i915_gem.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  47. static int i915_gem_evict_something(struct drm_device *dev);
  48. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  49. struct drm_i915_gem_pwrite *args,
  50. struct drm_file *file_priv);
  51. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  52. unsigned long end)
  53. {
  54. drm_i915_private_t *dev_priv = dev->dev_private;
  55. if (start >= end ||
  56. (start & (PAGE_SIZE - 1)) != 0 ||
  57. (end & (PAGE_SIZE - 1)) != 0) {
  58. return -EINVAL;
  59. }
  60. drm_mm_init(&dev_priv->mm.gtt_space, start,
  61. end - start);
  62. dev->gtt_total = (uint32_t) (end - start);
  63. return 0;
  64. }
  65. int
  66. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  67. struct drm_file *file_priv)
  68. {
  69. struct drm_i915_gem_init *args = data;
  70. int ret;
  71. mutex_lock(&dev->struct_mutex);
  72. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  73. mutex_unlock(&dev->struct_mutex);
  74. return ret;
  75. }
  76. int
  77. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  78. struct drm_file *file_priv)
  79. {
  80. struct drm_i915_gem_get_aperture *args = data;
  81. if (!(dev->driver->driver_features & DRIVER_GEM))
  82. return -ENODEV;
  83. args->aper_size = dev->gtt_total;
  84. args->aper_available_size = (args->aper_size -
  85. atomic_read(&dev->pin_memory));
  86. return 0;
  87. }
  88. /**
  89. * Creates a new mm object and returns a handle to it.
  90. */
  91. int
  92. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  93. struct drm_file *file_priv)
  94. {
  95. struct drm_i915_gem_create *args = data;
  96. struct drm_gem_object *obj;
  97. int handle, ret;
  98. args->size = roundup(args->size, PAGE_SIZE);
  99. /* Allocate the new object */
  100. obj = drm_gem_object_alloc(dev, args->size);
  101. if (obj == NULL)
  102. return -ENOMEM;
  103. ret = drm_gem_handle_create(file_priv, obj, &handle);
  104. mutex_lock(&dev->struct_mutex);
  105. drm_gem_object_handle_unreference(obj);
  106. mutex_unlock(&dev->struct_mutex);
  107. if (ret)
  108. return ret;
  109. args->handle = handle;
  110. return 0;
  111. }
  112. static inline int
  113. fast_shmem_read(struct page **pages,
  114. loff_t page_base, int page_offset,
  115. char __user *data,
  116. int length)
  117. {
  118. char __iomem *vaddr;
  119. int unwritten;
  120. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  121. if (vaddr == NULL)
  122. return -ENOMEM;
  123. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  124. kunmap_atomic(vaddr, KM_USER0);
  125. if (unwritten)
  126. return -EFAULT;
  127. return 0;
  128. }
  129. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  130. {
  131. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  132. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  133. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  134. obj_priv->tiling_mode != I915_TILING_NONE;
  135. }
  136. static inline int
  137. slow_shmem_copy(struct page *dst_page,
  138. int dst_offset,
  139. struct page *src_page,
  140. int src_offset,
  141. int length)
  142. {
  143. char *dst_vaddr, *src_vaddr;
  144. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  145. if (dst_vaddr == NULL)
  146. return -ENOMEM;
  147. src_vaddr = kmap_atomic(src_page, KM_USER1);
  148. if (src_vaddr == NULL) {
  149. kunmap_atomic(dst_vaddr, KM_USER0);
  150. return -ENOMEM;
  151. }
  152. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  153. kunmap_atomic(src_vaddr, KM_USER1);
  154. kunmap_atomic(dst_vaddr, KM_USER0);
  155. return 0;
  156. }
  157. static inline int
  158. slow_shmem_bit17_copy(struct page *gpu_page,
  159. int gpu_offset,
  160. struct page *cpu_page,
  161. int cpu_offset,
  162. int length,
  163. int is_read)
  164. {
  165. char *gpu_vaddr, *cpu_vaddr;
  166. /* Use the unswizzled path if this page isn't affected. */
  167. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  168. if (is_read)
  169. return slow_shmem_copy(cpu_page, cpu_offset,
  170. gpu_page, gpu_offset, length);
  171. else
  172. return slow_shmem_copy(gpu_page, gpu_offset,
  173. cpu_page, cpu_offset, length);
  174. }
  175. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  176. if (gpu_vaddr == NULL)
  177. return -ENOMEM;
  178. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  179. if (cpu_vaddr == NULL) {
  180. kunmap_atomic(gpu_vaddr, KM_USER0);
  181. return -ENOMEM;
  182. }
  183. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  184. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  185. */
  186. while (length > 0) {
  187. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  188. int this_length = min(cacheline_end - gpu_offset, length);
  189. int swizzled_gpu_offset = gpu_offset ^ 64;
  190. if (is_read) {
  191. memcpy(cpu_vaddr + cpu_offset,
  192. gpu_vaddr + swizzled_gpu_offset,
  193. this_length);
  194. } else {
  195. memcpy(gpu_vaddr + swizzled_gpu_offset,
  196. cpu_vaddr + cpu_offset,
  197. this_length);
  198. }
  199. cpu_offset += this_length;
  200. gpu_offset += this_length;
  201. length -= this_length;
  202. }
  203. kunmap_atomic(cpu_vaddr, KM_USER1);
  204. kunmap_atomic(gpu_vaddr, KM_USER0);
  205. return 0;
  206. }
  207. /**
  208. * This is the fast shmem pread path, which attempts to copy_from_user directly
  209. * from the backing pages of the object to the user's address space. On a
  210. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  211. */
  212. static int
  213. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  214. struct drm_i915_gem_pread *args,
  215. struct drm_file *file_priv)
  216. {
  217. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  218. ssize_t remain;
  219. loff_t offset, page_base;
  220. char __user *user_data;
  221. int page_offset, page_length;
  222. int ret;
  223. user_data = (char __user *) (uintptr_t) args->data_ptr;
  224. remain = args->size;
  225. mutex_lock(&dev->struct_mutex);
  226. ret = i915_gem_object_get_pages(obj);
  227. if (ret != 0)
  228. goto fail_unlock;
  229. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  230. args->size);
  231. if (ret != 0)
  232. goto fail_put_pages;
  233. obj_priv = obj->driver_private;
  234. offset = args->offset;
  235. while (remain > 0) {
  236. /* Operation in this page
  237. *
  238. * page_base = page offset within aperture
  239. * page_offset = offset within page
  240. * page_length = bytes to copy for this page
  241. */
  242. page_base = (offset & ~(PAGE_SIZE-1));
  243. page_offset = offset & (PAGE_SIZE-1);
  244. page_length = remain;
  245. if ((page_offset + remain) > PAGE_SIZE)
  246. page_length = PAGE_SIZE - page_offset;
  247. ret = fast_shmem_read(obj_priv->pages,
  248. page_base, page_offset,
  249. user_data, page_length);
  250. if (ret)
  251. goto fail_put_pages;
  252. remain -= page_length;
  253. user_data += page_length;
  254. offset += page_length;
  255. }
  256. fail_put_pages:
  257. i915_gem_object_put_pages(obj);
  258. fail_unlock:
  259. mutex_unlock(&dev->struct_mutex);
  260. return ret;
  261. }
  262. /**
  263. * This is the fallback shmem pread path, which allocates temporary storage
  264. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  265. * can copy out of the object's backing pages while holding the struct mutex
  266. * and not take page faults.
  267. */
  268. static int
  269. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  270. struct drm_i915_gem_pread *args,
  271. struct drm_file *file_priv)
  272. {
  273. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  274. struct mm_struct *mm = current->mm;
  275. struct page **user_pages;
  276. ssize_t remain;
  277. loff_t offset, pinned_pages, i;
  278. loff_t first_data_page, last_data_page, num_pages;
  279. int shmem_page_index, shmem_page_offset;
  280. int data_page_index, data_page_offset;
  281. int page_length;
  282. int ret;
  283. uint64_t data_ptr = args->data_ptr;
  284. int do_bit17_swizzling;
  285. remain = args->size;
  286. /* Pin the user pages containing the data. We can't fault while
  287. * holding the struct mutex, yet we want to hold it while
  288. * dereferencing the user data.
  289. */
  290. first_data_page = data_ptr / PAGE_SIZE;
  291. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  292. num_pages = last_data_page - first_data_page + 1;
  293. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  294. if (user_pages == NULL)
  295. return -ENOMEM;
  296. down_read(&mm->mmap_sem);
  297. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  298. num_pages, 1, 0, user_pages, NULL);
  299. up_read(&mm->mmap_sem);
  300. if (pinned_pages < num_pages) {
  301. ret = -EFAULT;
  302. goto fail_put_user_pages;
  303. }
  304. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  305. mutex_lock(&dev->struct_mutex);
  306. ret = i915_gem_object_get_pages(obj);
  307. if (ret != 0)
  308. goto fail_unlock;
  309. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  310. args->size);
  311. if (ret != 0)
  312. goto fail_put_pages;
  313. obj_priv = obj->driver_private;
  314. offset = args->offset;
  315. while (remain > 0) {
  316. /* Operation in this page
  317. *
  318. * shmem_page_index = page number within shmem file
  319. * shmem_page_offset = offset within page in shmem file
  320. * data_page_index = page number in get_user_pages return
  321. * data_page_offset = offset with data_page_index page.
  322. * page_length = bytes to copy for this page
  323. */
  324. shmem_page_index = offset / PAGE_SIZE;
  325. shmem_page_offset = offset & ~PAGE_MASK;
  326. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  327. data_page_offset = data_ptr & ~PAGE_MASK;
  328. page_length = remain;
  329. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  330. page_length = PAGE_SIZE - shmem_page_offset;
  331. if ((data_page_offset + page_length) > PAGE_SIZE)
  332. page_length = PAGE_SIZE - data_page_offset;
  333. if (do_bit17_swizzling) {
  334. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  335. shmem_page_offset,
  336. user_pages[data_page_index],
  337. data_page_offset,
  338. page_length,
  339. 1);
  340. } else {
  341. ret = slow_shmem_copy(user_pages[data_page_index],
  342. data_page_offset,
  343. obj_priv->pages[shmem_page_index],
  344. shmem_page_offset,
  345. page_length);
  346. }
  347. if (ret)
  348. goto fail_put_pages;
  349. remain -= page_length;
  350. data_ptr += page_length;
  351. offset += page_length;
  352. }
  353. fail_put_pages:
  354. i915_gem_object_put_pages(obj);
  355. fail_unlock:
  356. mutex_unlock(&dev->struct_mutex);
  357. fail_put_user_pages:
  358. for (i = 0; i < pinned_pages; i++) {
  359. SetPageDirty(user_pages[i]);
  360. page_cache_release(user_pages[i]);
  361. }
  362. drm_free_large(user_pages);
  363. return ret;
  364. }
  365. /**
  366. * Reads data from the object referenced by handle.
  367. *
  368. * On error, the contents of *data are undefined.
  369. */
  370. int
  371. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  372. struct drm_file *file_priv)
  373. {
  374. struct drm_i915_gem_pread *args = data;
  375. struct drm_gem_object *obj;
  376. struct drm_i915_gem_object *obj_priv;
  377. int ret;
  378. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  379. if (obj == NULL)
  380. return -EBADF;
  381. obj_priv = obj->driver_private;
  382. /* Bounds check source.
  383. *
  384. * XXX: This could use review for overflow issues...
  385. */
  386. if (args->offset > obj->size || args->size > obj->size ||
  387. args->offset + args->size > obj->size) {
  388. drm_gem_object_unreference(obj);
  389. return -EINVAL;
  390. }
  391. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  392. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  393. } else {
  394. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  395. if (ret != 0)
  396. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  397. file_priv);
  398. }
  399. drm_gem_object_unreference(obj);
  400. return ret;
  401. }
  402. /* This is the fast write path which cannot handle
  403. * page faults in the source data
  404. */
  405. static inline int
  406. fast_user_write(struct io_mapping *mapping,
  407. loff_t page_base, int page_offset,
  408. char __user *user_data,
  409. int length)
  410. {
  411. char *vaddr_atomic;
  412. unsigned long unwritten;
  413. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  414. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  415. user_data, length);
  416. io_mapping_unmap_atomic(vaddr_atomic);
  417. if (unwritten)
  418. return -EFAULT;
  419. return 0;
  420. }
  421. /* Here's the write path which can sleep for
  422. * page faults
  423. */
  424. static inline int
  425. slow_kernel_write(struct io_mapping *mapping,
  426. loff_t gtt_base, int gtt_offset,
  427. struct page *user_page, int user_offset,
  428. int length)
  429. {
  430. char *src_vaddr, *dst_vaddr;
  431. unsigned long unwritten;
  432. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  433. src_vaddr = kmap_atomic(user_page, KM_USER1);
  434. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  435. src_vaddr + user_offset,
  436. length);
  437. kunmap_atomic(src_vaddr, KM_USER1);
  438. io_mapping_unmap_atomic(dst_vaddr);
  439. if (unwritten)
  440. return -EFAULT;
  441. return 0;
  442. }
  443. static inline int
  444. fast_shmem_write(struct page **pages,
  445. loff_t page_base, int page_offset,
  446. char __user *data,
  447. int length)
  448. {
  449. char __iomem *vaddr;
  450. unsigned long unwritten;
  451. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  452. if (vaddr == NULL)
  453. return -ENOMEM;
  454. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  455. kunmap_atomic(vaddr, KM_USER0);
  456. if (unwritten)
  457. return -EFAULT;
  458. return 0;
  459. }
  460. /**
  461. * This is the fast pwrite path, where we copy the data directly from the
  462. * user into the GTT, uncached.
  463. */
  464. static int
  465. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  466. struct drm_i915_gem_pwrite *args,
  467. struct drm_file *file_priv)
  468. {
  469. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  470. drm_i915_private_t *dev_priv = dev->dev_private;
  471. ssize_t remain;
  472. loff_t offset, page_base;
  473. char __user *user_data;
  474. int page_offset, page_length;
  475. int ret;
  476. user_data = (char __user *) (uintptr_t) args->data_ptr;
  477. remain = args->size;
  478. if (!access_ok(VERIFY_READ, user_data, remain))
  479. return -EFAULT;
  480. mutex_lock(&dev->struct_mutex);
  481. ret = i915_gem_object_pin(obj, 0);
  482. if (ret) {
  483. mutex_unlock(&dev->struct_mutex);
  484. return ret;
  485. }
  486. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  487. if (ret)
  488. goto fail;
  489. obj_priv = obj->driver_private;
  490. offset = obj_priv->gtt_offset + args->offset;
  491. while (remain > 0) {
  492. /* Operation in this page
  493. *
  494. * page_base = page offset within aperture
  495. * page_offset = offset within page
  496. * page_length = bytes to copy for this page
  497. */
  498. page_base = (offset & ~(PAGE_SIZE-1));
  499. page_offset = offset & (PAGE_SIZE-1);
  500. page_length = remain;
  501. if ((page_offset + remain) > PAGE_SIZE)
  502. page_length = PAGE_SIZE - page_offset;
  503. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  504. page_offset, user_data, page_length);
  505. /* If we get a fault while copying data, then (presumably) our
  506. * source page isn't available. Return the error and we'll
  507. * retry in the slow path.
  508. */
  509. if (ret)
  510. goto fail;
  511. remain -= page_length;
  512. user_data += page_length;
  513. offset += page_length;
  514. }
  515. fail:
  516. i915_gem_object_unpin(obj);
  517. mutex_unlock(&dev->struct_mutex);
  518. return ret;
  519. }
  520. /**
  521. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  522. * the memory and maps it using kmap_atomic for copying.
  523. *
  524. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  525. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  526. */
  527. static int
  528. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  529. struct drm_i915_gem_pwrite *args,
  530. struct drm_file *file_priv)
  531. {
  532. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  533. drm_i915_private_t *dev_priv = dev->dev_private;
  534. ssize_t remain;
  535. loff_t gtt_page_base, offset;
  536. loff_t first_data_page, last_data_page, num_pages;
  537. loff_t pinned_pages, i;
  538. struct page **user_pages;
  539. struct mm_struct *mm = current->mm;
  540. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  541. int ret;
  542. uint64_t data_ptr = args->data_ptr;
  543. remain = args->size;
  544. /* Pin the user pages containing the data. We can't fault while
  545. * holding the struct mutex, and all of the pwrite implementations
  546. * want to hold it while dereferencing the user data.
