_tbl(bp);
  4973. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4974. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4975. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4976. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4977. msix_ent[i].entry = i;
  4978. msix_ent[i].vector = 0;
  4979. }
  4980. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4981. if (rc != 0)
  4982. return;
  4983. bp->irq_nvecs = msix_vecs;
  4984. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4985. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4986. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4987. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  4988. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  4989. }
  4990. }
  4991. static void
  4992. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4993. {
  4994. int cpus = num_online_cpus();
  4995. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  4996. bp->irq_tbl[0].handler = bnx2_interrupt;
  4997. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  4998. bp->irq_nvecs = 1;
  4999. bp->irq_tbl[0].vector = bp->pdev->irq;
  5000. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  5001. bnx2_enable_msix(bp, msix_vecs);
  5002. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5003. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5004. if (pci_enable_msi(bp->pdev) == 0) {
  5005. bp->flags |= BNX2_FLAG_USING_MSI;
  5006. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5007. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5008. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5009. } else
  5010. bp->irq_tbl[0].handler = bnx2_msi;
  5011. bp->irq_tbl[0].vector = bp->pdev->irq;
  5012. }
  5013. }
  5014. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5015. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5016. bp->num_rx_rings = bp->irq_nvecs;
  5017. }
  5018. /* Called with rtnl_lock */
  5019. static int
  5020. bnx2_open(struct net_device *dev)
  5021. {
  5022. struct bnx2 *bp = netdev_priv(dev);
  5023. int rc;
  5024. netif_carrier_off(dev);
  5025. bnx2_set_power_state(bp, PCI_D0);
  5026. bnx2_disable_int(bp);
  5027. bnx2_setup_int_mode(bp, disable_msi);
  5028. bnx2_napi_enable(bp);
  5029. rc = bnx2_alloc_mem(bp);
  5030. if (rc)
  5031. goto open_err;
  5032. rc = bnx2_request_irq(bp);
  5033. if (rc)
  5034. goto open_err;
  5035. rc = bnx2_init_nic(bp, 1);
  5036. if (rc)
  5037. goto open_err;
  5038. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5039. atomic_set(&bp->intr_sem, 0);
  5040. bnx2_enable_int(bp);
  5041. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5042. /* Test MSI to make sure it is working
  5043. * If MSI test fails, go back to INTx mode
  5044. */
  5045. if (bnx2_test_intr(bp) != 0) {
  5046. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5047. " using MSI, switching to INTx mode. Please"
  5048. " report this failure to the PCI maintainer"
  5049. " and include system chipset information.\n",
  5050. bp->dev->name);
  5051. bnx2_disable_int(bp);
  5052. bnx2_free_irq(bp);
  5053. bnx2_setup_int_mode(bp, 1);
  5054. rc = bnx2_init_nic(bp, 0);
  5055. if (!rc)
  5056. rc = bnx2_request_irq(bp);
  5057. if (rc) {
  5058. del_timer_sync(&bp->timer);
  5059. goto open_err;
  5060. }
  5061. bnx2_enable_int(bp);
  5062. }
  5063. }
  5064. if (bp->flags & BNX2_FLAG_USING_MSI)
  5065. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5066. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5067. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5068. netif_tx_start_all_queues(dev);
  5069. return 0;
  5070. open_err:
  5071. bnx2_napi_disable(bp);
  5072. bnx2_free_skbs(bp);
  5073. bnx2_free_irq(bp);
  5074. bnx2_free_mem(bp);
  5075. return rc;
  5076. }
  5077. static void
  5078. bnx2_reset_task(struct work_struct *work)
  5079. {
  5080. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5081. if (!netif_running(bp->dev))
  5082. return;
  5083. bnx2_netif_stop(bp);
  5084. bnx2_init_nic(bp, 1);
  5085. atomic_set(&bp->intr_sem, 1);
  5086. bnx2_netif_start(bp);
  5087. }
  5088. static void
  5089. bnx2_tx_timeout(struct net_device *dev)
  5090. {
  5091. struct bnx2 *bp = netdev_priv(dev);
  5092. /* This allows the netif to be shutdown gracefully before resetting */
  5093. schedule_work(&bp->reset_task);
  5094. }
  5095. #ifdef BCM_VLAN
  5096. /* Called with rtnl_lock */
  5097. static void
  5098. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5099. {
  5100. struct bnx2 *bp = netdev_priv(dev);
  5101. if (netif_running(dev))
  5102. bnx2_netif_stop(bp);
  5103. bp->vlgrp = vlgrp;
  5104. if (!netif_running(dev))
  5105. return;
  5106. bnx2_set_rx_mode(dev);
  5107. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5108. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5109. bnx2_netif_start(bp);
  5110. }
  5111. #endif
  5112. /* Called with netif_tx_lock.
  5113. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5114. * netif_wake_queue().
  5115. */
  5116. static netdev_tx_t
  5117. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5118. {
  5119. struct bnx2 *bp = netdev_priv(dev);
  5120. dma_addr_t mapping;
  5121. struct tx_bd *txbd;
  5122. struct sw_tx_bd *tx_buf;
  5123. u32 len, vlan_tag_flags, last_frag, mss;
  5124. u16 prod, ring_prod;
  5125. int i;
  5126. struct bnx2_napi *bnapi;
  5127. struct bnx2_tx_ring_info *txr;
  5128. struct netdev_queue *txq;
  5129. struct skb_shared_info *sp;
  5130. /* Determine which tx ring we will be placed on */
  5131. i = skb_get_queue_mapping(skb);
  5132. bnapi = &bp->bnx2_napi[i];
  5133. txr = &bnapi->tx_ring;
  5134. txq = netdev_get_tx_queue(dev, i);
  5135. if (unlikely(bnx2_tx_avail(bp, txr) <
  5136. (skb_shinfo(skb)->nr_frags + 1))) {
  5137. netif_tx_stop_queue(txq);
  5138. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5139. dev->name);
  5140. return NETDEV_TX_BUSY;
  5141. }
  5142. len = skb_headlen(skb);
  5143. prod = txr->tx_prod;
  5144. ring_prod = TX_RING_IDX(prod);
  5145. vlan_tag_flags = 0;
  5146. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5147. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5148. }
  5149. #ifdef BCM_VLAN
  5150. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5151. vlan_tag_flags |=
  5152. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5153. }
  5154. #endif
  5155. if ((mss = skb_shinfo(skb)->gso_size)) {
  5156. u32 tcp_opt_len;
  5157. struct iphdr *iph;
  5158. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5159. tcp_opt_len = tcp_optlen(skb);
  5160. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5161. u32 tcp_off = skb_transport_offset(skb) -
  5162. sizeof(struct ipv6hdr) - ETH_HLEN;
  5163. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5164. TX_BD_FLAGS_SW_FLAGS;
  5165. if (likely(tcp_off == 0))
  5166. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5167. else {
  5168. tcp_off >>= 3;
  5169. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5170. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5171. ((tcp_off & 0x10) <<
  5172. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5173. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5174. }
  5175. } else {
  5176. iph = ip_hdr(skb);
  5177. if (tcp_opt_len || (iph->ihl > 5)) {
  5178. vlan_tag_flags |= ((iph->ihl - 5) +
  5179. (tcp_opt_len >> 2)) << 8;
  5180. }
  5181. }
  5182. } else
  5183. mss = 0;
  5184. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  5185. dev_kfree_skb(skb);
  5186. return NETDEV_TX_OK;
  5187. }
  5188. sp = skb_shinfo(skb);
  5189. mapping = sp->dma_head;
  5190. tx_buf = &txr->tx_buf_ring[ring_prod];
  5191. tx_buf->skb = skb;
  5192. txbd = &txr->tx_desc_ring[ring_prod];
  5193. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5194. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5195. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5196. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5197. last_frag = skb_shinfo(skb)->nr_frags;
  5198. tx_buf->nr_frags = last_frag;
  5199. tx_buf->is_gso = skb_is_gso(skb);
  5200. for (i = 0; i < last_frag; i++) {
  5201. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5202. prod = NEXT_TX_BD(prod);
  5203. ring_prod = TX_RING_IDX(prod);
  5204. txbd = &txr->tx_desc_ring[ring_prod];
  5205. len = frag->size;
  5206. mapping = sp->dma_maps[i];
