ixp4xx_eth.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283
  1. /*
  2. * Intel IXP4xx Ethernet driver for Linux
  3. *
  4. * Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of version 2 of the GNU General Public License
  8. * as published by the Free Software Foundation.
  9. *
  10. * Ethernet port config (0x00 is not present on IXP42X):
  11. *
  12. * logical port 0x00 0x10 0x20
  13. * NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
  14. * physical PortId 2 0 1
  15. * TX queue 23 24 25
  16. * RX-free queue 26 27 28
  17. * TX-done queue is always 31, per-port RX and TX-ready queues are configurable
  18. *
  19. *
  20. * Queue entries:
  21. * bits 0 -> 1 - NPE ID (RX and TX-done)
  22. * bits 0 -> 2 - priority (TX, per 802.1D)
  23. * bits 3 -> 4 - port ID (user-set?)
  24. * bits 5 -> 31 - physical descriptor address
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/dmapool.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/phy.h>
  33. #include <linux/platform_device.h>
  34. #include <mach/npe.h>
  35. #include <mach/qmgr.h>
  36. #define DEBUG_DESC 0
  37. #define DEBUG_RX 0
  38. #define DEBUG_TX 0
  39. #define DEBUG_PKT_BYTES 0
  40. #define DEBUG_MDIO 0
  41. #define DEBUG_CLOSE 0
  42. #define DRV_NAME "ixp4xx_eth"
  43. #define MAX_NPES 3
  44. #define RX_DESCS 64 /* also length of all RX queues */
  45. #define TX_DESCS 16 /* also length of all TX queues */
  46. #define TXDONE_QUEUE_LEN 64 /* dwords */
  47. #define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
  48. #define REGS_SIZE 0x1000
  49. #define MAX_MRU 1536 /* 0x600 */
  50. #define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
  51. #define NAPI_WEIGHT 16
  52. #define MDIO_INTERVAL (3 * HZ)
  53. #define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
  54. #define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
  55. #define NPE_ID(port_id) ((port_id) >> 4)
  56. #define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
  57. #define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
  58. #define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
  59. #define TXDONE_QUEUE 31
  60. /* TX Control Registers */
  61. #define TX_CNTRL0_TX_EN 0x01
  62. #define TX_CNTRL0_HALFDUPLEX 0x02
  63. #define TX_CNTRL0_RETRY 0x04
  64. #define TX_CNTRL0_PAD_EN 0x08
  65. #define TX_CNTRL0_APPEND_FCS 0x10
  66. #define TX_CNTRL0_2DEFER 0x20
  67. #define TX_CNTRL0_RMII 0x40 /* reduced MII */
  68. #define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
  69. /* RX Control Registers */
  70. #define RX_CNTRL0_RX_EN 0x01
  71. #define RX_CNTRL0_PADSTRIP_EN 0x02
  72. #define RX_CNTRL0_SEND_FCS 0x04
  73. #define RX_CNTRL0_PAUSE_EN 0x08
  74. #define RX_CNTRL0_LOOP_EN 0x10
  75. #define RX_CNTRL0_ADDR_FLTR_EN 0x20
  76. #define RX_CNTRL0_RX_RUNT_EN 0x40
  77. #define RX_CNTRL0_BCAST_DIS 0x80
  78. #define RX_CNTRL1_DEFER_EN 0x01
  79. /* Core Control Register */
  80. #define CORE_RESET 0x01
  81. #define CORE_RX_FIFO_FLUSH 0x02
  82. #define CORE_TX_FIFO_FLUSH 0x04
  83. #define CORE_SEND_JAM 0x08
  84. #define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
  85. #define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
  86. TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
  87. TX_CNTRL0_2DEFER)
  88. #define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
  89. #define DEFAULT_CORE_CNTRL CORE_MDC_EN
  90. /* NPE message codes */
  91. #define NPE_GETSTATUS 0x00
  92. #define NPE_EDB_SETPORTADDRESS 0x01
  93. #define NPE_EDB_GETMACADDRESSDATABASE 0x02
  94. #define NPE_EDB_SETMACADDRESSSDATABASE 0x03
  95. #define NPE_GETSTATS 0x04
  96. #define NPE_RESETSTATS 0x05
  97. #define NPE_SETMAXFRAMELENGTHS 0x06
  98. #define NPE_VLAN_SETRXTAGMODE 0x07
  99. #define NPE_VLAN_SETDEFAULTRXVID 0x08
  100. #define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
  101. #define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
  102. #define NPE_VLAN_SETRXQOSENTRY 0x0B
  103. #define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
  104. #define NPE_STP_SETBLOCKINGSTATE 0x0D
  105. #define NPE_FW_SETFIREWALLMODE 0x0E
  106. #define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
  107. #define NPE_PC_SETAPMACTABLE 0x11
  108. #define NPE_SETLOOPBACK_MODE 0x12
  109. #define NPE_PC_SETBSSIDTABLE 0x13
  110. #define NPE_ADDRESS_FILTER_CONFIG 0x14
  111. #define NPE_APPENDFCSCONFIG 0x15
  112. #define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
  113. #define NPE_MAC_RECOVERY_START 0x17
  114. #ifdef __ARMEB__
  115. typedef struct sk_buff buffer_t;
  116. #define free_buffer dev_kfree_skb
  117. #define free_buffer_irq dev_kfree_skb_irq
  118. #else
  119. typedef void buffer_t;
  120. #define free_buffer kfree
  121. #define free_buffer_irq kfree
  122. #endif
  123. struct eth_regs {
  124. u32 tx_control[2], __res1[2]; /* 000 */
  125. u32 rx_control[2], __res2[2]; /* 010 */