  547. */
  548. first_data_page = data_ptr / PAGE_SIZE;
  549. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  550. num_pages = last_data_page - first_data_page + 1;
  551. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  552. if (user_pages == NULL)
  553. return -ENOMEM;
  554. down_read(&mm->mmap_sem);
  555. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  556. num_pages, 0, 0, user_pages, NULL);
  557. up_read(&mm->mmap_sem);
  558. if (pinned_pages < num_pages) {
  559. ret = -EFAULT;
  560. goto out_unpin_pages;
  561. }
  562. mutex_lock(&dev->struct_mutex);
  563. ret = i915_gem_object_pin(obj, 0);
  564. if (ret)
  565. goto out_unlock;
  566. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  567. if (ret)
  568. goto out_unpin_object;
  569. obj_priv = obj->driver_private;
  570. offset = obj_priv->gtt_offset + args->offset;
  571. while (remain > 0) {
  572. /* Operation in this page
  573. *
  574. * gtt_page_base = page offset within aperture
  575. * gtt_page_offset = offset within page in aperture
  576. * data_page_index = page number in get_user_pages return
  577. * data_page_offset = offset with data_page_index page.
  578. * page_length = bytes to copy for this page
  579. */
  580. gtt_page_base = offset & PAGE_MASK;
  581. gtt_page_offset = offset & ~PAGE_MASK;
  582. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  583. data_page_offset = data_ptr & ~PAGE_MASK;
  584. page_length = remain;
  585. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  586. page_length = PAGE_SIZE - gtt_page_offset;
  587. if ((data_page_offset + page_length) > PAGE_SIZE)
  588. page_length = PAGE_SIZE - data_page_offset;
  589. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  590. gtt_page_base, gtt_page_offset,
  591. user_pages[data_page_index],
  592. data_page_offset,
  593. page_length);
  594. /* If we get a fault while copying data, then (presumably) our
  595. * source page isn't available. Return the error and we'll
  596. * retry in the slow path.
  597. */
  598. if (ret)
  599. goto out_unpin_object;
  600. remain -= page_length;
  601. offset += page_length;
  602. data_ptr += page_length;
  603. }
  604. out_unpin_object:
  605. i915_gem_object_unpin(obj);
  606. out_unlock:
  607. mutex_unlock(&dev->struct_mutex);
  608. out_unpin_pages:
  609. for (i = 0; i < pinned_pages; i++)
  610. page_cache_release(user_pages[i]);
  611. drm_free_large(user_pages);
  612. return ret;
  613. }
  614. /**
  615. * This is the fast shmem pwrite path, which attempts to directly
  616. * copy_from_user into the kmapped pages backing the object.
  617. */
  618. static int
  619. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  620. struct drm_i915_gem_pwrite *args,
  621. struct drm_file *file_priv)
  622. {
  623. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  624. ssize_t remain;
  625. loff_t offset, page_base;
  626. char __user *user_data;
  627. int page_offset, page_length;
  628. int ret;
  629. user_data = (char __user *) (uintptr_t) args->data_ptr;
  630. remain = args->size;
  631. mutex_lock(&dev->struct_mutex);
  632. ret = i915_gem_object_get_pages(obj);
  633. if (ret != 0)
  634. goto fail_unlock;
  635. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  636. if (ret != 0)
  637. goto fail_put_pages;
  638. obj_priv = obj->driver_private;
  639. offset = args->offset;
  640. obj_priv->dirty = 1;
  641. while (remain > 0) {
  642. /* Operation in this page
  643. *
  644. * page_base = page offset within aperture
  645. * page_offset = offset within page
  646. * page_length = bytes to copy for this page
  647. */
  648. page_base = (offset & ~(PAGE_SIZE-1));
  649. page_offset = offset & (PAGE_SIZE-1);
  650. page_length = remain;
  651. if ((page_offset + remain) > PAGE_SIZE)
  652. page_length = PAGE_SIZE - page_offset;
  653. ret = fast_shmem_write(obj_priv->pages,
  654. page_base, page_offset,
  655. user_data, page_length);
  656. if (ret)
  657. goto fail_put_pages;
  658. remain -= page_length;
  659. user_data += page_length;
  660. offset += page_length;
  661. }
  662. fail_put_pages:
  663. i915_gem_object_put_pages(obj);
  664. fail_unlock:
  665. mutex_unlock(&dev->struct_mutex);
  666. return ret;
  667. }
  668. /**
  669. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  670. * the memory and maps it using kmap_atomic for copying.
  671. *
  672. * This avoids taking mmap_sem for faulting on the user's address while the
  673. * struct_mutex is held.
  674. */
  675. static int
  676. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  677. struct drm_i915_gem_pwrite *args,
  678. struct drm_file *file_priv)
  679. {
  680. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  681. struct mm_struct *mm = current->mm;
  682. struct page **user_pages;
  683. ssize_t remain;
  684. loff_t offset, pinned_pages, i;
  685. loff_t first_data_page, last_data_page, num_pages;
  686. int shmem_page_index, shmem_page_offset;
  687. int data_page_index, data_page_offset;
  688. int page_length;
  689. int ret;
  690. uint64_t data_ptr = args->data_ptr;
  691. int do_bit17_swizzling;
  692. remain = args->size;
  693. /* Pin the user pages containing the data. We can't fault while
  694. * holding the struct mutex, and all of the pwrite implementations
  695. * want to hold it while dereferencing the user data.
  696. */
  697. first_data_page = data_ptr / PAGE_SIZE;
  698. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  699. num_pages = last_data_page - first_data_page + 1;
  700. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  701. if (user_pages == NULL)
  702. return -ENOMEM;
  703. down_read(&mm->mmap_sem);
  704. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  705. num_pages, 0, 0, user_pages, NULL);
  706. up_read(&mm->mmap_sem);
  707. if (pinned_pages < num_pages) {
  708. ret = -EFAULT;
  709. goto fail_put_user_pages;
  710. }
  711. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  712. mutex_lock(&dev->struct_mutex);
  713. ret = i915_gem_object_get_pages(obj);
  714. if (ret != 0)
  715. goto fail_unlock;
  716. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  717. if (ret != 0)
  718. goto fail_put_pages;
  719. obj_priv = obj->driver_private;
  720. offset = args->offset;
  721. obj_priv->dirty = 1;
  722. while (remain > 0) {
  723. /* Operation in this page
  724. *
  725. * shmem_page_index = page number within shmem file
  726. * shmem_page_offset = offset within page in shmem file
  727. * data_page_index = page number in get_user_pages return
  728. * data_page_offset = offset with data_page_index page.
  729. * page_length = bytes to copy for this page
  730. */
  731. shmem_page_index = offset / PAGE_SIZE;
  732. shmem_page_offset = offset & ~PAGE_MASK;
  733. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  734. data_page_offset = data_ptr & ~PAGE_MASK;
  735. page_length = remain;
  736. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  737. page_length = PAGE_SIZE - shmem_page_offset;
  738. if ((data_page_offset + page_length) > PAGE_SIZE)
  739. page_length = PAGE_SIZE - data_page_offset;
  740. if (do_bit17_swizzling) {
  741. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  742. shmem_page_offset,
  743. user_pages[data_page_index],
  744. data_page_offset,
  745. page_length,
  746. 0);
  747. } else {
  748. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  749. shmem_page_offset,
  750. user_pages[data_page_index],
  751. data_page_offset,
  752. page_length);
  753. }
  754. if (ret)
  755. goto fail_put_pages;
  756. remain -= page_length;
  757. data_ptr += page_length;
  758. offset += page_length;
  759. }
  760. fail_put_pages:
  761. i915_gem_object_put_pages(obj);
  762. fail_unlock:
  763. mutex_unlock(&dev->struct_mutex);
  764. fail_put_user_pages:
  765. for (i = 0; i < pinned_pages; i++)
  766. page_cache_release(user_pages[i]);
  767. drm_free_large(user_pages);
  768. return ret;
  769. }
  770. /**
  771. * Writes data to the object referenced by handle.
  772. *
  773. * On error, the contents of the buffer that were to be modified are undefined.
  774. */
  775. int
  776. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  777. struct drm_file *file_priv)
  778. {
  779. struct drm_i915_gem_pwrite *args = data;
  780. struct drm_gem_object *obj;
  781. struct drm_i915_gem_object *obj_priv;
  782. int ret = 0;
  783. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  784. if (obj == NULL)
  785. return -EBADF;
  786. obj_priv = obj->driver_private;
  787. /* Bounds check destination.
  788. *
  789. * XXX: This could use review for overflow issues...
  790. */
  791. if (args->offset > obj->size || args->size > obj->size ||
  792. args->offset + args->size > obj->size) {
  793. drm_gem_object_unreference(obj);
  794. return -EINVAL;
  795. }
  796. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  797. * it would end up going through the fenced access, and we'll get
  798. * different detiling behavior between reading and writing.
  799. * pread/pwrite currently are reading and writing from the CPU
  800. * perspective, requiring manual detiling by the client.
  801. */
  802. if (obj_priv->phys_obj)
  803. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  804. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  805. dev->gtt_total != 0) {
  806. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  807. if (ret == -EFAULT) {
  808. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  809. file_priv);
  810. }
  811. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  812. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  813. } else {
  814. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  815. if (ret == -EFAULT) {
  816. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  817. file_priv);
  818. }
  819. }
  820. #if WATCH_PWRITE
  821. if (ret)
  822. DRM_INFO("pwrite failed %d\n", ret);
  823. #endif
  824. drm_gem_object_unreference(obj);
  825. return ret;
  826. }
  827. /**
  828. * Called when user space prepares to use an object with the CPU, either
  829. * through the mmap ioctl's mapping or a GTT mapping.
  830. */
  831. int
  832. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  833. struct drm_file *file_priv)
  834. {
  835. struct drm_i915_private *dev_priv = dev->dev_private;
  836. struct drm_i915_gem_set_domain *args = data;
  837. struct drm_gem_object *obj;
  838. uint32_t read_domains = args->read_domains;
  839. uint32_t write_domain = args->write_domain;
  840. int ret;
  841. if (!(dev->driver->driver_features & DRIVER_GEM))
  842. return -ENODEV;
  843. /* Only handle setting domains to types used by the CPU. */
  844. if (write_domain & I915_GEM_GPU_DOMAINS)
  845. return -EINVAL;
  846. if (read_domains & I915_GEM_GPU_DOMAINS)
  847. return -EINVAL;
  848. /* Having something in the write domain implies it's in the read
  849. * domain, and only that read domain. Enforce that in the request.
  850. */
  851. if (write_domain != 0 && read_domains != write_domain)
  852. return -EINVAL;
  853. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  854. if (obj == NULL)
  855. return -EBADF;
  856. mutex_lock(&dev->struct_mutex);
  857. #if WATCH_BUF
  858. DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
  859. obj, obj->size, read_domains, write_domain);
  860. #endif
  861. if (read_domains & I915_GEM_DOMAIN_GTT) {
  862. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  863. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  864. /* Update the LRU on the fence for the CPU access that's
  865. * about to occur.
  866. */
  867. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  868. list_move_tail(&obj_priv->fence_list,
  869. &dev_priv->mm.fence_list);
  870. }
  871. /* Silently promote "you're not bound, there was nothing to do"
  872. * to success, since the client was just asking us to
  873. * make sure everything was done.
  874. */
  875. if (ret == -EINVAL)
  876. ret = 0;
  877. } else {
  878. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  879. }
  880. drm_gem_object_unreference(obj);
  881. mutex_unlock(&dev->struct_mutex);
  882. return ret;
  883. }
  884. /**
  885. * Called when user space has done writes to this buffer
  886. */
  887. int
  888. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  889. struct drm_file *file_priv)
  890. {
  891. struct drm_i915_gem_sw_finish *args = data;
  892. struct drm_gem_object *obj;
  893. struct drm_i915_gem_object *obj_priv;
  894. int ret = 0;
  895. if (!(dev->driver->driver_features & DRIVER_GEM))
  896. return -ENODEV;
  897. mutex_lock(&dev->struct_mutex);
  898. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  899. if (obj == NULL) {
  900. mutex_unlock(&dev->struct_mutex);
  901. return -EBADF;
  902. }
  903. #if WATCH_BUF
  904. DRM_INFO("%s: sw_finish %d (%p %zd)\n",
  905. __func__, args->handle, obj, obj->size);
  906. #endif
  907. obj_priv = obj->driver_private;
  908. /* Pinned buffers may be scanout, so flush the cache */
  909. if (obj_priv->pin_count)
  910. i915_gem_object_flush_cpu_write_domain(obj);
  911. drm_gem_object_unreference(obj);
  912. mutex_unlock(&dev->struct_mutex);
  913. return ret;
  914. }
  915. /**
  916. * Maps the contents of an object, returning the address it is mapped
  917. * into.
  918. *
  919. * While the mapping holds a reference on the contents of the object, it doesn't
  920. * imply a ref on the object itself.
  921. */
  922. int
  923. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  924. struct drm_file *file_priv)
  925. {
  926. struct drm_i915_gem_mmap *args = data;
  927. struct drm_gem_object *obj;
  928. loff_t offset;
  929. unsigned long addr;
  930. if (!(dev->driver->driver_features & DRIVER_GEM))
  931. return -ENODEV;
  932. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  933. if (obj == NULL)
  934. return -EBADF;
  935. offset = args->offset;
  936. down_write(&current->mm->mmap_sem);
  937. addr = do_mmap(obj->filp, 0, args->size,
  938. PROT_READ | PROT_WRITE, MAP_SHARED,
  939. args->offset);
  940. up_write(&current->mm->mmap_sem);
  941. mutex_lock(&dev->struct_mutex);
  942. drm_gem_object_unreference(obj);
  943. mutex_unlock(&dev->struct_mutex);
  944. if (IS_ERR((void *)addr))
  945. return addr;
  946. args->addr_ptr = (uint64_t) addr;
  947. return 0;
  948. }
  949. /**
  950. * i915_gem_fault - fault a page into the GTT
  951. * vma: VMA in question
  952. * vmf: fault info
  953. *
  954. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  955. * from userspace. The fault handler takes care of binding the object to
  956. * the GTT (if needed), allocating and programming a fence register (again,
  957. * only if needed based on whether the old reg is still valid or the object
  958. * is tiled) and inserting a new PTE into the faulting process.
  959. *
  960. * Note that the faulting process may involve evicting existing objects
  961. * from the GTT and/or fence registers to make room. So performance may
  962. * suffer if the GTT working set is large or there are few fence registers
  963. * left.
  964. */
  965. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  966. {
  967. struct drm_gem_object *obj = vma->vm_private_data;
  968. struct drm_device *dev = obj->dev;
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  971. pgoff_t page_offset;
  972. unsigned long pfn;
  973. int ret = 0;
  974. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  975. /* We don't use vmf->pgoff since that has the fake offset */
  976. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  977. PAGE_SHIFT;
  978. /* Now bind it into the GTT if needed */
  979. mutex_lock(&dev->struct_mutex);
  980. if (!obj_priv->gtt_space) {
  981. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  982. if (ret) {
  983. mutex_unlock(&dev->struct_mutex);
  984. return VM_FAULT_SIGBUS;
  985. }
  986. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  987. if (ret) {
  988. mutex_unlock(&dev->struct_mutex);
  989. return VM_FAULT_SIGBUS;
  990. }
  991. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  992. }
  993. /* Need a new fence register? */
  994. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  995. ret = i915_gem_object_get_fence_reg(obj);
  996. if (ret) {
  997. mutex_unlock(&dev->struct_mutex);
  998. return VM_FAULT_SIGBUS;
  999. }
  1000. }
  1001. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1002. page_offset;
  1003. /* Finally, remap it using the new GTT offset */
  1004. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1005. mutex_unlock(&dev->struct_mutex);
  1006. switch (ret) {
  1007. case -ENOMEM:
  1008. case -EAGAIN:
  1009. return VM_FAULT_OOM;
  1010. case -EFAULT:
  1011. case -EINVAL:
  1012. return VM_FAULT_SIGBUS;
  1013. default:
  1014. return VM_FAULT_NOPAGE;
  1015. }
  1016. }
  1017. /**
  1018. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1019. * @obj: obj in question
  1020. *
  1021. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1022. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1023. * up the object based on the offset and sets up the various memory mapping
  1024. * structures.
  1025. *
  1026. * This routine allocates and attaches a fake offset for @obj.
