sched.c 225 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/proc_fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/sysctl.h>
  60. #include <linux/syscalls.h>
  61. #include <linux/times.h>
  62. #include <linux/tsacct_kern.h>
  63. #include <linux/kprobes.h>
  64. #include <linux/delayacct.h>
  65. #include <linux/reciprocal_div.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/bootmem.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <trace/sched.h>
  75. #include <asm/tlb.h>
  76. #include <asm/irq_regs.h>
  77. #include "sched_cpupri.h"
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. #ifdef CONFIG_SMP
  112. /*
  113. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  114. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  115. */
  116. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  117. {
  118. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  119. }
  120. /*
  121. * Each time a sched group cpu_power is changed,
  122. * we must compute its reciprocal value
  123. */
  124. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  125. {
  126. sg->__cpu_power += val;
  127. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  128. }
  129. #endif
  130. static inline int rt_policy(int policy)
  131. {
  132. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  133. return 1;
  134. return 0;
  135. }
  136. static inline int task_has_rt_policy(struct task_struct *p)
  137. {
  138. return rt_policy(p->policy);
  139. }
  140. /*
  141. * This is the priority-queue data structure of the RT scheduling class:
  142. */
  143. struct rt_prio_array {
  144. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  145. struct list_head queue[MAX_RT_PRIO];
  146. };
  147. struct rt_bandwidth {
  148. /* nests inside the rq lock: */
  149. spinlock_t rt_runtime_lock;
  150. ktime_t rt_period;
  151. u64 rt_runtime;
  152. struct hrtimer rt_period_timer;
  153. };
  154. static struct rt_bandwidth def_rt_bandwidth;
  155. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  156. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  157. {
  158. struct rt_bandwidth *rt_b =
  159. container_of(timer, struct rt_bandwidth, rt_period_timer);
  160. ktime_t now;
  161. int overrun;
  162. int idle = 0;
  163. for (;;) {
  164. now = hrtimer_cb_get_time(timer);
  165. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  166. if (!overrun)
  167. break;
  168. idle = do_sched_rt_period_timer(rt_b, overrun);
  169. }
  170. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  171. }
  172. static
  173. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  174. {
  175. rt_b->rt_period = ns_to_ktime(period);
  176. rt_b->rt_runtime = runtime;
  177. spin_lock_init(&rt_b->rt_runtime_lock);
  178. hrtimer_init(&rt_b->rt_period_timer,
  179. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  180. rt_b->rt_period_timer.function = sched_rt_period_timer;
  181. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
  182. }
  183. static inline int rt_bandwidth_enabled(void)
  184. {
  185. return sysctl_sched_rt_runtime >= 0;
  186. }
  187. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  188. {
  189. ktime_t now;
  190. if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
  191. return;
  192. if (hrtimer_active(&rt_b->rt_period_timer))
  193. return;
  194. spin_lock(&rt_b->rt_runtime_lock);
  195. for (;;) {
  196. if (hrtimer_active(&rt_b->rt_period_timer))
  197. break;
  198. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  199. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  200. hrtimer_start(&rt_b->rt_period_timer,
  201. rt_b->rt_period_timer.expires,
  202. HRTIMER_MODE_ABS);
  203. }
  204. spin_unlock(&rt_b->rt_runtime_lock);
  205. }
  206. #ifdef CONFIG_RT_GROUP_SCHED
  207. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  208. {
  209. hrtimer_cancel(&rt_b->rt_period_timer);
  210. }
  211. #endif
  212. /*
  213. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  214. * detach_destroy_domains and partition_sched_domains.
  215. */
  216. static DEFINE_MUTEX(sched_domains_mutex);
  217. #ifdef CONFIG_GROUP_SCHED
  218. #include <linux/cgroup.h>
  219. struct cfs_rq;
  220. static LIST_HEAD(task_groups);
  221. /* task group related information */
  222. struct task_group {
  223. #ifdef CONFIG_CGROUP_SCHED
  224. struct cgroup_subsys_state css;
  225. #endif
  226. #ifdef CONFIG_FAIR_GROUP_SCHED
  227. /* schedulable entities of this group on each cpu */
  228. struct sched_entity **se;
  229. /* runqueue "owned" by this group on each cpu */
  230. struct cfs_rq **cfs_rq;
  231. unsigned long shares;
  232. #endif
  233. #ifdef CONFIG_RT_GROUP_SCHED
  234. struct sched_rt_entity **rt_se;
  235. struct rt_rq **rt_rq;
  236. struct rt_bandwidth rt_bandwidth;
  237. #endif
  238. struct rcu_head rcu;
  239. struct list_head list;
  240. struct task_group *parent;
  241. struct list_head siblings;
  242. struct list_head children;
  243. };
  244. #ifdef CONFIG_USER_SCHED
  245. /*
  246. * Root task group.
  247. * Every UID task group (including init_task_group aka UID-0) will
  248. * be a child to this group.
  249. */
  250. struct task_group root_task_group;
  251. #ifdef CONFIG_FAIR_GROUP_SCHED
  252. /* Default task group's sched entity on each cpu */
  253. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  254. /* Default task group's cfs_rq on each cpu */
  255. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  256. #endif /* CONFIG_FAIR_GROUP_SCHED */
  257. #ifdef CONFIG_RT_GROUP_SCHED
  258. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  259. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  260. #endif /* CONFIG_RT_GROUP_SCHED */
  261. #else /* !CONFIG_USER_SCHED */
  262. #define root_task_group init_task_group
  263. #endif /* CONFIG_USER_SCHED */
  264. /* task_group_lock serializes add/remove of task groups and also changes to
  265. * a task group's cpu shares.
  266. */
  267. static DEFINE_SPINLOCK(task_group_lock);
  268. #ifdef CONFIG_FAIR_GROUP_SCHED
  269. #ifdef CONFIG_USER_SCHED
  270. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  271. #else /* !CONFIG_USER_SCHED */
  272. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  273. #endif /* CONFIG_USER_SCHED */
  274. /*
  275. * A weight of 0 or 1 can cause arithmetics problems.
  276. * A weight of a cfs_rq is the sum of weights of which entities
  277. * are queued on this cfs_rq, so a weight of a entity should not be
  278. * too large, so as the shares value of a task group.
  279. * (The default weight is 1024 - so there's no practical
  280. * limitation from this.)
  281. */
  282. #define MIN_SHARES 2
  283. #define MAX_SHARES (1UL << 18)
  284. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  285. #endif
  286. /* Default task group.
  287. * Every task in system belong to this group at bootup.
  288. */
  289. struct task_group init_task_group;
  290. /* return group to which a task belongs */
  291. static inline struct task_group *task_group(struct task_struct *p)
  292. {
  293. struct task_group *tg;
  294. #ifdef CONFIG_USER_SCHED
  295. tg = p->user->tg;
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. u64 pair_start;
  330. struct rb_root tasks_timeline;
  331. struct rb_node *rb_leftmost;
  332. struct list_head tasks;
  333. struct list_head *balance_iterator;
  334. /*
  335. * 'curr' points to currently running entity on this cfs_rq.
  336. * It is set to NULL otherwise (i.e when none are currently running).
  337. */
  338. struct sched_entity *curr, *next;
  339. unsigned long nr_spread_over;
  340. #ifdef CONFIG_FAIR_GROUP_SCHED
  341. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  342. /*
  343. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  344. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  345. * (like users, containers etc.)
  346. *
  347. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  348. * list is used during load balance.
  349. */
  350. struct list_head leaf_cfs_rq_list;
  351. struct task_group *tg; /* group that "owns" this runqueue */
  352. #ifdef CONFIG_SMP
  353. /*
  354. * the part of load.weight contributed by tasks
  355. */
  356. unsigned long task_weight;
  357. /*
  358. * h_load = weight * f(tg)
  359. *
  360. * Where f(tg) is the recursive weight fraction assigned to
  361. * this group.
  362. */
  363. unsigned long h_load;
  364. /*
  365. * this cpu's part of tg->shares
  366. */
  367. unsigned long shares;
  368. /*
  369. * load.weight at the time we set shares
  370. */
  371. unsigned long rq_weight;
  372. #endif
  373. #endif
  374. };
  375. /* Real-Time classes' related field in a runqueue: */
  376. struct rt_rq {
  377. struct rt_prio_array active;
  378. unsigned long rt_nr_running;
  379. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  380. int highest_prio; /* highest queued rt task prio */
  381. #endif
  382. #ifdef CONFIG_SMP
  383. unsigned long rt_nr_migratory;
  384. int overloaded;
  385. #endif
  386. int rt_throttled;
  387. u64 rt_time;
  388. u64 rt_runtime;
  389. /* Nests inside the rq lock: */
  390. spinlock_t rt_runtime_lock;
  391. #ifdef CONFIG_RT_GROUP_SCHED
  392. unsigned long rt_nr_boosted;
  393. struct rq *rq;
  394. struct list_head leaf_rt_rq_list;
  395. struct task_group *tg;
  396. struct sched_rt_entity *rt_se;
  397. #endif
  398. };
  399. #ifdef CONFIG_SMP
  400. /*
  401. * We add the notion of a root-domain which will be used to define per-domain
  402. * variables. Each exclusive cpuset essentially defines an island domain by
  403. * fully partitioning the member cpus from any other cpuset. Whenever a new
  404. * exclusive cpuset is created, we also create and attach a new root-domain
  405. * object.
  406. *
  407. */
  408. struct root_domain {
  409. atomic_t refcount;
  410. cpumask_t span;
  411. cpumask_t online;
  412. /*
  413. * The "RT overload" flag: it gets set if a CPU has more than
  414. * one runnable RT task.
  415. */
  416. cpumask_t rto_mask;
  417. atomic_t rto_count;
  418. #ifdef CONFIG_SMP
  419. struct cpupri cpupri;
  420. #endif
  421. };
  422. /*
  423. * By default the system creates a single root-domain with all cpus as
  424. * members (mimicking the global state we have today).
  425. */
  426. static struct root_domain def_root_domain;
  427. #endif
  428. /*
  429. * This is the main, per-CPU runqueue data structure.
  430. *
  431. * Locking rule: those places that want to lock multiple runqueues
  432. * (such as the load balancing or the thread migration code), lock
  433. * acquire operations must be ordered by ascending &runqueue.
  434. */
  435. struct rq {
  436. /* runqueue lock: */
  437. spinlock_t lock;
  438. /*
  439. * nr_running and cpu_load should be in the same cacheline because
  440. * remote CPUs use both these fields when doing load calculation.
  441. */
  442. unsigned long nr_running;
  443. #define CPU_LOAD_IDX_MAX 5
  444. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  445. unsigned char idle_at_tick;
  446. #ifdef CONFIG_NO_HZ
  447. unsigned long last_tick_seen;
  448. unsigned char in_nohz_recently;
  449. #endif
  450. /* capture load from *all* tasks on this cpu: */
  451. struct load_weight load;
  452. unsigned long nr_load_updates;
  453. u64 nr_switches;
  454. struct cfs_rq cfs;
  455. struct rt_rq rt;
  456. #ifdef CONFIG_FAIR_GROUP_SCHED
  457. /* list of leaf cfs_rq on this cpu: */
  458. struct list_head leaf_cfs_rq_list;
  459. #endif
  460. #ifdef CONFIG_RT_GROUP_SCHED
  461. struct list_head leaf_rt_rq_list;
  462. #endif
  463. /*
  464. * This is part of a global counter where only the total sum
  465. * over all CPUs matters. A task can increase this counter on
  466. * one CPU and if it got migrated afterwards it may decrease
  467. * it on another CPU. Always updated under the runqueue lock:
  468. */
  469. unsigned long nr_uninterruptible;
  470. struct task_struct *curr, *idle;
  471. unsigned long next_balance;
  472. struct mm_struct *prev_mm;
  473. u64 clock;
  474. atomic_t nr_iowait;
  475. #ifdef CONFIG_SMP
  476. struct root_domain *rd;
  477. struct sched_domain *sd;
  478. /* For active balancing */
  479. int active_balance;
  480. int push_cpu;
  481. /* cpu of this runqueue: */
  482. int cpu;
  483. int online;
  484. unsigned long avg_load_per_task;
  485. struct task_struct *migration_thread;
  486. struct list_head migration_queue;
  487. #endif
  488. #ifdef CONFIG_SCHED_HRTICK
  489. #ifdef CONFIG_SMP
  490. int hrtick_csd_pending;
  491. struct call_single_data hrtick_csd;
  492. #endif
  493. struct hrtimer hrtick_timer;
  494. #endif
  495. #ifdef CONFIG_SCHEDSTATS
  496. /* latency stats */
  497. struct sched_info rq_sched_info;
  498. /* sys_sched_yield() stats */
  499. unsigned int yld_exp_empty;
  500. unsigned int yld_act_empty;
  501. unsigned int yld_both_empty;
  502. unsigned int yld_count;
  503. /* schedule() stats */
  504. unsigned int sched_switch;
  505. unsigned int sched_count;
  506. unsigned int sched_goidle;
  507. /* try_to_wake_up() stats */
  508. unsigned int ttwu_count;
  509. unsigned int ttwu_local;
  510. /* BKL stats */
  511. unsigned int bkl_count;
  512. #endif
  513. };
  514. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  515. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  516. {
  517. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  518. }
  519. static inline int cpu_of(struct rq *rq)
  520. {
  521. #ifdef CONFIG_SMP
  522. return rq->cpu;
  523. #else
  524. return 0;
  525. #endif
  526. }
  527. /*
  528. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  529. * See detach_destroy_domains: synchronize_sched for details.
  530. *
  531. * The domain tree of any CPU may only be accessed from within
  532. * preempt-disabled sections.
  533. */
  534. #define for_each_domain(cpu, __sd) \
  535. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  536. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  537. #define this_rq() (&__get_cpu_var(runqueues))
  538. #define task_rq(p) cpu_rq(task_cpu(p))
  539. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  540. static inline void update_rq_clock(struct rq *rq)
  541. {
  542. rq->clock = sched_clock_cpu(cpu_of(rq));
  543. }
  544. /*
  545. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  546. */
  547. #ifdef CONFIG_SCHED_DEBUG
  548. # define const_debug __read_mostly
  549. #else
  550. # define const_debug static const
  551. #endif
  552. /**
  553. * runqueue_is_locked
  554. *
  555. * Returns true if the current cpu runqueue is locked.
  556. * This interface allows printk to be called with the runqueue lock
  557. * held and know whether or not it is OK to wake up the klogd.
  558. */
  559. int runqueue_is_locked(void)
  560. {
  561. int cpu = get_cpu();
  562. struct rq *rq = cpu_rq(cpu);
  563. int ret;
  564. ret = spin_is_locked(&rq->lock);
  565. put_cpu();
  566. return ret;
  567. }
  568. /*
  569. * Debugging: various feature bits
  570. */
  571. #define SCHED_FEAT(name, enabled) \
  572. __SCHED_FEAT_##name ,
  573. enum {
  574. #include "sched_features.h"
  575. };
  576. #undef SCHED_FEAT
  577. #define SCHED_FEAT(name, enabled) \
  578. (1UL << __SCHED_FEAT_##name) * enabled |
  579. const_debug unsigned int sysctl_sched_features =
  580. #include "sched_features.h"
  581. 0;
  582. #undef SCHED_FEAT
  583. #ifdef CONFIG_SCHED_DEBUG
  584. #define SCHED_FEAT(name, enabled) \
  585. #name ,
  586. static __read_mostly char *sched_feat_names[] = {
  587. #include "sched_features.h"
  588. NULL
  589. };
  590. #undef SCHED_FEAT
  591. static int sched_feat_open(struct inode *inode, struct file *filp)
  592. {
  593. filp->private_data = inode->i_private;
  594. return 0;
  595. }
  596. static ssize_t
  597. sched_feat_read(struct file *filp, char __user *ubuf,
  598. size_t cnt, loff_t *ppos)
  599. {
  600. char *buf;
  601. int r = 0;
  602. int len = 0;
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. len += strlen(sched_feat_names[i]);
  606. len += 4;
  607. }
  608. buf = kmalloc(len + 2, GFP_KERNEL);
  609. if (!buf)
  610. return -ENOMEM;
  611. for (i = 0; sched_feat_names[i]; i++) {
  612. if (sysctl_sched_features & (1UL << i))
  613. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  614. else
  615. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  616. }
  617. r += sprintf(buf + r, "\n");
  618. WARN_ON(r >= len + 2);
  619. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  620. kfree(buf);
  621. return r;
  622. }
  623. static ssize_t
  624. sched_feat_write(struct file *filp, const char __user *ubuf,
  625. size_t cnt, loff_t *ppos)
  626. {
  627. char buf[64];
  628. char *cmp = buf;
  629. int neg = 0;
  630. int i;
  631. if (cnt > 63)
  632. cnt = 63;
  633. if (copy_from_user(&buf, ubuf, cnt))
  634. return -EFAULT;
  635. buf[cnt] = 0;
  636. if (strncmp(buf, "NO_", 3) == 0) {
  637. neg = 1;
  638. cmp += 3;
  639. }
  640. for (i = 0; sched_feat_names[i]; i++) {
  641. int len = strlen(sched_feat_names[i]);
  642. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  643. if (neg)
  644. sysctl_sched_features &= ~(1UL << i);
  645. else
  646. sysctl_sched_features |= (1UL << i);
  647. break;
  648. }
  649. }
  650. if (!sched_feat_names[i])
  651. return -EINVAL;
  652. filp->f_pos += cnt;
  653. return cnt;
  654. }
  655. static struct file_operations sched_feat_fops = {
  656. .open = sched_feat_open,
  657. .read = sched_feat_read,
  658. .write = sched_feat_write,
  659. };
  660. static __init int sched_init_debug(void)
  661. {
  662. debugfs_create_file("sched_features", 0644, NULL, NULL,
  663. &sched_feat_fops);
  664. return 0;
  665. }
  666. late_initcall(sched_init_debug);
  667. #endif
  668. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  669. /*
  670. * Number of tasks to iterate in a single balance run.
  671. * Limited because this is done with IRQs disabled.
  672. */
  673. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  674. /*
  675. * ratelimit for updating the group shares.
  676. * default: 0.25ms
  677. */
  678. unsigned int sysctl_sched_shares_ratelimit = 250000;
  679. /*
  680. * period over which we measure -rt task cpu usage in us.
  681. * default: 1s
  682. */
  683. unsigned int sysctl_sched_rt_period = 1000000;
  684. static __read_mostly int scheduler_running;
  685. /*
  686. * part of the period that we allow rt tasks to run in us.
  687. * default: 0.95s
  688. */
  689. int sysctl_sched_rt_runtime = 950000;
  690. static inline u64 global_rt_period(void)
  691. {
  692. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  693. }
  694. static inline u64 global_rt_runtime(void)
  695. {
  696. if (sysctl_sched_rt_runtime < 0)
  697. return RUNTIME_INF;
  698. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  699. }
  700. #ifndef prepare_arch_switch
  701. # define prepare_arch_switch(next) do { } while (0)
  702. #endif
  703. #ifndef finish_arch_switch
  704. # define finish_arch_switch(prev) do { } while (0)
  705. #endif
  706. static inline int task_current(struct rq *rq, struct task_struct *p)
  707. {
  708. return rq->curr == p;
  709. }
  710. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  711. static inline int task_running(struct rq *rq, struct task_struct *p)
  712. {
  713. return task_current(rq, p);
  714. }
  715. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  716. {
  717. }
  718. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  719. {
  720. #ifdef CONFIG_DEBUG_SPINLOCK
  721. /* this is a valid case when another task releases the spinlock */
  722. rq->lock.owner = current;
  723. #endif
  724. /*
  725. * If we are tracking spinlock dependencies then we have to
  726. * fix up the runqueue lock - which gets 'carried over' from
  727. * prev into current:
  728. */
  729. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  730. spin_unlock_irq(&rq->lock);
  731. }
  732. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  733. static inline int task_running(struct rq *rq, struct task_struct *p)
  734. {
  735. #ifdef CONFIG_SMP
  736. return p->oncpu;
  737. #else
  738. return task_current(rq, p);
  739. #endif
  740. }
  741. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  742. {
  743. #ifdef CONFIG_SMP
  744. /*
  745. * We can optimise this out completely for !SMP, because the
  746. * SMP rebalancing from interrupt is the only thing that cares
  747. * here.
  748. */
  749. next->oncpu = 1;
  750. #endif
  751. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  752. spin_unlock_irq(&rq->lock);
  753. #else
  754. spin_unlock(&rq->lock);
  755. #endif
  756. }
  757. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  758. {
  759. #ifdef CONFIG_SMP
  760. /*
  761. * After ->oncpu is cleared, the task can be moved to a different CPU.
  762. * We must ensure this doesn't happen until the switch is completely
  763. * finished.
  764. */
  765. smp_wmb();
  766. prev->oncpu = 0;
  767. #endif
  768. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  769. local_irq_enable();
  770. #endif
  771. }
  772. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  773. /*
  774. * __task_rq_lock - lock the runqueue a given task resides on.
  775. * Must be called interrupts disabled.
  776. */
  777. static inline struct rq *__task_rq_lock(struct task_struct *p)
  778. __acquires(rq->lock)
  779. {
  780. for (;;) {
  781. struct rq *rq = task_rq(p);
  782. spin_lock(&rq->lock);
  783. if (likely(rq == task_rq(p)))
  784. return rq;
  785. spin_unlock(&rq->lock);
  786. }
  787. }
  788. /*
  789. * task_rq_lock - lock the runqueue a given task resides on and disable
  790. * interrupts. Note the ordering: we can safely lookup the task_rq without
  791. * explicitly disabling preemption.
  792. */
  793. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  794. __acquires(rq->lock)
  795. {
  796. struct rq *rq;
  797. for (;;) {
  798. local_irq_save(*flags);
  799. rq = task_rq(p);
  800. spin_lock(&rq->lock);
  801. if (likely(rq == task_rq(p)))
  802. return rq;
  803. spin_unlock_irqrestore(&rq->lock, *flags);
  804. }
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. spin_unlock(&rq->lock);
  810. }
  811. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  812. __releases(rq->lock)
  813. {
  814. spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. /*
  817. * this_rq_lock - lock this runqueue and disable interrupts.
  818. */
  819. static struct rq *this_rq_lock(void)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. local_irq_disable();
  824. rq = this_rq();
  825. spin_lock(&rq->lock);
  826. return rq;
  827. }
  828. #ifdef CONFIG_SCHED_HRTICK
  829. /*
  830. * Use HR-timers to deliver accurate preemption points.
  831. *
  832. * Its all a bit involved since we cannot program an hrt while holding the
  833. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  834. * reschedule event.
  835. *
  836. * When we get rescheduled we reprogram the hrtick_timer outside of the
  837. * rq->lock.
  838. */
  839. /*
  840. * Use hrtick when:
  841. * - enabled by features
  842. * - hrtimer is actually high res
  843. */
  844. static inline int hrtick_enabled(struct rq *rq)
  845. {
  846. if (!sched_feat(HRTICK))
  847. return 0;
  848. if (!cpu_active(cpu_of(rq)))
  849. return 0;
  850. return hrtimer_is_hres_active(&rq->hrtick_timer);
  851. }
  852. static void hrtick_clear(struct rq *rq)
  853. {
  854. if (hrtimer_active(&rq->hrtick_timer))
  855. hrtimer_cancel(&rq->hrtick_timer);
  856. }
  857. /*
  858. * High-resolution timer tick.
  859. * Runs from hardirq context with interrupts disabled.
  860. */
  861. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  862. {
  863. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  864. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  865. spin_lock(&rq->lock);
  866. update_rq_clock(rq);
  867. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  868. spin_unlock(&rq->lock);
  869. return HRTIMER_NORESTART;
  870. }
  871. #ifdef CONFIG_SMP
  872. /*
  873. * called from hardirq (IPI) context
  874. */
  875. static void __hrtick_start(void *arg)
  876. {
  877. struct rq *rq = arg;
  878. spin_lock(&rq->lock);
  879. hrtimer_restart(&rq->hrtick_timer);
  880. rq->hrtick_csd_pending = 0;
  881. spin_unlock(&rq->lock);
  882. }
  883. /*
  884. * Called to set the hrtick timer state.
  885. *
  886. * called with rq->lock held and irqs disabled
  887. */
  888. static void hrtick_start(struct rq *rq, u64 delay)
  889. {
  890. struct hrtimer *timer = &rq->hrtick_timer;
  891. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  892. timer->expires = time;
  893. if (rq == this_rq()) {
  894. hrtimer_restart(timer);
  895. } else if (!rq->hrtick_csd_pending) {
  896. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
  897. rq->hrtick_csd_pending = 1;
  898. }
  899. }
  900. static int
  901. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  902. {
  903. int cpu = (int)(long)hcpu;
  904. switch (action) {
  905. case CPU_UP_CANCELED:
  906. case CPU_UP_CANCELED_FROZEN:
  907. case CPU_DOWN_PREPARE:
  908. case CPU_DOWN_PREPARE_FROZEN:
  909. case CPU_DEAD:
  910. case CPU_DEAD_FROZEN:
  911. hrtick_clear(cpu_rq(cpu));
  912. return NOTIFY_OK;
  913. }
  914. return NOTIFY_DONE;
  915. }
  916. static __init void init_hrtick(void)
  917. {
  918. hotcpu_notifier(hotplug_hrtick, 0);
  919. }
  920. #else
  921. /*
  922. * Called to set the hrtick timer state.
  923. *
  924. * called with rq->lock held and irqs disabled
  925. */
  926. static void hrtick_start(struct rq *rq, u64 delay)
  927. {
  928. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
  929. }
  930. static inline void init_hrtick(void)
  931. {
  932. }
  933. #endif /* CONFIG_SMP */
  934. static void init_rq_hrtick(struct rq *rq)
  935. {
  936. #ifdef CONFIG_SMP
  937. rq->hrtick_csd_pending = 0;
  938. rq->hrtick_csd.flags = 0;
  939. rq->hrtick_csd.func = __hrtick_start;
  940. rq->hrtick_csd.info = rq;
  941. #endif
  942. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  943. rq->hrtick_timer.function = hrtick;
  944. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
  945. }
  946. #else /* CONFIG_SCHED_HRTICK */
  947. static inline void hrtick_clear(struct rq *rq)
  948. {
  949. }
  950. static inline void init_rq_hrtick(struct rq *rq)
  951. {
  952. }
  953. static inline void init_hrtick(void)
  954. {
  955. }
  956. #endif /* CONFIG_SCHED_HRTICK */
  957. /*
  958. * resched_task - mark a task 'to be rescheduled now'.
  959. *
  960. * On UP this means the setting of the need_resched flag, on SMP it
  961. * might also involve a cross-CPU call to trigger the scheduler on
  962. * the target CPU.
  963. */
  964. #ifdef CONFIG_SMP
  965. #ifndef tsk_is_polling
  966. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  967. #endif
  968. static void resched_task(struct task_struct *p)
  969. {
  970. int cpu;
  971. assert_spin_locked(&task_rq(p)->lock);
  972. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  973. return;
  974. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  975. cpu = task_cpu(p);
  976. if (cpu == smp_processor_id())
  977. return;
  978. /* NEED_RESCHED must be visible before we test polling */
  979. smp_mb();
  980. if (!tsk_is_polling(p))
  981. smp_send_reschedule(cpu);
  982. }
  983. static void resched_cpu(int cpu)
  984. {
  985. struct rq *rq = cpu_rq(cpu);
  986. unsigned long flags;
  987. if (!spin_trylock_irqsave(&rq->lock, flags))
  988. return;
  989. resched_task(cpu_curr(cpu));
  990. spin_unlock_irqrestore(&rq->lock, flags);
  991. }
  992. #ifdef CONFIG_NO_HZ
  993. /*
  994. * When add_timer_on() enqueues a timer into the timer wheel of an
  995. * idle CPU then this timer might expire before the next timer event
  996. * which is scheduled to wake up that CPU. In case of a completely
  997. * idle system the next event might even be infinite time into the
  998. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  999. * leaves the inner idle loop so the newly added timer is taken into
  1000. * account when the CPU goes back to idle and evaluates the timer
  1001. * wheel for the next timer event.