  126. u32 random_seed, __res3[3]; /* 020 */
  127. u32 partial_empty_threshold, __res4; /* 030 */
  128. u32 partial_full_threshold, __res5; /* 038 */
  129. u32 tx_start_bytes, __res6[3]; /* 040 */
  130. u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
  131. u32 tx_2part_deferral[2], __res8[2]; /* 060 */
  132. u32 slot_time, __res9[3]; /* 070 */
  133. u32 mdio_command[4]; /* 080 */
  134. u32 mdio_status[4]; /* 090 */
  135. u32 mcast_mask[6], __res10[2]; /* 0A0 */
  136. u32 mcast_addr[6], __res11[2]; /* 0C0 */
  137. u32 int_clock_threshold, __res12[3]; /* 0E0 */
  138. u32 hw_addr[6], __res13[61]; /* 0F0 */
  139. u32 core_control; /* 1FC */
  140. };
  141. struct port {
  142. struct resource *mem_res;
  143. struct eth_regs __iomem *regs;
  144. struct npe *npe;
  145. struct net_device *netdev;
  146. struct napi_struct napi;
  147. struct phy_device *phydev;
  148. struct eth_plat_info *plat;
  149. buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
  150. struct desc *desc_tab; /* coherent */
  151. u32 desc_tab_phys;
  152. int id; /* logical port ID */
  153. int speed, duplex;
  154. u8 firmware[4];
  155. };
  156. /* NPE message structure */
  157. struct msg {
  158. #ifdef __ARMEB__
  159. u8 cmd, eth_id, byte2, byte3;
  160. u8 byte4, byte5, byte6, byte7;
  161. #else
  162. u8 byte3, byte2, eth_id, cmd;
  163. u8 byte7, byte6, byte5, byte4;
  164. #endif
  165. };
  166. /* Ethernet packet descriptor */
  167. struct desc {
  168. u32 next; /* pointer to next buffer, unused */
  169. #ifdef __ARMEB__
  170. u16 buf_len; /* buffer length */
  171. u16 pkt_len; /* packet length */
  172. u32 data; /* pointer to data buffer in RAM */
  173. u8 dest_id;
  174. u8 src_id;
  175. u16 flags;
  176. u8 qos;
  177. u8 padlen;
  178. u16 vlan_tci;
  179. #else
  180. u16 pkt_len; /* packet length */
  181. u16 buf_len; /* buffer length */
  182. u32 data; /* pointer to data buffer in RAM */
  183. u16 flags;
  184. u8 src_id;
  185. u8 dest_id;
  186. u16 vlan_tci;
  187. u8 padlen;
  188. u8 qos;
  189. #endif
  190. #ifdef __ARMEB__
  191. u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
  192. u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
  193. u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
  194. #else
  195. u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
  196. u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
  197. u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
  198. #endif
  199. };
  200. #define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
  201. (n) * sizeof(struct desc))
  202. #define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
  203. #define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
  204. ((n) + RX_DESCS) * sizeof(struct desc))
  205. #define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
  206. #ifndef __ARMEB__
  207. static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
  208. {
  209. int i;
  210. for (i = 0; i < cnt; i++)
  211. dest[i] = swab32(src[i]);
  212. }
  213. #endif
  214. static spinlock_t mdio_lock;
  215. static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
  216. struct mii_bus *mdio_bus;
  217. static int ports_open;
  218. static struct port *npe_port_tab[MAX_NPES];
  219. static struct dma_pool *dma_pool;
  220. static int ixp4xx_mdio_cmd(struct mii_bus *bus, int phy_id, int location,
  221. int write, u16 cmd)
  222. {
  223. int cycles = 0;
  224. if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
  225. printk(KERN_ERR "%s: MII not ready to transmit\n", bus->name);
  226. return -1;
  227. }
  228. if (write) {
  229. __raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
  230. __raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
  231. }
  232. __raw_writel(((phy_id << 5) | location) & 0xFF,
  233. &mdio_regs->mdio_command[2]);
  234. __raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
  235. &mdio_regs->mdio_command[3]);
  236. while ((cycles < MAX_MDIO_RETRIES) &&
  237. (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
  238. udelay(1);
  239. cycles++;
  240. }
  241. if (cycles == MAX_MDIO_RETRIES) {
  242. printk(KERN_ERR "%s #%i: MII write failed\n", bus->name,
  243. phy_id);
  244. return -1;
  245. }
  246. #if DEBUG_MDIO
  247. printk(KERN_DEBUG "%s #%i: mdio_%s() took %i cycles\n", bus->name,
  248. phy_id, write ? "write" : "read", cycles);
  249. #endif
  250. if (write)
  251. return 0;
  252. if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
  253. #if DEBUG_MDIO
  254. printk(KERN_DEBUG "%s #%i: MII read failed\n", bus->name,
  255. phy_id);
  256. #endif
  257. return 0xFFFF; /* don't return error */
  258. }
  259. return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
  260. ((__raw_readl(&mdio_regs->mdio_status[1]) & 0xFF) << 8);
  261. }
  262. static int ixp4xx_mdio_read(struct mii_bus *bus, int phy_id, int location)