  1027. */
  1028. static int
  1029. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1030. {
  1031. struct drm_device *dev = obj->dev;
  1032. struct drm_gem_mm *mm = dev->mm_private;
  1033. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1034. struct drm_map_list *list;
  1035. struct drm_local_map *map;
  1036. int ret = 0;
  1037. /* Set the object up for mmap'ing */
  1038. list = &obj->map_list;
  1039. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1040. if (!list->map)
  1041. return -ENOMEM;
  1042. map = list->map;
  1043. map->type = _DRM_GEM;
  1044. map->size = obj->size;
  1045. map->handle = obj;
  1046. /* Get a DRM GEM mmap offset allocated... */
  1047. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1048. obj->size / PAGE_SIZE, 0, 0);
  1049. if (!list->file_offset_node) {
  1050. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1051. ret = -ENOMEM;
  1052. goto out_free_list;
  1053. }
  1054. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1055. obj->size / PAGE_SIZE, 0);
  1056. if (!list->file_offset_node) {
  1057. ret = -ENOMEM;
  1058. goto out_free_list;
  1059. }
  1060. list->hash.key = list->file_offset_node->start;
  1061. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1062. DRM_ERROR("failed to add to map hash\n");
  1063. goto out_free_mm;
  1064. }
  1065. /* By now we should be all set, any drm_mmap request on the offset
  1066. * below will get to our mmap & fault handler */
  1067. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1068. return 0;
  1069. out_free_mm:
  1070. drm_mm_put_block(list->file_offset_node);
  1071. out_free_list:
  1072. kfree(list->map);
  1073. return ret;
  1074. }
  1075. /**
  1076. * i915_gem_release_mmap - remove physical page mappings
  1077. * @obj: obj in question
  1078. *
  1079. * Preserve the reservation of the mmaping with the DRM core code, but
  1080. * relinquish ownership of the pages back to the system.
  1081. *
  1082. * It is vital that we remove the page mapping if we have mapped a tiled
  1083. * object through the GTT and then lose the fence register due to
  1084. * resource pressure. Similarly if the object has been moved out of the
  1085. * aperture, than pages mapped into userspace must be revoked. Removing the
  1086. * mapping will then trigger a page fault on the next user access, allowing
  1087. * fixup by i915_gem_fault().
  1088. */
  1089. void
  1090. i915_gem_release_mmap(struct drm_gem_object *obj)
  1091. {
  1092. struct drm_device *dev = obj->dev;
  1093. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1094. if (dev->dev_mapping)
  1095. unmap_mapping_range(dev->dev_mapping,
  1096. obj_priv->mmap_offset, obj->size, 1);
  1097. }
  1098. static void
  1099. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1100. {
  1101. struct drm_device *dev = obj->dev;
  1102. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1103. struct drm_gem_mm *mm = dev->mm_private;
  1104. struct drm_map_list *list;
  1105. list = &obj->map_list;
  1106. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1107. if (list->file_offset_node) {
  1108. drm_mm_put_block(list->file_offset_node);
  1109. list->file_offset_node = NULL;
  1110. }
  1111. if (list->map) {
  1112. kfree(list->map);
  1113. list->map = NULL;
  1114. }
  1115. obj_priv->mmap_offset = 0;
  1116. }
  1117. /**
  1118. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1119. * @obj: object to check
  1120. *
  1121. * Return the required GTT alignment for an object, taking into account
  1122. * potential fence register mapping if needed.
  1123. */
  1124. static uint32_t
  1125. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1126. {
  1127. struct drm_device *dev = obj->dev;
  1128. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1129. int start, i;
  1130. /*
  1131. * Minimum alignment is 4k (GTT page size), but might be greater
  1132. * if a fence register is needed for the object.
  1133. */
  1134. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1135. return 4096;
  1136. /*
  1137. * Previous chips need to be aligned to the size of the smallest
  1138. * fence register that can contain the object.
  1139. */
  1140. if (IS_I9XX(dev))
  1141. start = 1024*1024;
  1142. else
  1143. start = 512*1024;
  1144. for (i = start; i < obj->size; i <<= 1)
  1145. ;
  1146. return i;
  1147. }
  1148. /**
  1149. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1150. * @dev: DRM device
  1151. * @data: GTT mapping ioctl data
  1152. * @file_priv: GEM object info
  1153. *
  1154. * Simply returns the fake offset to userspace so it can mmap it.
  1155. * The mmap call will end up in drm_gem_mmap(), which will set things
  1156. * up so we can get faults in the handler above.
  1157. *
  1158. * The fault handler will take care of binding the object into the GTT
  1159. * (since it may have been evicted to make room for something), allocating
  1160. * a fence register, and mapping the appropriate aperture address into
  1161. * userspace.
  1162. */
  1163. int
  1164. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1165. struct drm_file *file_priv)
  1166. {
  1167. struct drm_i915_gem_mmap_gtt *args = data;
  1168. struct drm_i915_private *dev_priv = dev->dev_private;
  1169. struct drm_gem_object *obj;
  1170. struct drm_i915_gem_object *obj_priv;
  1171. int ret;
  1172. if (!(dev->driver->driver_features & DRIVER_GEM))
  1173. return -ENODEV;
  1174. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1175. if (obj == NULL)
  1176. return -EBADF;
  1177. mutex_lock(&dev->struct_mutex);
  1178. obj_priv = obj->driver_private;
  1179. if (!obj_priv->mmap_offset) {
  1180. ret = i915_gem_create_mmap_offset(obj);
  1181. if (ret) {
  1182. drm_gem_object_unreference(obj);
  1183. mutex_unlock(&dev->struct_mutex);
  1184. return ret;
  1185. }
  1186. }
  1187. args->offset = obj_priv->mmap_offset;
  1188. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1189. /* Make sure the alignment is correct for fence regs etc */
  1190. if (obj_priv->agp_mem &&
  1191. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1192. drm_gem_object_unreference(obj);
  1193. mutex_unlock(&dev->struct_mutex);
  1194. return -EINVAL;
  1195. }
  1196. /*
  1197. * Pull it into the GTT so that we have a page list (makes the
  1198. * initial fault faster and any subsequent flushing possible).
  1199. */
  1200. if (!obj_priv->agp_mem) {
  1201. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1202. if (ret) {
  1203. drm_gem_object_unreference(obj);
  1204. mutex_unlock(&dev->struct_mutex);
  1205. return ret;
  1206. }
  1207. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1208. }
  1209. drm_gem_object_unreference(obj);
  1210. mutex_unlock(&dev->struct_mutex);
  1211. return 0;
  1212. }
  1213. void
  1214. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1215. {
  1216. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1217. int page_count = obj->size / PAGE_SIZE;
  1218. int i;
  1219. BUG_ON(obj_priv->pages_refcount == 0);
  1220. if (--obj_priv->pages_refcount != 0)
  1221. return;
  1222. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1223. i915_gem_object_save_bit_17_swizzle(obj);
  1224. for (i = 0; i < page_count; i++)
  1225. if (obj_priv->pages[i] != NULL) {
  1226. if (obj_priv->dirty)
  1227. set_page_dirty(obj_priv->pages[i]);
  1228. mark_page_accessed(obj_priv->pages[i]);
  1229. page_cache_release(obj_priv->pages[i]);
  1230. }
  1231. obj_priv->dirty = 0;
  1232. drm_free_large(obj_priv->pages);
  1233. obj_priv->pages = NULL;
  1234. }
  1235. static void
  1236. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1237. {
  1238. struct drm_device *dev = obj->dev;
  1239. drm_i915_private_t *dev_priv = dev->dev_private;
  1240. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1241. /* Add a reference if we're newly entering the active list. */
  1242. if (!obj_priv->active) {
  1243. drm_gem_object_reference(obj);
  1244. obj_priv->active = 1;
  1245. }
  1246. /* Move from whatever list we were on to the tail of execution. */
  1247. spin_lock(&dev_priv->mm.active_list_lock);
  1248. list_move_tail(&obj_priv->list,
  1249. &dev_priv->mm.active_list);
  1250. spin_unlock(&dev_priv->mm.active_list_lock);
  1251. obj_priv->last_rendering_seqno = seqno;
  1252. }
  1253. static void
  1254. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1255. {
  1256. struct drm_device *dev = obj->dev;
  1257. drm_i915_private_t *dev_priv = dev->dev_private;
  1258. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1259. BUG_ON(!obj_priv->active);
  1260. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1261. obj_priv->last_rendering_seqno = 0;
  1262. }
  1263. static void
  1264. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1265. {
  1266. struct drm_device *dev = obj->dev;
  1267. drm_i915_private_t *dev_priv = dev->dev_private;
  1268. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1269. i915_verify_inactive(dev, __FILE__, __LINE__);
  1270. if (obj_priv->pin_count != 0)
  1271. list_del_init(&obj_priv->list);
  1272. else
  1273. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1274. obj_priv->last_rendering_seqno = 0;
  1275. if (obj_priv->active) {
  1276. obj_priv->active = 0;
  1277. drm_gem_object_unreference(obj);
  1278. }
  1279. i915_verify_inactive(dev, __FILE__, __LINE__);
  1280. }
  1281. /**
  1282. * Creates a new sequence number, emitting a write of it to the status page
  1283. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1284. *
  1285. * Must be called with struct_lock held.
  1286. *
  1287. * Returned sequence numbers are nonzero on success.
  1288. */
  1289. static uint32_t
  1290. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1291. uint32_t flush_domains)
  1292. {
  1293. drm_i915_private_t *dev_priv = dev->dev_private;
  1294. struct drm_i915_file_private *i915_file_priv = NULL;
  1295. struct drm_i915_gem_request *request;
  1296. uint32_t seqno;
  1297. int was_empty;
  1298. RING_LOCALS;
  1299. if (file_priv != NULL)
  1300. i915_file_priv = file_priv->driver_priv;
  1301. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1302. if (request == NULL)
  1303. return 0;
  1304. /* Grab the seqno we're going to make this request be, and bump the
  1305. * next (skipping 0 so it can be the reserved no-seqno value).
  1306. */
  1307. seqno = dev_priv->mm.next_gem_seqno;
  1308. dev_priv->mm.next_gem_seqno++;
  1309. if (dev_priv->mm.next_gem_seqno == 0)
  1310. dev_priv->mm.next_gem_seqno++;
  1311. BEGIN_LP_RING(4);
  1312. OUT_RING(MI_STORE_DWORD_INDEX);
  1313. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1314. OUT_RING(seqno);
  1315. OUT_RING(MI_USER_INTERRUPT);
  1316. ADVANCE_LP_RING();
  1317. DRM_DEBUG("%d\n", seqno);
  1318. request->seqno = seqno;
  1319. request->emitted_jiffies = jiffies;
  1320. was_empty = list_empty(&dev_priv->mm.request_list);
  1321. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1322. if (i915_file_priv) {
  1323. list_add_tail(&request->client_list,
  1324. &i915_file_priv->mm.request_list);
  1325. } else {
  1326. INIT_LIST_HEAD(&request->client_list);
  1327. }
  1328. /* Associate any objects on the flushing list matching the write
  1329. * domain we're flushing with our flush.
  1330. */
  1331. if (flush_domains != 0) {
  1332. struct drm_i915_gem_object *obj_priv, *next;
  1333. list_for_each_entry_safe(obj_priv, next,
  1334. &dev_priv->mm.flushing_list, list) {
  1335. struct drm_gem_object *obj = obj_priv->obj;
  1336. if ((obj->write_domain & flush_domains) ==
  1337. obj->write_domain) {
  1338. obj->write_domain = 0;
  1339. i915_gem_object_move_to_active(obj, seqno);
  1340. }
  1341. }
  1342. }
  1343. if (was_empty && !dev_priv->mm.suspended)
  1344. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1345. return seqno;
  1346. }
  1347. /**
  1348. * Command execution barrier
  1349. *
  1350. * Ensures that all commands in the ring are finished
  1351. * before signalling the CPU
  1352. */
  1353. static uint32_t
  1354. i915_retire_commands(struct drm_device *dev)
  1355. {
  1356. drm_i915_private_t *dev_priv = dev->dev_private;
  1357. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1358. uint32_t flush_domains = 0;
  1359. RING_LOCALS;
  1360. /* The sampler always gets flushed on i965 (sigh) */
  1361. if (IS_I965G(dev))
  1362. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1363. BEGIN_LP_RING(2);
  1364. OUT_RING(cmd);
  1365. OUT_RING(0); /* noop */
  1366. ADVANCE_LP_RING();
  1367. return flush_domains;
  1368. }
  1369. /**
  1370. * Moves buffers associated only with the given active seqno from the active
  1371. * to inactive list, potentially freeing them.
  1372. */
  1373. static void
  1374. i915_gem_retire_request(struct drm_device *dev,
  1375. struct drm_i915_gem_request *request)
  1376. {
  1377. drm_i915_private_t *dev_priv = dev->dev_private;
  1378. /* Move any buffers on the active list that are no longer referenced
  1379. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1380. */
  1381. spin_lock(&dev_priv->mm.active_list_lock);
  1382. while (!list_empty(&dev_priv->mm.active_list)) {
  1383. struct drm_gem_object *obj;
  1384. struct drm_i915_gem_object *obj_priv;
  1385. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1386. struct drm_i915_gem_object,
  1387. list);
  1388. obj = obj_priv->obj;
  1389. /* If the seqno being retired doesn't match the oldest in the
  1390. * list, then the oldest in the list must still be newer than
  1391. * this seqno.
  1392. */
  1393. if (obj_priv->last_rendering_seqno != request->seqno)
  1394. goto out;
  1395. #if WATCH_LRU
  1396. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1397. __func__, request->seqno, obj);
  1398. #endif
  1399. if (obj->write_domain != 0)
  1400. i915_gem_object_move_to_flushing(obj);
  1401. else {
  1402. /* Take a reference on the object so it won't be
  1403. * freed while the spinlock is held. The list
  1404. * protection for this spinlock is safe when breaking
  1405. * the lock like this since the next thing we do
  1406. * is just get the head of the list again.
  1407. */
  1408. drm_gem_object_reference(obj);
  1409. i915_gem_object_move_to_inactive(obj);
  1410. spin_unlock(&dev_priv->mm.active_list_lock);
  1411. drm_gem_object_unreference(obj);
  1412. spin_lock(&dev_priv->mm.active_list_lock);
  1413. }
  1414. }
  1415. out:
  1416. spin_unlock(&dev_priv->mm.active_list_lock);
  1417. }
  1418. /**
  1419. * Returns true if seq1 is later than seq2.
  1420. */
  1421. static int
  1422. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1423. {
  1424. return (int32_t)(seq1 - seq2) >= 0;
  1425. }
  1426. uint32_t
  1427. i915_get_gem_seqno(struct drm_device *dev)
  1428. {
  1429. drm_i915_private_t *dev_priv = dev->dev_private;
  1430. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1431. }
  1432. /**
  1433. * This function clears the request list as sequence numbers are passed.
  1434. */
  1435. void
  1436. i915_gem_retire_requests(struct drm_device *dev)
  1437. {
  1438. drm_i915_private_t *dev_priv = dev->dev_private;
  1439. uint32_t seqno;
  1440. if (!dev_priv->hw_status_page)
  1441. return;
  1442. seqno = i915_get_gem_seqno(dev);
  1443. while (!list_empty(&dev_priv->mm.request_list)) {
  1444. struct drm_i915_gem_request *request;
  1445. uint32_t retiring_seqno;
  1446. request = list_first_entry(&dev_priv->mm.request_list,
  1447. struct drm_i915_gem_request,
  1448. list);
  1449. retiring_seqno = request->seqno;
  1450. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1451. dev_priv->mm.wedged) {
  1452. i915_gem_retire_request(dev, request);
  1453. list_del(&request->list);
  1454. list_del(&request->client_list);
  1455. kfree(request);
  1456. } else
  1457. break;
  1458. }
  1459. }
  1460. void
  1461. i915_gem_retire_work_handler(struct work_struct *work)
  1462. {
  1463. drm_i915_private_t *dev_priv;
  1464. struct drm_device *dev;
  1465. dev_priv = container_of(work, drm_i915_private_t,
  1466. mm.retire_work.work);
  1467. dev = dev_priv->dev;
  1468. mutex_lock(&dev->struct_mutex);
  1469. i915_gem_retire_requests(dev);
  1470. if (!dev_priv->mm.suspended &&
  1471. !list_empty(&dev_priv->mm.request_list))
  1472. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1473. mutex_unlock(&dev->struct_mutex);
  1474. }
  1475. /**
  1476. * Waits for a sequence number to be signaled, and cleans up the
  1477. * request and object lists appropriately for that event.
  1478. */
  1479. static int
  1480. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1481. {
  1482. drm_i915_private_t *dev_priv = dev->dev_private;
  1483. u32 ier;
  1484. int ret = 0;
  1485. BUG_ON(seqno == 0);
  1486. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1487. if (IS_IGDNG(dev))
  1488. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1489. else
  1490. ier = I915_READ(IER);
  1491. if (!ier) {
  1492. DRM_ERROR("something (likely vbetool) disabled "
  1493. "interrupts, re-enabling\n");
  1494. i915_driver_irq_preinstall(dev);
  1495. i915_driver_irq_postinstall(dev);
  1496. }
  1497. dev_priv->mm.waiting_gem_seqno = seqno;
  1498. i915_user_irq_get(dev);
  1499. ret = wait_event_interruptible(dev_priv->irq_queue,
  1500. i915_seqno_passed(i915_get_gem_seqno(dev),
  1501. seqno) ||
  1502. dev_priv->mm.wedged);
  1503. i915_user_irq_put(dev);
  1504. dev_priv->mm.waiting_gem_seqno = 0;
  1505. }
  1506. if (dev_priv->mm.wedged)
  1507. ret = -EIO;
  1508. if (ret && ret != -ERESTARTSYS)
  1509. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1510. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1511. /* Directly dispatch request retiring. While we have the work queue
  1512. * to handle this, the waiter on a request often wants an associated
  1513. * buffer to have made it to the inactive list, and we would need
  1514. * a separate wait queue to handle that.