  5207. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5208. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5209. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5210. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5211. }
  5212. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5213. prod = NEXT_TX_BD(prod);
  5214. txr->tx_prod_bseq += skb->len;
  5215. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5216. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5217. mmiowb();
  5218. txr->tx_prod = prod;
  5219. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5220. netif_tx_stop_queue(txq);
  5221. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5222. netif_tx_wake_queue(txq);
  5223. }
  5224. return NETDEV_TX_OK;
  5225. }
  5226. /* Called with rtnl_lock */
  5227. static int
  5228. bnx2_close(struct net_device *dev)
  5229. {
  5230. struct bnx2 *bp = netdev_priv(dev);
  5231. cancel_work_sync(&bp->reset_task);
  5232. bnx2_disable_int_sync(bp);
  5233. bnx2_napi_disable(bp);
  5234. del_timer_sync(&bp->timer);
  5235. bnx2_shutdown_chip(bp);
  5236. bnx2_free_irq(bp);
  5237. bnx2_free_skbs(bp);
  5238. bnx2_free_mem(bp);
  5239. bp->link_up = 0;
  5240. netif_carrier_off(bp->dev);
  5241. bnx2_set_power_state(bp, PCI_D3hot);
  5242. return 0;
  5243. }
  5244. #define GET_NET_STATS64(ctr) \
  5245. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5246. (unsigned long) (ctr##_lo)
  5247. #define GET_NET_STATS32(ctr) \
  5248. (ctr##_lo)
  5249. #if (BITS_PER_LONG == 64)
  5250. #define GET_NET_STATS GET_NET_STATS64
  5251. #else
  5252. #define GET_NET_STATS GET_NET_STATS32
  5253. #endif
  5254. static struct net_device_stats *
  5255. bnx2_get_stats(struct net_device *dev)
  5256. {
  5257. struct bnx2 *bp = netdev_priv(dev);
  5258. struct statistics_block *stats_blk = bp->stats_blk;
  5259. struct net_device_stats *net_stats = &dev->stats;
  5260. if (bp->stats_blk == NULL) {
  5261. return net_stats;
  5262. }
  5263. net_stats->rx_packets =
  5264. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5265. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5266. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5267. net_stats->tx_packets =
  5268. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5269. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5270. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5271. net_stats->rx_bytes =
  5272. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5273. net_stats->tx_bytes =
  5274. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5275. net_stats->multicast =
  5276. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5277. net_stats->collisions =
  5278. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5279. net_stats->rx_length_errors =
  5280. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5281. stats_blk->stat_EtherStatsOverrsizePkts);
  5282. net_stats->rx_over_errors =
  5283. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5284. stats_blk->stat_IfInMBUFDiscards);
  5285. net_stats->rx_frame_errors =
  5286. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5287. net_stats->rx_crc_errors =
  5288. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5289. net_stats->rx_errors = net_stats->rx_length_errors +
  5290. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5291. net_stats->rx_crc_errors;
  5292. net_stats->tx_aborted_errors =
  5293. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5294. stats_blk->stat_Dot3StatsLateCollisions);
  5295. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5296. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5297. net_stats->tx_carrier_errors = 0;
  5298. else {
  5299. net_stats->tx_carrier_errors =
  5300. (unsigned long)
  5301. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5302. }
  5303. net_stats->tx_errors =
  5304. (unsigned long)
  5305. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5306. +
  5307. net_stats->tx_aborted_errors +
  5308. net_stats->tx_carrier_errors;
  5309. net_stats->rx_missed_errors =
  5310. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5311. stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
  5312. return net_stats;
  5313. }
  5314. /* All ethtool functions called with rtnl_lock */
  5315. static int
  5316. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5317. {
  5318. struct bnx2 *bp = netdev_priv(dev);
  5319. int support_serdes = 0, support_copper = 0;
  5320. cmd->supported = SUPPORTED_Autoneg;
  5321. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5322. support_serdes = 1;
  5323. support_copper = 1;
  5324. } else if (bp->phy_port == PORT_FIBRE)
  5325. support_serdes = 1;
  5326. else
  5327. support_copper = 1;
  5328. if (support_serdes) {
  5329. cmd->supported |= SUPPORTED_1000baseT_Full |
  5330. SUPPORTED_FIBRE;
  5331. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5332. cmd->supported |= SUPPORTED_2500baseX_Full;
  5333. }
  5334. if (support_copper) {
  5335. cmd->supported |= SUPPORTED_10baseT_Half |
  5336. SUPPORTED_10baseT_Full |
  5337. SUPPORTED_100baseT_Half |
  5338. SUPPORTED_100baseT_Full |
  5339. SUPPORTED_1000baseT_Full |
  5340. SUPPORTED_TP;
  5341. }
  5342. spin_lock_bh(&bp->phy_lock);
  5343. cmd->port = bp->phy_port;
  5344. cmd->advertising = bp->advertising;
  5345. if (bp->autoneg & AUTONEG_SPEED) {
  5346. cmd->autoneg = AUTONEG_ENABLE;
  5347. }
  5348. else {
  5349. cmd->autoneg = AUTONEG_DISABLE;
  5350. }
  5351. if (netif_carrier_ok(dev)) {
  5352. cmd->speed = bp->line_speed;
  5353. cmd->duplex = bp->duplex;
  5354. }
  5355. else {
  5356. cmd->speed = -1;
  5357. cmd->duplex = -1;
  5358. }
  5359. spin_unlock_bh(&bp->phy_lock);
  5360. cmd->transceiver = XCVR_INTERNAL;
  5361. cmd->phy_address = bp->phy_addr;
  5362. return 0;
  5363. }
  5364. static int
  5365. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5366. {
  5367. struct bnx2 *bp = netdev_priv(dev);
  5368. u8 autoneg = bp->autoneg;
  5369. u8 req_duplex = bp->req_duplex;
  5370. u16 req_line_speed = bp->req_line_speed;
  5371. u32 advertising = bp->advertising;
  5372. int err = -EINVAL;
  5373. spin_lock_bh(&bp->phy_lock);
  5374. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5375. goto err_out_unlock;
  5376. if (cmd->port != bp->phy_port &&
  5377. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5378. goto err_out_unlock;
  5379. /* If device is down, we can store the settings only if the user
  5380. * is setting the currently active port.
  5381. */
  5382. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5383. goto err_out_unlock;
  5384. if (cmd->autoneg == AUTONEG_ENABLE) {
  5385. autoneg |= AUTONEG_SPEED;
  5386. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5387. /* allow advertising 1 speed */
  5388. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5389. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5390. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5391. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5392. if (cmd->port == PORT_FIBRE)
  5393. goto err_out_unlock;
  5394. advertising = cmd->advertising;
  5395. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5396. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5397. (cmd->port == PORT_TP))
  5398. goto err_out_unlock;
  5399. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5400. advertising = cmd->advertising;
  5401. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5402. goto err_out_unlock;
  5403. else {
  5404. if (cmd->port == PORT_FIBRE)
  5405. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5406. else
  5407. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5408. }
  5409. advertising |= ADVERTISED_Autoneg;
  5410. }
  5411. else {
  5412. if (cmd->port == PORT_FIBRE) {
  5413. if ((cmd->speed != SPEED_1000 &&
  5414. cmd->speed != SPEED_2500) ||
  5415. (cmd->duplex != DUPLEX_FULL))
  5416. goto err_out_unlock;
  5417. if (cmd->speed == SPEED_2500 &&
  5418. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5419. goto err_out_unlock;
  5420. }
  5421. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5422. goto err_out_unlock;
  5423. autoneg &= ~AUTONEG_SPEED;
  5424. req_line_speed = cmd->speed;
  5425. req_duplex = cmd->duplex;
  5426. advertising = 0;
  5427. }
  5428. bp->autoneg = autoneg;
  5429. bp->advertising = advertising;
  5430. bp->req_line_speed = req_line_speed;
  5431. bp->req_duplex = req_duplex;
  5432. err = 0;
  5433. /* If device is down, the new settings will be picked up when it is
  5434. * brought up.
