core.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <linux/amba/pl061.h>
  30. #include <linux/amba/mmci.h>
  31. #include <linux/clocksource.h>
  32. #include <linux/clockchips.h>
  33. #include <linux/cnt32_to_63.h>
  34. #include <linux/io.h>
  35. #include <asm/clkdev.h>
  36. #include <asm/system.h>
  37. #include <mach/hardware.h>
  38. #include <asm/irq.h>
  39. #include <asm/leds.h>
  40. #include <asm/hardware/arm_timer.h>
  41. #include <asm/hardware/icst307.h>
  42. #include <asm/hardware/vic.h>
  43. #include <asm/mach-types.h>
  44. #include <asm/mach/arch.h>
  45. #include <asm/mach/flash.h>
  46. #include <asm/mach/irq.h>
  47. #include <asm/mach/time.h>
  48. #include <asm/mach/map.h>
  49. #include "core.h"
  50. #include "clock.h"
  51. /*
  52. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  53. * is the (PA >> 12).
  54. *
  55. * Setup a VA for the Versatile Vectored Interrupt Controller.
  56. */
  57. #define __io_address(n) __io(IO_ADDRESS(n))
  58. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  59. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  60. static void sic_mask_irq(unsigned int irq)
  61. {
  62. irq -= IRQ_SIC_START;
  63. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  64. }
  65. static void sic_unmask_irq(unsigned int irq)
  66. {
  67. irq -= IRQ_SIC_START;
  68. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  69. }
  70. static struct irq_chip sic_chip = {
  71. .name = "SIC",
  72. .ack = sic_mask_irq,
  73. .mask = sic_mask_irq,
  74. .unmask = sic_unmask_irq,
  75. };
  76. static void
  77. sic_handle_irq(unsigned int irq, struct irq_desc *desc)
  78. {
  79. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  80. if (status == 0) {
  81. do_bad_IRQ(irq, desc);
  82. return;
  83. }
  84. do {
  85. irq = ffs(status) - 1;
  86. status &= ~(1 << irq);
  87. irq += IRQ_SIC_START;
  88. generic_handle_irq(irq);
  89. } while (status);
  90. }
  91. #if 1
  92. #define IRQ_MMCI0A IRQ_VICSOURCE22
  93. #define IRQ_AACI IRQ_VICSOURCE24
  94. #define IRQ_ETH IRQ_VICSOURCE25
  95. #define PIC_MASK 0xFFD00000
  96. #else
  97. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  98. #define IRQ_AACI IRQ_SIC_AACI
  99. #define IRQ_ETH IRQ_SIC_ETH
  100. #define PIC_MASK 0
  101. #endif
  102. void __init versatile_init_irq(void)
  103. {
  104. unsigned int i;
  105. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0, 0);
  106. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  107. /* Do second interrupt controller */
  108. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  109. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  110. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  111. set_irq_chip(i, &sic_chip);
  112. set_irq_handler(i, handle_level_irq);
  113. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  114. }
  115. }
  116. /*
  117. * Interrupts on secondary controller from 0 to 8 are routed to
  118. * source 31 on PIC.
  119. * Interrupts from 21 to 31 are routed directly to the VIC on
  120. * the corresponding number on primary controller. This is controlled
  121. * by setting PIC_ENABLEx.