  1002. */
  1003. void wake_up_idle_cpu(int cpu)
  1004. {
  1005. struct rq *rq = cpu_rq(cpu);
  1006. if (cpu == smp_processor_id())
  1007. return;
  1008. /*
  1009. * This is safe, as this function is called with the timer
  1010. * wheel base lock of (cpu) held. When the CPU is on the way
  1011. * to idle and has not yet set rq->curr to idle then it will
  1012. * be serialized on the timer wheel base lock and take the new
  1013. * timer into account automatically.
  1014. */
  1015. if (rq->curr != rq->idle)
  1016. return;
  1017. /*
  1018. * We can set TIF_RESCHED on the idle task of the other CPU
  1019. * lockless. The worst case is that the other CPU runs the
  1020. * idle task through an additional NOOP schedule()
  1021. */
  1022. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1023. /* NEED_RESCHED must be visible before we test polling */
  1024. smp_mb();
  1025. if (!tsk_is_polling(rq->idle))
  1026. smp_send_reschedule(cpu);
  1027. }
  1028. #endif /* CONFIG_NO_HZ */
  1029. #else /* !CONFIG_SMP */
  1030. static void resched_task(struct task_struct *p)
  1031. {
  1032. assert_spin_locked(&task_rq(p)->lock);
  1033. set_tsk_need_resched(p);
  1034. }
  1035. #endif /* CONFIG_SMP */
  1036. #if BITS_PER_LONG == 32
  1037. # define WMULT_CONST (~0UL)
  1038. #else
  1039. # define WMULT_CONST (1UL << 32)
  1040. #endif
  1041. #define WMULT_SHIFT 32
  1042. /*
  1043. * Shift right and round:
  1044. */
  1045. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1046. /*
  1047. * delta *= weight / lw
  1048. */
  1049. static unsigned long
  1050. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1051. struct load_weight *lw)
  1052. {
  1053. u64 tmp;
  1054. if (!lw->inv_weight) {
  1055. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1056. lw->inv_weight = 1;
  1057. else
  1058. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1059. / (lw->weight+1);
  1060. }
  1061. tmp = (u64)delta_exec * weight;
  1062. /*
  1063. * Check whether we'd overflow the 64-bit multiplication:
  1064. */
  1065. if (unlikely(tmp > WMULT_CONST))
  1066. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1067. WMULT_SHIFT/2);
  1068. else
  1069. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1070. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1071. }
  1072. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1073. {
  1074. lw->weight += inc;
  1075. lw->inv_weight = 0;
  1076. }
  1077. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1078. {
  1079. lw->weight -= dec;
  1080. lw->inv_weight = 0;
  1081. }
  1082. /*
  1083. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1084. * of tasks with abnormal "nice" values across CPUs the contribution that
  1085. * each task makes to its run queue's load is weighted according to its
  1086. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1087. * scaled version of the new time slice allocation that they receive on time
  1088. * slice expiry etc.
  1089. */
  1090. #define WEIGHT_IDLEPRIO 2
  1091. #define WMULT_IDLEPRIO (1 << 31)
  1092. /*
  1093. * Nice levels are multiplicative, with a gentle 10% change for every
  1094. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1095. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1096. * that remained on nice 0.
  1097. *
  1098. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1099. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1100. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1101. * If a task goes up by ~10% and another task goes down by ~10% then
  1102. * the relative distance between them is ~25%.)
  1103. */
  1104. static const int prio_to_weight[40] = {
  1105. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1106. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1107. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1108. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1109. /* 0 */ 1024, 820, 655, 526, 423,
  1110. /* 5 */ 335, 272, 215, 172, 137,
  1111. /* 10 */ 110, 87, 70, 56, 45,
  1112. /* 15 */ 36, 29, 23, 18, 15,
  1113. };
  1114. /*
  1115. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1116. *
  1117. * In cases where the weight does not change often, we can use the
  1118. * precalculated inverse to speed up arithmetics by turning divisions
  1119. * into multiplications:
  1120. */
  1121. static const u32 prio_to_wmult[40] = {
  1122. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1123. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1124. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1125. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1126. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1127. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1128. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1129. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1130. };
  1131. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1132. /*
  1133. * runqueue iterator, to support SMP load-balancing between different
  1134. * scheduling classes, without having to expose their internal data
  1135. * structures to the load-balancing proper:
  1136. */
  1137. struct rq_iterator {
  1138. void *arg;
  1139. struct task_struct *(*start)(void *);
  1140. struct task_struct *(*next)(void *);
  1141. };
  1142. #ifdef CONFIG_SMP
  1143. static unsigned long
  1144. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1145. unsigned long max_load_move, struct sched_domain *sd,
  1146. enum cpu_idle_type idle, int *all_pinned,
  1147. int *this_best_prio, struct rq_iterator *iterator);
  1148. static int
  1149. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1150. struct sched_domain *sd, enum cpu_idle_type idle,
  1151. struct rq_iterator *iterator);
  1152. #endif
  1153. #ifdef CONFIG_CGROUP_CPUACCT
  1154. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1155. #else
  1156. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1157. #endif
  1158. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1159. {
  1160. update_load_add(&rq->load, load);
  1161. }
  1162. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1163. {
  1164. update_load_sub(&rq->load, load);
  1165. }
  1166. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1167. typedef int (*tg_visitor)(struct task_group *, void *);
  1168. /*
  1169. * Iterate the full tree, calling @down when first entering a node and @up when
  1170. * leaving it for the final time.
  1171. */
  1172. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1173. {
  1174. struct task_group *parent, *child;
  1175. int ret;
  1176. rcu_read_lock();
  1177. parent = &root_task_group;
  1178. down:
  1179. ret = (*down)(parent, data);
  1180. if (ret)
  1181. goto out_unlock;
  1182. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1183. parent = child;
  1184. goto down;
  1185. up:
  1186. continue;
  1187. }
  1188. ret = (*up)(parent, data);
  1189. if (ret)
  1190. goto out_unlock;
  1191. child = parent;
  1192. parent = parent->parent;
  1193. if (parent)
  1194. goto up;
  1195. out_unlock:
  1196. rcu_read_unlock();
  1197. return ret;
  1198. }
  1199. static int tg_nop(struct task_group *tg, void *data)
  1200. {
  1201. return 0;
  1202. }
  1203. #endif
  1204. #ifdef CONFIG_SMP
  1205. static unsigned long source_load(int cpu, int type);
  1206. static unsigned long target_load(int cpu, int type);
  1207. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1208. static unsigned long cpu_avg_load_per_task(int cpu)
  1209. {
  1210. struct rq *rq = cpu_rq(cpu);
  1211. if (rq->nr_running)
  1212. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1213. return rq->avg_load_per_task;
  1214. }
  1215. #ifdef CONFIG_FAIR_GROUP_SCHED
  1216. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1217. /*
  1218. * Calculate and set the cpu's group shares.
  1219. */
  1220. static void
  1221. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1222. unsigned long sd_shares, unsigned long sd_rq_weight)
  1223. {
  1224. int boost = 0;
  1225. unsigned long shares;
  1226. unsigned long rq_weight;
  1227. if (!tg->se[cpu])
  1228. return;
  1229. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1230. /*
  1231. * If there are currently no tasks on the cpu pretend there is one of
  1232. * average load so that when a new task gets to run here it will not
  1233. * get delayed by group starvation.
  1234. */
  1235. if (!rq_weight) {
  1236. boost = 1;
  1237. rq_weight = NICE_0_LOAD;
  1238. }
  1239. if (unlikely(rq_weight > sd_rq_weight))
  1240. rq_weight = sd_rq_weight;
  1241. /*
  1242. * \Sum shares * rq_weight
  1243. * shares = -----------------------
  1244. * \Sum rq_weight
  1245. *
  1246. */
  1247. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1248. /*
  1249. * record the actual number of shares, not the boosted amount.
  1250. */
  1251. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1252. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1253. if (shares < MIN_SHARES)
  1254. shares = MIN_SHARES;
  1255. else if (shares > MAX_SHARES)
  1256. shares = MAX_SHARES;
  1257. __set_se_shares(tg->se[cpu], shares);
  1258. }
  1259. /*
  1260. * Re-compute the task group their per cpu shares over the given domain.
  1261. * This needs to be done in a bottom-up fashion because the rq weight of a
  1262. * parent group depends on the shares of its child groups.
  1263. */
  1264. static int tg_shares_up(struct task_group *tg, void *data)
  1265. {
  1266. unsigned long rq_weight = 0;
  1267. unsigned long shares = 0;
  1268. struct sched_domain *sd = data;
  1269. int i;
  1270. for_each_cpu_mask(i, sd->span) {
  1271. rq_weight += tg->cfs_rq[i]->load.weight;
  1272. shares += tg->cfs_rq[i]->shares;
  1273. }
  1274. if ((!shares && rq_weight) || shares > tg->shares)
  1275. shares = tg->shares;
  1276. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1277. shares = tg->shares;
  1278. if (!rq_weight)
  1279. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1280. for_each_cpu_mask(i, sd->span) {
  1281. struct rq *rq = cpu_rq(i);
  1282. unsigned long flags;
  1283. spin_lock_irqsave(&rq->lock, flags);
  1284. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1285. spin_unlock_irqrestore(&rq->lock, flags);
  1286. }
  1287. return 0;
  1288. }
  1289. /*
  1290. * Compute the cpu's hierarchical load factor for each task group.
  1291. * This needs to be done in a top-down fashion because the load of a child
  1292. * group is a fraction of its parents load.
  1293. */
  1294. static int tg_load_down(struct task_group *tg, void *data)
  1295. {
  1296. unsigned long load;
  1297. long cpu = (long)data;
  1298. if (!tg->parent) {
  1299. load = cpu_rq(cpu)->load.weight;
  1300. } else {
  1301. load = tg->parent->cfs_rq[cpu]->h_load;
  1302. load *= tg->cfs_rq[cpu]->shares;
  1303. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1304. }
  1305. tg->cfs_rq[cpu]->h_load = load;
  1306. return 0;
  1307. }
  1308. static void update_shares(struct sched_domain *sd)
  1309. {
  1310. u64 now = cpu_clock(raw_smp_processor_id());
  1311. s64 elapsed = now - sd->last_update;
  1312. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1313. sd->last_update = now;
  1314. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1315. }
  1316. }
  1317. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1318. {
  1319. spin_unlock(&rq->lock);
  1320. update_shares(sd);
  1321. spin_lock(&rq->lock);
  1322. }
  1323. static void update_h_load(long cpu)
  1324. {
  1325. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1326. }
  1327. #else
  1328. static inline void update_shares(struct sched_domain *sd)
  1329. {
  1330. }
  1331. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1332. {
  1333. }
  1334. #endif
  1335. #endif
  1336. #ifdef CONFIG_FAIR_GROUP_SCHED
  1337. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1338. {
  1339. #ifdef CONFIG_SMP
  1340. cfs_rq->shares = shares;
  1341. #endif
  1342. }
  1343. #endif
  1344. #include "sched_stats.h"
  1345. #include "sched_idletask.c"
  1346. #include "sched_fair.c"
  1347. #include "sched_rt.c"
  1348. #ifdef CONFIG_SCHED_DEBUG
  1349. # include "sched_debug.c"
  1350. #endif
  1351. #define sched_class_highest (&rt_sched_class)
  1352. #define for_each_class(class) \
  1353. for (class = sched_class_highest; class; class = class->next)
  1354. static void inc_nr_running(struct rq *rq)
  1355. {
  1356. rq->nr_running++;
  1357. }
  1358. static void dec_nr_running(struct rq *rq)
  1359. {
  1360. rq->nr_running--;
  1361. }
  1362. static void set_load_weight(struct task_struct *p)
  1363. {
  1364. if (task_has_rt_policy(p)) {
  1365. p->se.load.weight = prio_to_weight[0] * 2;
  1366. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1367. return;
  1368. }
  1369. /*
  1370. * SCHED_IDLE tasks get minimal weight:
  1371. */
  1372. if (p->policy == SCHED_IDLE) {
  1373. p->se.load.weight = WEIGHT_IDLEPRIO;
  1374. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1375. return;
  1376. }
  1377. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1378. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1379. }
  1380. static void update_avg(u64 *avg, u64 sample)
  1381. {
  1382. s64 diff = sample - *avg;
  1383. *avg += diff >> 3;
  1384. }
  1385. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1386. {
  1387. sched_info_queued(p);
  1388. p->sched_class->enqueue_task(rq, p, wakeup);
  1389. p->se.on_rq = 1;
  1390. }
  1391. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1392. {
  1393. if (sleep && p->se.last_wakeup) {
  1394. update_avg(&p->se.avg_overlap,
  1395. p->se.sum_exec_runtime - p->se.last_wakeup);
  1396. p->se.last_wakeup = 0;
  1397. }
  1398. sched_info_dequeued(p);
  1399. p->sched_class->dequeue_task(rq, p, sleep);
  1400. p->se.on_rq = 0;
  1401. }
  1402. /*
  1403. * __normal_prio - return the priority that is based on the static prio
  1404. */
  1405. static inline int __normal_prio(struct task_struct *p)
  1406. {
  1407. return p->static_prio;
  1408. }
  1409. /*
  1410. * Calculate the expected normal priority: i.e. priority
  1411. * without taking RT-inheritance into account. Might be
  1412. * boosted by interactivity modifiers. Changes upon fork,
  1413. * setprio syscalls, and whenever the interactivity
  1414. * estimator recalculates.
  1415. */
  1416. static inline int normal_prio(struct task_struct *p)
  1417. {
  1418. int prio;
  1419. if (task_has_rt_policy(p))
  1420. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1421. else
  1422. prio = __normal_prio(p);
  1423. return prio;
  1424. }
  1425. /*
  1426. * Calculate the current priority, i.e. the priority
  1427. * taken into account by the scheduler. This value might
  1428. * be boosted by RT tasks, or might be boosted by
  1429. * interactivity modifiers. Will be RT if the task got
  1430. * RT-boosted. If not then it returns p->normal_prio.
  1431. */
  1432. static int effective_prio(struct task_struct *p)
  1433. {
  1434. p->normal_prio = normal_prio(p);
  1435. /*
  1436. * If we are RT tasks or we were boosted to RT priority,
  1437. * keep the priority unchanged. Otherwise, update priority
  1438. * to the normal priority:
  1439. */
  1440. if (!rt_prio(p->prio))
  1441. return p->normal_prio;
  1442. return p->prio;
  1443. }
  1444. /*
  1445. * activate_task - move a task to the runqueue.
  1446. */
  1447. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1448. {
  1449. if (task_contributes_to_load(p))
  1450. rq->nr_uninterruptible--;
  1451. enqueue_task(rq, p, wakeup);
  1452. inc_nr_running(rq);
  1453. }
  1454. /*
  1455. * deactivate_task - remove a task from the runqueue.
  1456. */
  1457. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1458. {
  1459. if (task_contributes_to_load(p))
  1460. rq->nr_uninterruptible++;
  1461. dequeue_task(rq, p, sleep);
  1462. dec_nr_running(rq);
  1463. }
  1464. /**
  1465. * task_curr - is this task currently executing on a CPU?
  1466. * @p: the task in question.
  1467. */
  1468. inline int task_curr(const struct task_struct *p)
  1469. {
  1470. return cpu_curr(task_cpu(p)) == p;
  1471. }
  1472. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1473. {
  1474. set_task_rq(p, cpu);
  1475. #ifdef CONFIG_SMP
  1476. /*
  1477. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1478. * successfuly executed on another CPU. We must ensure that updates of
  1479. * per-task data have been completed by this moment.
  1480. */
  1481. smp_wmb();
  1482. task_thread_info(p)->cpu = cpu;
  1483. #endif
  1484. }
  1485. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1486. const struct sched_class *prev_class,
  1487. int oldprio, int running)
  1488. {
  1489. if (prev_class != p->sched_class) {
  1490. if (prev_class->switched_from)
  1491. prev_class->switched_from(rq, p, running);
  1492. p->sched_class->switched_to(rq, p, running);
  1493. } else
  1494. p->sched_class->prio_changed(rq, p, oldprio, running);
  1495. }
  1496. #ifdef CONFIG_SMP
  1497. /* Used instead of source_load when we know the type == 0 */
  1498. static unsigned long weighted_cpuload(const int cpu)
  1499. {
  1500. return cpu_rq(cpu)->load.weight;
  1501. }
  1502. /*
  1503. * Is this task likely cache-hot:
  1504. */
  1505. static int
  1506. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1507. {
  1508. s64 delta;
  1509. /*
  1510. * Buddy candidates are cache hot:
  1511. */
  1512. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1513. return 1;
  1514. if (p->sched_class != &fair_sched_class)
  1515. return 0;
  1516. if (sysctl_sched_migration_cost == -1)
  1517. return 1;
  1518. if (sysctl_sched_migration_cost == 0)
  1519. return 0;
  1520. delta = now - p->se.exec_start;
  1521. return delta < (s64)sysctl_sched_migration_cost;
  1522. }
  1523. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1524. {
  1525. int old_cpu = task_cpu(p);
  1526. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1527. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1528. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1529. u64 clock_offset;
  1530. clock_offset = old_rq->clock - new_rq->clock;
  1531. #ifdef CONFIG_SCHEDSTATS
  1532. if (p->se.wait_start)
  1533. p->se.wait_start -= clock_offset;
  1534. if (p->se.sleep_start)
  1535. p->se.sleep_start -= clock_offset;
  1536. if (p->se.block_start)
  1537. p->se.block_start -= clock_offset;
  1538. if (old_cpu != new_cpu) {
  1539. schedstat_inc(p, se.nr_migrations);
  1540. if (task_hot(p, old_rq->clock, NULL))
  1541. schedstat_inc(p, se.nr_forced2_migrations);
  1542. }
  1543. #endif
  1544. p->se.vruntime -= old_cfsrq->min_vruntime -
  1545. new_cfsrq->min_vruntime;
  1546. __set_task_cpu(p, new_cpu);
  1547. }
  1548. struct migration_req {
  1549. struct list_head list;
  1550. struct task_struct *task;
  1551. int dest_cpu;
  1552. struct completion done;
  1553. };
  1554. /*
  1555. * The task's runqueue lock must be held.
  1556. * Returns true if you have to wait for migration thread.
  1557. */
  1558. static int
  1559. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1560. {
  1561. struct rq *rq = task_rq(p);
  1562. /*
  1563. * If the task is not on a runqueue (and not running), then
  1564. * it is sufficient to simply update the task's cpu field.
  1565. */
  1566. if (!p->se.on_rq && !task_running(rq, p)) {
  1567. set_task_cpu(p, dest_cpu);
  1568. return 0;
  1569. }
  1570. init_completion(&req->done);
  1571. req->task = p;
  1572. req->dest_cpu = dest_cpu;
  1573. list_add(&req->list, &rq->migration_queue);
  1574. return 1;
  1575. }
  1576. /*
  1577. * wait_task_inactive - wait for a thread to unschedule.
  1578. *
  1579. * If @match_state is nonzero, it's the @p->state value just checked and
  1580. * not expected to change. If it changes, i.e. @p might have woken up,
  1581. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1582. * we return a positive number (its total switch count). If a second call
  1583. * a short while later returns the same number, the caller can be sure that
  1584. * @p has remained unscheduled the whole time.
  1585. *
  1586. * The caller must ensure that the task *will* unschedule sometime soon,
  1587. * else this function might spin for a *long* time. This function can't
  1588. * be called with interrupts off, or it may introduce deadlock with
  1589. * smp_call_function() if an IPI is sent by the same process we are
  1590. * waiting to become inactive.
  1591. */
  1592. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1593. {
  1594. unsigned long flags;
  1595. int running, on_rq;
  1596. unsigned long ncsw;
  1597. struct rq *rq;
  1598. for (;;) {
  1599. /*
  1600. * We do the initial early heuristics without holding
  1601. * any task-queue locks at all. We'll only try to get
  1602. * the runqueue lock when things look like they will
  1603. * work out!
  1604. */
  1605. rq = task_rq(p);
  1606. /*
  1607. * If the task is actively running on another CPU
  1608. * still, just relax and busy-wait without holding
  1609. * any locks.
  1610. *
  1611. * NOTE! Since we don't hold any locks, it's not
  1612. * even sure that "rq" stays as the right runqueue!
  1613. * But we don't care, since "task_running()" will
  1614. * return false if the runqueue has changed and p
  1615. * is actually now running somewhere else!
  1616. */
  1617. while (task_running(rq, p)) {
  1618. if (match_state && unlikely(p->state != match_state))
  1619. return 0;
  1620. cpu_relax();
  1621. }
  1622. /*
  1623. * Ok, time to look more closely! We need the rq
  1624. * lock now, to be *sure*. If we're wrong, we'll
  1625. * just go back and repeat.
  1626. */
  1627. rq = task_rq_lock(p, &flags);
  1628. trace_sched_wait_task(rq, p);
  1629. running = task_running(rq, p);
  1630. on_rq = p->se.on_rq;
  1631. ncsw = 0;
  1632. if (!match_state || p->state == match_state)
  1633. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1634. task_rq_unlock(rq, &flags);
  1635. /*
  1636. * If it changed from the expected state, bail out now.
  1637. */
  1638. if (unlikely(!ncsw))
  1639. break;
  1640. /*
  1641. * Was it really running after all now that we
  1642. * checked with the proper locks actually held?
  1643. *
  1644. * Oops. Go back and try again..
  1645. */
  1646. if (unlikely(running)) {
  1647. cpu_relax();
  1648. continue;
  1649. }
  1650. /*
  1651. * It's not enough that it's not actively running,
  1652. * it must be off the runqueue _entirely_, and not
  1653. * preempted!
  1654. *
  1655. * So if it wa still runnable (but just not actively
  1656. * running right now), it's preempted, and we should
  1657. * yield - it could be a while.
  1658. */
  1659. if (unlikely(on_rq)) {
  1660. schedule_timeout_uninterruptible(1);
  1661. continue;
  1662. }
  1663. /*
  1664. * Ahh, all good. It wasn't running, and it wasn't
  1665. * runnable, which means that it will never become
  1666. * running in the future either. We're all done!
  1667. */
  1668. break;
  1669. }
  1670. return ncsw;
  1671. }
  1672. /***
  1673. * kick_process - kick a running thread to enter/exit the kernel
  1674. * @p: the to-be-kicked thread
  1675. *
  1676. * Cause a process which is running on another CPU to enter
  1677. * kernel-mode, without any delay. (to get signals handled.)
  1678. *
  1679. * NOTE: this function doesnt have to take the runqueue lock,
  1680. * because all it wants to ensure is that the remote task enters
  1681. * the kernel. If the IPI races and the task has been migrated
  1682. * to another CPU then no harm is done and the purpose has been
  1683. * achieved as well.
  1684. */
  1685. void kick_process(struct task_struct *p)
  1686. {
  1687. int cpu;
  1688. preempt_disable();
  1689. cpu = task_cpu(p);
  1690. if ((cpu != smp_processor_id()) && task_curr(p))
  1691. smp_send_reschedule(cpu);
  1692. preempt_enable();
  1693. }
  1694. /*
  1695. * Return a low guess at the load of a migration-source cpu weighted
  1696. * according to the scheduling class and "nice" value.
  1697. *
  1698. * We want to under-estimate the load of migration sources, to
  1699. * balance conservatively.
  1700. */
  1701. static unsigned long source_load(int cpu, int type)
  1702. {
  1703. struct rq *rq = cpu_rq(cpu);
  1704. unsigned long total = weighted_cpuload(cpu);
  1705. if (type == 0 || !sched_feat(LB_BIAS))
  1706. return total;
  1707. return min(rq->cpu_load[type-1], total);
  1708. }
  1709. /*
  1710. * Return a high guess at the load of a migration-target cpu weighted
  1711. * according to the scheduling class and "nice" value.
  1712. */
  1713. static unsigned long target_load(int cpu, int type)
  1714. {
  1715. struct rq *rq = cpu_rq(cpu);
  1716. unsigned long total = weighted_cpuload(cpu);
  1717. if (type == 0 || !sched_feat(LB_BIAS))
  1718. return total;
  1719. return max(rq->cpu_load[type-1], total);
  1720. }
  1721. /*
  1722. * find_idlest_group finds and returns the least busy CPU group within the
  1723. * domain.
  1724. */
  1725. static struct sched_group *
  1726. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1727. {
  1728. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1729. unsigned long min_load = ULONG_MAX, this_load = 0;
  1730. int load_idx = sd->forkexec_idx;
  1731. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1732. do {
  1733. unsigned long load, avg_load;
  1734. int local_group;
  1735. int i;
  1736. /* Skip over this group if it has no CPUs allowed */
  1737. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1738. continue;
  1739. local_group = cpu_isset(this_cpu, group->cpumask);
  1740. /* Tally up the load of all CPUs in the group */
  1741. avg_load = 0;
  1742. for_each_cpu_mask_nr(i, group->cpumask) {
  1743. /* Bias balancing toward cpus of our domain */
  1744. if (local_group)
  1745. load = source_load(i, load_idx);
  1746. else
  1747. load = target_load(i, load_idx);
  1748. avg_load += load;
  1749. }
  1750. /* Adjust by relative CPU power of the group */
  1751. avg_load = sg_div_cpu_power(group,
  1752. avg_load * SCHED_LOAD_SCALE);
  1753. if (local_group) {
  1754. this_load = avg_load;
  1755. this = group;
  1756. } else if (avg_load < min_load) {
  1757. min_load = avg_load;
  1758. idlest = group;
  1759. }
  1760. } while (group = group->next, group != sd->groups);
  1761. if (!idlest || 100*this_load < imbalance*min_load)
  1762. return NULL;
  1763. return idlest;
  1764. }
  1765. /*
  1766. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1767. */
  1768. static int
  1769. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1770. cpumask_t *tmp)
  1771. {
  1772. unsigned long load, min_load = ULONG_MAX;
  1773. int idlest = -1;
  1774. int i;
  1775. /* Traverse only the allowed CPUs */
  1776. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1777. for_each_cpu_mask_nr(i, *tmp) {
  1778. load = weighted_cpuload(i);
  1779. if (load < min_load || (load == min_load && i == this_cpu)) {
  1780. min_load = load;
  1781. idlest = i;
  1782. }
  1783. }
  1784. return idlest;
  1785. }
  1786. /*
  1787. * sched_balance_self: balance the current task (running on cpu) in domains
  1788. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1789. * SD_BALANCE_EXEC.
  1790. *
  1791. * Balance, ie. select the least loaded group.
  1792. *
  1793. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1794. *
  1795. * preempt must be disabled.
  1796. */
  1797. static int sched_balance_self(int cpu, int flag)
  1798. {
  1799. struct task_struct *t = current;
  1800. struct sched_domain *tmp, *sd = NULL;
  1801. for_each_domain(cpu, tmp) {
  1802. /*
  1803. * If power savings logic is enabled for a domain, stop there.