  1515. */
  1516. if (ret == 0)
  1517. i915_gem_retire_requests(dev);
  1518. return ret;
  1519. }
  1520. static void
  1521. i915_gem_flush(struct drm_device *dev,
  1522. uint32_t invalidate_domains,
  1523. uint32_t flush_domains)
  1524. {
  1525. drm_i915_private_t *dev_priv = dev->dev_private;
  1526. uint32_t cmd;
  1527. RING_LOCALS;
  1528. #if WATCH_EXEC
  1529. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1530. invalidate_domains, flush_domains);
  1531. #endif
  1532. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1533. drm_agp_chipset_flush(dev);
  1534. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1535. /*
  1536. * read/write caches:
  1537. *
  1538. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1539. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1540. * also flushed at 2d versus 3d pipeline switches.
  1541. *
  1542. * read-only caches:
  1543. *
  1544. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1545. * MI_READ_FLUSH is set, and is always flushed on 965.
  1546. *
  1547. * I915_GEM_DOMAIN_COMMAND may not exist?
  1548. *
  1549. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1550. * invalidated when MI_EXE_FLUSH is set.
  1551. *
  1552. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1553. * invalidated with every MI_FLUSH.
  1554. *
  1555. * TLBs:
  1556. *
  1557. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1558. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1559. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1560. * are flushed at any MI_FLUSH.
  1561. */
  1562. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1563. if ((invalidate_domains|flush_domains) &
  1564. I915_GEM_DOMAIN_RENDER)
  1565. cmd &= ~MI_NO_WRITE_FLUSH;
  1566. if (!IS_I965G(dev)) {
  1567. /*
  1568. * On the 965, the sampler cache always gets flushed
  1569. * and this bit is reserved.
  1570. */
  1571. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1572. cmd |= MI_READ_FLUSH;
  1573. }
  1574. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1575. cmd |= MI_EXE_FLUSH;
  1576. #if WATCH_EXEC
  1577. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1578. #endif
  1579. BEGIN_LP_RING(2);
  1580. OUT_RING(cmd);
  1581. OUT_RING(0); /* noop */
  1582. ADVANCE_LP_RING();
  1583. }
  1584. }
  1585. /**
  1586. * Ensures that all rendering to the object has completed and the object is
  1587. * safe to unbind from the GTT or access from the CPU.
  1588. */
  1589. static int
  1590. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1591. {
  1592. struct drm_device *dev = obj->dev;
  1593. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1594. int ret;
  1595. /* This function only exists to support waiting for existing rendering,
  1596. * not for emitting required flushes.
  1597. */
  1598. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1599. /* If there is rendering queued on the buffer being evicted, wait for
  1600. * it.
  1601. */
  1602. if (obj_priv->active) {
  1603. #if WATCH_BUF
  1604. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1605. __func__, obj, obj_priv->last_rendering_seqno);
  1606. #endif
  1607. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1608. if (ret != 0)
  1609. return ret;
  1610. }
  1611. return 0;
  1612. }
  1613. /**
  1614. * Unbinds an object from the GTT aperture.
  1615. */
  1616. int
  1617. i915_gem_object_unbind(struct drm_gem_object *obj)
  1618. {
  1619. struct drm_device *dev = obj->dev;
  1620. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1621. int ret = 0;
  1622. #if WATCH_BUF
  1623. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1624. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1625. #endif
  1626. if (obj_priv->gtt_space == NULL)
  1627. return 0;
  1628. if (obj_priv->pin_count != 0) {
  1629. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1630. return -EINVAL;
  1631. }
  1632. /* Move the object to the CPU domain to ensure that
  1633. * any possible CPU writes while it's not in the GTT
  1634. * are flushed when we go to remap it. This will
  1635. * also ensure that all pending GPU writes are finished
  1636. * before we unbind.
  1637. */
  1638. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1639. if (ret) {
  1640. if (ret != -ERESTARTSYS)
  1641. DRM_ERROR("set_domain failed: %d\n", ret);
  1642. return ret;
  1643. }
  1644. if (obj_priv->agp_mem != NULL) {
  1645. drm_unbind_agp(obj_priv->agp_mem);
  1646. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1647. obj_priv->agp_mem = NULL;
  1648. }
  1649. BUG_ON(obj_priv->active);
  1650. /* blow away mappings if mapped through GTT */
  1651. i915_gem_release_mmap(obj);
  1652. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1653. i915_gem_clear_fence_reg(obj);
  1654. i915_gem_object_put_pages(obj);
  1655. if (obj_priv->gtt_space) {
  1656. atomic_dec(&dev->gtt_count);
  1657. atomic_sub(obj->size, &dev->gtt_memory);
  1658. drm_mm_put_block(obj_priv->gtt_space);
  1659. obj_priv->gtt_space = NULL;
  1660. }
  1661. /* Remove ourselves from the LRU list if present. */
  1662. if (!list_empty(&obj_priv->list))
  1663. list_del_init(&obj_priv->list);
  1664. return 0;
  1665. }
  1666. static int
  1667. i915_gem_evict_something(struct drm_device *dev)
  1668. {
  1669. drm_i915_private_t *dev_priv = dev->dev_private;
  1670. struct drm_gem_object *obj;
  1671. struct drm_i915_gem_object *obj_priv;
  1672. int ret = 0;
  1673. for (;;) {
  1674. /* If there's an inactive buffer available now, grab it
  1675. * and be done.
  1676. */
  1677. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1678. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1679. struct drm_i915_gem_object,
  1680. list);
  1681. obj = obj_priv->obj;
  1682. BUG_ON(obj_priv->pin_count != 0);
  1683. #if WATCH_LRU
  1684. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1685. #endif
  1686. BUG_ON(obj_priv->active);
  1687. /* Wait on the rendering and unbind the buffer. */
  1688. ret = i915_gem_object_unbind(obj);
  1689. break;
  1690. }
  1691. /* If we didn't get anything, but the ring is still processing
  1692. * things, wait for one of those things to finish and hopefully
  1693. * leave us a buffer to evict.
  1694. */
  1695. if (!list_empty(&dev_priv->mm.request_list)) {
  1696. struct drm_i915_gem_request *request;
  1697. request = list_first_entry(&dev_priv->mm.request_list,
  1698. struct drm_i915_gem_request,
  1699. list);
  1700. ret = i915_wait_request(dev, request->seqno);
  1701. if (ret)
  1702. break;
  1703. /* if waiting caused an object to become inactive,
  1704. * then loop around and wait for it. Otherwise, we
  1705. * assume that waiting freed and unbound something,
  1706. * so there should now be some space in the GTT
  1707. */
  1708. if (!list_empty(&dev_priv->mm.inactive_list))
  1709. continue;
  1710. break;
  1711. }
  1712. /* If we didn't have anything on the request list but there
  1713. * are buffers awaiting a flush, emit one and try again.
  1714. * When we wait on it, those buffers waiting for that flush
  1715. * will get moved to inactive.
  1716. */
  1717. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1718. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1719. struct drm_i915_gem_object,
  1720. list);
  1721. obj = obj_priv->obj;
  1722. i915_gem_flush(dev,
  1723. obj->write_domain,
  1724. obj->write_domain);
  1725. i915_add_request(dev, NULL, obj->write_domain);
  1726. obj = NULL;
  1727. continue;
  1728. }
  1729. DRM_ERROR("inactive empty %d request empty %d "
  1730. "flushing empty %d\n",
  1731. list_empty(&dev_priv->mm.inactive_list),
  1732. list_empty(&dev_priv->mm.request_list),
  1733. list_empty(&dev_priv->mm.flushing_list));
  1734. /* If we didn't do any of the above, there's nothing to be done
  1735. * and we just can't fit it in.
  1736. */
  1737. return -ENOSPC;
  1738. }
  1739. return ret;
  1740. }
  1741. static int
  1742. i915_gem_evict_everything(struct drm_device *dev)
  1743. {
  1744. int ret;
  1745. for (;;) {
  1746. ret = i915_gem_evict_something(dev);
  1747. if (ret != 0)
  1748. break;
  1749. }
  1750. if (ret == -ENOSPC)
  1751. return 0;
  1752. return ret;
  1753. }
  1754. int
  1755. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1756. {
  1757. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1758. int page_count, i;
  1759. struct address_space *mapping;
  1760. struct inode *inode;
  1761. struct page *page;
  1762. int ret;
  1763. if (obj_priv->pages_refcount++ != 0)
  1764. return 0;
  1765. /* Get the list of pages out of our struct file. They'll be pinned
  1766. * at this point until we release them.
  1767. */
  1768. page_count = obj->size / PAGE_SIZE;
  1769. BUG_ON(obj_priv->pages != NULL);
  1770. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1771. if (obj_priv->pages == NULL) {
  1772. DRM_ERROR("Faled to allocate page list\n");
  1773. obj_priv->pages_refcount--;
  1774. return -ENOMEM;
  1775. }
  1776. inode = obj->filp->f_path.dentry->d_inode;
  1777. mapping = inode->i_mapping;
  1778. for (i = 0; i < page_count; i++) {
  1779. page = read_mapping_page(mapping, i, NULL);
  1780. if (IS_ERR(page)) {
  1781. ret = PTR_ERR(page);
  1782. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1783. i915_gem_object_put_pages(obj);
  1784. return ret;
  1785. }
  1786. obj_priv->pages[i] = page;
  1787. }
  1788. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1789. i915_gem_object_do_bit_17_swizzle(obj);
  1790. return 0;
  1791. }
  1792. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1793. {
  1794. struct drm_gem_object *obj = reg->obj;
  1795. struct drm_device *dev = obj->dev;
  1796. drm_i915_private_t *dev_priv = dev->dev_private;
  1797. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1798. int regnum = obj_priv->fence_reg;
  1799. uint64_t val;
  1800. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1801. 0xfffff000) << 32;
  1802. val |= obj_priv->gtt_offset & 0xfffff000;
  1803. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1804. if (obj_priv->tiling_mode == I915_TILING_Y)
  1805. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1806. val |= I965_FENCE_REG_VALID;
  1807. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1808. }
  1809. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1810. {
  1811. struct drm_gem_object *obj = reg->obj;
  1812. struct drm_device *dev = obj->dev;
  1813. drm_i915_private_t *dev_priv = dev->dev_private;
  1814. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1815. int regnum = obj_priv->fence_reg;
  1816. int tile_width;
  1817. uint32_t fence_reg, val;
  1818. uint32_t pitch_val;
  1819. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1820. (obj_priv->gtt_offset & (obj->size - 1))) {
  1821. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1822. __func__, obj_priv->gtt_offset, obj->size);
  1823. return;
  1824. }
  1825. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1826. HAS_128_BYTE_Y_TILING(dev))
  1827. tile_width = 128;
  1828. else
  1829. tile_width = 512;
  1830. /* Note: pitch better be a power of two tile widths */
  1831. pitch_val = obj_priv->stride / tile_width;
  1832. pitch_val = ffs(pitch_val) - 1;
  1833. val = obj_priv->gtt_offset;
  1834. if (obj_priv->tiling_mode == I915_TILING_Y)
  1835. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1836. val |= I915_FENCE_SIZE_BITS(obj->size);
  1837. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1838. val |= I830_FENCE_REG_VALID;
  1839. if (regnum < 8)
  1840. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1841. else
  1842. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1843. I915_WRITE(fence_reg, val);
  1844. }
  1845. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1846. {
  1847. struct drm_gem_object *obj = reg->obj;
  1848. struct drm_device *dev = obj->dev;
  1849. drm_i915_private_t *dev_priv = dev->dev_private;
  1850. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1851. int regnum = obj_priv->fence_reg;
  1852. uint32_t val;
  1853. uint32_t pitch_val;
  1854. uint32_t fence_size_bits;
  1855. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1856. (obj_priv->gtt_offset & (obj->size - 1))) {
  1857. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1858. __func__, obj_priv->gtt_offset);
  1859. return;
  1860. }
  1861. pitch_val = obj_priv->stride / 128;
  1862. pitch_val = ffs(pitch_val) - 1;
  1863. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1864. val = obj_priv->gtt_offset;
  1865. if (obj_priv->tiling_mode == I915_TILING_Y)
  1866. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1867. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1868. WARN_ON(fence_size_bits & ~0x00000f00);
  1869. val |= fence_size_bits;
  1870. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1871. val |= I830_FENCE_REG_VALID;
  1872. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1873. }
  1874. /**
  1875. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1876. * @obj: object to map through a fence reg
  1877. *
  1878. * When mapping objects through the GTT, userspace wants to be able to write
  1879. * to them without having to worry about swizzling if the object is tiled.
  1880. *
  1881. * This function walks the fence regs looking for a free one for @obj,
  1882. * stealing one if it can't find any.
  1883. *
  1884. * It then sets up the reg based on the object's properties: address, pitch
  1885. * and tiling format.
  1886. */
  1887. int
  1888. i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
  1889. {
  1890. struct drm_device *dev = obj->dev;
  1891. struct drm_i915_private *dev_priv = dev->dev_private;
  1892. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1893. struct drm_i915_fence_reg *reg = NULL;
  1894. struct drm_i915_gem_object *old_obj_priv = NULL;
  1895. int i, ret, avail;
  1896. /* Just update our place in the LRU if our fence is getting used. */
  1897. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1898. list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1899. return 0;
  1900. }
  1901. switch (obj_priv->tiling_mode) {
  1902. case I915_TILING_NONE:
  1903. WARN(1, "allocating a fence for non-tiled object?\n");
  1904. break;
  1905. case I915_TILING_X:
  1906. if (!obj_priv->stride)
  1907. return -EINVAL;
  1908. WARN((obj_priv->stride & (512 - 1)),
  1909. "object 0x%08x is X tiled but has non-512B pitch\n",
  1910. obj_priv->gtt_offset);
  1911. break;
  1912. case I915_TILING_Y:
  1913. if (!obj_priv->stride)
  1914. return -EINVAL;
  1915. WARN((obj_priv->stride & (128 - 1)),
  1916. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1917. obj_priv->gtt_offset);
  1918. break;
  1919. }
  1920. /* First try to find a free reg */
  1921. avail = 0;
  1922. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1923. reg = &dev_priv->fence_regs[i];
  1924. if (!reg->obj)
  1925. break;
  1926. old_obj_priv = reg->obj->driver_private;
  1927. if (!old_obj_priv->pin_count)
  1928. avail++;
  1929. }
  1930. /* None available, try to steal one or wait for a user to finish */
  1931. if (i == dev_priv->num_fence_regs) {
  1932. struct drm_gem_object *old_obj = NULL;
  1933. if (avail == 0)
  1934. return -ENOSPC;
  1935. list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
  1936. fence_list) {
  1937. old_obj = old_obj_priv->obj;
  1938. reg = &dev_priv->fence_regs[old_obj_priv->fence_reg];
  1939. if (old_obj_priv->pin_count)
  1940. continue;
  1941. /* Take a reference, as otherwise the wait_rendering
  1942. * below may cause the object to get freed out from
  1943. * under us.
  1944. */
  1945. drm_gem_object_reference(old_obj);
  1946. /* i915 uses fences for GPU access to tiled buffers */
  1947. if (IS_I965G(dev) || !old_obj_priv->active)
  1948. break;
  1949. /* This brings the object to the head of the LRU if it
  1950. * had been written to. The only way this should
  1951. * result in us waiting longer than the expected
  1952. * optimal amount of time is if there was a
  1953. * fence-using buffer later that was read-only.
  1954. */
  1955. i915_gem_object_flush_gpu_write_domain(old_obj);
  1956. ret = i915_gem_object_wait_rendering(old_obj);
  1957. if (ret != 0)
  1958. return ret;
  1959. break;
  1960. }
  1961. /*
  1962. * Zap this virtual mapping so we can set up a fence again
  1963. * for this object next time we need it.