  122. */
  123. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  124. }
  125. static struct map_desc versatile_io_desc[] __initdata = {
  126. {
  127. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  128. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  129. .length = SZ_4K,
  130. .type = MT_DEVICE
  131. }, {
  132. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  133. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  134. .length = SZ_4K,
  135. .type = MT_DEVICE
  136. }, {
  137. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  138. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  139. .length = SZ_4K,
  140. .type = MT_DEVICE
  141. }, {
  142. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  143. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  144. .length = SZ_4K * 9,
  145. .type = MT_DEVICE
  146. },
  147. #ifdef CONFIG_MACH_VERSATILE_AB
  148. {
  149. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  150. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  151. .length = SZ_4K,
  152. .type = MT_DEVICE
  153. }, {
  154. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  155. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  156. .length = SZ_64M,
  157. .type = MT_DEVICE
  158. },
  159. #endif
  160. #ifdef CONFIG_DEBUG_LL
  161. {
  162. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  163. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  164. .length = SZ_4K,
  165. .type = MT_DEVICE
  166. },
  167. #endif
  168. #ifdef CONFIG_PCI
  169. {
  170. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  171. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  172. .length = SZ_4K,
  173. .type = MT_DEVICE
  174. }, {
  175. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  176. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  177. .length = VERSATILE_PCI_BASE_SIZE,
  178. .type = MT_DEVICE
  179. }, {
  180. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  181. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  182. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  183. .type = MT_DEVICE
  184. },
  185. #if 0
  186. {
  187. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  188. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  189. .length = SZ_16M,
  190. .type = MT_DEVICE
  191. }, {
  192. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  193. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  194. .length = SZ_16M,
  195. .type = MT_DEVICE
  196. }, {
  197. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  198. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  199. .length = SZ_16M,
  200. .type = MT_DEVICE
  201. },
  202. #endif
  203. #endif
  204. };
  205. void __init versatile_map_io(void)
  206. {
  207. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  208. }
  209. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  210. /*
  211. * This is the Versatile sched_clock implementation. This has
  212. * a resolution of 41.7ns, and a maximum value of about 35583 days.
  213. *
  214. * The return value is guaranteed to be monotonic in that range as
  215. * long as there is always less than 89 seconds between successive
  216. * calls to this function.
  217. */
  218. unsigned long long sched_clock(void)
  219. {
  220. unsigned long long v = cnt32_to_63(readl(VERSATILE_REFCOUNTER));
  221. /* the <<1 gets rid of the cnt_32_to_63 top bit saving on a bic insn */
  222. v *= 125<<1;
  223. do_div(v, 3<<1);
  224. return v;
  225. }
  226. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  227. static int versatile_flash_init(void)
  228. {
  229. u32 val;
  230. val = __raw_readl(VERSATILE_FLASHCTRL);
  231. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  232. __raw_writel(val, VERSATILE_FLASHCTRL);
  233. return 0;
  234. }
  235. static void versatile_flash_exit(void)
  236. {
  237. u32 val;
  238. val = __raw_readl(VERSATILE_FLASHCTRL);
  239. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  240. __raw_writel(val, VERSATILE_FLASHCTRL);
  241. }
  242. static void versatile_flash_set_vpp(int on)
  243. {
  244. u32 val;
  245. val = __raw_readl(VERSATILE_FLASHCTRL);
  246. if (on)
  247. val |= VERSATILE_FLASHPROG_FLVPPEN;
  248. else
  249. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  250. __raw_writel(val, VERSATILE_FLASHCTRL);