  1804. */
  1805. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1806. break;
  1807. if (tmp->flags & flag)
  1808. sd = tmp;
  1809. }
  1810. if (sd)
  1811. update_shares(sd);
  1812. while (sd) {
  1813. cpumask_t span, tmpmask;
  1814. struct sched_group *group;
  1815. int new_cpu, weight;
  1816. if (!(sd->flags & flag)) {
  1817. sd = sd->child;
  1818. continue;
  1819. }
  1820. span = sd->span;
  1821. group = find_idlest_group(sd, t, cpu);
  1822. if (!group) {
  1823. sd = sd->child;
  1824. continue;
  1825. }
  1826. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1827. if (new_cpu == -1 || new_cpu == cpu) {
  1828. /* Now try balancing at a lower domain level of cpu */
  1829. sd = sd->child;
  1830. continue;
  1831. }
  1832. /* Now try balancing at a lower domain level of new_cpu */
  1833. cpu = new_cpu;
  1834. sd = NULL;
  1835. weight = cpus_weight(span);
  1836. for_each_domain(cpu, tmp) {
  1837. if (weight <= cpus_weight(tmp->span))
  1838. break;
  1839. if (tmp->flags & flag)
  1840. sd = tmp;
  1841. }
  1842. /* while loop will break here if sd == NULL */
  1843. }
  1844. return cpu;
  1845. }
  1846. #endif /* CONFIG_SMP */
  1847. /***
  1848. * try_to_wake_up - wake up a thread
  1849. * @p: the to-be-woken-up thread
  1850. * @state: the mask of task states that can be woken
  1851. * @sync: do a synchronous wakeup?
  1852. *
  1853. * Put it on the run-queue if it's not already there. The "current"
  1854. * thread is always on the run-queue (except when the actual
  1855. * re-schedule is in progress), and as such you're allowed to do
  1856. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1857. * runnable without the overhead of this.
  1858. *
  1859. * returns failure only if the task is already active.
  1860. */
  1861. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1862. {
  1863. int cpu, orig_cpu, this_cpu, success = 0;
  1864. unsigned long flags;
  1865. long old_state;
  1866. struct rq *rq;
  1867. if (!sched_feat(SYNC_WAKEUPS))
  1868. sync = 0;
  1869. #ifdef CONFIG_SMP
  1870. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1871. struct sched_domain *sd;
  1872. this_cpu = raw_smp_processor_id();
  1873. cpu = task_cpu(p);
  1874. for_each_domain(this_cpu, sd) {
  1875. if (cpu_isset(cpu, sd->span)) {
  1876. update_shares(sd);
  1877. break;
  1878. }
  1879. }
  1880. }
  1881. #endif
  1882. smp_wmb();
  1883. rq = task_rq_lock(p, &flags);
  1884. old_state = p->state;
  1885. if (!(old_state & state))
  1886. goto out;
  1887. if (p->se.on_rq)
  1888. goto out_running;
  1889. cpu = task_cpu(p);
  1890. orig_cpu = cpu;
  1891. this_cpu = smp_processor_id();
  1892. #ifdef CONFIG_SMP
  1893. if (unlikely(task_running(rq, p)))
  1894. goto out_activate;
  1895. cpu = p->sched_class->select_task_rq(p, sync);
  1896. if (cpu != orig_cpu) {
  1897. set_task_cpu(p, cpu);
  1898. task_rq_unlock(rq, &flags);
  1899. /* might preempt at this point */
  1900. rq = task_rq_lock(p, &flags);
  1901. old_state = p->state;
  1902. if (!(old_state & state))
  1903. goto out;
  1904. if (p->se.on_rq)
  1905. goto out_running;
  1906. this_cpu = smp_processor_id();
  1907. cpu = task_cpu(p);
  1908. }
  1909. #ifdef CONFIG_SCHEDSTATS
  1910. schedstat_inc(rq, ttwu_count);
  1911. if (cpu == this_cpu)
  1912. schedstat_inc(rq, ttwu_local);
  1913. else {
  1914. struct sched_domain *sd;
  1915. for_each_domain(this_cpu, sd) {
  1916. if (cpu_isset(cpu, sd->span)) {
  1917. schedstat_inc(sd, ttwu_wake_remote);
  1918. break;
  1919. }
  1920. }
  1921. }
  1922. #endif /* CONFIG_SCHEDSTATS */
  1923. out_activate:
  1924. #endif /* CONFIG_SMP */
  1925. schedstat_inc(p, se.nr_wakeups);
  1926. if (sync)
  1927. schedstat_inc(p, se.nr_wakeups_sync);
  1928. if (orig_cpu != cpu)
  1929. schedstat_inc(p, se.nr_wakeups_migrate);
  1930. if (cpu == this_cpu)
  1931. schedstat_inc(p, se.nr_wakeups_local);
  1932. else
  1933. schedstat_inc(p, se.nr_wakeups_remote);
  1934. update_rq_clock(rq);
  1935. activate_task(rq, p, 1);
  1936. success = 1;
  1937. out_running:
  1938. trace_sched_wakeup(rq, p);
  1939. check_preempt_curr(rq, p, sync);
  1940. p->state = TASK_RUNNING;
  1941. #ifdef CONFIG_SMP
  1942. if (p->sched_class->task_wake_up)
  1943. p->sched_class->task_wake_up(rq, p);
  1944. #endif
  1945. out:
  1946. current->se.last_wakeup = current->se.sum_exec_runtime;
  1947. task_rq_unlock(rq, &flags);
  1948. return success;
  1949. }
  1950. int wake_up_process(struct task_struct *p)
  1951. {
  1952. return try_to_wake_up(p, TASK_ALL, 0);
  1953. }
  1954. EXPORT_SYMBOL(wake_up_process);
  1955. int wake_up_state(struct task_struct *p, unsigned int state)
  1956. {
  1957. return try_to_wake_up(p, state, 0);
  1958. }
  1959. /*
  1960. * Perform scheduler related setup for a newly forked process p.
  1961. * p is forked by current.
  1962. *
  1963. * __sched_fork() is basic setup used by init_idle() too:
  1964. */
  1965. static void __sched_fork(struct task_struct *p)
  1966. {
  1967. p->se.exec_start = 0;
  1968. p->se.sum_exec_runtime = 0;
  1969. p->se.prev_sum_exec_runtime = 0;
  1970. p->se.last_wakeup = 0;
  1971. p->se.avg_overlap = 0;
  1972. #ifdef CONFIG_SCHEDSTATS
  1973. p->se.wait_start = 0;
  1974. p->se.sum_sleep_runtime = 0;
  1975. p->se.sleep_start = 0;
  1976. p->se.block_start = 0;
  1977. p->se.sleep_max = 0;
  1978. p->se.block_max = 0;
  1979. p->se.exec_max = 0;
  1980. p->se.slice_max = 0;
  1981. p->se.wait_max = 0;
  1982. #endif
  1983. INIT_LIST_HEAD(&p->rt.run_list);
  1984. p->se.on_rq = 0;
  1985. INIT_LIST_HEAD(&p->se.group_node);
  1986. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1987. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1988. #endif
  1989. /*
  1990. * We mark the process as running here, but have not actually
  1991. * inserted it onto the runqueue yet. This guarantees that
  1992. * nobody will actually run it, and a signal or other external
  1993. * event cannot wake it up and insert it on the runqueue either.
  1994. */
  1995. p->state = TASK_RUNNING;
  1996. }
  1997. /*
  1998. * fork()/clone()-time setup:
  1999. */
  2000. void sched_fork(struct task_struct *p, int clone_flags)
  2001. {
  2002. int cpu = get_cpu();
  2003. __sched_fork(p);
  2004. #ifdef CONFIG_SMP
  2005. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2006. #endif
  2007. set_task_cpu(p, cpu);
  2008. /*
  2009. * Make sure we do not leak PI boosting priority to the child:
  2010. */
  2011. p->prio = current->normal_prio;
  2012. if (!rt_prio(p->prio))
  2013. p->sched_class = &fair_sched_class;
  2014. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2015. if (likely(sched_info_on()))
  2016. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2017. #endif
  2018. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2019. p->oncpu = 0;
  2020. #endif
  2021. #ifdef CONFIG_PREEMPT
  2022. /* Want to start with kernel preemption disabled. */
  2023. task_thread_info(p)->preempt_count = 1;
  2024. #endif
  2025. put_cpu();
  2026. }
  2027. /*
  2028. * wake_up_new_task - wake up a newly created task for the first time.
  2029. *
  2030. * This function will do some initial scheduler statistics housekeeping
  2031. * that must be done for every newly created context, then puts the task
  2032. * on the runqueue and wakes it.
  2033. */
  2034. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2035. {
  2036. unsigned long flags;
  2037. struct rq *rq;
  2038. rq = task_rq_lock(p, &flags);
  2039. BUG_ON(p->state != TASK_RUNNING);
  2040. update_rq_clock(rq);
  2041. p->prio = effective_prio(p);
  2042. if (!p->sched_class->task_new || !current->se.on_rq) {
  2043. activate_task(rq, p, 0);
  2044. } else {
  2045. /*
  2046. * Let the scheduling class do new task startup
  2047. * management (if any):
  2048. */
  2049. p->sched_class->task_new(rq, p);
  2050. inc_nr_running(rq);
  2051. }
  2052. trace_sched_wakeup_new(rq, p);
  2053. check_preempt_curr(rq, p, 0);
  2054. #ifdef CONFIG_SMP
  2055. if (p->sched_class->task_wake_up)
  2056. p->sched_class->task_wake_up(rq, p);
  2057. #endif
  2058. task_rq_unlock(rq, &flags);
  2059. }
  2060. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2061. /**
  2062. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2063. * @notifier: notifier struct to register
  2064. */
  2065. void preempt_notifier_register(struct preempt_notifier *notifier)
  2066. {
  2067. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2068. }
  2069. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2070. /**
  2071. * preempt_notifier_unregister - no longer interested in preemption notifications
  2072. * @notifier: notifier struct to unregister
  2073. *
  2074. * This is safe to call from within a preemption notifier.
  2075. */
  2076. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2077. {
  2078. hlist_del(&notifier->link);
  2079. }
  2080. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2081. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2082. {
  2083. struct preempt_notifier *notifier;
  2084. struct hlist_node *node;
  2085. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2086. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2087. }
  2088. static void
  2089. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2090. struct task_struct *next)
  2091. {
  2092. struct preempt_notifier *notifier;
  2093. struct hlist_node *node;
  2094. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2095. notifier->ops->sched_out(notifier, next);
  2096. }
  2097. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2098. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2099. {
  2100. }
  2101. static void
  2102. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2103. struct task_struct *next)
  2104. {
  2105. }
  2106. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2107. /**
  2108. * prepare_task_switch - prepare to switch tasks
  2109. * @rq: the runqueue preparing to switch
  2110. * @prev: the current task that is being switched out
  2111. * @next: the task we are going to switch to.
  2112. *
  2113. * This is called with the rq lock held and interrupts off. It must
  2114. * be paired with a subsequent finish_task_switch after the context
  2115. * switch.
  2116. *
  2117. * prepare_task_switch sets up locking and calls architecture specific
  2118. * hooks.
  2119. */
  2120. static inline void
  2121. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2122. struct task_struct *next)
  2123. {
  2124. fire_sched_out_preempt_notifiers(prev, next);
  2125. prepare_lock_switch(rq, next);
  2126. prepare_arch_switch(next);
  2127. }
  2128. /**
  2129. * finish_task_switch - clean up after a task-switch
  2130. * @rq: runqueue associated with task-switch
  2131. * @prev: the thread we just switched away from.
  2132. *
  2133. * finish_task_switch must be called after the context switch, paired
  2134. * with a prepare_task_switch call before the context switch.
  2135. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2136. * and do any other architecture-specific cleanup actions.
  2137. *
  2138. * Note that we may have delayed dropping an mm in context_switch(). If
  2139. * so, we finish that here outside of the runqueue lock. (Doing it
  2140. * with the lock held can cause deadlocks; see schedule() for
  2141. * details.)
  2142. */
  2143. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2144. __releases(rq->lock)
  2145. {
  2146. struct mm_struct *mm = rq->prev_mm;
  2147. long prev_state;
  2148. rq->prev_mm = NULL;
  2149. /*
  2150. * A task struct has one reference for the use as "current".
  2151. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2152. * schedule one last time. The schedule call will never return, and
  2153. * the scheduled task must drop that reference.
  2154. * The test for TASK_DEAD must occur while the runqueue locks are
  2155. * still held, otherwise prev could be scheduled on another cpu, die
  2156. * there before we look at prev->state, and then the reference would
  2157. * be dropped twice.
  2158. * Manfred Spraul <manfred@colorfullife.com>
  2159. */
  2160. prev_state = prev->state;
  2161. finish_arch_switch(prev);
  2162. finish_lock_switch(rq, prev);
  2163. #ifdef CONFIG_SMP
  2164. if (current->sched_class->post_schedule)
  2165. current->sched_class->post_schedule(rq);
  2166. #endif
  2167. fire_sched_in_preempt_notifiers(current);
  2168. if (mm)
  2169. mmdrop(mm);
  2170. if (unlikely(prev_state == TASK_DEAD)) {
  2171. /*
  2172. * Remove function-return probe instances associated with this
  2173. * task and put them back on the free list.
  2174. */
  2175. kprobe_flush_task(prev);
  2176. put_task_struct(prev);
  2177. }
  2178. }
  2179. /**
  2180. * schedule_tail - first thing a freshly forked thread must call.
  2181. * @prev: the thread we just switched away from.
  2182. */
  2183. asmlinkage void schedule_tail(struct task_struct *prev)
  2184. __releases(rq->lock)
  2185. {
  2186. struct rq *rq = this_rq();
  2187. finish_task_switch(rq, prev);
  2188. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2189. /* In this case, finish_task_switch does not reenable preemption */
  2190. preempt_enable();
  2191. #endif
  2192. if (current->set_child_tid)
  2193. put_user(task_pid_vnr(current), current->set_child_tid);
  2194. }
  2195. /*
  2196. * context_switch - switch to the new MM and the new
  2197. * thread's register state.
  2198. */
  2199. static inline void
  2200. context_switch(struct rq *rq, struct task_struct *prev,
  2201. struct task_struct *next)
  2202. {
  2203. struct mm_struct *mm, *oldmm;
  2204. prepare_task_switch(rq, prev, next);
  2205. trace_sched_switch(rq, prev, next);
  2206. mm = next->mm;
  2207. oldmm = prev->active_mm;
  2208. /*
  2209. * For paravirt, this is coupled with an exit in switch_to to
  2210. * combine the page table reload and the switch backend into
  2211. * one hypercall.
  2212. */
  2213. arch_enter_lazy_cpu_mode();
  2214. if (unlikely(!mm)) {
  2215. next->active_mm = oldmm;
  2216. atomic_inc(&oldmm->mm_count);
  2217. enter_lazy_tlb(oldmm, next);
  2218. } else
  2219. switch_mm(oldmm, mm, next);
  2220. if (unlikely(!prev->mm)) {
  2221. prev->active_mm = NULL;
  2222. rq->prev_mm = oldmm;
  2223. }
  2224. /*
  2225. * Since the runqueue lock will be released by the next
  2226. * task (which is an invalid locking op but in the case
  2227. * of the scheduler it's an obvious special-case), so we
  2228. * do an early lockdep release here:
  2229. */
  2230. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2231. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2232. #endif
  2233. /* Here we just switch the register state and the stack. */
  2234. switch_to(prev, next, prev);
  2235. barrier();
  2236. /*
  2237. * this_rq must be evaluated again because prev may have moved
  2238. * CPUs since it called schedule(), thus the 'rq' on its stack
  2239. * frame will be invalid.
  2240. */
  2241. finish_task_switch(this_rq(), prev);
  2242. }
  2243. /*
  2244. * nr_running, nr_uninterruptible and nr_context_switches:
  2245. *
  2246. * externally visible scheduler statistics: current number of runnable
  2247. * threads, current number of uninterruptible-sleeping threads, total
  2248. * number of context switches performed since bootup.
  2249. */
  2250. unsigned long nr_running(void)
  2251. {
  2252. unsigned long i, sum = 0;
  2253. for_each_online_cpu(i)
  2254. sum += cpu_rq(i)->nr_running;
  2255. return sum;
  2256. }
  2257. unsigned long nr_uninterruptible(void)
  2258. {
  2259. unsigned long i, sum = 0;
  2260. for_each_possible_cpu(i)
  2261. sum += cpu_rq(i)->nr_uninterruptible;
  2262. /*
  2263. * Since we read the counters lockless, it might be slightly
  2264. * inaccurate. Do not allow it to go below zero though:
  2265. */
  2266. if (unlikely((long)sum < 0))
  2267. sum = 0;
  2268. return sum;
  2269. }
  2270. unsigned long long nr_context_switches(void)
  2271. {
  2272. int i;
  2273. unsigned long long sum = 0;
  2274. for_each_possible_cpu(i)
  2275. sum += cpu_rq(i)->nr_switches;
  2276. return sum;
  2277. }
  2278. unsigned long nr_iowait(void)
  2279. {
  2280. unsigned long i, sum = 0;
  2281. for_each_possible_cpu(i)
  2282. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2283. return sum;
  2284. }
  2285. unsigned long nr_active(void)
  2286. {
  2287. unsigned long i, running = 0, uninterruptible = 0;
  2288. for_each_online_cpu(i) {
  2289. running += cpu_rq(i)->nr_running;
  2290. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2291. }
  2292. if (unlikely((long)uninterruptible < 0))
  2293. uninterruptible = 0;
  2294. return running + uninterruptible;
  2295. }
  2296. /*
  2297. * Update rq->cpu_load[] statistics. This function is usually called every
  2298. * scheduler tick (TICK_NSEC).
  2299. */
  2300. static void update_cpu_load(struct rq *this_rq)
  2301. {
  2302. unsigned long this_load = this_rq->load.weight;
  2303. int i, scale;
  2304. this_rq->nr_load_updates++;
  2305. /* Update our load: */
  2306. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2307. unsigned long old_load, new_load;
  2308. /* scale is effectively 1 << i now, and >> i divides by scale */
  2309. old_load = this_rq->cpu_load[i];
  2310. new_load = this_load;
  2311. /*
  2312. * Round up the averaging division if load is increasing. This
  2313. * prevents us from getting stuck on 9 if the load is 10, for
  2314. * example.
  2315. */
  2316. if (new_load > old_load)
  2317. new_load += scale-1;
  2318. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2319. }
  2320. }
  2321. #ifdef CONFIG_SMP
  2322. /*
  2323. * double_rq_lock - safely lock two runqueues
  2324. *
  2325. * Note this does not disable interrupts like task_rq_lock,
  2326. * you need to do so manually before calling.
  2327. */
  2328. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2329. __acquires(rq1->lock)
  2330. __acquires(rq2->lock)
  2331. {
  2332. BUG_ON(!irqs_disabled());
  2333. if (rq1 == rq2) {
  2334. spin_lock(&rq1->lock);
  2335. __acquire(rq2->lock); /* Fake it out ;) */
  2336. } else {
  2337. if (rq1 < rq2) {
  2338. spin_lock(&rq1->lock);
  2339. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2340. } else {
  2341. spin_lock(&rq2->lock);
  2342. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2343. }
  2344. }
  2345. update_rq_clock(rq1);
  2346. update_rq_clock(rq2);
  2347. }
  2348. /*
  2349. * double_rq_unlock - safely unlock two runqueues
  2350. *
  2351. * Note this does not restore interrupts like task_rq_unlock,
  2352. * you need to do so manually after calling.
  2353. */
  2354. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2355. __releases(rq1->lock)
  2356. __releases(rq2->lock)
  2357. {
  2358. spin_unlock(&rq1->lock);
  2359. if (rq1 != rq2)
  2360. spin_unlock(&rq2->lock);
  2361. else
  2362. __release(rq2->lock);
  2363. }
  2364. /*
  2365. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2366. */
  2367. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2368. __releases(this_rq->lock)
  2369. __acquires(busiest->lock)
  2370. __acquires(this_rq->lock)
  2371. {
  2372. int ret = 0;
  2373. if (unlikely(!irqs_disabled())) {
  2374. /* printk() doesn't work good under rq->lock */
  2375. spin_unlock(&this_rq->lock);
  2376. BUG_ON(1);
  2377. }
  2378. if (unlikely(!spin_trylock(&busiest->lock))) {
  2379. if (busiest < this_rq) {
  2380. spin_unlock(&this_rq->lock);
  2381. spin_lock(&busiest->lock);
  2382. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  2383. ret = 1;
  2384. } else
  2385. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  2386. }
  2387. return ret;
  2388. }
  2389. static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  2390. __releases(busiest->lock)
  2391. {
  2392. spin_unlock(&busiest->lock);
  2393. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  2394. }
  2395. /*
  2396. * If dest_cpu is allowed for this process, migrate the task to it.
  2397. * This is accomplished by forcing the cpu_allowed mask to only
  2398. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2399. * the cpu_allowed mask is restored.
  2400. */
  2401. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2402. {
  2403. struct migration_req req;
  2404. unsigned long flags;
  2405. struct rq *rq;
  2406. rq = task_rq_lock(p, &flags);
  2407. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2408. || unlikely(!cpu_active(dest_cpu)))
  2409. goto out;
  2410. trace_sched_migrate_task(rq, p, dest_cpu);
  2411. /* force the process onto the specified CPU */
  2412. if (migrate_task(p, dest_cpu, &req)) {
  2413. /* Need to wait for migration thread (might exit: take ref). */
  2414. struct task_struct *mt = rq->migration_thread;
  2415. get_task_struct(mt);
  2416. task_rq_unlock(rq, &flags);
  2417. wake_up_process(mt);
  2418. put_task_struct(mt);
  2419. wait_for_completion(&req.done);
  2420. return;
  2421. }
  2422. out:
  2423. task_rq_unlock(rq, &flags);
  2424. }
  2425. /*
  2426. * sched_exec - execve() is a valuable balancing opportunity, because at
  2427. * this point the task has the smallest effective memory and cache footprint.
  2428. */
  2429. void sched_exec(void)
  2430. {
  2431. int new_cpu, this_cpu = get_cpu();
  2432. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2433. put_cpu();
  2434. if (new_cpu != this_cpu)
  2435. sched_migrate_task(current, new_cpu);
  2436. }
  2437. /*
  2438. * pull_task - move a task from a remote runqueue to the local runqueue.
  2439. * Both runqueues must be locked.
  2440. */
  2441. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2442. struct rq *this_rq, int this_cpu)
  2443. {
  2444. deactivate_task(src_rq, p, 0);
  2445. set_task_cpu(p, this_cpu);
  2446. activate_task(this_rq, p, 0);
  2447. /*
  2448. * Note that idle threads have a prio of MAX_PRIO, for this test
  2449. * to be always true for them.
  2450. */
  2451. check_preempt_curr(this_rq, p, 0);
  2452. }
  2453. /*
  2454. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2455. */
  2456. static
  2457. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2458. struct sched_domain *sd, enum cpu_idle_type idle,
  2459. int *all_pinned)
  2460. {
  2461. /*
  2462. * We do not migrate tasks that are:
  2463. * 1) running (obviously), or
  2464. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2465. * 3) are cache-hot on their current CPU.
  2466. */
  2467. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2468. schedstat_inc(p, se.nr_failed_migrations_affine);
  2469. return 0;
  2470. }
  2471. *all_pinned = 0;
  2472. if (task_running(rq, p)) {
  2473. schedstat_inc(p, se.nr_failed_migrations_running);
  2474. return 0;
  2475. }
  2476. /*
  2477. * Aggressive migration if:
  2478. * 1) task is cache cold, or
  2479. * 2) too many balance attempts have failed.
  2480. */
  2481. if (!task_hot(p, rq->clock, sd) ||
  2482. sd->nr_balance_failed > sd->cache_nice_tries) {
  2483. #ifdef CONFIG_SCHEDSTATS
  2484. if (task_hot(p, rq->clock, sd)) {
  2485. schedstat_inc(sd, lb_hot_gained[idle]);
  2486. schedstat_inc(p, se.nr_forced_migrations);
  2487. }
  2488. #endif
  2489. return 1;
  2490. }
  2491. if (task_hot(p, rq->clock, sd)) {
  2492. schedstat_inc(p, se.nr_failed_migrations_hot);
  2493. return 0;
  2494. }
  2495. return 1;
  2496. }
  2497. static unsigned long
  2498. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2499. unsigned long max_load_move, struct sched_domain *sd,
  2500. enum cpu_idle_type idle, int *all_pinned,
  2501. int *this_best_prio, struct rq_iterator *iterator)
  2502. {
  2503. int loops = 0, pulled = 0, pinned = 0;
  2504. struct task_struct *p;
  2505. long rem_load_move = max_load_move;
  2506. if (max_load_move == 0)
  2507. goto out;
  2508. pinned = 1;
  2509. /*
  2510. * Start the load-balancing iterator:
  2511. */
  2512. p = iterator->start(iterator->arg);
  2513. next:
  2514. if (!p || loops++ > sysctl_sched_nr_migrate)
  2515. goto out;
  2516. if ((p->se.load.weight >> 1) > rem_load_move ||
  2517. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2518. p = iterator->next(iterator->arg);
  2519. goto next;
  2520. }
  2521. pull_task(busiest, p, this_rq, this_cpu);
  2522. pulled++;
  2523. rem_load_move -= p->se.load.weight;
  2524. /*
  2525. * We only want to steal up to the prescribed amount of weighted load.
  2526. */
  2527. if (rem_load_move > 0) {
  2528. if (p->prio < *this_best_prio)
  2529. *this_best_prio = p->prio;
  2530. p = iterator->next(iterator->arg);
  2531. goto next;
  2532. }
  2533. out:
  2534. /*
  2535. * Right now, this is one of only two places pull_task() is called,
  2536. * so we can safely collect pull_task() stats here rather than
  2537. * inside pull_task().
  2538. */
  2539. schedstat_add(sd, lb_gained[idle], pulled);
  2540. if (all_pinned)
  2541. *all_pinned = pinned;
  2542. return max_load_move - rem_load_move;
  2543. }
  2544. /*
  2545. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2546. * this_rq, as part of a balancing operation within domain "sd".
  2547. * Returns 1 if successful and 0 otherwise.
  2548. *
  2549. * Called with both runqueues locked.
  2550. */
  2551. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2552. unsigned long max_load_move,
  2553. struct sched_domain *sd, enum cpu_idle_type idle,
  2554. int *all_pinned)
  2555. {
  2556. const struct sched_class *class = sched_class_highest;
  2557. unsigned long total_load_moved = 0;
  2558. int this_best_prio = this_rq->curr->prio;
  2559. do {
  2560. total_load_moved +=
  2561. class->load_balance(this_rq, this_cpu, busiest,
  2562. max_load_move - total_load_moved,
  2563. sd, idle, all_pinned, &this_best_prio);
  2564. class = class->next;
  2565. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2566. break;
  2567. } while (class && max_load_move > total_load_moved);
  2568. return total_load_moved > 0;
  2569. }
  2570. static int
  2571. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2572. struct sched_domain *sd, enum cpu_idle_type idle,
  2573. struct rq_iterator *iterator)
  2574. {
  2575. struct task_struct *p = iterator->start(iterator->arg);
  2576. int pinned = 0;
  2577. while (p) {
  2578. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2579. pull_task(busiest, p, this_rq, this_cpu);
  2580. /*
  2581. * Right now, this is only the second place pull_task()
  2582. * is called, so we can safely collect pull_task()
  2583. * stats here rather than inside pull_task().
  2584. */
  2585. schedstat_inc(sd, lb_gained[idle]);
  2586. return 1;
  2587. }
  2588. p = iterator->next(iterator->arg);
  2589. }
  2590. return 0;
  2591. }
  2592. /*
  2593. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2594. * part of active balancing operations within "domain".
  2595. * Returns 1 if successful and 0 otherwise.
  2596. *
  2597. * Called with both runqueues locked.
  2598. */
  2599. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2600. struct sched_domain *sd, enum cpu_idle_type idle)
  2601. {
  2602. const struct sched_class *class;
  2603. for (class = sched_class_highest; class; class = class->next)
  2604. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2605. return 1;
  2606. return 0;
  2607. }
  2608. /*
  2609. * find_busiest_group finds and returns the busiest CPU group within the
  2610. * domain. It calculates and returns the amount of weighted load which
  2611. * should be moved to restore balance via the imbalance parameter.