  263. {
  264. unsigned long flags;
  265. int ret;
  266. spin_lock_irqsave(&mdio_lock, flags);
  267. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 0, 0);
  268. spin_unlock_irqrestore(&mdio_lock, flags);
  269. #if DEBUG_MDIO
  270. printk(KERN_DEBUG "%s #%i: MII read [%i] -> 0x%X\n", bus->name,
  271. phy_id, location, ret);
  272. #endif
  273. return ret;
  274. }
  275. static int ixp4xx_mdio_write(struct mii_bus *bus, int phy_id, int location,
  276. u16 val)
  277. {
  278. unsigned long flags;
  279. int ret;
  280. spin_lock_irqsave(&mdio_lock, flags);
  281. ret = ixp4xx_mdio_cmd(bus, phy_id, location, 1, val);
  282. spin_unlock_irqrestore(&mdio_lock, flags);
  283. #if DEBUG_MDIO
  284. printk(KERN_DEBUG "%s #%i: MII read [%i] <- 0x%X, err = %i\n",
  285. bus->name, phy_id, location, val, ret);
  286. #endif
  287. return ret;
  288. }
  289. static int ixp4xx_mdio_register(void)
  290. {
  291. int err;
  292. if (!(mdio_bus = mdiobus_alloc()))
  293. return -ENOMEM;
  294. if (cpu_is_ixp43x()) {
  295. /* IXP43x lacks NPE-B and uses NPE-C for MII PHY access */
  296. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEC_ETH))
  297. return -ENODEV;
  298. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  299. } else {
  300. /* All MII PHY accesses use NPE-B Ethernet registers */
  301. if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
  302. return -ENODEV;
  303. mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  304. }
  305. __raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
  306. spin_lock_init(&mdio_lock);
  307. mdio_bus->name = "IXP4xx MII Bus";
  308. mdio_bus->read = &ixp4xx_mdio_read;
  309. mdio_bus->write = &ixp4xx_mdio_write;
  310. strcpy(mdio_bus->id, "0");
  311. if ((err = mdiobus_register(mdio_bus)))
  312. mdiobus_free(mdio_bus);
  313. return err;
  314. }
  315. static void ixp4xx_mdio_remove(void)
  316. {
  317. mdiobus_unregister(mdio_bus);
  318. mdiobus_free(mdio_bus);
  319. }
  320. static void ixp4xx_adjust_link(struct net_device *dev)
  321. {
  322. struct port *port = netdev_priv(dev);
  323. struct phy_device *phydev = port->phydev;
  324. if (!phydev->link) {
  325. if (port->speed) {
  326. port->speed = 0;
  327. printk(KERN_INFO "%s: link down\n", dev->name);
  328. }
  329. return;
  330. }
  331. if (port->speed == phydev->speed && port->duplex == phydev->duplex)
  332. return;
  333. port->speed = phydev->speed;
  334. port->duplex = phydev->duplex;
  335. if (port->duplex)
  336. __raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
  337. &port->regs->tx_control[0]);
  338. else
  339. __raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
  340. &port->regs->tx_control[0]);
  341. printk(KERN_INFO "%s: link up, speed %u Mb/s, %s duplex\n",
  342. dev->name, port->speed, port->duplex ? "full" : "half");
  343. }
  344. static inline void debug_pkt(struct net_device *dev, const char *func,
  345. u8 *data, int len)
  346. {
  347. #if DEBUG_PKT_BYTES
  348. int i;
  349. printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
  350. for (i = 0; i < len; i++) {
  351. if (i >= DEBUG_PKT_BYTES)
  352. break;
  353. printk("%s%02X",
  354. ((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
  355. data[i]);
  356. }
  357. printk("\n");
  358. #endif
  359. }
  360. static inline void debug_desc(u32 phys, struct desc *desc)
  361. {
  362. #if DEBUG_DESC
  363. printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
  364. " %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
  365. phys, desc->next, desc->buf_len, desc->pkt_len,
  366. desc->data, desc->dest_id, desc->src_id, desc->flags,
  367. desc->qos, desc->padlen, desc->vlan_tci,
  368. desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
  369. desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
  370. desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
  371. desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
  372. #endif
  373. }
  374. static inline int queue_get_desc(unsigned int queue, struct port *port,
  375. int is_tx)
  376. {
  377. u32 phys, tab_phys, n_desc;
  378. struct desc *tab;
  379. if (!(phys = qmgr_get_entry(queue)))
  380. return -1;
  381. phys &= ~0x1F; /* mask out non-address bits */
  382. tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
  383. tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
  384. n_desc = (phys - tab_phys) / sizeof(struct desc);
  385. BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
  386. debug_desc(phys, &tab[n_desc]);
  387. BUG_ON(tab[n_desc].next);
  388. return n_desc;
  389. }
  390. static inline void queue_put_desc(unsigned int queue, u32 phys,
  391. struct desc *desc)
  392. {
  393. debug_desc(phys, desc);
  394. BUG_ON(phys & 0x1F);
  395. qmgr_put_entry(queue, phys);
  396. /* Don't check for queue overflow here, we've allocated sufficient