  5435. */
  5436. if (netif_running(dev))
  5437. err = bnx2_setup_phy(bp, cmd->port);
  5438. err_out_unlock:
  5439. spin_unlock_bh(&bp->phy_lock);
  5440. return err;
  5441. }
  5442. static void
  5443. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5444. {
  5445. struct bnx2 *bp = netdev_priv(dev);
  5446. strcpy(info->driver, DRV_MODULE_NAME);
  5447. strcpy(info->version, DRV_MODULE_VERSION);
  5448. strcpy(info->bus_info, pci_name(bp->pdev));
  5449. strcpy(info->fw_version, bp->fw_version);
  5450. }
  5451. #define BNX2_REGDUMP_LEN (32 * 1024)
  5452. static int
  5453. bnx2_get_regs_len(struct net_device *dev)
  5454. {
  5455. return BNX2_REGDUMP_LEN;
  5456. }
  5457. static void
  5458. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5459. {
  5460. u32 *p = _p, i, offset;
  5461. u8 *orig_p = _p;
  5462. struct bnx2 *bp = netdev_priv(dev);
  5463. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5464. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5465. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5466. 0x1040, 0x1048, 0x1080, 0x10a4,
  5467. 0x1400, 0x1490, 0x1498, 0x14f0,
  5468. 0x1500, 0x155c, 0x1580, 0x15dc,
  5469. 0x1600, 0x1658, 0x1680, 0x16d8,
  5470. 0x1800, 0x1820, 0x1840, 0x1854,
  5471. 0x1880, 0x1894, 0x1900, 0x1984,
  5472. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5473. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5474. 0x2000, 0x2030, 0x23c0, 0x2400,
  5475. 0x2800, 0x2820, 0x2830, 0x2850,
  5476. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5477. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5478. 0x4080, 0x4090, 0x43c0, 0x4458,
  5479. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5480. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5481. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5482. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5483. 0x6800, 0x6848, 0x684c, 0x6860,
  5484. 0x6888, 0x6910, 0x8000 };
  5485. regs->version = 0;
  5486. memset(p, 0, BNX2_REGDUMP_LEN);
  5487. if (!netif_running(bp->dev))
  5488. return;
  5489. i = 0;
  5490. offset = reg_boundaries[0];
  5491. p += offset;
  5492. while (offset < BNX2_REGDUMP_LEN) {
  5493. *p++ = REG_RD(bp, offset);
  5494. offset += 4;
  5495. if (offset == reg_boundaries[i + 1]) {
  5496. offset = reg_boundaries[i + 2];
  5497. p = (u32 *) (orig_p + offset);
  5498. i += 2;
  5499. }
  5500. }
  5501. }
  5502. static void
  5503. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5504. {
  5505. struct bnx2 *bp = netdev_priv(dev);
  5506. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5507. wol->supported = 0;
  5508. wol->wolopts = 0;
  5509. }
  5510. else {
  5511. wol->supported = WAKE_MAGIC;
  5512. if (bp->wol)
  5513. wol->wolopts = WAKE_MAGIC;
  5514. else
  5515. wol->wolopts = 0;
  5516. }
  5517. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5518. }
  5519. static int
  5520. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5521. {
  5522. struct bnx2 *bp = netdev_priv(dev);
  5523. if (wol->wolopts & ~WAKE_MAGIC)
  5524. return -EINVAL;
  5525. if (wol->wolopts & WAKE_MAGIC) {
  5526. if (bp->flags & BNX2_FLAG_NO_WOL)
  5527. return -EINVAL;
  5528. bp->wol = 1;
  5529. }
  5530. else {
  5531. bp->wol = 0;
  5532. }
  5533. return 0;
  5534. }
  5535. static int
  5536. bnx2_nway_reset(struct net_device *dev)
  5537. {
  5538. struct bnx2 *bp = netdev_priv(dev);
  5539. u32 bmcr;
  5540. if (!netif_running(dev))
  5541. return -EAGAIN;
  5542. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5543. return -EINVAL;
  5544. }
  5545. spin_lock_bh(&bp->phy_lock);
  5546. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5547. int rc;
  5548. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5549. spin_unlock_bh(&bp->phy_lock);
  5550. return rc;
  5551. }
  5552. /* Force a link down visible on the other side */
  5553. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5554. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5555. spin_unlock_bh(&bp->phy_lock);
  5556. msleep(20);
  5557. spin_lock_bh(&bp->phy_lock);
  5558. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5559. bp->serdes_an_pending = 1;
  5560. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5561. }
  5562. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5563. bmcr &= ~BMCR_LOOPBACK;
  5564. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5565. spin_unlock_bh(&bp->phy_lock);
  5566. return 0;
  5567. }
  5568. static u32
  5569. bnx2_get_link(struct net_device *dev)
  5570. {
  5571. struct bnx2 *bp = netdev_priv(dev);
  5572. return bp->link_up;
  5573. }
  5574. static int
  5575. bnx2_get_eeprom_len(struct net_device *dev)
  5576. {
  5577. struct bnx2 *bp = netdev_priv(dev);
  5578. if (bp->flash_info == NULL)
  5579. return 0;
  5580. return (int) bp->flash_size;
  5581. }
  5582. static int
  5583. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5584. u8 *eebuf)
  5585. {
  5586. struct bnx2 *bp = netdev_priv(dev);
  5587. int rc;
  5588. if (!netif_running(dev))
  5589. return -EAGAIN;
  5590. /* parameters already validated in ethtool_get_eeprom */
  5591. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5592. return rc;
  5593. }
  5594. static int
  5595. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5596. u8 *eebuf)
  5597. {
  5598. struct bnx2 *bp = netdev_priv(dev);
  5599. int rc;
  5600. if (!netif_running(dev))
  5601. return -EAGAIN;
  5602. /* parameters already validated in ethtool_set_eeprom */
  5603. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5604. return rc;
  5605. }
  5606. static int
  5607. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5608. {
  5609. struct bnx2 *bp = netdev_priv(dev);
  5610. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5611. coal->rx_coalesce_usecs = bp->rx_ticks;
  5612. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5613. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5614. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5615. coal->tx_coalesce_usecs = bp->tx_ticks;
  5616. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5617. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5618. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5619. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5620. return 0;
  5621. }
  5622. static int
  5623. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5624. {
  5625. struct bnx2 *bp = netdev_priv(dev);
  5626. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5627. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5628. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5629. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5630. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5631. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5632. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5633. if (bp->rx_quick_cons_trip_int > 0xff)
  5634. bp->rx_quick_cons_trip_int = 0xff;
  5635. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5636. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5637. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5638. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5639. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5640. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5641. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5642. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5643. 0xff;
  5644. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5645. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5646. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5647. bp->stats_ticks = USEC_PER_SEC;
  5648. }
  5649. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5650. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5651. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5652. if (netif_running(bp->dev)) {
  5653. bnx2_netif_stop(bp);
  5654. bnx2_init_nic(bp, 0);
  5655. bnx2_netif_start(bp);
  5656. }
  5657. return 0;
  5658. }
  5659. static void
  5660. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5661. {
