sched.c 220 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/stop_machine.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #include "workqueue_sched.h"
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/sched.h>
  80. /*
  81. * Convert user-nice values [ -20 ... 0 ... 19 ]
  82. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  83. * and back.
  84. */
  85. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  86. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  87. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  88. /*
  89. * 'User priority' is the nice value converted to something we
  90. * can work with better when scaling various scheduler parameters,
  91. * it's a [ 0 ... 39 ] range.
  92. */
  93. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  94. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  95. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  96. /*
  97. * Helpers for converting nanosecond timing to jiffy resolution
  98. */
  99. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  100. #define NICE_0_LOAD SCHED_LOAD_SCALE
  101. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  102. /*
  103. * These are the 'tuning knobs' of the scheduler:
  104. *
  105. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  106. * Timeslices get refilled after they expire.
  107. */
  108. #define DEF_TIMESLICE (100 * HZ / 1000)
  109. /*
  110. * single value that denotes runtime == period, ie unlimited time.
  111. */
  112. #define RUNTIME_INF ((u64)~0ULL)
  113. static inline int rt_policy(int policy)
  114. {
  115. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  116. return 1;
  117. return 0;
  118. }
  119. static inline int task_has_rt_policy(struct task_struct *p)
  120. {
  121. return rt_policy(p->policy);
  122. }
  123. /*
  124. * This is the priority-queue data structure of the RT scheduling class:
  125. */
  126. struct rt_prio_array {
  127. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  128. struct list_head queue[MAX_RT_PRIO];
  129. };
  130. struct rt_bandwidth {
  131. /* nests inside the rq lock: */
  132. raw_spinlock_t rt_runtime_lock;
  133. ktime_t rt_period;
  134. u64 rt_runtime;
  135. struct hrtimer rt_period_timer;
  136. };
  137. static struct rt_bandwidth def_rt_bandwidth;
  138. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  139. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  140. {
  141. struct rt_bandwidth *rt_b =
  142. container_of(timer, struct rt_bandwidth, rt_period_timer);
  143. ktime_t now;
  144. int overrun;
  145. int idle = 0;
  146. for (;;) {
  147. now = hrtimer_cb_get_time(timer);
  148. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  149. if (!overrun)
  150. break;
  151. idle = do_sched_rt_period_timer(rt_b, overrun);
  152. }
  153. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  154. }
  155. static
  156. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  157. {
  158. rt_b->rt_period = ns_to_ktime(period);
  159. rt_b->rt_runtime = runtime;
  160. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  161. hrtimer_init(&rt_b->rt_period_timer,
  162. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  163. rt_b->rt_period_timer.function = sched_rt_period_timer;
  164. }
  165. static inline int rt_bandwidth_enabled(void)
  166. {
  167. return sysctl_sched_rt_runtime >= 0;
  168. }
  169. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  170. {
  171. ktime_t now;
  172. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  173. return;
  174. if (hrtimer_active(&rt_b->rt_period_timer))
  175. return;
  176. raw_spin_lock(&rt_b->rt_runtime_lock);
  177. for (;;) {
  178. unsigned long delta;
  179. ktime_t soft, hard;
  180. if (hrtimer_active(&rt_b->rt_period_timer))
  181. break;
  182. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  183. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  184. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  185. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  186. delta = ktime_to_ns(ktime_sub(hard, soft));
  187. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  188. HRTIMER_MODE_ABS_PINNED, 0);
  189. }
  190. raw_spin_unlock(&rt_b->rt_runtime_lock);
  191. }
  192. #ifdef CONFIG_RT_GROUP_SCHED
  193. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  194. {
  195. hrtimer_cancel(&rt_b->rt_period_timer);
  196. }
  197. #endif
  198. /*
  199. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  200. * detach_destroy_domains and partition_sched_domains.
  201. */
  202. static DEFINE_MUTEX(sched_domains_mutex);
  203. #ifdef CONFIG_CGROUP_SCHED
  204. #include <linux/cgroup.h>
  205. struct cfs_rq;
  206. static LIST_HEAD(task_groups);
  207. /* task group related information */
  208. struct task_group {
  209. struct cgroup_subsys_state css;
  210. #ifdef CONFIG_FAIR_GROUP_SCHED
  211. /* schedulable entities of this group on each cpu */
  212. struct sched_entity **se;
  213. /* runqueue "owned" by this group on each cpu */
  214. struct cfs_rq **cfs_rq;
  215. unsigned long shares;
  216. #endif
  217. #ifdef CONFIG_RT_GROUP_SCHED
  218. struct sched_rt_entity **rt_se;
  219. struct rt_rq **rt_rq;
  220. struct rt_bandwidth rt_bandwidth;
  221. #endif
  222. struct rcu_head rcu;
  223. struct list_head list;
  224. struct task_group *parent;
  225. struct list_head siblings;
  226. struct list_head children;
  227. };
  228. #define root_task_group init_task_group
  229. /* task_group_lock serializes add/remove of task groups and also changes to
  230. * a task group's cpu shares.
  231. */
  232. static DEFINE_SPINLOCK(task_group_lock);
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. #ifdef CONFIG_SMP
  235. static int root_task_group_empty(void)
  236. {
  237. return list_empty(&root_task_group.children);
  238. }
  239. #endif
  240. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  241. /*
  242. * A weight of 0 or 1 can cause arithmetics problems.
  243. * A weight of a cfs_rq is the sum of weights of which entities
  244. * are queued on this cfs_rq, so a weight of a entity should not be
  245. * too large, so as the shares value of a task group.
  246. * (The default weight is 1024 - so there's no practical
  247. * limitation from this.)
  248. */
  249. #define MIN_SHARES 2
  250. #define MAX_SHARES (1UL << 18)
  251. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  252. #endif
  253. /* Default task group.
  254. * Every task in system belong to this group at bootup.
  255. */
  256. struct task_group init_task_group;
  257. #endif /* CONFIG_CGROUP_SCHED */
  258. /* CFS-related fields in a runqueue */
  259. struct cfs_rq {
  260. struct load_weight load;
  261. unsigned long nr_running;
  262. u64 exec_clock;
  263. u64 min_vruntime;
  264. struct rb_root tasks_timeline;
  265. struct rb_node *rb_leftmost;
  266. struct list_head tasks;
  267. struct list_head *balance_iterator;
  268. /*
  269. * 'curr' points to currently running entity on this cfs_rq.
  270. * It is set to NULL otherwise (i.e when none are currently running).
  271. */
  272. struct sched_entity *curr, *next, *last;
  273. unsigned int nr_spread_over;
  274. #ifdef CONFIG_FAIR_GROUP_SCHED
  275. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  276. /*
  277. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  278. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  279. * (like users, containers etc.)
  280. *
  281. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  282. * list is used during load balance.
  283. */
  284. struct list_head leaf_cfs_rq_list;
  285. struct task_group *tg; /* group that "owns" this runqueue */
  286. #ifdef CONFIG_SMP
  287. /*
  288. * the part of load.weight contributed by tasks
  289. */
  290. unsigned long task_weight;
  291. /*
  292. * h_load = weight * f(tg)
  293. *
  294. * Where f(tg) is the recursive weight fraction assigned to
  295. * this group.
  296. */
  297. unsigned long h_load;
  298. /*
  299. * this cpu's part of tg->shares
  300. */
  301. unsigned long shares;
  302. /*
  303. * load.weight at the time we set shares
  304. */
  305. unsigned long rq_weight;
  306. #endif
  307. #endif
  308. };
  309. /* Real-Time classes' related field in a runqueue: */
  310. struct rt_rq {
  311. struct rt_prio_array active;
  312. unsigned long rt_nr_running;
  313. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  314. struct {
  315. int curr; /* highest queued rt task prio */
  316. #ifdef CONFIG_SMP
  317. int next; /* next highest */
  318. #endif
  319. } highest_prio;
  320. #endif
  321. #ifdef CONFIG_SMP
  322. unsigned long rt_nr_migratory;
  323. unsigned long rt_nr_total;
  324. int overloaded;
  325. struct plist_head pushable_tasks;
  326. #endif
  327. int rt_throttled;
  328. u64 rt_time;
  329. u64 rt_runtime;
  330. /* Nests inside the rq lock: */
  331. raw_spinlock_t rt_runtime_lock;
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. unsigned long rt_nr_boosted;
  334. struct rq *rq;
  335. struct list_head leaf_rt_rq_list;
  336. struct task_group *tg;
  337. #endif
  338. };
  339. #ifdef CONFIG_SMP
  340. /*
  341. * We add the notion of a root-domain which will be used to define per-domain
  342. * variables. Each exclusive cpuset essentially defines an island domain by
  343. * fully partitioning the member cpus from any other cpuset. Whenever a new
  344. * exclusive cpuset is created, we also create and attach a new root-domain
  345. * object.
  346. *
  347. */
  348. struct root_domain {
  349. atomic_t refcount;
  350. cpumask_var_t span;
  351. cpumask_var_t online;
  352. /*
  353. * The "RT overload" flag: it gets set if a CPU has more than
  354. * one runnable RT task.
  355. */
  356. cpumask_var_t rto_mask;
  357. atomic_t rto_count;
  358. #ifdef CONFIG_SMP
  359. struct cpupri cpupri;
  360. #endif
  361. };
  362. /*
  363. * By default the system creates a single root-domain with all cpus as
  364. * members (mimicking the global state we have today).
  365. */
  366. static struct root_domain def_root_domain;
  367. #endif
  368. /*
  369. * This is the main, per-CPU runqueue data structure.
  370. *
  371. * Locking rule: those places that want to lock multiple runqueues
  372. * (such as the load balancing or the thread migration code), lock
  373. * acquire operations must be ordered by ascending &runqueue.
  374. */
  375. struct rq {
  376. /* runqueue lock: */
  377. raw_spinlock_t lock;
  378. /*
  379. * nr_running and cpu_load should be in the same cacheline because
  380. * remote CPUs use both these fields when doing load calculation.
  381. */
  382. unsigned long nr_running;
  383. #define CPU_LOAD_IDX_MAX 5
  384. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  385. unsigned long last_load_update_tick;
  386. #ifdef CONFIG_NO_HZ
  387. u64 nohz_stamp;
  388. unsigned char nohz_balance_kick;
  389. #endif
  390. unsigned int skip_clock_update;
  391. /* capture load from *all* tasks on this cpu: */
  392. struct load_weight load;
  393. unsigned long nr_load_updates;
  394. u64 nr_switches;
  395. struct cfs_rq cfs;
  396. struct rt_rq rt;
  397. #ifdef CONFIG_FAIR_GROUP_SCHED
  398. /* list of leaf cfs_rq on this cpu: */
  399. struct list_head leaf_cfs_rq_list;
  400. #endif
  401. #ifdef CONFIG_RT_GROUP_SCHED
  402. struct list_head leaf_rt_rq_list;
  403. #endif
  404. /*
  405. * This is part of a global counter where only the total sum
  406. * over all CPUs matters. A task can increase this counter on
  407. * one CPU and if it got migrated afterwards it may decrease
  408. * it on another CPU. Always updated under the runqueue lock:
  409. */
  410. unsigned long nr_uninterruptible;
  411. struct task_struct *curr, *idle;
  412. unsigned long next_balance;
  413. struct mm_struct *prev_mm;
  414. u64 clock;
  415. atomic_t nr_iowait;
  416. #ifdef CONFIG_SMP
  417. struct root_domain *rd;
  418. struct sched_domain *sd;
  419. unsigned long cpu_power;
  420. unsigned char idle_at_tick;
  421. /* For active balancing */
  422. int post_schedule;
  423. int active_balance;
  424. int push_cpu;
  425. struct cpu_stop_work active_balance_work;
  426. /* cpu of this runqueue: */
  427. int cpu;
  428. int online;
  429. unsigned long avg_load_per_task;
  430. u64 rt_avg;
  431. u64 age_stamp;
  432. u64 idle_stamp;
  433. u64 avg_idle;
  434. #endif
  435. /* calc_load related fields */
  436. unsigned long calc_load_update;
  437. long calc_load_active;
  438. #ifdef CONFIG_SCHED_HRTICK
  439. #ifdef CONFIG_SMP
  440. int hrtick_csd_pending;
  441. struct call_single_data hrtick_csd;
  442. #endif
  443. struct hrtimer hrtick_timer;
  444. #endif
  445. #ifdef CONFIG_SCHEDSTATS
  446. /* latency stats */
  447. struct sched_info rq_sched_info;
  448. unsigned long long rq_cpu_time;
  449. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  450. /* sys_sched_yield() stats */
  451. unsigned int yld_count;
  452. /* schedule() stats */
  453. unsigned int sched_switch;
  454. unsigned int sched_count;
  455. unsigned int sched_goidle;
  456. /* try_to_wake_up() stats */
  457. unsigned int ttwu_count;
  458. unsigned int ttwu_local;
  459. /* BKL stats */
  460. unsigned int bkl_count;
  461. #endif
  462. };
  463. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  464. static inline
  465. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  466. {
  467. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  468. /*
  469. * A queue event has occurred, and we're going to schedule. In
  470. * this case, we can save a useless back to back clock update.
  471. */
  472. if (test_tsk_need_resched(p))
  473. rq->skip_clock_update = 1;
  474. }
  475. static inline int cpu_of(struct rq *rq)
  476. {
  477. #ifdef CONFIG_SMP
  478. return rq->cpu;
  479. #else
  480. return 0;
  481. #endif
  482. }
  483. #define rcu_dereference_check_sched_domain(p) \
  484. rcu_dereference_check((p), \
  485. rcu_read_lock_sched_held() || \
  486. lockdep_is_held(&sched_domains_mutex))
  487. /*
  488. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  489. * See detach_destroy_domains: synchronize_sched for details.
  490. *
  491. * The domain tree of any CPU may only be accessed from within
  492. * preempt-disabled sections.
  493. */
  494. #define for_each_domain(cpu, __sd) \
  495. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  496. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  497. #define this_rq() (&__get_cpu_var(runqueues))
  498. #define task_rq(p) cpu_rq(task_cpu(p))
  499. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  500. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  501. #ifdef CONFIG_CGROUP_SCHED
  502. /*
  503. * Return the group to which this tasks belongs.
  504. *
  505. * We use task_subsys_state_check() and extend the RCU verification
  506. * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
  507. * holds that lock for each task it moves into the cgroup. Therefore
  508. * by holding that lock, we pin the task to the current cgroup.
  509. */
  510. static inline struct task_group *task_group(struct task_struct *p)
  511. {
  512. struct cgroup_subsys_state *css;
  513. css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
  514. lockdep_is_held(&task_rq(p)->lock));
  515. return container_of(css, struct task_group, css);
  516. }
  517. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  518. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  519. {
  520. #ifdef CONFIG_FAIR_GROUP_SCHED
  521. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  522. p->se.parent = task_group(p)->se[cpu];
  523. #endif
  524. #ifdef CONFIG_RT_GROUP_SCHED
  525. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  526. p->rt.parent = task_group(p)->rt_se[cpu];
  527. #endif
  528. }
  529. #else /* CONFIG_CGROUP_SCHED */
  530. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  531. static inline struct task_group *task_group(struct task_struct *p)
  532. {
  533. return NULL;
  534. }
  535. #endif /* CONFIG_CGROUP_SCHED */
  536. inline void update_rq_clock(struct rq *rq)
  537. {
  538. if (!rq->skip_clock_update)
  539. rq->clock = sched_clock_cpu(cpu_of(rq));
  540. }
  541. /*
  542. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  543. */
  544. #ifdef CONFIG_SCHED_DEBUG
  545. # define const_debug __read_mostly
  546. #else
  547. # define const_debug static const
  548. #endif
  549. /**
  550. * runqueue_is_locked
  551. * @cpu: the processor in question.
  552. *
  553. * Returns true if the current cpu runqueue is locked.
  554. * This interface allows printk to be called with the runqueue lock
  555. * held and know whether or not it is OK to wake up the klogd.
  556. */
  557. int runqueue_is_locked(int cpu)
  558. {
  559. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_show(struct seq_file *m, void *v)
  585. {
  586. int i;
  587. for (i = 0; sched_feat_names[i]; i++) {
  588. if (!(sysctl_sched_features & (1UL << i)))
  589. seq_puts(m, "NO_");
  590. seq_printf(m, "%s ", sched_feat_names[i]);
  591. }
  592. seq_puts(m, "\n");
  593. return 0;
  594. }
  595. static ssize_t
  596. sched_feat_write(struct file *filp, const char __user *ubuf,
  597. size_t cnt, loff_t *ppos)
  598. {
  599. char buf[64];
  600. char *cmp = buf;
  601. int neg = 0;
  602. int i;
  603. if (cnt > 63)
  604. cnt = 63;
  605. if (copy_from_user(&buf, ubuf, cnt))
  606. return -EFAULT;
  607. buf[cnt] = 0;
  608. if (strncmp(buf, "NO_", 3) == 0) {
  609. neg = 1;
  610. cmp += 3;
  611. }
  612. for (i = 0; sched_feat_names[i]; i++) {
  613. int len = strlen(sched_feat_names[i]);
  614. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  615. if (neg)
  616. sysctl_sched_features &= ~(1UL << i);
  617. else
  618. sysctl_sched_features |= (1UL << i);
  619. break;
  620. }
  621. }
  622. if (!sched_feat_names[i])
  623. return -EINVAL;
  624. *ppos += cnt;
  625. return cnt;
  626. }
  627. static int sched_feat_open(struct inode *inode, struct file *filp)
  628. {
  629. return single_open(filp, sched_feat_show, NULL);
  630. }
  631. static const struct file_operations sched_feat_fops = {
  632. .open = sched_feat_open,
  633. .write = sched_feat_write,
  634. .read = seq_read,
  635. .llseek = seq_lseek,
  636. .release = single_release,
  637. };
  638. static __init int sched_init_debug(void)
  639. {
  640. debugfs_create_file("sched_features", 0644, NULL, NULL,
  641. &sched_feat_fops);
  642. return 0;
  643. }
  644. late_initcall(sched_init_debug);
  645. #endif
  646. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  647. /*
  648. * Number of tasks to iterate in a single balance run.
  649. * Limited because this is done with IRQs disabled.
  650. */
  651. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  652. /*
  653. * ratelimit for updating the group shares.
  654. * default: 0.25ms
  655. */
  656. unsigned int sysctl_sched_shares_ratelimit = 250000;
  657. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  658. /*
  659. * Inject some fuzzyness into changing the per-cpu group shares
  660. * this avoids remote rq-locks at the expense of fairness.
  661. * default: 4
  662. */
  663. unsigned int sysctl_sched_shares_thresh = 4;
  664. /*
  665. * period over which we average the RT time consumption, measured
  666. * in ms.
  667. *
  668. * default: 1s
  669. */
  670. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  671. /*
  672. * period over which we measure -rt task cpu usage in us.
  673. * default: 1s
  674. */
  675. unsigned int sysctl_sched_rt_period = 1000000;
  676. static __read_mostly int scheduler_running;
  677. /*
  678. * part of the period that we allow rt tasks to run in us.
  679. * default: 0.95s
  680. */
  681. int sysctl_sched_rt_runtime = 950000;
  682. static inline u64 global_rt_period(void)
  683. {
  684. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  685. }
  686. static inline u64 global_rt_runtime(void)
  687. {
  688. if (sysctl_sched_rt_runtime < 0)
  689. return RUNTIME_INF;
  690. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  691. }
  692. #ifndef prepare_arch_switch
  693. # define prepare_arch_switch(next) do { } while (0)
  694. #endif
  695. #ifndef finish_arch_switch
  696. # define finish_arch_switch(prev) do { } while (0)
  697. #endif
  698. static inline int task_current(struct rq *rq, struct task_struct *p)
  699. {
  700. return rq->curr == p;
  701. }
  702. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  703. static inline int task_running(struct rq *rq, struct task_struct *p)
  704. {
  705. return task_current(rq, p);
  706. }
  707. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  708. {
  709. }
  710. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  711. {
  712. #ifdef CONFIG_DEBUG_SPINLOCK
  713. /* this is a valid case when another task releases the spinlock */
  714. rq->lock.owner = current;
  715. #endif
  716. /*
  717. * If we are tracking spinlock dependencies then we have to
  718. * fix up the runqueue lock - which gets 'carried over' from
  719. * prev into current:
  720. */
  721. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  722. raw_spin_unlock_irq(&rq->lock);
  723. }
  724. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  725. static inline int task_running(struct rq *rq, struct task_struct *p)
  726. {
  727. #ifdef CONFIG_SMP
  728. return p->oncpu;
  729. #else
  730. return task_current(rq, p);
  731. #endif
  732. }
  733. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  734. {
  735. #ifdef CONFIG_SMP
  736. /*
  737. * We can optimise this out completely for !SMP, because the
  738. * SMP rebalancing from interrupt is the only thing that cares
  739. * here.
  740. */
  741. next->oncpu = 1;
  742. #endif
  743. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  744. raw_spin_unlock_irq(&rq->lock);
  745. #else
  746. raw_spin_unlock(&rq->lock);
  747. #endif
  748. }
  749. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  750. {
  751. #ifdef CONFIG_SMP
  752. /*
  753. * After ->oncpu is cleared, the task can be moved to a different CPU.
  754. * We must ensure this doesn't happen until the switch is completely
  755. * finished.
  756. */
  757. smp_wmb();
  758. prev->oncpu = 0;
  759. #endif
  760. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. local_irq_enable();
  762. #endif
  763. }
  764. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  765. /*
  766. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  767. * against ttwu().
  768. */
  769. static inline int task_is_waking(struct task_struct *p)
  770. {
  771. return unlikely(p->state == TASK_WAKING);
  772. }
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. struct rq *rq;
  781. for (;;) {
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. local_irq_save(*flags);
  800. rq = task_rq(p);
  801. raw_spin_lock(&rq->lock);
  802. if (likely(rq == task_rq(p)))
  803. return rq;
  804. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  805. }
  806. }
  807. static void __task_rq_unlock(struct rq *rq)
  808. __releases(rq->lock)
  809. {
  810. raw_spin_unlock(&rq->lock);
  811. }
  812. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  813. __releases(rq->lock)
  814. {
  815. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  816. }
  817. /*
  818. * this_rq_lock - lock this runqueue and disable interrupts.
  819. */
  820. static struct rq *this_rq_lock(void)
  821. __acquires(rq->lock)
  822. {
  823. struct rq *rq;
  824. local_irq_disable();
  825. rq = this_rq();
  826. raw_spin_lock(&rq->lock);
  827. return rq;
  828. }
  829. #ifdef CONFIG_SCHED_HRTICK
  830. /*
  831. * Use HR-timers to deliver accurate preemption points.
  832. *
  833. * Its all a bit involved since we cannot program an hrt while holding the
  834. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  835. * reschedule event.
  836. *
  837. * When we get rescheduled we reprogram the hrtick_timer outside of the
  838. * rq->lock.
  839. */
  840. /*
  841. * Use hrtick when:
  842. * - enabled by features
  843. * - hrtimer is actually high res
  844. */
  845. static inline int hrtick_enabled(struct rq *rq)
  846. {
  847. if (!sched_feat(HRTICK))
  848. return 0;
  849. if (!cpu_active(cpu_of(rq)))
  850. return 0;
  851. return hrtimer_is_hres_active(&rq->hrtick_timer);
  852. }
  853. static void hrtick_clear(struct rq *rq)
  854. {
  855. if (hrtimer_active(&rq->hrtick_timer))
  856. hrtimer_cancel(&rq->hrtick_timer);
  857. }
  858. /*
  859. * High-resolution timer tick.
  860. * Runs from hardirq context with interrupts disabled.
  861. */
  862. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  863. {
  864. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  865. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  866. raw_spin_lock(&rq->lock);
  867. update_rq_clock(rq);
  868. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  869. raw_spin_unlock(&rq->lock);
  870. return HRTIMER_NORESTART;
  871. }
  872. #ifdef CONFIG_SMP
  873. /*
  874. * called from hardirq (IPI) context
  875. */
  876. static void __hrtick_start(void *arg)
  877. {
  878. struct rq *rq = arg;
  879. raw_spin_lock(&rq->lock);
  880. hrtimer_restart(&rq->hrtick_timer);
  881. rq->hrtick_csd_pending = 0;
  882. raw_spin_unlock(&rq->lock);
  883. }
  884. /*
  885. * Called to set the hrtick timer state.
  886. *
  887. * called with rq->lock held and irqs disabled
  888. */
  889. static void hrtick_start(struct rq *rq, u64 delay)
  890. {
  891. struct hrtimer *timer = &rq->hrtick_timer;
  892. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  893. hrtimer_set_expires(timer, time);
  894. if (rq == this_rq()) {
  895. hrtimer_restart(timer);
  896. } else if (!rq->hrtick_csd_pending) {
  897. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  898. rq->hrtick_csd_pending = 1;
  899. }
  900. }
  901. static int
  902. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  903. {
  904. int cpu = (int)(long)hcpu;
  905. switch (action) {
  906. case CPU_UP_CANCELED:
  907. case CPU_UP_CANCELED_FROZEN:
  908. case CPU_DOWN_PREPARE:
  909. case CPU_DOWN_PREPARE_FROZEN:
  910. case CPU_DEAD:
  911. case CPU_DEAD_FROZEN:
  912. hrtick_clear(cpu_rq(cpu));
  913. return NOTIFY_OK;
  914. }
  915. return NOTIFY_DONE;
  916. }
  917. static __init void init_hrtick(void)
  918. {
  919. hotcpu_notifier(hotplug_hrtick, 0);
  920. }
  921. #else
  922. /*
  923. * Called to set the hrtick timer state.
  924. *
  925. * called with rq->lock held and irqs disabled
  926. */
  927. static void hrtick_start(struct rq *rq, u64 delay)
  928. {
  929. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  930. HRTIMER_MODE_REL_PINNED, 0);
  931. }
  932. static inline void init_hrtick(void)
  933. {
  934. }
  935. #endif /* CONFIG_SMP */
  936. static void init_rq_hrtick(struct rq *rq)
  937. {
  938. #ifdef CONFIG_SMP
  939. rq->hrtick_csd_pending = 0;
  940. rq->hrtick_csd.flags = 0;
  941. rq->hrtick_csd.func = __hrtick_start;
  942. rq->hrtick_csd.info = rq;
  943. #endif
  944. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  945. rq->hrtick_timer.function = hrtick;
  946. }
  947. #else /* CONFIG_SCHED_HRTICK */
  948. static inline void hrtick_clear(struct rq *rq)
  949. {
  950. }
  951. static inline void init_rq_hrtick(struct rq *rq)
  952. {
  953. }
  954. static inline void init_hrtick(void)
  955. {
  956. }
  957. #endif /* CONFIG_SCHED_HRTICK */
  958. /*
  959. * resched_task - mark a task 'to be rescheduled now'.
  960. *
  961. * On UP this means the setting of the need_resched flag, on SMP it
  962. * might also involve a cross-CPU call to trigger the scheduler on
  963. * the target CPU.
  964. */
  965. #ifdef CONFIG_SMP
  966. #ifndef tsk_is_polling
  967. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  968. #endif
  969. static void resched_task(struct task_struct *p)
  970. {
  971. int cpu;
  972. assert_raw_spin_locked(&task_rq(p)->lock);
  973. if (test_tsk_need_resched(p))
  974. return;
  975. set_tsk_need_resched(p);
  976. cpu = task_cpu(p);
  977. if (cpu == smp_processor_id())
  978. return;
  979. /* NEED_RESCHED must be visible before we test polling */
  980. smp_mb();
  981. if (!tsk_is_polling(p))
  982. smp_send_reschedule(cpu);
  983. }
  984. static void resched_cpu(int cpu)
  985. {
  986. struct rq *rq = cpu_rq(cpu);
  987. unsigned long flags;
  988. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  989. return;
  990. resched_task(cpu_curr(cpu));
  991. raw_spin_unlock_irqrestore(&rq->lock, flags);
  992. }
  993. #ifdef CONFIG_NO_HZ
  994. /*
  995. * In the semi idle case, use the nearest busy cpu for migrating timers
  996. * from an idle cpu. This is good for power-savings.
  997. *
  998. * We don't do similar optimization for completely idle system, as
  999. * selecting an idle cpu will add more delays to the timers than intended
  1000. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  1001. */
  1002. int get_nohz_timer_target(void)
  1003. {
  1004. int cpu = smp_processor_id();
  1005. int i;
  1006. struct sched_domain *sd;
  1007. for_each_domain(cpu, sd) {
  1008. for_each_cpu(i, sched_domain_span(sd))
  1009. if (!idle_cpu(i))
  1010. return i;
  1011. }
  1012. return cpu;
  1013. }
  1014. /*
  1015. * When add_timer_on() enqueues a timer into the timer wheel of an
  1016. * idle CPU then this timer might expire before the next timer event
  1017. * which is scheduled to wake up that CPU. In case of a completely
  1018. * idle system the next event might even be infinite time into the
  1019. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1020. * leaves the inner idle loop so the newly added timer is taken into
  1021. * account when the CPU goes back to idle and evaluates the timer
  1022. * wheel for the next timer event.
  1023. */
  1024. void wake_up_idle_cpu(int cpu)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (cpu == smp_processor_id())
  1028. return;
  1029. /*
  1030. * This is safe, as this function is called with the timer
  1031. * wheel base lock of (cpu) held. When the CPU is on the way
  1032. * to idle and has not yet set rq->curr to idle then it will
  1033. * be serialized on the timer wheel base lock and take the new
  1034. * timer into account automatically.
  1035. */
  1036. if (rq->curr != rq->idle)
  1037. return;
  1038. /*
  1039. * We can set TIF_RESCHED on the idle task of the other CPU
  1040. * lockless. The worst case is that the other CPU runs the
  1041. * idle task through an additional NOOP schedule()
  1042. */
  1043. set_tsk_need_resched(rq->idle);
  1044. /* NEED_RESCHED must be visible before we test polling */
  1045. smp_mb();
  1046. if (!tsk_is_polling(rq->idle))
  1047. smp_send_reschedule(cpu);
  1048. }
  1049. #endif /* CONFIG_NO_HZ */
  1050. static u64 sched_avg_period(void)
  1051. {
  1052. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1053. }
  1054. static void sched_avg_update(struct rq *rq)
  1055. {
  1056. s64 period = sched_avg_period();
  1057. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1058. /*
  1059. * Inline assembly required to prevent the compiler
  1060. * optimising this loop into a divmod call.
  1061. * See __iter_div_u64_rem() for another example of this.
  1062. */
  1063. asm("" : "+rm" (rq->age_stamp));
  1064. rq->age_stamp += period;
  1065. rq->rt_avg /= 2;
  1066. }
  1067. }
  1068. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1069. {
  1070. rq->rt_avg += rt_delta;
  1071. sched_avg_update(rq);
  1072. }
  1073. #else /* !CONFIG_SMP */
  1074. static void resched_task(struct task_struct *p)
  1075. {
  1076. assert_raw_spin_locked(&task_rq(p)->lock);
  1077. set_tsk_need_resched(p);
  1078. }
  1079. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1080. {
  1081. }
  1082. #endif /* CONFIG_SMP */
  1083. #if BITS_PER_LONG == 32
  1084. # define WMULT_CONST (~0UL)
  1085. #else
  1086. # define WMULT_CONST (1UL << 32)
  1087. #endif
  1088. #define WMULT_SHIFT 32
  1089. /*
  1090. * Shift right and round:
  1091. */
  1092. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1093. /*
  1094. * delta *= weight / lw
  1095. */
  1096. static unsigned long
  1097. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1098. struct load_weight *lw)
  1099. {
  1100. u64 tmp;
  1101. if (!lw->inv_weight) {
  1102. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1103. lw->inv_weight = 1;
  1104. else
  1105. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1106. / (lw->weight+1);
  1107. }
  1108. tmp = (u64)delta_exec * weight;
  1109. /*
  1110. * Check whether we'd overflow the 64-bit multiplication:
  1111. */
  1112. if (unlikely(tmp > WMULT_CONST))
  1113. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1114. WMULT_SHIFT/2);
  1115. else
  1116. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1117. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1118. }
  1119. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1120. {
  1121. lw->weight += inc;
  1122. lw->inv_weight = 0;
  1123. }
  1124. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1125. {
  1126. lw->weight -= dec;
  1127. lw->inv_weight = 0;
  1128. }
  1129. /*
  1130. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1131. * of tasks with abnormal "nice" values across CPUs the contribution that
  1132. * each task makes to its run queue's load is weighted according to its
  1133. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1134. * scaled version of the new time slice allocation that they receive on time
  1135. * slice expiry etc.