  397. length and queues >= 32 don't support this check anyway. */
  398. }
  399. static inline void dma_unmap_tx(struct port *port, struct desc *desc)
  400. {
  401. #ifdef __ARMEB__
  402. dma_unmap_single(&port->netdev->dev, desc->data,
  403. desc->buf_len, DMA_TO_DEVICE);
  404. #else
  405. dma_unmap_single(&port->netdev->dev, desc->data & ~3,
  406. ALIGN((desc->data & 3) + desc->buf_len, 4),
  407. DMA_TO_DEVICE);
  408. #endif
  409. }
  410. static void eth_rx_irq(void *pdev)
  411. {
  412. struct net_device *dev = pdev;
  413. struct port *port = netdev_priv(dev);
  414. #if DEBUG_RX
  415. printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
  416. #endif
  417. qmgr_disable_irq(port->plat->rxq);
  418. napi_schedule(&port->napi);
  419. }
  420. static int eth_poll(struct napi_struct *napi, int budget)
  421. {
  422. struct port *port = container_of(napi, struct port, napi);
  423. struct net_device *dev = port->netdev;
  424. unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
  425. int received = 0;
  426. #if DEBUG_RX
  427. printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
  428. #endif
  429. while (received < budget) {
  430. struct sk_buff *skb;
  431. struct desc *desc;
  432. int n;
  433. #ifdef __ARMEB__
  434. struct sk_buff *temp;
  435. u32 phys;
  436. #endif
  437. if ((n = queue_get_desc(rxq, port, 0)) < 0) {
  438. #if DEBUG_RX
  439. printk(KERN_DEBUG "%s: eth_poll napi_complete\n",
  440. dev->name);
  441. #endif
  442. napi_complete(napi);
  443. qmgr_enable_irq(rxq);
  444. if (!qmgr_stat_below_low_watermark(rxq) &&
  445. napi_reschedule(napi)) { /* not empty again */
  446. #if DEBUG_RX
  447. printk(KERN_DEBUG "%s: eth_poll"
  448. " napi_reschedule successed\n",
  449. dev->name);
  450. #endif
  451. qmgr_disable_irq(rxq);
  452. continue;
  453. }
  454. #if DEBUG_RX
  455. printk(KERN_DEBUG "%s: eth_poll all done\n",
  456. dev->name);
  457. #endif
  458. return received; /* all work done */
  459. }
  460. desc = rx_desc_ptr(port, n);
  461. #ifdef __ARMEB__
  462. if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
  463. phys = dma_map_single(&dev->dev, skb->data,
  464. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  465. if (dma_mapping_error(&dev->dev, phys)) {
  466. dev_kfree_skb(skb);
  467. skb = NULL;
  468. }
  469. }
  470. #else
  471. skb = netdev_alloc_skb(dev,
  472. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
  473. #endif
  474. if (!skb) {
  475. dev->stats.rx_dropped++;
  476. /* put the desc back on RX-ready queue */
  477. desc->buf_len = MAX_MRU;
  478. desc->pkt_len = 0;
  479. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  480. continue;
  481. }
  482. /* process received frame */
  483. #ifdef __ARMEB__
  484. temp = skb;
  485. skb = port->rx_buff_tab[n];
  486. dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
  487. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  488. #else
  489. dma_sync_single_for_cpu(&dev->dev, desc->data - NET_IP_ALIGN,
  490. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  491. memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
  492. ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
  493. #endif
  494. skb_reserve(skb, NET_IP_ALIGN);
  495. skb_put(skb, desc->pkt_len);
  496. debug_pkt(dev, "eth_poll", skb->data, skb->len);
  497. skb->protocol = eth_type_trans(skb, dev);
  498. dev->stats.rx_packets++;
  499. dev->stats.rx_bytes += skb->len;
  500. netif_receive_skb(skb);
  501. /* put the new buffer on RX-free queue */
  502. #ifdef __ARMEB__
  503. port->rx_buff_tab[n] = temp;
  504. desc->data = phys + NET_IP_ALIGN;
  505. #endif
  506. desc->buf_len = MAX_MRU;
  507. desc->pkt_len = 0;
  508. queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
  509. received++;
  510. }
  511. #if DEBUG_RX
  512. printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
  513. #endif
  514. return received; /* not all work done */
  515. }
  516. static void eth_txdone_irq(void *unused)
  517. {
  518. u32 phys;
  519. #if DEBUG_TX
  520. printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
  521. #endif
  522. while ((phys = qmgr_get_entry(TXDONE_QUEUE)) != 0) {
  523. u32 npe_id, n_desc;
  524. struct port *port;
  525. struct desc *desc;
  526. int start;
  527. npe_id = phys & 3;
  528. BUG_ON(npe_id >= MAX_NPES);
  529. port = npe_port_tab[npe_id];
  530. BUG_ON(!port);
  531. phys &= ~0x1F; /* mask out non-address bits */
  532. n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
  533. BUG_ON(n_desc >= TX_DESCS);
  534. desc = tx_desc_ptr(port, n_desc);
  535. debug_desc(phys, desc);
  536. if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
  537. port->netdev->stats.tx_packets++;
  538. port->netdev->stats.tx_bytes += desc->pkt_len;
  539. dma_unmap_tx(port, desc);
  540. #if DEBUG_TX
  541. printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