  5662. struct bnx2 *bp = netdev_priv(dev);
  5663. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5664. ering->rx_mini_max_pending = 0;
  5665. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5666. ering->rx_pending = bp->rx_ring_size;
  5667. ering->rx_mini_pending = 0;
  5668. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5669. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5670. ering->tx_pending = bp->tx_ring_size;
  5671. }
  5672. static int
  5673. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5674. {
  5675. if (netif_running(bp->dev)) {
  5676. bnx2_netif_stop(bp);
  5677. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5678. bnx2_free_skbs(bp);
  5679. bnx2_free_mem(bp);
  5680. }
  5681. bnx2_set_rx_ring_size(bp, rx);
  5682. bp->tx_ring_size = tx;
  5683. if (netif_running(bp->dev)) {
  5684. int rc;
  5685. rc = bnx2_alloc_mem(bp);
  5686. if (!rc)
  5687. rc = bnx2_init_nic(bp, 0);
  5688. if (rc) {
  5689. bnx2_napi_enable(bp);
  5690. dev_close(bp->dev);
  5691. return rc;
  5692. }
  5693. bnx2_netif_start(bp);
  5694. }
  5695. return 0;
  5696. }
  5697. static int
  5698. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5699. {
  5700. struct bnx2 *bp = netdev_priv(dev);
  5701. int rc;
  5702. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5703. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5704. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5705. return -EINVAL;
  5706. }
  5707. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5708. return rc;
  5709. }
  5710. static void
  5711. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5712. {
  5713. struct bnx2 *bp = netdev_priv(dev);
  5714. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5715. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5716. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5717. }
  5718. static int
  5719. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5720. {
  5721. struct bnx2 *bp = netdev_priv(dev);
  5722. bp->req_flow_ctrl = 0;
  5723. if (epause->rx_pause)
  5724. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5725. if (epause->tx_pause)
  5726. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5727. if (epause->autoneg) {
  5728. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5729. }
  5730. else {
  5731. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5732. }
  5733. if (netif_running(dev)) {
  5734. spin_lock_bh(&bp->phy_lock);
  5735. bnx2_setup_phy(bp, bp->phy_port);
  5736. spin_unlock_bh(&bp->phy_lock);
  5737. }
  5738. return 0;
  5739. }
  5740. static u32
  5741. bnx2_get_rx_csum(struct net_device *dev)
  5742. {
  5743. struct bnx2 *bp = netdev_priv(dev);
  5744. return bp->rx_csum;
  5745. }
  5746. static int
  5747. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5748. {
  5749. struct bnx2 *bp = netdev_priv(dev);
  5750. bp->rx_csum = data;
  5751. return 0;
  5752. }
  5753. static int
  5754. bnx2_set_tso(struct net_device *dev, u32 data)
  5755. {
  5756. struct bnx2 *bp = netdev_priv(dev);
  5757. if (data) {
  5758. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5759. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5760. dev->features |= NETIF_F_TSO6;
  5761. } else
  5762. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5763. NETIF_F_TSO_ECN);
  5764. return 0;
  5765. }
  5766. static struct {
  5767. char string[ETH_GSTRING_LEN];
  5768. } bnx2_stats_str_arr[] = {
  5769. { "rx_bytes" },
  5770. { "rx_error_bytes" },
  5771. { "tx_bytes" },
  5772. { "tx_error_bytes" },
  5773. { "rx_ucast_packets" },
  5774. { "rx_mcast_packets" },
  5775. { "rx_bcast_packets" },
  5776. { "tx_ucast_packets" },
  5777. { "tx_mcast_packets" },
  5778. { "tx_bcast_packets" },
  5779. { "tx_mac_errors" },
  5780. { "tx_carrier_errors" },
  5781. { "rx_crc_errors" },
  5782. { "rx_align_errors" },
  5783. { "tx_single_collisions" },
  5784. { "tx_multi_collisions" },
  5785. { "tx_deferred" },
  5786. { "tx_excess_collisions" },
  5787. { "tx_late_collisions" },
  5788. { "tx_total_collisions" },
  5789. { "rx_fragments" },
  5790. { "rx_jabbers" },
  5791. { "rx_undersize_packets" },
  5792. { "rx_oversize_packets" },
  5793. { "rx_64_byte_packets" },
  5794. { "rx_65_to_127_byte_packets" },
  5795. { "rx_128_to_255_byte_packets" },
  5796. { "rx_256_to_511_byte_packets" },
  5797. { "rx_512_to_1023_byte_packets" },
  5798. { "rx_1024_to_1522_byte_packets" },
  5799. { "rx_1523_to_9022_byte_packets" },
  5800. { "tx_64_byte_packets" },
  5801. { "tx_65_to_127_byte_packets" },
  5802. { "tx_128_to_255_byte_packets" },
  5803. { "tx_256_to_511_byte_packets" },
  5804. { "tx_512_to_1023_byte_packets" },
  5805. { "tx_1024_to_1522_byte_packets" },
  5806. { "tx_1523_to_9022_byte_packets" },
  5807. { "rx_xon_frames" },
  5808. { "rx_xoff_frames" },
  5809. { "tx_xon_frames" },
  5810. { "tx_xoff_frames" },
  5811. { "rx_mac_ctrl_frames" },
  5812. { "rx_filtered_packets" },
  5813. { "rx_ftq_discards" },
  5814. { "rx_discards" },
  5815. { "rx_fw_discards" },
  5816. };
  5817. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5818. sizeof(bnx2_stats_str_arr[0]))
  5819. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5820. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5821. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5822. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5823. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5824. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5825. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5826. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5827. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5828. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5829. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5830. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5831. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5832. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5833. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5834. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5835. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5836. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5837. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5838. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5839. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5840. STATS_OFFSET32(stat_EtherStatsCollisions),
  5841. STATS_OFFSET32(stat_EtherStatsFragments),
  5842. STATS_OFFSET32(stat_EtherStatsJabbers),
  5843. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5844. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5845. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5846. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5847. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5848. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5849. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5850. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5851. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5852. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5853. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5854. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5855. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5856. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5857. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5858. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5859. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5860. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5861. STATS_OFFSET32(stat_OutXonSent),
  5862. STATS_OFFSET32(stat_OutXoffSent),
  5863. STATS_OFFSET32(stat_MacControlFramesReceived),
  5864. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5865. STATS_OFFSET32(stat_IfInFTQDiscards),
  5866. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5867. STATS_OFFSET32(stat_FwRxDrop),
  5868. };
  5869. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5870. * skipped because of errata.