  251. }
  252. static struct flash_platform_data versatile_flash_data = {
  253. .map_name = "cfi_probe",
  254. .width = 4,
  255. .init = versatile_flash_init,
  256. .exit = versatile_flash_exit,
  257. .set_vpp = versatile_flash_set_vpp,
  258. };
  259. static struct resource versatile_flash_resource = {
  260. .start = VERSATILE_FLASH_BASE,
  261. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  262. .flags = IORESOURCE_MEM,
  263. };
  264. static struct platform_device versatile_flash_device = {
  265. .name = "armflash",
  266. .id = 0,
  267. .dev = {
  268. .platform_data = &versatile_flash_data,
  269. },
  270. .num_resources = 1,
  271. .resource = &versatile_flash_resource,
  272. };
  273. static struct resource smc91x_resources[] = {
  274. [0] = {
  275. .start = VERSATILE_ETH_BASE,
  276. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  277. .flags = IORESOURCE_MEM,
  278. },
  279. [1] = {
  280. .start = IRQ_ETH,
  281. .end = IRQ_ETH,
  282. .flags = IORESOURCE_IRQ,
  283. },
  284. };
  285. static struct platform_device smc91x_device = {
  286. .name = "smc91x",
  287. .id = 0,
  288. .num_resources = ARRAY_SIZE(smc91x_resources),
  289. .resource = smc91x_resources,
  290. };
  291. static struct resource versatile_i2c_resource = {
  292. .start = VERSATILE_I2C_BASE,
  293. .end = VERSATILE_I2C_BASE + SZ_4K - 1,
  294. .flags = IORESOURCE_MEM,
  295. };
  296. static struct platform_device versatile_i2c_device = {
  297. .name = "versatile-i2c",
  298. .id = 0,
  299. .num_resources = 1,
  300. .resource = &versatile_i2c_resource,
  301. };
  302. static struct i2c_board_info versatile_i2c_board_info[] = {
  303. {
  304. I2C_BOARD_INFO("ds1338", 0xd0 >> 1),
  305. },
  306. };
  307. static int __init versatile_i2c_init(void)
  308. {
  309. return i2c_register_board_info(0, versatile_i2c_board_info,
  310. ARRAY_SIZE(versatile_i2c_board_info));
  311. }
  312. arch_initcall(versatile_i2c_init);
  313. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  314. unsigned int mmc_status(struct device *dev)
  315. {
  316. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  317. u32 mask;
  318. if (adev->res.start == VERSATILE_MMCI0_BASE)
  319. mask = 1;
  320. else
  321. mask = 2;
  322. return readl(VERSATILE_SYSMCI) & mask;
  323. }
  324. static struct mmci_platform_data mmc0_plat_data = {
  325. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  326. .status = mmc_status,
  327. .gpio_wp = -1,
  328. .gpio_cd = -1,
  329. };
  330. /*
  331. * Clock handling
  332. */
  333. static const struct icst307_params versatile_oscvco_params = {
  334. .ref = 24000,
  335. .vco_max = 200000,
  336. .vd_min = 4 + 8,
  337. .vd_max = 511 + 8,
  338. .rd_min = 1 + 2,
  339. .rd_max = 127 + 2,
  340. };
  341. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  342. {
  343. void __iomem *sys = __io_address(VERSATILE_SYS_BASE);
  344. void __iomem *sys_lock = sys + VERSATILE_SYS_LOCK_OFFSET;
  345. u32 val;
  346. val = readl(sys + clk->oscoff) & ~0x7ffff;
  347. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  348. writel(0xa05f, sys_lock);
  349. writel(val, sys + clk->oscoff);
  350. writel(0, sys_lock);
  351. }
  352. static struct clk osc4_clk = {
  353. .params = &versatile_oscvco_params,
  354. .oscoff = VERSATILE_SYS_OSCCLCD_OFFSET,
  355. .setvco = versatile_oscvco_set,
  356. };
  357. /*
  358. * These are fixed clocks.
  359. */
  360. static struct clk ref24_clk = {
  361. .rate = 24000000,
  362. };
  363. static struct clk_lookup lookups[] = {
  364. { /* UART0 */
  365. .dev_id = "dev:f1",
  366. .clk = &ref24_clk,
  367. }, { /* UART1 */
  368. .dev_id = "dev:f2",
  369. .clk = &ref24_clk,
  370. }, { /* UART2 */
  371. .dev_id = "dev:f3",
  372. .clk = &ref24_clk,
  373. }, { /* UART3 */
  374. .dev_id = "fpga:09",
  375. .clk = &ref24_clk,
  376. }, { /* KMI0 */
  377. .dev_id = "fpga:06",
  378. .clk = &ref24_clk,
  379. }, { /* KMI1 */
  380. .dev_id = "fpga:07",
  381. .clk = &ref24_clk,
  382. }, { /* MMC0 */
  383. .dev_id = "fpga:05",
  384. .clk = &ref24_clk,
  385. }, { /* MMC1 */
  386. .dev_id = "fpga:0b",
  387. .clk = &ref24_clk,
  388. }, { /* CLCD */
  389. .dev_id = "dev:20",
  390. .clk = &osc4_clk,
  391. }
  392. };
  393. /*
  394. * CLCD support.