  2612. */
  2613. static struct sched_group *
  2614. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2615. unsigned long *imbalance, enum cpu_idle_type idle,
  2616. int *sd_idle, const cpumask_t *cpus, int *balance)
  2617. {
  2618. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2619. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2620. unsigned long max_pull;
  2621. unsigned long busiest_load_per_task, busiest_nr_running;
  2622. unsigned long this_load_per_task, this_nr_running;
  2623. int load_idx, group_imb = 0;
  2624. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2625. int power_savings_balance = 1;
  2626. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2627. unsigned long min_nr_running = ULONG_MAX;
  2628. struct sched_group *group_min = NULL, *group_leader = NULL;
  2629. #endif
  2630. max_load = this_load = total_load = total_pwr = 0;
  2631. busiest_load_per_task = busiest_nr_running = 0;
  2632. this_load_per_task = this_nr_running = 0;
  2633. if (idle == CPU_NOT_IDLE)
  2634. load_idx = sd->busy_idx;
  2635. else if (idle == CPU_NEWLY_IDLE)
  2636. load_idx = sd->newidle_idx;
  2637. else
  2638. load_idx = sd->idle_idx;
  2639. do {
  2640. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2641. int local_group;
  2642. int i;
  2643. int __group_imb = 0;
  2644. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2645. unsigned long sum_nr_running, sum_weighted_load;
  2646. unsigned long sum_avg_load_per_task;
  2647. unsigned long avg_load_per_task;
  2648. local_group = cpu_isset(this_cpu, group->cpumask);
  2649. if (local_group)
  2650. balance_cpu = first_cpu(group->cpumask);
  2651. /* Tally up the load of all CPUs in the group */
  2652. sum_weighted_load = sum_nr_running = avg_load = 0;
  2653. sum_avg_load_per_task = avg_load_per_task = 0;
  2654. max_cpu_load = 0;
  2655. min_cpu_load = ~0UL;
  2656. for_each_cpu_mask_nr(i, group->cpumask) {
  2657. struct rq *rq;
  2658. if (!cpu_isset(i, *cpus))
  2659. continue;
  2660. rq = cpu_rq(i);
  2661. if (*sd_idle && rq->nr_running)
  2662. *sd_idle = 0;
  2663. /* Bias balancing toward cpus of our domain */
  2664. if (local_group) {
  2665. if (idle_cpu(i) && !first_idle_cpu) {
  2666. first_idle_cpu = 1;
  2667. balance_cpu = i;
  2668. }
  2669. load = target_load(i, load_idx);
  2670. } else {
  2671. load = source_load(i, load_idx);
  2672. if (load > max_cpu_load)
  2673. max_cpu_load = load;
  2674. if (min_cpu_load > load)
  2675. min_cpu_load = load;
  2676. }
  2677. avg_load += load;
  2678. sum_nr_running += rq->nr_running;
  2679. sum_weighted_load += weighted_cpuload(i);
  2680. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2681. }
  2682. /*
  2683. * First idle cpu or the first cpu(busiest) in this sched group
  2684. * is eligible for doing load balancing at this and above
  2685. * domains. In the newly idle case, we will allow all the cpu's
  2686. * to do the newly idle load balance.
  2687. */
  2688. if (idle != CPU_NEWLY_IDLE && local_group &&
  2689. balance_cpu != this_cpu && balance) {
  2690. *balance = 0;
  2691. goto ret;
  2692. }
  2693. total_load += avg_load;
  2694. total_pwr += group->__cpu_power;
  2695. /* Adjust by relative CPU power of the group */
  2696. avg_load = sg_div_cpu_power(group,
  2697. avg_load * SCHED_LOAD_SCALE);
  2698. /*
  2699. * Consider the group unbalanced when the imbalance is larger
  2700. * than the average weight of two tasks.
  2701. *
  2702. * APZ: with cgroup the avg task weight can vary wildly and
  2703. * might not be a suitable number - should we keep a
  2704. * normalized nr_running number somewhere that negates
  2705. * the hierarchy?
  2706. */
  2707. avg_load_per_task = sg_div_cpu_power(group,
  2708. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2709. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2710. __group_imb = 1;
  2711. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2712. if (local_group) {
  2713. this_load = avg_load;
  2714. this = group;
  2715. this_nr_running = sum_nr_running;
  2716. this_load_per_task = sum_weighted_load;
  2717. } else if (avg_load > max_load &&
  2718. (sum_nr_running > group_capacity || __group_imb)) {
  2719. max_load = avg_load;
  2720. busiest = group;
  2721. busiest_nr_running = sum_nr_running;
  2722. busiest_load_per_task = sum_weighted_load;
  2723. group_imb = __group_imb;
  2724. }
  2725. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2726. /*
  2727. * Busy processors will not participate in power savings
  2728. * balance.
  2729. */
  2730. if (idle == CPU_NOT_IDLE ||
  2731. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2732. goto group_next;
  2733. /*
  2734. * If the local group is idle or completely loaded
  2735. * no need to do power savings balance at this domain
  2736. */
  2737. if (local_group && (this_nr_running >= group_capacity ||
  2738. !this_nr_running))
  2739. power_savings_balance = 0;
  2740. /*
  2741. * If a group is already running at full capacity or idle,
  2742. * don't include that group in power savings calculations
  2743. */
  2744. if (!power_savings_balance || sum_nr_running >= group_capacity
  2745. || !sum_nr_running)
  2746. goto group_next;
  2747. /*
  2748. * Calculate the group which has the least non-idle load.
  2749. * This is the group from where we need to pick up the load
  2750. * for saving power
  2751. */
  2752. if ((sum_nr_running < min_nr_running) ||
  2753. (sum_nr_running == min_nr_running &&
  2754. first_cpu(group->cpumask) <
  2755. first_cpu(group_min->cpumask))) {
  2756. group_min = group;
  2757. min_nr_running = sum_nr_running;
  2758. min_load_per_task = sum_weighted_load /
  2759. sum_nr_running;
  2760. }
  2761. /*
  2762. * Calculate the group which is almost near its
  2763. * capacity but still has some space to pick up some load
  2764. * from other group and save more power
  2765. */
  2766. if (sum_nr_running <= group_capacity - 1) {
  2767. if (sum_nr_running > leader_nr_running ||
  2768. (sum_nr_running == leader_nr_running &&
  2769. first_cpu(group->cpumask) >
  2770. first_cpu(group_leader->cpumask))) {
  2771. group_leader = group;
  2772. leader_nr_running = sum_nr_running;
  2773. }
  2774. }
  2775. group_next:
  2776. #endif
  2777. group = group->next;
  2778. } while (group != sd->groups);
  2779. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2780. goto out_balanced;
  2781. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2782. if (this_load >= avg_load ||
  2783. 100*max_load <= sd->imbalance_pct*this_load)
  2784. goto out_balanced;
  2785. busiest_load_per_task /= busiest_nr_running;
  2786. if (group_imb)
  2787. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2788. /*
  2789. * We're trying to get all the cpus to the average_load, so we don't
  2790. * want to push ourselves above the average load, nor do we wish to
  2791. * reduce the max loaded cpu below the average load, as either of these
  2792. * actions would just result in more rebalancing later, and ping-pong
  2793. * tasks around. Thus we look for the minimum possible imbalance.
  2794. * Negative imbalances (*we* are more loaded than anyone else) will
  2795. * be counted as no imbalance for these purposes -- we can't fix that
  2796. * by pulling tasks to us. Be careful of negative numbers as they'll
  2797. * appear as very large values with unsigned longs.
  2798. */
  2799. if (max_load <= busiest_load_per_task)
  2800. goto out_balanced;
  2801. /*
  2802. * In the presence of smp nice balancing, certain scenarios can have
  2803. * max load less than avg load(as we skip the groups at or below
  2804. * its cpu_power, while calculating max_load..)
  2805. */
  2806. if (max_load < avg_load) {
  2807. *imbalance = 0;
  2808. goto small_imbalance;
  2809. }
  2810. /* Don't want to pull so many tasks that a group would go idle */
  2811. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2812. /* How much load to actually move to equalise the imbalance */
  2813. *imbalance = min(max_pull * busiest->__cpu_power,
  2814. (avg_load - this_load) * this->__cpu_power)
  2815. / SCHED_LOAD_SCALE;
  2816. /*
  2817. * if *imbalance is less than the average load per runnable task
  2818. * there is no gaurantee that any tasks will be moved so we'll have
  2819. * a think about bumping its value to force at least one task to be
  2820. * moved
  2821. */
  2822. if (*imbalance < busiest_load_per_task) {
  2823. unsigned long tmp, pwr_now, pwr_move;
  2824. unsigned int imbn;
  2825. small_imbalance:
  2826. pwr_move = pwr_now = 0;
  2827. imbn = 2;
  2828. if (this_nr_running) {
  2829. this_load_per_task /= this_nr_running;
  2830. if (busiest_load_per_task > this_load_per_task)
  2831. imbn = 1;
  2832. } else
  2833. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2834. if (max_load - this_load + 2*busiest_load_per_task >=
  2835. busiest_load_per_task * imbn) {
  2836. *imbalance = busiest_load_per_task;
  2837. return busiest;
  2838. }
  2839. /*
  2840. * OK, we don't have enough imbalance to justify moving tasks,
  2841. * however we may be able to increase total CPU power used by
  2842. * moving them.
  2843. */
  2844. pwr_now += busiest->__cpu_power *
  2845. min(busiest_load_per_task, max_load);
  2846. pwr_now += this->__cpu_power *
  2847. min(this_load_per_task, this_load);
  2848. pwr_now /= SCHED_LOAD_SCALE;
  2849. /* Amount of load we'd subtract */
  2850. tmp = sg_div_cpu_power(busiest,
  2851. busiest_load_per_task * SCHED_LOAD_SCALE);
  2852. if (max_load > tmp)
  2853. pwr_move += busiest->__cpu_power *
  2854. min(busiest_load_per_task, max_load - tmp);
  2855. /* Amount of load we'd add */
  2856. if (max_load * busiest->__cpu_power <
  2857. busiest_load_per_task * SCHED_LOAD_SCALE)
  2858. tmp = sg_div_cpu_power(this,
  2859. max_load * busiest->__cpu_power);
  2860. else
  2861. tmp = sg_div_cpu_power(this,
  2862. busiest_load_per_task * SCHED_LOAD_SCALE);
  2863. pwr_move += this->__cpu_power *
  2864. min(this_load_per_task, this_load + tmp);
  2865. pwr_move /= SCHED_LOAD_SCALE;
  2866. /* Move if we gain throughput */
  2867. if (pwr_move > pwr_now)
  2868. *imbalance = busiest_load_per_task;
  2869. }
  2870. return busiest;
  2871. out_balanced:
  2872. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2873. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2874. goto ret;
  2875. if (this == group_leader && group_leader != group_min) {
  2876. *imbalance = min_load_per_task;
  2877. return group_min;
  2878. }
  2879. #endif
  2880. ret:
  2881. *imbalance = 0;
  2882. return NULL;
  2883. }
  2884. /*
  2885. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2886. */
  2887. static struct rq *
  2888. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2889. unsigned long imbalance, const cpumask_t *cpus)
  2890. {
  2891. struct rq *busiest = NULL, *rq;
  2892. unsigned long max_load = 0;
  2893. int i;
  2894. for_each_cpu_mask_nr(i, group->cpumask) {
  2895. unsigned long wl;
  2896. if (!cpu_isset(i, *cpus))
  2897. continue;
  2898. rq = cpu_rq(i);
  2899. wl = weighted_cpuload(i);
  2900. if (rq->nr_running == 1 && wl > imbalance)
  2901. continue;
  2902. if (wl > max_load) {
  2903. max_load = wl;
  2904. busiest = rq;
  2905. }
  2906. }
  2907. return busiest;
  2908. }
  2909. /*
  2910. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2911. * so long as it is large enough.
  2912. */
  2913. #define MAX_PINNED_INTERVAL 512
  2914. /*
  2915. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2916. * tasks if there is an imbalance.
  2917. */
  2918. static int load_balance(int this_cpu, struct rq *this_rq,
  2919. struct sched_domain *sd, enum cpu_idle_type idle,
  2920. int *balance, cpumask_t *cpus)
  2921. {
  2922. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2923. struct sched_group *group;
  2924. unsigned long imbalance;
  2925. struct rq *busiest;
  2926. unsigned long flags;
  2927. cpus_setall(*cpus);
  2928. /*
  2929. * When power savings policy is enabled for the parent domain, idle
  2930. * sibling can pick up load irrespective of busy siblings. In this case,
  2931. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2932. * portraying it as CPU_NOT_IDLE.
  2933. */
  2934. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2935. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2936. sd_idle = 1;
  2937. schedstat_inc(sd, lb_count[idle]);
  2938. redo:
  2939. update_shares(sd);
  2940. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2941. cpus, balance);
  2942. if (*balance == 0)
  2943. goto out_balanced;
  2944. if (!group) {
  2945. schedstat_inc(sd, lb_nobusyg[idle]);
  2946. goto out_balanced;
  2947. }
  2948. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2949. if (!busiest) {
  2950. schedstat_inc(sd, lb_nobusyq[idle]);
  2951. goto out_balanced;
  2952. }
  2953. BUG_ON(busiest == this_rq);
  2954. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2955. ld_moved = 0;
  2956. if (busiest->nr_running > 1) {
  2957. /*
  2958. * Attempt to move tasks. If find_busiest_group has found
  2959. * an imbalance but busiest->nr_running <= 1, the group is
  2960. * still unbalanced. ld_moved simply stays zero, so it is
  2961. * correctly treated as an imbalance.
  2962. */
  2963. local_irq_save(flags);
  2964. double_rq_lock(this_rq, busiest);
  2965. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2966. imbalance, sd, idle, &all_pinned);
  2967. double_rq_unlock(this_rq, busiest);
  2968. local_irq_restore(flags);
  2969. /*
  2970. * some other cpu did the load balance for us.
  2971. */
  2972. if (ld_moved && this_cpu != smp_processor_id())
  2973. resched_cpu(this_cpu);
  2974. /* All tasks on this runqueue were pinned by CPU affinity */
  2975. if (unlikely(all_pinned)) {
  2976. cpu_clear(cpu_of(busiest), *cpus);
  2977. if (!cpus_empty(*cpus))
  2978. goto redo;
  2979. goto out_balanced;
  2980. }
  2981. }
  2982. if (!ld_moved) {
  2983. schedstat_inc(sd, lb_failed[idle]);
  2984. sd->nr_balance_failed++;
  2985. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2986. spin_lock_irqsave(&busiest->lock, flags);
  2987. /* don't kick the migration_thread, if the curr
  2988. * task on busiest cpu can't be moved to this_cpu
  2989. */
  2990. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2991. spin_unlock_irqrestore(&busiest->lock, flags);
  2992. all_pinned = 1;
  2993. goto out_one_pinned;
  2994. }
  2995. if (!busiest->active_balance) {
  2996. busiest->active_balance = 1;
  2997. busiest->push_cpu = this_cpu;
  2998. active_balance = 1;
  2999. }
  3000. spin_unlock_irqrestore(&busiest->lock, flags);
  3001. if (active_balance)
  3002. wake_up_process(busiest->migration_thread);
  3003. /*
  3004. * We've kicked active balancing, reset the failure
  3005. * counter.
  3006. */
  3007. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3008. }
  3009. } else
  3010. sd->nr_balance_failed = 0;
  3011. if (likely(!active_balance)) {
  3012. /* We were unbalanced, so reset the balancing interval */
  3013. sd->balance_interval = sd->min_interval;
  3014. } else {
  3015. /*
  3016. * If we've begun active balancing, start to back off. This
  3017. * case may not be covered by the all_pinned logic if there
  3018. * is only 1 task on the busy runqueue (because we don't call
  3019. * move_tasks).
  3020. */
  3021. if (sd->balance_interval < sd->max_interval)
  3022. sd->balance_interval *= 2;
  3023. }
  3024. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3025. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3026. ld_moved = -1;
  3027. goto out;
  3028. out_balanced:
  3029. schedstat_inc(sd, lb_balanced[idle]);
  3030. sd->nr_balance_failed = 0;
  3031. out_one_pinned:
  3032. /* tune up the balancing interval */
  3033. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3034. (sd->balance_interval < sd->max_interval))
  3035. sd->balance_interval *= 2;
  3036. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3037. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3038. ld_moved = -1;
  3039. else
  3040. ld_moved = 0;
  3041. out:
  3042. if (ld_moved)
  3043. update_shares(sd);
  3044. return ld_moved;
  3045. }
  3046. /*
  3047. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3048. * tasks if there is an imbalance.
  3049. *
  3050. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3051. * this_rq is locked.
  3052. */
  3053. static int
  3054. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3055. cpumask_t *cpus)
  3056. {
  3057. struct sched_group *group;
  3058. struct rq *busiest = NULL;
  3059. unsigned long imbalance;
  3060. int ld_moved = 0;
  3061. int sd_idle = 0;
  3062. int all_pinned = 0;
  3063. cpus_setall(*cpus);
  3064. /*
  3065. * When power savings policy is enabled for the parent domain, idle
  3066. * sibling can pick up load irrespective of busy siblings. In this case,
  3067. * let the state of idle sibling percolate up as IDLE, instead of
  3068. * portraying it as CPU_NOT_IDLE.
  3069. */
  3070. if (sd->flags & SD_SHARE_CPUPOWER &&
  3071. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3072. sd_idle = 1;
  3073. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3074. redo:
  3075. update_shares_locked(this_rq, sd);
  3076. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3077. &sd_idle, cpus, NULL);
  3078. if (!group) {
  3079. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3080. goto out_balanced;
  3081. }
  3082. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3083. if (!busiest) {
  3084. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3085. goto out_balanced;
  3086. }
  3087. BUG_ON(busiest == this_rq);
  3088. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3089. ld_moved = 0;
  3090. if (busiest->nr_running > 1) {
  3091. /* Attempt to move tasks */
  3092. double_lock_balance(this_rq, busiest);
  3093. /* this_rq->clock is already updated */
  3094. update_rq_clock(busiest);
  3095. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3096. imbalance, sd, CPU_NEWLY_IDLE,
  3097. &all_pinned);
  3098. double_unlock_balance(this_rq, busiest);
  3099. if (unlikely(all_pinned)) {
  3100. cpu_clear(cpu_of(busiest), *cpus);
  3101. if (!cpus_empty(*cpus))
  3102. goto redo;
  3103. }
  3104. }
  3105. if (!ld_moved) {
  3106. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3107. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3108. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3109. return -1;
  3110. } else
  3111. sd->nr_balance_failed = 0;
  3112. update_shares_locked(this_rq, sd);
  3113. return ld_moved;
  3114. out_balanced:
  3115. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3116. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3117. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3118. return -1;
  3119. sd->nr_balance_failed = 0;
  3120. return 0;
  3121. }
  3122. /*
  3123. * idle_balance is called by schedule() if this_cpu is about to become
  3124. * idle. Attempts to pull tasks from other CPUs.
  3125. */
  3126. static void idle_balance(int this_cpu, struct rq *this_rq)
  3127. {
  3128. struct sched_domain *sd;
  3129. int pulled_task = -1;
  3130. unsigned long next_balance = jiffies + HZ;
  3131. cpumask_t tmpmask;
  3132. for_each_domain(this_cpu, sd) {
  3133. unsigned long interval;
  3134. if (!(sd->flags & SD_LOAD_BALANCE))
  3135. continue;
  3136. if (sd->flags & SD_BALANCE_NEWIDLE)
  3137. /* If we've pulled tasks over stop searching: */
  3138. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3139. sd, &tmpmask);
  3140. interval = msecs_to_jiffies(sd->balance_interval);
  3141. if (time_after(next_balance, sd->last_balance + interval))
  3142. next_balance = sd->last_balance + interval;
  3143. if (pulled_task)
  3144. break;
  3145. }
  3146. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3147. /*
  3148. * We are going idle. next_balance may be set based on
  3149. * a busy processor. So reset next_balance.
  3150. */
  3151. this_rq->next_balance = next_balance;
  3152. }
  3153. }
  3154. /*
  3155. * active_load_balance is run by migration threads. It pushes running tasks
  3156. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3157. * running on each physical CPU where possible, and avoids physical /
  3158. * logical imbalances.
  3159. *
  3160. * Called with busiest_rq locked.
  3161. */
  3162. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3163. {
  3164. int target_cpu = busiest_rq->push_cpu;
  3165. struct sched_domain *sd;
  3166. struct rq *target_rq;
  3167. /* Is there any task to move? */
  3168. if (busiest_rq->nr_running <= 1)
  3169. return;
  3170. target_rq = cpu_rq(target_cpu);
  3171. /*
  3172. * This condition is "impossible", if it occurs
  3173. * we need to fix it. Originally reported by
  3174. * Bjorn Helgaas on a 128-cpu setup.
  3175. */
  3176. BUG_ON(busiest_rq == target_rq);
  3177. /* move a task from busiest_rq to target_rq */
  3178. double_lock_balance(busiest_rq, target_rq);
  3179. update_rq_clock(busiest_rq);
  3180. update_rq_clock(target_rq);
  3181. /* Search for an sd spanning us and the target CPU. */
  3182. for_each_domain(target_cpu, sd) {
  3183. if ((sd->flags & SD_LOAD_BALANCE) &&
  3184. cpu_isset(busiest_cpu, sd->span))
  3185. break;
  3186. }
  3187. if (likely(sd)) {
  3188. schedstat_inc(sd, alb_count);
  3189. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3190. sd, CPU_IDLE))
  3191. schedstat_inc(sd, alb_pushed);
  3192. else
  3193. schedstat_inc(sd, alb_failed);
  3194. }
  3195. double_unlock_balance(busiest_rq, target_rq);
  3196. }
  3197. #ifdef CONFIG_NO_HZ
  3198. static struct {
  3199. atomic_t load_balancer;
  3200. cpumask_t cpu_mask;
  3201. } nohz ____cacheline_aligned = {
  3202. .load_balancer = ATOMIC_INIT(-1),
  3203. .cpu_mask = CPU_MASK_NONE,
  3204. };
  3205. /*
  3206. * This routine will try to nominate the ilb (idle load balancing)
  3207. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3208. * load balancing on behalf of all those cpus. If all the cpus in the system
  3209. * go into this tickless mode, then there will be no ilb owner (as there is
  3210. * no need for one) and all the cpus will sleep till the next wakeup event
  3211. * arrives...
  3212. *
  3213. * For the ilb owner, tick is not stopped. And this tick will be used
  3214. * for idle load balancing. ilb owner will still be part of
  3215. * nohz.cpu_mask..
  3216. *
  3217. * While stopping the tick, this cpu will become the ilb owner if there
  3218. * is no other owner. And will be the owner till that cpu becomes busy
  3219. * or if all cpus in the system stop their ticks at which point
  3220. * there is no need for ilb owner.
  3221. *
  3222. * When the ilb owner becomes busy, it nominates another owner, during the
  3223. * next busy scheduler_tick()
  3224. */
  3225. int select_nohz_load_balancer(int stop_tick)
  3226. {
  3227. int cpu = smp_processor_id();
  3228. if (stop_tick) {
  3229. cpu_set(cpu, nohz.cpu_mask);
  3230. cpu_rq(cpu)->in_nohz_recently = 1;
  3231. /*
  3232. * If we are going offline and still the leader, give up!
  3233. */
  3234. if (!cpu_active(cpu) &&
  3235. atomic_read(&nohz.load_balancer) == cpu) {
  3236. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3237. BUG();
  3238. return 0;
  3239. }
  3240. /* time for ilb owner also to sleep */
  3241. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3242. if (atomic_read(&nohz.load_balancer) == cpu)
  3243. atomic_set(&nohz.load_balancer, -1);
  3244. return 0;
  3245. }
  3246. if (atomic_read(&nohz.load_balancer) == -1) {
  3247. /* make me the ilb owner */
  3248. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3249. return 1;
  3250. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3251. return 1;
  3252. } else {
  3253. if (!cpu_isset(cpu, nohz.cpu_mask))
  3254. return 0;
  3255. cpu_clear(cpu, nohz.cpu_mask);
  3256. if (atomic_read(&nohz.load_balancer) == cpu)
  3257. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3258. BUG();
  3259. }
  3260. return 0;
  3261. }
  3262. #endif
  3263. static DEFINE_SPINLOCK(balancing);
  3264. /*
  3265. * It checks each scheduling domain to see if it is due to be balanced,
  3266. * and initiates a balancing operation if so.
  3267. *
  3268. * Balancing parameters are set up in arch_init_sched_domains.
  3269. */
  3270. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3271. {
  3272. int balance = 1;
  3273. struct rq *rq = cpu_rq(cpu);
  3274. unsigned long interval;
  3275. struct sched_domain *sd;
  3276. /* Earliest time when we have to do rebalance again */
  3277. unsigned long next_balance = jiffies + 60*HZ;
  3278. int update_next_balance = 0;
  3279. int need_serialize;
  3280. cpumask_t tmp;
  3281. for_each_domain(cpu, sd) {
  3282. if (!(sd->flags & SD_LOAD_BALANCE))
  3283. continue;
  3284. interval = sd->balance_interval;
  3285. if (idle != CPU_IDLE)
  3286. interval *= sd->busy_factor;
  3287. /* scale ms to jiffies */
  3288. interval = msecs_to_jiffies(interval);
  3289. if (unlikely(!interval))
  3290. interval = 1;
  3291. if (interval > HZ*NR_CPUS/10)
  3292. interval = HZ*NR_CPUS/10;
  3293. need_serialize = sd->flags & SD_SERIALIZE;
  3294. if (need_serialize) {
  3295. if (!spin_trylock(&balancing))
  3296. goto out;
  3297. }
  3298. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3299. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3300. /*
  3301. * We've pulled tasks over so either we're no
  3302. * longer idle, or one of our SMT siblings is
  3303. * not idle.
  3304. */
  3305. idle = CPU_NOT_IDLE;
  3306. }
  3307. sd->last_balance = jiffies;
  3308. }
  3309. if (need_serialize)
  3310. spin_unlock(&balancing);
  3311. out:
  3312. if (time_after(next_balance, sd->last_balance + interval)) {
  3313. next_balance = sd->last_balance + interval;
  3314. update_next_balance = 1;
  3315. }
  3316. /*
  3317. * Stop the load balance at this level. There is another
  3318. * CPU in our sched group which is doing load balancing more
  3319. * actively.
  3320. */
  3321. if (!balance)
  3322. break;
  3323. }
  3324. /*
  3325. * next_balance will be updated only when there is a need.
  3326. * When the cpu is attached to null domain for ex, it will not be
  3327. * updated.
  3328. */
  3329. if (likely(update_next_balance))
  3330. rq->next_balance = next_balance;
  3331. }
  3332. /*
  3333. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3334. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3335. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3336. */
  3337. static void run_rebalance_domains(struct softirq_action *h)
  3338. {
  3339. int this_cpu = smp_processor_id();
  3340. struct rq *this_rq = cpu_rq(this_cpu);
  3341. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3342. CPU_IDLE : CPU_NOT_IDLE;
  3343. rebalance_domains(this_cpu, idle);
  3344. #ifdef CONFIG_NO_HZ
  3345. /*
  3346. * If this cpu is the owner for idle load balancing, then do the
  3347. * balancing on behalf of the other idle cpus whose ticks are
  3348. * stopped.
  3349. */
  3350. if (this_rq->idle_at_tick &&
  3351. atomic_read(&nohz.load_balancer) == this_cpu) {
  3352. cpumask_t cpus = nohz.cpu_mask;
  3353. struct rq *rq;
  3354. int balance_cpu;
  3355. cpu_clear(this_cpu, cpus);
  3356. for_each_cpu_mask_nr(balance_cpu, cpus) {
  3357. /*
  3358. * If this cpu gets work to do, stop the load balancing
  3359. * work being done for other cpus. Next load
  3360. * balancing owner will pick it up.