  542. port->netdev->name, port->tx_buff_tab[n_desc]);
  543. #endif
  544. free_buffer_irq(port->tx_buff_tab[n_desc]);
  545. port->tx_buff_tab[n_desc] = NULL;
  546. }
  547. start = qmgr_stat_below_low_watermark(port->plat->txreadyq);
  548. queue_put_desc(port->plat->txreadyq, phys, desc);
  549. if (start) { /* TX-ready queue was empty */
  550. #if DEBUG_TX
  551. printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
  552. port->netdev->name);
  553. #endif
  554. netif_wake_queue(port->netdev);
  555. }
  556. }
  557. }
  558. static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
  559. {
  560. struct port *port = netdev_priv(dev);
  561. unsigned int txreadyq = port->plat->txreadyq;
  562. int len, offset, bytes, n;
  563. void *mem;
  564. u32 phys;
  565. struct desc *desc;
  566. #if DEBUG_TX
  567. printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
  568. #endif
  569. if (unlikely(skb->len > MAX_MRU)) {
  570. dev_kfree_skb(skb);
  571. dev->stats.tx_errors++;
  572. return NETDEV_TX_OK;
  573. }
  574. debug_pkt(dev, "eth_xmit", skb->data, skb->len);
  575. len = skb->len;
  576. #ifdef __ARMEB__
  577. offset = 0; /* no need to keep alignment */
  578. bytes = len;
  579. mem = skb->data;
  580. #else
  581. offset = (int)skb->data & 3; /* keep 32-bit alignment */
  582. bytes = ALIGN(offset + len, 4);
  583. if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
  584. dev_kfree_skb(skb);
  585. dev->stats.tx_dropped++;
  586. return NETDEV_TX_OK;
  587. }
  588. memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
  589. dev_kfree_skb(skb);
  590. #endif
  591. phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
  592. if (dma_mapping_error(&dev->dev, phys)) {
  593. #ifdef __ARMEB__
  594. dev_kfree_skb(skb);
  595. #else
  596. kfree(mem);
  597. #endif
  598. dev->stats.tx_dropped++;
  599. return NETDEV_TX_OK;
  600. }
  601. n = queue_get_desc(txreadyq, port, 1);
  602. BUG_ON(n < 0);
  603. desc = tx_desc_ptr(port, n);
  604. #ifdef __ARMEB__
  605. port->tx_buff_tab[n] = skb;
  606. #else
  607. port->tx_buff_tab[n] = mem;
  608. #endif
  609. desc->data = phys + offset;
  610. desc->buf_len = desc->pkt_len = len;
  611. /* NPE firmware pads short frames with zeros internally */
  612. wmb();
  613. queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
  614. dev->trans_start = jiffies;
  615. if (qmgr_stat_below_low_watermark(txreadyq)) { /* empty */
  616. #if DEBUG_TX
  617. printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
  618. #endif
  619. netif_stop_queue(dev);
  620. /* we could miss TX ready interrupt */
  621. /* really empty in fact */
  622. if (!qmgr_stat_below_low_watermark(txreadyq)) {
  623. #if DEBUG_TX
  624. printk(KERN_DEBUG "%s: eth_xmit ready again\n",
  625. dev->name);
  626. #endif
  627. netif_wake_queue(dev);
  628. }
  629. }
  630. #if DEBUG_TX
  631. printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
  632. #endif
  633. return NETDEV_TX_OK;
  634. }
  635. static void eth_set_mcast_list(struct net_device *dev)
  636. {
  637. struct port *port = netdev_priv(dev);
  638. struct dev_mc_list *mclist = dev->mc_list;
  639. u8 diffs[ETH_ALEN], *addr;
  640. int cnt = dev->mc_count, i;
  641. if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) {
  642. __raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
  643. &port->regs->rx_control[0]);
  644. return;
  645. }
  646. memset(diffs, 0, ETH_ALEN);
  647. addr = mclist->dmi_addr; /* first MAC address */
  648. while (--cnt && (mclist = mclist->next))
  649. for (i = 0; i < ETH_ALEN; i++)
  650. diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
  651. for (i = 0; i < ETH_ALEN; i++) {
  652. __raw_writel(addr[i], &port->regs->mcast_addr[i]);
  653. __raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
  654. }
  655. __raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
  656. &port->regs->rx_control[0]);
  657. }
  658. static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  659. {
  660. struct port *port = netdev_priv(dev);
  661. if (!netif_running(dev))
  662. return -EINVAL;
  663. return phy_mii_ioctl(port->phydev, if_mii(req), cmd);
  664. }
  665. /* ethtool support */
  666. static void ixp4xx_get_drvinfo(struct net_device *dev,
  667. struct ethtool_drvinfo *info)
  668. {
  669. struct port *port = netdev_priv(dev);
  670. strcpy(info->driver, DRV_NAME);
  671. snprintf(info->fw_version, sizeof(info->fw_version), "%u:%u:%u:%u",
  672. port->firmware[0], port->firmware[1],
  673. port->firmware[2], port->firmware[3]);
  674. strcpy(info->bus_info, "internal");
  675. }
  676. static int ixp4xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  677. {
  678. struct port *port = netdev_priv(dev);
  679. return phy_ethtool_gset(port->phydev, cmd);
  680. }
  681. static int ixp4xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  682. {