  395. */
  396. #define SYS_CLCD_MODE_MASK (3 << 0)
  397. #define SYS_CLCD_MODE_888 (0 << 0)
  398. #define SYS_CLCD_MODE_5551 (1 << 0)
  399. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  400. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  401. #define SYS_CLCD_NLCDIOON (1 << 2)
  402. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  403. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  404. #define SYS_CLCD_ID_MASK (0x1f << 8)
  405. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  406. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  407. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  408. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  409. #define SYS_CLCD_ID_VGA (0x1f << 8)
  410. static struct clcd_panel vga = {
  411. .mode = {
  412. .name = "VGA",
  413. .refresh = 60,
  414. .xres = 640,
  415. .yres = 480,
  416. .pixclock = 39721,
  417. .left_margin = 40,
  418. .right_margin = 24,
  419. .upper_margin = 32,
  420. .lower_margin = 11,
  421. .hsync_len = 96,
  422. .vsync_len = 2,
  423. .sync = 0,
  424. .vmode = FB_VMODE_NONINTERLACED,
  425. },
  426. .width = -1,
  427. .height = -1,
  428. .tim2 = TIM2_BCD | TIM2_IPC,
  429. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  430. .bpp = 16,
  431. };
  432. static struct clcd_panel sanyo_3_8_in = {
  433. .mode = {
  434. .name = "Sanyo QVGA",
  435. .refresh = 116,
  436. .xres = 320,
  437. .yres = 240,
  438. .pixclock = 100000,
  439. .left_margin = 6,
  440. .right_margin = 6,
  441. .upper_margin = 5,
  442. .lower_margin = 5,
  443. .hsync_len = 6,
  444. .vsync_len = 6,
  445. .sync = 0,
  446. .vmode = FB_VMODE_NONINTERLACED,
  447. },
  448. .width = -1,
  449. .height = -1,
  450. .tim2 = TIM2_BCD,
  451. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  452. .bpp = 16,
  453. };
  454. static struct clcd_panel sanyo_2_5_in = {
  455. .mode = {
  456. .name = "Sanyo QVGA Portrait",
  457. .refresh = 116,
  458. .xres = 240,
  459. .yres = 320,
  460. .pixclock = 100000,
  461. .left_margin = 20,
  462. .right_margin = 10,
  463. .upper_margin = 2,
  464. .lower_margin = 2,
  465. .hsync_len = 10,
  466. .vsync_len = 2,
  467. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  468. .vmode = FB_VMODE_NONINTERLACED,
  469. },
  470. .width = -1,
  471. .height = -1,
  472. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  473. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  474. .bpp = 16,
  475. };
  476. static struct clcd_panel epson_2_2_in = {
  477. .mode = {
  478. .name = "Epson QCIF",
  479. .refresh = 390,
  480. .xres = 176,
  481. .yres = 220,
  482. .pixclock = 62500,
  483. .left_margin = 3,
  484. .right_margin = 2,
  485. .upper_margin = 1,
  486. .lower_margin = 0,
  487. .hsync_len = 3,
  488. .vsync_len = 2,
  489. .sync = 0,
  490. .vmode = FB_VMODE_NONINTERLACED,
  491. },
  492. .width = -1,
  493. .height = -1,
  494. .tim2 = TIM2_BCD | TIM2_IPC,
  495. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  496. .bpp = 16,
  497. };
  498. /*
  499. * Detect which LCD panel is connected, and return the appropriate
  500. * clcd_panel structure. Note: we do not have any information on
  501. * the required timings for the 8.4in panel, so we presently assume
  502. * VGA timings.
  503. */
  504. static struct clcd_panel *versatile_clcd_panel(void)
  505. {
  506. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  507. struct clcd_panel *panel = &vga;
  508. u32 val;
  509. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  510. if (val == SYS_CLCD_ID_SANYO_3_8)
  511. panel = &sanyo_3_8_in;
  512. else if (val == SYS_CLCD_ID_SANYO_2_5)
  513. panel = &sanyo_2_5_in;
  514. else if (val == SYS_CLCD_ID_EPSON_2_2)
  515. panel = &epson_2_2_in;
  516. else if (val == SYS_CLCD_ID_VGA)
  517. panel = &vga;
  518. else {
  519. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  520. val);
  521. panel = &vga;
  522. }
  523. return panel;
  524. }
  525. /*
  526. * Disable all display connectors on the interface module.