  1136. */
  1137. #define WEIGHT_IDLEPRIO 3
  1138. #define WMULT_IDLEPRIO 1431655765
  1139. /*
  1140. * Nice levels are multiplicative, with a gentle 10% change for every
  1141. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1142. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1143. * that remained on nice 0.
  1144. *
  1145. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1146. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1147. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1148. * If a task goes up by ~10% and another task goes down by ~10% then
  1149. * the relative distance between them is ~25%.)
  1150. */
  1151. static const int prio_to_weight[40] = {
  1152. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1153. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1154. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1155. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1156. /* 0 */ 1024, 820, 655, 526, 423,
  1157. /* 5 */ 335, 272, 215, 172, 137,
  1158. /* 10 */ 110, 87, 70, 56, 45,
  1159. /* 15 */ 36, 29, 23, 18, 15,
  1160. };
  1161. /*
  1162. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1163. *
  1164. * In cases where the weight does not change often, we can use the
  1165. * precalculated inverse to speed up arithmetics by turning divisions
  1166. * into multiplications:
  1167. */
  1168. static const u32 prio_to_wmult[40] = {
  1169. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1170. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1171. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1172. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1173. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1174. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1175. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1176. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1177. };
  1178. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1179. enum cpuacct_stat_index {
  1180. CPUACCT_STAT_USER, /* ... user mode */
  1181. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1182. CPUACCT_STAT_NSTATS,
  1183. };
  1184. #ifdef CONFIG_CGROUP_CPUACCT
  1185. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1186. static void cpuacct_update_stats(struct task_struct *tsk,
  1187. enum cpuacct_stat_index idx, cputime_t val);
  1188. #else
  1189. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1190. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1191. enum cpuacct_stat_index idx, cputime_t val) {}
  1192. #endif
  1193. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1194. {
  1195. update_load_add(&rq->load, load);
  1196. }
  1197. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1198. {
  1199. update_load_sub(&rq->load, load);
  1200. }
  1201. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1202. typedef int (*tg_visitor)(struct task_group *, void *);
  1203. /*
  1204. * Iterate the full tree, calling @down when first entering a node and @up when
  1205. * leaving it for the final time.
  1206. */
  1207. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1208. {
  1209. struct task_group *parent, *child;
  1210. int ret;
  1211. rcu_read_lock();
  1212. parent = &root_task_group;
  1213. down:
  1214. ret = (*down)(parent, data);
  1215. if (ret)
  1216. goto out_unlock;
  1217. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1218. parent = child;
  1219. goto down;
  1220. up:
  1221. continue;
  1222. }
  1223. ret = (*up)(parent, data);
  1224. if (ret)
  1225. goto out_unlock;
  1226. child = parent;
  1227. parent = parent->parent;
  1228. if (parent)
  1229. goto up;
  1230. out_unlock:
  1231. rcu_read_unlock();
  1232. return ret;
  1233. }
  1234. static int tg_nop(struct task_group *tg, void *data)
  1235. {
  1236. return 0;
  1237. }
  1238. #endif
  1239. #ifdef CONFIG_SMP
  1240. /* Used instead of source_load when we know the type == 0 */
  1241. static unsigned long weighted_cpuload(const int cpu)
  1242. {
  1243. return cpu_rq(cpu)->load.weight;
  1244. }
  1245. /*
  1246. * Return a low guess at the load of a migration-source cpu weighted
  1247. * according to the scheduling class and "nice" value.
  1248. *
  1249. * We want to under-estimate the load of migration sources, to
  1250. * balance conservatively.
  1251. */
  1252. static unsigned long source_load(int cpu, int type)
  1253. {
  1254. struct rq *rq = cpu_rq(cpu);
  1255. unsigned long total = weighted_cpuload(cpu);
  1256. if (type == 0 || !sched_feat(LB_BIAS))
  1257. return total;
  1258. return min(rq->cpu_load[type-1], total);
  1259. }
  1260. /*
  1261. * Return a high guess at the load of a migration-target cpu weighted
  1262. * according to the scheduling class and "nice" value.
  1263. */
  1264. static unsigned long target_load(int cpu, int type)
  1265. {
  1266. struct rq *rq = cpu_rq(cpu);
  1267. unsigned long total = weighted_cpuload(cpu);
  1268. if (type == 0 || !sched_feat(LB_BIAS))
  1269. return total;
  1270. return max(rq->cpu_load[type-1], total);
  1271. }
  1272. static unsigned long power_of(int cpu)
  1273. {
  1274. return cpu_rq(cpu)->cpu_power;
  1275. }
  1276. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1277. static unsigned long cpu_avg_load_per_task(int cpu)
  1278. {
  1279. struct rq *rq = cpu_rq(cpu);
  1280. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1281. if (nr_running)
  1282. rq->avg_load_per_task = rq->load.weight / nr_running;
  1283. else
  1284. rq->avg_load_per_task = 0;
  1285. return rq->avg_load_per_task;
  1286. }
  1287. #ifdef CONFIG_FAIR_GROUP_SCHED
  1288. static __read_mostly unsigned long __percpu *update_shares_data;
  1289. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1290. /*
  1291. * Calculate and set the cpu's group shares.
  1292. */
  1293. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1294. unsigned long sd_shares,
  1295. unsigned long sd_rq_weight,
  1296. unsigned long *usd_rq_weight)
  1297. {
  1298. unsigned long shares, rq_weight;
  1299. int boost = 0;
  1300. rq_weight = usd_rq_weight[cpu];
  1301. if (!rq_weight) {
  1302. boost = 1;
  1303. rq_weight = NICE_0_LOAD;
  1304. }
  1305. /*
  1306. * \Sum_j shares_j * rq_weight_i
  1307. * shares_i = -----------------------------
  1308. * \Sum_j rq_weight_j
  1309. */
  1310. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1311. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1312. if (abs(shares - tg->se[cpu]->load.weight) >
  1313. sysctl_sched_shares_thresh) {
  1314. struct rq *rq = cpu_rq(cpu);
  1315. unsigned long flags;
  1316. raw_spin_lock_irqsave(&rq->lock, flags);
  1317. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1318. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1319. __set_se_shares(tg->se[cpu], shares);
  1320. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1321. }
  1322. }
  1323. /*
  1324. * Re-compute the task group their per cpu shares over the given domain.
  1325. * This needs to be done in a bottom-up fashion because the rq weight of a
  1326. * parent group depends on the shares of its child groups.
  1327. */
  1328. static int tg_shares_up(struct task_group *tg, void *data)
  1329. {
  1330. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1331. unsigned long *usd_rq_weight;
  1332. struct sched_domain *sd = data;
  1333. unsigned long flags;
  1334. int i;
  1335. if (!tg->se[0])
  1336. return 0;
  1337. local_irq_save(flags);
  1338. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1339. for_each_cpu(i, sched_domain_span(sd)) {
  1340. weight = tg->cfs_rq[i]->load.weight;
  1341. usd_rq_weight[i] = weight;
  1342. rq_weight += weight;
  1343. /*
  1344. * If there are currently no tasks on the cpu pretend there
  1345. * is one of average load so that when a new task gets to
  1346. * run here it will not get delayed by group starvation.
  1347. */
  1348. if (!weight)
  1349. weight = NICE_0_LOAD;
  1350. sum_weight += weight;
  1351. shares += tg->cfs_rq[i]->shares;
  1352. }
  1353. if (!rq_weight)
  1354. rq_weight = sum_weight;
  1355. if ((!shares && rq_weight) || shares > tg->shares)
  1356. shares = tg->shares;
  1357. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1358. shares = tg->shares;
  1359. for_each_cpu(i, sched_domain_span(sd))
  1360. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1361. local_irq_restore(flags);
  1362. return 0;
  1363. }
  1364. /*
  1365. * Compute the cpu's hierarchical load factor for each task group.
  1366. * This needs to be done in a top-down fashion because the load of a child
  1367. * group is a fraction of its parents load.
  1368. */
  1369. static int tg_load_down(struct task_group *tg, void *data)
  1370. {
  1371. unsigned long load;
  1372. long cpu = (long)data;
  1373. if (!tg->parent) {
  1374. load = cpu_rq(cpu)->load.weight;
  1375. } else {
  1376. load = tg->parent->cfs_rq[cpu]->h_load;
  1377. load *= tg->cfs_rq[cpu]->shares;
  1378. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1379. }
  1380. tg->cfs_rq[cpu]->h_load = load;
  1381. return 0;
  1382. }
  1383. static void update_shares(struct sched_domain *sd)
  1384. {
  1385. s64 elapsed;
  1386. u64 now;
  1387. if (root_task_group_empty())
  1388. return;
  1389. now = local_clock();
  1390. elapsed = now - sd->last_update;
  1391. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1392. sd->last_update = now;
  1393. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1394. }
  1395. }
  1396. static void update_h_load(long cpu)
  1397. {
  1398. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1399. }
  1400. #else
  1401. static inline void update_shares(struct sched_domain *sd)
  1402. {
  1403. }
  1404. #endif
  1405. #ifdef CONFIG_PREEMPT
  1406. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1407. /*
  1408. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1409. * way at the expense of forcing extra atomic operations in all
  1410. * invocations. This assures that the double_lock is acquired using the
  1411. * same underlying policy as the spinlock_t on this architecture, which
  1412. * reduces latency compared to the unfair variant below. However, it
  1413. * also adds more overhead and therefore may reduce throughput.
  1414. */
  1415. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1416. __releases(this_rq->lock)
  1417. __acquires(busiest->lock)
  1418. __acquires(this_rq->lock)
  1419. {
  1420. raw_spin_unlock(&this_rq->lock);
  1421. double_rq_lock(this_rq, busiest);
  1422. return 1;
  1423. }
  1424. #else
  1425. /*
  1426. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1427. * latency by eliminating extra atomic operations when the locks are
  1428. * already in proper order on entry. This favors lower cpu-ids and will
  1429. * grant the double lock to lower cpus over higher ids under contention,
  1430. * regardless of entry order into the function.
  1431. */
  1432. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1433. __releases(this_rq->lock)
  1434. __acquires(busiest->lock)
  1435. __acquires(this_rq->lock)
  1436. {
  1437. int ret = 0;
  1438. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1439. if (busiest < this_rq) {
  1440. raw_spin_unlock(&this_rq->lock);
  1441. raw_spin_lock(&busiest->lock);
  1442. raw_spin_lock_nested(&this_rq->lock,
  1443. SINGLE_DEPTH_NESTING);
  1444. ret = 1;
  1445. } else
  1446. raw_spin_lock_nested(&busiest->lock,
  1447. SINGLE_DEPTH_NESTING);
  1448. }
  1449. return ret;
  1450. }
  1451. #endif /* CONFIG_PREEMPT */
  1452. /*
  1453. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1454. */
  1455. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1456. {
  1457. if (unlikely(!irqs_disabled())) {
  1458. /* printk() doesn't work good under rq->lock */
  1459. raw_spin_unlock(&this_rq->lock);
  1460. BUG_ON(1);
  1461. }
  1462. return _double_lock_balance(this_rq, busiest);
  1463. }
  1464. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1465. __releases(busiest->lock)
  1466. {
  1467. raw_spin_unlock(&busiest->lock);
  1468. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1469. }
  1470. /*
  1471. * double_rq_lock - safely lock two runqueues
  1472. *
  1473. * Note this does not disable interrupts like task_rq_lock,
  1474. * you need to do so manually before calling.
  1475. */
  1476. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1477. __acquires(rq1->lock)
  1478. __acquires(rq2->lock)
  1479. {
  1480. BUG_ON(!irqs_disabled());
  1481. if (rq1 == rq2) {
  1482. raw_spin_lock(&rq1->lock);
  1483. __acquire(rq2->lock); /* Fake it out ;) */
  1484. } else {
  1485. if (rq1 < rq2) {
  1486. raw_spin_lock(&rq1->lock);
  1487. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1488. } else {
  1489. raw_spin_lock(&rq2->lock);
  1490. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1491. }
  1492. }
  1493. }
  1494. /*
  1495. * double_rq_unlock - safely unlock two runqueues
  1496. *
  1497. * Note this does not restore interrupts like task_rq_unlock,
  1498. * you need to do so manually after calling.
  1499. */
  1500. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1501. __releases(rq1->lock)
  1502. __releases(rq2->lock)
  1503. {
  1504. raw_spin_unlock(&rq1->lock);
  1505. if (rq1 != rq2)
  1506. raw_spin_unlock(&rq2->lock);
  1507. else
  1508. __release(rq2->lock);
  1509. }
  1510. #endif
  1511. #ifdef CONFIG_FAIR_GROUP_SCHED
  1512. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1513. {
  1514. #ifdef CONFIG_SMP
  1515. cfs_rq->shares = shares;
  1516. #endif
  1517. }
  1518. #endif
  1519. static void calc_load_account_idle(struct rq *this_rq);
  1520. static void update_sysctl(void);
  1521. static int get_update_sysctl_factor(void);
  1522. static void update_cpu_load(struct rq *this_rq);
  1523. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1524. {
  1525. set_task_rq(p, cpu);
  1526. #ifdef CONFIG_SMP
  1527. /*
  1528. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1529. * successfuly executed on another CPU. We must ensure that updates of
  1530. * per-task data have been completed by this moment.
  1531. */
  1532. smp_wmb();
  1533. task_thread_info(p)->cpu = cpu;
  1534. #endif
  1535. }
  1536. static const struct sched_class rt_sched_class;
  1537. #define sched_class_highest (&rt_sched_class)
  1538. #define for_each_class(class) \
  1539. for (class = sched_class_highest; class; class = class->next)
  1540. #include "sched_stats.h"
  1541. static void inc_nr_running(struct rq *rq)
  1542. {
  1543. rq->nr_running++;
  1544. }
  1545. static void dec_nr_running(struct rq *rq)
  1546. {
  1547. rq->nr_running--;
  1548. }
  1549. static void set_load_weight(struct task_struct *p)
  1550. {
  1551. if (task_has_rt_policy(p)) {
  1552. p->se.load.weight = 0;
  1553. p->se.load.inv_weight = WMULT_CONST;
  1554. return;
  1555. }
  1556. /*
  1557. * SCHED_IDLE tasks get minimal weight:
  1558. */
  1559. if (p->policy == SCHED_IDLE) {
  1560. p->se.load.weight = WEIGHT_IDLEPRIO;
  1561. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1562. return;
  1563. }
  1564. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1565. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1566. }
  1567. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1568. {
  1569. update_rq_clock(rq);
  1570. sched_info_queued(p);
  1571. p->sched_class->enqueue_task(rq, p, flags);
  1572. p->se.on_rq = 1;
  1573. }
  1574. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1575. {
  1576. update_rq_clock(rq);
  1577. sched_info_dequeued(p);
  1578. p->sched_class->dequeue_task(rq, p, flags);
  1579. p->se.on_rq = 0;
  1580. }
  1581. /*
  1582. * activate_task - move a task to the runqueue.
  1583. */
  1584. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1585. {
  1586. if (task_contributes_to_load(p))
  1587. rq->nr_uninterruptible--;
  1588. enqueue_task(rq, p, flags);
  1589. inc_nr_running(rq);
  1590. }
  1591. /*
  1592. * deactivate_task - remove a task from the runqueue.
  1593. */
  1594. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1595. {
  1596. if (task_contributes_to_load(p))
  1597. rq->nr_uninterruptible++;
  1598. dequeue_task(rq, p, flags);
  1599. dec_nr_running(rq);
  1600. }
  1601. #include "sched_idletask.c"
  1602. #include "sched_fair.c"
  1603. #include "sched_rt.c"
  1604. #ifdef CONFIG_SCHED_DEBUG
  1605. # include "sched_debug.c"
  1606. #endif
  1607. /*
  1608. * __normal_prio - return the priority that is based on the static prio
  1609. */
  1610. static inline int __normal_prio(struct task_struct *p)
  1611. {
  1612. return p->static_prio;
  1613. }
  1614. /*
  1615. * Calculate the expected normal priority: i.e. priority
  1616. * without taking RT-inheritance into account. Might be
  1617. * boosted by interactivity modifiers. Changes upon fork,
  1618. * setprio syscalls, and whenever the interactivity
  1619. * estimator recalculates.
  1620. */
  1621. static inline int normal_prio(struct task_struct *p)
  1622. {
  1623. int prio;
  1624. if (task_has_rt_policy(p))
  1625. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1626. else
  1627. prio = __normal_prio(p);
  1628. return prio;
  1629. }
  1630. /*
  1631. * Calculate the current priority, i.e. the priority
  1632. * taken into account by the scheduler. This value might
  1633. * be boosted by RT tasks, or might be boosted by
  1634. * interactivity modifiers. Will be RT if the task got
  1635. * RT-boosted. If not then it returns p->normal_prio.
  1636. */
  1637. static int effective_prio(struct task_struct *p)
  1638. {
  1639. p->normal_prio = normal_prio(p);
  1640. /*
  1641. * If we are RT tasks or we were boosted to RT priority,
  1642. * keep the priority unchanged. Otherwise, update priority
  1643. * to the normal priority:
  1644. */
  1645. if (!rt_prio(p->prio))
  1646. return p->normal_prio;
  1647. return p->prio;
  1648. }
  1649. /**
  1650. * task_curr - is this task currently executing on a CPU?
  1651. * @p: the task in question.
  1652. */
  1653. inline int task_curr(const struct task_struct *p)
  1654. {
  1655. return cpu_curr(task_cpu(p)) == p;
  1656. }
  1657. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1658. const struct sched_class *prev_class,
  1659. int oldprio, int running)
  1660. {
  1661. if (prev_class != p->sched_class) {
  1662. if (prev_class->switched_from)
  1663. prev_class->switched_from(rq, p, running);
  1664. p->sched_class->switched_to(rq, p, running);
  1665. } else
  1666. p->sched_class->prio_changed(rq, p, oldprio, running);
  1667. }
  1668. #ifdef CONFIG_SMP
  1669. /*
  1670. * Is this task likely cache-hot:
  1671. */
  1672. static int
  1673. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1674. {
  1675. s64 delta;
  1676. if (p->sched_class != &fair_sched_class)
  1677. return 0;
  1678. /*
  1679. * Buddy candidates are cache hot:
  1680. */
  1681. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1682. (&p->se == cfs_rq_of(&p->se)->next ||
  1683. &p->se == cfs_rq_of(&p->se)->last))
  1684. return 1;
  1685. if (sysctl_sched_migration_cost == -1)
  1686. return 1;
  1687. if (sysctl_sched_migration_cost == 0)
  1688. return 0;
  1689. delta = now - p->se.exec_start;
  1690. return delta < (s64)sysctl_sched_migration_cost;
  1691. }
  1692. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1693. {
  1694. #ifdef CONFIG_SCHED_DEBUG
  1695. /*
  1696. * We should never call set_task_cpu() on a blocked task,
  1697. * ttwu() will sort out the placement.
  1698. */
  1699. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1700. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1701. #endif
  1702. trace_sched_migrate_task(p, new_cpu);
  1703. if (task_cpu(p) != new_cpu) {
  1704. p->se.nr_migrations++;
  1705. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1706. }
  1707. __set_task_cpu(p, new_cpu);
  1708. }
  1709. struct migration_arg {
  1710. struct task_struct *task;
  1711. int dest_cpu;
  1712. };
  1713. static int migration_cpu_stop(void *data);
  1714. /*
  1715. * The task's runqueue lock must be held.
  1716. * Returns true if you have to wait for migration thread.
  1717. */
  1718. static bool migrate_task(struct task_struct *p, int dest_cpu)
  1719. {
  1720. struct rq *rq = task_rq(p);
  1721. /*
  1722. * If the task is not on a runqueue (and not running), then
  1723. * the next wake-up will properly place the task.
  1724. */
  1725. return p->se.on_rq || task_running(rq, p);
  1726. }
  1727. /*
  1728. * wait_task_inactive - wait for a thread to unschedule.
  1729. *
  1730. * If @match_state is nonzero, it's the @p->state value just checked and
  1731. * not expected to change. If it changes, i.e. @p might have woken up,
  1732. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1733. * we return a positive number (its total switch count). If a second call
  1734. * a short while later returns the same number, the caller can be sure that
  1735. * @p has remained unscheduled the whole time.
  1736. *
  1737. * The caller must ensure that the task *will* unschedule sometime soon,
  1738. * else this function might spin for a *long* time. This function can't
  1739. * be called with interrupts off, or it may introduce deadlock with
  1740. * smp_call_function() if an IPI is sent by the same process we are
  1741. * waiting to become inactive.
  1742. */
  1743. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1744. {
  1745. unsigned long flags;
  1746. int running, on_rq;
  1747. unsigned long ncsw;
  1748. struct rq *rq;
  1749. for (;;) {
  1750. /*
  1751. * We do the initial early heuristics without holding
  1752. * any task-queue locks at all. We'll only try to get
  1753. * the runqueue lock when things look like they will
  1754. * work out!
  1755. */
  1756. rq = task_rq(p);
  1757. /*
  1758. * If the task is actively running on another CPU
  1759. * still, just relax and busy-wait without holding
  1760. * any locks.
  1761. *
  1762. * NOTE! Since we don't hold any locks, it's not
  1763. * even sure that "rq" stays as the right runqueue!
  1764. * But we don't care, since "task_running()" will
  1765. * return false if the runqueue has changed and p
  1766. * is actually now running somewhere else!
  1767. */
  1768. while (task_running(rq, p)) {
  1769. if (match_state && unlikely(p->state != match_state))
  1770. return 0;
  1771. cpu_relax();
  1772. }
  1773. /*
  1774. * Ok, time to look more closely! We need the rq
  1775. * lock now, to be *sure*. If we're wrong, we'll
  1776. * just go back and repeat.
  1777. */
  1778. rq = task_rq_lock(p, &flags);
  1779. trace_sched_wait_task(p);
  1780. running = task_running(rq, p);
  1781. on_rq = p->se.on_rq;
  1782. ncsw = 0;
  1783. if (!match_state || p->state == match_state)
  1784. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1785. task_rq_unlock(rq, &flags);
  1786. /*
  1787. * If it changed from the expected state, bail out now.
  1788. */
  1789. if (unlikely(!ncsw))
  1790. break;
  1791. /*
  1792. * Was it really running after all now that we
  1793. * checked with the proper locks actually held?
  1794. *
  1795. * Oops. Go back and try again..
  1796. */
  1797. if (unlikely(running)) {
  1798. cpu_relax();
  1799. continue;
  1800. }
  1801. /*
  1802. * It's not enough that it's not actively running,
  1803. * it must be off the runqueue _entirely_, and not
  1804. * preempted!
  1805. *
  1806. * So if it was still runnable (but just not actively
  1807. * running right now), it's preempted, and we should
  1808. * yield - it could be a while.
  1809. */
  1810. if (unlikely(on_rq)) {
  1811. schedule_timeout_uninterruptible(1);
  1812. continue;
  1813. }
  1814. /*
  1815. * Ahh, all good. It wasn't running, and it wasn't
  1816. * runnable, which means that it will never become
  1817. * running in the future either. We're all done!
  1818. */
  1819. break;
  1820. }
  1821. return ncsw;
  1822. }
  1823. /***
  1824. * kick_process - kick a running thread to enter/exit the kernel
  1825. * @p: the to-be-kicked thread
  1826. *
  1827. * Cause a process which is running on another CPU to enter
  1828. * kernel-mode, without any delay. (to get signals handled.)
  1829. *
  1830. * NOTE: this function doesnt have to take the runqueue lock,
  1831. * because all it wants to ensure is that the remote task enters
  1832. * the kernel. If the IPI races and the task has been migrated
  1833. * to another CPU then no harm is done and the purpose has been
  1834. * achieved as well.
  1835. */
  1836. void kick_process(struct task_struct *p)
  1837. {
  1838. int cpu;
  1839. preempt_disable();
  1840. cpu = task_cpu(p);
  1841. if ((cpu != smp_processor_id()) && task_curr(p))
  1842. smp_send_reschedule(cpu);
  1843. preempt_enable();
  1844. }
  1845. EXPORT_SYMBOL_GPL(kick_process);
  1846. #endif /* CONFIG_SMP */
  1847. /**
  1848. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1849. * @p: the task to evaluate
  1850. * @func: the function to be called
  1851. * @info: the function call argument
  1852. *
  1853. * Calls the function @func when the task is currently running. This might
  1854. * be on the current CPU, which just calls the function directly
  1855. */
  1856. void task_oncpu_function_call(struct task_struct *p,
  1857. void (*func) (void *info), void *info)
  1858. {
  1859. int cpu;
  1860. preempt_disable();
  1861. cpu = task_cpu(p);
  1862. if (task_curr(p))
  1863. smp_call_function_single(cpu, func, info, 1);
  1864. preempt_enable();
  1865. }
  1866. #ifdef CONFIG_SMP
  1867. /*
  1868. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1869. */
  1870. static int select_fallback_rq(int cpu, struct task_struct *p)
  1871. {
  1872. int dest_cpu;
  1873. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1874. /* Look for allowed, online CPU in same node. */
  1875. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1876. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1877. return dest_cpu;
  1878. /* Any allowed, online CPU? */
  1879. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1880. if (dest_cpu < nr_cpu_ids)
  1881. return dest_cpu;
  1882. /* No more Mr. Nice Guy. */
  1883. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1884. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1885. /*
  1886. * Don't tell them about moving exiting tasks or
  1887. * kernel threads (both mm NULL), since they never
  1888. * leave kernel.
  1889. */
  1890. if (p->mm && printk_ratelimit()) {
  1891. printk(KERN_INFO "process %d (%s) no "
  1892. "longer affine to cpu%d\n",
  1893. task_pid_nr(p), p->comm, cpu);
  1894. }
  1895. }
  1896. return dest_cpu;
  1897. }
  1898. /*
  1899. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1900. */
  1901. static inline
  1902. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1903. {
  1904. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1905. /*
  1906. * In order not to call set_task_cpu() on a blocking task we need
  1907. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1908. * cpu.
  1909. *
  1910. * Since this is common to all placement strategies, this lives here.
  1911. *
  1912. * [ this allows ->select_task() to simply return task_cpu(p) and
  1913. * not worry about this generic constraint ]
  1914. */
  1915. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1916. !cpu_online(cpu)))
  1917. cpu = select_fallback_rq(task_cpu(p), p);
  1918. return cpu;
  1919. }
  1920. static void update_avg(u64 *avg, u64 sample)
  1921. {
  1922. s64 diff = sample - *avg;
  1923. *avg += diff >> 3;
  1924. }
  1925. #endif
  1926. static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
  1927. bool is_sync, bool is_migrate, bool is_local,
  1928. unsigned long en_flags)
  1929. {
  1930. schedstat_inc(p, se.statistics.nr_wakeups);
  1931. if (is_sync)
  1932. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1933. if (is_migrate)
  1934. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1935. if (is_local)
  1936. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1937. else
  1938. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1939. activate_task(rq, p, en_flags);
  1940. }
  1941. static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
  1942. int wake_flags, bool success)
  1943. {
  1944. trace_sched_wakeup(p, success);
  1945. check_preempt_curr(rq, p, wake_flags);
  1946. p->state = TASK_RUNNING;
  1947. #ifdef CONFIG_SMP
  1948. if (p->sched_class->task_woken)
  1949. p->sched_class->task_woken(rq, p);
  1950. if (unlikely(rq->idle_stamp)) {
  1951. u64 delta = rq->clock - rq->idle_stamp;
  1952. u64 max = 2*sysctl_sched_migration_cost;
  1953. if (delta > max)
  1954. rq->avg_idle = max;
  1955. else
  1956. update_avg(&rq->avg_idle, delta);
  1957. rq->idle_stamp = 0;
  1958. }
  1959. #endif
  1960. /* if a worker is waking up, notify workqueue */
  1961. if ((p->flags & PF_WQ_WORKER) && success)
  1962. wq_worker_waking_up(p, cpu_of(rq));
  1963. }
  1964. /**
  1965. * try_to_wake_up - wake up a thread
  1966. * @p: the thread to be awakened
  1967. * @state: the mask of task states that can be woken
  1968. * @wake_flags: wake modifier flags (WF_*)
  1969. *
  1970. * Put it on the run-queue if it's not already there. The "current"
  1971. * thread is always on the run-queue (except when the actual
  1972. * re-schedule is in progress), and as such you're allowed to do
  1973. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1974. * runnable without the overhead of this.
  1975. *
  1976. * Returns %true if @p was woken up, %false if it was already running
  1977. * or @state didn't match @p's state.
  1978. */
  1979. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1980. int wake_flags)
  1981. {
  1982. int cpu, orig_cpu, this_cpu, success = 0;
  1983. unsigned long flags;
  1984. unsigned long en_flags = ENQUEUE_WAKEUP;
  1985. struct rq *rq;
  1986. this_cpu = get_cpu();
  1987. smp_wmb();
  1988. rq = task_rq_lock(p, &flags);
  1989. if (!(p->state & state))
  1990. goto out;
  1991. if (p->se.on_rq)
  1992. goto out_running;
  1993. cpu = task_cpu(p);
  1994. orig_cpu = cpu;
  1995. #ifdef CONFIG_SMP
  1996. if (unlikely(task_running(rq, p)))
  1997. goto out_activate;
  1998. /*
  1999. * In order to handle concurrent wakeups and release the rq->lock
  2000. * we put the task in TASK_WAKING state.
  2001. *
  2002. * First fix up the nr_uninterruptible count:
  2003. */
  2004. if (task_contributes_to_load(p)) {
  2005. if (likely(cpu_online(orig_cpu)))
  2006. rq->nr_uninterruptible--;
  2007. else
  2008. this_rq()->nr_uninterruptible--;
  2009. }
  2010. p->state = TASK_WAKING;
  2011. if (p->sched_class->task_waking) {
  2012. p->sched_class->task_waking(rq, p);
  2013. en_flags |= ENQUEUE_WAKING;
  2014. }
  2015. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2016. if (cpu != orig_cpu)
  2017. set_task_cpu(p, cpu);
  2018. __task_rq_unlock(rq);
  2019. rq = cpu_rq(cpu);
  2020. raw_spin_lock(&rq->lock);
  2021. /*
  2022. * We migrated the task without holding either rq->lock, however
  2023. * since the task is not on the task list itself, nobody else
  2024. * will try and migrate the task, hence the rq should match the
  2025. * cpu we just moved it to.
  2026. */
  2027. WARN_ON(task_cpu(p) != cpu);
  2028. WARN_ON(p->state != TASK_WAKING);
  2029. #ifdef CONFIG_SCHEDSTATS
  2030. schedstat_inc(rq, ttwu_count);
  2031. if (cpu == this_cpu)
  2032. schedstat_inc(rq, ttwu_local);
  2033. else {
  2034. struct sched_domain *sd;
  2035. for_each_domain(this_cpu, sd) {
  2036. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2037. schedstat_inc(sd, ttwu_wake_remote);
  2038. break;
  2039. }
  2040. }
  2041. }
  2042. #endif /* CONFIG_SCHEDSTATS */
  2043. out_activate:
  2044. #endif /* CONFIG_SMP */
  2045. ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
  2046. cpu == this_cpu, en_flags);
  2047. success = 1;
  2048. out_running:
  2049. ttwu_post_activation(p, rq, wake_flags, success);
  2050. out:
  2051. task_rq_unlock(rq, &flags);
  2052. put_cpu();
  2053. return success;
  2054. }
  2055. /**
  2056. * try_to_wake_up_local - try to wake up a local task with rq lock held
  2057. * @p: the thread to be awakened
  2058. *
  2059. * Put @p on the run-queue if it's not alredy there. The caller must
  2060. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  2061. * the current task. this_rq() stays locked over invocation.
  2062. */
  2063. static void try_to_wake_up_local(struct task_struct *p)
  2064. {
  2065. struct rq *rq = task_rq(p);
  2066. bool success = false;
  2067. BUG_ON(rq != this_rq());
  2068. BUG_ON(p == current);
  2069. lockdep_assert_held(&rq->lock);
  2070. if (!(p->state & TASK_NORMAL))
  2071. return;
  2072. if (!p->se.on_rq) {
  2073. if (likely(!task_running(rq, p))) {
  2074. schedstat_inc(rq, ttwu_count);
  2075. schedstat_inc(rq, ttwu_local);
  2076. }
  2077. ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
  2078. success = true;
  2079. }
  2080. ttwu_post_activation(p, rq, 0, success);
  2081. }
  2082. /**
  2083. * wake_up_process - Wake up a specific process
  2084. * @p: The process to be woken up.