  683. struct port *port = netdev_priv(dev);
  684. return phy_ethtool_sset(port->phydev, cmd);
  685. }
  686. static int ixp4xx_nway_reset(struct net_device *dev)
  687. {
  688. struct port *port = netdev_priv(dev);
  689. return phy_start_aneg(port->phydev);
  690. }
  691. static const struct ethtool_ops ixp4xx_ethtool_ops = {
  692. .get_drvinfo = ixp4xx_get_drvinfo,
  693. .get_settings = ixp4xx_get_settings,
  694. .set_settings = ixp4xx_set_settings,
  695. .nway_reset = ixp4xx_nway_reset,
  696. .get_link = ethtool_op_get_link,
  697. };
  698. static int request_queues(struct port *port)
  699. {
  700. int err;
  701. err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0,
  702. "%s:RX-free", port->netdev->name);
  703. if (err)
  704. return err;
  705. err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0,
  706. "%s:RX", port->netdev->name);
  707. if (err)
  708. goto rel_rxfree;
  709. err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0,
  710. "%s:TX", port->netdev->name);
  711. if (err)
  712. goto rel_rx;
  713. err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0,
  714. "%s:TX-ready", port->netdev->name);
  715. if (err)
  716. goto rel_tx;
  717. /* TX-done queue handles skbs sent out by the NPEs */
  718. if (!ports_open) {
  719. err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0,
  720. "%s:TX-done", DRV_NAME);
  721. if (err)
  722. goto rel_txready;
  723. }
  724. return 0;
  725. rel_txready:
  726. qmgr_release_queue(port->plat->txreadyq);
  727. rel_tx:
  728. qmgr_release_queue(TX_QUEUE(port->id));
  729. rel_rx:
  730. qmgr_release_queue(port->plat->rxq);
  731. rel_rxfree:
  732. qmgr_release_queue(RXFREE_QUEUE(port->id));
  733. printk(KERN_DEBUG "%s: unable to request hardware queues\n",
  734. port->netdev->name);
  735. return err;
  736. }
  737. static void release_queues(struct port *port)
  738. {
  739. qmgr_release_queue(RXFREE_QUEUE(port->id));
  740. qmgr_release_queue(port->plat->rxq);
  741. qmgr_release_queue(TX_QUEUE(port->id));
  742. qmgr_release_queue(port->plat->txreadyq);
  743. if (!ports_open)
  744. qmgr_release_queue(TXDONE_QUEUE);
  745. }
  746. static int init_queues(struct port *port)
  747. {
  748. int i;
  749. if (!ports_open)
  750. if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
  751. POOL_ALLOC_SIZE, 32, 0)))
  752. return -ENOMEM;
  753. if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
  754. &port->desc_tab_phys)))
  755. return -ENOMEM;
  756. memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
  757. memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
  758. memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
  759. /* Setup RX buffers */
  760. for (i = 0; i < RX_DESCS; i++) {
  761. struct desc *desc = rx_desc_ptr(port, i);
  762. buffer_t *buff; /* skb or kmalloc()ated memory */
  763. void *data;
  764. #ifdef __ARMEB__
  765. if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
  766. return -ENOMEM;
  767. data = buff->data;
  768. #else
  769. if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
  770. return -ENOMEM;
  771. data = buff;
  772. #endif
  773. desc->buf_len = MAX_MRU;
  774. desc->data = dma_map_single(&port->netdev->dev, data,
  775. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  776. if (dma_mapping_error(&port->netdev->dev, desc->data)) {
  777. free_buffer(buff);
  778. return -EIO;
  779. }
  780. desc->data += NET_IP_ALIGN;
  781. port->rx_buff_tab[i] = buff;
  782. }
  783. return 0;
  784. }
  785. static void destroy_queues(struct port *port)
  786. {
  787. int i;
  788. if (port->desc_tab) {
  789. for (i = 0; i < RX_DESCS; i++) {
  790. struct desc *desc = rx_desc_ptr(port, i);
  791. buffer_t *buff = port->rx_buff_tab[i];
  792. if (buff) {
  793. dma_unmap_single(&port->netdev->dev,
  794. desc->data - NET_IP_ALIGN,
  795. RX_BUFF_SIZE, DMA_FROM_DEVICE);
  796. free_buffer(buff);
  797. }
  798. }
  799. for (i = 0; i < TX_DESCS; i++) {
  800. struct desc *desc = tx_desc_ptr(port, i);
  801. buffer_t *buff = port->tx_buff_tab[i];
  802. if (buff) {
  803. dma_unmap_tx(port, desc);
  804. free_buffer(buff);
  805. }
  806. }
  807. dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
  808. port->desc_tab = NULL;
  809. }
  810. if (!ports_open && dma_pool) {
  811. dma_pool_destroy(dma_pool);
  812. dma_pool = NULL;
  813. }
  814. }
  815. static int eth_open(struct net_device *dev)
  816. {
  817. struct port *port = netdev_priv(dev);
  818. struct npe *npe = port->npe;
  819. struct msg msg;
  820. int i, err;
  821. if (!npe_running(npe)) {
  822. err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
  823. if (err)
  824. return err;
  825. if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
  826. printk(KERN_ERR "%s: %s not responding\n", dev->name,
  827. npe_name(npe));
  828. return -EIO;
  829. }
  830. port->firmware[0] = msg.byte4;