  1964. */
  1965. i915_gem_release_mmap(reg->obj);
  1966. i = old_obj_priv->fence_reg;
  1967. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1968. list_del_init(&old_obj_priv->fence_list);
  1969. drm_gem_object_unreference(old_obj);
  1970. }
  1971. obj_priv->fence_reg = i;
  1972. list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
  1973. reg->obj = obj;
  1974. if (IS_I965G(dev))
  1975. i965_write_fence_reg(reg);
  1976. else if (IS_I9XX(dev))
  1977. i915_write_fence_reg(reg);
  1978. else
  1979. i830_write_fence_reg(reg);
  1980. return 0;
  1981. }
  1982. /**
  1983. * i915_gem_clear_fence_reg - clear out fence register info
  1984. * @obj: object to clear
  1985. *
  1986. * Zeroes out the fence register itself and clears out the associated
  1987. * data structures in dev_priv and obj_priv.
  1988. */
  1989. static void
  1990. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1991. {
  1992. struct drm_device *dev = obj->dev;
  1993. drm_i915_private_t *dev_priv = dev->dev_private;
  1994. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1995. if (IS_I965G(dev))
  1996. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1997. else {
  1998. uint32_t fence_reg;
  1999. if (obj_priv->fence_reg < 8)
  2000. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2001. else
  2002. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  2003. 8) * 4;
  2004. I915_WRITE(fence_reg, 0);
  2005. }
  2006. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  2007. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2008. list_del_init(&obj_priv->fence_list);
  2009. }
  2010. /**
  2011. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2012. * to the buffer to finish, and then resets the fence register.
  2013. * @obj: tiled object holding a fence register.
  2014. *
  2015. * Zeroes out the fence register itself and clears out the associated
  2016. * data structures in dev_priv and obj_priv.
  2017. */
  2018. int
  2019. i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
  2020. {
  2021. struct drm_device *dev = obj->dev;
  2022. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2023. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2024. return 0;
  2025. /* On the i915, GPU access to tiled buffers is via a fence,
  2026. * therefore we must wait for any outstanding access to complete
  2027. * before clearing the fence.
  2028. */
  2029. if (!IS_I965G(dev)) {
  2030. int ret;
  2031. i915_gem_object_flush_gpu_write_domain(obj);
  2032. i915_gem_object_flush_gtt_write_domain(obj);
  2033. ret = i915_gem_object_wait_rendering(obj);
  2034. if (ret != 0)
  2035. return ret;
  2036. }
  2037. i915_gem_clear_fence_reg (obj);
  2038. return 0;
  2039. }
  2040. /**
  2041. * Finds free space in the GTT aperture and binds the object there.
  2042. */
  2043. static int
  2044. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2045. {
  2046. struct drm_device *dev = obj->dev;
  2047. drm_i915_private_t *dev_priv = dev->dev_private;
  2048. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2049. struct drm_mm_node *free_space;
  2050. int page_count, ret;
  2051. if (dev_priv->mm.suspended)
  2052. return -EBUSY;
  2053. if (alignment == 0)
  2054. alignment = i915_gem_get_gtt_alignment(obj);
  2055. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2056. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2057. return -EINVAL;
  2058. }
  2059. search_free:
  2060. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2061. obj->size, alignment, 0);
  2062. if (free_space != NULL) {
  2063. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2064. alignment);
  2065. if (obj_priv->gtt_space != NULL) {
  2066. obj_priv->gtt_space->private = obj;
  2067. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2068. }
  2069. }
  2070. if (obj_priv->gtt_space == NULL) {
  2071. bool lists_empty;
  2072. /* If the gtt is empty and we're still having trouble
  2073. * fitting our object in, we're out of memory.
  2074. */
  2075. #if WATCH_LRU
  2076. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2077. #endif
  2078. spin_lock(&dev_priv->mm.active_list_lock);
  2079. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2080. list_empty(&dev_priv->mm.flushing_list) &&
  2081. list_empty(&dev_priv->mm.active_list));
  2082. spin_unlock(&dev_priv->mm.active_list_lock);
  2083. if (lists_empty) {
  2084. DRM_ERROR("GTT full, but LRU list empty\n");
  2085. return -ENOSPC;
  2086. }
  2087. ret = i915_gem_evict_something(dev);
  2088. if (ret != 0) {
  2089. if (ret != -ERESTARTSYS)
  2090. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2091. return ret;
  2092. }
  2093. goto search_free;
  2094. }
  2095. #if WATCH_BUF
  2096. DRM_INFO("Binding object of size %zd at 0x%08x\n",
  2097. obj->size, obj_priv->gtt_offset);
  2098. #endif
  2099. ret = i915_gem_object_get_pages(obj);
  2100. if (ret) {
  2101. drm_mm_put_block(obj_priv->gtt_space);
  2102. obj_priv->gtt_space = NULL;
  2103. return ret;
  2104. }
  2105. page_count = obj->size / PAGE_SIZE;
  2106. /* Create an AGP memory structure pointing at our pages, and bind it
  2107. * into the GTT.
  2108. */
  2109. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2110. obj_priv->pages,
  2111. page_count,
  2112. obj_priv->gtt_offset,
  2113. obj_priv->agp_type);
  2114. if (obj_priv->agp_mem == NULL) {
  2115. i915_gem_object_put_pages(obj);
  2116. drm_mm_put_block(obj_priv->gtt_space);
  2117. obj_priv->gtt_space = NULL;
  2118. return -ENOMEM;
  2119. }
  2120. atomic_inc(&dev->gtt_count);
  2121. atomic_add(obj->size, &dev->gtt_memory);
  2122. /* Assert that the object is not currently in any GPU domain. As it
  2123. * wasn't in the GTT, there shouldn't be any way it could have been in
  2124. * a GPU cache
  2125. */
  2126. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2127. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2128. return 0;
  2129. }
  2130. void
  2131. i915_gem_clflush_object(struct drm_gem_object *obj)
  2132. {
  2133. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2134. /* If we don't have a page list set up, then we're not pinned
  2135. * to GPU, and we can ignore the cache flush because it'll happen
  2136. * again at bind time.
  2137. */
  2138. if (obj_priv->pages == NULL)
  2139. return;
  2140. /* XXX: The 865 in particular appears to be weird in how it handles
  2141. * cache flushing. We haven't figured it out, but the
  2142. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2143. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2144. */
  2145. if (IS_I865G(obj->dev)) {
  2146. wbinvd();
  2147. return;
  2148. }
  2149. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2150. }
  2151. /** Flushes any GPU write domain for the object if it's dirty. */
  2152. static void
  2153. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2154. {
  2155. struct drm_device *dev = obj->dev;
  2156. uint32_t seqno;
  2157. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2158. return;
  2159. /* Queue the GPU write cache flushing we need. */
  2160. i915_gem_flush(dev, 0, obj->write_domain);
  2161. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2162. obj->write_domain = 0;
  2163. i915_gem_object_move_to_active(obj, seqno);
  2164. }
  2165. /** Flushes the GTT write domain for the object if it's dirty. */
  2166. static void
  2167. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2168. {
  2169. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2170. return;
  2171. /* No actual flushing is required for the GTT write domain. Writes
  2172. * to it immediately go to main memory as far as we know, so there's
  2173. * no chipset flush. It also doesn't land in render cache.
  2174. */
  2175. obj->write_domain = 0;
  2176. }
  2177. /** Flushes the CPU write domain for the object if it's dirty. */
  2178. static void
  2179. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2180. {
  2181. struct drm_device *dev = obj->dev;
  2182. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2183. return;
  2184. i915_gem_clflush_object(obj);
  2185. drm_agp_chipset_flush(dev);
  2186. obj->write_domain = 0;
  2187. }
  2188. /**
  2189. * Moves a single object to the GTT read, and possibly write domain.
  2190. *
  2191. * This function returns when the move is complete, including waiting on
  2192. * flushes to occur.
  2193. */
  2194. int
  2195. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2196. {
  2197. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2198. int ret;
  2199. /* Not valid to be called on unbound objects. */
  2200. if (obj_priv->gtt_space == NULL)
  2201. return -EINVAL;
  2202. i915_gem_object_flush_gpu_write_domain(obj);
  2203. /* Wait on any GPU rendering and flushing to occur. */
  2204. ret = i915_gem_object_wait_rendering(obj);
  2205. if (ret != 0)
  2206. return ret;
  2207. /* If we're writing through the GTT domain, then CPU and GPU caches
  2208. * will need to be invalidated at next use.
  2209. */
  2210. if (write)
  2211. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2212. i915_gem_object_flush_cpu_write_domain(obj);
  2213. /* It should now be out of any other write domains, and we can update
  2214. * the domain values for our changes.
  2215. */
  2216. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2217. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2218. if (write) {
  2219. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2220. obj_priv->dirty = 1;
  2221. }
  2222. return 0;
  2223. }
  2224. /**
  2225. * Moves a single object to the CPU read, and possibly write domain.
  2226. *
  2227. * This function returns when the move is complete, including waiting on
  2228. * flushes to occur.
  2229. */
  2230. static int
  2231. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2232. {
  2233. int ret;
  2234. i915_gem_object_flush_gpu_write_domain(obj);
  2235. /* Wait on any GPU rendering and flushing to occur. */
  2236. ret = i915_gem_object_wait_rendering(obj);
  2237. if (ret != 0)
  2238. return ret;
  2239. i915_gem_object_flush_gtt_write_domain(obj);
  2240. /* If we have a partially-valid cache of the object in the CPU,
  2241. * finish invalidating it and free the per-page flags.
  2242. */
  2243. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2244. /* Flush the CPU cache if it's still invalid. */
  2245. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2246. i915_gem_clflush_object(obj);
  2247. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2248. }
  2249. /* It should now be out of any other write domains, and we can update
  2250. * the domain values for our changes.
  2251. */
  2252. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2253. /* If we're writing through the CPU, then the GPU read domains will
  2254. * need to be invalidated at next use.
  2255. */
  2256. if (write) {
  2257. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2258. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2259. }
  2260. return 0;
  2261. }
  2262. /*
  2263. * Set the next domain for the specified object. This
  2264. * may not actually perform the necessary flushing/invaliding though,
  2265. * as that may want to be batched with other set_domain operations
  2266. *
  2267. * This is (we hope) the only really tricky part of gem. The goal
  2268. * is fairly simple -- track which caches hold bits of the object
  2269. * and make sure they remain coherent. A few concrete examples may
  2270. * help to explain how it works. For shorthand, we use the notation
  2271. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2272. * a pair of read and write domain masks.
  2273. *
  2274. * Case 1: the batch buffer
  2275. *
  2276. * 1. Allocated
  2277. * 2. Written by CPU
  2278. * 3. Mapped to GTT
  2279. * 4. Read by GPU
  2280. * 5. Unmapped from GTT
  2281. * 6. Freed
  2282. *
  2283. * Let's take these a step at a time
  2284. *
  2285. * 1. Allocated
  2286. * Pages allocated from the kernel may still have
  2287. * cache contents, so we set them to (CPU, CPU) always.
  2288. * 2. Written by CPU (using pwrite)
  2289. * The pwrite function calls set_domain (CPU, CPU) and
  2290. * this function does nothing (as nothing changes)
  2291. * 3. Mapped by GTT
  2292. * This function asserts that the object is not
  2293. * currently in any GPU-based read or write domains
  2294. * 4. Read by GPU
  2295. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2296. * As write_domain is zero, this function adds in the
  2297. * current read domains (CPU+COMMAND, 0).
  2298. * flush_domains is set to CPU.
  2299. * invalidate_domains is set to COMMAND
  2300. * clflush is run to get data out of the CPU caches
  2301. * then i915_dev_set_domain calls i915_gem_flush to
  2302. * emit an MI_FLUSH and drm_agp_chipset_flush
  2303. * 5. Unmapped from GTT
  2304. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2305. * flush_domains and invalidate_domains end up both zero
  2306. * so no flushing/invalidating happens
  2307. * 6. Freed
  2308. * yay, done
  2309. *
  2310. * Case 2: The shared render buffer
  2311. *
  2312. * 1. Allocated
  2313. * 2. Mapped to GTT
  2314. * 3. Read/written by GPU
  2315. * 4. set_domain to (CPU,CPU)
  2316. * 5. Read/written by CPU
  2317. * 6. Read/written by GPU
  2318. *
  2319. * 1. Allocated
  2320. * Same as last example, (CPU, CPU)
  2321. * 2. Mapped to GTT
  2322. * Nothing changes (assertions find that it is not in the GPU)
  2323. * 3. Read/written by GPU
  2324. * execbuffer calls set_domain (RENDER, RENDER)
  2325. * flush_domains gets CPU
  2326. * invalidate_domains gets GPU
  2327. * clflush (obj)
  2328. * MI_FLUSH and drm_agp_chipset_flush
  2329. * 4. set_domain (CPU, CPU)
  2330. * flush_domains gets GPU
  2331. * invalidate_domains gets CPU
  2332. * wait_rendering (obj) to make sure all drawing is complete.
  2333. * This will include an MI_FLUSH to get the data from GPU
  2334. * to memory
  2335. * clflush (obj) to invalidate the CPU cache
  2336. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2337. * 5. Read/written by CPU
  2338. * cache lines are loaded and dirtied
  2339. * 6. Read written by GPU
  2340. * Same as last GPU access
  2341. *
  2342. * Case 3: The constant buffer
  2343. *
  2344. * 1. Allocated
  2345. * 2. Written by CPU
  2346. * 3. Read by GPU
  2347. * 4. Updated (written) by CPU again
  2348. * 5. Read by GPU
  2349. *
  2350. * 1. Allocated
  2351. * (CPU, CPU)
  2352. * 2. Written by CPU
  2353. * (CPU, CPU)
  2354. * 3. Read by GPU
  2355. * (CPU+RENDER, 0)
  2356. * flush_domains = CPU
  2357. * invalidate_domains = RENDER
  2358. * clflush (obj)
  2359. * MI_FLUSH
  2360. * drm_agp_chipset_flush
  2361. * 4. Updated (written) by CPU again
  2362. * (CPU, CPU)
  2363. * flush_domains = 0 (no previous write domain)
  2364. * invalidate_domains = 0 (no new read domains)
  2365. * 5. Read by GPU
  2366. * (CPU+RENDER, 0)
  2367. * flush_domains = CPU
  2368. * invalidate_domains = RENDER
  2369. * clflush (obj)
  2370. * MI_FLUSH
  2371. * drm_agp_chipset_flush
  2372. */
  2373. static void
  2374. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2375. {
  2376. struct drm_device *dev = obj->dev;
  2377. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2378. uint32_t invalidate_domains = 0;
  2379. uint32_t flush_domains = 0;
  2380. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2381. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2382. #if WATCH_BUF
  2383. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2384. __func__, obj,
  2385. obj->read_domains, obj->pending_read_domains,
  2386. obj->write_domain, obj->pending_write_domain);
  2387. #endif
  2388. /*
  2389. * If the object isn't moving to a new write domain,
  2390. * let the object stay in multiple read domains
  2391. */
  2392. if (obj->pending_write_domain == 0)
  2393. obj->pending_read_domains |= obj->read_domains;
  2394. else
  2395. obj_priv->dirty = 1;
  2396. /*
  2397. * Flush the current write domain if
  2398. * the new read domains don't match. Invalidate
  2399. * any read domains which differ from the old
  2400. * write domain
  2401. */
  2402. if (obj->write_domain &&
  2403. obj->write_domain != obj->pending_read_domains) {
  2404. flush_domains |= obj->write_domain;
  2405. invalidate_domains |=
  2406. obj->pending_read_domains & ~obj->write_domain;
  2407. }
  2408. /*
  2409. * Invalidate any read caches which may have
  2410. * stale data. That is, any new read domains.
  2411. */
  2412. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2413. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2414. #if WATCH_BUF
  2415. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2416. __func__, flush_domains, invalidate_domains);
  2417. #endif
  2418. i915_gem_clflush_object(obj);
  2419. }
  2420. /* The actual obj->write_domain will be updated with
  2421. * pending_write_domain after we emit the accumulated flush for all
  2422. * of our domain changes in execbuffers (which clears objects'
  2423. * write_domains). So if we have a current write domain that we
  2424. * aren't changing, set pending_write_domain to that.
  2425. */
  2426. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2427. obj->pending_write_domain = obj->write_domain;
  2428. obj->read_domains = obj->pending_read_domains;
  2429. dev->invalidate_domains |= invalidate_domains;
  2430. dev->flush_domains |= flush_domains;
  2431. #if WATCH_BUF
  2432. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2433. __func__,
  2434. obj->read_domains, obj->write_domain,
  2435. dev->invalidate_domains, dev->flush_domains);
  2436. #endif
  2437. }
  2438. /**
  2439. * Moves the object from a partially CPU read to a full one.
  2440. *
  2441. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2442. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2443. */
  2444. static void
  2445. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2446. {
  2447. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2448. if (!obj_priv->page_cpu_valid)
  2449. return;
  2450. /* If we're partially in the CPU read domain, finish moving it in.