  2085. *
  2086. * Attempt to wake up the nominated process and move it to the set of runnable
  2087. * processes. Returns 1 if the process was woken up, 0 if it was already
  2088. * running.
  2089. *
  2090. * It may be assumed that this function implies a write memory barrier before
  2091. * changing the task state if and only if any tasks are woken up.
  2092. */
  2093. int wake_up_process(struct task_struct *p)
  2094. {
  2095. return try_to_wake_up(p, TASK_ALL, 0);
  2096. }
  2097. EXPORT_SYMBOL(wake_up_process);
  2098. int wake_up_state(struct task_struct *p, unsigned int state)
  2099. {
  2100. return try_to_wake_up(p, state, 0);
  2101. }
  2102. /*
  2103. * Perform scheduler related setup for a newly forked process p.
  2104. * p is forked by current.
  2105. *
  2106. * __sched_fork() is basic setup used by init_idle() too:
  2107. */
  2108. static void __sched_fork(struct task_struct *p)
  2109. {
  2110. p->se.exec_start = 0;
  2111. p->se.sum_exec_runtime = 0;
  2112. p->se.prev_sum_exec_runtime = 0;
  2113. p->se.nr_migrations = 0;
  2114. #ifdef CONFIG_SCHEDSTATS
  2115. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2116. #endif
  2117. INIT_LIST_HEAD(&p->rt.run_list);
  2118. p->se.on_rq = 0;
  2119. INIT_LIST_HEAD(&p->se.group_node);
  2120. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2121. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2122. #endif
  2123. }
  2124. /*
  2125. * fork()/clone()-time setup:
  2126. */
  2127. void sched_fork(struct task_struct *p, int clone_flags)
  2128. {
  2129. int cpu = get_cpu();
  2130. __sched_fork(p);
  2131. /*
  2132. * We mark the process as running here. This guarantees that
  2133. * nobody will actually run it, and a signal or other external
  2134. * event cannot wake it up and insert it on the runqueue either.
  2135. */
  2136. p->state = TASK_RUNNING;
  2137. /*
  2138. * Revert to default priority/policy on fork if requested.
  2139. */
  2140. if (unlikely(p->sched_reset_on_fork)) {
  2141. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2142. p->policy = SCHED_NORMAL;
  2143. p->normal_prio = p->static_prio;
  2144. }
  2145. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2146. p->static_prio = NICE_TO_PRIO(0);
  2147. p->normal_prio = p->static_prio;
  2148. set_load_weight(p);
  2149. }
  2150. /*
  2151. * We don't need the reset flag anymore after the fork. It has
  2152. * fulfilled its duty:
  2153. */
  2154. p->sched_reset_on_fork = 0;
  2155. }
  2156. /*
  2157. * Make sure we do not leak PI boosting priority to the child.
  2158. */
  2159. p->prio = current->normal_prio;
  2160. if (!rt_prio(p->prio))
  2161. p->sched_class = &fair_sched_class;
  2162. if (p->sched_class->task_fork)
  2163. p->sched_class->task_fork(p);
  2164. /*
  2165. * The child is not yet in the pid-hash so no cgroup attach races,
  2166. * and the cgroup is pinned to this child due to cgroup_fork()
  2167. * is ran before sched_fork().
  2168. *
  2169. * Silence PROVE_RCU.
  2170. */
  2171. rcu_read_lock();
  2172. set_task_cpu(p, cpu);
  2173. rcu_read_unlock();
  2174. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2175. if (likely(sched_info_on()))
  2176. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2177. #endif
  2178. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2179. p->oncpu = 0;
  2180. #endif
  2181. #ifdef CONFIG_PREEMPT
  2182. /* Want to start with kernel preemption disabled. */
  2183. task_thread_info(p)->preempt_count = 1;
  2184. #endif
  2185. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2186. put_cpu();
  2187. }
  2188. /*
  2189. * wake_up_new_task - wake up a newly created task for the first time.
  2190. *
  2191. * This function will do some initial scheduler statistics housekeeping
  2192. * that must be done for every newly created context, then puts the task
  2193. * on the runqueue and wakes it.
  2194. */
  2195. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2196. {
  2197. unsigned long flags;
  2198. struct rq *rq;
  2199. int cpu __maybe_unused = get_cpu();
  2200. #ifdef CONFIG_SMP
  2201. rq = task_rq_lock(p, &flags);
  2202. p->state = TASK_WAKING;
  2203. /*
  2204. * Fork balancing, do it here and not earlier because:
  2205. * - cpus_allowed can change in the fork path
  2206. * - any previously selected cpu might disappear through hotplug
  2207. *
  2208. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2209. * without people poking at ->cpus_allowed.
  2210. */
  2211. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2212. set_task_cpu(p, cpu);
  2213. p->state = TASK_RUNNING;
  2214. task_rq_unlock(rq, &flags);
  2215. #endif
  2216. rq = task_rq_lock(p, &flags);
  2217. activate_task(rq, p, 0);
  2218. trace_sched_wakeup_new(p, 1);
  2219. check_preempt_curr(rq, p, WF_FORK);
  2220. #ifdef CONFIG_SMP
  2221. if (p->sched_class->task_woken)
  2222. p->sched_class->task_woken(rq, p);
  2223. #endif
  2224. task_rq_unlock(rq, &flags);
  2225. put_cpu();
  2226. }
  2227. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2228. /**
  2229. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2230. * @notifier: notifier struct to register
  2231. */
  2232. void preempt_notifier_register(struct preempt_notifier *notifier)
  2233. {
  2234. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2235. }
  2236. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2237. /**
  2238. * preempt_notifier_unregister - no longer interested in preemption notifications
  2239. * @notifier: notifier struct to unregister
  2240. *
  2241. * This is safe to call from within a preemption notifier.
  2242. */
  2243. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2244. {
  2245. hlist_del(&notifier->link);
  2246. }
  2247. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2248. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2249. {
  2250. struct preempt_notifier *notifier;
  2251. struct hlist_node *node;
  2252. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2253. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2254. }
  2255. static void
  2256. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2257. struct task_struct *next)
  2258. {
  2259. struct preempt_notifier *notifier;
  2260. struct hlist_node *node;
  2261. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2262. notifier->ops->sched_out(notifier, next);
  2263. }
  2264. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2265. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2266. {
  2267. }
  2268. static void
  2269. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2270. struct task_struct *next)
  2271. {
  2272. }
  2273. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2274. /**
  2275. * prepare_task_switch - prepare to switch tasks
  2276. * @rq: the runqueue preparing to switch
  2277. * @prev: the current task that is being switched out
  2278. * @next: the task we are going to switch to.
  2279. *
  2280. * This is called with the rq lock held and interrupts off. It must
  2281. * be paired with a subsequent finish_task_switch after the context
  2282. * switch.
  2283. *
  2284. * prepare_task_switch sets up locking and calls architecture specific
  2285. * hooks.
  2286. */
  2287. static inline void
  2288. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2289. struct task_struct *next)
  2290. {
  2291. fire_sched_out_preempt_notifiers(prev, next);
  2292. prepare_lock_switch(rq, next);
  2293. prepare_arch_switch(next);
  2294. }
  2295. /**
  2296. * finish_task_switch - clean up after a task-switch
  2297. * @rq: runqueue associated with task-switch
  2298. * @prev: the thread we just switched away from.
  2299. *
  2300. * finish_task_switch must be called after the context switch, paired
  2301. * with a prepare_task_switch call before the context switch.
  2302. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2303. * and do any other architecture-specific cleanup actions.
  2304. *
  2305. * Note that we may have delayed dropping an mm in context_switch(). If
  2306. * so, we finish that here outside of the runqueue lock. (Doing it
  2307. * with the lock held can cause deadlocks; see schedule() for
  2308. * details.)
  2309. */
  2310. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2311. __releases(rq->lock)
  2312. {
  2313. struct mm_struct *mm = rq->prev_mm;
  2314. long prev_state;
  2315. rq->prev_mm = NULL;
  2316. /*
  2317. * A task struct has one reference for the use as "current".
  2318. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2319. * schedule one last time. The schedule call will never return, and
  2320. * the scheduled task must drop that reference.
  2321. * The test for TASK_DEAD must occur while the runqueue locks are
  2322. * still held, otherwise prev could be scheduled on another cpu, die
  2323. * there before we look at prev->state, and then the reference would
  2324. * be dropped twice.
  2325. * Manfred Spraul <manfred@colorfullife.com>
  2326. */
  2327. prev_state = prev->state;
  2328. finish_arch_switch(prev);
  2329. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2330. local_irq_disable();
  2331. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2332. perf_event_task_sched_in(current);
  2333. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2334. local_irq_enable();
  2335. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2336. finish_lock_switch(rq, prev);
  2337. fire_sched_in_preempt_notifiers(current);
  2338. if (mm)
  2339. mmdrop(mm);
  2340. if (unlikely(prev_state == TASK_DEAD)) {
  2341. /*
  2342. * Remove function-return probe instances associated with this
  2343. * task and put them back on the free list.
  2344. */
  2345. kprobe_flush_task(prev);
  2346. put_task_struct(prev);
  2347. }
  2348. }
  2349. #ifdef CONFIG_SMP
  2350. /* assumes rq->lock is held */
  2351. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2352. {
  2353. if (prev->sched_class->pre_schedule)
  2354. prev->sched_class->pre_schedule(rq, prev);
  2355. }
  2356. /* rq->lock is NOT held, but preemption is disabled */
  2357. static inline void post_schedule(struct rq *rq)
  2358. {
  2359. if (rq->post_schedule) {
  2360. unsigned long flags;
  2361. raw_spin_lock_irqsave(&rq->lock, flags);
  2362. if (rq->curr->sched_class->post_schedule)
  2363. rq->curr->sched_class->post_schedule(rq);
  2364. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2365. rq->post_schedule = 0;
  2366. }
  2367. }
  2368. #else
  2369. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2370. {
  2371. }
  2372. static inline void post_schedule(struct rq *rq)
  2373. {
  2374. }
  2375. #endif
  2376. /**
  2377. * schedule_tail - first thing a freshly forked thread must call.
  2378. * @prev: the thread we just switched away from.
  2379. */
  2380. asmlinkage void schedule_tail(struct task_struct *prev)
  2381. __releases(rq->lock)
  2382. {
  2383. struct rq *rq = this_rq();
  2384. finish_task_switch(rq, prev);
  2385. /*
  2386. * FIXME: do we need to worry about rq being invalidated by the
  2387. * task_switch?
  2388. */
  2389. post_schedule(rq);
  2390. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2391. /* In this case, finish_task_switch does not reenable preemption */
  2392. preempt_enable();
  2393. #endif
  2394. if (current->set_child_tid)
  2395. put_user(task_pid_vnr(current), current->set_child_tid);
  2396. }
  2397. /*
  2398. * context_switch - switch to the new MM and the new
  2399. * thread's register state.
  2400. */
  2401. static inline void
  2402. context_switch(struct rq *rq, struct task_struct *prev,
  2403. struct task_struct *next)
  2404. {
  2405. struct mm_struct *mm, *oldmm;
  2406. prepare_task_switch(rq, prev, next);
  2407. trace_sched_switch(prev, next);
  2408. mm = next->mm;
  2409. oldmm = prev->active_mm;
  2410. /*
  2411. * For paravirt, this is coupled with an exit in switch_to to
  2412. * combine the page table reload and the switch backend into
  2413. * one hypercall.
  2414. */
  2415. arch_start_context_switch(prev);
  2416. if (likely(!mm)) {
  2417. next->active_mm = oldmm;
  2418. atomic_inc(&oldmm->mm_count);
  2419. enter_lazy_tlb(oldmm, next);
  2420. } else
  2421. switch_mm(oldmm, mm, next);
  2422. if (likely(!prev->mm)) {
  2423. prev->active_mm = NULL;
  2424. rq->prev_mm = oldmm;
  2425. }
  2426. /*
  2427. * Since the runqueue lock will be released by the next
  2428. * task (which is an invalid locking op but in the case
  2429. * of the scheduler it's an obvious special-case), so we
  2430. * do an early lockdep release here:
  2431. */
  2432. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2433. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2434. #endif
  2435. /* Here we just switch the register state and the stack. */
  2436. switch_to(prev, next, prev);
  2437. barrier();
  2438. /*
  2439. * this_rq must be evaluated again because prev may have moved
  2440. * CPUs since it called schedule(), thus the 'rq' on its stack
  2441. * frame will be invalid.
  2442. */
  2443. finish_task_switch(this_rq(), prev);
  2444. }
  2445. /*
  2446. * nr_running, nr_uninterruptible and nr_context_switches:
  2447. *
  2448. * externally visible scheduler statistics: current number of runnable
  2449. * threads, current number of uninterruptible-sleeping threads, total
  2450. * number of context switches performed since bootup.
  2451. */
  2452. unsigned long nr_running(void)
  2453. {
  2454. unsigned long i, sum = 0;
  2455. for_each_online_cpu(i)
  2456. sum += cpu_rq(i)->nr_running;
  2457. return sum;
  2458. }
  2459. unsigned long nr_uninterruptible(void)
  2460. {
  2461. unsigned long i, sum = 0;
  2462. for_each_possible_cpu(i)
  2463. sum += cpu_rq(i)->nr_uninterruptible;
  2464. /*
  2465. * Since we read the counters lockless, it might be slightly
  2466. * inaccurate. Do not allow it to go below zero though:
  2467. */
  2468. if (unlikely((long)sum < 0))
  2469. sum = 0;
  2470. return sum;
  2471. }
  2472. unsigned long long nr_context_switches(void)
  2473. {
  2474. int i;
  2475. unsigned long long sum = 0;
  2476. for_each_possible_cpu(i)
  2477. sum += cpu_rq(i)->nr_switches;
  2478. return sum;
  2479. }
  2480. unsigned long nr_iowait(void)
  2481. {
  2482. unsigned long i, sum = 0;
  2483. for_each_possible_cpu(i)
  2484. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2485. return sum;
  2486. }
  2487. unsigned long nr_iowait_cpu(int cpu)
  2488. {
  2489. struct rq *this = cpu_rq(cpu);
  2490. return atomic_read(&this->nr_iowait);
  2491. }
  2492. unsigned long this_cpu_load(void)
  2493. {
  2494. struct rq *this = this_rq();
  2495. return this->cpu_load[0];
  2496. }
  2497. /* Variables and functions for calc_load */
  2498. static atomic_long_t calc_load_tasks;
  2499. static unsigned long calc_load_update;
  2500. unsigned long avenrun[3];
  2501. EXPORT_SYMBOL(avenrun);
  2502. static long calc_load_fold_active(struct rq *this_rq)
  2503. {
  2504. long nr_active, delta = 0;
  2505. nr_active = this_rq->nr_running;
  2506. nr_active += (long) this_rq->nr_uninterruptible;
  2507. if (nr_active != this_rq->calc_load_active) {
  2508. delta = nr_active - this_rq->calc_load_active;
  2509. this_rq->calc_load_active = nr_active;
  2510. }
  2511. return delta;
  2512. }
  2513. #ifdef CONFIG_NO_HZ
  2514. /*
  2515. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2516. *
  2517. * When making the ILB scale, we should try to pull this in as well.
  2518. */
  2519. static atomic_long_t calc_load_tasks_idle;
  2520. static void calc_load_account_idle(struct rq *this_rq)
  2521. {
  2522. long delta;
  2523. delta = calc_load_fold_active(this_rq);
  2524. if (delta)
  2525. atomic_long_add(delta, &calc_load_tasks_idle);
  2526. }
  2527. static long calc_load_fold_idle(void)
  2528. {
  2529. long delta = 0;
  2530. /*
  2531. * Its got a race, we don't care...
  2532. */
  2533. if (atomic_long_read(&calc_load_tasks_idle))
  2534. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2535. return delta;
  2536. }
  2537. #else
  2538. static void calc_load_account_idle(struct rq *this_rq)
  2539. {
  2540. }
  2541. static inline long calc_load_fold_idle(void)
  2542. {
  2543. return 0;
  2544. }
  2545. #endif
  2546. /**
  2547. * get_avenrun - get the load average array
  2548. * @loads: pointer to dest load array
  2549. * @offset: offset to add
  2550. * @shift: shift count to shift the result left
  2551. *
  2552. * These values are estimates at best, so no need for locking.
  2553. */
  2554. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2555. {
  2556. loads[0] = (avenrun[0] + offset) << shift;
  2557. loads[1] = (avenrun[1] + offset) << shift;
  2558. loads[2] = (avenrun[2] + offset) << shift;
  2559. }
  2560. static unsigned long
  2561. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2562. {
  2563. load *= exp;
  2564. load += active * (FIXED_1 - exp);
  2565. return load >> FSHIFT;
  2566. }
  2567. /*
  2568. * calc_load - update the avenrun load estimates 10 ticks after the
  2569. * CPUs have updated calc_load_tasks.
  2570. */
  2571. void calc_global_load(void)
  2572. {
  2573. unsigned long upd = calc_load_update + 10;
  2574. long active;
  2575. if (time_before(jiffies, upd))
  2576. return;
  2577. active = atomic_long_read(&calc_load_tasks);
  2578. active = active > 0 ? active * FIXED_1 : 0;
  2579. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2580. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2581. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2582. calc_load_update += LOAD_FREQ;
  2583. }
  2584. /*
  2585. * Called from update_cpu_load() to periodically update this CPU's
  2586. * active count.
  2587. */
  2588. static void calc_load_account_active(struct rq *this_rq)
  2589. {
  2590. long delta;
  2591. if (time_before(jiffies, this_rq->calc_load_update))
  2592. return;
  2593. delta = calc_load_fold_active(this_rq);
  2594. delta += calc_load_fold_idle();
  2595. if (delta)
  2596. atomic_long_add(delta, &calc_load_tasks);
  2597. this_rq->calc_load_update += LOAD_FREQ;
  2598. }
  2599. /*
  2600. * The exact cpuload at various idx values, calculated at every tick would be
  2601. * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
  2602. *
  2603. * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
  2604. * on nth tick when cpu may be busy, then we have:
  2605. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2606. * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
  2607. *
  2608. * decay_load_missed() below does efficient calculation of
  2609. * load = ((2^idx - 1) / 2^idx)^(n-1) * load
  2610. * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
  2611. *
  2612. * The calculation is approximated on a 128 point scale.
  2613. * degrade_zero_ticks is the number of ticks after which load at any
  2614. * particular idx is approximated to be zero.
  2615. * degrade_factor is a precomputed table, a row for each load idx.
  2616. * Each column corresponds to degradation factor for a power of two ticks,
  2617. * based on 128 point scale.
  2618. * Example:
  2619. * row 2, col 3 (=12) says that the degradation at load idx 2 after
  2620. * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
  2621. *
  2622. * With this power of 2 load factors, we can degrade the load n times
  2623. * by looking at 1 bits in n and doing as many mult/shift instead of
  2624. * n mult/shifts needed by the exact degradation.
  2625. */
  2626. #define DEGRADE_SHIFT 7
  2627. static const unsigned char
  2628. degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
  2629. static const unsigned char
  2630. degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
  2631. {0, 0, 0, 0, 0, 0, 0, 0},
  2632. {64, 32, 8, 0, 0, 0, 0, 0},
  2633. {96, 72, 40, 12, 1, 0, 0},
  2634. {112, 98, 75, 43, 15, 1, 0},
  2635. {120, 112, 98, 76, 45, 16, 2} };
  2636. /*
  2637. * Update cpu_load for any missed ticks, due to tickless idle. The backlog
  2638. * would be when CPU is idle and so we just decay the old load without
  2639. * adding any new load.
  2640. */
  2641. static unsigned long
  2642. decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
  2643. {
  2644. int j = 0;
  2645. if (!missed_updates)
  2646. return load;
  2647. if (missed_updates >= degrade_zero_ticks[idx])
  2648. return 0;
  2649. if (idx == 1)
  2650. return load >> missed_updates;
  2651. while (missed_updates) {
  2652. if (missed_updates % 2)
  2653. load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
  2654. missed_updates >>= 1;
  2655. j++;
  2656. }
  2657. return load;
  2658. }
  2659. /*
  2660. * Update rq->cpu_load[] statistics. This function is usually called every
  2661. * scheduler tick (TICK_NSEC). With tickless idle this will not be called
  2662. * every tick. We fix it up based on jiffies.
  2663. */
  2664. static void update_cpu_load(struct rq *this_rq)
  2665. {
  2666. unsigned long this_load = this_rq->load.weight;
  2667. unsigned long curr_jiffies = jiffies;
  2668. unsigned long pending_updates;
  2669. int i, scale;
  2670. this_rq->nr_load_updates++;
  2671. /* Avoid repeated calls on same jiffy, when moving in and out of idle */
  2672. if (curr_jiffies == this_rq->last_load_update_tick)
  2673. return;
  2674. pending_updates = curr_jiffies - this_rq->last_load_update_tick;
  2675. this_rq->last_load_update_tick = curr_jiffies;
  2676. /* Update our load: */
  2677. this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
  2678. for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2679. unsigned long old_load, new_load;
  2680. /* scale is effectively 1 << i now, and >> i divides by scale */
  2681. old_load = this_rq->cpu_load[i];
  2682. old_load = decay_load_missed(old_load, pending_updates - 1, i);
  2683. new_load = this_load;
  2684. /*
  2685. * Round up the averaging division if load is increasing. This
  2686. * prevents us from getting stuck on 9 if the load is 10, for
  2687. * example.
  2688. */
  2689. if (new_load > old_load)
  2690. new_load += scale - 1;
  2691. this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
  2692. }
  2693. }
  2694. static void update_cpu_load_active(struct rq *this_rq)
  2695. {
  2696. update_cpu_load(this_rq);
  2697. calc_load_account_active(this_rq);
  2698. }
  2699. #ifdef CONFIG_SMP
  2700. /*
  2701. * sched_exec - execve() is a valuable balancing opportunity, because at
  2702. * this point the task has the smallest effective memory and cache footprint.
  2703. */
  2704. void sched_exec(void)
  2705. {
  2706. struct task_struct *p = current;
  2707. unsigned long flags;
  2708. struct rq *rq;
  2709. int dest_cpu;
  2710. rq = task_rq_lock(p, &flags);
  2711. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2712. if (dest_cpu == smp_processor_id())
  2713. goto unlock;
  2714. /*
  2715. * select_task_rq() can race against ->cpus_allowed
  2716. */
  2717. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2718. likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
  2719. struct migration_arg arg = { p, dest_cpu };
  2720. task_rq_unlock(rq, &flags);
  2721. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  2722. return;
  2723. }
  2724. unlock:
  2725. task_rq_unlock(rq, &flags);
  2726. }
  2727. #endif
  2728. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2729. EXPORT_PER_CPU_SYMBOL(kstat);
  2730. /*
  2731. * Return any ns on the sched_clock that have not yet been accounted in
  2732. * @p in case that task is currently running.
  2733. *
  2734. * Called with task_rq_lock() held on @rq.
  2735. */
  2736. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2737. {
  2738. u64 ns = 0;
  2739. if (task_current(rq, p)) {
  2740. update_rq_clock(rq);
  2741. ns = rq->clock - p->se.exec_start;
  2742. if ((s64)ns < 0)
  2743. ns = 0;
  2744. }
  2745. return ns;
  2746. }
  2747. unsigned long long task_delta_exec(struct task_struct *p)
  2748. {
  2749. unsigned long flags;
  2750. struct rq *rq;
  2751. u64 ns = 0;
  2752. rq = task_rq_lock(p, &flags);
  2753. ns = do_task_delta_exec(p, rq);
  2754. task_rq_unlock(rq, &flags);
  2755. return ns;
  2756. }
  2757. /*
  2758. * Return accounted runtime for the task.
  2759. * In case the task is currently running, return the runtime plus current's
  2760. * pending runtime that have not been accounted yet.
  2761. */
  2762. unsigned long long task_sched_runtime(struct task_struct *p)
  2763. {
  2764. unsigned long flags;
  2765. struct rq *rq;
  2766. u64 ns = 0;
  2767. rq = task_rq_lock(p, &flags);
  2768. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2769. task_rq_unlock(rq, &flags);
  2770. return ns;
  2771. }
  2772. /*
  2773. * Return sum_exec_runtime for the thread group.
  2774. * In case the task is currently running, return the sum plus current's
  2775. * pending runtime that have not been accounted yet.
  2776. *
  2777. * Note that the thread group might have other running tasks as well,
  2778. * so the return value not includes other pending runtime that other
  2779. * running tasks might have.
  2780. */
  2781. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2782. {
  2783. struct task_cputime totals;
  2784. unsigned long flags;
  2785. struct rq *rq;
  2786. u64 ns;
  2787. rq = task_rq_lock(p, &flags);
  2788. thread_group_cputime(p, &totals);
  2789. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2790. task_rq_unlock(rq, &flags);
  2791. return ns;
  2792. }
  2793. /*
  2794. * Account user cpu time to a process.
  2795. * @p: the process that the cpu time gets accounted to
  2796. * @cputime: the cpu time spent in user space since the last update
  2797. * @cputime_scaled: cputime scaled by cpu frequency
  2798. */
  2799. void account_user_time(struct task_struct *p, cputime_t cputime,
  2800. cputime_t cputime_scaled)
  2801. {
  2802. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2803. cputime64_t tmp;
  2804. /* Add user time to process. */
  2805. p->utime = cputime_add(p->utime, cputime);
  2806. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2807. account_group_user_time(p, cputime);
  2808. /* Add user time to cpustat. */
  2809. tmp = cputime_to_cputime64(cputime);
  2810. if (TASK_NICE(p) > 0)
  2811. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2812. else
  2813. cpustat->user = cputime64_add(cpustat->user, tmp);
  2814. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2815. /* Account for user time used */
  2816. acct_update_integrals(p);
  2817. }
  2818. /*
  2819. * Account guest cpu time to a process.
  2820. * @p: the process that the cpu time gets accounted to
  2821. * @cputime: the cpu time spent in virtual machine since the last update
  2822. * @cputime_scaled: cputime scaled by cpu frequency
  2823. */
  2824. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2825. cputime_t cputime_scaled)
  2826. {
  2827. cputime64_t tmp;
  2828. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2829. tmp = cputime_to_cputime64(cputime);
  2830. /* Add guest time to process. */
  2831. p->utime = cputime_add(p->utime, cputime);
  2832. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2833. account_group_user_time(p, cputime);
  2834. p->gtime = cputime_add(p->gtime, cputime);
  2835. /* Add guest time to cpustat. */
  2836. if (TASK_NICE(p) > 0) {
  2837. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2838. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2839. } else {
  2840. cpustat->user = cputime64_add(cpustat->user, tmp);
  2841. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2842. }
  2843. }
  2844. /*
  2845. * Account system cpu time to a process.
  2846. * @p: the process that the cpu time gets accounted to
  2847. * @hardirq_offset: the offset to subtract from hardirq_count()
  2848. * @cputime: the cpu time spent in kernel space since the last update
  2849. * @cputime_scaled: cputime scaled by cpu frequency
  2850. */
  2851. void account_system_time(struct task_struct *p, int hardirq_offset,
  2852. cputime_t cputime, cputime_t cputime_scaled)
  2853. {
  2854. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2855. cputime64_t tmp;
  2856. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2857. account_guest_time(p, cputime, cputime_scaled);
  2858. return;
  2859. }
  2860. /* Add system time to process. */
  2861. p->stime = cputime_add(p->stime, cputime);
  2862. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2863. account_group_system_time(p, cputime);
  2864. /* Add system time to cpustat. */
  2865. tmp = cputime_to_cputime64(cputime);
  2866. if (hardirq_count() - hardirq_offset)
  2867. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2868. else if (softirq_count())
  2869. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2870. else
  2871. cpustat->system = cputime64_add(cpustat->system, tmp);
  2872. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2873. /* Account for system time used */
  2874. acct_update_integrals(p);
  2875. }
  2876. /*
  2877. * Account for involuntary wait time.
  2878. * @steal: the cpu time spent in involuntary wait
  2879. */
  2880. void account_steal_time(cputime_t cputime)
  2881. {
  2882. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2883. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2884. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2885. }
  2886. /*
  2887. * Account for idle time.
  2888. * @cputime: the cpu time spent in idle wait
  2889. */
  2890. void account_idle_time(cputime_t cputime)
  2891. {
  2892. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2893. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2894. struct rq *rq = this_rq();
  2895. if (atomic_read(&rq->nr_iowait) > 0)
  2896. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2897. else
  2898. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2899. }
  2900. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2901. /*
  2902. * Account a single tick of cpu time.
  2903. * @p: the process that the cpu time gets accounted to
  2904. * @user_tick: indicates if the tick is a user or a system tick
  2905. */
  2906. void account_process_tick(struct task_struct *p, int user_tick)
  2907. {
  2908. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2909. struct rq *rq = this_rq();
  2910. if (user_tick)
  2911. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2912. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2913. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2914. one_jiffy_scaled);
  2915. else
  2916. account_idle_time(cputime_one_jiffy);
  2917. }
  2918. /*
  2919. * Account multiple ticks of steal time.
  2920. * @p: the process from which the cpu time has been stolen
  2921. * @ticks: number of stolen ticks
  2922. */
  2923. void account_steal_ticks(unsigned long ticks)
  2924. {
  2925. account_steal_time(jiffies_to_cputime(ticks));
  2926. }
  2927. /*
  2928. * Account multiple ticks of idle time.
  2929. * @ticks: number of stolen ticks
  2930. */
  2931. void account_idle_ticks(unsigned long ticks)
  2932. {
  2933. account_idle_time(jiffies_to_cputime(ticks));
  2934. }
  2935. #endif
  2936. /*
  2937. * Use precise platform statistics if available:
  2938. */
  2939. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2940. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2941. {
  2942. *ut = p->utime;
  2943. *st = p->stime;
  2944. }
  2945. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2946. {
  2947. struct task_cputime cputime;
  2948. thread_group_cputime(p, &cputime);
  2949. *ut = cputime.utime;
  2950. *st = cputime.stime;
  2951. }
  2952. #else
  2953. #ifndef nsecs_to_cputime
  2954. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2955. #endif
  2956. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2957. {
  2958. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2959. /*
  2960. * Use CFS's precise accounting:
  2961. */
  2962. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2963. if (total) {
  2964. u64 temp;
  2965. temp = (u64)(rtime * utime);
  2966. do_div(temp, total);
  2967. utime = (cputime_t)temp;
  2968. } else
  2969. utime = rtime;
  2970. /*
  2971. * Compare with previous values, to keep monotonicity:
  2972. */
  2973. p->prev_utime = max(p->prev_utime, utime);
  2974. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2975. *ut = p->prev_utime;
  2976. *st = p->prev_stime;
  2977. }
  2978. /*
  2979. * Must be called with siglock held.
  2980. */
  2981. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2982. {
  2983. struct signal_struct *sig = p->signal;
  2984. struct task_cputime cputime;
  2985. cputime_t rtime, utime, total;
  2986. thread_group_cputime(p, &cputime);
  2987. total = cputime_add(cputime.utime, cputime.stime);
  2988. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2989. if (total) {
  2990. u64 temp;
  2991. temp = (u64)(rtime * cputime.utime);
  2992. do_div(temp, total);
  2993. utime = (cputime_t)temp;
  2994. } else
  2995. utime = rtime;
  2996. sig->prev_utime = max(sig->prev_utime, utime);
  2997. sig->prev_stime = max(sig->prev_stime,
  2998. cputime_sub(rtime, sig->prev_utime));
  2999. *ut = sig->prev_utime;
  3000. *st = sig->prev_stime;
  3001. }
  3002. #endif
  3003. /*
  3004. * This function gets called by the timer code, with HZ frequency.
  3005. * We call it with interrupts disabled.
  3006. *
  3007. * It also gets called by the fork code, when changing the parent's
  3008. * timeslices.