  831. port->firmware[1] = msg.byte5;
  832. port->firmware[2] = msg.byte6;
  833. port->firmware[3] = msg.byte7;
  834. }
  835. memset(&msg, 0, sizeof(msg));
  836. msg.cmd = NPE_VLAN_SETRXQOSENTRY;
  837. msg.eth_id = port->id;
  838. msg.byte5 = port->plat->rxq | 0x80;
  839. msg.byte7 = port->plat->rxq << 4;
  840. for (i = 0; i < 8; i++) {
  841. msg.byte3 = i;
  842. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
  843. return -EIO;
  844. }
  845. msg.cmd = NPE_EDB_SETPORTADDRESS;
  846. msg.eth_id = PHYSICAL_ID(port->id);
  847. msg.byte2 = dev->dev_addr[0];
  848. msg.byte3 = dev->dev_addr[1];
  849. msg.byte4 = dev->dev_addr[2];
  850. msg.byte5 = dev->dev_addr[3];
  851. msg.byte6 = dev->dev_addr[4];
  852. msg.byte7 = dev->dev_addr[5];
  853. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
  854. return -EIO;
  855. memset(&msg, 0, sizeof(msg));
  856. msg.cmd = NPE_FW_SETFIREWALLMODE;
  857. msg.eth_id = port->id;
  858. if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
  859. return -EIO;
  860. if ((err = request_queues(port)) != 0)
  861. return err;
  862. if ((err = init_queues(port)) != 0) {
  863. destroy_queues(port);
  864. release_queues(port);
  865. return err;
  866. }
  867. port->speed = 0; /* force "link up" message */
  868. phy_start(port->phydev);
  869. for (i = 0; i < ETH_ALEN; i++)
  870. __raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
  871. __raw_writel(0x08, &port->regs->random_seed);
  872. __raw_writel(0x12, &port->regs->partial_empty_threshold);
  873. __raw_writel(0x30, &port->regs->partial_full_threshold);
  874. __raw_writel(0x08, &port->regs->tx_start_bytes);
  875. __raw_writel(0x15, &port->regs->tx_deferral);
  876. __raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
  877. __raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
  878. __raw_writel(0x80, &port->regs->slot_time);
  879. __raw_writel(0x01, &port->regs->int_clock_threshold);
  880. /* Populate queues with buffers, no failure after this point */
  881. for (i = 0; i < TX_DESCS; i++)
  882. queue_put_desc(port->plat->txreadyq,
  883. tx_desc_phys(port, i), tx_desc_ptr(port, i));
  884. for (i = 0; i < RX_DESCS; i++)
  885. queue_put_desc(RXFREE_QUEUE(port->id),
  886. rx_desc_phys(port, i), rx_desc_ptr(port, i));
  887. __raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
  888. __raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
  889. __raw_writel(0, &port->regs->rx_control[1]);
  890. __raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
  891. napi_enable(&port->napi);
  892. eth_set_mcast_list(dev);
  893. netif_start_queue(dev);
  894. qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
  895. eth_rx_irq, dev);
  896. if (!ports_open) {
  897. qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
  898. eth_txdone_irq, NULL);
  899. qmgr_enable_irq(TXDONE_QUEUE);
  900. }
  901. ports_open++;
  902. /* we may already have RX data, enables IRQ */
  903. napi_schedule(&port->napi);
  904. return 0;
  905. }
  906. static int eth_close(struct net_device *dev)
  907. {
  908. struct port *port = netdev_priv(dev);
  909. struct msg msg;
  910. int buffs = RX_DESCS; /* allocated RX buffers */
  911. int i;
  912. ports_open--;
  913. qmgr_disable_irq(port->plat->rxq);
  914. napi_disable(&port->napi);
  915. netif_stop_queue(dev);
  916. while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
  917. buffs--;
  918. memset(&msg, 0, sizeof(msg));
  919. msg.cmd = NPE_SETLOOPBACK_MODE;
  920. msg.eth_id = port->id;
  921. msg.byte3 = 1;
  922. if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
  923. printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
  924. i = 0;
  925. do { /* drain RX buffers */
  926. while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
  927. buffs--;
  928. if (!buffs)
  929. break;
  930. if (qmgr_stat_empty(TX_QUEUE(port->id))) {
  931. /* we have to inject some packet */
  932. struct desc *desc;
  933. u32 phys;
  934. int n = queue_get_desc(port->plat->txreadyq, port, 1);
  935. BUG_ON(n < 0);
  936. desc = tx_desc_ptr(port, n);
  937. phys = tx_desc_phys(port, n);
  938. desc->buf_len = desc->pkt_len = 1;
  939. wmb();
  940. queue_put_desc(TX_QUEUE(port->id), phys, desc);
  941. }
  942. udelay(1);
  943. } while (++i < MAX_CLOSE_WAIT);
  944. if (buffs)
  945. printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
  946. " left in NPE\n", dev->name, buffs);
  947. #if DEBUG_CLOSE
  948. if (!buffs)
  949. printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
  950. #endif
  951. buffs = TX_DESCS;
  952. while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
  953. buffs--; /* cancel TX */
  954. i = 0;
  955. do {
  956. while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
  957. buffs--;
  958. if (!buffs)
  959. break;
  960. } while (++i < MAX_CLOSE_WAIT);
  961. if (buffs)