  5871. */
  5872. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5873. 8,0,8,8,8,8,8,8,8,8,
  5874. 4,0,4,4,4,4,4,4,4,4,
  5875. 4,4,4,4,4,4,4,4,4,4,
  5876. 4,4,4,4,4,4,4,4,4,4,
  5877. 4,4,4,4,4,4,4,
  5878. };
  5879. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5880. 8,0,8,8,8,8,8,8,8,8,
  5881. 4,4,4,4,4,4,4,4,4,4,
  5882. 4,4,4,4,4,4,4,4,4,4,
  5883. 4,4,4,4,4,4,4,4,4,4,
  5884. 4,4,4,4,4,4,4,
  5885. };
  5886. #define BNX2_NUM_TESTS 6
  5887. static struct {
  5888. char string[ETH_GSTRING_LEN];
  5889. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5890. { "register_test (offline)" },
  5891. { "memory_test (offline)" },
  5892. { "loopback_test (offline)" },
  5893. { "nvram_test (online)" },
  5894. { "interrupt_test (online)" },
  5895. { "link_test (online)" },
  5896. };
  5897. static int
  5898. bnx2_get_sset_count(struct net_device *dev, int sset)
  5899. {
  5900. switch (sset) {
  5901. case ETH_SS_TEST:
  5902. return BNX2_NUM_TESTS;
  5903. case ETH_SS_STATS:
  5904. return BNX2_NUM_STATS;
  5905. default:
  5906. return -EOPNOTSUPP;
  5907. }
  5908. }
  5909. static void
  5910. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5911. {
  5912. struct bnx2 *bp = netdev_priv(dev);
  5913. bnx2_set_power_state(bp, PCI_D0);
  5914. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5915. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5916. int i;
  5917. bnx2_netif_stop(bp);
  5918. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5919. bnx2_free_skbs(bp);
  5920. if (bnx2_test_registers(bp) != 0) {
  5921. buf[0] = 1;
  5922. etest->flags |= ETH_TEST_FL_FAILED;
  5923. }
  5924. if (bnx2_test_memory(bp) != 0) {
  5925. buf[1] = 1;
  5926. etest->flags |= ETH_TEST_FL_FAILED;
  5927. }
  5928. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5929. etest->flags |= ETH_TEST_FL_FAILED;
  5930. if (!netif_running(bp->dev))
  5931. bnx2_shutdown_chip(bp);
  5932. else {
  5933. bnx2_init_nic(bp, 1);
  5934. bnx2_netif_start(bp);
  5935. }
  5936. /* wait for link up */
  5937. for (i = 0; i < 7; i++) {
  5938. if (bp->link_up)
  5939. break;
  5940. msleep_interruptible(1000);
  5941. }
  5942. }
  5943. if (bnx2_test_nvram(bp) != 0) {
  5944. buf[3] = 1;
  5945. etest->flags |= ETH_TEST_FL_FAILED;
  5946. }
  5947. if (bnx2_test_intr(bp) != 0) {
  5948. buf[4] = 1;
  5949. etest->flags |= ETH_TEST_FL_FAILED;
  5950. }
  5951. if (bnx2_test_link(bp) != 0) {
  5952. buf[5] = 1;
  5953. etest->flags |= ETH_TEST_FL_FAILED;
  5954. }
  5955. if (!netif_running(bp->dev))
  5956. bnx2_set_power_state(bp, PCI_D3hot);
  5957. }
  5958. static void
  5959. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5960. {
  5961. switch (stringset) {
  5962. case ETH_SS_STATS:
  5963. memcpy(buf, bnx2_stats_str_arr,
  5964. sizeof(bnx2_stats_str_arr));
  5965. break;
  5966. case ETH_SS_TEST:
  5967. memcpy(buf, bnx2_tests_str_arr,
  5968. sizeof(bnx2_tests_str_arr));
  5969. break;
  5970. }
  5971. }
  5972. static void
  5973. bnx2_get_ethtool_stats(struct net_device *dev,
  5974. struct ethtool_stats *stats, u64 *buf)
  5975. {
  5976. struct bnx2 *bp = netdev_priv(dev);
  5977. int i;
  5978. u32 *hw_stats = (u32 *) bp->stats_blk;
  5979. u8 *stats_len_arr = NULL;
  5980. if (hw_stats == NULL) {
  5981. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5982. return;
  5983. }
  5984. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5985. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5986. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5987. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5988. stats_len_arr = bnx2_5706_stats_len_arr;
  5989. else
  5990. stats_len_arr = bnx2_5708_stats_len_arr;
  5991. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5992. if (stats_len_arr[i] == 0) {
  5993. /* skip this counter */
  5994. buf[i] = 0;
  5995. continue;
  5996. }
  5997. if (stats_len_arr[i] == 4) {
  5998. /* 4-byte counter */
  5999. buf[i] = (u64)
  6000. *(hw_stats + bnx2_stats_offset_arr[i]);
  6001. continue;
  6002. }
  6003. /* 8-byte counter */
  6004. buf[i] = (((u64) *(hw_stats +
  6005. bnx2_stats_offset_arr[i])) << 32) +
  6006. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  6007. }
  6008. }
  6009. static int
  6010. bnx2_phys_id(struct net_device *dev, u32 data)
  6011. {
  6012. struct bnx2 *bp = netdev_priv(dev);
  6013. int i;
  6014. u32 save;
  6015. bnx2_set_power_state(bp, PCI_D0);
  6016. if (data == 0)
  6017. data = 2;
  6018. save = REG_RD(bp, BNX2_MISC_CFG);
  6019. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6020. for (i = 0; i < (data * 2); i++) {
  6021. if ((i % 2) == 0) {
  6022. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6023. }
  6024. else {
  6025. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6026. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6027. BNX2_EMAC_LED_100MB_OVERRIDE |
  6028. BNX2_EMAC_LED_10MB_OVERRIDE |
  6029. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6030. BNX2_EMAC_LED_TRAFFIC);
  6031. }
  6032. msleep_interruptible(500);
  6033. if (signal_pending(current))
  6034. break;
  6035. }
  6036. REG_WR(bp, BNX2_EMAC_LED, 0);
  6037. REG_WR(bp, BNX2_MISC_CFG, save);
  6038. if (!netif_running(dev))
  6039. bnx2_set_power_state(bp, PCI_D3hot);
  6040. return 0;
  6041. }
  6042. static int
  6043. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6044. {
  6045. struct bnx2 *bp = netdev_priv(dev);
  6046. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6047. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6048. else
  6049. return (ethtool_op_set_tx_csum(dev, data));
  6050. }
  6051. static const struct ethtool_ops bnx2_ethtool_ops = {
  6052. .get_settings = bnx2_get_settings,
  6053. .set_settings = bnx2_set_settings,
  6054. .get_drvinfo = bnx2_get_drvinfo,
  6055. .get_regs_len = bnx2_get_regs_len,
  6056. .get_regs = bnx2_get_regs,
  6057. .get_wol = bnx2_get_wol,
  6058. .set_wol = bnx2_set_wol,
  6059. .nway_reset = bnx2_nway_reset,
  6060. .get_link = bnx2_get_link,
  6061. .get_eeprom_len = bnx2_get_eeprom_len,
  6062. .get_eeprom = bnx2_get_eeprom,
  6063. .set_eeprom = bnx2_set_eeprom,
  6064. .get_coalesce = bnx2_get_coalesce,
  6065. .set_coalesce = bnx2_set_coalesce,
  6066. .get_ringparam = bnx2_get_ringparam,
  6067. .set_ringparam = bnx2_set_ringparam,
  6068. .get_pauseparam = bnx2_get_pauseparam,
  6069. .set_pauseparam = bnx2_set_pauseparam,
  6070. .get_rx_csum = bnx2_get_rx_csum,
  6071. .set_rx_csum = bnx2_set_rx_csum,
  6072. .set_tx_csum = bnx2_set_tx_csum,
  6073. .set_sg = ethtool_op_set_sg,
  6074. .set_tso = bnx2_set_tso,
  6075. .self_test = bnx2_self_test,
  6076. .get_strings = bnx2_get_strings,
  6077. .phys_id = bnx2_phys_id,
  6078. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6079. .get_sset_count = bnx2_get_sset_count,
  6080. };
  6081. /* Called with rtnl_lock */
  6082. static int
  6083. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6084. {
  6085. struct mii_ioctl_data *data = if_mii(ifr);
  6086. struct bnx2 *bp = netdev_priv(dev);
  6087. int err;
  6088. switch(cmd) {
  6089. case SIOCGMIIPHY:
  6090. data->phy_id = bp->phy_addr;
  6091. /* fallthru */
  6092. case SIOCGMIIREG: {
  6093. u32 mii_regval;
  6094. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6095. return -EOPNOTSUPP;
  6096. if (!netif_running(dev))
  6097. return -EAGAIN;
  6098. spin_lock_bh(&bp->phy_lock);
  6099. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6100. spin_unlock_bh(&bp->phy_lock);
  6101. data->val_out = mii_regval;
  6102. return err;
  6103. }
  6104. case SIOCSMIIREG:
  6105. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6106. return -EOPNOTSUPP;
  6107. if (!netif_running(dev))
  6108. return -EAGAIN;
  6109. spin_lock_bh(&bp->phy_lock);
  6110. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6111. spin_unlock_bh(&bp->phy_lock);
  6112. return err;
  6113. default:
  6114. /* do nothing */
  6115. break;
  6116. }
  6117. return -EOPNOTSUPP;
  6118. }
  6119. /* Called with rtnl_lock */
  6120. static int
  6121. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6122. {
  6123. struct sockaddr *addr = p;
  6124. struct bnx2 *bp = netdev_priv(dev);
  6125. if (!is_valid_ether_addr(addr->sa_data))
  6126. return -EINVAL;
  6127. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6128. if (netif_running(dev))
  6129. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6130. return 0;
  6131. }
  6132. /* Called with rtnl_lock */
  6133. static int