  3009. */
  3010. void scheduler_tick(void)
  3011. {
  3012. int cpu = smp_processor_id();
  3013. struct rq *rq = cpu_rq(cpu);
  3014. struct task_struct *curr = rq->curr;
  3015. sched_clock_tick();
  3016. raw_spin_lock(&rq->lock);
  3017. update_rq_clock(rq);
  3018. update_cpu_load_active(rq);
  3019. curr->sched_class->task_tick(rq, curr, 0);
  3020. raw_spin_unlock(&rq->lock);
  3021. #ifdef CONFIG_SMP
  3022. rq->idle_at_tick = idle_cpu(cpu);
  3023. trigger_load_balance(rq, cpu);
  3024. #endif
  3025. }
  3026. notrace unsigned long get_parent_ip(unsigned long addr)
  3027. {
  3028. if (in_lock_functions(addr)) {
  3029. addr = CALLER_ADDR2;
  3030. if (in_lock_functions(addr))
  3031. addr = CALLER_ADDR3;
  3032. }
  3033. return addr;
  3034. }
  3035. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3036. defined(CONFIG_PREEMPT_TRACER))
  3037. void __kprobes add_preempt_count(int val)
  3038. {
  3039. #ifdef CONFIG_DEBUG_PREEMPT
  3040. /*
  3041. * Underflow?
  3042. */
  3043. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3044. return;
  3045. #endif
  3046. preempt_count() += val;
  3047. #ifdef CONFIG_DEBUG_PREEMPT
  3048. /*
  3049. * Spinlock count overflowing soon?
  3050. */
  3051. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3052. PREEMPT_MASK - 10);
  3053. #endif
  3054. if (preempt_count() == val)
  3055. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3056. }
  3057. EXPORT_SYMBOL(add_preempt_count);
  3058. void __kprobes sub_preempt_count(int val)
  3059. {
  3060. #ifdef CONFIG_DEBUG_PREEMPT
  3061. /*
  3062. * Underflow?
  3063. */
  3064. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3065. return;
  3066. /*
  3067. * Is the spinlock portion underflowing?
  3068. */
  3069. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3070. !(preempt_count() & PREEMPT_MASK)))
  3071. return;
  3072. #endif
  3073. if (preempt_count() == val)
  3074. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3075. preempt_count() -= val;
  3076. }
  3077. EXPORT_SYMBOL(sub_preempt_count);
  3078. #endif
  3079. /*
  3080. * Print scheduling while atomic bug:
  3081. */
  3082. static noinline void __schedule_bug(struct task_struct *prev)
  3083. {
  3084. struct pt_regs *regs = get_irq_regs();
  3085. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3086. prev->comm, prev->pid, preempt_count());
  3087. debug_show_held_locks(prev);
  3088. print_modules();
  3089. if (irqs_disabled())
  3090. print_irqtrace_events(prev);
  3091. if (regs)
  3092. show_regs(regs);
  3093. else
  3094. dump_stack();
  3095. }
  3096. /*
  3097. * Various schedule()-time debugging checks and statistics:
  3098. */
  3099. static inline void schedule_debug(struct task_struct *prev)
  3100. {
  3101. /*
  3102. * Test if we are atomic. Since do_exit() needs to call into
  3103. * schedule() atomically, we ignore that path for now.
  3104. * Otherwise, whine if we are scheduling when we should not be.
  3105. */
  3106. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3107. __schedule_bug(prev);
  3108. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3109. schedstat_inc(this_rq(), sched_count);
  3110. #ifdef CONFIG_SCHEDSTATS
  3111. if (unlikely(prev->lock_depth >= 0)) {
  3112. schedstat_inc(this_rq(), bkl_count);
  3113. schedstat_inc(prev, sched_info.bkl_count);
  3114. }
  3115. #endif
  3116. }
  3117. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3118. {
  3119. if (prev->se.on_rq)
  3120. update_rq_clock(rq);
  3121. rq->skip_clock_update = 0;
  3122. prev->sched_class->put_prev_task(rq, prev);
  3123. }
  3124. /*
  3125. * Pick up the highest-prio task:
  3126. */
  3127. static inline struct task_struct *
  3128. pick_next_task(struct rq *rq)
  3129. {
  3130. const struct sched_class *class;
  3131. struct task_struct *p;
  3132. /*
  3133. * Optimization: we know that if all tasks are in
  3134. * the fair class we can call that function directly:
  3135. */
  3136. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3137. p = fair_sched_class.pick_next_task(rq);
  3138. if (likely(p))
  3139. return p;
  3140. }
  3141. class = sched_class_highest;
  3142. for ( ; ; ) {
  3143. p = class->pick_next_task(rq);
  3144. if (p)
  3145. return p;
  3146. /*
  3147. * Will never be NULL as the idle class always
  3148. * returns a non-NULL p:
  3149. */
  3150. class = class->next;
  3151. }
  3152. }
  3153. /*
  3154. * schedule() is the main scheduler function.
  3155. */
  3156. asmlinkage void __sched schedule(void)
  3157. {
  3158. struct task_struct *prev, *next;
  3159. unsigned long *switch_count;
  3160. struct rq *rq;
  3161. int cpu;
  3162. need_resched:
  3163. preempt_disable();
  3164. cpu = smp_processor_id();
  3165. rq = cpu_rq(cpu);
  3166. rcu_note_context_switch(cpu);
  3167. prev = rq->curr;
  3168. release_kernel_lock(prev);
  3169. need_resched_nonpreemptible:
  3170. schedule_debug(prev);
  3171. if (sched_feat(HRTICK))
  3172. hrtick_clear(rq);
  3173. raw_spin_lock_irq(&rq->lock);
  3174. clear_tsk_need_resched(prev);
  3175. switch_count = &prev->nivcsw;
  3176. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3177. if (unlikely(signal_pending_state(prev->state, prev))) {
  3178. prev->state = TASK_RUNNING;
  3179. } else {
  3180. /*
  3181. * If a worker is going to sleep, notify and
  3182. * ask workqueue whether it wants to wake up a
  3183. * task to maintain concurrency. If so, wake
  3184. * up the task.
  3185. */
  3186. if (prev->flags & PF_WQ_WORKER) {
  3187. struct task_struct *to_wakeup;
  3188. to_wakeup = wq_worker_sleeping(prev, cpu);
  3189. if (to_wakeup)
  3190. try_to_wake_up_local(to_wakeup);
  3191. }
  3192. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3193. }
  3194. switch_count = &prev->nvcsw;
  3195. }
  3196. pre_schedule(rq, prev);
  3197. if (unlikely(!rq->nr_running))
  3198. idle_balance(cpu, rq);
  3199. put_prev_task(rq, prev);
  3200. next = pick_next_task(rq);
  3201. if (likely(prev != next)) {
  3202. sched_info_switch(prev, next);
  3203. perf_event_task_sched_out(prev, next);
  3204. rq->nr_switches++;
  3205. rq->curr = next;
  3206. ++*switch_count;
  3207. context_switch(rq, prev, next); /* unlocks the rq */
  3208. /*
  3209. * The context switch have flipped the stack from under us
  3210. * and restored the local variables which were saved when
  3211. * this task called schedule() in the past. prev == current
  3212. * is still correct, but it can be moved to another cpu/rq.
  3213. */
  3214. cpu = smp_processor_id();
  3215. rq = cpu_rq(cpu);
  3216. } else
  3217. raw_spin_unlock_irq(&rq->lock);
  3218. post_schedule(rq);
  3219. if (unlikely(reacquire_kernel_lock(prev)))
  3220. goto need_resched_nonpreemptible;
  3221. preempt_enable_no_resched();
  3222. if (need_resched())
  3223. goto need_resched;
  3224. }
  3225. EXPORT_SYMBOL(schedule);
  3226. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3227. /*
  3228. * Look out! "owner" is an entirely speculative pointer
  3229. * access and not reliable.
  3230. */
  3231. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3232. {
  3233. unsigned int cpu;
  3234. struct rq *rq;
  3235. if (!sched_feat(OWNER_SPIN))
  3236. return 0;
  3237. #ifdef CONFIG_DEBUG_PAGEALLOC
  3238. /*
  3239. * Need to access the cpu field knowing that
  3240. * DEBUG_PAGEALLOC could have unmapped it if
  3241. * the mutex owner just released it and exited.
  3242. */
  3243. if (probe_kernel_address(&owner->cpu, cpu))
  3244. return 0;
  3245. #else
  3246. cpu = owner->cpu;
  3247. #endif
  3248. /*
  3249. * Even if the access succeeded (likely case),
  3250. * the cpu field may no longer be valid.
  3251. */
  3252. if (cpu >= nr_cpumask_bits)
  3253. return 0;
  3254. /*
  3255. * We need to validate that we can do a
  3256. * get_cpu() and that we have the percpu area.
  3257. */
  3258. if (!cpu_online(cpu))
  3259. return 0;
  3260. rq = cpu_rq(cpu);
  3261. for (;;) {
  3262. /*
  3263. * Owner changed, break to re-assess state.
  3264. */
  3265. if (lock->owner != owner) {
  3266. /*
  3267. * If the lock has switched to a different owner,
  3268. * we likely have heavy contention. Return 0 to quit
  3269. * optimistic spinning and not contend further:
  3270. */
  3271. if (lock->owner)
  3272. return 0;
  3273. break;
  3274. }
  3275. /*
  3276. * Is that owner really running on that cpu?
  3277. */
  3278. if (task_thread_info(rq->curr) != owner || need_resched())
  3279. return 0;
  3280. cpu_relax();
  3281. }
  3282. return 1;
  3283. }
  3284. #endif
  3285. #ifdef CONFIG_PREEMPT
  3286. /*
  3287. * this is the entry point to schedule() from in-kernel preemption
  3288. * off of preempt_enable. Kernel preemptions off return from interrupt
  3289. * occur there and call schedule directly.
  3290. */
  3291. asmlinkage void __sched notrace preempt_schedule(void)
  3292. {
  3293. struct thread_info *ti = current_thread_info();
  3294. /*
  3295. * If there is a non-zero preempt_count or interrupts are disabled,
  3296. * we do not want to preempt the current task. Just return..
  3297. */
  3298. if (likely(ti->preempt_count || irqs_disabled()))
  3299. return;
  3300. do {
  3301. add_preempt_count_notrace(PREEMPT_ACTIVE);
  3302. schedule();
  3303. sub_preempt_count_notrace(PREEMPT_ACTIVE);
  3304. /*
  3305. * Check again in case we missed a preemption opportunity
  3306. * between schedule and now.
  3307. */
  3308. barrier();
  3309. } while (need_resched());
  3310. }
  3311. EXPORT_SYMBOL(preempt_schedule);
  3312. /*
  3313. * this is the entry point to schedule() from kernel preemption
  3314. * off of irq context.
  3315. * Note, that this is called and return with irqs disabled. This will
  3316. * protect us against recursive calling from irq.
  3317. */
  3318. asmlinkage void __sched preempt_schedule_irq(void)
  3319. {
  3320. struct thread_info *ti = current_thread_info();
  3321. /* Catch callers which need to be fixed */
  3322. BUG_ON(ti->preempt_count || !irqs_disabled());
  3323. do {
  3324. add_preempt_count(PREEMPT_ACTIVE);
  3325. local_irq_enable();
  3326. schedule();
  3327. local_irq_disable();
  3328. sub_preempt_count(PREEMPT_ACTIVE);
  3329. /*
  3330. * Check again in case we missed a preemption opportunity
  3331. * between schedule and now.
  3332. */
  3333. barrier();
  3334. } while (need_resched());
  3335. }
  3336. #endif /* CONFIG_PREEMPT */
  3337. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3338. void *key)
  3339. {
  3340. return try_to_wake_up(curr->private, mode, wake_flags);
  3341. }
  3342. EXPORT_SYMBOL(default_wake_function);
  3343. /*
  3344. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3345. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3346. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3347. *
  3348. * There are circumstances in which we can try to wake a task which has already
  3349. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3350. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3351. */
  3352. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3353. int nr_exclusive, int wake_flags, void *key)
  3354. {
  3355. wait_queue_t *curr, *next;
  3356. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3357. unsigned flags = curr->flags;
  3358. if (curr->func(curr, mode, wake_flags, key) &&
  3359. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3360. break;
  3361. }
  3362. }
  3363. /**
  3364. * __wake_up - wake up threads blocked on a waitqueue.
  3365. * @q: the waitqueue
  3366. * @mode: which threads
  3367. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3368. * @key: is directly passed to the wakeup function
  3369. *
  3370. * It may be assumed that this function implies a write memory barrier before
  3371. * changing the task state if and only if any tasks are woken up.
  3372. */
  3373. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3374. int nr_exclusive, void *key)
  3375. {
  3376. unsigned long flags;
  3377. spin_lock_irqsave(&q->lock, flags);
  3378. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3379. spin_unlock_irqrestore(&q->lock, flags);
  3380. }
  3381. EXPORT_SYMBOL(__wake_up);
  3382. /*
  3383. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3384. */
  3385. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3386. {
  3387. __wake_up_common(q, mode, 1, 0, NULL);
  3388. }
  3389. EXPORT_SYMBOL_GPL(__wake_up_locked);
  3390. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3391. {
  3392. __wake_up_common(q, mode, 1, 0, key);
  3393. }
  3394. /**
  3395. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3396. * @q: the waitqueue
  3397. * @mode: which threads
  3398. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3399. * @key: opaque value to be passed to wakeup targets
  3400. *
  3401. * The sync wakeup differs that the waker knows that it will schedule
  3402. * away soon, so while the target thread will be woken up, it will not
  3403. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3404. * with each other. This can prevent needless bouncing between CPUs.
  3405. *
  3406. * On UP it can prevent extra preemption.
  3407. *
  3408. * It may be assumed that this function implies a write memory barrier before
  3409. * changing the task state if and only if any tasks are woken up.
  3410. */
  3411. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3412. int nr_exclusive, void *key)
  3413. {
  3414. unsigned long flags;
  3415. int wake_flags = WF_SYNC;
  3416. if (unlikely(!q))
  3417. return;
  3418. if (unlikely(!nr_exclusive))
  3419. wake_flags = 0;
  3420. spin_lock_irqsave(&q->lock, flags);
  3421. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3422. spin_unlock_irqrestore(&q->lock, flags);
  3423. }
  3424. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3425. /*
  3426. * __wake_up_sync - see __wake_up_sync_key()
  3427. */
  3428. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3429. {
  3430. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3431. }
  3432. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3433. /**
  3434. * complete: - signals a single thread waiting on this completion
  3435. * @x: holds the state of this particular completion
  3436. *
  3437. * This will wake up a single thread waiting on this completion. Threads will be
  3438. * awakened in the same order in which they were queued.
  3439. *
  3440. * See also complete_all(), wait_for_completion() and related routines.
  3441. *
  3442. * It may be assumed that this function implies a write memory barrier before
  3443. * changing the task state if and only if any tasks are woken up.
  3444. */
  3445. void complete(struct completion *x)
  3446. {
  3447. unsigned long flags;
  3448. spin_lock_irqsave(&x->wait.lock, flags);
  3449. x->done++;
  3450. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3451. spin_unlock_irqrestore(&x->wait.lock, flags);
  3452. }
  3453. EXPORT_SYMBOL(complete);
  3454. /**
  3455. * complete_all: - signals all threads waiting on this completion
  3456. * @x: holds the state of this particular completion
  3457. *
  3458. * This will wake up all threads waiting on this particular completion event.
  3459. *
  3460. * It may be assumed that this function implies a write memory barrier before
  3461. * changing the task state if and only if any tasks are woken up.
  3462. */
  3463. void complete_all(struct completion *x)
  3464. {
  3465. unsigned long flags;
  3466. spin_lock_irqsave(&x->wait.lock, flags);
  3467. x->done += UINT_MAX/2;
  3468. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3469. spin_unlock_irqrestore(&x->wait.lock, flags);
  3470. }
  3471. EXPORT_SYMBOL(complete_all);
  3472. static inline long __sched
  3473. do_wait_for_common(struct completion *x, long timeout, int state)
  3474. {
  3475. if (!x->done) {
  3476. DECLARE_WAITQUEUE(wait, current);
  3477. __add_wait_queue_tail_exclusive(&x->wait, &wait);
  3478. do {
  3479. if (signal_pending_state(state, current)) {
  3480. timeout = -ERESTARTSYS;
  3481. break;
  3482. }
  3483. __set_current_state(state);
  3484. spin_unlock_irq(&x->wait.lock);
  3485. timeout = schedule_timeout(timeout);
  3486. spin_lock_irq(&x->wait.lock);
  3487. } while (!x->done && timeout);
  3488. __remove_wait_queue(&x->wait, &wait);
  3489. if (!x->done)
  3490. return timeout;
  3491. }
  3492. x->done--;
  3493. return timeout ?: 1;
  3494. }
  3495. static long __sched
  3496. wait_for_common(struct completion *x, long timeout, int state)
  3497. {
  3498. might_sleep();
  3499. spin_lock_irq(&x->wait.lock);
  3500. timeout = do_wait_for_common(x, timeout, state);
  3501. spin_unlock_irq(&x->wait.lock);
  3502. return timeout;
  3503. }
  3504. /**
  3505. * wait_for_completion: - waits for completion of a task
  3506. * @x: holds the state of this particular completion
  3507. *
  3508. * This waits to be signaled for completion of a specific task. It is NOT
  3509. * interruptible and there is no timeout.
  3510. *
  3511. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3512. * and interrupt capability. Also see complete().
  3513. */
  3514. void __sched wait_for_completion(struct completion *x)
  3515. {
  3516. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3517. }
  3518. EXPORT_SYMBOL(wait_for_completion);
  3519. /**
  3520. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3521. * @x: holds the state of this particular completion
  3522. * @timeout: timeout value in jiffies
  3523. *
  3524. * This waits for either a completion of a specific task to be signaled or for a
  3525. * specified timeout to expire. The timeout is in jiffies. It is not
  3526. * interruptible.
  3527. */
  3528. unsigned long __sched
  3529. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3530. {
  3531. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3532. }
  3533. EXPORT_SYMBOL(wait_for_completion_timeout);
  3534. /**
  3535. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3536. * @x: holds the state of this particular completion
  3537. *
  3538. * This waits for completion of a specific task to be signaled. It is
  3539. * interruptible.
  3540. */
  3541. int __sched wait_for_completion_interruptible(struct completion *x)
  3542. {
  3543. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3544. if (t == -ERESTARTSYS)
  3545. return t;
  3546. return 0;
  3547. }
  3548. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3549. /**
  3550. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3551. * @x: holds the state of this particular completion
  3552. * @timeout: timeout value in jiffies
  3553. *
  3554. * This waits for either a completion of a specific task to be signaled or for a
  3555. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3556. */
  3557. unsigned long __sched
  3558. wait_for_completion_interruptible_timeout(struct completion *x,
  3559. unsigned long timeout)
  3560. {
  3561. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3562. }
  3563. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3564. /**
  3565. * wait_for_completion_killable: - waits for completion of a task (killable)
  3566. * @x: holds the state of this particular completion
  3567. *
  3568. * This waits to be signaled for completion of a specific task. It can be
  3569. * interrupted by a kill signal.
  3570. */
  3571. int __sched wait_for_completion_killable(struct completion *x)
  3572. {
  3573. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3574. if (t == -ERESTARTSYS)
  3575. return t;
  3576. return 0;
  3577. }
  3578. EXPORT_SYMBOL(wait_for_completion_killable);
  3579. /**
  3580. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3581. * @x: holds the state of this particular completion
  3582. * @timeout: timeout value in jiffies
  3583. *
  3584. * This waits for either a completion of a specific task to be
  3585. * signaled or for a specified timeout to expire. It can be
  3586. * interrupted by a kill signal. The timeout is in jiffies.
  3587. */
  3588. unsigned long __sched
  3589. wait_for_completion_killable_timeout(struct completion *x,
  3590. unsigned long timeout)
  3591. {
  3592. return wait_for_common(x, timeout, TASK_KILLABLE);
  3593. }
  3594. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3595. /**
  3596. * try_wait_for_completion - try to decrement a completion without blocking
  3597. * @x: completion structure
  3598. *
  3599. * Returns: 0 if a decrement cannot be done without blocking
  3600. * 1 if a decrement succeeded.
  3601. *
  3602. * If a completion is being used as a counting completion,
  3603. * attempt to decrement the counter without blocking. This
  3604. * enables us to avoid waiting if the resource the completion
  3605. * is protecting is not available.
  3606. */
  3607. bool try_wait_for_completion(struct completion *x)
  3608. {
  3609. unsigned long flags;
  3610. int ret = 1;
  3611. spin_lock_irqsave(&x->wait.lock, flags);
  3612. if (!x->done)
  3613. ret = 0;
  3614. else
  3615. x->done--;
  3616. spin_unlock_irqrestore(&x->wait.lock, flags);
  3617. return ret;
  3618. }
  3619. EXPORT_SYMBOL(try_wait_for_completion);
  3620. /**
  3621. * completion_done - Test to see if a completion has any waiters
  3622. * @x: completion structure
  3623. *
  3624. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3625. * 1 if there are no waiters.
  3626. *
  3627. */
  3628. bool completion_done(struct completion *x)
  3629. {
  3630. unsigned long flags;
  3631. int ret = 1;
  3632. spin_lock_irqsave(&x->wait.lock, flags);
  3633. if (!x->done)
  3634. ret = 0;
  3635. spin_unlock_irqrestore(&x->wait.lock, flags);
  3636. return ret;
  3637. }
  3638. EXPORT_SYMBOL(completion_done);
  3639. static long __sched
  3640. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3641. {
  3642. unsigned long flags;
  3643. wait_queue_t wait;
  3644. init_waitqueue_entry(&wait, current);
  3645. __set_current_state(state);
  3646. spin_lock_irqsave(&q->lock, flags);
  3647. __add_wait_queue(q, &wait);
  3648. spin_unlock(&q->lock);
  3649. timeout = schedule_timeout(timeout);
  3650. spin_lock_irq(&q->lock);
  3651. __remove_wait_queue(q, &wait);
  3652. spin_unlock_irqrestore(&q->lock, flags);
  3653. return timeout;
  3654. }
  3655. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3656. {
  3657. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3658. }
  3659. EXPORT_SYMBOL(interruptible_sleep_on);
  3660. long __sched
  3661. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3662. {
  3663. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3664. }
  3665. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3666. void __sched sleep_on(wait_queue_head_t *q)
  3667. {
  3668. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3669. }
  3670. EXPORT_SYMBOL(sleep_on);
  3671. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3672. {
  3673. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3674. }
  3675. EXPORT_SYMBOL(sleep_on_timeout);
  3676. #ifdef CONFIG_RT_MUTEXES
  3677. /*
  3678. * rt_mutex_setprio - set the current priority of a task
  3679. * @p: task
  3680. * @prio: prio value (kernel-internal form)
  3681. *
  3682. * This function changes the 'effective' priority of a task. It does
  3683. * not touch ->normal_prio like __setscheduler().
  3684. *
  3685. * Used by the rt_mutex code to implement priority inheritance logic.
  3686. */
  3687. void rt_mutex_setprio(struct task_struct *p, int prio)
  3688. {
  3689. unsigned long flags;
  3690. int oldprio, on_rq, running;
  3691. struct rq *rq;
  3692. const struct sched_class *prev_class;
  3693. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3694. rq = task_rq_lock(p, &flags);
  3695. oldprio = p->prio;
  3696. prev_class = p->sched_class;
  3697. on_rq = p->se.on_rq;
  3698. running = task_current(rq, p);
  3699. if (on_rq)
  3700. dequeue_task(rq, p, 0);
  3701. if (running)
  3702. p->sched_class->put_prev_task(rq, p);
  3703. if (rt_prio(prio))
  3704. p->sched_class = &rt_sched_class;
  3705. else
  3706. p->sched_class = &fair_sched_class;
  3707. p->prio = prio;
  3708. if (running)
  3709. p->sched_class->set_curr_task(rq);
  3710. if (on_rq) {
  3711. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3712. check_class_changed(rq, p, prev_class, oldprio, running);
  3713. }
  3714. task_rq_unlock(rq, &flags);
  3715. }
  3716. #endif
  3717. void set_user_nice(struct task_struct *p, long nice)
  3718. {
  3719. int old_prio, delta, on_rq;
  3720. unsigned long flags;
  3721. struct rq *rq;
  3722. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3723. return;
  3724. /*
  3725. * We have to be careful, if called from sys_setpriority(),
  3726. * the task might be in the middle of scheduling on another CPU.
  3727. */
  3728. rq = task_rq_lock(p, &flags);
  3729. /*
  3730. * The RT priorities are set via sched_setscheduler(), but we still
  3731. * allow the 'normal' nice value to be set - but as expected
  3732. * it wont have any effect on scheduling until the task is
  3733. * SCHED_FIFO/SCHED_RR:
  3734. */
  3735. if (task_has_rt_policy(p)) {
  3736. p->static_prio = NICE_TO_PRIO(nice);
  3737. goto out_unlock;
  3738. }
  3739. on_rq = p->se.on_rq;
  3740. if (on_rq)
  3741. dequeue_task(rq, p, 0);
  3742. p->static_prio = NICE_TO_PRIO(nice);
  3743. set_load_weight(p);
  3744. old_prio = p->prio;
  3745. p->prio = effective_prio(p);
  3746. delta = p->prio - old_prio;
  3747. if (on_rq) {
  3748. enqueue_task(rq, p, 0);
  3749. /*
  3750. * If the task increased its priority or is running and
  3751. * lowered its priority, then reschedule its CPU:
  3752. */
  3753. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3754. resched_task(rq->curr);
  3755. }
  3756. out_unlock:
  3757. task_rq_unlock(rq, &flags);
  3758. }
  3759. EXPORT_SYMBOL(set_user_nice);
  3760. /*
  3761. * can_nice - check if a task can reduce its nice value
  3762. * @p: task
  3763. * @nice: nice value
  3764. */
  3765. int can_nice(const struct task_struct *p, const int nice)
  3766. {
  3767. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3768. int nice_rlim = 20 - nice;
  3769. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3770. capable(CAP_SYS_NICE));
  3771. }
  3772. #ifdef __ARCH_WANT_SYS_NICE
  3773. /*
  3774. * sys_nice - change the priority of the current process.
  3775. * @increment: priority increment
  3776. *
  3777. * sys_setpriority is a more generic, but much slower function that
  3778. * does similar things.
  3779. */
  3780. SYSCALL_DEFINE1(nice, int, increment)
  3781. {
  3782. long nice, retval;
  3783. /*
  3784. * Setpriority might change our priority at the same moment.
  3785. * We don't have to worry. Conceptually one call occurs first
  3786. * and we have a single winner.
  3787. */
  3788. if (increment < -40)
  3789. increment = -40;
  3790. if (increment > 40)
  3791. increment = 40;
  3792. nice = TASK_NICE(current) + increment;
  3793. if (nice < -20)
  3794. nice = -20;
  3795. if (nice > 19)
  3796. nice = 19;
  3797. if (increment < 0 && !can_nice(current, nice))
  3798. return -EPERM;
  3799. retval = security_task_setnice(current, nice);
  3800. if (retval)
  3801. return retval;
  3802. set_user_nice(current, nice);
  3803. return 0;
  3804. }
  3805. #endif
  3806. /**
  3807. * task_prio - return the priority value of a given task.
  3808. * @p: the task in question.
  3809. *
  3810. * This is the priority value as seen by users in /proc.
  3811. * RT tasks are offset by -200. Normal tasks are centered
  3812. * around 0, value goes from -16 to +15.
  3813. */
  3814. int task_prio(const struct task_struct *p)
  3815. {
  3816. return p->prio - MAX_RT_PRIO;
  3817. }
  3818. /**
  3819. * task_nice - return the nice value of a given task.
  3820. * @p: the task in question.
  3821. */
  3822. int task_nice(const struct task_struct *p)
  3823. {
  3824. return TASK_NICE(p);
  3825. }
  3826. EXPORT_SYMBOL(task_nice);
  3827. /**
  3828. * idle_cpu - is a given cpu idle currently?
  3829. * @cpu: the processor in question.
  3830. */
  3831. int idle_cpu(int cpu)
  3832. {
  3833. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3834. }
  3835. /**
  3836. * idle_task - return the idle task for a given cpu.
  3837. * @cpu: the processor in question.
  3838. */
  3839. struct task_struct *idle_task(int cpu)
  3840. {
  3841. return cpu_rq(cpu)->idle;
  3842. }
  3843. /**
  3844. * find_process_by_pid - find a process with a matching PID value.
  3845. * @pid: the pid in question.
  3846. */
  3847. static struct task_struct *find_process_by_pid(pid_t pid)
  3848. {
  3849. return pid ? find_task_by_vpid(pid) : current;
  3850. }
  3851. /* Actually do priority change: must hold rq lock. */
  3852. static void
  3853. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3854. {
  3855. BUG_ON(p->se.on_rq);
  3856. p->policy = policy;
  3857. p->rt_priority = prio;
  3858. p->normal_prio = normal_prio(p);
  3859. /* we are holding p->pi_lock already */
  3860. p->prio = rt_mutex_getprio(p);
  3861. if (rt_prio(p->prio))
  3862. p->sched_class = &rt_sched_class;
  3863. else
  3864. p->sched_class = &fair_sched_class;
  3865. set_load_weight(p);
  3866. }
  3867. /*
  3868. * check the target process has a UID that matches the current process's
  3869. */
  3870. static bool check_same_owner(struct task_struct *p)
  3871. {
  3872. const struct cred *cred = current_cred(), *pcred;
  3873. bool match;
  3874. rcu_read_lock();
  3875. pcred = __task_cred(p);
  3876. match = (cred->euid == pcred->euid ||
  3877. cred->euid == pcred->uid);
  3878. rcu_read_unlock();
  3879. return match;
  3880. }
  3881. static int __sched_setscheduler(struct task_struct *p, int policy,
  3882. struct sched_param *param, bool user)
  3883. {
  3884. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3885. unsigned long flags;
  3886. const struct sched_class *prev_class;
  3887. struct rq *rq;
  3888. int reset_on_fork;
  3889. /* may grab non-irq protected spin_locks */
  3890. BUG_ON(in_interrupt());
  3891. recheck:
  3892. /* double check policy once rq lock held */
  3893. if (policy < 0) {
  3894. reset_on_fork = p->sched_reset_on_fork;
  3895. policy = oldpolicy = p->policy;
  3896. } else {
  3897. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3898. policy &= ~SCHED_RESET_ON_FORK;
  3899. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3900. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3901. policy != SCHED_IDLE)
  3902. return -EINVAL;
  3903. }
  3904. /*
  3905. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3906. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3907. * SCHED_BATCH and SCHED_IDLE is 0.
  3908. */
  3909. if (param->sched_priority < 0 ||
  3910. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3911. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3912. return -EINVAL;
  3913. if (rt_policy(policy) != (param->sched_priority != 0))
  3914. return -EINVAL;
  3915. /*
  3916. * Allow unprivileged RT tasks to decrease priority:
  3917. */
  3918. if (user && !capable(CAP_SYS_NICE)) {
  3919. if (rt_policy(policy)) {
  3920. unsigned long rlim_rtprio =
  3921. task_rlimit(p, RLIMIT_RTPRIO);
  3922. /* can't set/change the rt policy */
  3923. if (policy != p->policy && !rlim_rtprio)
  3924. return -EPERM;
  3925. /* can't increase priority */
  3926. if (param->sched_priority > p->rt_priority &&
  3927. param->sched_priority > rlim_rtprio)
  3928. return -EPERM;
  3929. }
  3930. /*
  3931. * Like positive nice levels, dont allow tasks to
  3932. * move out of SCHED_IDLE either:
  3933. */
  3934. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3935. return -EPERM;
  3936. /* can't change other user's priorities */
  3937. if (!check_same_owner(p))
  3938. return -EPERM;
  3939. /* Normal users shall not reset the sched_reset_on_fork flag */
  3940. if (p->sched_reset_on_fork && !reset_on_fork)
  3941. return -EPERM;
  3942. }
  3943. if (user) {
  3944. retval = security_task_setscheduler(p, policy, param);
  3945. if (retval)
  3946. return retval;
  3947. }
  3948. /*
  3949. * make sure no PI-waiters arrive (or leave) while we are
  3950. * changing the priority of the task:
  3951. */
  3952. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3953. /*
  3954. * To be able to change p->policy safely, the apropriate
  3955. * runqueue lock must be held.
  3956. */
  3957. rq = __task_rq_lock(p);
  3958. #ifdef CONFIG_RT_GROUP_SCHED
  3959. if (user) {
  3960. /*
  3961. * Do not allow realtime tasks into groups that have no runtime
  3962. * assigned.