  3361. */
  3362. if (need_resched())
  3363. break;
  3364. rebalance_domains(balance_cpu, CPU_IDLE);
  3365. rq = cpu_rq(balance_cpu);
  3366. if (time_after(this_rq->next_balance, rq->next_balance))
  3367. this_rq->next_balance = rq->next_balance;
  3368. }
  3369. }
  3370. #endif
  3371. }
  3372. /*
  3373. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3374. *
  3375. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3376. * idle load balancing owner or decide to stop the periodic load balancing,
  3377. * if the whole system is idle.
  3378. */
  3379. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3380. {
  3381. #ifdef CONFIG_NO_HZ
  3382. /*
  3383. * If we were in the nohz mode recently and busy at the current
  3384. * scheduler tick, then check if we need to nominate new idle
  3385. * load balancer.
  3386. */
  3387. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3388. rq->in_nohz_recently = 0;
  3389. if (atomic_read(&nohz.load_balancer) == cpu) {
  3390. cpu_clear(cpu, nohz.cpu_mask);
  3391. atomic_set(&nohz.load_balancer, -1);
  3392. }
  3393. if (atomic_read(&nohz.load_balancer) == -1) {
  3394. /*
  3395. * simple selection for now: Nominate the
  3396. * first cpu in the nohz list to be the next
  3397. * ilb owner.
  3398. *
  3399. * TBD: Traverse the sched domains and nominate
  3400. * the nearest cpu in the nohz.cpu_mask.
  3401. */
  3402. int ilb = first_cpu(nohz.cpu_mask);
  3403. if (ilb < nr_cpu_ids)
  3404. resched_cpu(ilb);
  3405. }
  3406. }
  3407. /*
  3408. * If this cpu is idle and doing idle load balancing for all the
  3409. * cpus with ticks stopped, is it time for that to stop?
  3410. */
  3411. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3412. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3413. resched_cpu(cpu);
  3414. return;
  3415. }
  3416. /*
  3417. * If this cpu is idle and the idle load balancing is done by
  3418. * someone else, then no need raise the SCHED_SOFTIRQ
  3419. */
  3420. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3421. cpu_isset(cpu, nohz.cpu_mask))
  3422. return;
  3423. #endif
  3424. if (time_after_eq(jiffies, rq->next_balance))
  3425. raise_softirq(SCHED_SOFTIRQ);
  3426. }
  3427. #else /* CONFIG_SMP */
  3428. /*
  3429. * on UP we do not need to balance between CPUs:
  3430. */
  3431. static inline void idle_balance(int cpu, struct rq *rq)
  3432. {
  3433. }
  3434. #endif
  3435. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3436. EXPORT_PER_CPU_SYMBOL(kstat);
  3437. /*
  3438. * Return any ns on the sched_clock that have not yet been banked in
  3439. * @p in case that task is currently running.
  3440. */
  3441. unsigned long long task_delta_exec(struct task_struct *p)
  3442. {
  3443. unsigned long flags;
  3444. struct rq *rq;
  3445. u64 ns = 0;
  3446. rq = task_rq_lock(p, &flags);
  3447. if (task_current(rq, p)) {
  3448. u64 delta_exec;
  3449. update_rq_clock(rq);
  3450. delta_exec = rq->clock - p->se.exec_start;
  3451. if ((s64)delta_exec > 0)
  3452. ns = delta_exec;
  3453. }
  3454. task_rq_unlock(rq, &flags);
  3455. return ns;
  3456. }
  3457. /*
  3458. * Account user cpu time to a process.
  3459. * @p: the process that the cpu time gets accounted to
  3460. * @cputime: the cpu time spent in user space since the last update
  3461. */
  3462. void account_user_time(struct task_struct *p, cputime_t cputime)
  3463. {
  3464. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3465. cputime64_t tmp;
  3466. p->utime = cputime_add(p->utime, cputime);
  3467. account_group_user_time(p, cputime);
  3468. /* Add user time to cpustat. */
  3469. tmp = cputime_to_cputime64(cputime);
  3470. if (TASK_NICE(p) > 0)
  3471. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3472. else
  3473. cpustat->user = cputime64_add(cpustat->user, tmp);
  3474. /* Account for user time used */
  3475. acct_update_integrals(p);
  3476. }
  3477. /*
  3478. * Account guest cpu time to a process.
  3479. * @p: the process that the cpu time gets accounted to
  3480. * @cputime: the cpu time spent in virtual machine since the last update
  3481. */
  3482. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3483. {
  3484. cputime64_t tmp;
  3485. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3486. tmp = cputime_to_cputime64(cputime);
  3487. p->utime = cputime_add(p->utime, cputime);
  3488. account_group_user_time(p, cputime);
  3489. p->gtime = cputime_add(p->gtime, cputime);
  3490. cpustat->user = cputime64_add(cpustat->user, tmp);
  3491. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3492. }
  3493. /*
  3494. * Account scaled user cpu time to a process.
  3495. * @p: the process that the cpu time gets accounted to
  3496. * @cputime: the cpu time spent in user space since the last update
  3497. */
  3498. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3499. {
  3500. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3501. }
  3502. /*
  3503. * Account system cpu time to a process.
  3504. * @p: the process that the cpu time gets accounted to
  3505. * @hardirq_offset: the offset to subtract from hardirq_count()
  3506. * @cputime: the cpu time spent in kernel space since the last update
  3507. */
  3508. void account_system_time(struct task_struct *p, int hardirq_offset,
  3509. cputime_t cputime)
  3510. {
  3511. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3512. struct rq *rq = this_rq();
  3513. cputime64_t tmp;
  3514. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3515. account_guest_time(p, cputime);
  3516. return;
  3517. }
  3518. p->stime = cputime_add(p->stime, cputime);
  3519. account_group_system_time(p, cputime);
  3520. /* Add system time to cpustat. */
  3521. tmp = cputime_to_cputime64(cputime);
  3522. if (hardirq_count() - hardirq_offset)
  3523. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3524. else if (softirq_count())
  3525. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3526. else if (p != rq->idle)
  3527. cpustat->system = cputime64_add(cpustat->system, tmp);
  3528. else if (atomic_read(&rq->nr_iowait) > 0)
  3529. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3530. else
  3531. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3532. /* Account for system time used */
  3533. acct_update_integrals(p);
  3534. }
  3535. /*
  3536. * Account scaled system cpu time to a process.
  3537. * @p: the process that the cpu time gets accounted to
  3538. * @hardirq_offset: the offset to subtract from hardirq_count()
  3539. * @cputime: the cpu time spent in kernel space since the last update
  3540. */
  3541. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3542. {
  3543. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3544. }
  3545. /*
  3546. * Account for involuntary wait time.
  3547. * @p: the process from which the cpu time has been stolen
  3548. * @steal: the cpu time spent in involuntary wait
  3549. */
  3550. void account_steal_time(struct task_struct *p, cputime_t steal)
  3551. {
  3552. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3553. cputime64_t tmp = cputime_to_cputime64(steal);
  3554. struct rq *rq = this_rq();
  3555. if (p == rq->idle) {
  3556. p->stime = cputime_add(p->stime, steal);
  3557. account_group_system_time(p, steal);
  3558. if (atomic_read(&rq->nr_iowait) > 0)
  3559. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3560. else
  3561. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3562. } else
  3563. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3564. }
  3565. /*
  3566. * Use precise platform statistics if available:
  3567. */
  3568. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  3569. cputime_t task_utime(struct task_struct *p)
  3570. {
  3571. return p->utime;
  3572. }
  3573. cputime_t task_stime(struct task_struct *p)
  3574. {
  3575. return p->stime;
  3576. }
  3577. #else
  3578. cputime_t task_utime(struct task_struct *p)
  3579. {
  3580. clock_t utime = cputime_to_clock_t(p->utime),
  3581. total = utime + cputime_to_clock_t(p->stime);
  3582. u64 temp;
  3583. /*
  3584. * Use CFS's precise accounting:
  3585. */
  3586. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  3587. if (total) {
  3588. temp *= utime;
  3589. do_div(temp, total);
  3590. }
  3591. utime = (clock_t)temp;
  3592. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  3593. return p->prev_utime;
  3594. }
  3595. cputime_t task_stime(struct task_struct *p)
  3596. {
  3597. clock_t stime;
  3598. /*
  3599. * Use CFS's precise accounting. (we subtract utime from
  3600. * the total, to make sure the total observed by userspace
  3601. * grows monotonically - apps rely on that):
  3602. */
  3603. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  3604. cputime_to_clock_t(task_utime(p));
  3605. if (stime >= 0)
  3606. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  3607. return p->prev_stime;
  3608. }
  3609. #endif
  3610. inline cputime_t task_gtime(struct task_struct *p)
  3611. {
  3612. return p->gtime;
  3613. }
  3614. /*
  3615. * This function gets called by the timer code, with HZ frequency.
  3616. * We call it with interrupts disabled.
  3617. *
  3618. * It also gets called by the fork code, when changing the parent's
  3619. * timeslices.
  3620. */
  3621. void scheduler_tick(void)
  3622. {
  3623. int cpu = smp_processor_id();
  3624. struct rq *rq = cpu_rq(cpu);
  3625. struct task_struct *curr = rq->curr;
  3626. sched_clock_tick();
  3627. spin_lock(&rq->lock);
  3628. update_rq_clock(rq);
  3629. update_cpu_load(rq);
  3630. curr->sched_class->task_tick(rq, curr, 0);
  3631. spin_unlock(&rq->lock);
  3632. #ifdef CONFIG_SMP
  3633. rq->idle_at_tick = idle_cpu(cpu);
  3634. trigger_load_balance(rq, cpu);
  3635. #endif
  3636. }
  3637. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3638. defined(CONFIG_PREEMPT_TRACER))
  3639. static inline unsigned long get_parent_ip(unsigned long addr)
  3640. {
  3641. if (in_lock_functions(addr)) {
  3642. addr = CALLER_ADDR2;
  3643. if (in_lock_functions(addr))
  3644. addr = CALLER_ADDR3;
  3645. }
  3646. return addr;
  3647. }
  3648. void __kprobes add_preempt_count(int val)
  3649. {
  3650. #ifdef CONFIG_DEBUG_PREEMPT
  3651. /*
  3652. * Underflow?
  3653. */
  3654. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3655. return;
  3656. #endif
  3657. preempt_count() += val;
  3658. #ifdef CONFIG_DEBUG_PREEMPT
  3659. /*
  3660. * Spinlock count overflowing soon?
  3661. */
  3662. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3663. PREEMPT_MASK - 10);
  3664. #endif
  3665. if (preempt_count() == val)
  3666. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3667. }
  3668. EXPORT_SYMBOL(add_preempt_count);
  3669. void __kprobes sub_preempt_count(int val)
  3670. {
  3671. #ifdef CONFIG_DEBUG_PREEMPT
  3672. /*
  3673. * Underflow?
  3674. */
  3675. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3676. return;
  3677. /*
  3678. * Is the spinlock portion underflowing?
  3679. */
  3680. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3681. !(preempt_count() & PREEMPT_MASK)))
  3682. return;
  3683. #endif
  3684. if (preempt_count() == val)
  3685. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3686. preempt_count() -= val;
  3687. }
  3688. EXPORT_SYMBOL(sub_preempt_count);
  3689. #endif
  3690. /*
  3691. * Print scheduling while atomic bug:
  3692. */
  3693. static noinline void __schedule_bug(struct task_struct *prev)
  3694. {
  3695. struct pt_regs *regs = get_irq_regs();
  3696. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3697. prev->comm, prev->pid, preempt_count());
  3698. debug_show_held_locks(prev);
  3699. print_modules();
  3700. if (irqs_disabled())
  3701. print_irqtrace_events(prev);
  3702. if (regs)
  3703. show_regs(regs);
  3704. else
  3705. dump_stack();
  3706. }
  3707. /*
  3708. * Various schedule()-time debugging checks and statistics:
  3709. */
  3710. static inline void schedule_debug(struct task_struct *prev)
  3711. {
  3712. /*
  3713. * Test if we are atomic. Since do_exit() needs to call into
  3714. * schedule() atomically, we ignore that path for now.
  3715. * Otherwise, whine if we are scheduling when we should not be.
  3716. */
  3717. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3718. __schedule_bug(prev);
  3719. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3720. schedstat_inc(this_rq(), sched_count);
  3721. #ifdef CONFIG_SCHEDSTATS
  3722. if (unlikely(prev->lock_depth >= 0)) {
  3723. schedstat_inc(this_rq(), bkl_count);
  3724. schedstat_inc(prev, sched_info.bkl_count);
  3725. }
  3726. #endif
  3727. }
  3728. /*
  3729. * Pick up the highest-prio task:
  3730. */
  3731. static inline struct task_struct *
  3732. pick_next_task(struct rq *rq, struct task_struct *prev)
  3733. {
  3734. const struct sched_class *class;
  3735. struct task_struct *p;
  3736. /*
  3737. * Optimization: we know that if all tasks are in
  3738. * the fair class we can call that function directly:
  3739. */
  3740. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3741. p = fair_sched_class.pick_next_task(rq);
  3742. if (likely(p))
  3743. return p;
  3744. }
  3745. class = sched_class_highest;
  3746. for ( ; ; ) {
  3747. p = class->pick_next_task(rq);
  3748. if (p)
  3749. return p;
  3750. /*
  3751. * Will never be NULL as the idle class always
  3752. * returns a non-NULL p:
  3753. */
  3754. class = class->next;
  3755. }
  3756. }
  3757. /*
  3758. * schedule() is the main scheduler function.
  3759. */
  3760. asmlinkage void __sched schedule(void)
  3761. {
  3762. struct task_struct *prev, *next;
  3763. unsigned long *switch_count;
  3764. struct rq *rq;
  3765. int cpu;
  3766. need_resched:
  3767. preempt_disable();
  3768. cpu = smp_processor_id();
  3769. rq = cpu_rq(cpu);
  3770. rcu_qsctr_inc(cpu);
  3771. prev = rq->curr;
  3772. switch_count = &prev->nivcsw;
  3773. release_kernel_lock(prev);
  3774. need_resched_nonpreemptible:
  3775. schedule_debug(prev);
  3776. if (sched_feat(HRTICK))
  3777. hrtick_clear(rq);
  3778. /*
  3779. * Do the rq-clock update outside the rq lock:
  3780. */
  3781. local_irq_disable();
  3782. update_rq_clock(rq);
  3783. spin_lock(&rq->lock);
  3784. clear_tsk_need_resched(prev);
  3785. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3786. if (unlikely(signal_pending_state(prev->state, prev)))
  3787. prev->state = TASK_RUNNING;
  3788. else
  3789. deactivate_task(rq, prev, 1);
  3790. switch_count = &prev->nvcsw;
  3791. }
  3792. #ifdef CONFIG_SMP
  3793. if (prev->sched_class->pre_schedule)
  3794. prev->sched_class->pre_schedule(rq, prev);
  3795. #endif
  3796. if (unlikely(!rq->nr_running))
  3797. idle_balance(cpu, rq);
  3798. prev->sched_class->put_prev_task(rq, prev);
  3799. next = pick_next_task(rq, prev);
  3800. if (likely(prev != next)) {
  3801. sched_info_switch(prev, next);
  3802. rq->nr_switches++;
  3803. rq->curr = next;
  3804. ++*switch_count;
  3805. context_switch(rq, prev, next); /* unlocks the rq */
  3806. /*
  3807. * the context switch might have flipped the stack from under
  3808. * us, hence refresh the local variables.
  3809. */
  3810. cpu = smp_processor_id();
  3811. rq = cpu_rq(cpu);
  3812. } else
  3813. spin_unlock_irq(&rq->lock);
  3814. if (unlikely(reacquire_kernel_lock(current) < 0))
  3815. goto need_resched_nonpreemptible;
  3816. preempt_enable_no_resched();
  3817. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3818. goto need_resched;
  3819. }
  3820. EXPORT_SYMBOL(schedule);
  3821. #ifdef CONFIG_PREEMPT
  3822. /*
  3823. * this is the entry point to schedule() from in-kernel preemption
  3824. * off of preempt_enable. Kernel preemptions off return from interrupt
  3825. * occur there and call schedule directly.
  3826. */
  3827. asmlinkage void __sched preempt_schedule(void)
  3828. {
  3829. struct thread_info *ti = current_thread_info();
  3830. /*
  3831. * If there is a non-zero preempt_count or interrupts are disabled,
  3832. * we do not want to preempt the current task. Just return..
  3833. */
  3834. if (likely(ti->preempt_count || irqs_disabled()))
  3835. return;
  3836. do {
  3837. add_preempt_count(PREEMPT_ACTIVE);
  3838. schedule();
  3839. sub_preempt_count(PREEMPT_ACTIVE);
  3840. /*
  3841. * Check again in case we missed a preemption opportunity
  3842. * between schedule and now.
  3843. */
  3844. barrier();
  3845. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3846. }
  3847. EXPORT_SYMBOL(preempt_schedule);
  3848. /*
  3849. * this is the entry point to schedule() from kernel preemption
  3850. * off of irq context.
  3851. * Note, that this is called and return with irqs disabled. This will
  3852. * protect us against recursive calling from irq.
  3853. */
  3854. asmlinkage void __sched preempt_schedule_irq(void)
  3855. {
  3856. struct thread_info *ti = current_thread_info();
  3857. /* Catch callers which need to be fixed */
  3858. BUG_ON(ti->preempt_count || !irqs_disabled());
  3859. do {
  3860. add_preempt_count(PREEMPT_ACTIVE);
  3861. local_irq_enable();
  3862. schedule();
  3863. local_irq_disable();
  3864. sub_preempt_count(PREEMPT_ACTIVE);
  3865. /*
  3866. * Check again in case we missed a preemption opportunity
  3867. * between schedule and now.
  3868. */
  3869. barrier();
  3870. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3871. }
  3872. #endif /* CONFIG_PREEMPT */
  3873. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3874. void *key)
  3875. {
  3876. return try_to_wake_up(curr->private, mode, sync);
  3877. }
  3878. EXPORT_SYMBOL(default_wake_function);
  3879. /*
  3880. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3881. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3882. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3883. *
  3884. * There are circumstances in which we can try to wake a task which has already
  3885. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3886. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3887. */
  3888. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3889. int nr_exclusive, int sync, void *key)
  3890. {
  3891. wait_queue_t *curr, *next;
  3892. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3893. unsigned flags = curr->flags;
  3894. if (curr->func(curr, mode, sync, key) &&
  3895. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3896. break;
  3897. }
  3898. }
  3899. /**
  3900. * __wake_up - wake up threads blocked on a waitqueue.
  3901. * @q: the waitqueue
  3902. * @mode: which threads
  3903. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3904. * @key: is directly passed to the wakeup function
  3905. */
  3906. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3907. int nr_exclusive, void *key)
  3908. {
  3909. unsigned long flags;
  3910. spin_lock_irqsave(&q->lock, flags);
  3911. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3912. spin_unlock_irqrestore(&q->lock, flags);
  3913. }
  3914. EXPORT_SYMBOL(__wake_up);
  3915. /*
  3916. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3917. */
  3918. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3919. {
  3920. __wake_up_common(q, mode, 1, 0, NULL);
  3921. }
  3922. /**
  3923. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3924. * @q: the waitqueue
  3925. * @mode: which threads
  3926. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3927. *
  3928. * The sync wakeup differs that the waker knows that it will schedule
  3929. * away soon, so while the target thread will be woken up, it will not
  3930. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3931. * with each other. This can prevent needless bouncing between CPUs.
  3932. *
  3933. * On UP it can prevent extra preemption.
  3934. */
  3935. void
  3936. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3937. {
  3938. unsigned long flags;
  3939. int sync = 1;
  3940. if (unlikely(!q))
  3941. return;
  3942. if (unlikely(!nr_exclusive))
  3943. sync = 0;
  3944. spin_lock_irqsave(&q->lock, flags);
  3945. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3946. spin_unlock_irqrestore(&q->lock, flags);
  3947. }
  3948. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3949. /**
  3950. * complete: - signals a single thread waiting on this completion
  3951. * @x: holds the state of this particular completion
  3952. *
  3953. * This will wake up a single thread waiting on this completion. Threads will be
  3954. * awakened in the same order in which they were queued.
  3955. *
  3956. * See also complete_all(), wait_for_completion() and related routines.
  3957. */
  3958. void complete(struct completion *x)
  3959. {
  3960. unsigned long flags;
  3961. spin_lock_irqsave(&x->wait.lock, flags);
  3962. x->done++;
  3963. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3964. spin_unlock_irqrestore(&x->wait.lock, flags);
  3965. }
  3966. EXPORT_SYMBOL(complete);
  3967. /**
  3968. * complete_all: - signals all threads waiting on this completion
  3969. * @x: holds the state of this particular completion
  3970. *
  3971. * This will wake up all threads waiting on this particular completion event.
  3972. */
  3973. void complete_all(struct completion *x)
  3974. {
  3975. unsigned long flags;
  3976. spin_lock_irqsave(&x->wait.lock, flags);
  3977. x->done += UINT_MAX/2;
  3978. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3979. spin_unlock_irqrestore(&x->wait.lock, flags);
  3980. }
  3981. EXPORT_SYMBOL(complete_all);
  3982. static inline long __sched
  3983. do_wait_for_common(struct completion *x, long timeout, int state)
  3984. {
  3985. if (!x->done) {
  3986. DECLARE_WAITQUEUE(wait, current);
  3987. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3988. __add_wait_queue_tail(&x->wait, &wait);
  3989. do {
  3990. if (signal_pending_state(state, current)) {
  3991. timeout = -ERESTARTSYS;
  3992. break;
  3993. }
  3994. __set_current_state(state);
  3995. spin_unlock_irq(&x->wait.lock);
  3996. timeout = schedule_timeout(timeout);
  3997. spin_lock_irq(&x->wait.lock);
  3998. } while (!x->done && timeout);
  3999. __remove_wait_queue(&x->wait, &wait);
  4000. if (!x->done)
  4001. return timeout;
  4002. }
  4003. x->done--;
  4004. return timeout ?: 1;
  4005. }
  4006. static long __sched
  4007. wait_for_common(struct completion *x, long timeout, int state)
  4008. {
  4009. might_sleep();
  4010. spin_lock_irq(&x->wait.lock);
  4011. timeout = do_wait_for_common(x, timeout, state);
  4012. spin_unlock_irq(&x->wait.lock);
  4013. return timeout;
  4014. }
  4015. /**
  4016. * wait_for_completion: - waits for completion of a task
  4017. * @x: holds the state of this particular completion
  4018. *
  4019. * This waits to be signaled for completion of a specific task. It is NOT
  4020. * interruptible and there is no timeout.
  4021. *
  4022. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4023. * and interrupt capability. Also see complete().
  4024. */
  4025. void __sched wait_for_completion(struct completion *x)
  4026. {
  4027. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4028. }
  4029. EXPORT_SYMBOL(wait_for_completion);
  4030. /**
  4031. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4032. * @x: holds the state of this particular completion
  4033. * @timeout: timeout value in jiffies
  4034. *
  4035. * This waits for either a completion of a specific task to be signaled or for a
  4036. * specified timeout to expire. The timeout is in jiffies. It is not
  4037. * interruptible.
  4038. */
  4039. unsigned long __sched
  4040. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4041. {
  4042. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4043. }
  4044. EXPORT_SYMBOL(wait_for_completion_timeout);
  4045. /**
  4046. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4047. * @x: holds the state of this particular completion
  4048. *
  4049. * This waits for completion of a specific task to be signaled. It is
  4050. * interruptible.
  4051. */
  4052. int __sched wait_for_completion_interruptible(struct completion *x)
  4053. {
  4054. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4055. if (t == -ERESTARTSYS)
  4056. return t;
  4057. return 0;
  4058. }
  4059. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4060. /**
  4061. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4062. * @x: holds the state of this particular completion
  4063. * @timeout: timeout value in jiffies
  4064. *
  4065. * This waits for either a completion of a specific task to be signaled or for a
  4066. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4067. */
  4068. unsigned long __sched
  4069. wait_for_completion_interruptible_timeout(struct completion *x,
  4070. unsigned long timeout)
  4071. {
  4072. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4073. }
  4074. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4075. /**
  4076. * wait_for_completion_killable: - waits for completion of a task (killable)
  4077. * @x: holds the state of this particular completion
  4078. *
  4079. * This waits to be signaled for completion of a specific task. It can be
  4080. * interrupted by a kill signal.
  4081. */
  4082. int __sched wait_for_completion_killable(struct completion *x)
  4083. {
  4084. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4085. if (t == -ERESTARTSYS)
  4086. return t;
  4087. return 0;
  4088. }
  4089. EXPORT_SYMBOL(wait_for_completion_killable);
  4090. /**
  4091. * try_wait_for_completion - try to decrement a completion without blocking
  4092. * @x: completion structure
  4093. *
  4094. * Returns: 0 if a decrement cannot be done without blocking
  4095. * 1 if a decrement succeeded.
  4096. *
  4097. * If a completion is being used as a counting completion,
  4098. * attempt to decrement the counter without blocking. This
  4099. * enables us to avoid waiting if the resource the completion
  4100. * is protecting is not available.
  4101. */
  4102. bool try_wait_for_completion(struct completion *x)
  4103. {
  4104. int ret = 1;
  4105. spin_lock_irq(&x->wait.lock);
  4106. if (!x->done)
  4107. ret = 0;
  4108. else
  4109. x->done--;
  4110. spin_unlock_irq(&x->wait.lock);
  4111. return ret;
  4112. }
  4113. EXPORT_SYMBOL(try_wait_for_completion);
  4114. /**
  4115. * completion_done - Test to see if a completion has any waiters
  4116. * @x: completion structure
  4117. *
  4118. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4119. * 1 if there are no waiters.
  4120. *
  4121. */
  4122. bool completion_done(struct completion *x)
  4123. {
  4124. int ret = 1;
  4125. spin_lock_irq(&x->wait.lock);
  4126. if (!x->done)
  4127. ret = 0;
  4128. spin_unlock_irq(&x->wait.lock);
  4129. return ret;
  4130. }
  4131. EXPORT_SYMBOL(completion_done);
  4132. static long __sched
  4133. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4134. {
  4135. unsigned long flags;
  4136. wait_queue_t wait;
  4137. init_waitqueue_entry(&wait, current);
  4138. __set_current_state(state);
  4139. spin_lock_irqsave(&q->lock, flags);
  4140. __add_wait_queue(q, &wait);
  4141. spin_unlock(&q->lock);
  4142. timeout = schedule_timeout(timeout);
  4143. spin_lock_irq(&q->lock);
  4144. __remove_wait_queue(q, &wait);
  4145. spin_unlock_irqrestore(&q->lock, flags);
  4146. return timeout;
  4147. }
  4148. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4149. {
  4150. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4151. }
  4152. EXPORT_SYMBOL(interruptible_sleep_on);
  4153. long __sched
  4154. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4155. {
  4156. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4157. }
  4158. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4159. void __sched sleep_on(wait_queue_head_t *q)
  4160. {
  4161. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4162. }
  4163. EXPORT_SYMBOL(sleep_on);
  4164. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4165. {
  4166. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4167. }
  4168. EXPORT_SYMBOL(sleep_on_timeout);
  4169. #ifdef CONFIG_RT_MUTEXES
  4170. /*
  4171. * rt_mutex_setprio - set the current priority of a task
  4172. * @p: task
  4173. * @prio: prio value (kernel-internal form)
  4174. *
  4175. * This function changes the 'effective' priority of a task. It does
  4176. * not touch ->normal_prio like __setscheduler().
  4177. *
  4178. * Used by the rt_mutex code to implement priority inheritance logic.