  6134. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6135. {
  6136. struct bnx2 *bp = netdev_priv(dev);
  6137. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6138. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6139. return -EINVAL;
  6140. dev->mtu = new_mtu;
  6141. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6142. }
  6143. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6144. static void
  6145. poll_bnx2(struct net_device *dev)
  6146. {
  6147. struct bnx2 *bp = netdev_priv(dev);
  6148. int i;
  6149. for (i = 0; i < bp->irq_nvecs; i++) {
  6150. disable_irq(bp->irq_tbl[i].vector);
  6151. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6152. enable_irq(bp->irq_tbl[i].vector);
  6153. }
  6154. }
  6155. #endif
  6156. static void __devinit
  6157. bnx2_get_5709_media(struct bnx2 *bp)
  6158. {
  6159. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6160. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6161. u32 strap;
  6162. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6163. return;
  6164. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6165. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6166. return;
  6167. }
  6168. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6169. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6170. else
  6171. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6172. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6173. switch (strap) {
  6174. case 0x4:
  6175. case 0x5:
  6176. case 0x6:
  6177. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6178. return;
  6179. }
  6180. } else {
  6181. switch (strap) {
  6182. case 0x1:
  6183. case 0x2:
  6184. case 0x4:
  6185. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6186. return;
  6187. }
  6188. }
  6189. }
  6190. static void __devinit
  6191. bnx2_get_pci_speed(struct bnx2 *bp)
  6192. {
  6193. u32 reg;
  6194. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6195. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6196. u32 clkreg;
  6197. bp->flags |= BNX2_FLAG_PCIX;
  6198. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6199. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6200. switch (clkreg) {
  6201. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6202. bp->bus_speed_mhz = 133;
  6203. break;
  6204. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6205. bp->bus_speed_mhz = 100;
  6206. break;
  6207. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6208. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6209. bp->bus_speed_mhz = 66;
  6210. break;
  6211. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6212. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6213. bp->bus_speed_mhz = 50;
  6214. break;
  6215. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6216. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6217. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6218. bp->bus_speed_mhz = 33;
  6219. break;
  6220. }
  6221. }
  6222. else {
  6223. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6224. bp->bus_speed_mhz = 66;
  6225. else
  6226. bp->bus_speed_mhz = 33;
  6227. }
  6228. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6229. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6230. }
  6231. static int __devinit
  6232. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6233. {
  6234. struct bnx2 *bp;
  6235. unsigned long mem_len;
  6236. int rc, i, j;
  6237. u32 reg;
  6238. u64 dma_mask, persist_dma_mask;
  6239. SET_NETDEV_DEV(dev, &pdev->dev);
  6240. bp = netdev_priv(dev);
  6241. bp->flags = 0;
  6242. bp->phy_flags = 0;
  6243. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6244. rc = pci_enable_device(pdev);
  6245. if (rc) {
  6246. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6247. goto err_out;
  6248. }
  6249. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6250. dev_err(&pdev->dev,
  6251. "Cannot find PCI device base address, aborting.\n");
  6252. rc = -ENODEV;
  6253. goto err_out_disable;
  6254. }
  6255. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6256. if (rc) {
  6257. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6258. goto err_out_disable;
  6259. }
  6260. pci_set_master(pdev);
  6261. pci_save_state(pdev);
  6262. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6263. if (bp->pm_cap == 0) {
  6264. dev_err(&pdev->dev,
  6265. "Cannot find power management capability, aborting.\n");
  6266. rc = -EIO;
  6267. goto err_out_release;
  6268. }
  6269. bp->dev = dev;
  6270. bp->pdev = pdev;
  6271. spin_lock_init(&bp->phy_lock);
  6272. spin_lock_init(&bp->indirect_lock);
  6273. #ifdef BCM_CNIC
  6274. mutex_init(&bp->cnic_lock);
  6275. #endif
  6276. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6277. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6278. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6279. dev->mem_end = dev->mem_start + mem_len;
  6280. dev->irq = pdev->irq;
  6281. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6282. if (!bp->regview) {
  6283. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6284. rc = -ENOMEM;
  6285. goto err_out_release;
  6286. }
  6287. /* Configure byte swap and enable write to the reg_window registers.
  6288. * Rely on CPU to do target byte swapping on big endian systems
  6289. * The chip's target access swapping will not swap all accesses
  6290. */
  6291. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6292. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6293. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6294. bnx2_set_power_state(bp, PCI_D0);
  6295. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6296. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6297. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6298. dev_err(&pdev->dev,
  6299. "Cannot find PCIE capability, aborting.\n");
  6300. rc = -EIO;
  6301. goto err_out_unmap;
  6302. }
  6303. bp->flags |= BNX2_FLAG_PCIE;
  6304. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6305. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6306. } else {
  6307. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6308. if (bp->pcix_cap == 0) {
  6309. dev_err(&pdev->dev,
  6310. "Cannot find PCIX capability, aborting.\n");
  6311. rc = -EIO;
  6312. goto err_out_unmap;
  6313. }
  6314. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6315. }
  6316. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6317. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6318. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6319. }
  6320. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6321. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6322. bp->flags |= BNX2_FLAG_MSI_CAP;
  6323. }
  6324. /* 5708 cannot support DMA addresses > 40-bit. */
  6325. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6326. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6327. else
  6328. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6329. /* Configure DMA attributes. */
  6330. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6331. dev->features |= NETIF_F_HIGHDMA;
  6332. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6333. if (rc) {
  6334. dev_err(&pdev->dev,
  6335. "pci_set_consistent_dma_mask failed, aborting.\n");
  6336. goto err_out_unmap;
  6337. }
  6338. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6339. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6340. goto err_out_unmap;
  6341. }
  6342. if (!(bp->flags & BNX2_FLAG_PCIE))
  6343. bnx2_get_pci_speed(bp);
  6344. /* 5706A0 may falsely detect SERR and PERR. */
  6345. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6346. reg = REG_RD(bp, PCI_COMMAND);
  6347. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6348. REG_WR(bp, PCI_COMMAND, reg);
  6349. }
  6350. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6351. !(bp->flags & BNX2_FLAG_PCIX)) {
  6352. dev_err(&pdev->dev,
  6353. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6354. goto err_out_unmap;
  6355. }
  6356. bnx2_init_nvram(bp);
  6357. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6358. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6359. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6360. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6361. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6362. } else
  6363. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6364. /* Get the permanent MAC address. First we need to make sure the
  6365. * firmware is actually running.