  2451. */
  2452. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2453. int i;
  2454. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2455. if (obj_priv->page_cpu_valid[i])
  2456. continue;
  2457. drm_clflush_pages(obj_priv->pages + i, 1);
  2458. }
  2459. }
  2460. /* Free the page_cpu_valid mappings which are now stale, whether
  2461. * or not we've got I915_GEM_DOMAIN_CPU.
  2462. */
  2463. kfree(obj_priv->page_cpu_valid);
  2464. obj_priv->page_cpu_valid = NULL;
  2465. }
  2466. /**
  2467. * Set the CPU read domain on a range of the object.
  2468. *
  2469. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2470. * not entirely valid. The page_cpu_valid member of the object flags which
  2471. * pages have been flushed, and will be respected by
  2472. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2473. * of the whole object.
  2474. *
  2475. * This function returns when the move is complete, including waiting on
  2476. * flushes to occur.
  2477. */
  2478. static int
  2479. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2480. uint64_t offset, uint64_t size)
  2481. {
  2482. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2483. int i, ret;
  2484. if (offset == 0 && size == obj->size)
  2485. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2486. i915_gem_object_flush_gpu_write_domain(obj);
  2487. /* Wait on any GPU rendering and flushing to occur. */
  2488. ret = i915_gem_object_wait_rendering(obj);
  2489. if (ret != 0)
  2490. return ret;
  2491. i915_gem_object_flush_gtt_write_domain(obj);
  2492. /* If we're already fully in the CPU read domain, we're done. */
  2493. if (obj_priv->page_cpu_valid == NULL &&
  2494. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2495. return 0;
  2496. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2497. * newly adding I915_GEM_DOMAIN_CPU
  2498. */
  2499. if (obj_priv->page_cpu_valid == NULL) {
  2500. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2501. GFP_KERNEL);
  2502. if (obj_priv->page_cpu_valid == NULL)
  2503. return -ENOMEM;
  2504. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2505. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2506. /* Flush the cache on any pages that are still invalid from the CPU's
  2507. * perspective.
  2508. */
  2509. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2510. i++) {
  2511. if (obj_priv->page_cpu_valid[i])
  2512. continue;
  2513. drm_clflush_pages(obj_priv->pages + i, 1);
  2514. obj_priv->page_cpu_valid[i] = 1;
  2515. }
  2516. /* It should now be out of any other write domains, and we can update
  2517. * the domain values for our changes.
  2518. */
  2519. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2520. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2521. return 0;
  2522. }
  2523. /**
  2524. * Pin an object to the GTT and evaluate the relocations landing in it.
  2525. */
  2526. static int
  2527. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2528. struct drm_file *file_priv,
  2529. struct drm_i915_gem_exec_object *entry,
  2530. struct drm_i915_gem_relocation_entry *relocs)
  2531. {
  2532. struct drm_device *dev = obj->dev;
  2533. drm_i915_private_t *dev_priv = dev->dev_private;
  2534. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2535. int i, ret;
  2536. void __iomem *reloc_page;
  2537. /* Choose the GTT offset for our buffer and put it there. */
  2538. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2539. if (ret)
  2540. return ret;
  2541. entry->offset = obj_priv->gtt_offset;
  2542. /* Apply the relocations, using the GTT aperture to avoid cache
  2543. * flushing requirements.
  2544. */
  2545. for (i = 0; i < entry->relocation_count; i++) {
  2546. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2547. struct drm_gem_object *target_obj;
  2548. struct drm_i915_gem_object *target_obj_priv;
  2549. uint32_t reloc_val, reloc_offset;
  2550. uint32_t __iomem *reloc_entry;
  2551. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2552. reloc->target_handle);
  2553. if (target_obj == NULL) {
  2554. i915_gem_object_unpin(obj);
  2555. return -EBADF;
  2556. }
  2557. target_obj_priv = target_obj->driver_private;
  2558. /* The target buffer should have appeared before us in the
  2559. * exec_object list, so it should have a GTT space bound by now.
  2560. */
  2561. if (target_obj_priv->gtt_space == NULL) {
  2562. DRM_ERROR("No GTT space found for object %d\n",
  2563. reloc->target_handle);
  2564. drm_gem_object_unreference(target_obj);
  2565. i915_gem_object_unpin(obj);
  2566. return -EINVAL;
  2567. }
  2568. if (reloc->offset > obj->size - 4) {
  2569. DRM_ERROR("Relocation beyond object bounds: "
  2570. "obj %p target %d offset %d size %d.\n",
  2571. obj, reloc->target_handle,
  2572. (int) reloc->offset, (int) obj->size);
  2573. drm_gem_object_unreference(target_obj);
  2574. i915_gem_object_unpin(obj);
  2575. return -EINVAL;
  2576. }
  2577. if (reloc->offset & 3) {
  2578. DRM_ERROR("Relocation not 4-byte aligned: "
  2579. "obj %p target %d offset %d.\n",
  2580. obj, reloc->target_handle,
  2581. (int) reloc->offset);
  2582. drm_gem_object_unreference(target_obj);
  2583. i915_gem_object_unpin(obj);
  2584. return -EINVAL;
  2585. }
  2586. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2587. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2588. DRM_ERROR("reloc with read/write CPU domains: "
  2589. "obj %p target %d offset %d "
  2590. "read %08x write %08x",
  2591. obj, reloc->target_handle,
  2592. (int) reloc->offset,
  2593. reloc->read_domains,
  2594. reloc->write_domain);
  2595. drm_gem_object_unreference(target_obj);
  2596. i915_gem_object_unpin(obj);
  2597. return -EINVAL;
  2598. }
  2599. if (reloc->write_domain && target_obj->pending_write_domain &&
  2600. reloc->write_domain != target_obj->pending_write_domain) {
  2601. DRM_ERROR("Write domain conflict: "
  2602. "obj %p target %d offset %d "
  2603. "new %08x old %08x\n",
  2604. obj, reloc->target_handle,
  2605. (int) reloc->offset,
  2606. reloc->write_domain,
  2607. target_obj->pending_write_domain);
  2608. drm_gem_object_unreference(target_obj);
  2609. i915_gem_object_unpin(obj);
  2610. return -EINVAL;
  2611. }
  2612. #if WATCH_RELOC
  2613. DRM_INFO("%s: obj %p offset %08x target %d "
  2614. "read %08x write %08x gtt %08x "
  2615. "presumed %08x delta %08x\n",
  2616. __func__,
  2617. obj,
  2618. (int) reloc->offset,
  2619. (int) reloc->target_handle,
  2620. (int) reloc->read_domains,
  2621. (int) reloc->write_domain,
  2622. (int) target_obj_priv->gtt_offset,
  2623. (int) reloc->presumed_offset,
  2624. reloc->delta);
  2625. #endif
  2626. target_obj->pending_read_domains |= reloc->read_domains;
  2627. target_obj->pending_write_domain |= reloc->write_domain;
  2628. /* If the relocation already has the right value in it, no
  2629. * more work needs to be done.
  2630. */
  2631. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2632. drm_gem_object_unreference(target_obj);
  2633. continue;
  2634. }
  2635. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2636. if (ret != 0) {
  2637. drm_gem_object_unreference(target_obj);
  2638. i915_gem_object_unpin(obj);
  2639. return -EINVAL;
  2640. }
  2641. /* Map the page containing the relocation we're going to
  2642. * perform.
  2643. */
  2644. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2645. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2646. (reloc_offset &
  2647. ~(PAGE_SIZE - 1)));
  2648. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2649. (reloc_offset & (PAGE_SIZE - 1)));
  2650. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2651. #if WATCH_BUF
  2652. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2653. obj, (unsigned int) reloc->offset,
  2654. readl(reloc_entry), reloc_val);
  2655. #endif
  2656. writel(reloc_val, reloc_entry);
  2657. io_mapping_unmap_atomic(reloc_page);
  2658. /* The updated presumed offset for this entry will be
  2659. * copied back out to the user.
  2660. */
  2661. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2662. drm_gem_object_unreference(target_obj);
  2663. }
  2664. #if WATCH_BUF
  2665. if (0)
  2666. i915_gem_dump_object(obj, 128, __func__, ~0);
  2667. #endif
  2668. return 0;
  2669. }
  2670. /** Dispatch a batchbuffer to the ring
  2671. */
  2672. static int
  2673. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2674. struct drm_i915_gem_execbuffer *exec,
  2675. struct drm_clip_rect *cliprects,
  2676. uint64_t exec_offset)
  2677. {
  2678. drm_i915_private_t *dev_priv = dev->dev_private;
  2679. int nbox = exec->num_cliprects;
  2680. int i = 0, count;
  2681. uint32_t exec_start, exec_len;
  2682. RING_LOCALS;
  2683. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2684. exec_len = (uint32_t) exec->batch_len;
  2685. count = nbox ? nbox : 1;
  2686. for (i = 0; i < count; i++) {
  2687. if (i < nbox) {
  2688. int ret = i915_emit_box(dev, cliprects, i,
  2689. exec->DR1, exec->DR4);
  2690. if (ret)
  2691. return ret;
  2692. }
  2693. if (IS_I830(dev) || IS_845G(dev)) {
  2694. BEGIN_LP_RING(4);
  2695. OUT_RING(MI_BATCH_BUFFER);
  2696. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2697. OUT_RING(exec_start + exec_len - 4);
  2698. OUT_RING(0);
  2699. ADVANCE_LP_RING();
  2700. } else {
  2701. BEGIN_LP_RING(2);
  2702. if (IS_I965G(dev)) {
  2703. OUT_RING(MI_BATCH_BUFFER_START |
  2704. (2 << 6) |
  2705. MI_BATCH_NON_SECURE_I965);
  2706. OUT_RING(exec_start);
  2707. } else {
  2708. OUT_RING(MI_BATCH_BUFFER_START |
  2709. (2 << 6));
  2710. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2711. }
  2712. ADVANCE_LP_RING();
  2713. }
  2714. }
  2715. /* XXX breadcrumb */
  2716. return 0;
  2717. }
  2718. /* Throttle our rendering by waiting until the ring has completed our requests
  2719. * emitted over 20 msec ago.
  2720. *
  2721. * Note that if we were to use the current jiffies each time around the loop,
  2722. * we wouldn't escape the function with any frames outstanding if the time to
  2723. * render a frame was over 20ms.
  2724. *
  2725. * This should get us reasonable parallelism between CPU and GPU but also
  2726. * relatively low latency when blocking on a particular request to finish.
  2727. */
  2728. static int
  2729. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2730. {
  2731. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2732. int ret = 0;
  2733. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2734. mutex_lock(&dev->struct_mutex);
  2735. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2736. struct drm_i915_gem_request *request;
  2737. request = list_first_entry(&i915_file_priv->mm.request_list,
  2738. struct drm_i915_gem_request,
  2739. client_list);
  2740. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2741. break;
  2742. ret = i915_wait_request(dev, request->seqno);
  2743. if (ret != 0)
  2744. break;
  2745. }
  2746. mutex_unlock(&dev->struct_mutex);
  2747. return ret;
  2748. }
  2749. static int
  2750. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2751. uint32_t buffer_count,
  2752. struct drm_i915_gem_relocation_entry **relocs)
  2753. {
  2754. uint32_t reloc_count = 0, reloc_index = 0, i;
  2755. int ret;
  2756. *relocs = NULL;
  2757. for (i = 0; i < buffer_count; i++) {
  2758. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2759. return -EINVAL;
  2760. reloc_count += exec_list[i].relocation_count;
  2761. }
  2762. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2763. if (*relocs == NULL)
  2764. return -ENOMEM;
  2765. for (i = 0; i < buffer_count; i++) {
  2766. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2767. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2768. ret = copy_from_user(&(*relocs)[reloc_index],
  2769. user_relocs,
  2770. exec_list[i].relocation_count *
  2771. sizeof(**relocs));
  2772. if (ret != 0) {
  2773. drm_free_large(*relocs);
  2774. *relocs = NULL;
  2775. return -EFAULT;
  2776. }
  2777. reloc_index += exec_list[i].relocation_count;
  2778. }
  2779. return 0;
  2780. }
  2781. static int
  2782. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2783. uint32_t buffer_count,
  2784. struct drm_i915_gem_relocation_entry *relocs)
  2785. {
  2786. uint32_t reloc_count = 0, i;
  2787. int ret = 0;
  2788. for (i = 0; i < buffer_count; i++) {
  2789. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2790. int unwritten;
  2791. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2792. unwritten = copy_to_user(user_relocs,
  2793. &relocs[reloc_count],
  2794. exec_list[i].relocation_count *
  2795. sizeof(*relocs));
  2796. if (unwritten) {
  2797. ret = -EFAULT;
  2798. goto err;
  2799. }
  2800. reloc_count += exec_list[i].relocation_count;
  2801. }
  2802. err:
  2803. drm_free_large(relocs);
  2804. return ret;
  2805. }
  2806. static int
  2807. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2808. uint64_t exec_offset)
  2809. {
  2810. uint32_t exec_start, exec_len;
  2811. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2812. exec_len = (uint32_t) exec->batch_len;
  2813. if ((exec_start | exec_len) & 0x7)
  2814. return -EINVAL;
  2815. if (!exec_start)
  2816. return -EINVAL;
  2817. return 0;
  2818. }
  2819. int
  2820. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2821. struct drm_file *file_priv)
  2822. {
  2823. drm_i915_private_t *dev_priv = dev->dev_private;
  2824. struct drm_i915_gem_execbuffer *args = data;
  2825. struct drm_i915_gem_exec_object *exec_list = NULL;
  2826. struct drm_gem_object **object_list = NULL;
  2827. struct drm_gem_object *batch_obj;
  2828. struct drm_i915_gem_object *obj_priv;
  2829. struct drm_clip_rect *cliprects = NULL;
  2830. struct drm_i915_gem_relocation_entry *relocs;
  2831. int ret, ret2, i, pinned = 0;
  2832. uint64_t exec_offset;
  2833. uint32_t seqno, flush_domains, reloc_index;
  2834. int pin_tries;
  2835. #if WATCH_EXEC
  2836. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2837. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2838. #endif
  2839. if (args->buffer_count < 1) {
  2840. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2841. return -EINVAL;
  2842. }
  2843. /* Copy in the exec list from userland */
  2844. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2845. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2846. if (exec_list == NULL || object_list == NULL) {
  2847. DRM_ERROR("Failed to allocate exec or object list "
  2848. "for %d buffers\n",
  2849. args->buffer_count);
  2850. ret = -ENOMEM;
  2851. goto pre_mutex_err;
  2852. }
  2853. ret = copy_from_user(exec_list,
  2854. (struct drm_i915_relocation_entry __user *)
  2855. (uintptr_t) args->buffers_ptr,
  2856. sizeof(*exec_list) * args->buffer_count);
  2857. if (ret != 0) {
  2858. DRM_ERROR("copy %d exec entries failed %d\n",
  2859. args->buffer_count, ret);
  2860. goto pre_mutex_err;
  2861. }
  2862. if (args->num_cliprects != 0) {
  2863. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  2864. GFP_KERNEL);
  2865. if (cliprects == NULL)
  2866. goto pre_mutex_err;
  2867. ret = copy_from_user(cliprects,
  2868. (struct drm_clip_rect __user *)
  2869. (uintptr_t) args->cliprects_ptr,
  2870. sizeof(*cliprects) * args->num_cliprects);
  2871. if (ret != 0) {
  2872. DRM_ERROR("copy %d cliprects failed: %d\n",
  2873. args->num_cliprects, ret);
  2874. goto pre_mutex_err;
  2875. }
  2876. }
  2877. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2878. &relocs);
  2879. if (ret != 0)
  2880. goto pre_mutex_err;
  2881. mutex_lock(&dev->struct_mutex);
  2882. i915_verify_inactive(dev, __FILE__, __LINE__);
  2883. if (dev_priv->mm.wedged) {
  2884. DRM_ERROR("Execbuf while wedged\n");
  2885. mutex_unlock(&dev->struct_mutex);
  2886. ret = -EIO;
  2887. goto pre_mutex_err;
  2888. }
  2889. if (dev_priv->mm.suspended) {
  2890. DRM_ERROR("Execbuf while VT-switched.\n");
  2891. mutex_unlock(&dev->struct_mutex);
  2892. ret = -EBUSY;
  2893. goto pre_mutex_err;
  2894. }
  2895. /* Look up object handles */
  2896. for (i = 0; i < args->buffer_count; i++) {
  2897. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2898. exec_list[i].handle);
  2899. if (object_list[i] == NULL) {
  2900. DRM_ERROR("Invalid object handle %d at index %d\n",
  2901. exec_list[i].handle, i);
  2902. ret = -EBADF;
  2903. goto err;
  2904. }
  2905. obj_priv = object_list[i]->driver_private;
  2906. if (obj_priv->in_execbuffer) {
  2907. DRM_ERROR("Object %p appears more than once in object list\n",
  2908. object_list[i]);
  2909. ret = -EBADF;
  2910. goto err;
  2911. }
  2912. obj_priv->in_execbuffer = true;
  2913. }
  2914. /* Pin and relocate */
  2915. for (pin_tries = 0; ; pin_tries++) {
  2916. ret = 0;
  2917. reloc_index = 0;
  2918. for (i = 0; i < args->buffer_count; i++) {
  2919. object_list[i]->pending_read_domains = 0;
  2920. object_list[i]->pending_write_domain = 0;
  2921. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2922. file_priv,
  2923. &exec_list[i],
  2924. &relocs[reloc_index]);
  2925. if (ret)
  2926. break;
  2927. pinned = i + 1;
  2928. reloc_index += exec_list[i].relocation_count;
  2929. }
  2930. /* success */
  2931. if (ret == 0)
  2932. break;
  2933. /* error other than GTT full, or we've already tried again */
  2934. if (ret != -ENOSPC || pin_tries >= 1) {
  2935. if (ret != -ERESTARTSYS)
  2936. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2937. goto err;
  2938. }
  2939. /* unpin all of our buffers */
  2940. for (i = 0; i < pinned; i++)
  2941. i915_gem_object_unpin(object_list[i]);
  2942. pinned = 0;
  2943. /* evict everyone we can from the aperture */
  2944. ret = i915_gem_evict_everything(dev);
  2945. if (ret)
  2946. goto err;
  2947. }
  2948. /* Set the pending read domains for the batch buffer to COMMAND */
  2949. batch_obj = object_list[args->buffer_count-1];
  2950. if (batch_obj->pending_write_domain) {
  2951. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2952. ret = -EINVAL;
  2953. goto err;
  2954. }
  2955. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2956. /* Sanity check the batch buffer, prior to moving objects */
  2957. exec_offset = exec_list[args->buffer_count - 1].offset;
  2958. ret = i915_gem_check_execbuffer (args, exec_offset);
  2959. if (ret != 0) {
  2960. DRM_ERROR("execbuf with invalid offset/length\n");
  2961. goto err;
  2962. }
  2963. i915_verify_inactive(dev, __FILE__, __LINE__);
  2964. /* Zero the global flush/invalidate flags. These
  2965. * will be modified as new domains are computed
  2966. * for each object
  2967. */
  2968. dev->invalidate_domains = 0;
  2969. dev->flush_domains = 0;
  2970. for (i = 0; i < args->buffer_count; i++) {
  2971. struct drm_gem_object *obj = object_list[i];
  2972. /* Compute new gpu domains and update invalidate/flush */
  2973. i915_gem_object_set_to_gpu_domain(obj);
  2974. }
  2975. i915_verify_inactive(dev, __FILE__, __LINE__);
  2976. if (dev->invalidate_domains | dev->flush_domains) {
  2977. #if WATCH_EXEC
  2978. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2979. __func__,
  2980. dev->invalidate_domains,
  2981. dev->flush_domains);
  2982. #endif
  2983. i915_gem_flush(dev,
  2984. dev->invalidate_domains,
  2985. dev->flush_domains);
  2986. if (dev->flush_domains)
  2987. (void)i915_add_request(dev, file_priv,
  2988. dev->flush_domains);
  2989. }
  2990. for (i = 0; i < args->buffer_count; i++) {
  2991. struct drm_gem_object *obj = object_list[i];
  2992. obj->write_domain = obj->pending_write_domain;
  2993. }
  2994. i915_verify_inactive(dev, __FILE__, __LINE__);
  2995. #if WATCH_COHERENCY
  2996. for (i = 0; i < args->buffer_count; i++) {
  2997. i915_gem_object_check_coherency(object_list[i],
  2998. exec_list[i].handle);
  2999. }
  3000. #endif
  3001. #if WATCH_EXEC
  3002. i915_gem_dump_object(batch_obj,
  3003. args->batch_len,
  3004. __func__,
  3005. ~0);
  3006. #endif
  3007. /* Exec the batchbuffer */
  3008. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  3009. if (ret) {
  3010. DRM_ERROR("dispatch failed %d\n", ret);
  3011. goto err;
  3012. }
  3013. /*
  3014. * Ensure that the commands in the batch buffer are
  3015. * finished before the interrupt fires
  3016. */
  3017. flush_domains = i915_retire_commands(dev);
  3018. i915_verify_inactive(dev, __FILE__, __LINE__);
  3019. /*
  3020. * Get a seqno representing the execution of the current buffer,
  3021. * which we can wait on. We would like to mitigate these interrupts,
  3022. * likely by only creating seqnos occasionally (so that we have
  3023. * *some* interrupts representing completion of buffers that we can
  3024. * wait on when trying to clear up gtt space).