  4179. */
  4180. void rt_mutex_setprio(struct task_struct *p, int prio)
  4181. {
  4182. unsigned long flags;
  4183. int oldprio, on_rq, running;
  4184. struct rq *rq;
  4185. const struct sched_class *prev_class = p->sched_class;
  4186. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4187. rq = task_rq_lock(p, &flags);
  4188. update_rq_clock(rq);
  4189. oldprio = p->prio;
  4190. on_rq = p->se.on_rq;
  4191. running = task_current(rq, p);
  4192. if (on_rq)
  4193. dequeue_task(rq, p, 0);
  4194. if (running)
  4195. p->sched_class->put_prev_task(rq, p);
  4196. if (rt_prio(prio))
  4197. p->sched_class = &rt_sched_class;
  4198. else
  4199. p->sched_class = &fair_sched_class;
  4200. p->prio = prio;
  4201. if (running)
  4202. p->sched_class->set_curr_task(rq);
  4203. if (on_rq) {
  4204. enqueue_task(rq, p, 0);
  4205. check_class_changed(rq, p, prev_class, oldprio, running);
  4206. }
  4207. task_rq_unlock(rq, &flags);
  4208. }
  4209. #endif
  4210. void set_user_nice(struct task_struct *p, long nice)
  4211. {
  4212. int old_prio, delta, on_rq;
  4213. unsigned long flags;
  4214. struct rq *rq;
  4215. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4216. return;
  4217. /*
  4218. * We have to be careful, if called from sys_setpriority(),
  4219. * the task might be in the middle of scheduling on another CPU.
  4220. */
  4221. rq = task_rq_lock(p, &flags);
  4222. update_rq_clock(rq);
  4223. /*
  4224. * The RT priorities are set via sched_setscheduler(), but we still
  4225. * allow the 'normal' nice value to be set - but as expected
  4226. * it wont have any effect on scheduling until the task is
  4227. * SCHED_FIFO/SCHED_RR:
  4228. */
  4229. if (task_has_rt_policy(p)) {
  4230. p->static_prio = NICE_TO_PRIO(nice);
  4231. goto out_unlock;
  4232. }
  4233. on_rq = p->se.on_rq;
  4234. if (on_rq)
  4235. dequeue_task(rq, p, 0);
  4236. p->static_prio = NICE_TO_PRIO(nice);
  4237. set_load_weight(p);
  4238. old_prio = p->prio;
  4239. p->prio = effective_prio(p);
  4240. delta = p->prio - old_prio;
  4241. if (on_rq) {
  4242. enqueue_task(rq, p, 0);
  4243. /*
  4244. * If the task increased its priority or is running and
  4245. * lowered its priority, then reschedule its CPU:
  4246. */
  4247. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4248. resched_task(rq->curr);
  4249. }
  4250. out_unlock:
  4251. task_rq_unlock(rq, &flags);
  4252. }
  4253. EXPORT_SYMBOL(set_user_nice);
  4254. /*
  4255. * can_nice - check if a task can reduce its nice value
  4256. * @p: task
  4257. * @nice: nice value
  4258. */
  4259. int can_nice(const struct task_struct *p, const int nice)
  4260. {
  4261. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4262. int nice_rlim = 20 - nice;
  4263. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4264. capable(CAP_SYS_NICE));
  4265. }
  4266. #ifdef __ARCH_WANT_SYS_NICE
  4267. /*
  4268. * sys_nice - change the priority of the current process.
  4269. * @increment: priority increment
  4270. *
  4271. * sys_setpriority is a more generic, but much slower function that
  4272. * does similar things.
  4273. */
  4274. asmlinkage long sys_nice(int increment)
  4275. {
  4276. long nice, retval;
  4277. /*
  4278. * Setpriority might change our priority at the same moment.
  4279. * We don't have to worry. Conceptually one call occurs first
  4280. * and we have a single winner.
  4281. */
  4282. if (increment < -40)
  4283. increment = -40;
  4284. if (increment > 40)
  4285. increment = 40;
  4286. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4287. if (nice < -20)
  4288. nice = -20;
  4289. if (nice > 19)
  4290. nice = 19;
  4291. if (increment < 0 && !can_nice(current, nice))
  4292. return -EPERM;
  4293. retval = security_task_setnice(current, nice);
  4294. if (retval)
  4295. return retval;
  4296. set_user_nice(current, nice);
  4297. return 0;
  4298. }
  4299. #endif
  4300. /**
  4301. * task_prio - return the priority value of a given task.
  4302. * @p: the task in question.
  4303. *
  4304. * This is the priority value as seen by users in /proc.
  4305. * RT tasks are offset by -200. Normal tasks are centered
  4306. * around 0, value goes from -16 to +15.
  4307. */
  4308. int task_prio(const struct task_struct *p)
  4309. {
  4310. return p->prio - MAX_RT_PRIO;
  4311. }
  4312. /**
  4313. * task_nice - return the nice value of a given task.
  4314. * @p: the task in question.
  4315. */
  4316. int task_nice(const struct task_struct *p)
  4317. {
  4318. return TASK_NICE(p);
  4319. }
  4320. EXPORT_SYMBOL(task_nice);
  4321. /**
  4322. * idle_cpu - is a given cpu idle currently?
  4323. * @cpu: the processor in question.
  4324. */
  4325. int idle_cpu(int cpu)
  4326. {
  4327. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4328. }
  4329. /**
  4330. * idle_task - return the idle task for a given cpu.
  4331. * @cpu: the processor in question.
  4332. */
  4333. struct task_struct *idle_task(int cpu)
  4334. {
  4335. return cpu_rq(cpu)->idle;
  4336. }
  4337. /**
  4338. * find_process_by_pid - find a process with a matching PID value.
  4339. * @pid: the pid in question.
  4340. */
  4341. static struct task_struct *find_process_by_pid(pid_t pid)
  4342. {
  4343. return pid ? find_task_by_vpid(pid) : current;
  4344. }
  4345. /* Actually do priority change: must hold rq lock. */
  4346. static void
  4347. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4348. {
  4349. BUG_ON(p->se.on_rq);
  4350. p->policy = policy;
  4351. switch (p->policy) {
  4352. case SCHED_NORMAL:
  4353. case SCHED_BATCH:
  4354. case SCHED_IDLE:
  4355. p->sched_class = &fair_sched_class;
  4356. break;
  4357. case SCHED_FIFO:
  4358. case SCHED_RR:
  4359. p->sched_class = &rt_sched_class;
  4360. break;
  4361. }
  4362. p->rt_priority = prio;
  4363. p->normal_prio = normal_prio(p);
  4364. /* we are holding p->pi_lock already */
  4365. p->prio = rt_mutex_getprio(p);
  4366. set_load_weight(p);
  4367. }
  4368. static int __sched_setscheduler(struct task_struct *p, int policy,
  4369. struct sched_param *param, bool user)
  4370. {
  4371. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4372. unsigned long flags;
  4373. const struct sched_class *prev_class = p->sched_class;
  4374. struct rq *rq;
  4375. /* may grab non-irq protected spin_locks */
  4376. BUG_ON(in_interrupt());
  4377. recheck:
  4378. /* double check policy once rq lock held */
  4379. if (policy < 0)
  4380. policy = oldpolicy = p->policy;
  4381. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4382. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4383. policy != SCHED_IDLE)
  4384. return -EINVAL;
  4385. /*
  4386. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4387. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4388. * SCHED_BATCH and SCHED_IDLE is 0.
  4389. */
  4390. if (param->sched_priority < 0 ||
  4391. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4392. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4393. return -EINVAL;
  4394. if (rt_policy(policy) != (param->sched_priority != 0))
  4395. return -EINVAL;
  4396. /*
  4397. * Allow unprivileged RT tasks to decrease priority:
  4398. */
  4399. if (user && !capable(CAP_SYS_NICE)) {
  4400. if (rt_policy(policy)) {
  4401. unsigned long rlim_rtprio;
  4402. if (!lock_task_sighand(p, &flags))
  4403. return -ESRCH;
  4404. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4405. unlock_task_sighand(p, &flags);
  4406. /* can't set/change the rt policy */
  4407. if (policy != p->policy && !rlim_rtprio)
  4408. return -EPERM;
  4409. /* can't increase priority */
  4410. if (param->sched_priority > p->rt_priority &&
  4411. param->sched_priority > rlim_rtprio)
  4412. return -EPERM;
  4413. }
  4414. /*
  4415. * Like positive nice levels, dont allow tasks to
  4416. * move out of SCHED_IDLE either:
  4417. */
  4418. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4419. return -EPERM;
  4420. /* can't change other user's priorities */
  4421. if ((current->euid != p->euid) &&
  4422. (current->euid != p->uid))
  4423. return -EPERM;
  4424. }
  4425. if (user) {
  4426. #ifdef CONFIG_RT_GROUP_SCHED
  4427. /*
  4428. * Do not allow realtime tasks into groups that have no runtime
  4429. * assigned.
  4430. */
  4431. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  4432. task_group(p)->rt_bandwidth.rt_runtime == 0)
  4433. return -EPERM;
  4434. #endif
  4435. retval = security_task_setscheduler(p, policy, param);
  4436. if (retval)
  4437. return retval;
  4438. }
  4439. /*
  4440. * make sure no PI-waiters arrive (or leave) while we are
  4441. * changing the priority of the task:
  4442. */
  4443. spin_lock_irqsave(&p->pi_lock, flags);
  4444. /*
  4445. * To be able to change p->policy safely, the apropriate
  4446. * runqueue lock must be held.
  4447. */
  4448. rq = __task_rq_lock(p);
  4449. /* recheck policy now with rq lock held */
  4450. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4451. policy = oldpolicy = -1;
  4452. __task_rq_unlock(rq);
  4453. spin_unlock_irqrestore(&p->pi_lock, flags);
  4454. goto recheck;
  4455. }
  4456. update_rq_clock(rq);
  4457. on_rq = p->se.on_rq;
  4458. running = task_current(rq, p);
  4459. if (on_rq)
  4460. deactivate_task(rq, p, 0);
  4461. if (running)
  4462. p->sched_class->put_prev_task(rq, p);
  4463. oldprio = p->prio;
  4464. __setscheduler(rq, p, policy, param->sched_priority);
  4465. if (running)
  4466. p->sched_class->set_curr_task(rq);
  4467. if (on_rq) {
  4468. activate_task(rq, p, 0);
  4469. check_class_changed(rq, p, prev_class, oldprio, running);
  4470. }
  4471. __task_rq_unlock(rq);
  4472. spin_unlock_irqrestore(&p->pi_lock, flags);
  4473. rt_mutex_adjust_pi(p);
  4474. return 0;
  4475. }
  4476. /**
  4477. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4478. * @p: the task in question.
  4479. * @policy: new policy.
  4480. * @param: structure containing the new RT priority.
  4481. *
  4482. * NOTE that the task may be already dead.
  4483. */
  4484. int sched_setscheduler(struct task_struct *p, int policy,
  4485. struct sched_param *param)
  4486. {
  4487. return __sched_setscheduler(p, policy, param, true);
  4488. }
  4489. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4490. /**
  4491. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4492. * @p: the task in question.
  4493. * @policy: new policy.
  4494. * @param: structure containing the new RT priority.
  4495. *
  4496. * Just like sched_setscheduler, only don't bother checking if the
  4497. * current context has permission. For example, this is needed in
  4498. * stop_machine(): we create temporary high priority worker threads,
  4499. * but our caller might not have that capability.
  4500. */
  4501. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4502. struct sched_param *param)
  4503. {
  4504. return __sched_setscheduler(p, policy, param, false);
  4505. }
  4506. static int
  4507. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4508. {
  4509. struct sched_param lparam;
  4510. struct task_struct *p;
  4511. int retval;
  4512. if (!param || pid < 0)
  4513. return -EINVAL;
  4514. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4515. return -EFAULT;
  4516. rcu_read_lock();
  4517. retval = -ESRCH;
  4518. p = find_process_by_pid(pid);
  4519. if (p != NULL)
  4520. retval = sched_setscheduler(p, policy, &lparam);
  4521. rcu_read_unlock();
  4522. return retval;
  4523. }
  4524. /**
  4525. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4526. * @pid: the pid in question.
  4527. * @policy: new policy.
  4528. * @param: structure containing the new RT priority.
  4529. */
  4530. asmlinkage long
  4531. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4532. {
  4533. /* negative values for policy are not valid */
  4534. if (policy < 0)
  4535. return -EINVAL;
  4536. return do_sched_setscheduler(pid, policy, param);
  4537. }
  4538. /**
  4539. * sys_sched_setparam - set/change the RT priority of a thread
  4540. * @pid: the pid in question.
  4541. * @param: structure containing the new RT priority.
  4542. */
  4543. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4544. {
  4545. return do_sched_setscheduler(pid, -1, param);
  4546. }
  4547. /**
  4548. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4549. * @pid: the pid in question.
  4550. */
  4551. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4552. {
  4553. struct task_struct *p;
  4554. int retval;
  4555. if (pid < 0)
  4556. return -EINVAL;
  4557. retval = -ESRCH;
  4558. read_lock(&tasklist_lock);
  4559. p = find_process_by_pid(pid);
  4560. if (p) {
  4561. retval = security_task_getscheduler(p);
  4562. if (!retval)
  4563. retval = p->policy;
  4564. }
  4565. read_unlock(&tasklist_lock);
  4566. return retval;
  4567. }
  4568. /**
  4569. * sys_sched_getscheduler - get the RT priority of a thread
  4570. * @pid: the pid in question.
  4571. * @param: structure containing the RT priority.
  4572. */
  4573. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4574. {
  4575. struct sched_param lp;
  4576. struct task_struct *p;
  4577. int retval;
  4578. if (!param || pid < 0)
  4579. return -EINVAL;
  4580. read_lock(&tasklist_lock);
  4581. p = find_process_by_pid(pid);
  4582. retval = -ESRCH;
  4583. if (!p)
  4584. goto out_unlock;
  4585. retval = security_task_getscheduler(p);
  4586. if (retval)
  4587. goto out_unlock;
  4588. lp.sched_priority = p->rt_priority;
  4589. read_unlock(&tasklist_lock);
  4590. /*
  4591. * This one might sleep, we cannot do it with a spinlock held ...
  4592. */
  4593. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4594. return retval;
  4595. out_unlock:
  4596. read_unlock(&tasklist_lock);
  4597. return retval;
  4598. }
  4599. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4600. {
  4601. cpumask_t cpus_allowed;
  4602. cpumask_t new_mask = *in_mask;
  4603. struct task_struct *p;
  4604. int retval;
  4605. get_online_cpus();
  4606. read_lock(&tasklist_lock);
  4607. p = find_process_by_pid(pid);
  4608. if (!p) {
  4609. read_unlock(&tasklist_lock);
  4610. put_online_cpus();
  4611. return -ESRCH;
  4612. }
  4613. /*
  4614. * It is not safe to call set_cpus_allowed with the
  4615. * tasklist_lock held. We will bump the task_struct's
  4616. * usage count and then drop tasklist_lock.
  4617. */
  4618. get_task_struct(p);
  4619. read_unlock(&tasklist_lock);
  4620. retval = -EPERM;
  4621. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4622. !capable(CAP_SYS_NICE))
  4623. goto out_unlock;
  4624. retval = security_task_setscheduler(p, 0, NULL);
  4625. if (retval)
  4626. goto out_unlock;
  4627. cpuset_cpus_allowed(p, &cpus_allowed);
  4628. cpus_and(new_mask, new_mask, cpus_allowed);
  4629. again:
  4630. retval = set_cpus_allowed_ptr(p, &new_mask);
  4631. if (!retval) {
  4632. cpuset_cpus_allowed(p, &cpus_allowed);
  4633. if (!cpus_subset(new_mask, cpus_allowed)) {
  4634. /*
  4635. * We must have raced with a concurrent cpuset
  4636. * update. Just reset the cpus_allowed to the
  4637. * cpuset's cpus_allowed
  4638. */
  4639. new_mask = cpus_allowed;
  4640. goto again;
  4641. }
  4642. }
  4643. out_unlock:
  4644. put_task_struct(p);
  4645. put_online_cpus();
  4646. return retval;
  4647. }
  4648. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4649. cpumask_t *new_mask)
  4650. {
  4651. if (len < sizeof(cpumask_t)) {
  4652. memset(new_mask, 0, sizeof(cpumask_t));
  4653. } else if (len > sizeof(cpumask_t)) {
  4654. len = sizeof(cpumask_t);
  4655. }
  4656. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4657. }
  4658. /**
  4659. * sys_sched_setaffinity - set the cpu affinity of a process
  4660. * @pid: pid of the process
  4661. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4662. * @user_mask_ptr: user-space pointer to the new cpu mask
  4663. */
  4664. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4665. unsigned long __user *user_mask_ptr)
  4666. {
  4667. cpumask_t new_mask;
  4668. int retval;
  4669. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4670. if (retval)
  4671. return retval;
  4672. return sched_setaffinity(pid, &new_mask);
  4673. }
  4674. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4675. {
  4676. struct task_struct *p;
  4677. int retval;
  4678. get_online_cpus();
  4679. read_lock(&tasklist_lock);
  4680. retval = -ESRCH;
  4681. p = find_process_by_pid(pid);
  4682. if (!p)
  4683. goto out_unlock;
  4684. retval = security_task_getscheduler(p);
  4685. if (retval)
  4686. goto out_unlock;
  4687. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4688. out_unlock:
  4689. read_unlock(&tasklist_lock);
  4690. put_online_cpus();
  4691. return retval;
  4692. }
  4693. /**
  4694. * sys_sched_getaffinity - get the cpu affinity of a process
  4695. * @pid: pid of the process
  4696. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4697. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4698. */
  4699. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4700. unsigned long __user *user_mask_ptr)
  4701. {
  4702. int ret;
  4703. cpumask_t mask;
  4704. if (len < sizeof(cpumask_t))
  4705. return -EINVAL;
  4706. ret = sched_getaffinity(pid, &mask);
  4707. if (ret < 0)
  4708. return ret;
  4709. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4710. return -EFAULT;
  4711. return sizeof(cpumask_t);
  4712. }
  4713. /**
  4714. * sys_sched_yield - yield the current processor to other threads.
  4715. *
  4716. * This function yields the current CPU to other tasks. If there are no
  4717. * other threads running on this CPU then this function will return.
  4718. */
  4719. asmlinkage long sys_sched_yield(void)
  4720. {
  4721. struct rq *rq = this_rq_lock();
  4722. schedstat_inc(rq, yld_count);
  4723. current->sched_class->yield_task(rq);
  4724. /*
  4725. * Since we are going to call schedule() anyway, there's
  4726. * no need to preempt or enable interrupts:
  4727. */
  4728. __release(rq->lock);
  4729. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4730. _raw_spin_unlock(&rq->lock);
  4731. preempt_enable_no_resched();
  4732. schedule();
  4733. return 0;
  4734. }
  4735. static void __cond_resched(void)
  4736. {
  4737. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4738. __might_sleep(__FILE__, __LINE__);
  4739. #endif
  4740. /*
  4741. * The BKS might be reacquired before we have dropped
  4742. * PREEMPT_ACTIVE, which could trigger a second
  4743. * cond_resched() call.
  4744. */
  4745. do {
  4746. add_preempt_count(PREEMPT_ACTIVE);
  4747. schedule();
  4748. sub_preempt_count(PREEMPT_ACTIVE);
  4749. } while (need_resched());
  4750. }
  4751. int __sched _cond_resched(void)
  4752. {
  4753. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4754. system_state == SYSTEM_RUNNING) {
  4755. __cond_resched();
  4756. return 1;
  4757. }
  4758. return 0;
  4759. }
  4760. EXPORT_SYMBOL(_cond_resched);
  4761. /*
  4762. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4763. * call schedule, and on return reacquire the lock.
  4764. *
  4765. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4766. * operations here to prevent schedule() from being called twice (once via
  4767. * spin_unlock(), once by hand).
  4768. */
  4769. int cond_resched_lock(spinlock_t *lock)
  4770. {
  4771. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4772. int ret = 0;
  4773. if (spin_needbreak(lock) || resched) {
  4774. spin_unlock(lock);
  4775. if (resched && need_resched())
  4776. __cond_resched();
  4777. else
  4778. cpu_relax();
  4779. ret = 1;
  4780. spin_lock(lock);
  4781. }
  4782. return ret;
  4783. }
  4784. EXPORT_SYMBOL(cond_resched_lock);
  4785. int __sched cond_resched_softirq(void)
  4786. {
  4787. BUG_ON(!in_softirq());
  4788. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4789. local_bh_enable();
  4790. __cond_resched();
  4791. local_bh_disable();
  4792. return 1;
  4793. }
  4794. return 0;
  4795. }
  4796. EXPORT_SYMBOL(cond_resched_softirq);
  4797. /**
  4798. * yield - yield the current processor to other threads.
  4799. *
  4800. * This is a shortcut for kernel-space yielding - it marks the
  4801. * thread runnable and calls sys_sched_yield().
  4802. */
  4803. void __sched yield(void)
  4804. {
  4805. set_current_state(TASK_RUNNING);
  4806. sys_sched_yield();
  4807. }
  4808. EXPORT_SYMBOL(yield);
  4809. /*
  4810. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4811. * that process accounting knows that this is a task in IO wait state.
  4812. *
  4813. * But don't do that if it is a deliberate, throttling IO wait (this task
  4814. * has set its backing_dev_info: the queue against which it should throttle)
  4815. */
  4816. void __sched io_schedule(void)
  4817. {
  4818. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4819. delayacct_blkio_start();
  4820. atomic_inc(&rq->nr_iowait);
  4821. schedule();
  4822. atomic_dec(&rq->nr_iowait);
  4823. delayacct_blkio_end();
  4824. }
  4825. EXPORT_SYMBOL(io_schedule);
  4826. long __sched io_schedule_timeout(long timeout)
  4827. {
  4828. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4829. long ret;
  4830. delayacct_blkio_start();
  4831. atomic_inc(&rq->nr_iowait);
  4832. ret = schedule_timeout(timeout);
  4833. atomic_dec(&rq->nr_iowait);
  4834. delayacct_blkio_end();
  4835. return ret;
  4836. }
  4837. /**
  4838. * sys_sched_get_priority_max - return maximum RT priority.
  4839. * @policy: scheduling class.
  4840. *
  4841. * this syscall returns the maximum rt_priority that can be used
  4842. * by a given scheduling class.
  4843. */
  4844. asmlinkage long sys_sched_get_priority_max(int policy)
  4845. {
  4846. int ret = -EINVAL;
  4847. switch (policy) {
  4848. case SCHED_FIFO:
  4849. case SCHED_RR:
  4850. ret = MAX_USER_RT_PRIO-1;
  4851. break;
  4852. case SCHED_NORMAL:
  4853. case SCHED_BATCH:
  4854. case SCHED_IDLE:
  4855. ret = 0;
  4856. break;
  4857. }
  4858. return ret;
  4859. }
  4860. /**
  4861. * sys_sched_get_priority_min - return minimum RT priority.
  4862. * @policy: scheduling class.
  4863. *
  4864. * this syscall returns the minimum rt_priority that can be used
  4865. * by a given scheduling class.
  4866. */
  4867. asmlinkage long sys_sched_get_priority_min(int policy)
  4868. {
  4869. int ret = -EINVAL;
  4870. switch (policy) {
  4871. case SCHED_FIFO:
  4872. case SCHED_RR:
  4873. ret = 1;
  4874. break;
  4875. case SCHED_NORMAL:
  4876. case SCHED_BATCH:
  4877. case SCHED_IDLE:
  4878. ret = 0;
  4879. }
  4880. return ret;
  4881. }
  4882. /**
  4883. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4884. * @pid: pid of the process.
  4885. * @interval: userspace pointer to the timeslice value.
  4886. *
  4887. * this syscall writes the default timeslice value of a given process
  4888. * into the user-space timespec buffer. A value of '0' means infinity.
  4889. */
  4890. asmlinkage
  4891. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4892. {
  4893. struct task_struct *p;
  4894. unsigned int time_slice;
  4895. int retval;
  4896. struct timespec t;
  4897. if (pid < 0)
  4898. return -EINVAL;
  4899. retval = -ESRCH;
  4900. read_lock(&tasklist_lock);
  4901. p = find_process_by_pid(pid);
  4902. if (!p)
  4903. goto out_unlock;
  4904. retval = security_task_getscheduler(p);
  4905. if (retval)
  4906. goto out_unlock;
  4907. /*
  4908. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4909. * tasks that are on an otherwise idle runqueue:
  4910. */
  4911. time_slice = 0;
  4912. if (p->policy == SCHED_RR) {
  4913. time_slice = DEF_TIMESLICE;
  4914. } else if (p->policy != SCHED_FIFO) {
  4915. struct sched_entity *se = &p->se;
  4916. unsigned long flags;
  4917. struct rq *rq;
  4918. rq = task_rq_lock(p, &flags);
  4919. if (rq->cfs.load.weight)
  4920. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4921. task_rq_unlock(rq, &flags);
  4922. }
  4923. read_unlock(&tasklist_lock);
  4924. jiffies_to_timespec(time_slice, &t);
  4925. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4926. return retval;
  4927. out_unlock:
  4928. read_unlock(&tasklist_lock);
  4929. return retval;
  4930. }
  4931. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4932. void sched_show_task(struct task_struct *p)
  4933. {
  4934. unsigned long free = 0;
  4935. unsigned state;
  4936. state = p->state ? __ffs(p->state) + 1 : 0;
  4937. printk(KERN_INFO "%-13.13s %c", p->comm,
  4938. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4939. #if BITS_PER_LONG == 32
  4940. if (state == TASK_RUNNING)
  4941. printk(KERN_CONT " running ");
  4942. else
  4943. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4944. #else
  4945. if (state == TASK_RUNNING)
  4946. printk(KERN_CONT " running task ");
  4947. else
  4948. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4949. #endif
  4950. #ifdef CONFIG_DEBUG_STACK_USAGE
  4951. {
  4952. unsigned long *n = end_of_stack(p);
  4953. while (!*n)
  4954. n++;
  4955. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4956. }
  4957. #endif
  4958. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4959. task_pid_nr(p), task_pid_nr(p->real_parent));
  4960. show_stack(p, NULL);
  4961. }
  4962. void show_state_filter(unsigned long state_filter)
  4963. {
  4964. struct task_struct *g, *p;
  4965. #if BITS_PER_LONG == 32
  4966. printk(KERN_INFO
  4967. " task PC stack pid father\n");
  4968. #else
  4969. printk(KERN_INFO
  4970. " task PC stack pid father\n");
  4971. #endif
  4972. read_lock(&tasklist_lock);
  4973. do_each_thread(g, p) {
  4974. /*
  4975. * reset the NMI-timeout, listing all files on a slow
  4976. * console might take alot of time:
  4977. */
  4978. touch_nmi_watchdog();
  4979. if (!state_filter || (p->state & state_filter))
  4980. sched_show_task(p);
  4981. } while_each_thread(g, p);
  4982. touch_all_softlockup_watchdogs();
  4983. #ifdef CONFIG_SCHED_DEBUG
  4984. sysrq_sched_debug_show();
  4985. #endif
  4986. read_unlock(&tasklist_lock);
  4987. /*
  4988. * Only show locks if all tasks are dumped:
  4989. */
  4990. if (state_filter == -1)
  4991. debug_show_all_locks();
  4992. }
  4993. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4994. {
  4995. idle->sched_class = &idle_sched_class;
  4996. }
  4997. /**
  4998. * init_idle - set up an idle thread for a given CPU
  4999. * @idle: task in question
  5000. * @cpu: cpu the idle task belongs to
  5001. *
  5002. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5003. * flag, to make booting more robust.