  962. printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
  963. "left in NPE\n", dev->name, buffs);
  964. #if DEBUG_CLOSE
  965. if (!buffs)
  966. printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
  967. #endif
  968. msg.byte3 = 0;
  969. if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
  970. printk(KERN_CRIT "%s: unable to disable loopback\n",
  971. dev->name);
  972. phy_stop(port->phydev);
  973. if (!ports_open)
  974. qmgr_disable_irq(TXDONE_QUEUE);
  975. destroy_queues(port);
  976. release_queues(port);
  977. return 0;
  978. }
  979. static const struct net_device_ops ixp4xx_netdev_ops = {
  980. .ndo_open = eth_open,
  981. .ndo_stop = eth_close,
  982. .ndo_start_xmit = eth_xmit,
  983. .ndo_set_multicast_list = eth_set_mcast_list,
  984. .ndo_do_ioctl = eth_ioctl,
  985. .ndo_change_mtu = eth_change_mtu,
  986. .ndo_set_mac_address = eth_mac_addr,
  987. .ndo_validate_addr = eth_validate_addr,
  988. };
  989. static int __devinit eth_init_one(struct platform_device *pdev)
  990. {
  991. struct port *port;
  992. struct net_device *dev;
  993. struct eth_plat_info *plat = pdev->dev.platform_data;
  994. u32 regs_phys;
  995. char phy_id[MII_BUS_ID_SIZE + 3];
  996. int err;
  997. if (!(dev = alloc_etherdev(sizeof(struct port))))
  998. return -ENOMEM;
  999. SET_NETDEV_DEV(dev, &pdev->dev);
  1000. port = netdev_priv(dev);
  1001. port->netdev = dev;
  1002. port->id = pdev->id;
  1003. switch (port->id) {
  1004. case IXP4XX_ETH_NPEA:
  1005. port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
  1006. regs_phys = IXP4XX_EthA_BASE_PHYS;
  1007. break;
  1008. case IXP4XX_ETH_NPEB:
  1009. port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
  1010. regs_phys = IXP4XX_EthB_BASE_PHYS;
  1011. break;
  1012. case IXP4XX_ETH_NPEC:
  1013. port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
  1014. regs_phys = IXP4XX_EthC_BASE_PHYS;
  1015. break;
  1016. default:
  1017. err = -ENODEV;
  1018. goto err_free;
  1019. }
  1020. dev->netdev_ops = &ixp4xx_netdev_ops;
  1021. dev->ethtool_ops = &ixp4xx_ethtool_ops;
  1022. dev->tx_queue_len = 100;
  1023. netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
  1024. if (!(port->npe = npe_request(NPE_ID(port->id)))) {
  1025. err = -EIO;
  1026. goto err_free;
  1027. }
  1028. port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
  1029. if (!port->mem_res) {
  1030. err = -EBUSY;
  1031. goto err_npe_rel;
  1032. }
  1033. port->plat = plat;
  1034. npe_port_tab[NPE_ID(port->id)] = port;
  1035. memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
  1036. platform_set_drvdata(pdev, dev);
  1037. __raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
  1038. &port->regs->core_control);
  1039. udelay(50);
  1040. __raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
  1041. udelay(50);
  1042. snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, "0", plat->phy);
  1043. port->phydev = phy_connect(dev, phy_id, &ixp4xx_adjust_link, 0,
  1044. PHY_INTERFACE_MODE_MII);
  1045. if ((err = IS_ERR(port->phydev)))
  1046. goto err_free_mem;
  1047. port->phydev->irq = PHY_POLL;
  1048. if ((err = register_netdev(dev)))
  1049. goto err_phy_dis;
  1050. printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
  1051. npe_name(port->npe));
  1052. return 0;
  1053. err_phy_dis:
  1054. phy_disconnect(port->phydev);
  1055. err_free_mem:
  1056. npe_port_tab[NPE_ID(port->id)] = NULL;
  1057. platform_set_drvdata(pdev, NULL);
  1058. release_resource(port->mem_res);
  1059. err_npe_rel:
  1060. npe_release(port->npe);
  1061. err_free:
  1062. free_netdev(dev);
  1063. return err;
  1064. }
  1065. static int __devexit eth_remove_one(struct platform_device *pdev)
  1066. {
  1067. struct net_device *dev = platform_get_drvdata(pdev);
  1068. struct port *port = netdev_priv(dev);
  1069. unregister_netdev(dev);
  1070. phy_disconnect(port->phydev);
  1071. npe_port_tab[NPE_ID(port->id)] = NULL;
  1072. platform_set_drvdata(pdev, NULL);
  1073. npe_release(port->npe);
  1074. release_resource(port->mem_res);
  1075. free_netdev(dev);
  1076. return 0;
  1077. }
  1078. static struct platform_driver ixp4xx_eth_driver = {
  1079. .driver.name = DRV_NAME,
  1080. .probe = eth_init_one,
  1081. .remove = eth_remove_one,
  1082. };
  1083. static int __init eth_init_module(void)
  1084. {
  1085. int err;
  1086. if ((err = ixp4xx_mdio_register()))
  1087. return err;
  1088. return platform_driver_register(&ixp4xx_eth_driver);
  1089. }
  1090. static void __exit eth_cleanup_module(void)
  1091. {
  1092. platform_driver_unregister(&ixp4xx_eth_driver);
  1093. ixp4xx_mdio_remove();
  1094. }
  1095. MODULE_AUTHOR("Krzysztof Halasa");
  1096. MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
  1097. MODULE_LICENSE("GPL v2");
  1098. MODULE_ALIAS("platform:ixp4xx_eth");
  1099. module_init(eth_init_module);
  1100. module_exit(eth_cleanup_module);