  3963. */
  3964. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3965. task_group(p)->rt_bandwidth.rt_runtime == 0) {
  3966. __task_rq_unlock(rq);
  3967. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3968. return -EPERM;
  3969. }
  3970. }
  3971. #endif
  3972. /* recheck policy now with rq lock held */
  3973. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3974. policy = oldpolicy = -1;
  3975. __task_rq_unlock(rq);
  3976. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3977. goto recheck;
  3978. }
  3979. on_rq = p->se.on_rq;
  3980. running = task_current(rq, p);
  3981. if (on_rq)
  3982. deactivate_task(rq, p, 0);
  3983. if (running)
  3984. p->sched_class->put_prev_task(rq, p);
  3985. p->sched_reset_on_fork = reset_on_fork;
  3986. oldprio = p->prio;
  3987. prev_class = p->sched_class;
  3988. __setscheduler(rq, p, policy, param->sched_priority);
  3989. if (running)
  3990. p->sched_class->set_curr_task(rq);
  3991. if (on_rq) {
  3992. activate_task(rq, p, 0);
  3993. check_class_changed(rq, p, prev_class, oldprio, running);
  3994. }
  3995. __task_rq_unlock(rq);
  3996. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3997. rt_mutex_adjust_pi(p);
  3998. return 0;
  3999. }
  4000. /**
  4001. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4002. * @p: the task in question.
  4003. * @policy: new policy.
  4004. * @param: structure containing the new RT priority.
  4005. *
  4006. * NOTE that the task may be already dead.
  4007. */
  4008. int sched_setscheduler(struct task_struct *p, int policy,
  4009. struct sched_param *param)
  4010. {
  4011. return __sched_setscheduler(p, policy, param, true);
  4012. }
  4013. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4014. /**
  4015. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4016. * @p: the task in question.
  4017. * @policy: new policy.
  4018. * @param: structure containing the new RT priority.
  4019. *
  4020. * Just like sched_setscheduler, only don't bother checking if the
  4021. * current context has permission. For example, this is needed in
  4022. * stop_machine(): we create temporary high priority worker threads,
  4023. * but our caller might not have that capability.
  4024. */
  4025. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4026. struct sched_param *param)
  4027. {
  4028. return __sched_setscheduler(p, policy, param, false);
  4029. }
  4030. static int
  4031. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4032. {
  4033. struct sched_param lparam;
  4034. struct task_struct *p;
  4035. int retval;
  4036. if (!param || pid < 0)
  4037. return -EINVAL;
  4038. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4039. return -EFAULT;
  4040. rcu_read_lock();
  4041. retval = -ESRCH;
  4042. p = find_process_by_pid(pid);
  4043. if (p != NULL)
  4044. retval = sched_setscheduler(p, policy, &lparam);
  4045. rcu_read_unlock();
  4046. return retval;
  4047. }
  4048. /**
  4049. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4050. * @pid: the pid in question.
  4051. * @policy: new policy.
  4052. * @param: structure containing the new RT priority.
  4053. */
  4054. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4055. struct sched_param __user *, param)
  4056. {
  4057. /* negative values for policy are not valid */
  4058. if (policy < 0)
  4059. return -EINVAL;
  4060. return do_sched_setscheduler(pid, policy, param);
  4061. }
  4062. /**
  4063. * sys_sched_setparam - set/change the RT priority of a thread
  4064. * @pid: the pid in question.
  4065. * @param: structure containing the new RT priority.
  4066. */
  4067. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4068. {
  4069. return do_sched_setscheduler(pid, -1, param);
  4070. }
  4071. /**
  4072. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4073. * @pid: the pid in question.
  4074. */
  4075. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4076. {
  4077. struct task_struct *p;
  4078. int retval;
  4079. if (pid < 0)
  4080. return -EINVAL;
  4081. retval = -ESRCH;
  4082. rcu_read_lock();
  4083. p = find_process_by_pid(pid);
  4084. if (p) {
  4085. retval = security_task_getscheduler(p);
  4086. if (!retval)
  4087. retval = p->policy
  4088. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4089. }
  4090. rcu_read_unlock();
  4091. return retval;
  4092. }
  4093. /**
  4094. * sys_sched_getparam - get the RT priority of a thread
  4095. * @pid: the pid in question.
  4096. * @param: structure containing the RT priority.
  4097. */
  4098. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4099. {
  4100. struct sched_param lp;
  4101. struct task_struct *p;
  4102. int retval;
  4103. if (!param || pid < 0)
  4104. return -EINVAL;
  4105. rcu_read_lock();
  4106. p = find_process_by_pid(pid);
  4107. retval = -ESRCH;
  4108. if (!p)
  4109. goto out_unlock;
  4110. retval = security_task_getscheduler(p);
  4111. if (retval)
  4112. goto out_unlock;
  4113. lp.sched_priority = p->rt_priority;
  4114. rcu_read_unlock();
  4115. /*
  4116. * This one might sleep, we cannot do it with a spinlock held ...
  4117. */
  4118. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4119. return retval;
  4120. out_unlock:
  4121. rcu_read_unlock();
  4122. return retval;
  4123. }
  4124. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4125. {
  4126. cpumask_var_t cpus_allowed, new_mask;
  4127. struct task_struct *p;
  4128. int retval;
  4129. get_online_cpus();
  4130. rcu_read_lock();
  4131. p = find_process_by_pid(pid);
  4132. if (!p) {
  4133. rcu_read_unlock();
  4134. put_online_cpus();
  4135. return -ESRCH;
  4136. }
  4137. /* Prevent p going away */
  4138. get_task_struct(p);
  4139. rcu_read_unlock();
  4140. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4141. retval = -ENOMEM;
  4142. goto out_put_task;
  4143. }
  4144. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4145. retval = -ENOMEM;
  4146. goto out_free_cpus_allowed;
  4147. }
  4148. retval = -EPERM;
  4149. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4150. goto out_unlock;
  4151. retval = security_task_setscheduler(p, 0, NULL);
  4152. if (retval)
  4153. goto out_unlock;
  4154. cpuset_cpus_allowed(p, cpus_allowed);
  4155. cpumask_and(new_mask, in_mask, cpus_allowed);
  4156. again:
  4157. retval = set_cpus_allowed_ptr(p, new_mask);
  4158. if (!retval) {
  4159. cpuset_cpus_allowed(p, cpus_allowed);
  4160. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4161. /*
  4162. * We must have raced with a concurrent cpuset
  4163. * update. Just reset the cpus_allowed to the
  4164. * cpuset's cpus_allowed
  4165. */
  4166. cpumask_copy(new_mask, cpus_allowed);
  4167. goto again;
  4168. }
  4169. }
  4170. out_unlock:
  4171. free_cpumask_var(new_mask);
  4172. out_free_cpus_allowed:
  4173. free_cpumask_var(cpus_allowed);
  4174. out_put_task:
  4175. put_task_struct(p);
  4176. put_online_cpus();
  4177. return retval;
  4178. }
  4179. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4180. struct cpumask *new_mask)
  4181. {
  4182. if (len < cpumask_size())
  4183. cpumask_clear(new_mask);
  4184. else if (len > cpumask_size())
  4185. len = cpumask_size();
  4186. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4187. }
  4188. /**
  4189. * sys_sched_setaffinity - set the cpu affinity of a process
  4190. * @pid: pid of the process
  4191. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4192. * @user_mask_ptr: user-space pointer to the new cpu mask
  4193. */
  4194. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4195. unsigned long __user *, user_mask_ptr)
  4196. {
  4197. cpumask_var_t new_mask;
  4198. int retval;
  4199. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4200. return -ENOMEM;
  4201. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4202. if (retval == 0)
  4203. retval = sched_setaffinity(pid, new_mask);
  4204. free_cpumask_var(new_mask);
  4205. return retval;
  4206. }
  4207. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4208. {
  4209. struct task_struct *p;
  4210. unsigned long flags;
  4211. struct rq *rq;
  4212. int retval;
  4213. get_online_cpus();
  4214. rcu_read_lock();
  4215. retval = -ESRCH;
  4216. p = find_process_by_pid(pid);
  4217. if (!p)
  4218. goto out_unlock;
  4219. retval = security_task_getscheduler(p);
  4220. if (retval)
  4221. goto out_unlock;
  4222. rq = task_rq_lock(p, &flags);
  4223. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4224. task_rq_unlock(rq, &flags);
  4225. out_unlock:
  4226. rcu_read_unlock();
  4227. put_online_cpus();
  4228. return retval;
  4229. }
  4230. /**
  4231. * sys_sched_getaffinity - get the cpu affinity of a process
  4232. * @pid: pid of the process
  4233. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4234. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4235. */
  4236. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4237. unsigned long __user *, user_mask_ptr)
  4238. {
  4239. int ret;
  4240. cpumask_var_t mask;
  4241. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4242. return -EINVAL;
  4243. if (len & (sizeof(unsigned long)-1))
  4244. return -EINVAL;
  4245. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4246. return -ENOMEM;
  4247. ret = sched_getaffinity(pid, mask);
  4248. if (ret == 0) {
  4249. size_t retlen = min_t(size_t, len, cpumask_size());
  4250. if (copy_to_user(user_mask_ptr, mask, retlen))
  4251. ret = -EFAULT;
  4252. else
  4253. ret = retlen;
  4254. }
  4255. free_cpumask_var(mask);
  4256. return ret;
  4257. }
  4258. /**
  4259. * sys_sched_yield - yield the current processor to other threads.
  4260. *
  4261. * This function yields the current CPU to other tasks. If there are no
  4262. * other threads running on this CPU then this function will return.
  4263. */
  4264. SYSCALL_DEFINE0(sched_yield)
  4265. {
  4266. struct rq *rq = this_rq_lock();
  4267. schedstat_inc(rq, yld_count);
  4268. current->sched_class->yield_task(rq);
  4269. /*
  4270. * Since we are going to call schedule() anyway, there's
  4271. * no need to preempt or enable interrupts:
  4272. */
  4273. __release(rq->lock);
  4274. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4275. do_raw_spin_unlock(&rq->lock);
  4276. preempt_enable_no_resched();
  4277. schedule();
  4278. return 0;
  4279. }
  4280. static inline int should_resched(void)
  4281. {
  4282. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4283. }
  4284. static void __cond_resched(void)
  4285. {
  4286. add_preempt_count(PREEMPT_ACTIVE);
  4287. schedule();
  4288. sub_preempt_count(PREEMPT_ACTIVE);
  4289. }
  4290. int __sched _cond_resched(void)
  4291. {
  4292. if (should_resched()) {
  4293. __cond_resched();
  4294. return 1;
  4295. }
  4296. return 0;
  4297. }
  4298. EXPORT_SYMBOL(_cond_resched);
  4299. /*
  4300. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4301. * call schedule, and on return reacquire the lock.
  4302. *
  4303. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4304. * operations here to prevent schedule() from being called twice (once via
  4305. * spin_unlock(), once by hand).
  4306. */
  4307. int __cond_resched_lock(spinlock_t *lock)
  4308. {
  4309. int resched = should_resched();
  4310. int ret = 0;
  4311. lockdep_assert_held(lock);
  4312. if (spin_needbreak(lock) || resched) {
  4313. spin_unlock(lock);
  4314. if (resched)
  4315. __cond_resched();
  4316. else
  4317. cpu_relax();
  4318. ret = 1;
  4319. spin_lock(lock);
  4320. }
  4321. return ret;
  4322. }
  4323. EXPORT_SYMBOL(__cond_resched_lock);
  4324. int __sched __cond_resched_softirq(void)
  4325. {
  4326. BUG_ON(!in_softirq());
  4327. if (should_resched()) {
  4328. local_bh_enable();
  4329. __cond_resched();
  4330. local_bh_disable();
  4331. return 1;
  4332. }
  4333. return 0;
  4334. }
  4335. EXPORT_SYMBOL(__cond_resched_softirq);
  4336. /**
  4337. * yield - yield the current processor to other threads.
  4338. *
  4339. * This is a shortcut for kernel-space yielding - it marks the
  4340. * thread runnable and calls sys_sched_yield().
  4341. */
  4342. void __sched yield(void)
  4343. {
  4344. set_current_state(TASK_RUNNING);
  4345. sys_sched_yield();
  4346. }
  4347. EXPORT_SYMBOL(yield);
  4348. /*
  4349. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4350. * that process accounting knows that this is a task in IO wait state.
  4351. */
  4352. void __sched io_schedule(void)
  4353. {
  4354. struct rq *rq = raw_rq();
  4355. delayacct_blkio_start();
  4356. atomic_inc(&rq->nr_iowait);
  4357. current->in_iowait = 1;
  4358. schedule();
  4359. current->in_iowait = 0;
  4360. atomic_dec(&rq->nr_iowait);
  4361. delayacct_blkio_end();
  4362. }
  4363. EXPORT_SYMBOL(io_schedule);
  4364. long __sched io_schedule_timeout(long timeout)
  4365. {
  4366. struct rq *rq = raw_rq();
  4367. long ret;
  4368. delayacct_blkio_start();
  4369. atomic_inc(&rq->nr_iowait);
  4370. current->in_iowait = 1;
  4371. ret = schedule_timeout(timeout);
  4372. current->in_iowait = 0;
  4373. atomic_dec(&rq->nr_iowait);
  4374. delayacct_blkio_end();
  4375. return ret;
  4376. }
  4377. /**
  4378. * sys_sched_get_priority_max - return maximum RT priority.
  4379. * @policy: scheduling class.
  4380. *
  4381. * this syscall returns the maximum rt_priority that can be used
  4382. * by a given scheduling class.
  4383. */
  4384. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4385. {
  4386. int ret = -EINVAL;
  4387. switch (policy) {
  4388. case SCHED_FIFO:
  4389. case SCHED_RR:
  4390. ret = MAX_USER_RT_PRIO-1;
  4391. break;
  4392. case SCHED_NORMAL:
  4393. case SCHED_BATCH:
  4394. case SCHED_IDLE:
  4395. ret = 0;
  4396. break;
  4397. }
  4398. return ret;
  4399. }
  4400. /**
  4401. * sys_sched_get_priority_min - return minimum RT priority.
  4402. * @policy: scheduling class.
  4403. *
  4404. * this syscall returns the minimum rt_priority that can be used
  4405. * by a given scheduling class.
  4406. */
  4407. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4408. {
  4409. int ret = -EINVAL;
  4410. switch (policy) {
  4411. case SCHED_FIFO:
  4412. case SCHED_RR:
  4413. ret = 1;
  4414. break;
  4415. case SCHED_NORMAL:
  4416. case SCHED_BATCH:
  4417. case SCHED_IDLE:
  4418. ret = 0;
  4419. }
  4420. return ret;
  4421. }
  4422. /**
  4423. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4424. * @pid: pid of the process.
  4425. * @interval: userspace pointer to the timeslice value.
  4426. *
  4427. * this syscall writes the default timeslice value of a given process
  4428. * into the user-space timespec buffer. A value of '0' means infinity.
  4429. */
  4430. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4431. struct timespec __user *, interval)
  4432. {
  4433. struct task_struct *p;
  4434. unsigned int time_slice;
  4435. unsigned long flags;
  4436. struct rq *rq;
  4437. int retval;
  4438. struct timespec t;
  4439. if (pid < 0)
  4440. return -EINVAL;
  4441. retval = -ESRCH;
  4442. rcu_read_lock();
  4443. p = find_process_by_pid(pid);
  4444. if (!p)
  4445. goto out_unlock;
  4446. retval = security_task_getscheduler(p);
  4447. if (retval)
  4448. goto out_unlock;
  4449. rq = task_rq_lock(p, &flags);
  4450. time_slice = p->sched_class->get_rr_interval(rq, p);
  4451. task_rq_unlock(rq, &flags);
  4452. rcu_read_unlock();
  4453. jiffies_to_timespec(time_slice, &t);
  4454. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4455. return retval;
  4456. out_unlock:
  4457. rcu_read_unlock();
  4458. return retval;
  4459. }
  4460. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4461. void sched_show_task(struct task_struct *p)
  4462. {
  4463. unsigned long free = 0;
  4464. unsigned state;
  4465. state = p->state ? __ffs(p->state) + 1 : 0;
  4466. printk(KERN_INFO "%-13.13s %c", p->comm,
  4467. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4468. #if BITS_PER_LONG == 32
  4469. if (state == TASK_RUNNING)
  4470. printk(KERN_CONT " running ");
  4471. else
  4472. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4473. #else
  4474. if (state == TASK_RUNNING)
  4475. printk(KERN_CONT " running task ");
  4476. else
  4477. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4478. #endif
  4479. #ifdef CONFIG_DEBUG_STACK_USAGE
  4480. free = stack_not_used(p);
  4481. #endif
  4482. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4483. task_pid_nr(p), task_pid_nr(p->real_parent),
  4484. (unsigned long)task_thread_info(p)->flags);
  4485. show_stack(p, NULL);
  4486. }
  4487. void show_state_filter(unsigned long state_filter)
  4488. {
  4489. struct task_struct *g, *p;
  4490. #if BITS_PER_LONG == 32
  4491. printk(KERN_INFO
  4492. " task PC stack pid father\n");
  4493. #else
  4494. printk(KERN_INFO
  4495. " task PC stack pid father\n");
  4496. #endif
  4497. read_lock(&tasklist_lock);
  4498. do_each_thread(g, p) {
  4499. /*
  4500. * reset the NMI-timeout, listing all files on a slow
  4501. * console might take alot of time:
  4502. */
  4503. touch_nmi_watchdog();
  4504. if (!state_filter || (p->state & state_filter))
  4505. sched_show_task(p);
  4506. } while_each_thread(g, p);
  4507. touch_all_softlockup_watchdogs();
  4508. #ifdef CONFIG_SCHED_DEBUG
  4509. sysrq_sched_debug_show();
  4510. #endif
  4511. read_unlock(&tasklist_lock);
  4512. /*
  4513. * Only show locks if all tasks are dumped:
  4514. */
  4515. if (!state_filter)
  4516. debug_show_all_locks();
  4517. }
  4518. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4519. {
  4520. idle->sched_class = &idle_sched_class;
  4521. }
  4522. /**
  4523. * init_idle - set up an idle thread for a given CPU
  4524. * @idle: task in question
  4525. * @cpu: cpu the idle task belongs to
  4526. *
  4527. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4528. * flag, to make booting more robust.
  4529. */
  4530. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4531. {
  4532. struct rq *rq = cpu_rq(cpu);
  4533. unsigned long flags;
  4534. raw_spin_lock_irqsave(&rq->lock, flags);
  4535. __sched_fork(idle);
  4536. idle->state = TASK_RUNNING;
  4537. idle->se.exec_start = sched_clock();
  4538. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4539. __set_task_cpu(idle, cpu);
  4540. rq->curr = rq->idle = idle;
  4541. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4542. idle->oncpu = 1;
  4543. #endif
  4544. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4545. /* Set the preempt count _outside_ the spinlocks! */
  4546. #if defined(CONFIG_PREEMPT)
  4547. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4548. #else
  4549. task_thread_info(idle)->preempt_count = 0;
  4550. #endif
  4551. /*
  4552. * The idle tasks have their own, simple scheduling class:
  4553. */
  4554. idle->sched_class = &idle_sched_class;
  4555. ftrace_graph_init_task(idle);
  4556. }
  4557. /*
  4558. * In a system that switches off the HZ timer nohz_cpu_mask
  4559. * indicates which cpus entered this state. This is used
  4560. * in the rcu update to wait only for active cpus. For system
  4561. * which do not switch off the HZ timer nohz_cpu_mask should
  4562. * always be CPU_BITS_NONE.
  4563. */
  4564. cpumask_var_t nohz_cpu_mask;
  4565. /*
  4566. * Increase the granularity value when there are more CPUs,
  4567. * because with more CPUs the 'effective latency' as visible
  4568. * to users decreases. But the relationship is not linear,
  4569. * so pick a second-best guess by going with the log2 of the
  4570. * number of CPUs.
  4571. *
  4572. * This idea comes from the SD scheduler of Con Kolivas:
  4573. */
  4574. static int get_update_sysctl_factor(void)
  4575. {
  4576. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4577. unsigned int factor;
  4578. switch (sysctl_sched_tunable_scaling) {
  4579. case SCHED_TUNABLESCALING_NONE:
  4580. factor = 1;
  4581. break;
  4582. case SCHED_TUNABLESCALING_LINEAR:
  4583. factor = cpus;
  4584. break;
  4585. case SCHED_TUNABLESCALING_LOG:
  4586. default:
  4587. factor = 1 + ilog2(cpus);
  4588. break;
  4589. }
  4590. return factor;
  4591. }
  4592. static void update_sysctl(void)
  4593. {
  4594. unsigned int factor = get_update_sysctl_factor();
  4595. #define SET_SYSCTL(name) \
  4596. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4597. SET_SYSCTL(sched_min_granularity);
  4598. SET_SYSCTL(sched_latency);
  4599. SET_SYSCTL(sched_wakeup_granularity);
  4600. SET_SYSCTL(sched_shares_ratelimit);
  4601. #undef SET_SYSCTL
  4602. }
  4603. static inline void sched_init_granularity(void)
  4604. {
  4605. update_sysctl();
  4606. }
  4607. #ifdef CONFIG_SMP
  4608. /*
  4609. * This is how migration works:
  4610. *
  4611. * 1) we invoke migration_cpu_stop() on the target CPU using
  4612. * stop_one_cpu().
  4613. * 2) stopper starts to run (implicitly forcing the migrated thread
  4614. * off the CPU)
  4615. * 3) it checks whether the migrated task is still in the wrong runqueue.
  4616. * 4) if it's in the wrong runqueue then the migration thread removes
  4617. * it and puts it into the right queue.
  4618. * 5) stopper completes and stop_one_cpu() returns and the migration
  4619. * is done.
  4620. */
  4621. /*
  4622. * Change a given task's CPU affinity. Migrate the thread to a
  4623. * proper CPU and schedule it away if the CPU it's executing on
  4624. * is removed from the allowed bitmask.
  4625. *
  4626. * NOTE: the caller must have a valid reference to the task, the
  4627. * task must not exit() & deallocate itself prematurely. The
  4628. * call is not atomic; no spinlocks may be held.
  4629. */
  4630. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4631. {
  4632. unsigned long flags;
  4633. struct rq *rq;
  4634. unsigned int dest_cpu;
  4635. int ret = 0;
  4636. /*
  4637. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4638. * drop the rq->lock and still rely on ->cpus_allowed.
  4639. */
  4640. again:
  4641. while (task_is_waking(p))
  4642. cpu_relax();
  4643. rq = task_rq_lock(p, &flags);
  4644. if (task_is_waking(p)) {
  4645. task_rq_unlock(rq, &flags);
  4646. goto again;
  4647. }
  4648. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4649. ret = -EINVAL;
  4650. goto out;
  4651. }
  4652. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4653. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4654. ret = -EINVAL;
  4655. goto out;
  4656. }
  4657. if (p->sched_class->set_cpus_allowed)
  4658. p->sched_class->set_cpus_allowed(p, new_mask);
  4659. else {
  4660. cpumask_copy(&p->cpus_allowed, new_mask);
  4661. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4662. }
  4663. /* Can the task run on the task's current CPU? If so, we're done */
  4664. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4665. goto out;
  4666. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  4667. if (migrate_task(p, dest_cpu)) {
  4668. struct migration_arg arg = { p, dest_cpu };
  4669. /* Need help from migration thread: drop lock and wait. */
  4670. task_rq_unlock(rq, &flags);
  4671. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  4672. tlb_migrate_finish(p->mm);
  4673. return 0;
  4674. }
  4675. out:
  4676. task_rq_unlock(rq, &flags);
  4677. return ret;
  4678. }
  4679. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4680. /*
  4681. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4682. * this because either it can't run here any more (set_cpus_allowed()
  4683. * away from this CPU, or CPU going down), or because we're
  4684. * attempting to rebalance this task on exec (sched_exec).
  4685. *
  4686. * So we race with normal scheduler movements, but that's OK, as long
  4687. * as the task is no longer on this CPU.
  4688. *
  4689. * Returns non-zero if task was successfully migrated.
  4690. */
  4691. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4692. {
  4693. struct rq *rq_dest, *rq_src;
  4694. int ret = 0;
  4695. if (unlikely(!cpu_active(dest_cpu)))
  4696. return ret;
  4697. rq_src = cpu_rq(src_cpu);
  4698. rq_dest = cpu_rq(dest_cpu);
  4699. double_rq_lock(rq_src, rq_dest);
  4700. /* Already moved. */
  4701. if (task_cpu(p) != src_cpu)
  4702. goto done;
  4703. /* Affinity changed (again). */
  4704. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4705. goto fail;
  4706. /*
  4707. * If we're not on a rq, the next wake-up will ensure we're
  4708. * placed properly.
  4709. */
  4710. if (p->se.on_rq) {
  4711. deactivate_task(rq_src, p, 0);
  4712. set_task_cpu(p, dest_cpu);
  4713. activate_task(rq_dest, p, 0);
  4714. check_preempt_curr(rq_dest, p, 0);
  4715. }
  4716. done:
  4717. ret = 1;
  4718. fail:
  4719. double_rq_unlock(rq_src, rq_dest);
  4720. return ret;
  4721. }
  4722. /*
  4723. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4724. * and performs thread migration by bumping thread off CPU then
  4725. * 'pushing' onto another runqueue.
  4726. */
  4727. static int migration_cpu_stop(void *data)
  4728. {
  4729. struct migration_arg *arg = data;
  4730. /*
  4731. * The original target cpu might have gone down and we might
  4732. * be on another cpu but it doesn't matter.
  4733. */
  4734. local_irq_disable();
  4735. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4736. local_irq_enable();
  4737. return 0;
  4738. }
  4739. #ifdef CONFIG_HOTPLUG_CPU
  4740. /*
  4741. * Figure out where task on dead CPU should go, use force if necessary.
  4742. */
  4743. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4744. {
  4745. struct rq *rq = cpu_rq(dead_cpu);
  4746. int needs_cpu, uninitialized_var(dest_cpu);
  4747. unsigned long flags;
  4748. local_irq_save(flags);
  4749. raw_spin_lock(&rq->lock);
  4750. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4751. if (needs_cpu)
  4752. dest_cpu = select_fallback_rq(dead_cpu, p);
  4753. raw_spin_unlock(&rq->lock);
  4754. /*
  4755. * It can only fail if we race with set_cpus_allowed(),
  4756. * in the racer should migrate the task anyway.
  4757. */
  4758. if (needs_cpu)
  4759. __migrate_task(p, dead_cpu, dest_cpu);
  4760. local_irq_restore(flags);
  4761. }
  4762. /*
  4763. * While a dead CPU has no uninterruptible tasks queued at this point,
  4764. * it might still have a nonzero ->nr_uninterruptible counter, because
  4765. * for performance reasons the counter is not stricly tracking tasks to
  4766. * their home CPUs. So we just add the counter to another CPU's counter,
  4767. * to keep the global sum constant after CPU-down:
  4768. */
  4769. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4770. {
  4771. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4772. unsigned long flags;
  4773. local_irq_save(flags);
  4774. double_rq_lock(rq_src, rq_dest);
  4775. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4776. rq_src->nr_uninterruptible = 0;
  4777. double_rq_unlock(rq_src, rq_dest);
  4778. local_irq_restore(flags);
  4779. }
  4780. /* Run through task list and migrate tasks from the dead cpu. */
  4781. static void migrate_live_tasks(int src_cpu)
  4782. {
  4783. struct task_struct *p, *t;
  4784. read_lock(&tasklist_lock);
  4785. do_each_thread(t, p) {
  4786. if (p == current)
  4787. continue;
  4788. if (task_cpu(p) == src_cpu)
  4789. move_task_off_dead_cpu(src_cpu, p);
  4790. } while_each_thread(t, p);
  4791. read_unlock(&tasklist_lock);
  4792. }
  4793. /*
  4794. * Schedules idle task to be the next runnable task on current CPU.
  4795. * It does so by boosting its priority to highest possible.
  4796. * Used by CPU offline code.
  4797. */
  4798. void sched_idle_next(void)
  4799. {
  4800. int this_cpu = smp_processor_id();
  4801. struct rq *rq = cpu_rq(this_cpu);
  4802. struct task_struct *p = rq->idle;
  4803. unsigned long flags;
  4804. /* cpu has to be offline */
  4805. BUG_ON(cpu_online(this_cpu));
  4806. /*
  4807. * Strictly not necessary since rest of the CPUs are stopped by now
  4808. * and interrupts disabled on the current cpu.
  4809. */
  4810. raw_spin_lock_irqsave(&rq->lock, flags);
  4811. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4812. activate_task(rq, p, 0);
  4813. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4814. }
  4815. /*
  4816. * Ensures that the idle task is using init_mm right before its cpu goes
  4817. * offline.
  4818. */
  4819. void idle_task_exit(void)
  4820. {
  4821. struct mm_struct *mm = current->active_mm;
  4822. BUG_ON(cpu_online(smp_processor_id()));
  4823. if (mm != &init_mm)
  4824. switch_mm(mm, &init_mm, current);
  4825. mmdrop(mm);
  4826. }
  4827. /* called under rq->lock with disabled interrupts */
  4828. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4829. {
  4830. struct rq *rq = cpu_rq(dead_cpu);
  4831. /* Must be exiting, otherwise would be on tasklist. */
  4832. BUG_ON(!p->exit_state);
  4833. /* Cannot have done final schedule yet: would have vanished. */
  4834. BUG_ON(p->state == TASK_DEAD);
  4835. get_task_struct(p);
  4836. /*
  4837. * Drop lock around migration; if someone else moves it,
  4838. * that's OK. No task can be added to this CPU, so iteration is
  4839. * fine.
  4840. */
  4841. raw_spin_unlock_irq(&rq->lock);
  4842. move_task_off_dead_cpu(dead_cpu, p);
  4843. raw_spin_lock_irq(&rq->lock);
  4844. put_task_struct(p);
  4845. }
  4846. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4847. static void migrate_dead_tasks(unsigned int dead_cpu)
  4848. {
  4849. struct rq *rq = cpu_rq(dead_cpu);
  4850. struct task_struct *next;
  4851. for ( ; ; ) {
  4852. if (!rq->nr_running)
  4853. break;
  4854. next = pick_next_task(rq);
  4855. if (!next)
  4856. break;
  4857. next->sched_class->put_prev_task(rq, next);
  4858. migrate_dead(dead_cpu, next);
  4859. }
  4860. }
  4861. /*
  4862. * remove the tasks which were accounted by rq from calc_load_tasks.
  4863. */
  4864. static void calc_global_load_remove(struct rq *rq)
  4865. {
  4866. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4867. rq->calc_load_active = 0;
  4868. }
  4869. #endif /* CONFIG_HOTPLUG_CPU */
  4870. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4871. static struct ctl_table sd_ctl_dir[] = {
  4872. {
  4873. .procname = "sched_domain",
  4874. .mode = 0555,
  4875. },
  4876. {}
  4877. };
  4878. static struct ctl_table sd_ctl_root[] = {
  4879. {
  4880. .procname = "kernel",
  4881. .mode = 0555,
  4882. .child = sd_ctl_dir,
  4883. },
  4884. {}
  4885. };
  4886. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4887. {
  4888. struct ctl_table *entry =
  4889. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4890. return entry;
  4891. }
  4892. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4893. {
  4894. struct ctl_table *entry;
  4895. /*
  4896. * In the intermediate directories, both the child directory and
  4897. * procname are dynamically allocated and could fail but the mode
  4898. * will always be set. In the lowest directory the names are
  4899. * static strings and all have proc handlers.