  3025. */
  3026. seqno = i915_add_request(dev, file_priv, flush_domains);
  3027. BUG_ON(seqno == 0);
  3028. for (i = 0; i < args->buffer_count; i++) {
  3029. struct drm_gem_object *obj = object_list[i];
  3030. i915_gem_object_move_to_active(obj, seqno);
  3031. #if WATCH_LRU
  3032. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  3033. #endif
  3034. }
  3035. #if WATCH_LRU
  3036. i915_dump_lru(dev, __func__);
  3037. #endif
  3038. i915_verify_inactive(dev, __FILE__, __LINE__);
  3039. err:
  3040. for (i = 0; i < pinned; i++)
  3041. i915_gem_object_unpin(object_list[i]);
  3042. for (i = 0; i < args->buffer_count; i++) {
  3043. if (object_list[i]) {
  3044. obj_priv = object_list[i]->driver_private;
  3045. obj_priv->in_execbuffer = false;
  3046. }
  3047. drm_gem_object_unreference(object_list[i]);
  3048. }
  3049. mutex_unlock(&dev->struct_mutex);
  3050. if (!ret) {
  3051. /* Copy the new buffer offsets back to the user's exec list. */
  3052. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3053. (uintptr_t) args->buffers_ptr,
  3054. exec_list,
  3055. sizeof(*exec_list) * args->buffer_count);
  3056. if (ret) {
  3057. ret = -EFAULT;
  3058. DRM_ERROR("failed to copy %d exec entries "
  3059. "back to user (%d)\n",
  3060. args->buffer_count, ret);
  3061. }
  3062. }
  3063. /* Copy the updated relocations out regardless of current error
  3064. * state. Failure to update the relocs would mean that the next
  3065. * time userland calls execbuf, it would do so with presumed offset
  3066. * state that didn't match the actual object state.
  3067. */
  3068. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3069. relocs);
  3070. if (ret2 != 0) {
  3071. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3072. if (ret == 0)
  3073. ret = ret2;
  3074. }
  3075. pre_mutex_err:
  3076. drm_free_large(object_list);
  3077. drm_free_large(exec_list);
  3078. kfree(cliprects);
  3079. return ret;
  3080. }
  3081. int
  3082. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3083. {
  3084. struct drm_device *dev = obj->dev;
  3085. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3086. int ret;
  3087. i915_verify_inactive(dev, __FILE__, __LINE__);
  3088. if (obj_priv->gtt_space == NULL) {
  3089. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3090. if (ret != 0) {
  3091. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3092. DRM_ERROR("Failure to bind: %d\n", ret);
  3093. return ret;
  3094. }
  3095. }
  3096. /*
  3097. * Pre-965 chips need a fence register set up in order to
  3098. * properly handle tiled surfaces.
  3099. */
  3100. if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
  3101. ret = i915_gem_object_get_fence_reg(obj);
  3102. if (ret != 0) {
  3103. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3104. DRM_ERROR("Failure to install fence: %d\n",
  3105. ret);
  3106. return ret;
  3107. }
  3108. }
  3109. obj_priv->pin_count++;
  3110. /* If the object is not active and not pending a flush,
  3111. * remove it from the inactive list
  3112. */
  3113. if (obj_priv->pin_count == 1) {
  3114. atomic_inc(&dev->pin_count);
  3115. atomic_add(obj->size, &dev->pin_memory);
  3116. if (!obj_priv->active &&
  3117. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3118. !list_empty(&obj_priv->list))
  3119. list_del_init(&obj_priv->list);
  3120. }
  3121. i915_verify_inactive(dev, __FILE__, __LINE__);
  3122. return 0;
  3123. }
  3124. void
  3125. i915_gem_object_unpin(struct drm_gem_object *obj)
  3126. {
  3127. struct drm_device *dev = obj->dev;
  3128. drm_i915_private_t *dev_priv = dev->dev_private;
  3129. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3130. i915_verify_inactive(dev, __FILE__, __LINE__);
  3131. obj_priv->pin_count--;
  3132. BUG_ON(obj_priv->pin_count < 0);
  3133. BUG_ON(obj_priv->gtt_space == NULL);
  3134. /* If the object is no longer pinned, and is
  3135. * neither active nor being flushed, then stick it on
  3136. * the inactive list
  3137. */
  3138. if (obj_priv->pin_count == 0) {
  3139. if (!obj_priv->active &&
  3140. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3141. list_move_tail(&obj_priv->list,
  3142. &dev_priv->mm.inactive_list);
  3143. atomic_dec(&dev->pin_count);
  3144. atomic_sub(obj->size, &dev->pin_memory);
  3145. }
  3146. i915_verify_inactive(dev, __FILE__, __LINE__);
  3147. }
  3148. int
  3149. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3150. struct drm_file *file_priv)
  3151. {
  3152. struct drm_i915_gem_pin *args = data;
  3153. struct drm_gem_object *obj;
  3154. struct drm_i915_gem_object *obj_priv;
  3155. int ret;
  3156. mutex_lock(&dev->struct_mutex);
  3157. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3158. if (obj == NULL) {
  3159. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3160. args->handle);
  3161. mutex_unlock(&dev->struct_mutex);
  3162. return -EBADF;
  3163. }
  3164. obj_priv = obj->driver_private;
  3165. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3166. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3167. args->handle);
  3168. drm_gem_object_unreference(obj);
  3169. mutex_unlock(&dev->struct_mutex);
  3170. return -EINVAL;
  3171. }
  3172. obj_priv->user_pin_count++;
  3173. obj_priv->pin_filp = file_priv;
  3174. if (obj_priv->user_pin_count == 1) {
  3175. ret = i915_gem_object_pin(obj, args->alignment);
  3176. if (ret != 0) {
  3177. drm_gem_object_unreference(obj);
  3178. mutex_unlock(&dev->struct_mutex);
  3179. return ret;
  3180. }
  3181. }
  3182. /* XXX - flush the CPU caches for pinned objects
  3183. * as the X server doesn't manage domains yet
  3184. */
  3185. i915_gem_object_flush_cpu_write_domain(obj);
  3186. args->offset = obj_priv->gtt_offset;
  3187. drm_gem_object_unreference(obj);
  3188. mutex_unlock(&dev->struct_mutex);
  3189. return 0;
  3190. }
  3191. int
  3192. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3193. struct drm_file *file_priv)
  3194. {
  3195. struct drm_i915_gem_pin *args = data;
  3196. struct drm_gem_object *obj;
  3197. struct drm_i915_gem_object *obj_priv;
  3198. mutex_lock(&dev->struct_mutex);
  3199. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3200. if (obj == NULL) {
  3201. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3202. args->handle);
  3203. mutex_unlock(&dev->struct_mutex);
  3204. return -EBADF;
  3205. }
  3206. obj_priv = obj->driver_private;
  3207. if (obj_priv->pin_filp != file_priv) {
  3208. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3209. args->handle);
  3210. drm_gem_object_unreference(obj);
  3211. mutex_unlock(&dev->struct_mutex);
  3212. return -EINVAL;
  3213. }
  3214. obj_priv->user_pin_count--;
  3215. if (obj_priv->user_pin_count == 0) {
  3216. obj_priv->pin_filp = NULL;
  3217. i915_gem_object_unpin(obj);
  3218. }
  3219. drm_gem_object_unreference(obj);
  3220. mutex_unlock(&dev->struct_mutex);
  3221. return 0;
  3222. }
  3223. int
  3224. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3225. struct drm_file *file_priv)
  3226. {
  3227. struct drm_i915_gem_busy *args = data;
  3228. struct drm_gem_object *obj;
  3229. struct drm_i915_gem_object *obj_priv;
  3230. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3231. if (obj == NULL) {
  3232. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3233. args->handle);
  3234. return -EBADF;
  3235. }
  3236. mutex_lock(&dev->struct_mutex);
  3237. /* Update the active list for the hardware's current position.
  3238. * Otherwise this only updates on a delayed timer or when irqs are
  3239. * actually unmasked, and our working set ends up being larger than
  3240. * required.
  3241. */
  3242. i915_gem_retire_requests(dev);
  3243. obj_priv = obj->driver_private;
  3244. /* Don't count being on the flushing list against the object being
  3245. * done. Otherwise, a buffer left on the flushing list but not getting
  3246. * flushed (because nobody's flushing that domain) won't ever return
  3247. * unbusy and get reused by libdrm's bo cache. The other expected
  3248. * consumer of this interface, OpenGL's occlusion queries, also specs
  3249. * that the objects get unbusy "eventually" without any interference.
  3250. */
  3251. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3252. drm_gem_object_unreference(obj);
  3253. mutex_unlock(&dev->struct_mutex);
  3254. return 0;
  3255. }
  3256. int
  3257. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3258. struct drm_file *file_priv)
  3259. {
  3260. return i915_gem_ring_throttle(dev, file_priv);
  3261. }
  3262. int i915_gem_init_object(struct drm_gem_object *obj)
  3263. {
  3264. struct drm_i915_gem_object *obj_priv;
  3265. obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
  3266. if (obj_priv == NULL)
  3267. return -ENOMEM;
  3268. /*
  3269. * We've just allocated pages from the kernel,
  3270. * so they've just been written by the CPU with
  3271. * zeros. They'll need to be clflushed before we
  3272. * use them with the GPU.
  3273. */
  3274. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3275. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3276. obj_priv->agp_type = AGP_USER_MEMORY;
  3277. obj->driver_private = obj_priv;
  3278. obj_priv->obj = obj;
  3279. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3280. INIT_LIST_HEAD(&obj_priv->list);
  3281. INIT_LIST_HEAD(&obj_priv->fence_list);
  3282. return 0;
  3283. }
  3284. void i915_gem_free_object(struct drm_gem_object *obj)
  3285. {
  3286. struct drm_device *dev = obj->dev;
  3287. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3288. while (obj_priv->pin_count > 0)
  3289. i915_gem_object_unpin(obj);
  3290. if (obj_priv->phys_obj)
  3291. i915_gem_detach_phys_object(dev, obj);
  3292. i915_gem_object_unbind(obj);
  3293. i915_gem_free_mmap_offset(obj);
  3294. kfree(obj_priv->page_cpu_valid);
  3295. kfree(obj_priv->bit_17);
  3296. kfree(obj->driver_private);
  3297. }
  3298. /** Unbinds all objects that are on the given buffer list. */
  3299. static int
  3300. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3301. {
  3302. struct drm_gem_object *obj;
  3303. struct drm_i915_gem_object *obj_priv;
  3304. int ret;
  3305. while (!list_empty(head)) {
  3306. obj_priv = list_first_entry(head,
  3307. struct drm_i915_gem_object,
  3308. list);
  3309. obj = obj_priv->obj;
  3310. if (obj_priv->pin_count != 0) {
  3311. DRM_ERROR("Pinned object in unbind list\n");
  3312. mutex_unlock(&dev->struct_mutex);
  3313. return -EINVAL;
  3314. }
  3315. ret = i915_gem_object_unbind(obj);
  3316. if (ret != 0) {
  3317. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3318. ret);
  3319. mutex_unlock(&dev->struct_mutex);
  3320. return ret;
  3321. }
  3322. }
  3323. return 0;
  3324. }
  3325. int
  3326. i915_gem_idle(struct drm_device *dev)
  3327. {
  3328. drm_i915_private_t *dev_priv = dev->dev_private;
  3329. uint32_t seqno, cur_seqno, last_seqno;
  3330. int stuck, ret;
  3331. mutex_lock(&dev->struct_mutex);
  3332. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3333. mutex_unlock(&dev->struct_mutex);
  3334. return 0;
  3335. }
  3336. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3337. * We need to replace this with a semaphore, or something.