  5004. */
  5005. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5006. {
  5007. struct rq *rq = cpu_rq(cpu);
  5008. unsigned long flags;
  5009. __sched_fork(idle);
  5010. idle->se.exec_start = sched_clock();
  5011. idle->prio = idle->normal_prio = MAX_PRIO;
  5012. idle->cpus_allowed = cpumask_of_cpu(cpu);
  5013. __set_task_cpu(idle, cpu);
  5014. spin_lock_irqsave(&rq->lock, flags);
  5015. rq->curr = rq->idle = idle;
  5016. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5017. idle->oncpu = 1;
  5018. #endif
  5019. spin_unlock_irqrestore(&rq->lock, flags);
  5020. /* Set the preempt count _outside_ the spinlocks! */
  5021. #if defined(CONFIG_PREEMPT)
  5022. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5023. #else
  5024. task_thread_info(idle)->preempt_count = 0;
  5025. #endif
  5026. /*
  5027. * The idle tasks have their own, simple scheduling class:
  5028. */
  5029. idle->sched_class = &idle_sched_class;
  5030. }
  5031. /*
  5032. * In a system that switches off the HZ timer nohz_cpu_mask
  5033. * indicates which cpus entered this state. This is used
  5034. * in the rcu update to wait only for active cpus. For system
  5035. * which do not switch off the HZ timer nohz_cpu_mask should
  5036. * always be CPU_MASK_NONE.
  5037. */
  5038. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  5039. /*
  5040. * Increase the granularity value when there are more CPUs,
  5041. * because with more CPUs the 'effective latency' as visible
  5042. * to users decreases. But the relationship is not linear,
  5043. * so pick a second-best guess by going with the log2 of the
  5044. * number of CPUs.
  5045. *
  5046. * This idea comes from the SD scheduler of Con Kolivas:
  5047. */
  5048. static inline void sched_init_granularity(void)
  5049. {
  5050. unsigned int factor = 1 + ilog2(num_online_cpus());
  5051. const unsigned long limit = 200000000;
  5052. sysctl_sched_min_granularity *= factor;
  5053. if (sysctl_sched_min_granularity > limit)
  5054. sysctl_sched_min_granularity = limit;
  5055. sysctl_sched_latency *= factor;
  5056. if (sysctl_sched_latency > limit)
  5057. sysctl_sched_latency = limit;
  5058. sysctl_sched_wakeup_granularity *= factor;
  5059. sysctl_sched_shares_ratelimit *= factor;
  5060. }
  5061. #ifdef CONFIG_SMP
  5062. /*
  5063. * This is how migration works:
  5064. *
  5065. * 1) we queue a struct migration_req structure in the source CPU's
  5066. * runqueue and wake up that CPU's migration thread.
  5067. * 2) we down() the locked semaphore => thread blocks.
  5068. * 3) migration thread wakes up (implicitly it forces the migrated
  5069. * thread off the CPU)
  5070. * 4) it gets the migration request and checks whether the migrated
  5071. * task is still in the wrong runqueue.
  5072. * 5) if it's in the wrong runqueue then the migration thread removes
  5073. * it and puts it into the right queue.
  5074. * 6) migration thread up()s the semaphore.
  5075. * 7) we wake up and the migration is done.
  5076. */
  5077. /*
  5078. * Change a given task's CPU affinity. Migrate the thread to a
  5079. * proper CPU and schedule it away if the CPU it's executing on
  5080. * is removed from the allowed bitmask.
  5081. *
  5082. * NOTE: the caller must have a valid reference to the task, the
  5083. * task must not exit() & deallocate itself prematurely. The
  5084. * call is not atomic; no spinlocks may be held.
  5085. */
  5086. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  5087. {
  5088. struct migration_req req;
  5089. unsigned long flags;
  5090. struct rq *rq;
  5091. int ret = 0;
  5092. rq = task_rq_lock(p, &flags);
  5093. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  5094. ret = -EINVAL;
  5095. goto out;
  5096. }
  5097. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5098. !cpus_equal(p->cpus_allowed, *new_mask))) {
  5099. ret = -EINVAL;
  5100. goto out;
  5101. }
  5102. if (p->sched_class->set_cpus_allowed)
  5103. p->sched_class->set_cpus_allowed(p, new_mask);
  5104. else {
  5105. p->cpus_allowed = *new_mask;
  5106. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  5107. }
  5108. /* Can the task run on the task's current CPU? If so, we're done */
  5109. if (cpu_isset(task_cpu(p), *new_mask))
  5110. goto out;
  5111. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  5112. /* Need help from migration thread: drop lock and wait. */
  5113. task_rq_unlock(rq, &flags);
  5114. wake_up_process(rq->migration_thread);
  5115. wait_for_completion(&req.done);
  5116. tlb_migrate_finish(p->mm);
  5117. return 0;
  5118. }
  5119. out:
  5120. task_rq_unlock(rq, &flags);
  5121. return ret;
  5122. }
  5123. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5124. /*
  5125. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5126. * this because either it can't run here any more (set_cpus_allowed()
  5127. * away from this CPU, or CPU going down), or because we're
  5128. * attempting to rebalance this task on exec (sched_exec).
  5129. *
  5130. * So we race with normal scheduler movements, but that's OK, as long
  5131. * as the task is no longer on this CPU.
  5132. *
  5133. * Returns non-zero if task was successfully migrated.
  5134. */
  5135. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5136. {
  5137. struct rq *rq_dest, *rq_src;
  5138. int ret = 0, on_rq;
  5139. if (unlikely(!cpu_active(dest_cpu)))
  5140. return ret;
  5141. rq_src = cpu_rq(src_cpu);
  5142. rq_dest = cpu_rq(dest_cpu);
  5143. double_rq_lock(rq_src, rq_dest);
  5144. /* Already moved. */
  5145. if (task_cpu(p) != src_cpu)
  5146. goto done;
  5147. /* Affinity changed (again). */
  5148. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5149. goto fail;
  5150. on_rq = p->se.on_rq;
  5151. if (on_rq)
  5152. deactivate_task(rq_src, p, 0);
  5153. set_task_cpu(p, dest_cpu);
  5154. if (on_rq) {
  5155. activate_task(rq_dest, p, 0);
  5156. check_preempt_curr(rq_dest, p, 0);
  5157. }
  5158. done:
  5159. ret = 1;
  5160. fail:
  5161. double_rq_unlock(rq_src, rq_dest);
  5162. return ret;
  5163. }
  5164. /*
  5165. * migration_thread - this is a highprio system thread that performs
  5166. * thread migration by bumping thread off CPU then 'pushing' onto
  5167. * another runqueue.
  5168. */
  5169. static int migration_thread(void *data)
  5170. {
  5171. int cpu = (long)data;
  5172. struct rq *rq;
  5173. rq = cpu_rq(cpu);
  5174. BUG_ON(rq->migration_thread != current);
  5175. set_current_state(TASK_INTERRUPTIBLE);
  5176. while (!kthread_should_stop()) {
  5177. struct migration_req *req;
  5178. struct list_head *head;
  5179. spin_lock_irq(&rq->lock);
  5180. if (cpu_is_offline(cpu)) {
  5181. spin_unlock_irq(&rq->lock);
  5182. goto wait_to_die;
  5183. }
  5184. if (rq->active_balance) {
  5185. active_load_balance(rq, cpu);
  5186. rq->active_balance = 0;
  5187. }
  5188. head = &rq->migration_queue;
  5189. if (list_empty(head)) {
  5190. spin_unlock_irq(&rq->lock);
  5191. schedule();
  5192. set_current_state(TASK_INTERRUPTIBLE);
  5193. continue;
  5194. }
  5195. req = list_entry(head->next, struct migration_req, list);
  5196. list_del_init(head->next);
  5197. spin_unlock(&rq->lock);
  5198. __migrate_task(req->task, cpu, req->dest_cpu);
  5199. local_irq_enable();
  5200. complete(&req->done);
  5201. }
  5202. __set_current_state(TASK_RUNNING);
  5203. return 0;
  5204. wait_to_die:
  5205. /* Wait for kthread_stop */
  5206. set_current_state(TASK_INTERRUPTIBLE);
  5207. while (!kthread_should_stop()) {
  5208. schedule();
  5209. set_current_state(TASK_INTERRUPTIBLE);
  5210. }
  5211. __set_current_state(TASK_RUNNING);
  5212. return 0;
  5213. }
  5214. #ifdef CONFIG_HOTPLUG_CPU
  5215. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5216. {
  5217. int ret;
  5218. local_irq_disable();
  5219. ret = __migrate_task(p, src_cpu, dest_cpu);
  5220. local_irq_enable();
  5221. return ret;
  5222. }
  5223. /*
  5224. * Figure out where task on dead CPU should go, use force if necessary.
  5225. * NOTE: interrupts should be disabled by the caller
  5226. */
  5227. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5228. {
  5229. unsigned long flags;
  5230. cpumask_t mask;
  5231. struct rq *rq;
  5232. int dest_cpu;
  5233. do {
  5234. /* On same node? */
  5235. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5236. cpus_and(mask, mask, p->cpus_allowed);
  5237. dest_cpu = any_online_cpu(mask);
  5238. /* On any allowed CPU? */
  5239. if (dest_cpu >= nr_cpu_ids)
  5240. dest_cpu = any_online_cpu(p->cpus_allowed);
  5241. /* No more Mr. Nice Guy. */
  5242. if (dest_cpu >= nr_cpu_ids) {
  5243. cpumask_t cpus_allowed;
  5244. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5245. /*
  5246. * Try to stay on the same cpuset, where the
  5247. * current cpuset may be a subset of all cpus.
  5248. * The cpuset_cpus_allowed_locked() variant of
  5249. * cpuset_cpus_allowed() will not block. It must be
  5250. * called within calls to cpuset_lock/cpuset_unlock.
  5251. */
  5252. rq = task_rq_lock(p, &flags);
  5253. p->cpus_allowed = cpus_allowed;
  5254. dest_cpu = any_online_cpu(p->cpus_allowed);
  5255. task_rq_unlock(rq, &flags);
  5256. /*
  5257. * Don't tell them about moving exiting tasks or
  5258. * kernel threads (both mm NULL), since they never
  5259. * leave kernel.
  5260. */
  5261. if (p->mm && printk_ratelimit()) {
  5262. printk(KERN_INFO "process %d (%s) no "
  5263. "longer affine to cpu%d\n",
  5264. task_pid_nr(p), p->comm, dead_cpu);
  5265. }
  5266. }
  5267. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5268. }
  5269. /*
  5270. * While a dead CPU has no uninterruptible tasks queued at this point,
  5271. * it might still have a nonzero ->nr_uninterruptible counter, because
  5272. * for performance reasons the counter is not stricly tracking tasks to
  5273. * their home CPUs. So we just add the counter to another CPU's counter,
  5274. * to keep the global sum constant after CPU-down:
  5275. */
  5276. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5277. {
  5278. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5279. unsigned long flags;
  5280. local_irq_save(flags);
  5281. double_rq_lock(rq_src, rq_dest);
  5282. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5283. rq_src->nr_uninterruptible = 0;
  5284. double_rq_unlock(rq_src, rq_dest);
  5285. local_irq_restore(flags);
  5286. }
  5287. /* Run through task list and migrate tasks from the dead cpu. */
  5288. static void migrate_live_tasks(int src_cpu)
  5289. {
  5290. struct task_struct *p, *t;
  5291. read_lock(&tasklist_lock);
  5292. do_each_thread(t, p) {
  5293. if (p == current)
  5294. continue;
  5295. if (task_cpu(p) == src_cpu)
  5296. move_task_off_dead_cpu(src_cpu, p);
  5297. } while_each_thread(t, p);
  5298. read_unlock(&tasklist_lock);
  5299. }
  5300. /*
  5301. * Schedules idle task to be the next runnable task on current CPU.
  5302. * It does so by boosting its priority to highest possible.
  5303. * Used by CPU offline code.
  5304. */
  5305. void sched_idle_next(void)
  5306. {
  5307. int this_cpu = smp_processor_id();
  5308. struct rq *rq = cpu_rq(this_cpu);
  5309. struct task_struct *p = rq->idle;
  5310. unsigned long flags;
  5311. /* cpu has to be offline */
  5312. BUG_ON(cpu_online(this_cpu));
  5313. /*
  5314. * Strictly not necessary since rest of the CPUs are stopped by now
  5315. * and interrupts disabled on the current cpu.
  5316. */
  5317. spin_lock_irqsave(&rq->lock, flags);
  5318. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5319. update_rq_clock(rq);
  5320. activate_task(rq, p, 0);
  5321. spin_unlock_irqrestore(&rq->lock, flags);
  5322. }
  5323. /*
  5324. * Ensures that the idle task is using init_mm right before its cpu goes
  5325. * offline.
  5326. */
  5327. void idle_task_exit(void)
  5328. {
  5329. struct mm_struct *mm = current->active_mm;
  5330. BUG_ON(cpu_online(smp_processor_id()));
  5331. if (mm != &init_mm)
  5332. switch_mm(mm, &init_mm, current);
  5333. mmdrop(mm);
  5334. }
  5335. /* called under rq->lock with disabled interrupts */
  5336. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5337. {
  5338. struct rq *rq = cpu_rq(dead_cpu);
  5339. /* Must be exiting, otherwise would be on tasklist. */
  5340. BUG_ON(!p->exit_state);
  5341. /* Cannot have done final schedule yet: would have vanished. */
  5342. BUG_ON(p->state == TASK_DEAD);
  5343. get_task_struct(p);
  5344. /*
  5345. * Drop lock around migration; if someone else moves it,
  5346. * that's OK. No task can be added to this CPU, so iteration is
  5347. * fine.
  5348. */
  5349. spin_unlock_irq(&rq->lock);
  5350. move_task_off_dead_cpu(dead_cpu, p);
  5351. spin_lock_irq(&rq->lock);
  5352. put_task_struct(p);
  5353. }
  5354. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5355. static void migrate_dead_tasks(unsigned int dead_cpu)
  5356. {
  5357. struct rq *rq = cpu_rq(dead_cpu);
  5358. struct task_struct *next;
  5359. for ( ; ; ) {
  5360. if (!rq->nr_running)
  5361. break;
  5362. update_rq_clock(rq);
  5363. next = pick_next_task(rq, rq->curr);
  5364. if (!next)
  5365. break;
  5366. next->sched_class->put_prev_task(rq, next);
  5367. migrate_dead(dead_cpu, next);
  5368. }
  5369. }
  5370. #endif /* CONFIG_HOTPLUG_CPU */
  5371. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5372. static struct ctl_table sd_ctl_dir[] = {
  5373. {
  5374. .procname = "sched_domain",
  5375. .mode = 0555,
  5376. },
  5377. {0, },
  5378. };
  5379. static struct ctl_table sd_ctl_root[] = {
  5380. {
  5381. .ctl_name = CTL_KERN,
  5382. .procname = "kernel",
  5383. .mode = 0555,
  5384. .child = sd_ctl_dir,
  5385. },
  5386. {0, },
  5387. };
  5388. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5389. {
  5390. struct ctl_table *entry =
  5391. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5392. return entry;
  5393. }
  5394. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5395. {
  5396. struct ctl_table *entry;
  5397. /*
  5398. * In the intermediate directories, both the child directory and
  5399. * procname are dynamically allocated and could fail but the mode
  5400. * will always be set. In the lowest directory the names are
  5401. * static strings and all have proc handlers.
  5402. */
  5403. for (entry = *tablep; entry->mode; entry++) {
  5404. if (entry->child)
  5405. sd_free_ctl_entry(&entry->child);
  5406. if (entry->proc_handler == NULL)
  5407. kfree(entry->procname);
  5408. }
  5409. kfree(*tablep);
  5410. *tablep = NULL;
  5411. }
  5412. static void
  5413. set_table_entry(struct ctl_table *entry,
  5414. const char *procname, void *data, int maxlen,
  5415. mode_t mode, proc_handler *proc_handler)
  5416. {
  5417. entry->procname = procname;
  5418. entry->data = data;
  5419. entry->maxlen = maxlen;
  5420. entry->mode = mode;
  5421. entry->proc_handler = proc_handler;
  5422. }
  5423. static struct ctl_table *
  5424. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5425. {
  5426. struct ctl_table *table = sd_alloc_ctl_entry(13);
  5427. if (table == NULL)
  5428. return NULL;
  5429. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5430. sizeof(long), 0644, proc_doulongvec_minmax);
  5431. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5432. sizeof(long), 0644, proc_doulongvec_minmax);
  5433. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5434. sizeof(int), 0644, proc_dointvec_minmax);
  5435. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5436. sizeof(int), 0644, proc_dointvec_minmax);
  5437. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5438. sizeof(int), 0644, proc_dointvec_minmax);
  5439. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5440. sizeof(int), 0644, proc_dointvec_minmax);
  5441. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5442. sizeof(int), 0644, proc_dointvec_minmax);
  5443. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5444. sizeof(int), 0644, proc_dointvec_minmax);
  5445. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5446. sizeof(int), 0644, proc_dointvec_minmax);
  5447. set_table_entry(&table[9], "cache_nice_tries",
  5448. &sd->cache_nice_tries,
  5449. sizeof(int), 0644, proc_dointvec_minmax);
  5450. set_table_entry(&table[10], "flags", &sd->flags,
  5451. sizeof(int), 0644, proc_dointvec_minmax);
  5452. set_table_entry(&table[11], "name", sd->name,
  5453. CORENAME_MAX_SIZE, 0444, proc_dostring);
  5454. /* &table[12] is terminator */
  5455. return table;
  5456. }
  5457. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5458. {
  5459. struct ctl_table *entry, *table;
  5460. struct sched_domain *sd;
  5461. int domain_num = 0, i;
  5462. char buf[32];
  5463. for_each_domain(cpu, sd)
  5464. domain_num++;
  5465. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5466. if (table == NULL)
  5467. return NULL;
  5468. i = 0;
  5469. for_each_domain(cpu, sd) {
  5470. snprintf(buf, 32, "domain%d", i);
  5471. entry->procname = kstrdup(buf, GFP_KERNEL);
  5472. entry->mode = 0555;
  5473. entry->child = sd_alloc_ctl_domain_table(sd);
  5474. entry++;
  5475. i++;
  5476. }
  5477. return table;
  5478. }
  5479. static struct ctl_table_header *sd_sysctl_header;
  5480. static void register_sched_domain_sysctl(void)
  5481. {
  5482. int i, cpu_num = num_online_cpus();
  5483. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5484. char buf[32];
  5485. WARN_ON(sd_ctl_dir[0].child);
  5486. sd_ctl_dir[0].child = entry;
  5487. if (entry == NULL)
  5488. return;
  5489. for_each_online_cpu(i) {
  5490. snprintf(buf, 32, "cpu%d", i);
  5491. entry->procname = kstrdup(buf, GFP_KERNEL);
  5492. entry->mode = 0555;
  5493. entry->child = sd_alloc_ctl_cpu_table(i);
  5494. entry++;
  5495. }
  5496. WARN_ON(sd_sysctl_header);
  5497. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5498. }
  5499. /* may be called multiple times per register */
  5500. static void unregister_sched_domain_sysctl(void)
  5501. {
  5502. if (sd_sysctl_header)
  5503. unregister_sysctl_table(sd_sysctl_header);
  5504. sd_sysctl_header = NULL;
  5505. if (sd_ctl_dir[0].child)
  5506. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5507. }
  5508. #else
  5509. static void register_sched_domain_sysctl(void)
  5510. {
  5511. }
  5512. static void unregister_sched_domain_sysctl(void)
  5513. {
  5514. }
  5515. #endif
  5516. static void set_rq_online(struct rq *rq)
  5517. {
  5518. if (!rq->online) {
  5519. const struct sched_class *class;
  5520. cpu_set(rq->cpu, rq->rd->online);
  5521. rq->online = 1;
  5522. for_each_class(class) {
  5523. if (class->rq_online)
  5524. class->rq_online(rq);
  5525. }
  5526. }
  5527. }
  5528. static void set_rq_offline(struct rq *rq)
  5529. {
  5530. if (rq->online) {
  5531. const struct sched_class *class;
  5532. for_each_class(class) {
  5533. if (class->rq_offline)
  5534. class->rq_offline(rq);
  5535. }
  5536. cpu_clear(rq->cpu, rq->rd->online);
  5537. rq->online = 0;
  5538. }
  5539. }
  5540. /*
  5541. * migration_call - callback that gets triggered when a CPU is added.
  5542. * Here we can start up the necessary migration thread for the new CPU.
  5543. */
  5544. static int __cpuinit
  5545. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5546. {
  5547. struct task_struct *p;
  5548. int cpu = (long)hcpu;
  5549. unsigned long flags;
  5550. struct rq *rq;
  5551. switch (action) {
  5552. case CPU_UP_PREPARE:
  5553. case CPU_UP_PREPARE_FROZEN:
  5554. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5555. if (IS_ERR(p))
  5556. return NOTIFY_BAD;
  5557. kthread_bind(p, cpu);
  5558. /* Must be high prio: stop_machine expects to yield to it. */
  5559. rq = task_rq_lock(p, &flags);
  5560. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5561. task_rq_unlock(rq, &flags);
  5562. cpu_rq(cpu)->migration_thread = p;
  5563. break;
  5564. case CPU_ONLINE:
  5565. case CPU_ONLINE_FROZEN:
  5566. /* Strictly unnecessary, as first user will wake it. */
  5567. wake_up_process(cpu_rq(cpu)->migration_thread);
  5568. /* Update our root-domain */
  5569. rq = cpu_rq(cpu);
  5570. spin_lock_irqsave(&rq->lock, flags);
  5571. if (rq->rd) {
  5572. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5573. set_rq_online(rq);
  5574. }
  5575. spin_unlock_irqrestore(&rq->lock, flags);
  5576. break;
  5577. #ifdef CONFIG_HOTPLUG_CPU
  5578. case CPU_UP_CANCELED:
  5579. case CPU_UP_CANCELED_FROZEN:
  5580. if (!cpu_rq(cpu)->migration_thread)
  5581. break;
  5582. /* Unbind it from offline cpu so it can run. Fall thru. */
  5583. kthread_bind(cpu_rq(cpu)->migration_thread,
  5584. any_online_cpu(cpu_online_map));
  5585. kthread_stop(cpu_rq(cpu)->migration_thread);
  5586. cpu_rq(cpu)->migration_thread = NULL;
  5587. break;
  5588. case CPU_DEAD:
  5589. case CPU_DEAD_FROZEN:
  5590. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5591. migrate_live_tasks(cpu);
  5592. rq = cpu_rq(cpu);
  5593. kthread_stop(rq->migration_thread);
  5594. rq->migration_thread = NULL;
  5595. /* Idle task back to normal (off runqueue, low prio) */
  5596. spin_lock_irq(&rq->lock);
  5597. update_rq_clock(rq);
  5598. deactivate_task(rq, rq->idle, 0);
  5599. rq->idle->static_prio = MAX_PRIO;
  5600. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5601. rq->idle->sched_class = &idle_sched_class;
  5602. migrate_dead_tasks(cpu);
  5603. spin_unlock_irq(&rq->lock);
  5604. cpuset_unlock();
  5605. migrate_nr_uninterruptible(rq);
  5606. BUG_ON(rq->nr_running != 0);
  5607. /*
  5608. * No need to migrate the tasks: it was best-effort if
  5609. * they didn't take sched_hotcpu_mutex. Just wake up
  5610. * the requestors.
  5611. */
  5612. spin_lock_irq(&rq->lock);
  5613. while (!list_empty(&rq->migration_queue)) {
  5614. struct migration_req *req;
  5615. req = list_entry(rq->migration_queue.next,
  5616. struct migration_req, list);
  5617. list_del_init(&req->list);
  5618. complete(&req->done);
  5619. }
  5620. spin_unlock_irq(&rq->lock);
  5621. break;
  5622. case CPU_DYING:
  5623. case CPU_DYING_FROZEN:
  5624. /* Update our root-domain */
  5625. rq = cpu_rq(cpu);
  5626. spin_lock_irqsave(&rq->lock, flags);
  5627. if (rq->rd) {
  5628. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5629. set_rq_offline(rq);
  5630. }
  5631. spin_unlock_irqrestore(&rq->lock, flags);
  5632. break;
  5633. #endif
  5634. }
  5635. return NOTIFY_OK;
  5636. }
  5637. /* Register at highest priority so that task migration (migrate_all_tasks)
  5638. * happens before everything else.
  5639. */
  5640. static struct notifier_block __cpuinitdata migration_notifier = {
  5641. .notifier_call = migration_call,
  5642. .priority = 10
  5643. };
  5644. static int __init migration_init(void)
  5645. {
  5646. void *cpu = (void *)(long)smp_processor_id();
  5647. int err;
  5648. /* Start one for the boot CPU: */
  5649. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5650. BUG_ON(err == NOTIFY_BAD);
  5651. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5652. register_cpu_notifier(&migration_notifier);
  5653. return err;
  5654. }
  5655. early_initcall(migration_init);
  5656. #endif
  5657. #ifdef CONFIG_SMP
  5658. #ifdef CONFIG_SCHED_DEBUG
  5659. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5660. {
  5661. switch (lvl) {
  5662. case SD_LV_NONE:
  5663. return "NONE";
  5664. case SD_LV_SIBLING:
  5665. return "SIBLING";
  5666. case SD_LV_MC:
  5667. return "MC";
  5668. case SD_LV_CPU:
  5669. return "CPU";
  5670. case SD_LV_NODE:
  5671. return "NODE";
  5672. case SD_LV_ALLNODES:
  5673. return "ALLNODES";
  5674. case SD_LV_MAX:
  5675. return "MAX";
  5676. }
  5677. return "MAX";
  5678. }
  5679. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5680. cpumask_t *groupmask)
  5681. {
  5682. struct sched_group *group = sd->groups;
  5683. char str[256];
  5684. cpulist_scnprintf(str, sizeof(str), sd->span);
  5685. cpus_clear(*groupmask);
  5686. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5687. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5688. printk("does not load-balance\n");
  5689. if (sd->parent)
  5690. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5691. " has parent");
  5692. return -1;
  5693. }
  5694. printk(KERN_CONT "span %s level %s\n",
  5695. str, sd_level_to_string(sd->level));
  5696. if (!cpu_isset(cpu, sd->span)) {
  5697. printk(KERN_ERR "ERROR: domain->span does not contain "
  5698. "CPU%d\n", cpu);
  5699. }
  5700. if (!cpu_isset(cpu, group->cpumask)) {
  5701. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5702. " CPU%d\n", cpu);
  5703. }
  5704. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5705. do {
  5706. if (!group) {
  5707. printk("\n");
  5708. printk(KERN_ERR "ERROR: group is NULL\n");
  5709. break;
  5710. }
  5711. if (!group->__cpu_power) {
  5712. printk(KERN_CONT "\n");
  5713. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5714. "set\n");
  5715. break;
  5716. }
  5717. if (!cpus_weight(group->cpumask)) {
  5718. printk(KERN_CONT "\n");
  5719. printk(KERN_ERR "ERROR: empty group\n");
  5720. break;
  5721. }
  5722. if (cpus_intersects(*groupmask, group->cpumask)) {
  5723. printk(KERN_CONT "\n");
  5724. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5725. break;
  5726. }
  5727. cpus_or(*groupmask, *groupmask, group->cpumask);
  5728. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5729. printk(KERN_CONT " %s", str);
  5730. group = group->next;
  5731. } while (group != sd->groups);
  5732. printk(KERN_CONT "\n");
  5733. if (!cpus_equal(sd->span, *groupmask))
  5734. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5735. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5736. printk(KERN_ERR "ERROR: parent span is not a superset "
  5737. "of domain->span\n");
  5738. return 0;
  5739. }
  5740. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5741. {
  5742. cpumask_t *groupmask;
  5743. int level = 0;
  5744. if (!sd) {
  5745. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5746. return;
  5747. }
  5748. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5749. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5750. if (!groupmask) {
  5751. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5752. return;
  5753. }
  5754. for (;;) {
  5755. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5756. break;
  5757. level++;
  5758. sd = sd->parent;
  5759. if (!sd)
  5760. break;
  5761. }
  5762. kfree(groupmask);
  5763. }
  5764. #else /* !CONFIG_SCHED_DEBUG */
  5765. # define sched_domain_debug(sd, cpu) do { } while (0)
  5766. #endif /* CONFIG_SCHED_DEBUG */
  5767. static int sd_degenerate(struct sched_domain *sd)
  5768. {
  5769. if (cpus_weight(sd->span) == 1)
  5770. return 1;
  5771. /* Following flags need at least 2 groups */
  5772. if (sd->flags & (SD_LOAD_BALANCE |
  5773. SD_BALANCE_NEWIDLE |
  5774. SD_BALANCE_FORK |
  5775. SD_BALANCE_EXEC |
  5776. SD_SHARE_CPUPOWER |
  5777. SD_SHARE_PKG_RESOURCES)) {
  5778. if (sd->groups != sd->groups->next)
  5779. return 0;
  5780. }
  5781. /* Following flags don't use groups */
  5782. if (sd->flags & (SD_WAKE_IDLE |
  5783. SD_WAKE_AFFINE |
  5784. SD_WAKE_BALANCE))
  5785. return 0;
  5786. return 1;
  5787. }
  5788. static int
  5789. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5790. {
  5791. unsigned long cflags = sd->flags, pflags = parent->flags;
  5792. if (sd_degenerate(parent))
  5793. return 1;
  5794. if (!cpus_equal(sd->span, parent->span))
  5795. return 0;
  5796. /* Does parent contain flags not in child? */
  5797. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5798. if (cflags & SD_WAKE_AFFINE)
  5799. pflags &= ~SD_WAKE_BALANCE;
  5800. /* Flags needing groups don't count if only 1 group in parent */
  5801. if (parent->groups == parent->groups->next) {
  5802. pflags &= ~(SD_LOAD_BALANCE |
  5803. SD_BALANCE_NEWIDLE |
  5804. SD_BALANCE_FORK |
  5805. SD_BALANCE_EXEC |
  5806. SD_SHARE_CPUPOWER |
  5807. SD_SHARE_PKG_RESOURCES);
  5808. }
  5809. if (~cflags & pflags)
  5810. return 0;
  5811. return 1;
  5812. }
  5813. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5814. {
  5815. unsigned long flags;
  5816. spin_lock_irqsave(&rq->lock, flags);
  5817. if (rq->rd) {
  5818. struct root_domain *old_rd = rq->rd;
  5819. if (cpu_isset(rq->cpu, old_rd->online))
  5820. set_rq_offline(rq);
  5821. cpu_clear(rq->cpu, old_rd->span);
  5822. if (atomic_dec_and_test(&old_rd->refcount))
  5823. kfree(old_rd);
  5824. }
  5825. atomic_inc(&rd->refcount);
  5826. rq->rd = rd;
  5827. cpu_set(rq->cpu, rd->span);
  5828. if (cpu_isset(rq->cpu, cpu_online_map))
  5829. set_rq_online(rq);
  5830. spin_unlock_irqrestore(&rq->lock, flags);
  5831. }
  5832. static void init_rootdomain(struct root_domain *rd)
  5833. {
  5834. memset(rd, 0, sizeof(*rd));
  5835. cpus_clear(rd->span);
  5836. cpus_clear(rd->online);
  5837. cpupri_init(&rd->cpupri);
  5838. }
  5839. static void init_defrootdomain(void)
  5840. {
  5841. init_rootdomain(&def_root_domain);
  5842. atomic_set(&def_root_domain.refcount, 1);
  5843. }
  5844. static struct root_domain *alloc_rootdomain(void)
  5845. {
  5846. struct root_domain *rd;
  5847. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5848. if (!rd)
  5849. return NULL;
  5850. init_rootdomain(rd);
  5851. return rd;
  5852. }
  5853. /*
  5854. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5855. * hold the hotplug lock.