  4900. */
  4901. for (entry = *tablep; entry->mode; entry++) {
  4902. if (entry->child)
  4903. sd_free_ctl_entry(&entry->child);
  4904. if (entry->proc_handler == NULL)
  4905. kfree(entry->procname);
  4906. }
  4907. kfree(*tablep);
  4908. *tablep = NULL;
  4909. }
  4910. static void
  4911. set_table_entry(struct ctl_table *entry,
  4912. const char *procname, void *data, int maxlen,
  4913. mode_t mode, proc_handler *proc_handler)
  4914. {
  4915. entry->procname = procname;
  4916. entry->data = data;
  4917. entry->maxlen = maxlen;
  4918. entry->mode = mode;
  4919. entry->proc_handler = proc_handler;
  4920. }
  4921. static struct ctl_table *
  4922. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4923. {
  4924. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4925. if (table == NULL)
  4926. return NULL;
  4927. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4928. sizeof(long), 0644, proc_doulongvec_minmax);
  4929. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4930. sizeof(long), 0644, proc_doulongvec_minmax);
  4931. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4932. sizeof(int), 0644, proc_dointvec_minmax);
  4933. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4934. sizeof(int), 0644, proc_dointvec_minmax);
  4935. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4936. sizeof(int), 0644, proc_dointvec_minmax);
  4937. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4938. sizeof(int), 0644, proc_dointvec_minmax);
  4939. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4940. sizeof(int), 0644, proc_dointvec_minmax);
  4941. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4942. sizeof(int), 0644, proc_dointvec_minmax);
  4943. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4944. sizeof(int), 0644, proc_dointvec_minmax);
  4945. set_table_entry(&table[9], "cache_nice_tries",
  4946. &sd->cache_nice_tries,
  4947. sizeof(int), 0644, proc_dointvec_minmax);
  4948. set_table_entry(&table[10], "flags", &sd->flags,
  4949. sizeof(int), 0644, proc_dointvec_minmax);
  4950. set_table_entry(&table[11], "name", sd->name,
  4951. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4952. /* &table[12] is terminator */
  4953. return table;
  4954. }
  4955. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4956. {
  4957. struct ctl_table *entry, *table;
  4958. struct sched_domain *sd;
  4959. int domain_num = 0, i;
  4960. char buf[32];
  4961. for_each_domain(cpu, sd)
  4962. domain_num++;
  4963. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4964. if (table == NULL)
  4965. return NULL;
  4966. i = 0;
  4967. for_each_domain(cpu, sd) {
  4968. snprintf(buf, 32, "domain%d", i);
  4969. entry->procname = kstrdup(buf, GFP_KERNEL);
  4970. entry->mode = 0555;
  4971. entry->child = sd_alloc_ctl_domain_table(sd);
  4972. entry++;
  4973. i++;
  4974. }
  4975. return table;
  4976. }
  4977. static struct ctl_table_header *sd_sysctl_header;
  4978. static void register_sched_domain_sysctl(void)
  4979. {
  4980. int i, cpu_num = num_possible_cpus();
  4981. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4982. char buf[32];
  4983. WARN_ON(sd_ctl_dir[0].child);
  4984. sd_ctl_dir[0].child = entry;
  4985. if (entry == NULL)
  4986. return;
  4987. for_each_possible_cpu(i) {
  4988. snprintf(buf, 32, "cpu%d", i);
  4989. entry->procname = kstrdup(buf, GFP_KERNEL);
  4990. entry->mode = 0555;
  4991. entry->child = sd_alloc_ctl_cpu_table(i);
  4992. entry++;
  4993. }
  4994. WARN_ON(sd_sysctl_header);
  4995. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4996. }
  4997. /* may be called multiple times per register */
  4998. static void unregister_sched_domain_sysctl(void)
  4999. {
  5000. if (sd_sysctl_header)
  5001. unregister_sysctl_table(sd_sysctl_header);
  5002. sd_sysctl_header = NULL;
  5003. if (sd_ctl_dir[0].child)
  5004. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5005. }
  5006. #else
  5007. static void register_sched_domain_sysctl(void)
  5008. {
  5009. }
  5010. static void unregister_sched_domain_sysctl(void)
  5011. {
  5012. }
  5013. #endif
  5014. static void set_rq_online(struct rq *rq)
  5015. {
  5016. if (!rq->online) {
  5017. const struct sched_class *class;
  5018. cpumask_set_cpu(rq->cpu, rq->rd->online);
  5019. rq->online = 1;
  5020. for_each_class(class) {
  5021. if (class->rq_online)
  5022. class->rq_online(rq);
  5023. }
  5024. }
  5025. }
  5026. static void set_rq_offline(struct rq *rq)
  5027. {
  5028. if (rq->online) {
  5029. const struct sched_class *class;
  5030. for_each_class(class) {
  5031. if (class->rq_offline)
  5032. class->rq_offline(rq);
  5033. }
  5034. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5035. rq->online = 0;
  5036. }
  5037. }
  5038. /*
  5039. * migration_call - callback that gets triggered when a CPU is added.
  5040. * Here we can start up the necessary migration thread for the new CPU.
  5041. */
  5042. static int __cpuinit
  5043. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5044. {
  5045. int cpu = (long)hcpu;
  5046. unsigned long flags;
  5047. struct rq *rq = cpu_rq(cpu);
  5048. switch (action) {
  5049. case CPU_UP_PREPARE:
  5050. case CPU_UP_PREPARE_FROZEN:
  5051. rq->calc_load_update = calc_load_update;
  5052. break;
  5053. case CPU_ONLINE:
  5054. case CPU_ONLINE_FROZEN:
  5055. /* Update our root-domain */
  5056. raw_spin_lock_irqsave(&rq->lock, flags);
  5057. if (rq->rd) {
  5058. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5059. set_rq_online(rq);
  5060. }
  5061. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5062. break;
  5063. #ifdef CONFIG_HOTPLUG_CPU
  5064. case CPU_DEAD:
  5065. case CPU_DEAD_FROZEN:
  5066. migrate_live_tasks(cpu);
  5067. /* Idle task back to normal (off runqueue, low prio) */
  5068. raw_spin_lock_irq(&rq->lock);
  5069. deactivate_task(rq, rq->idle, 0);
  5070. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5071. rq->idle->sched_class = &idle_sched_class;
  5072. migrate_dead_tasks(cpu);
  5073. raw_spin_unlock_irq(&rq->lock);
  5074. migrate_nr_uninterruptible(rq);
  5075. BUG_ON(rq->nr_running != 0);
  5076. calc_global_load_remove(rq);
  5077. break;
  5078. case CPU_DYING:
  5079. case CPU_DYING_FROZEN:
  5080. /* Update our root-domain */
  5081. raw_spin_lock_irqsave(&rq->lock, flags);
  5082. if (rq->rd) {
  5083. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5084. set_rq_offline(rq);
  5085. }
  5086. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5087. break;
  5088. #endif
  5089. }
  5090. return NOTIFY_OK;
  5091. }
  5092. /*
  5093. * Register at high priority so that task migration (migrate_all_tasks)
  5094. * happens before everything else. This has to be lower priority than
  5095. * the notifier in the perf_event subsystem, though.
  5096. */
  5097. static struct notifier_block __cpuinitdata migration_notifier = {
  5098. .notifier_call = migration_call,
  5099. .priority = CPU_PRI_MIGRATION,
  5100. };
  5101. static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
  5102. unsigned long action, void *hcpu)
  5103. {
  5104. switch (action & ~CPU_TASKS_FROZEN) {
  5105. case CPU_ONLINE:
  5106. case CPU_DOWN_FAILED:
  5107. set_cpu_active((long)hcpu, true);
  5108. return NOTIFY_OK;
  5109. default:
  5110. return NOTIFY_DONE;
  5111. }
  5112. }
  5113. static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
  5114. unsigned long action, void *hcpu)
  5115. {
  5116. switch (action & ~CPU_TASKS_FROZEN) {
  5117. case CPU_DOWN_PREPARE:
  5118. set_cpu_active((long)hcpu, false);
  5119. return NOTIFY_OK;
  5120. default:
  5121. return NOTIFY_DONE;
  5122. }
  5123. }
  5124. static int __init migration_init(void)
  5125. {
  5126. void *cpu = (void *)(long)smp_processor_id();
  5127. int err;
  5128. /* Initialize migration for the boot CPU */
  5129. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5130. BUG_ON(err == NOTIFY_BAD);
  5131. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5132. register_cpu_notifier(&migration_notifier);
  5133. /* Register cpu active notifiers */
  5134. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  5135. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  5136. return 0;
  5137. }
  5138. early_initcall(migration_init);
  5139. #endif
  5140. #ifdef CONFIG_SMP
  5141. #ifdef CONFIG_SCHED_DEBUG
  5142. static __read_mostly int sched_domain_debug_enabled;
  5143. static int __init sched_domain_debug_setup(char *str)
  5144. {
  5145. sched_domain_debug_enabled = 1;
  5146. return 0;
  5147. }
  5148. early_param("sched_debug", sched_domain_debug_setup);
  5149. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5150. struct cpumask *groupmask)
  5151. {
  5152. struct sched_group *group = sd->groups;
  5153. char str[256];
  5154. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5155. cpumask_clear(groupmask);
  5156. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5157. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5158. printk("does not load-balance\n");
  5159. if (sd->parent)
  5160. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5161. " has parent");
  5162. return -1;
  5163. }
  5164. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5165. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5166. printk(KERN_ERR "ERROR: domain->span does not contain "
  5167. "CPU%d\n", cpu);
  5168. }
  5169. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5170. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5171. " CPU%d\n", cpu);
  5172. }
  5173. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5174. do {
  5175. if (!group) {
  5176. printk("\n");
  5177. printk(KERN_ERR "ERROR: group is NULL\n");
  5178. break;
  5179. }
  5180. if (!group->cpu_power) {
  5181. printk(KERN_CONT "\n");
  5182. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5183. "set\n");
  5184. break;
  5185. }
  5186. if (!cpumask_weight(sched_group_cpus(group))) {
  5187. printk(KERN_CONT "\n");
  5188. printk(KERN_ERR "ERROR: empty group\n");
  5189. break;
  5190. }
  5191. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5192. printk(KERN_CONT "\n");
  5193. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5194. break;
  5195. }
  5196. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5197. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5198. printk(KERN_CONT " %s", str);
  5199. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5200. printk(KERN_CONT " (cpu_power = %d)",
  5201. group->cpu_power);
  5202. }
  5203. group = group->next;
  5204. } while (group != sd->groups);
  5205. printk(KERN_CONT "\n");
  5206. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5207. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5208. if (sd->parent &&
  5209. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5210. printk(KERN_ERR "ERROR: parent span is not a superset "
  5211. "of domain->span\n");
  5212. return 0;
  5213. }
  5214. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5215. {
  5216. cpumask_var_t groupmask;
  5217. int level = 0;
  5218. if (!sched_domain_debug_enabled)
  5219. return;
  5220. if (!sd) {
  5221. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5222. return;
  5223. }
  5224. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5225. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5226. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5227. return;
  5228. }
  5229. for (;;) {
  5230. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5231. break;
  5232. level++;
  5233. sd = sd->parent;
  5234. if (!sd)
  5235. break;
  5236. }
  5237. free_cpumask_var(groupmask);
  5238. }
  5239. #else /* !CONFIG_SCHED_DEBUG */
  5240. # define sched_domain_debug(sd, cpu) do { } while (0)
  5241. #endif /* CONFIG_SCHED_DEBUG */
  5242. static int sd_degenerate(struct sched_domain *sd)
  5243. {
  5244. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5245. return 1;
  5246. /* Following flags need at least 2 groups */
  5247. if (sd->flags & (SD_LOAD_BALANCE |
  5248. SD_BALANCE_NEWIDLE |
  5249. SD_BALANCE_FORK |
  5250. SD_BALANCE_EXEC |
  5251. SD_SHARE_CPUPOWER |
  5252. SD_SHARE_PKG_RESOURCES)) {
  5253. if (sd->groups != sd->groups->next)
  5254. return 0;
  5255. }
  5256. /* Following flags don't use groups */
  5257. if (sd->flags & (SD_WAKE_AFFINE))
  5258. return 0;
  5259. return 1;
  5260. }
  5261. static int
  5262. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5263. {
  5264. unsigned long cflags = sd->flags, pflags = parent->flags;
  5265. if (sd_degenerate(parent))
  5266. return 1;
  5267. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5268. return 0;
  5269. /* Flags needing groups don't count if only 1 group in parent */
  5270. if (parent->groups == parent->groups->next) {
  5271. pflags &= ~(SD_LOAD_BALANCE |
  5272. SD_BALANCE_NEWIDLE |
  5273. SD_BALANCE_FORK |
  5274. SD_BALANCE_EXEC |
  5275. SD_SHARE_CPUPOWER |
  5276. SD_SHARE_PKG_RESOURCES);
  5277. if (nr_node_ids == 1)
  5278. pflags &= ~SD_SERIALIZE;
  5279. }
  5280. if (~cflags & pflags)
  5281. return 0;
  5282. return 1;
  5283. }
  5284. static void free_rootdomain(struct root_domain *rd)
  5285. {
  5286. synchronize_sched();
  5287. cpupri_cleanup(&rd->cpupri);
  5288. free_cpumask_var(rd->rto_mask);
  5289. free_cpumask_var(rd->online);
  5290. free_cpumask_var(rd->span);
  5291. kfree(rd);
  5292. }
  5293. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5294. {
  5295. struct root_domain *old_rd = NULL;
  5296. unsigned long flags;
  5297. raw_spin_lock_irqsave(&rq->lock, flags);
  5298. if (rq->rd) {
  5299. old_rd = rq->rd;
  5300. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5301. set_rq_offline(rq);
  5302. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5303. /*
  5304. * If we dont want to free the old_rt yet then
  5305. * set old_rd to NULL to skip the freeing later
  5306. * in this function:
  5307. */
  5308. if (!atomic_dec_and_test(&old_rd->refcount))
  5309. old_rd = NULL;
  5310. }
  5311. atomic_inc(&rd->refcount);
  5312. rq->rd = rd;
  5313. cpumask_set_cpu(rq->cpu, rd->span);
  5314. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5315. set_rq_online(rq);
  5316. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5317. if (old_rd)
  5318. free_rootdomain(old_rd);
  5319. }
  5320. static int init_rootdomain(struct root_domain *rd)
  5321. {
  5322. memset(rd, 0, sizeof(*rd));
  5323. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  5324. goto out;
  5325. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  5326. goto free_span;
  5327. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5328. goto free_online;
  5329. if (cpupri_init(&rd->cpupri) != 0)
  5330. goto free_rto_mask;
  5331. return 0;
  5332. free_rto_mask:
  5333. free_cpumask_var(rd->rto_mask);
  5334. free_online:
  5335. free_cpumask_var(rd->online);
  5336. free_span:
  5337. free_cpumask_var(rd->span);
  5338. out:
  5339. return -ENOMEM;
  5340. }
  5341. static void init_defrootdomain(void)
  5342. {
  5343. init_rootdomain(&def_root_domain);
  5344. atomic_set(&def_root_domain.refcount, 1);
  5345. }
  5346. static struct root_domain *alloc_rootdomain(void)
  5347. {
  5348. struct root_domain *rd;
  5349. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5350. if (!rd)
  5351. return NULL;
  5352. if (init_rootdomain(rd) != 0) {
  5353. kfree(rd);
  5354. return NULL;
  5355. }
  5356. return rd;
  5357. }
  5358. /*
  5359. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5360. * hold the hotplug lock.
  5361. */
  5362. static void
  5363. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5364. {
  5365. struct rq *rq = cpu_rq(cpu);
  5366. struct sched_domain *tmp;
  5367. for (tmp = sd; tmp; tmp = tmp->parent)
  5368. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5369. /* Remove the sched domains which do not contribute to scheduling. */
  5370. for (tmp = sd; tmp; ) {
  5371. struct sched_domain *parent = tmp->parent;
  5372. if (!parent)
  5373. break;
  5374. if (sd_parent_degenerate(tmp, parent)) {
  5375. tmp->parent = parent->parent;
  5376. if (parent->parent)
  5377. parent->parent->child = tmp;
  5378. } else
  5379. tmp = tmp->parent;
  5380. }
  5381. if (sd && sd_degenerate(sd)) {
  5382. sd = sd->parent;
  5383. if (sd)
  5384. sd->child = NULL;
  5385. }
  5386. sched_domain_debug(sd, cpu);
  5387. rq_attach_root(rq, rd);
  5388. rcu_assign_pointer(rq->sd, sd);
  5389. }
  5390. /* cpus with isolated domains */
  5391. static cpumask_var_t cpu_isolated_map;
  5392. /* Setup the mask of cpus configured for isolated domains */
  5393. static int __init isolated_cpu_setup(char *str)
  5394. {
  5395. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5396. cpulist_parse(str, cpu_isolated_map);
  5397. return 1;
  5398. }
  5399. __setup("isolcpus=", isolated_cpu_setup);
  5400. /*
  5401. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5402. * to a function which identifies what group(along with sched group) a CPU
  5403. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5404. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5405. *
  5406. * init_sched_build_groups will build a circular linked list of the groups
  5407. * covered by the given span, and will set each group's ->cpumask correctly,
  5408. * and ->cpu_power to 0.
  5409. */
  5410. static void
  5411. init_sched_build_groups(const struct cpumask *span,
  5412. const struct cpumask *cpu_map,
  5413. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5414. struct sched_group **sg,
  5415. struct cpumask *tmpmask),
  5416. struct cpumask *covered, struct cpumask *tmpmask)
  5417. {
  5418. struct sched_group *first = NULL, *last = NULL;
  5419. int i;
  5420. cpumask_clear(covered);
  5421. for_each_cpu(i, span) {
  5422. struct sched_group *sg;
  5423. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5424. int j;
  5425. if (cpumask_test_cpu(i, covered))
  5426. continue;
  5427. cpumask_clear(sched_group_cpus(sg));
  5428. sg->cpu_power = 0;
  5429. for_each_cpu(j, span) {
  5430. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5431. continue;
  5432. cpumask_set_cpu(j, covered);
  5433. cpumask_set_cpu(j, sched_group_cpus(sg));
  5434. }
  5435. if (!first)
  5436. first = sg;
  5437. if (last)
  5438. last->next = sg;
  5439. last = sg;
  5440. }
  5441. last->next = first;
  5442. }
  5443. #define SD_NODES_PER_DOMAIN 16
  5444. #ifdef CONFIG_NUMA
  5445. /**
  5446. * find_next_best_node - find the next node to include in a sched_domain
  5447. * @node: node whose sched_domain we're building
  5448. * @used_nodes: nodes already in the sched_domain
  5449. *
  5450. * Find the next node to include in a given scheduling domain. Simply
  5451. * finds the closest node not already in the @used_nodes map.
  5452. *
  5453. * Should use nodemask_t.
  5454. */
  5455. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5456. {
  5457. int i, n, val, min_val, best_node = 0;
  5458. min_val = INT_MAX;
  5459. for (i = 0; i < nr_node_ids; i++) {
  5460. /* Start at @node */
  5461. n = (node + i) % nr_node_ids;
  5462. if (!nr_cpus_node(n))
  5463. continue;
  5464. /* Skip already used nodes */
  5465. if (node_isset(n, *used_nodes))
  5466. continue;
  5467. /* Simple min distance search */
  5468. val = node_distance(node, n);
  5469. if (val < min_val) {
  5470. min_val = val;
  5471. best_node = n;
  5472. }
  5473. }
  5474. node_set(best_node, *used_nodes);
  5475. return best_node;
  5476. }
  5477. /**
  5478. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5479. * @node: node whose cpumask we're constructing
  5480. * @span: resulting cpumask
  5481. *
  5482. * Given a node, construct a good cpumask for its sched_domain to span. It
  5483. * should be one that prevents unnecessary balancing, but also spreads tasks
  5484. * out optimally.
  5485. */
  5486. static void sched_domain_node_span(int node, struct cpumask *span)
  5487. {
  5488. nodemask_t used_nodes;
  5489. int i;
  5490. cpumask_clear(span);
  5491. nodes_clear(used_nodes);
  5492. cpumask_or(span, span, cpumask_of_node(node));
  5493. node_set(node, used_nodes);
  5494. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5495. int next_node = find_next_best_node(node, &used_nodes);
  5496. cpumask_or(span, span, cpumask_of_node(next_node));
  5497. }
  5498. }
  5499. #endif /* CONFIG_NUMA */
  5500. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5501. /*
  5502. * The cpus mask in sched_group and sched_domain hangs off the end.
  5503. *
  5504. * ( See the the comments in include/linux/sched.h:struct sched_group
  5505. * and struct sched_domain. )
  5506. */
  5507. struct static_sched_group {
  5508. struct sched_group sg;
  5509. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5510. };
  5511. struct static_sched_domain {
  5512. struct sched_domain sd;
  5513. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5514. };
  5515. struct s_data {
  5516. #ifdef CONFIG_NUMA
  5517. int sd_allnodes;
  5518. cpumask_var_t domainspan;
  5519. cpumask_var_t covered;
  5520. cpumask_var_t notcovered;
  5521. #endif
  5522. cpumask_var_t nodemask;
  5523. cpumask_var_t this_sibling_map;
  5524. cpumask_var_t this_core_map;
  5525. cpumask_var_t send_covered;
  5526. cpumask_var_t tmpmask;
  5527. struct sched_group **sched_group_nodes;
  5528. struct root_domain *rd;
  5529. };
  5530. enum s_alloc {
  5531. sa_sched_groups = 0,
  5532. sa_rootdomain,
  5533. sa_tmpmask,
  5534. sa_send_covered,
  5535. sa_this_core_map,
  5536. sa_this_sibling_map,
  5537. sa_nodemask,
  5538. sa_sched_group_nodes,
  5539. #ifdef CONFIG_NUMA
  5540. sa_notcovered,
  5541. sa_covered,
  5542. sa_domainspan,
  5543. #endif
  5544. sa_none,
  5545. };
  5546. /*
  5547. * SMT sched-domains:
  5548. */
  5549. #ifdef CONFIG_SCHED_SMT
  5550. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5551. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5552. static int
  5553. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5554. struct sched_group **sg, struct cpumask *unused)
  5555. {
  5556. if (sg)
  5557. *sg = &per_cpu(sched_groups, cpu).sg;
  5558. return cpu;
  5559. }
  5560. #endif /* CONFIG_SCHED_SMT */
  5561. /*
  5562. * multi-core sched-domains:
  5563. */
  5564. #ifdef CONFIG_SCHED_MC
  5565. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5566. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5567. #endif /* CONFIG_SCHED_MC */
  5568. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5569. static int
  5570. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5571. struct sched_group **sg, struct cpumask *mask)
  5572. {
  5573. int group;
  5574. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5575. group = cpumask_first(mask);
  5576. if (sg)
  5577. *sg = &per_cpu(sched_group_core, group).sg;
  5578. return group;
  5579. }
  5580. #elif defined(CONFIG_SCHED_MC)
  5581. static int
  5582. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5583. struct sched_group **sg, struct cpumask *unused)
  5584. {
  5585. if (sg)
  5586. *sg = &per_cpu(sched_group_core, cpu).sg;
  5587. return cpu;
  5588. }
  5589. #endif
  5590. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5591. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5592. static int
  5593. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5594. struct sched_group **sg, struct cpumask *mask)
  5595. {
  5596. int group;
  5597. #ifdef CONFIG_SCHED_MC
  5598. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5599. group = cpumask_first(mask);
  5600. #elif defined(CONFIG_SCHED_SMT)
  5601. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5602. group = cpumask_first(mask);
  5603. #else
  5604. group = cpu;
  5605. #endif
  5606. if (sg)
  5607. *sg = &per_cpu(sched_group_phys, group).sg;
  5608. return group;
  5609. }
  5610. #ifdef CONFIG_NUMA
  5611. /*
  5612. * The init_sched_build_groups can't handle what we want to do with node
  5613. * groups, so roll our own. Now each node has its own list of groups which
  5614. * gets dynamically allocated.
  5615. */
  5616. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5617. static struct sched_group ***sched_group_nodes_bycpu;
  5618. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5619. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5620. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5621. struct sched_group **sg,
  5622. struct cpumask *nodemask)
  5623. {
  5624. int group;
  5625. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5626. group = cpumask_first(nodemask);
  5627. if (sg)
  5628. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5629. return group;
  5630. }
  5631. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5632. {
  5633. struct sched_group *sg = group_head;
  5634. int j;
  5635. if (!sg)
  5636. return;
  5637. do {
  5638. for_each_cpu(j, sched_group_cpus(sg)) {
  5639. struct sched_domain *sd;
  5640. sd = &per_cpu(phys_domains, j).sd;
  5641. if (j != group_first_cpu(sd->groups)) {
  5642. /*
  5643. * Only add "power" once for each
  5644. * physical package.
  5645. */
  5646. continue;
  5647. }
  5648. sg->cpu_power += sd->groups->cpu_power;
  5649. }
  5650. sg = sg->next;
  5651. } while (sg != group_head);
  5652. }
  5653. static int build_numa_sched_groups(struct s_data *d,
  5654. const struct cpumask *cpu_map, int num)
  5655. {
  5656. struct sched_domain *sd;
  5657. struct sched_group *sg, *prev;
  5658. int n, j;
  5659. cpumask_clear(d->covered);
  5660. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5661. if (cpumask_empty(d->nodemask)) {
  5662. d->sched_group_nodes[num] = NULL;
  5663. goto out;
  5664. }
  5665. sched_domain_node_span(num, d->domainspan);
  5666. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5667. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5668. GFP_KERNEL, num);
  5669. if (!sg) {
  5670. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5671. num);
  5672. return -ENOMEM;
  5673. }
  5674. d->sched_group_nodes[num] = sg;
  5675. for_each_cpu(j, d->nodemask) {
  5676. sd = &per_cpu(node_domains, j).sd;
  5677. sd->groups = sg;
  5678. }
  5679. sg->cpu_power = 0;
  5680. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5681. sg->next = sg;
  5682. cpumask_or(d->covered, d->covered, d->nodemask);
  5683. prev = sg;
  5684. for (j = 0; j < nr_node_ids; j++) {
  5685. n = (num + j) % nr_node_ids;
  5686. cpumask_complement(d->notcovered, d->covered);
  5687. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5688. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5689. if (cpumask_empty(d->tmpmask))
  5690. break;
  5691. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5692. if (cpumask_empty(d->tmpmask))
  5693. continue;
  5694. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5695. GFP_KERNEL, num);
  5696. if (!sg) {
  5697. printk(KERN_WARNING
  5698. "Can not alloc domain group for node %d\n", j);
  5699. return -ENOMEM;
  5700. }
  5701. sg->cpu_power = 0;
  5702. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5703. sg->next = prev->next;
  5704. cpumask_or(d->covered, d->covered, d->tmpmask);
  5705. prev->next = sg;
  5706. prev = sg;
  5707. }
  5708. out:
  5709. return 0;
  5710. }
  5711. #endif /* CONFIG_NUMA */
  5712. #ifdef CONFIG_NUMA
  5713. /* Free memory allocated for various sched_group structures */
  5714. static void free_sched_groups(const struct cpumask *cpu_map,
  5715. struct cpumask *nodemask)
  5716. {
  5717. int cpu, i;
  5718. for_each_cpu(cpu, cpu_map) {
  5719. struct sched_group **sched_group_nodes
  5720. = sched_group_nodes_bycpu[cpu];
  5721. if (!sched_group_nodes)
  5722. continue;
  5723. for (i = 0; i < nr_node_ids; i++) {
  5724. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5725. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5726. if (cpumask_empty(nodemask))
  5727. continue;
  5728. if (sg == NULL)
  5729. continue;
  5730. sg = sg->next;
  5731. next_sg:
  5732. oldsg = sg;
  5733. sg = sg->next;
  5734. kfree(oldsg);
  5735. if (oldsg != sched_group_nodes[i])
  5736. goto next_sg;
  5737. }
  5738. kfree(sched_group_nodes);
  5739. sched_group_nodes_bycpu[cpu] = NULL;
  5740. }
  5741. }
  5742. #else /* !CONFIG_NUMA */
  5743. static void free_sched_groups(const struct cpumask *cpu_map,
  5744. struct cpumask *nodemask)
  5745. {
  5746. }
  5747. #endif /* CONFIG_NUMA */
  5748. /*
  5749. * Initialize sched groups cpu_power.
  5750. *
  5751. * cpu_power indicates the capacity of sched group, which is used while
  5752. * distributing the load between different sched groups in a sched domain.
  5753. * Typically cpu_power for all the groups in a sched domain will be same unless
  5754. * there are asymmetries in the topology. If there are asymmetries, group
  5755. * having more cpu_power will pickup more load compared to the group having
  5756. * less cpu_power.
  5757. */
  5758. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5759. {
  5760. struct sched_domain *child;
  5761. struct sched_group *group;
  5762. long power;
  5763. int weight;
  5764. WARN_ON(!sd || !sd->groups);
  5765. if (cpu != group_first_cpu(sd->groups))
  5766. return;
  5767. child = sd->child;
  5768. sd->groups->cpu_power = 0;
  5769. if (!child) {
  5770. power = SCHED_LOAD_SCALE;
  5771. weight = cpumask_weight(sched_domain_span(sd));
  5772. /*
  5773. * SMT siblings share the power of a single core.
  5774. * Usually multiple threads get a better yield out of
  5775. * that one core than a single thread would have,
  5776. * reflect that in sd->smt_gain.
  5777. */
  5778. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5779. power *= sd->smt_gain;
  5780. power /= weight;
  5781. power >>= SCHED_LOAD_SHIFT;
  5782. }
  5783. sd->groups->cpu_power += power;
  5784. return;
  5785. }
  5786. /*
  5787. * Add cpu_power of each child group to this groups cpu_power.