  3338. */
  3339. dev_priv->mm.suspended = 1;
  3340. /* Cancel the retire work handler, wait for it to finish if running
  3341. */
  3342. mutex_unlock(&dev->struct_mutex);
  3343. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3344. mutex_lock(&dev->struct_mutex);
  3345. i915_kernel_lost_context(dev);
  3346. /* Flush the GPU along with all non-CPU write domains
  3347. */
  3348. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3349. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3350. if (seqno == 0) {
  3351. mutex_unlock(&dev->struct_mutex);
  3352. return -ENOMEM;
  3353. }
  3354. dev_priv->mm.waiting_gem_seqno = seqno;
  3355. last_seqno = 0;
  3356. stuck = 0;
  3357. for (;;) {
  3358. cur_seqno = i915_get_gem_seqno(dev);
  3359. if (i915_seqno_passed(cur_seqno, seqno))
  3360. break;
  3361. if (last_seqno == cur_seqno) {
  3362. if (stuck++ > 100) {
  3363. DRM_ERROR("hardware wedged\n");
  3364. dev_priv->mm.wedged = 1;
  3365. DRM_WAKEUP(&dev_priv->irq_queue);
  3366. break;
  3367. }
  3368. }
  3369. msleep(10);
  3370. last_seqno = cur_seqno;
  3371. }
  3372. dev_priv->mm.waiting_gem_seqno = 0;
  3373. i915_gem_retire_requests(dev);
  3374. spin_lock(&dev_priv->mm.active_list_lock);
  3375. if (!dev_priv->mm.wedged) {
  3376. /* Active and flushing should now be empty as we've
  3377. * waited for a sequence higher than any pending execbuffer
  3378. */
  3379. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3380. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3381. /* Request should now be empty as we've also waited
  3382. * for the last request in the list
  3383. */
  3384. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3385. }
  3386. /* Empty the active and flushing lists to inactive. If there's
  3387. * anything left at this point, it means that we're wedged and
  3388. * nothing good's going to happen by leaving them there. So strip
  3389. * the GPU domains and just stuff them onto inactive.
  3390. */
  3391. while (!list_empty(&dev_priv->mm.active_list)) {
  3392. struct drm_i915_gem_object *obj_priv;
  3393. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3394. struct drm_i915_gem_object,
  3395. list);
  3396. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3397. i915_gem_object_move_to_inactive(obj_priv->obj);
  3398. }
  3399. spin_unlock(&dev_priv->mm.active_list_lock);
  3400. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3401. struct drm_i915_gem_object *obj_priv;
  3402. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3403. struct drm_i915_gem_object,
  3404. list);
  3405. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3406. i915_gem_object_move_to_inactive(obj_priv->obj);
  3407. }
  3408. /* Move all inactive buffers out of the GTT. */
  3409. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3410. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3411. if (ret) {
  3412. mutex_unlock(&dev->struct_mutex);
  3413. return ret;
  3414. }
  3415. i915_gem_cleanup_ringbuffer(dev);
  3416. mutex_unlock(&dev->struct_mutex);
  3417. return 0;
  3418. }
  3419. static int
  3420. i915_gem_init_hws(struct drm_device *dev)
  3421. {
  3422. drm_i915_private_t *dev_priv = dev->dev_private;
  3423. struct drm_gem_object *obj;
  3424. struct drm_i915_gem_object *obj_priv;
  3425. int ret;
  3426. /* If we need a physical address for the status page, it's already
  3427. * initialized at driver load time.
  3428. */
  3429. if (!I915_NEED_GFX_HWS(dev))
  3430. return 0;
  3431. obj = drm_gem_object_alloc(dev, 4096);
  3432. if (obj == NULL) {
  3433. DRM_ERROR("Failed to allocate status page\n");
  3434. return -ENOMEM;
  3435. }
  3436. obj_priv = obj->driver_private;
  3437. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3438. ret = i915_gem_object_pin(obj, 4096);
  3439. if (ret != 0) {
  3440. drm_gem_object_unreference(obj);
  3441. return ret;
  3442. }
  3443. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3444. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3445. if (dev_priv->hw_status_page == NULL) {
  3446. DRM_ERROR("Failed to map status page.\n");
  3447. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3448. i915_gem_object_unpin(obj);
  3449. drm_gem_object_unreference(obj);
  3450. return -EINVAL;
  3451. }
  3452. dev_priv->hws_obj = obj;
  3453. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3454. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3455. I915_READ(HWS_PGA); /* posting read */
  3456. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3457. return 0;
  3458. }
  3459. static void
  3460. i915_gem_cleanup_hws(struct drm_device *dev)
  3461. {
  3462. drm_i915_private_t *dev_priv = dev->dev_private;
  3463. struct drm_gem_object *obj;
  3464. struct drm_i915_gem_object *obj_priv;
  3465. if (dev_priv->hws_obj == NULL)
  3466. return;
  3467. obj = dev_priv->hws_obj;
  3468. obj_priv = obj->driver_private;
  3469. kunmap(obj_priv->pages[0]);
  3470. i915_gem_object_unpin(obj);
  3471. drm_gem_object_unreference(obj);
  3472. dev_priv->hws_obj = NULL;
  3473. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3474. dev_priv->hw_status_page = NULL;
  3475. /* Write high address into HWS_PGA when disabling. */
  3476. I915_WRITE(HWS_PGA, 0x1ffff000);
  3477. }
  3478. int
  3479. i915_gem_init_ringbuffer(struct drm_device *dev)
  3480. {
  3481. drm_i915_private_t *dev_priv = dev->dev_private;
  3482. struct drm_gem_object *obj;
  3483. struct drm_i915_gem_object *obj_priv;
  3484. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3485. int ret;
  3486. u32 head;
  3487. ret = i915_gem_init_hws(dev);
  3488. if (ret != 0)
  3489. return ret;
  3490. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3491. if (obj == NULL) {
  3492. DRM_ERROR("Failed to allocate ringbuffer\n");
  3493. i915_gem_cleanup_hws(dev);
  3494. return -ENOMEM;
  3495. }
  3496. obj_priv = obj->driver_private;
  3497. ret = i915_gem_object_pin(obj, 4096);
  3498. if (ret != 0) {
  3499. drm_gem_object_unreference(obj);
  3500. i915_gem_cleanup_hws(dev);
  3501. return ret;
  3502. }
  3503. /* Set up the kernel mapping for the ring. */
  3504. ring->Size = obj->size;
  3505. ring->tail_mask = obj->size - 1;
  3506. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3507. ring->map.size = obj->size;
  3508. ring->map.type = 0;
  3509. ring->map.flags = 0;
  3510. ring->map.mtrr = 0;
  3511. drm_core_ioremap_wc(&ring->map, dev);
  3512. if (ring->map.handle == NULL) {
  3513. DRM_ERROR("Failed to map ringbuffer.\n");
  3514. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3515. i915_gem_object_unpin(obj);
  3516. drm_gem_object_unreference(obj);
  3517. i915_gem_cleanup_hws(dev);
  3518. return -EINVAL;
  3519. }
  3520. ring->ring_obj = obj;
  3521. ring->virtual_start = ring->map.handle;
  3522. /* Stop the ring if it's running. */
  3523. I915_WRITE(PRB0_CTL, 0);
  3524. I915_WRITE(PRB0_TAIL, 0);
  3525. I915_WRITE(PRB0_HEAD, 0);
  3526. /* Initialize the ring. */
  3527. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3528. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3529. /* G45 ring initialization fails to reset head to zero */
  3530. if (head != 0) {
  3531. DRM_ERROR("Ring head not reset to zero "
  3532. "ctl %08x head %08x tail %08x start %08x\n",
  3533. I915_READ(PRB0_CTL),
  3534. I915_READ(PRB0_HEAD),
  3535. I915_READ(PRB0_TAIL),
  3536. I915_READ(PRB0_START));
  3537. I915_WRITE(PRB0_HEAD, 0);
  3538. DRM_ERROR("Ring head forced to zero "
  3539. "ctl %08x head %08x tail %08x start %08x\n",
  3540. I915_READ(PRB0_CTL),
  3541. I915_READ(PRB0_HEAD),
  3542. I915_READ(PRB0_TAIL),
  3543. I915_READ(PRB0_START));
  3544. }
  3545. I915_WRITE(PRB0_CTL,
  3546. ((obj->size - 4096) & RING_NR_PAGES) |
  3547. RING_NO_REPORT |
  3548. RING_VALID);
  3549. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3550. /* If the head is still not zero, the ring is dead */
  3551. if (head != 0) {
  3552. DRM_ERROR("Ring initialization failed "
  3553. "ctl %08x head %08x tail %08x start %08x\n",
  3554. I915_READ(PRB0_CTL),
  3555. I915_READ(PRB0_HEAD),
  3556. I915_READ(PRB0_TAIL),
  3557. I915_READ(PRB0_START));
  3558. return -EIO;
  3559. }
  3560. /* Update our cache of the ring state */
  3561. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3562. i915_kernel_lost_context(dev);
  3563. else {
  3564. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3565. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3566. ring->space = ring->head - (ring->tail + 8);
  3567. if (ring->space < 0)
  3568. ring->space += ring->Size;
  3569. }
  3570. return 0;
  3571. }
  3572. void
  3573. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3574. {
  3575. drm_i915_private_t *dev_priv = dev->dev_private;
  3576. if (dev_priv->ring.ring_obj == NULL)
  3577. return;
  3578. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3579. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3580. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3581. dev_priv->ring.ring_obj = NULL;
  3582. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3583. i915_gem_cleanup_hws(dev);
  3584. }
  3585. int
  3586. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3587. struct drm_file *file_priv)
  3588. {
  3589. drm_i915_private_t *dev_priv = dev->dev_private;
  3590. int ret;
  3591. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3592. return 0;
  3593. if (dev_priv->mm.wedged) {
  3594. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3595. dev_priv->mm.wedged = 0;
  3596. }
  3597. mutex_lock(&dev->struct_mutex);
  3598. dev_priv->mm.suspended = 0;
  3599. ret = i915_gem_init_ringbuffer(dev);
  3600. if (ret != 0) {
  3601. mutex_unlock(&dev->struct_mutex);
  3602. return ret;
  3603. }
  3604. spin_lock(&dev_priv->mm.active_list_lock);
  3605. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3606. spin_unlock(&dev_priv->mm.active_list_lock);
  3607. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3608. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3609. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3610. mutex_unlock(&dev->struct_mutex);
  3611. drm_irq_install(dev);
  3612. return 0;
  3613. }
  3614. int
  3615. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3616. struct drm_file *file_priv)
  3617. {
  3618. int ret;
  3619. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3620. return 0;
  3621. ret = i915_gem_idle(dev);
  3622. drm_irq_uninstall(dev);
  3623. return ret;
  3624. }
  3625. void
  3626. i915_gem_lastclose(struct drm_device *dev)
  3627. {
  3628. int ret;
  3629. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3630. return;
  3631. ret = i915_gem_idle(dev);
  3632. if (ret)
  3633. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3634. }
  3635. void
  3636. i915_gem_load(struct drm_device *dev)
  3637. {
  3638. int i;
  3639. drm_i915_private_t *dev_priv = dev->dev_private;
  3640. spin_lock_init(&dev_priv->mm.active_list_lock);
  3641. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3642. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3643. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3644. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3645. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3646. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3647. i915_gem_retire_work_handler);
  3648. dev_priv->mm.next_gem_seqno = 1;
  3649. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3650. dev_priv->fence_reg_start = 3;
  3651. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3652. dev_priv->num_fence_regs = 16;
  3653. else
  3654. dev_priv->num_fence_regs = 8;
  3655. /* Initialize fence registers to zero */
  3656. if (IS_I965G(dev)) {
  3657. for (i = 0; i < 16; i++)
  3658. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3659. } else {
  3660. for (i = 0; i < 8; i++)
  3661. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3662. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3663. for (i = 0; i < 8; i++)
  3664. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3665. }
  3666. i915_gem_detect_bit_6_swizzle(dev);
  3667. }
  3668. /*
  3669. * Create a physically contiguous memory object for this object
  3670. * e.g. for cursor + overlay regs
  3671. */
  3672. int i915_gem_init_phys_object(struct drm_device *dev,
  3673. int id, int size)
  3674. {
  3675. drm_i915_private_t *dev_priv = dev->dev_private;
  3676. struct drm_i915_gem_phys_object *phys_obj;
  3677. int ret;
  3678. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3679. return 0;
  3680. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3681. if (!phys_obj)
  3682. return -ENOMEM;
  3683. phys_obj->id = id;
  3684. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3685. if (!phys_obj->handle) {
  3686. ret = -ENOMEM;
  3687. goto kfree_obj;
  3688. }
  3689. #ifdef CONFIG_X86
  3690. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3691. #endif
  3692. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3693. return 0;
  3694. kfree_obj:
  3695. kfree(phys_obj);
  3696. return ret;
  3697. }
  3698. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3699. {
  3700. drm_i915_private_t *dev_priv = dev->dev_private;
  3701. struct drm_i915_gem_phys_object *phys_obj;
  3702. if (!dev_priv->mm.phys_objs[id - 1])
  3703. return;
  3704. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3705. if (phys_obj->cur_obj) {
  3706. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3707. }
  3708. #ifdef CONFIG_X86
  3709. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3710. #endif
  3711. drm_pci_free(dev, phys_obj->handle);
  3712. kfree(phys_obj);
  3713. dev_priv->mm.phys_objs[id - 1] = NULL;
  3714. }
  3715. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3716. {
  3717. int i;
  3718. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3719. i915_gem_free_phys_object(dev, i);
  3720. }
  3721. void i915_gem_detach_phys_object(struct drm_device *dev,
  3722. struct drm_gem_object *obj)
  3723. {
  3724. struct drm_i915_gem_object *obj_priv;
  3725. int i;
  3726. int ret;
  3727. int page_count;
  3728. obj_priv = obj->driver_private;
  3729. if (!obj_priv->phys_obj)
  3730. return;
  3731. ret = i915_gem_object_get_pages(obj);
  3732. if (ret)
  3733. goto out;
  3734. page_count = obj->size / PAGE_SIZE;
  3735. for (i = 0; i < page_count; i++) {
  3736. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3737. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3738. memcpy(dst, src, PAGE_SIZE);
  3739. kunmap_atomic(dst, KM_USER0);
  3740. }
  3741. drm_clflush_pages(obj_priv->pages, page_count);
  3742. drm_agp_chipset_flush(dev);
  3743. i915_gem_object_put_pages(obj);
  3744. out:
  3745. obj_priv->phys_obj->cur_obj = NULL;
  3746. obj_priv->phys_obj = NULL;
  3747. }
  3748. int
  3749. i915_gem_attach_phys_object(struct drm_device *dev,
  3750. struct drm_gem_object *obj, int id)
  3751. {
  3752. drm_i915_private_t *dev_priv = dev->dev_private;
  3753. struct drm_i915_gem_object *obj_priv;
  3754. int ret = 0;
  3755. int page_count;
  3756. int i;
  3757. if (id > I915_MAX_PHYS_OBJECT)
  3758. return -EINVAL;
  3759. obj_priv = obj->driver_private;
  3760. if (obj_priv->phys_obj) {
  3761. if (obj_priv->phys_obj->id == id)
  3762. return 0;
  3763. i915_gem_detach_phys_object(dev, obj);
  3764. }
  3765. /* create a new object */
  3766. if (!dev_priv->mm.phys_objs[id - 1]) {
  3767. ret = i915_gem_init_phys_object(dev, id,
  3768. obj->size);
  3769. if (ret) {
  3770. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3771. goto out;
  3772. }
  3773. }
  3774. /* bind to the object */
  3775. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3776. obj_priv->phys_obj->cur_obj = obj;
  3777. ret = i915_gem_object_get_pages(obj);
  3778. if (ret) {
  3779. DRM_ERROR("failed to get page list\n");
  3780. goto out;
  3781. }
  3782. page_count = obj->size / PAGE_SIZE;
  3783. for (i = 0; i < page_count; i++) {
  3784. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3785. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3786. memcpy(dst, src, PAGE_SIZE);
  3787. kunmap_atomic(src, KM_USER0);
  3788. }
  3789. i915_gem_object_put_pages(obj);
  3790. return 0;
  3791. out:
  3792. return ret;
  3793. }
  3794. static int
  3795. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3796. struct drm_i915_gem_pwrite *args,
  3797. struct drm_file *file_priv)
  3798. {
  3799. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3800. void *obj_addr;
  3801. int ret;
  3802. char __user *user_data;
  3803. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3804. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3805. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3806. ret = copy_from_user(obj_addr, user_data, args->size);
  3807. if (ret)
  3808. return -EFAULT;
  3809. drm_agp_chipset_flush(dev);
  3810. return 0;
  3811. }
  3812. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3813. {
  3814. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3815. /* Clean up our request list when the client is going away, so that
  3816. * later retire_requests won't dereference our soon-to-be-gone
  3817. * file_priv.
  3818. */
  3819. mutex_lock(&dev->struct_mutex);
  3820. while (!list_empty(&i915_file_priv->mm.request_list))
  3821. list_del_init(i915_file_priv->mm.request_list.next);
  3822. mutex_unlock(&dev->struct_mutex);
  3823. }