  527. */
  528. static void versatile_clcd_disable(struct clcd_fb *fb)
  529. {
  530. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  531. u32 val;
  532. val = readl(sys_clcd);
  533. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  534. writel(val, sys_clcd);
  535. #ifdef CONFIG_MACH_VERSATILE_AB
  536. /*
  537. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  538. */
  539. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  540. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  541. unsigned long ctrl;
  542. ctrl = readl(versatile_ib2_ctrl);
  543. ctrl &= ~0x01;
  544. writel(ctrl, versatile_ib2_ctrl);
  545. }
  546. #endif
  547. }
  548. /*
  549. * Enable the relevant connector on the interface module.
  550. */
  551. static void versatile_clcd_enable(struct clcd_fb *fb)
  552. {
  553. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  554. u32 val;
  555. val = readl(sys_clcd);
  556. val &= ~SYS_CLCD_MODE_MASK;
  557. switch (fb->fb.var.green.length) {
  558. case 5:
  559. val |= SYS_CLCD_MODE_5551;
  560. break;
  561. case 6:
  562. val |= SYS_CLCD_MODE_565_RLSB;
  563. break;
  564. case 8:
  565. val |= SYS_CLCD_MODE_888;
  566. break;
  567. }
  568. /*
  569. * Set the MUX
  570. */
  571. writel(val, sys_clcd);
  572. /*
  573. * And now enable the PSUs
  574. */
  575. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  576. writel(val, sys_clcd);
  577. #ifdef CONFIG_MACH_VERSATILE_AB
  578. /*
  579. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  580. */
  581. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  582. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  583. unsigned long ctrl;
  584. ctrl = readl(versatile_ib2_ctrl);
  585. ctrl |= 0x01;
  586. writel(ctrl, versatile_ib2_ctrl);
  587. }
  588. #endif
  589. }
  590. static unsigned long framesize = SZ_1M;
  591. static int versatile_clcd_setup(struct clcd_fb *fb)
  592. {
  593. dma_addr_t dma;
  594. fb->panel = versatile_clcd_panel();
  595. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  596. &dma, GFP_KERNEL);
  597. if (!fb->fb.screen_base) {
  598. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  599. return -ENOMEM;
  600. }
  601. fb->fb.fix.smem_start = dma;
  602. fb->fb.fix.smem_len = framesize;
  603. return 0;
  604. }
  605. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  606. {
  607. return dma_mmap_writecombine(&fb->dev->dev, vma,
  608. fb->fb.screen_base,
  609. fb->fb.fix.smem_start,
  610. fb->fb.fix.smem_len);
  611. }
  612. static void versatile_clcd_remove(struct clcd_fb *fb)
  613. {
  614. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  615. fb->fb.screen_base, fb->fb.fix.smem_start);
  616. }
  617. static struct clcd_board clcd_plat_data = {
  618. .name = "Versatile",
  619. .check = clcdfb_check,
  620. .decode = clcdfb_decode,
  621. .disable = versatile_clcd_disable,
  622. .enable = versatile_clcd_enable,
  623. .setup = versatile_clcd_setup,
  624. .mmap = versatile_clcd_mmap,
  625. .remove = versatile_clcd_remove,
  626. };
  627. static struct pl061_platform_data gpio0_plat_data = {
  628. .gpio_base = 0,
  629. .irq_base = IRQ_GPIO0_START,
  630. };
  631. static struct pl061_platform_data gpio1_plat_data = {
  632. .gpio_base = 8,
  633. .irq_base = IRQ_GPIO1_START,
  634. };
  635. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  636. #define AACI_DMA { 0x80, 0x81 }
  637. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  638. #define MMCI0_DMA { 0x84, 0 }
  639. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  640. #define KMI0_DMA { 0, 0 }
  641. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  642. #define KMI1_DMA { 0, 0 }
  643. /*
  644. * These devices are connected directly to the multi-layer AHB switch
  645. */
  646. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  647. #define SMC_DMA { 0, 0 }
  648. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  649. #define MPMC_DMA { 0, 0 }
  650. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  651. #define CLCD_DMA { 0, 0 }
  652. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  653. #define DMAC_DMA { 0, 0 }
  654. /*
  655. * These devices are connected via the core APB bridge
  656. */