  6366. */
  6367. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6368. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6369. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6370. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6371. rc = -ENODEV;
  6372. goto err_out_unmap;
  6373. }
  6374. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6375. for (i = 0, j = 0; i < 3; i++) {
  6376. u8 num, k, skip0;
  6377. num = (u8) (reg >> (24 - (i * 8)));
  6378. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6379. if (num >= k || !skip0 || k == 1) {
  6380. bp->fw_version[j++] = (num / k) + '0';
  6381. skip0 = 0;
  6382. }
  6383. }
  6384. if (i != 2)
  6385. bp->fw_version[j++] = '.';
  6386. }
  6387. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6388. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6389. bp->wol = 1;
  6390. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6391. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6392. for (i = 0; i < 30; i++) {
  6393. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6394. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6395. break;
  6396. msleep(10);
  6397. }
  6398. }
  6399. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6400. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6401. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6402. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6403. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6404. bp->fw_version[j++] = ' ';
  6405. for (i = 0; i < 3; i++) {
  6406. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6407. reg = swab32(reg);
  6408. memcpy(&bp->fw_version[j], &reg, 4);
  6409. j += 4;
  6410. }
  6411. }
  6412. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6413. bp->mac_addr[0] = (u8) (reg >> 8);
  6414. bp->mac_addr[1] = (u8) reg;
  6415. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6416. bp->mac_addr[2] = (u8) (reg >> 24);
  6417. bp->mac_addr[3] = (u8) (reg >> 16);
  6418. bp->mac_addr[4] = (u8) (reg >> 8);
  6419. bp->mac_addr[5] = (u8) reg;
  6420. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6421. bnx2_set_rx_ring_size(bp, 255);
  6422. bp->rx_csum = 1;
  6423. bp->tx_quick_cons_trip_int = 2;
  6424. bp->tx_quick_cons_trip = 20;
  6425. bp->tx_ticks_int = 18;
  6426. bp->tx_ticks = 80;
  6427. bp->rx_quick_cons_trip_int = 2;
  6428. bp->rx_quick_cons_trip = 12;
  6429. bp->rx_ticks_int = 18;
  6430. bp->rx_ticks = 18;
  6431. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6432. bp->current_interval = BNX2_TIMER_INTERVAL;
  6433. bp->phy_addr = 1;
  6434. /* Disable WOL support if we are running on a SERDES chip. */
  6435. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6436. bnx2_get_5709_media(bp);
  6437. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6438. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6439. bp->phy_port = PORT_TP;
  6440. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6441. bp->phy_port = PORT_FIBRE;
  6442. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6443. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6444. bp->flags |= BNX2_FLAG_NO_WOL;
  6445. bp->wol = 0;
  6446. }
  6447. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6448. /* Don't do parallel detect on this board because of
  6449. * some board problems. The link will not go down
  6450. * if we do parallel detect.
  6451. */
  6452. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6453. pdev->subsystem_device == 0x310c)
  6454. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6455. } else {
  6456. bp->phy_addr = 2;
  6457. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6458. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6459. }
  6460. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6461. CHIP_NUM(bp) == CHIP_NUM_5708)
  6462. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6463. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6464. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6465. CHIP_REV(bp) == CHIP_REV_Bx))
  6466. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6467. bnx2_init_fw_cap(bp);
  6468. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6469. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6470. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6471. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6472. bp->flags |= BNX2_FLAG_NO_WOL;
  6473. bp->wol = 0;
  6474. }
  6475. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6476. bp->tx_quick_cons_trip_int =
  6477. bp->tx_quick_cons_trip;
  6478. bp->tx_ticks_int = bp->tx_ticks;
  6479. bp->rx_quick_cons_trip_int =
  6480. bp->rx_quick_cons_trip;
  6481. bp->rx_ticks_int = bp->rx_ticks;
  6482. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6483. bp->com_ticks_int = bp->com_ticks;
  6484. bp->cmd_ticks_int = bp->cmd_ticks;
  6485. }
  6486. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6487. *
  6488. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6489. * with byte enables disabled on the unused 32-bit word. This is legal
  6490. * but causes problems on the AMD 8132 which will eventually stop
  6491. * responding after a while.
  6492. *
  6493. * AMD believes this incompatibility is unique to the 5706, and
  6494. * prefers to locally disable MSI rather than globally disabling it.
  6495. */
  6496. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6497. struct pci_dev *amd_8132 = NULL;
  6498. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6499. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6500. amd_8132))) {
  6501. if (amd_8132->revision >= 0x10 &&
  6502. amd_8132->revision <= 0x13) {
  6503. disable_msi = 1;
  6504. pci_dev_put(amd_8132);
  6505. break;
  6506. }
  6507. }
  6508. }
  6509. bnx2_set_default_link(bp);
  6510. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6511. init_timer(&bp->timer);
  6512. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6513. bp->timer.data = (unsigned long) bp;
  6514. bp->timer.function = bnx2_timer;
  6515. return 0;
  6516. err_out_unmap:
  6517. if (bp->regview) {
  6518. iounmap(bp->regview);
  6519. bp->regview = NULL;
  6520. }
  6521. err_out_release:
  6522. pci_release_regions(pdev);
  6523. err_out_disable:
  6524. pci_disable_device(pdev);
  6525. pci_set_drvdata(pdev, NULL);
  6526. err_out:
  6527. return rc;
  6528. }
  6529. static char * __devinit
  6530. bnx2_bus_string(struct bnx2 *bp, char *str)
  6531. {
  6532. char *s = str;
  6533. if (bp->flags & BNX2_FLAG_PCIE) {
  6534. s += sprintf(s, "PCI Express");
  6535. } else {
  6536. s += sprintf(s, "PCI");
  6537. if (bp->flags & BNX2_FLAG_PCIX)
  6538. s += sprintf(s, "-X");
  6539. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6540. s += sprintf(s, " 32-bit");
  6541. else
  6542. s += sprintf(s, " 64-bit");
  6543. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6544. }
  6545. return str;
  6546. }
  6547. static void __devinit
  6548. bnx2_init_napi(struct bnx2 *bp)
  6549. {
  6550. int i;
  6551. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6552. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6553. int (*poll)(struct napi_struct *, int);
  6554. if (i == 0)
  6555. poll = bnx2_poll;
  6556. else
  6557. poll = bnx2_poll_msix;
  6558. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6559. bnapi->bp = bp;
  6560. }
  6561. }
  6562. static const struct net_device_ops bnx2_netdev_ops = {
  6563. .ndo_open = bnx2_open,
  6564. .ndo_start_xmit = bnx2_start_xmit,
  6565. .ndo_stop = bnx2_close,
  6566. .ndo_get_stats = bnx2_get_stats,
  6567. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6568. .ndo_do_ioctl = bnx2_ioctl,
  6569. .ndo_validate_addr = eth_validate_addr,
  6570. .ndo_set_mac_address = bnx2_change_mac_addr,
  6571. .ndo_change_mtu = bnx2_change_mtu,
  6572. .ndo_tx_timeout = bnx2_tx_timeout,
  6573. #ifdef BCM_VLAN