  5788. */
  5789. group = child->groups;
  5790. do {
  5791. sd->groups->cpu_power += group->cpu_power;
  5792. group = group->next;
  5793. } while (group != child->groups);
  5794. }
  5795. /*
  5796. * Initializers for schedule domains
  5797. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5798. */
  5799. #ifdef CONFIG_SCHED_DEBUG
  5800. # define SD_INIT_NAME(sd, type) sd->name = #type
  5801. #else
  5802. # define SD_INIT_NAME(sd, type) do { } while (0)
  5803. #endif
  5804. #define SD_INIT(sd, type) sd_init_##type(sd)
  5805. #define SD_INIT_FUNC(type) \
  5806. static noinline void sd_init_##type(struct sched_domain *sd) \
  5807. { \
  5808. memset(sd, 0, sizeof(*sd)); \
  5809. *sd = SD_##type##_INIT; \
  5810. sd->level = SD_LV_##type; \
  5811. SD_INIT_NAME(sd, type); \
  5812. }
  5813. SD_INIT_FUNC(CPU)
  5814. #ifdef CONFIG_NUMA
  5815. SD_INIT_FUNC(ALLNODES)
  5816. SD_INIT_FUNC(NODE)
  5817. #endif
  5818. #ifdef CONFIG_SCHED_SMT
  5819. SD_INIT_FUNC(SIBLING)
  5820. #endif
  5821. #ifdef CONFIG_SCHED_MC
  5822. SD_INIT_FUNC(MC)
  5823. #endif
  5824. static int default_relax_domain_level = -1;
  5825. static int __init setup_relax_domain_level(char *str)
  5826. {
  5827. unsigned long val;
  5828. val = simple_strtoul(str, NULL, 0);
  5829. if (val < SD_LV_MAX)
  5830. default_relax_domain_level = val;
  5831. return 1;
  5832. }
  5833. __setup("relax_domain_level=", setup_relax_domain_level);
  5834. static void set_domain_attribute(struct sched_domain *sd,
  5835. struct sched_domain_attr *attr)
  5836. {
  5837. int request;
  5838. if (!attr || attr->relax_domain_level < 0) {
  5839. if (default_relax_domain_level < 0)
  5840. return;
  5841. else
  5842. request = default_relax_domain_level;
  5843. } else
  5844. request = attr->relax_domain_level;
  5845. if (request < sd->level) {
  5846. /* turn off idle balance on this domain */
  5847. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5848. } else {
  5849. /* turn on idle balance on this domain */
  5850. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5851. }
  5852. }
  5853. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5854. const struct cpumask *cpu_map)
  5855. {
  5856. switch (what) {
  5857. case sa_sched_groups:
  5858. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5859. d->sched_group_nodes = NULL;
  5860. case sa_rootdomain:
  5861. free_rootdomain(d->rd); /* fall through */
  5862. case sa_tmpmask:
  5863. free_cpumask_var(d->tmpmask); /* fall through */
  5864. case sa_send_covered:
  5865. free_cpumask_var(d->send_covered); /* fall through */
  5866. case sa_this_core_map:
  5867. free_cpumask_var(d->this_core_map); /* fall through */
  5868. case sa_this_sibling_map:
  5869. free_cpumask_var(d->this_sibling_map); /* fall through */
  5870. case sa_nodemask:
  5871. free_cpumask_var(d->nodemask); /* fall through */
  5872. case sa_sched_group_nodes:
  5873. #ifdef CONFIG_NUMA
  5874. kfree(d->sched_group_nodes); /* fall through */
  5875. case sa_notcovered:
  5876. free_cpumask_var(d->notcovered); /* fall through */
  5877. case sa_covered:
  5878. free_cpumask_var(d->covered); /* fall through */
  5879. case sa_domainspan:
  5880. free_cpumask_var(d->domainspan); /* fall through */
  5881. #endif
  5882. case sa_none:
  5883. break;
  5884. }
  5885. }
  5886. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5887. const struct cpumask *cpu_map)
  5888. {
  5889. #ifdef CONFIG_NUMA
  5890. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5891. return sa_none;
  5892. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5893. return sa_domainspan;
  5894. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5895. return sa_covered;
  5896. /* Allocate the per-node list of sched groups */
  5897. d->sched_group_nodes = kcalloc(nr_node_ids,
  5898. sizeof(struct sched_group *), GFP_KERNEL);
  5899. if (!d->sched_group_nodes) {
  5900. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5901. return sa_notcovered;
  5902. }
  5903. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5904. #endif
  5905. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5906. return sa_sched_group_nodes;
  5907. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5908. return sa_nodemask;
  5909. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5910. return sa_this_sibling_map;
  5911. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5912. return sa_this_core_map;
  5913. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5914. return sa_send_covered;
  5915. d->rd = alloc_rootdomain();
  5916. if (!d->rd) {
  5917. printk(KERN_WARNING "Cannot alloc root domain\n");
  5918. return sa_tmpmask;
  5919. }
  5920. return sa_rootdomain;
  5921. }
  5922. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5923. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5924. {
  5925. struct sched_domain *sd = NULL;
  5926. #ifdef CONFIG_NUMA
  5927. struct sched_domain *parent;
  5928. d->sd_allnodes = 0;
  5929. if (cpumask_weight(cpu_map) >
  5930. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5931. sd = &per_cpu(allnodes_domains, i).sd;
  5932. SD_INIT(sd, ALLNODES);
  5933. set_domain_attribute(sd, attr);
  5934. cpumask_copy(sched_domain_span(sd), cpu_map);
  5935. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5936. d->sd_allnodes = 1;
  5937. }
  5938. parent = sd;
  5939. sd = &per_cpu(node_domains, i).sd;
  5940. SD_INIT(sd, NODE);
  5941. set_domain_attribute(sd, attr);
  5942. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5943. sd->parent = parent;
  5944. if (parent)
  5945. parent->child = sd;
  5946. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5947. #endif
  5948. return sd;
  5949. }
  5950. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5951. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5952. struct sched_domain *parent, int i)
  5953. {
  5954. struct sched_domain *sd;
  5955. sd = &per_cpu(phys_domains, i).sd;
  5956. SD_INIT(sd, CPU);
  5957. set_domain_attribute(sd, attr);
  5958. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5959. sd->parent = parent;
  5960. if (parent)
  5961. parent->child = sd;
  5962. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5963. return sd;
  5964. }
  5965. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5966. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5967. struct sched_domain *parent, int i)
  5968. {
  5969. struct sched_domain *sd = parent;
  5970. #ifdef CONFIG_SCHED_MC
  5971. sd = &per_cpu(core_domains, i).sd;
  5972. SD_INIT(sd, MC);
  5973. set_domain_attribute(sd, attr);
  5974. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5975. sd->parent = parent;
  5976. parent->child = sd;
  5977. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5978. #endif
  5979. return sd;
  5980. }
  5981. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5982. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5983. struct sched_domain *parent, int i)
  5984. {
  5985. struct sched_domain *sd = parent;
  5986. #ifdef CONFIG_SCHED_SMT
  5987. sd = &per_cpu(cpu_domains, i).sd;
  5988. SD_INIT(sd, SIBLING);
  5989. set_domain_attribute(sd, attr);
  5990. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5991. sd->parent = parent;
  5992. parent->child = sd;
  5993. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5994. #endif
  5995. return sd;
  5996. }
  5997. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5998. const struct cpumask *cpu_map, int cpu)
  5999. {
  6000. switch (l) {
  6001. #ifdef CONFIG_SCHED_SMT
  6002. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6003. cpumask_and(d->this_sibling_map, cpu_map,
  6004. topology_thread_cpumask(cpu));
  6005. if (cpu == cpumask_first(d->this_sibling_map))
  6006. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6007. &cpu_to_cpu_group,
  6008. d->send_covered, d->tmpmask);
  6009. break;
  6010. #endif
  6011. #ifdef CONFIG_SCHED_MC
  6012. case SD_LV_MC: /* set up multi-core groups */
  6013. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6014. if (cpu == cpumask_first(d->this_core_map))
  6015. init_sched_build_groups(d->this_core_map, cpu_map,
  6016. &cpu_to_core_group,
  6017. d->send_covered, d->tmpmask);
  6018. break;
  6019. #endif
  6020. case SD_LV_CPU: /* set up physical groups */
  6021. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6022. if (!cpumask_empty(d->nodemask))
  6023. init_sched_build_groups(d->nodemask, cpu_map,
  6024. &cpu_to_phys_group,
  6025. d->send_covered, d->tmpmask);
  6026. break;
  6027. #ifdef CONFIG_NUMA
  6028. case SD_LV_ALLNODES:
  6029. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6030. d->send_covered, d->tmpmask);
  6031. break;
  6032. #endif
  6033. default:
  6034. break;
  6035. }
  6036. }
  6037. /*
  6038. * Build sched domains for a given set of cpus and attach the sched domains
  6039. * to the individual cpus
  6040. */
  6041. static int __build_sched_domains(const struct cpumask *cpu_map,
  6042. struct sched_domain_attr *attr)
  6043. {
  6044. enum s_alloc alloc_state = sa_none;
  6045. struct s_data d;
  6046. struct sched_domain *sd;
  6047. int i;
  6048. #ifdef CONFIG_NUMA
  6049. d.sd_allnodes = 0;
  6050. #endif
  6051. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6052. if (alloc_state != sa_rootdomain)
  6053. goto error;
  6054. alloc_state = sa_sched_groups;
  6055. /*
  6056. * Set up domains for cpus specified by the cpu_map.
  6057. */
  6058. for_each_cpu(i, cpu_map) {
  6059. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6060. cpu_map);
  6061. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6062. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6063. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6064. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6065. }
  6066. for_each_cpu(i, cpu_map) {
  6067. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6068. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6069. }
  6070. /* Set up physical groups */
  6071. for (i = 0; i < nr_node_ids; i++)
  6072. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6073. #ifdef CONFIG_NUMA
  6074. /* Set up node groups */
  6075. if (d.sd_allnodes)
  6076. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6077. for (i = 0; i < nr_node_ids; i++)
  6078. if (build_numa_sched_groups(&d, cpu_map, i))
  6079. goto error;
  6080. #endif
  6081. /* Calculate CPU power for physical packages and nodes */
  6082. #ifdef CONFIG_SCHED_SMT
  6083. for_each_cpu(i, cpu_map) {
  6084. sd = &per_cpu(cpu_domains, i).sd;
  6085. init_sched_groups_power(i, sd);
  6086. }
  6087. #endif
  6088. #ifdef CONFIG_SCHED_MC
  6089. for_each_cpu(i, cpu_map) {
  6090. sd = &per_cpu(core_domains, i).sd;
  6091. init_sched_groups_power(i, sd);
  6092. }
  6093. #endif
  6094. for_each_cpu(i, cpu_map) {
  6095. sd = &per_cpu(phys_domains, i).sd;
  6096. init_sched_groups_power(i, sd);
  6097. }
  6098. #ifdef CONFIG_NUMA
  6099. for (i = 0; i < nr_node_ids; i++)
  6100. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6101. if (d.sd_allnodes) {
  6102. struct sched_group *sg;
  6103. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6104. d.tmpmask);
  6105. init_numa_sched_groups_power(sg);
  6106. }
  6107. #endif
  6108. /* Attach the domains */
  6109. for_each_cpu(i, cpu_map) {
  6110. #ifdef CONFIG_SCHED_SMT
  6111. sd = &per_cpu(cpu_domains, i).sd;
  6112. #elif defined(CONFIG_SCHED_MC)
  6113. sd = &per_cpu(core_domains, i).sd;
  6114. #else
  6115. sd = &per_cpu(phys_domains, i).sd;
  6116. #endif
  6117. cpu_attach_domain(sd, d.rd, i);
  6118. }
  6119. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6120. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6121. return 0;
  6122. error:
  6123. __free_domain_allocs(&d, alloc_state, cpu_map);
  6124. return -ENOMEM;
  6125. }
  6126. static int build_sched_domains(const struct cpumask *cpu_map)
  6127. {
  6128. return __build_sched_domains(cpu_map, NULL);
  6129. }
  6130. static cpumask_var_t *doms_cur; /* current sched domains */
  6131. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6132. static struct sched_domain_attr *dattr_cur;
  6133. /* attribues of custom domains in 'doms_cur' */
  6134. /*
  6135. * Special case: If a kmalloc of a doms_cur partition (array of
  6136. * cpumask) fails, then fallback to a single sched domain,
  6137. * as determined by the single cpumask fallback_doms.
  6138. */
  6139. static cpumask_var_t fallback_doms;
  6140. /*
  6141. * arch_update_cpu_topology lets virtualized architectures update the
  6142. * cpu core maps. It is supposed to return 1 if the topology changed
  6143. * or 0 if it stayed the same.
  6144. */
  6145. int __attribute__((weak)) arch_update_cpu_topology(void)
  6146. {
  6147. return 0;
  6148. }
  6149. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6150. {
  6151. int i;
  6152. cpumask_var_t *doms;
  6153. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6154. if (!doms)
  6155. return NULL;
  6156. for (i = 0; i < ndoms; i++) {
  6157. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6158. free_sched_domains(doms, i);
  6159. return NULL;
  6160. }
  6161. }
  6162. return doms;
  6163. }
  6164. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6165. {
  6166. unsigned int i;
  6167. for (i = 0; i < ndoms; i++)
  6168. free_cpumask_var(doms[i]);
  6169. kfree(doms);
  6170. }
  6171. /*
  6172. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6173. * For now this just excludes isolated cpus, but could be used to
  6174. * exclude other special cases in the future.
  6175. */
  6176. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6177. {
  6178. int err;
  6179. arch_update_cpu_topology();
  6180. ndoms_cur = 1;
  6181. doms_cur = alloc_sched_domains(ndoms_cur);
  6182. if (!doms_cur)
  6183. doms_cur = &fallback_doms;
  6184. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6185. dattr_cur = NULL;
  6186. err = build_sched_domains(doms_cur[0]);
  6187. register_sched_domain_sysctl();
  6188. return err;
  6189. }
  6190. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6191. struct cpumask *tmpmask)
  6192. {
  6193. free_sched_groups(cpu_map, tmpmask);
  6194. }
  6195. /*
  6196. * Detach sched domains from a group of cpus specified in cpu_map
  6197. * These cpus will now be attached to the NULL domain
  6198. */
  6199. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6200. {
  6201. /* Save because hotplug lock held. */
  6202. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6203. int i;
  6204. for_each_cpu(i, cpu_map)
  6205. cpu_attach_domain(NULL, &def_root_domain, i);
  6206. synchronize_sched();
  6207. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6208. }
  6209. /* handle null as "default" */
  6210. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6211. struct sched_domain_attr *new, int idx_new)
  6212. {
  6213. struct sched_domain_attr tmp;
  6214. /* fast path */
  6215. if (!new && !cur)
  6216. return 1;
  6217. tmp = SD_ATTR_INIT;
  6218. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6219. new ? (new + idx_new) : &tmp,
  6220. sizeof(struct sched_domain_attr));
  6221. }
  6222. /*
  6223. * Partition sched domains as specified by the 'ndoms_new'
  6224. * cpumasks in the array doms_new[] of cpumasks. This compares
  6225. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6226. * It destroys each deleted domain and builds each new domain.
  6227. *
  6228. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6229. * The masks don't intersect (don't overlap.) We should setup one
  6230. * sched domain for each mask. CPUs not in any of the cpumasks will
  6231. * not be load balanced. If the same cpumask appears both in the
  6232. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6233. * it as it is.
  6234. *
  6235. * The passed in 'doms_new' should be allocated using
  6236. * alloc_sched_domains. This routine takes ownership of it and will
  6237. * free_sched_domains it when done with it. If the caller failed the
  6238. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6239. * and partition_sched_domains() will fallback to the single partition
  6240. * 'fallback_doms', it also forces the domains to be rebuilt.
  6241. *
  6242. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6243. * ndoms_new == 0 is a special case for destroying existing domains,
  6244. * and it will not create the default domain.
  6245. *
  6246. * Call with hotplug lock held
  6247. */
  6248. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6249. struct sched_domain_attr *dattr_new)
  6250. {
  6251. int i, j, n;
  6252. int new_topology;
  6253. mutex_lock(&sched_domains_mutex);
  6254. /* always unregister in case we don't destroy any domains */
  6255. unregister_sched_domain_sysctl();
  6256. /* Let architecture update cpu core mappings. */
  6257. new_topology = arch_update_cpu_topology();
  6258. n = doms_new ? ndoms_new : 0;
  6259. /* Destroy deleted domains */
  6260. for (i = 0; i < ndoms_cur; i++) {
  6261. for (j = 0; j < n && !new_topology; j++) {
  6262. if (cpumask_equal(doms_cur[i], doms_new[j])
  6263. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6264. goto match1;
  6265. }
  6266. /* no match - a current sched domain not in new doms_new[] */
  6267. detach_destroy_domains(doms_cur[i]);
  6268. match1:
  6269. ;
  6270. }
  6271. if (doms_new == NULL) {
  6272. ndoms_cur = 0;
  6273. doms_new = &fallback_doms;
  6274. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6275. WARN_ON_ONCE(dattr_new);
  6276. }
  6277. /* Build new domains */
  6278. for (i = 0; i < ndoms_new; i++) {
  6279. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6280. if (cpumask_equal(doms_new[i], doms_cur[j])
  6281. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6282. goto match2;
  6283. }
  6284. /* no match - add a new doms_new */
  6285. __build_sched_domains(doms_new[i],
  6286. dattr_new ? dattr_new + i : NULL);
  6287. match2:
  6288. ;
  6289. }
  6290. /* Remember the new sched domains */
  6291. if (doms_cur != &fallback_doms)
  6292. free_sched_domains(doms_cur, ndoms_cur);
  6293. kfree(dattr_cur); /* kfree(NULL) is safe */
  6294. doms_cur = doms_new;
  6295. dattr_cur = dattr_new;
  6296. ndoms_cur = ndoms_new;
  6297. register_sched_domain_sysctl();
  6298. mutex_unlock(&sched_domains_mutex);
  6299. }
  6300. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6301. static void arch_reinit_sched_domains(void)
  6302. {
  6303. get_online_cpus();
  6304. /* Destroy domains first to force the rebuild */
  6305. partition_sched_domains(0, NULL, NULL);
  6306. rebuild_sched_domains();
  6307. put_online_cpus();
  6308. }
  6309. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6310. {
  6311. unsigned int level = 0;
  6312. if (sscanf(buf, "%u", &level) != 1)
  6313. return -EINVAL;
  6314. /*
  6315. * level is always be positive so don't check for
  6316. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6317. * What happens on 0 or 1 byte write,
  6318. * need to check for count as well?
  6319. */
  6320. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6321. return -EINVAL;
  6322. if (smt)
  6323. sched_smt_power_savings = level;
  6324. else
  6325. sched_mc_power_savings = level;
  6326. arch_reinit_sched_domains();
  6327. return count;
  6328. }
  6329. #ifdef CONFIG_SCHED_MC
  6330. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6331. struct sysdev_class_attribute *attr,
  6332. char *page)
  6333. {
  6334. return sprintf(page, "%u\n", sched_mc_power_savings);
  6335. }
  6336. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6337. struct sysdev_class_attribute *attr,
  6338. const char *buf, size_t count)
  6339. {
  6340. return sched_power_savings_store(buf, count, 0);
  6341. }
  6342. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6343. sched_mc_power_savings_show,
  6344. sched_mc_power_savings_store);
  6345. #endif
  6346. #ifdef CONFIG_SCHED_SMT
  6347. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6348. struct sysdev_class_attribute *attr,
  6349. char *page)
  6350. {
  6351. return sprintf(page, "%u\n", sched_smt_power_savings);
  6352. }
  6353. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6354. struct sysdev_class_attribute *attr,
  6355. const char *buf, size_t count)
  6356. {
  6357. return sched_power_savings_store(buf, count, 1);
  6358. }
  6359. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6360. sched_smt_power_savings_show,
  6361. sched_smt_power_savings_store);
  6362. #endif
  6363. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6364. {
  6365. int err = 0;
  6366. #ifdef CONFIG_SCHED_SMT
  6367. if (smt_capable())
  6368. err = sysfs_create_file(&cls->kset.kobj,
  6369. &attr_sched_smt_power_savings.attr);
  6370. #endif
  6371. #ifdef CONFIG_SCHED_MC
  6372. if (!err && mc_capable())
  6373. err = sysfs_create_file(&cls->kset.kobj,
  6374. &attr_sched_mc_power_savings.attr);
  6375. #endif
  6376. return err;
  6377. }
  6378. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6379. /*
  6380. * Update cpusets according to cpu_active mask. If cpusets are
  6381. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6382. * around partition_sched_domains().
  6383. */
  6384. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6385. void *hcpu)
  6386. {
  6387. switch (action & ~CPU_TASKS_FROZEN) {
  6388. case CPU_ONLINE:
  6389. case CPU_DOWN_FAILED:
  6390. cpuset_update_active_cpus();
  6391. return NOTIFY_OK;
  6392. default:
  6393. return NOTIFY_DONE;
  6394. }
  6395. }
  6396. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6397. void *hcpu)
  6398. {
  6399. switch (action & ~CPU_TASKS_FROZEN) {
  6400. case CPU_DOWN_PREPARE:
  6401. cpuset_update_active_cpus();
  6402. return NOTIFY_OK;
  6403. default:
  6404. return NOTIFY_DONE;
  6405. }
  6406. }
  6407. static int update_runtime(struct notifier_block *nfb,
  6408. unsigned long action, void *hcpu)
  6409. {
  6410. int cpu = (int)(long)hcpu;
  6411. switch (action) {
  6412. case CPU_DOWN_PREPARE:
  6413. case CPU_DOWN_PREPARE_FROZEN:
  6414. disable_runtime(cpu_rq(cpu));
  6415. return NOTIFY_OK;
  6416. case CPU_DOWN_FAILED:
  6417. case CPU_DOWN_FAILED_FROZEN:
  6418. case CPU_ONLINE:
  6419. case CPU_ONLINE_FROZEN:
  6420. enable_runtime(cpu_rq(cpu));
  6421. return NOTIFY_OK;
  6422. default:
  6423. return NOTIFY_DONE;
  6424. }
  6425. }
  6426. void __init sched_init_smp(void)
  6427. {
  6428. cpumask_var_t non_isolated_cpus;
  6429. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6430. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6431. #if defined(CONFIG_NUMA)
  6432. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6433. GFP_KERNEL);
  6434. BUG_ON(sched_group_nodes_bycpu == NULL);
  6435. #endif
  6436. get_online_cpus();
  6437. mutex_lock(&sched_domains_mutex);
  6438. arch_init_sched_domains(cpu_active_mask);
  6439. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6440. if (cpumask_empty(non_isolated_cpus))
  6441. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6442. mutex_unlock(&sched_domains_mutex);
  6443. put_online_cpus();
  6444. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6445. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6446. /* RT runtime code needs to handle some hotplug events */
  6447. hotcpu_notifier(update_runtime, 0);
  6448. init_hrtick();
  6449. /* Move init over to a non-isolated CPU */
  6450. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6451. BUG();
  6452. sched_init_granularity();
  6453. free_cpumask_var(non_isolated_cpus);
  6454. init_sched_rt_class();
  6455. }
  6456. #else
  6457. void __init sched_init_smp(void)
  6458. {
  6459. sched_init_granularity();
  6460. }
  6461. #endif /* CONFIG_SMP */
  6462. const_debug unsigned int sysctl_timer_migration = 1;
  6463. int in_sched_functions(unsigned long addr)
  6464. {
  6465. return in_lock_functions(addr) ||
  6466. (addr >= (unsigned long)__sched_text_start
  6467. && addr < (unsigned long)__sched_text_end);
  6468. }
  6469. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6470. {
  6471. cfs_rq->tasks_timeline = RB_ROOT;
  6472. INIT_LIST_HEAD(&cfs_rq->tasks);
  6473. #ifdef CONFIG_FAIR_GROUP_SCHED
  6474. cfs_rq->rq = rq;
  6475. #endif
  6476. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6477. }
  6478. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6479. {
  6480. struct rt_prio_array *array;
  6481. int i;
  6482. array = &rt_rq->active;
  6483. for (i = 0; i < MAX_RT_PRIO; i++) {
  6484. INIT_LIST_HEAD(array->queue + i);
  6485. __clear_bit(i, array->bitmap);
  6486. }
  6487. /* delimiter for bitsearch: */
  6488. __set_bit(MAX_RT_PRIO, array->bitmap);
  6489. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6490. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6491. #ifdef CONFIG_SMP
  6492. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6493. #endif
  6494. #endif
  6495. #ifdef CONFIG_SMP
  6496. rt_rq->rt_nr_migratory = 0;
  6497. rt_rq->overloaded = 0;
  6498. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6499. #endif
  6500. rt_rq->rt_time = 0;
  6501. rt_rq->rt_throttled = 0;
  6502. rt_rq->rt_runtime = 0;
  6503. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6504. #ifdef CONFIG_RT_GROUP_SCHED
  6505. rt_rq->rt_nr_boosted = 0;
  6506. rt_rq->rq = rq;
  6507. #endif
  6508. }
  6509. #ifdef CONFIG_FAIR_GROUP_SCHED
  6510. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6511. struct sched_entity *se, int cpu, int add,
  6512. struct sched_entity *parent)
  6513. {
  6514. struct rq *rq = cpu_rq(cpu);
  6515. tg->cfs_rq[cpu] = cfs_rq;
  6516. init_cfs_rq(cfs_rq, rq);
  6517. cfs_rq->tg = tg;
  6518. if (add)
  6519. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6520. tg->se[cpu] = se;
  6521. /* se could be NULL for init_task_group */
  6522. if (!se)
  6523. return;
  6524. if (!parent)
  6525. se->cfs_rq = &rq->cfs;
  6526. else
  6527. se->cfs_rq = parent->my_q;
  6528. se->my_q = cfs_rq;
  6529. se->load.weight = tg->shares;
  6530. se->load.inv_weight = 0;
  6531. se->parent = parent;
  6532. }
  6533. #endif
  6534. #ifdef CONFIG_RT_GROUP_SCHED
  6535. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6536. struct sched_rt_entity *rt_se, int cpu, int add,
  6537. struct sched_rt_entity *parent)
  6538. {
  6539. struct rq *rq = cpu_rq(cpu);
  6540. tg->rt_rq[cpu] = rt_rq;
  6541. init_rt_rq(rt_rq, rq);
  6542. rt_rq->tg = tg;
  6543. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6544. if (add)
  6545. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6546. tg->rt_se[cpu] = rt_se;
  6547. if (!rt_se)
  6548. return;
  6549. if (!parent)
  6550. rt_se->rt_rq = &rq->rt;
  6551. else
  6552. rt_se->rt_rq = parent->my_q;
  6553. rt_se->my_q = rt_rq;
  6554. rt_se->parent = parent;
  6555. INIT_LIST_HEAD(&rt_se->run_list);
  6556. }
  6557. #endif
  6558. void __init sched_init(void)
  6559. {
  6560. int i, j;
  6561. unsigned long alloc_size = 0, ptr;
  6562. #ifdef CONFIG_FAIR_GROUP_SCHED
  6563. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6564. #endif
  6565. #ifdef CONFIG_RT_GROUP_SCHED
  6566. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6567. #endif
  6568. #ifdef CONFIG_CPUMASK_OFFSTACK
  6569. alloc_size += num_possible_cpus() * cpumask_size();
  6570. #endif
  6571. if (alloc_size) {
  6572. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6573. #ifdef CONFIG_FAIR_GROUP_SCHED
  6574. init_task_group.se = (struct sched_entity **)ptr;
  6575. ptr += nr_cpu_ids * sizeof(void **);
  6576. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6577. ptr += nr_cpu_ids * sizeof(void **);
  6578. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6579. #ifdef CONFIG_RT_GROUP_SCHED
  6580. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6581. ptr += nr_cpu_ids * sizeof(void **);
  6582. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6583. ptr += nr_cpu_ids * sizeof(void **);
  6584. #endif /* CONFIG_RT_GROUP_SCHED */
  6585. #ifdef CONFIG_CPUMASK_OFFSTACK
  6586. for_each_possible_cpu(i) {
  6587. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6588. ptr += cpumask_size();
  6589. }
  6590. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6591. }
  6592. #ifdef CONFIG_SMP
  6593. init_defrootdomain();
  6594. #endif
  6595. init_rt_bandwidth(&def_rt_bandwidth,
  6596. global_rt_period(), global_rt_runtime());
  6597. #ifdef CONFIG_RT_GROUP_SCHED
  6598. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6599. global_rt_period(), global_rt_runtime());
  6600. #endif /* CONFIG_RT_GROUP_SCHED */
  6601. #ifdef CONFIG_CGROUP_SCHED
  6602. list_add(&init_task_group.list, &task_groups);
  6603. INIT_LIST_HEAD(&init_task_group.children);
  6604. #endif /* CONFIG_CGROUP_SCHED */
  6605. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6606. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6607. __alignof__(unsigned long));
  6608. #endif
  6609. for_each_possible_cpu(i) {
  6610. struct rq *rq;
  6611. rq = cpu_rq(i);
  6612. raw_spin_lock_init(&rq->lock);
  6613. rq->nr_running = 0;
  6614. rq->calc_load_active = 0;
  6615. rq->calc_load_update = jiffies + LOAD_FREQ;
  6616. init_cfs_rq(&rq->cfs, rq);
  6617. init_rt_rq(&rq->rt, rq);
  6618. #ifdef CONFIG_FAIR_GROUP_SCHED
  6619. init_task_group.shares = init_task_group_load;
  6620. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6621. #ifdef CONFIG_CGROUP_SCHED
  6622. /*
  6623. * How much cpu bandwidth does init_task_group get?
  6624. *
  6625. * In case of task-groups formed thr' the cgroup filesystem, it
  6626. * gets 100% of the cpu resources in the system. This overall
  6627. * system cpu resource is divided among the tasks of
  6628. * init_task_group and its child task-groups in a fair manner,
  6629. * based on each entity's (task or task-group's) weight
  6630. * (se->load.weight).
  6631. *
  6632. * In other words, if init_task_group has 10 tasks of weight
  6633. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6634. * then A0's share of the cpu resource is:
  6635. *
  6636. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6637. *
  6638. * We achieve this by letting init_task_group's tasks sit
  6639. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6640. */
  6641. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6642. #endif
  6643. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6644. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6645. #ifdef CONFIG_RT_GROUP_SCHED
  6646. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6647. #ifdef CONFIG_CGROUP_SCHED
  6648. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6649. #endif
  6650. #endif
  6651. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6652. rq->cpu_load[j] = 0;
  6653. rq->last_load_update_tick = jiffies;
  6654. #ifdef CONFIG_SMP
  6655. rq->sd = NULL;
  6656. rq->rd = NULL;
  6657. rq->cpu_power = SCHED_LOAD_SCALE;
  6658. rq->post_schedule = 0;
  6659. rq->active_balance = 0;
  6660. rq->next_balance = jiffies;
  6661. rq->push_cpu = 0;
  6662. rq->cpu = i;
  6663. rq->online = 0;
  6664. rq->idle_stamp = 0;
  6665. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6666. rq_attach_root(rq, &def_root_domain);
  6667. #ifdef CONFIG_NO_HZ
  6668. rq->nohz_balance_kick = 0;
  6669. init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
  6670. #endif
  6671. #endif
  6672. init_rq_hrtick(rq);
  6673. atomic_set(&rq->nr_iowait, 0);
  6674. }
  6675. set_load_weight(&init_task);
  6676. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6677. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6678. #endif
  6679. #ifdef CONFIG_SMP
  6680. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6681. #endif
  6682. #ifdef CONFIG_RT_MUTEXES
  6683. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6684. #endif
  6685. /*
  6686. * The boot idle thread does lazy MMU switching as well:
  6687. */
  6688. atomic_inc(&init_mm.mm_count);
  6689. enter_lazy_tlb(&init_mm, current);
  6690. /*
  6691. * Make us the idle thread. Technically, schedule() should not be
  6692. * called from this thread, however somewhere below it might be,
  6693. * but because we are the idle thread, we just pick up running again
  6694. * when this runqueue becomes "idle".
  6695. */
  6696. init_idle(current, smp_processor_id());
  6697. calc_load_update = jiffies + LOAD_FREQ;
  6698. /*
  6699. * During early bootup we pretend to be a normal task:
  6700. */
  6701. current->sched_class = &fair_sched_class;
  6702. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6703. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6704. #ifdef CONFIG_SMP
  6705. #ifdef CONFIG_NO_HZ
  6706. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  6707. alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
  6708. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  6709. atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
  6710. atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
  6711. #endif
  6712. /* May be allocated at isolcpus cmdline parse time */
  6713. if (cpu_isolated_map == NULL)
  6714. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6715. #endif /* SMP */
  6716. perf_event_init();
  6717. scheduler_running = 1;
  6718. }
  6719. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6720. static inline int preempt_count_equals(int preempt_offset)
  6721. {
  6722. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6723. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6724. }
  6725. void __might_sleep(const char *file, int line, int preempt_offset)
  6726. {
  6727. #ifdef in_atomic
  6728. static unsigned long prev_jiffy; /* ratelimiting */
  6729. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6730. system_state != SYSTEM_RUNNING || oops_in_progress)
  6731. return;
  6732. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6733. return;
  6734. prev_jiffy = jiffies;
  6735. printk(KERN_ERR
  6736. "BUG: sleeping function called from invalid context at %s:%d\n",
  6737. file, line);
  6738. printk(KERN_ERR
  6739. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6740. in_atomic(), irqs_disabled(),
  6741. current->pid, current->comm);
  6742. debug_show_held_locks(current);
  6743. if (irqs_disabled())
  6744. print_irqtrace_events(current);
  6745. dump_stack();
  6746. #endif
  6747. }
  6748. EXPORT_SYMBOL(__might_sleep);
  6749. #endif
  6750. #ifdef CONFIG_MAGIC_SYSRQ
  6751. static void normalize_task(struct rq *rq, struct task_struct *p)
  6752. {
  6753. int on_rq;
  6754. on_rq = p->se.on_rq;
  6755. if (on_rq)
  6756. deactivate_task(rq, p, 0);
  6757. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6758. if (on_rq) {
  6759. activate_task(rq, p, 0);
  6760. resched_task(rq->curr);
  6761. }
  6762. }
  6763. void normalize_rt_tasks(void)
  6764. {
  6765. struct task_struct *g, *p;
  6766. unsigned long flags;
  6767. struct rq *rq;
  6768. read_lock_irqsave(&tasklist_lock, flags);
  6769. do_each_thread(g, p) {
  6770. /*
  6771. * Only normalize user tasks:
  6772. */
  6773. if (!p->mm)
  6774. continue;
  6775. p->se.exec_start = 0;
  6776. #ifdef CONFIG_SCHEDSTATS
  6777. p->se.statistics.wait_start = 0;
  6778. p->se.statistics.sleep_start = 0;
  6779. p->se.statistics.block_start = 0;
  6780. #endif
  6781. if (!rt_task(p)) {
  6782. /*
  6783. * Renice negative nice level userspace
  6784. * tasks back to 0:
  6785. */
  6786. if (TASK_NICE(p) < 0 && p->mm)
  6787. set_user_nice(p, 0);
  6788. continue;
  6789. }
  6790. raw_spin_lock(&p->pi_lock);
  6791. rq = __task_rq_lock(p);
  6792. normalize_task(rq, p);
  6793. __task_rq_unlock(rq);
  6794. raw_spin_unlock(&p->pi_lock);
  6795. } while_each_thread(g, p);
  6796. read_unlock_irqrestore(&tasklist_lock, flags);
  6797. }
  6798. #endif /* CONFIG_MAGIC_SYSRQ */
  6799. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6800. /*
  6801. * These functions are only useful for the IA64 MCA handling, or kdb.