  657. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  658. #define SCTL_DMA { 0, 0 }
  659. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  660. #define WATCHDOG_DMA { 0, 0 }
  661. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  662. #define GPIO0_DMA { 0, 0 }
  663. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  664. #define GPIO1_DMA { 0, 0 }
  665. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  666. #define RTC_DMA { 0, 0 }
  667. /*
  668. * These devices are connected via the DMA APB bridge
  669. */
  670. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  671. #define SCI_DMA { 7, 6 }
  672. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  673. #define UART0_DMA { 15, 14 }
  674. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  675. #define UART1_DMA { 13, 12 }
  676. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  677. #define UART2_DMA { 11, 10 }
  678. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  679. #define SSP_DMA { 9, 8 }
  680. /* FPGA Primecells */
  681. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  682. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  683. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  684. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  685. /* DevChip Primecells */
  686. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  687. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  688. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  689. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  690. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  691. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  692. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, &gpio0_plat_data);
  693. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, &gpio1_plat_data);
  694. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  695. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  696. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  697. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  698. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  699. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  700. static struct amba_device *amba_devs[] __initdata = {
  701. &dmac_device,
  702. &uart0_device,
  703. &uart1_device,
  704. &uart2_device,
  705. &smc_device,
  706. &mpmc_device,
  707. &clcd_device,
  708. &sctl_device,
  709. &wdog_device,
  710. &gpio0_device,
  711. &gpio1_device,
  712. &rtc_device,
  713. &sci0_device,
  714. &ssp0_device,
  715. &aaci_device,
  716. &mmc0_device,
  717. &kmi0_device,
  718. &kmi1_device,
  719. };
  720. #ifdef CONFIG_LEDS
  721. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  722. static void versatile_leds_event(led_event_t ledevt)
  723. {
  724. unsigned long flags;
  725. u32 val;
  726. local_irq_save(flags);
  727. val = readl(VA_LEDS_BASE);
  728. switch (ledevt) {
  729. case led_idle_start:
  730. val = val & ~VERSATILE_SYS_LED0;
  731. break;
  732. case led_idle_end:
  733. val = val | VERSATILE_SYS_LED0;
  734. break;
  735. case led_timer:
  736. val = val ^ VERSATILE_SYS_LED1;
  737. break;
  738. case led_halted:
  739. val = 0;
  740. break;
  741. default:
  742. break;
  743. }
  744. writel(val, VA_LEDS_BASE);
  745. local_irq_restore(flags);
  746. }
  747. #endif /* CONFIG_LEDS */
  748. void __init versatile_init(void)
  749. {
  750. int i;
  751. for (i = 0; i < ARRAY_SIZE(lookups); i++)
  752. clkdev_add(&lookups[i]);
  753. platform_device_register(&versatile_flash_device);
  754. platform_device_register(&versatile_i2c_device);
  755. platform_device_register(&smc91x_device);
  756. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  757. struct amba_device *d = amba_devs[i];
  758. amba_device_register(d, &iomem_resource);
  759. }
  760. #ifdef CONFIG_LEDS
  761. leds_event = versatile_leds_event;
  762. #endif
  763. }
  764. /*
  765. * Where is the timer (VA)?
  766. */
  767. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  768. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  769. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  770. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  771. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  772. /*
  773. * How long is the timer interval?