  6574. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6575. #endif
  6576. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6577. .ndo_poll_controller = poll_bnx2,
  6578. #endif
  6579. };
  6580. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6581. {
  6582. #ifdef BCM_VLAN
  6583. dev->vlan_features |= flags;
  6584. #endif
  6585. }
  6586. static int __devinit
  6587. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6588. {
  6589. static int version_printed = 0;
  6590. struct net_device *dev = NULL;
  6591. struct bnx2 *bp;
  6592. int rc;
  6593. char str[40];
  6594. if (version_printed++ == 0)
  6595. printk(KERN_INFO "%s", version);
  6596. /* dev zeroed in init_etherdev */
  6597. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6598. if (!dev)
  6599. return -ENOMEM;
  6600. rc = bnx2_init_board(pdev, dev);
  6601. if (rc < 0) {
  6602. free_netdev(dev);
  6603. return rc;
  6604. }
  6605. dev->netdev_ops = &bnx2_netdev_ops;
  6606. dev->watchdog_timeo = TX_TIMEOUT;
  6607. dev->ethtool_ops = &bnx2_ethtool_ops;
  6608. bp = netdev_priv(dev);
  6609. bnx2_init_napi(bp);
  6610. pci_set_drvdata(pdev, dev);
  6611. rc = bnx2_request_firmware(bp);
  6612. if (rc)
  6613. goto error;
  6614. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6615. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6616. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6617. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6618. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6619. dev->features |= NETIF_F_IPV6_CSUM;
  6620. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6621. }
  6622. #ifdef BCM_VLAN
  6623. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6624. #endif
  6625. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6626. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6627. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6628. dev->features |= NETIF_F_TSO6;
  6629. vlan_features_add(dev, NETIF_F_TSO6);
  6630. }
  6631. if ((rc = register_netdev(dev))) {
  6632. dev_err(&pdev->dev, "Cannot register net device\n");
  6633. goto error;
  6634. }
  6635. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6636. "IRQ %d, node addr %pM\n",
  6637. dev->name,
  6638. board_info[ent->driver_data].name,
  6639. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6640. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6641. bnx2_bus_string(bp, str),
  6642. dev->base_addr,
  6643. bp->pdev->irq, dev->dev_addr);
  6644. return 0;
  6645. error:
  6646. if (bp->mips_firmware)
  6647. release_firmware(bp->mips_firmware);
  6648. if (bp->rv2p_firmware)
  6649. release_firmware(bp->rv2p_firmware);
  6650. if (bp->regview)
  6651. iounmap(bp->regview);
  6652. pci_release_regions(pdev);
  6653. pci_disable_device(pdev);
  6654. pci_set_drvdata(pdev, NULL);
  6655. free_netdev(dev);
  6656. return rc;
  6657. }
  6658. static void __devexit
  6659. bnx2_remove_one(struct pci_dev *pdev)
  6660. {
  6661. struct net_device *dev = pci_get_drvdata(pdev);
  6662. struct bnx2 *bp = netdev_priv(dev);
  6663. flush_scheduled_work();
  6664. unregister_netdev(dev);
  6665. if (bp->mips_firmware)
  6666. release_firmware(bp->mips_firmware);
  6667. if (bp->rv2p_firmware)
  6668. release_firmware(bp->rv2p_firmware);
  6669. if (bp->regview)
  6670. iounmap(bp->regview);
  6671. free_netdev(dev);
  6672. pci_release_regions(pdev);
  6673. pci_disable_device(pdev);
  6674. pci_set_drvdata(pdev, NULL);
  6675. }
  6676. static int
  6677. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6678. {
  6679. struct net_device *dev = pci_get_drvdata(pdev);
  6680. struct bnx2 *bp = netdev_priv(dev);
  6681. /* PCI register 4 needs to be saved whether netif_running() or not.
  6682. * MSI address and data need to be saved if using MSI and
  6683. * netif_running().
  6684. */
  6685. pci_save_state(pdev);
  6686. if (!netif_running(dev))
  6687. return 0;
  6688. flush_scheduled_work();
  6689. bnx2_netif_stop(bp);
  6690. netif_device_detach(dev);
  6691. del_timer_sync(&bp->timer);
  6692. bnx2_shutdown_chip(bp);
  6693. bnx2_free_skbs(bp);
  6694. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6695. return 0;
  6696. }
  6697. static int
  6698. bnx2_resume(struct pci_dev *pdev)
  6699. {
  6700. struct net_device *dev = pci_get_drvdata(pdev);
  6701. struct bnx2 *bp = netdev_priv(dev);
  6702. pci_restore_state(pdev);
  6703. if (!netif_running(dev))
  6704. return 0;
  6705. bnx2_set_power_state(bp, PCI_D0);
  6706. netif_device_attach(dev);
  6707. bnx2_init_nic(bp, 1);
  6708. bnx2_netif_start(bp);
  6709. return 0;
  6710. }
  6711. /**
  6712. * bnx2_io_error_detected - called when PCI error is detected
  6713. * @pdev: Pointer to PCI device
  6714. * @state: The current pci connection state
  6715. *
  6716. * This function is called after a PCI bus error affecting
  6717. * this device has been detected.
  6718. */
  6719. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6720. pci_channel_state_t state)
  6721. {
  6722. struct net_device *dev = pci_get_drvdata(pdev);
  6723. struct bnx2 *bp = netdev_priv(dev);
  6724. rtnl_lock();
  6725. netif_device_detach(dev);
  6726. if (state == pci_channel_io_perm_failure) {
  6727. rtnl_unlock();
  6728. return PCI_ERS_RESULT_DISCONNECT;
  6729. }
  6730. if (netif_running(dev)) {
  6731. bnx2_netif_stop(bp);
  6732. del_timer_sync(&bp->timer);
  6733. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6734. }
  6735. pci_disable_device(pdev);
  6736. rtnl_unlock();
  6737. /* Request a slot slot reset. */
  6738. return PCI_ERS_RESULT_NEED_RESET;
  6739. }
  6740. /**
  6741. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6742. * @pdev: Pointer to PCI device
  6743. *
  6744. * Restart the card from scratch, as if from a cold-boot.
  6745. */
  6746. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6747. {
  6748. struct net_device *dev = pci_get_drvdata(pdev);
  6749. struct bnx2 *bp = netdev_priv(dev);
  6750. rtnl_lock();
  6751. if (pci_enable_device(pdev)) {
  6752. dev_err(&pdev->dev,
  6753. "Cannot re-enable PCI device after reset.\n");
  6754. rtnl_unlock();
  6755. return PCI_ERS_RESULT_DISCONNECT;
  6756. }
  6757. pci_set_master(pdev);
  6758. pci_restore_state(pdev);
  6759. if (netif_running(dev)) {
  6760. bnx2_set_power_state(bp, PCI_D0);
  6761. bnx2_init_nic(bp, 1);
  6762. }
  6763. rtnl_unlock();
  6764. return PCI_ERS_RESULT_RECOVERED;
  6765. }
  6766. /**
  6767. * bnx2_io_resume - called when traffic can start flowing again.
  6768. * @pdev: Pointer to PCI device
  6769. *
  6770. * This callback is called when the error recovery driver tells us that
  6771. * its OK to resume normal operation.
  6772. */
  6773. static void bnx2_io_resume(struct pci_dev *pdev)
  6774. {
  6775. struct net_device *dev = pci_get_drvdata(pdev);
  6776. struct bnx2 *bp = netdev_priv(dev);
  6777. rtnl_lock();
  6778. if (netif_running(dev))
  6779. bnx2_netif_start(bp);
  6780. netif_device_attach(dev);
  6781. rtnl_unlock();
  6782. }
  6783. static struct pci_error_handlers bnx2_err_handler = {
  6784. .error_detected = bnx2_io_error_detected,
  6785. .slot_reset = bnx2_io_slot_reset,
  6786. .resume = bnx2_io_resume,
  6787. };
  6788. static struct pci_driver bnx2_pci_driver = {
  6789. .name = DRV_MODULE_NAME,
  6790. .id_table = bnx2_pci_tbl,
  6791. .probe = bnx2_init_one,
  6792. .remove = __devexit_p(bnx2_remove_one),
  6793. .suspend = bnx2_suspend,
  6794. .resume = bnx2_resume,
  6795. .err_handler = &bnx2_err_handler,
  6796. };
  6797. static int __init bnx2_init(void)
  6798. {
  6799. return pci_register_driver(&bnx2_pci_driver);
  6800. }
  6801. static void __exit bnx2_cleanup(void)
  6802. {
  6803. pci_unregister_driver(&bnx2_pci_driver);
  6804. }
  6805. module_init(bnx2_init);
  6806. module_exit(bnx2_cleanup);