  6802. *
  6803. * They can only be called when the whole system has been
  6804. * stopped - every CPU needs to be quiescent, and no scheduling
  6805. * activity can take place. Using them for anything else would
  6806. * be a serious bug, and as a result, they aren't even visible
  6807. * under any other configuration.
  6808. */
  6809. /**
  6810. * curr_task - return the current task for a given cpu.
  6811. * @cpu: the processor in question.
  6812. *
  6813. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6814. */
  6815. struct task_struct *curr_task(int cpu)
  6816. {
  6817. return cpu_curr(cpu);
  6818. }
  6819. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6820. #ifdef CONFIG_IA64
  6821. /**
  6822. * set_curr_task - set the current task for a given cpu.
  6823. * @cpu: the processor in question.
  6824. * @p: the task pointer to set.
  6825. *
  6826. * Description: This function must only be used when non-maskable interrupts
  6827. * are serviced on a separate stack. It allows the architecture to switch the
  6828. * notion of the current task on a cpu in a non-blocking manner. This function
  6829. * must be called with all CPU's synchronized, and interrupts disabled, the
  6830. * and caller must save the original value of the current task (see
  6831. * curr_task() above) and restore that value before reenabling interrupts and
  6832. * re-starting the system.
  6833. *
  6834. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6835. */
  6836. void set_curr_task(int cpu, struct task_struct *p)
  6837. {
  6838. cpu_curr(cpu) = p;
  6839. }
  6840. #endif
  6841. #ifdef CONFIG_FAIR_GROUP_SCHED
  6842. static void free_fair_sched_group(struct task_group *tg)
  6843. {
  6844. int i;
  6845. for_each_possible_cpu(i) {
  6846. if (tg->cfs_rq)
  6847. kfree(tg->cfs_rq[i]);
  6848. if (tg->se)
  6849. kfree(tg->se[i]);
  6850. }
  6851. kfree(tg->cfs_rq);
  6852. kfree(tg->se);
  6853. }
  6854. static
  6855. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6856. {
  6857. struct cfs_rq *cfs_rq;
  6858. struct sched_entity *se;
  6859. struct rq *rq;
  6860. int i;
  6861. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6862. if (!tg->cfs_rq)
  6863. goto err;
  6864. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6865. if (!tg->se)
  6866. goto err;
  6867. tg->shares = NICE_0_LOAD;
  6868. for_each_possible_cpu(i) {
  6869. rq = cpu_rq(i);
  6870. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6871. GFP_KERNEL, cpu_to_node(i));
  6872. if (!cfs_rq)
  6873. goto err;
  6874. se = kzalloc_node(sizeof(struct sched_entity),
  6875. GFP_KERNEL, cpu_to_node(i));
  6876. if (!se)
  6877. goto err_free_rq;
  6878. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6879. }
  6880. return 1;
  6881. err_free_rq:
  6882. kfree(cfs_rq);
  6883. err:
  6884. return 0;
  6885. }
  6886. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6887. {
  6888. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6889. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6890. }
  6891. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6892. {
  6893. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6894. }
  6895. #else /* !CONFG_FAIR_GROUP_SCHED */
  6896. static inline void free_fair_sched_group(struct task_group *tg)
  6897. {
  6898. }
  6899. static inline
  6900. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6901. {
  6902. return 1;
  6903. }
  6904. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6905. {
  6906. }
  6907. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6908. {
  6909. }
  6910. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6911. #ifdef CONFIG_RT_GROUP_SCHED
  6912. static void free_rt_sched_group(struct task_group *tg)
  6913. {
  6914. int i;
  6915. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6916. for_each_possible_cpu(i) {
  6917. if (tg->rt_rq)
  6918. kfree(tg->rt_rq[i]);
  6919. if (tg->rt_se)
  6920. kfree(tg->rt_se[i]);
  6921. }
  6922. kfree(tg->rt_rq);
  6923. kfree(tg->rt_se);
  6924. }
  6925. static
  6926. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6927. {
  6928. struct rt_rq *rt_rq;
  6929. struct sched_rt_entity *rt_se;
  6930. struct rq *rq;
  6931. int i;
  6932. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6933. if (!tg->rt_rq)
  6934. goto err;
  6935. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6936. if (!tg->rt_se)
  6937. goto err;
  6938. init_rt_bandwidth(&tg->rt_bandwidth,
  6939. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6940. for_each_possible_cpu(i) {
  6941. rq = cpu_rq(i);
  6942. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6943. GFP_KERNEL, cpu_to_node(i));
  6944. if (!rt_rq)
  6945. goto err;
  6946. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6947. GFP_KERNEL, cpu_to_node(i));
  6948. if (!rt_se)
  6949. goto err_free_rq;
  6950. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6951. }
  6952. return 1;
  6953. err_free_rq:
  6954. kfree(rt_rq);
  6955. err:
  6956. return 0;
  6957. }
  6958. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6959. {
  6960. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6961. &cpu_rq(cpu)->leaf_rt_rq_list);
  6962. }
  6963. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6964. {
  6965. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6966. }
  6967. #else /* !CONFIG_RT_GROUP_SCHED */
  6968. static inline void free_rt_sched_group(struct task_group *tg)
  6969. {
  6970. }
  6971. static inline
  6972. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6973. {
  6974. return 1;
  6975. }
  6976. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6977. {
  6978. }
  6979. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6980. {
  6981. }
  6982. #endif /* CONFIG_RT_GROUP_SCHED */
  6983. #ifdef CONFIG_CGROUP_SCHED
  6984. static void free_sched_group(struct task_group *tg)
  6985. {
  6986. free_fair_sched_group(tg);
  6987. free_rt_sched_group(tg);
  6988. kfree(tg);
  6989. }
  6990. /* allocate runqueue etc for a new task group */
  6991. struct task_group *sched_create_group(struct task_group *parent)
  6992. {
  6993. struct task_group *tg;
  6994. unsigned long flags;
  6995. int i;
  6996. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6997. if (!tg)
  6998. return ERR_PTR(-ENOMEM);
  6999. if (!alloc_fair_sched_group(tg, parent))
  7000. goto err;
  7001. if (!alloc_rt_sched_group(tg, parent))
  7002. goto err;
  7003. spin_lock_irqsave(&task_group_lock, flags);
  7004. for_each_possible_cpu(i) {
  7005. register_fair_sched_group(tg, i);
  7006. register_rt_sched_group(tg, i);
  7007. }
  7008. list_add_rcu(&tg->list, &task_groups);
  7009. WARN_ON(!parent); /* root should already exist */
  7010. tg->parent = parent;
  7011. INIT_LIST_HEAD(&tg->children);
  7012. list_add_rcu(&tg->siblings, &parent->children);
  7013. spin_unlock_irqrestore(&task_group_lock, flags);
  7014. return tg;
  7015. err:
  7016. free_sched_group(tg);
  7017. return ERR_PTR(-ENOMEM);
  7018. }
  7019. /* rcu callback to free various structures associated with a task group */
  7020. static void free_sched_group_rcu(struct rcu_head *rhp)
  7021. {
  7022. /* now it should be safe to free those cfs_rqs */
  7023. free_sched_group(container_of(rhp, struct task_group, rcu));
  7024. }
  7025. /* Destroy runqueue etc associated with a task group */
  7026. void sched_destroy_group(struct task_group *tg)
  7027. {
  7028. unsigned long flags;
  7029. int i;
  7030. spin_lock_irqsave(&task_group_lock, flags);
  7031. for_each_possible_cpu(i) {
  7032. unregister_fair_sched_group(tg, i);
  7033. unregister_rt_sched_group(tg, i);
  7034. }
  7035. list_del_rcu(&tg->list);
  7036. list_del_rcu(&tg->siblings);
  7037. spin_unlock_irqrestore(&task_group_lock, flags);
  7038. /* wait for possible concurrent references to cfs_rqs complete */
  7039. call_rcu(&tg->rcu, free_sched_group_rcu);
  7040. }
  7041. /* change task's runqueue when it moves between groups.
  7042. * The caller of this function should have put the task in its new group
  7043. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7044. * reflect its new group.
  7045. */
  7046. void sched_move_task(struct task_struct *tsk)
  7047. {
  7048. int on_rq, running;
  7049. unsigned long flags;
  7050. struct rq *rq;
  7051. rq = task_rq_lock(tsk, &flags);
  7052. running = task_current(rq, tsk);
  7053. on_rq = tsk->se.on_rq;
  7054. if (on_rq)
  7055. dequeue_task(rq, tsk, 0);
  7056. if (unlikely(running))
  7057. tsk->sched_class->put_prev_task(rq, tsk);
  7058. set_task_rq(tsk, task_cpu(tsk));
  7059. #ifdef CONFIG_FAIR_GROUP_SCHED
  7060. if (tsk->sched_class->moved_group)
  7061. tsk->sched_class->moved_group(tsk, on_rq);
  7062. #endif
  7063. if (unlikely(running))
  7064. tsk->sched_class->set_curr_task(rq);
  7065. if (on_rq)
  7066. enqueue_task(rq, tsk, 0);
  7067. task_rq_unlock(rq, &flags);
  7068. }
  7069. #endif /* CONFIG_CGROUP_SCHED */
  7070. #ifdef CONFIG_FAIR_GROUP_SCHED
  7071. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7072. {
  7073. struct cfs_rq *cfs_rq = se->cfs_rq;
  7074. int on_rq;
  7075. on_rq = se->on_rq;
  7076. if (on_rq)
  7077. dequeue_entity(cfs_rq, se, 0);
  7078. se->load.weight = shares;
  7079. se->load.inv_weight = 0;
  7080. if (on_rq)
  7081. enqueue_entity(cfs_rq, se, 0);
  7082. }
  7083. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7084. {
  7085. struct cfs_rq *cfs_rq = se->cfs_rq;
  7086. struct rq *rq = cfs_rq->rq;
  7087. unsigned long flags;
  7088. raw_spin_lock_irqsave(&rq->lock, flags);
  7089. __set_se_shares(se, shares);
  7090. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7091. }
  7092. static DEFINE_MUTEX(shares_mutex);
  7093. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7094. {
  7095. int i;
  7096. unsigned long flags;
  7097. /*
  7098. * We can't change the weight of the root cgroup.
  7099. */
  7100. if (!tg->se[0])
  7101. return -EINVAL;
  7102. if (shares < MIN_SHARES)
  7103. shares = MIN_SHARES;
  7104. else if (shares > MAX_SHARES)
  7105. shares = MAX_SHARES;
  7106. mutex_lock(&shares_mutex);
  7107. if (tg->shares == shares)
  7108. goto done;
  7109. spin_lock_irqsave(&task_group_lock, flags);
  7110. for_each_possible_cpu(i)
  7111. unregister_fair_sched_group(tg, i);
  7112. list_del_rcu(&tg->siblings);
  7113. spin_unlock_irqrestore(&task_group_lock, flags);
  7114. /* wait for any ongoing reference to this group to finish */
  7115. synchronize_sched();
  7116. /*
  7117. * Now we are free to modify the group's share on each cpu
  7118. * w/o tripping rebalance_share or load_balance_fair.
  7119. */
  7120. tg->shares = shares;
  7121. for_each_possible_cpu(i) {
  7122. /*
  7123. * force a rebalance
  7124. */
  7125. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7126. set_se_shares(tg->se[i], shares);
  7127. }
  7128. /*
  7129. * Enable load balance activity on this group, by inserting it back on
  7130. * each cpu's rq->leaf_cfs_rq_list.
  7131. */
  7132. spin_lock_irqsave(&task_group_lock, flags);
  7133. for_each_possible_cpu(i)
  7134. register_fair_sched_group(tg, i);
  7135. list_add_rcu(&tg->siblings, &tg->parent->children);
  7136. spin_unlock_irqrestore(&task_group_lock, flags);
  7137. done:
  7138. mutex_unlock(&shares_mutex);
  7139. return 0;
  7140. }
  7141. unsigned long sched_group_shares(struct task_group *tg)
  7142. {
  7143. return tg->shares;
  7144. }
  7145. #endif
  7146. #ifdef CONFIG_RT_GROUP_SCHED
  7147. /*
  7148. * Ensure that the real time constraints are schedulable.
  7149. */
  7150. static DEFINE_MUTEX(rt_constraints_mutex);
  7151. static unsigned long to_ratio(u64 period, u64 runtime)
  7152. {
  7153. if (runtime == RUNTIME_INF)
  7154. return 1ULL << 20;
  7155. return div64_u64(runtime << 20, period);
  7156. }
  7157. /* Must be called with tasklist_lock held */
  7158. static inline int tg_has_rt_tasks(struct task_group *tg)
  7159. {
  7160. struct task_struct *g, *p;
  7161. do_each_thread(g, p) {
  7162. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7163. return 1;
  7164. } while_each_thread(g, p);
  7165. return 0;
  7166. }
  7167. struct rt_schedulable_data {
  7168. struct task_group *tg;
  7169. u64 rt_period;
  7170. u64 rt_runtime;
  7171. };
  7172. static int tg_schedulable(struct task_group *tg, void *data)
  7173. {
  7174. struct rt_schedulable_data *d = data;
  7175. struct task_group *child;
  7176. unsigned long total, sum = 0;
  7177. u64 period, runtime;
  7178. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7179. runtime = tg->rt_bandwidth.rt_runtime;
  7180. if (tg == d->tg) {
  7181. period = d->rt_period;
  7182. runtime = d->rt_runtime;
  7183. }
  7184. /*
  7185. * Cannot have more runtime than the period.
  7186. */
  7187. if (runtime > period && runtime != RUNTIME_INF)
  7188. return -EINVAL;
  7189. /*
  7190. * Ensure we don't starve existing RT tasks.
  7191. */
  7192. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7193. return -EBUSY;
  7194. total = to_ratio(period, runtime);
  7195. /*
  7196. * Nobody can have more than the global setting allows.
  7197. */
  7198. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7199. return -EINVAL;
  7200. /*
  7201. * The sum of our children's runtime should not exceed our own.
  7202. */
  7203. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7204. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7205. runtime = child->rt_bandwidth.rt_runtime;
  7206. if (child == d->tg) {
  7207. period = d->rt_period;
  7208. runtime = d->rt_runtime;
  7209. }
  7210. sum += to_ratio(period, runtime);
  7211. }
  7212. if (sum > total)
  7213. return -EINVAL;
  7214. return 0;
  7215. }
  7216. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7217. {
  7218. struct rt_schedulable_data data = {
  7219. .tg = tg,
  7220. .rt_period = period,
  7221. .rt_runtime = runtime,
  7222. };
  7223. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7224. }
  7225. static int tg_set_bandwidth(struct task_group *tg,
  7226. u64 rt_period, u64 rt_runtime)
  7227. {
  7228. int i, err = 0;
  7229. mutex_lock(&rt_constraints_mutex);
  7230. read_lock(&tasklist_lock);
  7231. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7232. if (err)
  7233. goto unlock;
  7234. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7235. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7236. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7237. for_each_possible_cpu(i) {
  7238. struct rt_rq *rt_rq = tg->rt_rq[i];
  7239. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7240. rt_rq->rt_runtime = rt_runtime;
  7241. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7242. }
  7243. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7244. unlock:
  7245. read_unlock(&tasklist_lock);
  7246. mutex_unlock(&rt_constraints_mutex);
  7247. return err;
  7248. }
  7249. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7250. {
  7251. u64 rt_runtime, rt_period;
  7252. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7253. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7254. if (rt_runtime_us < 0)
  7255. rt_runtime = RUNTIME_INF;
  7256. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7257. }
  7258. long sched_group_rt_runtime(struct task_group *tg)
  7259. {
  7260. u64 rt_runtime_us;
  7261. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7262. return -1;
  7263. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7264. do_div(rt_runtime_us, NSEC_PER_USEC);
  7265. return rt_runtime_us;
  7266. }
  7267. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7268. {
  7269. u64 rt_runtime, rt_period;
  7270. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7271. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7272. if (rt_period == 0)
  7273. return -EINVAL;
  7274. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7275. }
  7276. long sched_group_rt_period(struct task_group *tg)
  7277. {
  7278. u64 rt_period_us;
  7279. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7280. do_div(rt_period_us, NSEC_PER_USEC);
  7281. return rt_period_us;
  7282. }
  7283. static int sched_rt_global_constraints(void)
  7284. {
  7285. u64 runtime, period;
  7286. int ret = 0;
  7287. if (sysctl_sched_rt_period <= 0)
  7288. return -EINVAL;
  7289. runtime = global_rt_runtime();
  7290. period = global_rt_period();
  7291. /*
  7292. * Sanity check on the sysctl variables.
  7293. */
  7294. if (runtime > period && runtime != RUNTIME_INF)
  7295. return -EINVAL;
  7296. mutex_lock(&rt_constraints_mutex);
  7297. read_lock(&tasklist_lock);
  7298. ret = __rt_schedulable(NULL, 0, 0);
  7299. read_unlock(&tasklist_lock);
  7300. mutex_unlock(&rt_constraints_mutex);
  7301. return ret;
  7302. }
  7303. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7304. {
  7305. /* Don't accept realtime tasks when there is no way for them to run */
  7306. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7307. return 0;
  7308. return 1;
  7309. }
  7310. #else /* !CONFIG_RT_GROUP_SCHED */
  7311. static int sched_rt_global_constraints(void)
  7312. {
  7313. unsigned long flags;
  7314. int i;
  7315. if (sysctl_sched_rt_period <= 0)
  7316. return -EINVAL;
  7317. /*
  7318. * There's always some RT tasks in the root group
  7319. * -- migration, kstopmachine etc..
  7320. */
  7321. if (sysctl_sched_rt_runtime == 0)
  7322. return -EBUSY;
  7323. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7324. for_each_possible_cpu(i) {
  7325. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7326. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7327. rt_rq->rt_runtime = global_rt_runtime();
  7328. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7329. }
  7330. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7331. return 0;
  7332. }
  7333. #endif /* CONFIG_RT_GROUP_SCHED */
  7334. int sched_rt_handler(struct ctl_table *table, int write,
  7335. void __user *buffer, size_t *lenp,
  7336. loff_t *ppos)
  7337. {
  7338. int ret;
  7339. int old_period, old_runtime;
  7340. static DEFINE_MUTEX(mutex);
  7341. mutex_lock(&mutex);
  7342. old_period = sysctl_sched_rt_period;
  7343. old_runtime = sysctl_sched_rt_runtime;
  7344. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7345. if (!ret && write) {
  7346. ret = sched_rt_global_constraints();
  7347. if (ret) {
  7348. sysctl_sched_rt_period = old_period;
  7349. sysctl_sched_rt_runtime = old_runtime;
  7350. } else {
  7351. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7352. def_rt_bandwidth.rt_period =
  7353. ns_to_ktime(global_rt_period());
  7354. }
  7355. }
  7356. mutex_unlock(&mutex);
  7357. return ret;
  7358. }
  7359. #ifdef CONFIG_CGROUP_SCHED
  7360. /* return corresponding task_group object of a cgroup */
  7361. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7362. {
  7363. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7364. struct task_group, css);
  7365. }
  7366. static struct cgroup_subsys_state *
  7367. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7368. {
  7369. struct task_group *tg, *parent;
  7370. if (!cgrp->parent) {
  7371. /* This is early initialization for the top cgroup */
  7372. return &init_task_group.css;
  7373. }
  7374. parent = cgroup_tg(cgrp->parent);
  7375. tg = sched_create_group(parent);
  7376. if (IS_ERR(tg))
  7377. return ERR_PTR(-ENOMEM);
  7378. return &tg->css;
  7379. }
  7380. static void
  7381. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7382. {
  7383. struct task_group *tg = cgroup_tg(cgrp);
  7384. sched_destroy_group(tg);
  7385. }
  7386. static int
  7387. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7388. {
  7389. #ifdef CONFIG_RT_GROUP_SCHED
  7390. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7391. return -EINVAL;
  7392. #else
  7393. /* We don't support RT-tasks being in separate groups */
  7394. if (tsk->sched_class != &fair_sched_class)
  7395. return -EINVAL;
  7396. #endif
  7397. return 0;
  7398. }
  7399. static int
  7400. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7401. struct task_struct *tsk, bool threadgroup)
  7402. {
  7403. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7404. if (retval)
  7405. return retval;
  7406. if (threadgroup) {
  7407. struct task_struct *c;
  7408. rcu_read_lock();
  7409. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7410. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7411. if (retval) {
  7412. rcu_read_unlock();
  7413. return retval;
  7414. }
  7415. }
  7416. rcu_read_unlock();
  7417. }
  7418. return 0;
  7419. }
  7420. static void
  7421. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7422. struct cgroup *old_cont, struct task_struct *tsk,
  7423. bool threadgroup)
  7424. {
  7425. sched_move_task(tsk);
  7426. if (threadgroup) {
  7427. struct task_struct *c;
  7428. rcu_read_lock();
  7429. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7430. sched_move_task(c);
  7431. }
  7432. rcu_read_unlock();
  7433. }
  7434. }
  7435. #ifdef CONFIG_FAIR_GROUP_SCHED
  7436. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7437. u64 shareval)
  7438. {
  7439. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7440. }
  7441. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7442. {
  7443. struct task_group *tg = cgroup_tg(cgrp);
  7444. return (u64) tg->shares;
  7445. }
  7446. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7447. #ifdef CONFIG_RT_GROUP_SCHED
  7448. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7449. s64 val)
  7450. {
  7451. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7452. }
  7453. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7454. {
  7455. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7456. }
  7457. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7458. u64 rt_period_us)
  7459. {
  7460. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7461. }
  7462. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7463. {
  7464. return sched_group_rt_period(cgroup_tg(cgrp));
  7465. }
  7466. #endif /* CONFIG_RT_GROUP_SCHED */
  7467. static struct cftype cpu_files[] = {
  7468. #ifdef CONFIG_FAIR_GROUP_SCHED
  7469. {
  7470. .name = "shares",
  7471. .read_u64 = cpu_shares_read_u64,
  7472. .write_u64 = cpu_shares_write_u64,
  7473. },
  7474. #endif
  7475. #ifdef CONFIG_RT_GROUP_SCHED
  7476. {
  7477. .name = "rt_runtime_us",
  7478. .read_s64 = cpu_rt_runtime_read,
  7479. .write_s64 = cpu_rt_runtime_write,
  7480. },
  7481. {
  7482. .name = "rt_period_us",
  7483. .read_u64 = cpu_rt_period_read_uint,
  7484. .write_u64 = cpu_rt_period_write_uint,
  7485. },
  7486. #endif
  7487. };
  7488. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7489. {
  7490. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7491. }
  7492. struct cgroup_subsys cpu_cgroup_subsys = {
  7493. .name = "cpu",
  7494. .create = cpu_cgroup_create,
  7495. .destroy = cpu_cgroup_destroy,
  7496. .can_attach = cpu_cgroup_can_attach,
  7497. .attach = cpu_cgroup_attach,
  7498. .populate = cpu_cgroup_populate,
  7499. .subsys_id = cpu_cgroup_subsys_id,
  7500. .early_init = 1,
  7501. };
  7502. #endif /* CONFIG_CGROUP_SCHED */
  7503. #ifdef CONFIG_CGROUP_CPUACCT
  7504. /*
  7505. * CPU accounting code for task groups.
  7506. *
  7507. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7508. * (balbir@in.ibm.com).
  7509. */
  7510. /* track cpu usage of a group of tasks and its child groups */
  7511. struct cpuacct {
  7512. struct cgroup_subsys_state css;
  7513. /* cpuusage holds pointer to a u64-type object on every cpu */
  7514. u64 __percpu *cpuusage;
  7515. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7516. struct cpuacct *parent;
  7517. };
  7518. struct cgroup_subsys cpuacct_subsys;
  7519. /* return cpu accounting group corresponding to this container */
  7520. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7521. {
  7522. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7523. struct cpuacct, css);
  7524. }
  7525. /* return cpu accounting group to which this task belongs */
  7526. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7527. {
  7528. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7529. struct cpuacct, css);
  7530. }
  7531. /* create a new cpu accounting group */
  7532. static struct cgroup_subsys_state *cpuacct_create(
  7533. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7534. {
  7535. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7536. int i;
  7537. if (!ca)
  7538. goto out;
  7539. ca->cpuusage = alloc_percpu(u64);
  7540. if (!ca->cpuusage)
  7541. goto out_free_ca;
  7542. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7543. if (percpu_counter_init(&ca->cpustat[i], 0))
  7544. goto out_free_counters;
  7545. if (cgrp->parent)
  7546. ca->parent = cgroup_ca(cgrp->parent);
  7547. return &ca->css;
  7548. out_free_counters:
  7549. while (--i >= 0)
  7550. percpu_counter_destroy(&ca->cpustat[i]);
  7551. free_percpu(ca->cpuusage);
  7552. out_free_ca:
  7553. kfree(ca);
  7554. out:
  7555. return ERR_PTR(-ENOMEM);
  7556. }
  7557. /* destroy an existing cpu accounting group */
  7558. static void
  7559. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7560. {
  7561. struct cpuacct *ca = cgroup_ca(cgrp);
  7562. int i;
  7563. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7564. percpu_counter_destroy(&ca->cpustat[i]);
  7565. free_percpu(ca->cpuusage);
  7566. kfree(ca);
  7567. }
  7568. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7569. {
  7570. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7571. u64 data;
  7572. #ifndef CONFIG_64BIT
  7573. /*
  7574. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7575. */
  7576. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7577. data = *cpuusage;
  7578. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7579. #else
  7580. data = *cpuusage;
  7581. #endif
  7582. return data;
  7583. }
  7584. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7585. {
  7586. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7587. #ifndef CONFIG_64BIT
  7588. /*
  7589. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7590. */
  7591. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7592. *cpuusage = val;
  7593. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7594. #else
  7595. *cpuusage = val;
  7596. #endif
  7597. }
  7598. /* return total cpu usage (in nanoseconds) of a group */
  7599. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7600. {
  7601. struct cpuacct *ca = cgroup_ca(cgrp);
  7602. u64 totalcpuusage = 0;
  7603. int i;
  7604. for_each_present_cpu(i)
  7605. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7606. return totalcpuusage;
  7607. }
  7608. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7609. u64 reset)
  7610. {
  7611. struct cpuacct *ca = cgroup_ca(cgrp);
  7612. int err = 0;
  7613. int i;
  7614. if (reset) {
  7615. err = -EINVAL;
  7616. goto out;
  7617. }
  7618. for_each_present_cpu(i)
  7619. cpuacct_cpuusage_write(ca, i, 0);
  7620. out:
  7621. return err;
  7622. }
  7623. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7624. struct seq_file *m)
  7625. {
  7626. struct cpuacct *ca = cgroup_ca(cgroup);
  7627. u64 percpu;
  7628. int i;
  7629. for_each_present_cpu(i) {
  7630. percpu = cpuacct_cpuusage_read(ca, i);
  7631. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7632. }
  7633. seq_printf(m, "\n");
  7634. return 0;
  7635. }
  7636. static const char *cpuacct_stat_desc[] = {
  7637. [CPUACCT_STAT_USER] = "user",
  7638. [CPUACCT_STAT_SYSTEM] = "system",
  7639. };
  7640. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7641. struct cgroup_map_cb *cb)
  7642. {
  7643. struct cpuacct *ca = cgroup_ca(cgrp);
  7644. int i;
  7645. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7646. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7647. val = cputime64_to_clock_t(val);
  7648. cb->fill(cb, cpuacct_stat_desc[i], val);
  7649. }
  7650. return 0;
  7651. }
  7652. static struct cftype files[] = {
  7653. {
  7654. .name = "usage",
  7655. .read_u64 = cpuusage_read,
  7656. .write_u64 = cpuusage_write,
  7657. },
  7658. {
  7659. .name = "usage_percpu",
  7660. .read_seq_string = cpuacct_percpu_seq_read,
  7661. },
  7662. {
  7663. .name = "stat",
  7664. .read_map = cpuacct_stats_show,
  7665. },
  7666. };
  7667. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7668. {
  7669. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7670. }
  7671. /*
  7672. * charge this task's execution time to its accounting group.
  7673. *
  7674. * called with rq->lock held.
  7675. */
  7676. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7677. {
  7678. struct cpuacct *ca;
  7679. int cpu;
  7680. if (unlikely(!cpuacct_subsys.active))
  7681. return;
  7682. cpu = task_cpu(tsk);
  7683. rcu_read_lock();
  7684. ca = task_ca(tsk);
  7685. for (; ca; ca = ca->parent) {
  7686. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7687. *cpuusage += cputime;
  7688. }
  7689. rcu_read_unlock();
  7690. }
  7691. /*
  7692. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7693. * in cputime_t units. As a result, cpuacct_update_stats calls
  7694. * percpu_counter_add with values large enough to always overflow the
  7695. * per cpu batch limit causing bad SMP scalability.
  7696. *
  7697. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7698. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7699. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7700. */
  7701. #ifdef CONFIG_SMP
  7702. #define CPUACCT_BATCH \
  7703. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7704. #else
  7705. #define CPUACCT_BATCH 0
  7706. #endif
  7707. /*
  7708. * Charge the system/user time to the task's accounting group.
  7709. */
  7710. static void cpuacct_update_stats(struct task_struct *tsk,
  7711. enum cpuacct_stat_index idx, cputime_t val)
  7712. {
  7713. struct cpuacct *ca;
  7714. int batch = CPUACCT_BATCH;
  7715. if (unlikely(!cpuacct_subsys.active))
  7716. return;
  7717. rcu_read_lock();
  7718. ca = task_ca(tsk);
  7719. do {
  7720. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7721. ca = ca->parent;
  7722. } while (ca);
  7723. rcu_read_unlock();
  7724. }
  7725. struct cgroup_subsys cpuacct_subsys = {
  7726. .name = "cpuacct",
  7727. .create = cpuacct_create,
  7728. .destroy = cpuacct_destroy,
  7729. .populate = cpuacct_populate,
  7730. .subsys_id = cpuacct_subsys_id,
  7731. };
  7732. #endif /* CONFIG_CGROUP_CPUACCT */
  7733. #ifndef CONFIG_SMP
  7734. void synchronize_sched_expedited(void)
  7735. {
  7736. barrier();
  7737. }
  7738. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7739. #else /* #ifndef CONFIG_SMP */
  7740. static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
  7741. static int synchronize_sched_expedited_cpu_stop(void *data)
  7742. {
  7743. /*
  7744. * There must be a full memory barrier on each affected CPU
  7745. * between the time that try_stop_cpus() is called and the
  7746. * time that it returns.
  7747. *
  7748. * In the current initial implementation of cpu_stop, the
  7749. * above condition is already met when the control reaches
  7750. * this point and the following smp_mb() is not strictly
  7751. * necessary. Do smp_mb() anyway for documentation and
  7752. * robustness against future implementation changes.
  7753. */
  7754. smp_mb(); /* See above comment block. */
  7755. return 0;
  7756. }
  7757. /*
  7758. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7759. * approach to force grace period to end quickly. This consumes
  7760. * significant time on all CPUs, and is thus not recommended for
  7761. * any sort of common-case code.
  7762. *
  7763. * Note that it is illegal to call this function while holding any
  7764. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7765. * observe this restriction will result in deadlock.
  7766. */
  7767. void synchronize_sched_expedited(void)
  7768. {
  7769. int snap, trycount = 0;
  7770. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7771. snap = atomic_read(&synchronize_sched_expedited_count) + 1;
  7772. get_online_cpus();
  7773. while (try_stop_cpus(cpu_online_mask,
  7774. synchronize_sched_expedited_cpu_stop,
  7775. NULL) == -EAGAIN) {
  7776. put_online_cpus();
  7777. if (trycount++ < 10)
  7778. udelay(trycount * num_online_cpus());
  7779. else {
  7780. synchronize_sched();
  7781. return;
  7782. }
  7783. if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
  7784. smp_mb(); /* ensure test happens before caller kfree */
  7785. return;
  7786. }
  7787. get_online_cpus();
  7788. }
  7789. atomic_inc(&synchronize_sched_expedited_count);
  7790. smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
  7791. put_online_cpus();
  7792. }
  7793. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7794. #endif /* #else #ifndef CONFIG_SMP */