  774. */
  775. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  776. #if TIMER_INTERVAL >= 0x100000
  777. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  778. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  779. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  780. #elif TIMER_INTERVAL >= 0x10000
  781. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  782. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  783. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  784. #else
  785. #define TIMER_RELOAD (TIMER_INTERVAL)
  786. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  787. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  788. #endif
  789. static void timer_set_mode(enum clock_event_mode mode,
  790. struct clock_event_device *clk)
  791. {
  792. unsigned long ctrl;
  793. switch(mode) {
  794. case CLOCK_EVT_MODE_PERIODIC:
  795. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  796. ctrl = TIMER_CTRL_PERIODIC;
  797. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ENABLE;
  798. break;
  799. case CLOCK_EVT_MODE_ONESHOT:
  800. /* period set, and timer enabled in 'next_event' hook */
  801. ctrl = TIMER_CTRL_ONESHOT;
  802. ctrl |= TIMER_CTRL_32BIT | TIMER_CTRL_IE;
  803. break;
  804. case CLOCK_EVT_MODE_UNUSED:
  805. case CLOCK_EVT_MODE_SHUTDOWN:
  806. default:
  807. ctrl = 0;
  808. }
  809. writel(ctrl, TIMER0_VA_BASE + TIMER_CTRL);
  810. }
  811. static int timer_set_next_event(unsigned long evt,
  812. struct clock_event_device *unused)
  813. {
  814. unsigned long ctrl = readl(TIMER0_VA_BASE + TIMER_CTRL);
  815. writel(evt, TIMER0_VA_BASE + TIMER_LOAD);
  816. writel(ctrl | TIMER_CTRL_ENABLE, TIMER0_VA_BASE + TIMER_CTRL);
  817. return 0;
  818. }
  819. static struct clock_event_device timer0_clockevent = {
  820. .name = "timer0",
  821. .shift = 32,
  822. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  823. .set_mode = timer_set_mode,
  824. .set_next_event = timer_set_next_event,
  825. };
  826. /*
  827. * IRQ handler for the timer
  828. */
  829. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  830. {
  831. struct clock_event_device *evt = &timer0_clockevent;
  832. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  833. evt->event_handler(evt);
  834. return IRQ_HANDLED;
  835. }
  836. static struct irqaction versatile_timer_irq = {
  837. .name = "Versatile Timer Tick",
  838. .flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
  839. .handler = versatile_timer_interrupt,
  840. };
  841. static cycle_t versatile_get_cycles(struct clocksource *cs)
  842. {
  843. return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
  844. }
  845. static struct clocksource clocksource_versatile = {
  846. .name = "timer3",
  847. .rating = 200,
  848. .read = versatile_get_cycles,
  849. .mask = CLOCKSOURCE_MASK(32),
  850. .shift = 20,
  851. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  852. };
  853. static int __init versatile_clocksource_init(void)
  854. {
  855. /* setup timer3 as free-running clocksource */
  856. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  857. writel(0xffffffff, TIMER3_VA_BASE + TIMER_LOAD);
  858. writel(0xffffffff, TIMER3_VA_BASE + TIMER_VALUE);
  859. writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC,
  860. TIMER3_VA_BASE + TIMER_CTRL);
  861. clocksource_versatile.mult =
  862. clocksource_khz2mult(1000, clocksource_versatile.shift);
  863. clocksource_register(&clocksource_versatile);
  864. return 0;
  865. }
  866. /*
  867. * Set up timer interrupt, and return the current time in seconds.
  868. */
  869. static void __init versatile_timer_init(void)
  870. {
  871. u32 val;
  872. /*
  873. * set clock frequency:
  874. * VERSATILE_REFCLK is 32KHz
  875. * VERSATILE_TIMCLK is 1MHz
  876. */
  877. val = readl(__io_address(VERSATILE_SCTL_BASE));
  878. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  879. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  880. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  881. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  882. __io_address(VERSATILE_SCTL_BASE));
  883. /*
  884. * Initialise to a known state (all timers off)
  885. */
  886. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  887. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  888. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  889. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  890. /*
  891. * Make irqs happen for the system timer
  892. */
  893. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  894. versatile_clocksource_init();
  895. timer0_clockevent.mult =
  896. div_sc(1000000, NSEC_PER_SEC, timer0_clockevent.shift);
  897. timer0_clockevent.max_delta_ns =
  898. clockevent_delta2ns(0xffffffff, &timer0_clockevent);
  899. timer0_clockevent.min_delta_ns =
  900. clockevent_delta2ns(0xf, &timer0_clockevent);
  901. timer0_clockevent.cpumask = cpumask_of(0);
  902. clockevents_register_device(&timer0_clockevent);
  903. }
  904. struct sys_timer versatile_timer = {
  905. .init = versatile_timer_init,
  906. };