  5856. */
  5857. static void
  5858. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5859. {
  5860. struct rq *rq = cpu_rq(cpu);
  5861. struct sched_domain *tmp;
  5862. /* Remove the sched domains which do not contribute to scheduling. */
  5863. for (tmp = sd; tmp; tmp = tmp->parent) {
  5864. struct sched_domain *parent = tmp->parent;
  5865. if (!parent)
  5866. break;
  5867. if (sd_parent_degenerate(tmp, parent)) {
  5868. tmp->parent = parent->parent;
  5869. if (parent->parent)
  5870. parent->parent->child = tmp;
  5871. }
  5872. }
  5873. if (sd && sd_degenerate(sd)) {
  5874. sd = sd->parent;
  5875. if (sd)
  5876. sd->child = NULL;
  5877. }
  5878. sched_domain_debug(sd, cpu);
  5879. rq_attach_root(rq, rd);
  5880. rcu_assign_pointer(rq->sd, sd);
  5881. }
  5882. /* cpus with isolated domains */
  5883. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5884. /* Setup the mask of cpus configured for isolated domains */
  5885. static int __init isolated_cpu_setup(char *str)
  5886. {
  5887. static int __initdata ints[NR_CPUS];
  5888. int i;
  5889. str = get_options(str, ARRAY_SIZE(ints), ints);
  5890. cpus_clear(cpu_isolated_map);
  5891. for (i = 1; i <= ints[0]; i++)
  5892. if (ints[i] < NR_CPUS)
  5893. cpu_set(ints[i], cpu_isolated_map);
  5894. return 1;
  5895. }
  5896. __setup("isolcpus=", isolated_cpu_setup);
  5897. /*
  5898. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5899. * to a function which identifies what group(along with sched group) a CPU
  5900. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5901. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5902. *
  5903. * init_sched_build_groups will build a circular linked list of the groups
  5904. * covered by the given span, and will set each group's ->cpumask correctly,
  5905. * and ->cpu_power to 0.
  5906. */
  5907. static void
  5908. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5909. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5910. struct sched_group **sg,
  5911. cpumask_t *tmpmask),
  5912. cpumask_t *covered, cpumask_t *tmpmask)
  5913. {
  5914. struct sched_group *first = NULL, *last = NULL;
  5915. int i;
  5916. cpus_clear(*covered);
  5917. for_each_cpu_mask_nr(i, *span) {
  5918. struct sched_group *sg;
  5919. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5920. int j;
  5921. if (cpu_isset(i, *covered))
  5922. continue;
  5923. cpus_clear(sg->cpumask);
  5924. sg->__cpu_power = 0;
  5925. for_each_cpu_mask_nr(j, *span) {
  5926. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5927. continue;
  5928. cpu_set(j, *covered);
  5929. cpu_set(j, sg->cpumask);
  5930. }
  5931. if (!first)
  5932. first = sg;
  5933. if (last)
  5934. last->next = sg;
  5935. last = sg;
  5936. }
  5937. last->next = first;
  5938. }
  5939. #define SD_NODES_PER_DOMAIN 16
  5940. #ifdef CONFIG_NUMA
  5941. /**
  5942. * find_next_best_node - find the next node to include in a sched_domain
  5943. * @node: node whose sched_domain we're building
  5944. * @used_nodes: nodes already in the sched_domain
  5945. *
  5946. * Find the next node to include in a given scheduling domain. Simply
  5947. * finds the closest node not already in the @used_nodes map.
  5948. *
  5949. * Should use nodemask_t.
  5950. */
  5951. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5952. {
  5953. int i, n, val, min_val, best_node = 0;
  5954. min_val = INT_MAX;
  5955. for (i = 0; i < nr_node_ids; i++) {
  5956. /* Start at @node */
  5957. n = (node + i) % nr_node_ids;
  5958. if (!nr_cpus_node(n))
  5959. continue;
  5960. /* Skip already used nodes */
  5961. if (node_isset(n, *used_nodes))
  5962. continue;
  5963. /* Simple min distance search */
  5964. val = node_distance(node, n);
  5965. if (val < min_val) {
  5966. min_val = val;
  5967. best_node = n;
  5968. }
  5969. }
  5970. node_set(best_node, *used_nodes);
  5971. return best_node;
  5972. }
  5973. /**
  5974. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5975. * @node: node whose cpumask we're constructing
  5976. * @span: resulting cpumask
  5977. *
  5978. * Given a node, construct a good cpumask for its sched_domain to span. It
  5979. * should be one that prevents unnecessary balancing, but also spreads tasks
  5980. * out optimally.
  5981. */
  5982. static void sched_domain_node_span(int node, cpumask_t *span)
  5983. {
  5984. nodemask_t used_nodes;
  5985. node_to_cpumask_ptr(nodemask, node);
  5986. int i;
  5987. cpus_clear(*span);
  5988. nodes_clear(used_nodes);
  5989. cpus_or(*span, *span, *nodemask);
  5990. node_set(node, used_nodes);
  5991. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5992. int next_node = find_next_best_node(node, &used_nodes);
  5993. node_to_cpumask_ptr_next(nodemask, next_node);
  5994. cpus_or(*span, *span, *nodemask);
  5995. }
  5996. }
  5997. #endif /* CONFIG_NUMA */
  5998. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5999. /*
  6000. * SMT sched-domains:
  6001. */
  6002. #ifdef CONFIG_SCHED_SMT
  6003. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  6004. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  6005. static int
  6006. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6007. cpumask_t *unused)
  6008. {
  6009. if (sg)
  6010. *sg = &per_cpu(sched_group_cpus, cpu);
  6011. return cpu;
  6012. }
  6013. #endif /* CONFIG_SCHED_SMT */
  6014. /*
  6015. * multi-core sched-domains:
  6016. */
  6017. #ifdef CONFIG_SCHED_MC
  6018. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  6019. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  6020. #endif /* CONFIG_SCHED_MC */
  6021. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6022. static int
  6023. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6024. cpumask_t *mask)
  6025. {
  6026. int group;
  6027. *mask = per_cpu(cpu_sibling_map, cpu);
  6028. cpus_and(*mask, *mask, *cpu_map);
  6029. group = first_cpu(*mask);
  6030. if (sg)
  6031. *sg = &per_cpu(sched_group_core, group);
  6032. return group;
  6033. }
  6034. #elif defined(CONFIG_SCHED_MC)
  6035. static int
  6036. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6037. cpumask_t *unused)
  6038. {
  6039. if (sg)
  6040. *sg = &per_cpu(sched_group_core, cpu);
  6041. return cpu;
  6042. }
  6043. #endif
  6044. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  6045. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  6046. static int
  6047. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  6048. cpumask_t *mask)
  6049. {
  6050. int group;
  6051. #ifdef CONFIG_SCHED_MC
  6052. *mask = cpu_coregroup_map(cpu);
  6053. cpus_and(*mask, *mask, *cpu_map);
  6054. group = first_cpu(*mask);
  6055. #elif defined(CONFIG_SCHED_SMT)
  6056. *mask = per_cpu(cpu_sibling_map, cpu);
  6057. cpus_and(*mask, *mask, *cpu_map);
  6058. group = first_cpu(*mask);
  6059. #else
  6060. group = cpu;
  6061. #endif
  6062. if (sg)
  6063. *sg = &per_cpu(sched_group_phys, group);
  6064. return group;
  6065. }
  6066. #ifdef CONFIG_NUMA
  6067. /*
  6068. * The init_sched_build_groups can't handle what we want to do with node
  6069. * groups, so roll our own. Now each node has its own list of groups which
  6070. * gets dynamically allocated.
  6071. */
  6072. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  6073. static struct sched_group ***sched_group_nodes_bycpu;
  6074. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  6075. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  6076. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  6077. struct sched_group **sg, cpumask_t *nodemask)
  6078. {
  6079. int group;
  6080. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  6081. cpus_and(*nodemask, *nodemask, *cpu_map);
  6082. group = first_cpu(*nodemask);
  6083. if (sg)
  6084. *sg = &per_cpu(sched_group_allnodes, group);
  6085. return group;
  6086. }
  6087. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6088. {
  6089. struct sched_group *sg = group_head;
  6090. int j;
  6091. if (!sg)
  6092. return;
  6093. do {
  6094. for_each_cpu_mask_nr(j, sg->cpumask) {
  6095. struct sched_domain *sd;
  6096. sd = &per_cpu(phys_domains, j);
  6097. if (j != first_cpu(sd->groups->cpumask)) {
  6098. /*
  6099. * Only add "power" once for each
  6100. * physical package.
  6101. */
  6102. continue;
  6103. }
  6104. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  6105. }
  6106. sg = sg->next;
  6107. } while (sg != group_head);
  6108. }
  6109. #endif /* CONFIG_NUMA */
  6110. #ifdef CONFIG_NUMA
  6111. /* Free memory allocated for various sched_group structures */
  6112. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6113. {
  6114. int cpu, i;
  6115. for_each_cpu_mask_nr(cpu, *cpu_map) {
  6116. struct sched_group **sched_group_nodes
  6117. = sched_group_nodes_bycpu[cpu];
  6118. if (!sched_group_nodes)
  6119. continue;
  6120. for (i = 0; i < nr_node_ids; i++) {
  6121. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  6122. *nodemask = node_to_cpumask(i);
  6123. cpus_and(*nodemask, *nodemask, *cpu_map);
  6124. if (cpus_empty(*nodemask))
  6125. continue;
  6126. if (sg == NULL)
  6127. continue;
  6128. sg = sg->next;
  6129. next_sg:
  6130. oldsg = sg;
  6131. sg = sg->next;
  6132. kfree(oldsg);
  6133. if (oldsg != sched_group_nodes[i])
  6134. goto next_sg;
  6135. }
  6136. kfree(sched_group_nodes);
  6137. sched_group_nodes_bycpu[cpu] = NULL;
  6138. }
  6139. }
  6140. #else /* !CONFIG_NUMA */
  6141. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6142. {
  6143. }
  6144. #endif /* CONFIG_NUMA */
  6145. /*
  6146. * Initialize sched groups cpu_power.
  6147. *
  6148. * cpu_power indicates the capacity of sched group, which is used while
  6149. * distributing the load between different sched groups in a sched domain.
  6150. * Typically cpu_power for all the groups in a sched domain will be same unless
  6151. * there are asymmetries in the topology. If there are asymmetries, group
  6152. * having more cpu_power will pickup more load compared to the group having
  6153. * less cpu_power.
  6154. *
  6155. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6156. * the maximum number of tasks a group can handle in the presence of other idle
  6157. * or lightly loaded groups in the same sched domain.
  6158. */
  6159. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6160. {
  6161. struct sched_domain *child;
  6162. struct sched_group *group;
  6163. WARN_ON(!sd || !sd->groups);
  6164. if (cpu != first_cpu(sd->groups->cpumask))
  6165. return;
  6166. child = sd->child;
  6167. sd->groups->__cpu_power = 0;
  6168. /*
  6169. * For perf policy, if the groups in child domain share resources
  6170. * (for example cores sharing some portions of the cache hierarchy
  6171. * or SMT), then set this domain groups cpu_power such that each group
  6172. * can handle only one task, when there are other idle groups in the
  6173. * same sched domain.
  6174. */
  6175. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6176. (child->flags &
  6177. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6178. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6179. return;
  6180. }
  6181. /*
  6182. * add cpu_power of each child group to this groups cpu_power
  6183. */
  6184. group = child->groups;
  6185. do {
  6186. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6187. group = group->next;
  6188. } while (group != child->groups);
  6189. }
  6190. /*
  6191. * Initializers for schedule domains
  6192. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6193. */
  6194. #ifdef CONFIG_SCHED_DEBUG
  6195. # define SD_INIT_NAME(sd, type) sd->name = #type
  6196. #else
  6197. # define SD_INIT_NAME(sd, type) do { } while (0)
  6198. #endif
  6199. #define SD_INIT(sd, type) sd_init_##type(sd)
  6200. #define SD_INIT_FUNC(type) \
  6201. static noinline void sd_init_##type(struct sched_domain *sd) \
  6202. { \
  6203. memset(sd, 0, sizeof(*sd)); \
  6204. *sd = SD_##type##_INIT; \
  6205. sd->level = SD_LV_##type; \
  6206. SD_INIT_NAME(sd, type); \
  6207. }
  6208. SD_INIT_FUNC(CPU)
  6209. #ifdef CONFIG_NUMA
  6210. SD_INIT_FUNC(ALLNODES)
  6211. SD_INIT_FUNC(NODE)
  6212. #endif
  6213. #ifdef CONFIG_SCHED_SMT
  6214. SD_INIT_FUNC(SIBLING)
  6215. #endif
  6216. #ifdef CONFIG_SCHED_MC
  6217. SD_INIT_FUNC(MC)
  6218. #endif
  6219. /*
  6220. * To minimize stack usage kmalloc room for cpumasks and share the
  6221. * space as the usage in build_sched_domains() dictates. Used only
  6222. * if the amount of space is significant.
  6223. */
  6224. struct allmasks {
  6225. cpumask_t tmpmask; /* make this one first */
  6226. union {
  6227. cpumask_t nodemask;
  6228. cpumask_t this_sibling_map;
  6229. cpumask_t this_core_map;
  6230. };
  6231. cpumask_t send_covered;
  6232. #ifdef CONFIG_NUMA
  6233. cpumask_t domainspan;
  6234. cpumask_t covered;
  6235. cpumask_t notcovered;
  6236. #endif
  6237. };
  6238. #if NR_CPUS > 128
  6239. #define SCHED_CPUMASK_ALLOC 1
  6240. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6241. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6242. #else
  6243. #define SCHED_CPUMASK_ALLOC 0
  6244. #define SCHED_CPUMASK_FREE(v)
  6245. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6246. #endif
  6247. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6248. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6249. static int default_relax_domain_level = -1;
  6250. static int __init setup_relax_domain_level(char *str)
  6251. {
  6252. unsigned long val;
  6253. val = simple_strtoul(str, NULL, 0);
  6254. if (val < SD_LV_MAX)
  6255. default_relax_domain_level = val;
  6256. return 1;
  6257. }
  6258. __setup("relax_domain_level=", setup_relax_domain_level);
  6259. static void set_domain_attribute(struct sched_domain *sd,
  6260. struct sched_domain_attr *attr)
  6261. {
  6262. int request;
  6263. if (!attr || attr->relax_domain_level < 0) {
  6264. if (default_relax_domain_level < 0)
  6265. return;
  6266. else
  6267. request = default_relax_domain_level;
  6268. } else
  6269. request = attr->relax_domain_level;
  6270. if (request < sd->level) {
  6271. /* turn off idle balance on this domain */
  6272. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6273. } else {
  6274. /* turn on idle balance on this domain */
  6275. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6276. }
  6277. }
  6278. /*
  6279. * Build sched domains for a given set of cpus and attach the sched domains
  6280. * to the individual cpus
  6281. */
  6282. static int __build_sched_domains(const cpumask_t *cpu_map,
  6283. struct sched_domain_attr *attr)
  6284. {
  6285. int i;
  6286. struct root_domain *rd;
  6287. SCHED_CPUMASK_DECLARE(allmasks);
  6288. cpumask_t *tmpmask;
  6289. #ifdef CONFIG_NUMA
  6290. struct sched_group **sched_group_nodes = NULL;
  6291. int sd_allnodes = 0;
  6292. /*
  6293. * Allocate the per-node list of sched groups
  6294. */
  6295. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6296. GFP_KERNEL);
  6297. if (!sched_group_nodes) {
  6298. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6299. return -ENOMEM;
  6300. }
  6301. #endif
  6302. rd = alloc_rootdomain();
  6303. if (!rd) {
  6304. printk(KERN_WARNING "Cannot alloc root domain\n");
  6305. #ifdef CONFIG_NUMA
  6306. kfree(sched_group_nodes);
  6307. #endif
  6308. return -ENOMEM;
  6309. }
  6310. #if SCHED_CPUMASK_ALLOC
  6311. /* get space for all scratch cpumask variables */
  6312. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6313. if (!allmasks) {
  6314. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6315. kfree(rd);
  6316. #ifdef CONFIG_NUMA
  6317. kfree(sched_group_nodes);
  6318. #endif
  6319. return -ENOMEM;
  6320. }
  6321. #endif
  6322. tmpmask = (cpumask_t *)allmasks;
  6323. #ifdef CONFIG_NUMA
  6324. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6325. #endif
  6326. /*
  6327. * Set up domains for cpus specified by the cpu_map.
  6328. */
  6329. for_each_cpu_mask_nr(i, *cpu_map) {
  6330. struct sched_domain *sd = NULL, *p;
  6331. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6332. *nodemask = node_to_cpumask(cpu_to_node(i));
  6333. cpus_and(*nodemask, *nodemask, *cpu_map);
  6334. #ifdef CONFIG_NUMA
  6335. if (cpus_weight(*cpu_map) >
  6336. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6337. sd = &per_cpu(allnodes_domains, i);
  6338. SD_INIT(sd, ALLNODES);
  6339. set_domain_attribute(sd, attr);
  6340. sd->span = *cpu_map;
  6341. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6342. p = sd;
  6343. sd_allnodes = 1;
  6344. } else
  6345. p = NULL;
  6346. sd = &per_cpu(node_domains, i);
  6347. SD_INIT(sd, NODE);
  6348. set_domain_attribute(sd, attr);
  6349. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6350. sd->parent = p;
  6351. if (p)
  6352. p->child = sd;
  6353. cpus_and(sd->span, sd->span, *cpu_map);
  6354. #endif
  6355. p = sd;
  6356. sd = &per_cpu(phys_domains, i);
  6357. SD_INIT(sd, CPU);
  6358. set_domain_attribute(sd, attr);
  6359. sd->span = *nodemask;
  6360. sd->parent = p;
  6361. if (p)
  6362. p->child = sd;
  6363. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6364. #ifdef CONFIG_SCHED_MC
  6365. p = sd;
  6366. sd = &per_cpu(core_domains, i);
  6367. SD_INIT(sd, MC);
  6368. set_domain_attribute(sd, attr);
  6369. sd->span = cpu_coregroup_map(i);
  6370. cpus_and(sd->span, sd->span, *cpu_map);
  6371. sd->parent = p;
  6372. p->child = sd;
  6373. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6374. #endif
  6375. #ifdef CONFIG_SCHED_SMT
  6376. p = sd;
  6377. sd = &per_cpu(cpu_domains, i);
  6378. SD_INIT(sd, SIBLING);
  6379. set_domain_attribute(sd, attr);
  6380. sd->span = per_cpu(cpu_sibling_map, i);
  6381. cpus_and(sd->span, sd->span, *cpu_map);
  6382. sd->parent = p;
  6383. p->child = sd;
  6384. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6385. #endif
  6386. }
  6387. #ifdef CONFIG_SCHED_SMT
  6388. /* Set up CPU (sibling) groups */
  6389. for_each_cpu_mask_nr(i, *cpu_map) {
  6390. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6391. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6392. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6393. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6394. if (i != first_cpu(*this_sibling_map))
  6395. continue;
  6396. init_sched_build_groups(this_sibling_map, cpu_map,
  6397. &cpu_to_cpu_group,
  6398. send_covered, tmpmask);
  6399. }
  6400. #endif
  6401. #ifdef CONFIG_SCHED_MC
  6402. /* Set up multi-core groups */
  6403. for_each_cpu_mask_nr(i, *cpu_map) {
  6404. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6405. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6406. *this_core_map = cpu_coregroup_map(i);
  6407. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6408. if (i != first_cpu(*this_core_map))
  6409. continue;
  6410. init_sched_build_groups(this_core_map, cpu_map,
  6411. &cpu_to_core_group,
  6412. send_covered, tmpmask);
  6413. }
  6414. #endif
  6415. /* Set up physical groups */
  6416. for (i = 0; i < nr_node_ids; i++) {
  6417. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6418. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6419. *nodemask = node_to_cpumask(i);
  6420. cpus_and(*nodemask, *nodemask, *cpu_map);
  6421. if (cpus_empty(*nodemask))
  6422. continue;
  6423. init_sched_build_groups(nodemask, cpu_map,
  6424. &cpu_to_phys_group,
  6425. send_covered, tmpmask);
  6426. }
  6427. #ifdef CONFIG_NUMA
  6428. /* Set up node groups */
  6429. if (sd_allnodes) {
  6430. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6431. init_sched_build_groups(cpu_map, cpu_map,
  6432. &cpu_to_allnodes_group,
  6433. send_covered, tmpmask);
  6434. }
  6435. for (i = 0; i < nr_node_ids; i++) {
  6436. /* Set up node groups */
  6437. struct sched_group *sg, *prev;
  6438. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6439. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6440. SCHED_CPUMASK_VAR(covered, allmasks);
  6441. int j;
  6442. *nodemask = node_to_cpumask(i);
  6443. cpus_clear(*covered);
  6444. cpus_and(*nodemask, *nodemask, *cpu_map);
  6445. if (cpus_empty(*nodemask)) {
  6446. sched_group_nodes[i] = NULL;
  6447. continue;
  6448. }
  6449. sched_domain_node_span(i, domainspan);
  6450. cpus_and(*domainspan, *domainspan, *cpu_map);
  6451. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6452. if (!sg) {
  6453. printk(KERN_WARNING "Can not alloc domain group for "
  6454. "node %d\n", i);
  6455. goto error;
  6456. }
  6457. sched_group_nodes[i] = sg;
  6458. for_each_cpu_mask_nr(j, *nodemask) {
  6459. struct sched_domain *sd;
  6460. sd = &per_cpu(node_domains, j);
  6461. sd->groups = sg;
  6462. }
  6463. sg->__cpu_power = 0;
  6464. sg->cpumask = *nodemask;
  6465. sg->next = sg;
  6466. cpus_or(*covered, *covered, *nodemask);
  6467. prev = sg;
  6468. for (j = 0; j < nr_node_ids; j++) {
  6469. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6470. int n = (i + j) % nr_node_ids;
  6471. node_to_cpumask_ptr(pnodemask, n);
  6472. cpus_complement(*notcovered, *covered);
  6473. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6474. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6475. if (cpus_empty(*tmpmask))
  6476. break;
  6477. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6478. if (cpus_empty(*tmpmask))
  6479. continue;
  6480. sg = kmalloc_node(sizeof(struct sched_group),
  6481. GFP_KERNEL, i);
  6482. if (!sg) {
  6483. printk(KERN_WARNING
  6484. "Can not alloc domain group for node %d\n", j);
  6485. goto error;
  6486. }
  6487. sg->__cpu_power = 0;
  6488. sg->cpumask = *tmpmask;
  6489. sg->next = prev->next;
  6490. cpus_or(*covered, *covered, *tmpmask);
  6491. prev->next = sg;
  6492. prev = sg;
  6493. }
  6494. }
  6495. #endif
  6496. /* Calculate CPU power for physical packages and nodes */
  6497. #ifdef CONFIG_SCHED_SMT
  6498. for_each_cpu_mask_nr(i, *cpu_map) {
  6499. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6500. init_sched_groups_power(i, sd);
  6501. }
  6502. #endif
  6503. #ifdef CONFIG_SCHED_MC
  6504. for_each_cpu_mask_nr(i, *cpu_map) {
  6505. struct sched_domain *sd = &per_cpu(core_domains, i);
  6506. init_sched_groups_power(i, sd);
  6507. }
  6508. #endif
  6509. for_each_cpu_mask_nr(i, *cpu_map) {
  6510. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6511. init_sched_groups_power(i, sd);
  6512. }
  6513. #ifdef CONFIG_NUMA
  6514. for (i = 0; i < nr_node_ids; i++)
  6515. init_numa_sched_groups_power(sched_group_nodes[i]);
  6516. if (sd_allnodes) {
  6517. struct sched_group *sg;
  6518. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6519. tmpmask);
  6520. init_numa_sched_groups_power(sg);
  6521. }
  6522. #endif
  6523. /* Attach the domains */
  6524. for_each_cpu_mask_nr(i, *cpu_map) {
  6525. struct sched_domain *sd;
  6526. #ifdef CONFIG_SCHED_SMT
  6527. sd = &per_cpu(cpu_domains, i);
  6528. #elif defined(CONFIG_SCHED_MC)
  6529. sd = &per_cpu(core_domains, i);
  6530. #else
  6531. sd = &per_cpu(phys_domains, i);
  6532. #endif
  6533. cpu_attach_domain(sd, rd, i);
  6534. }
  6535. SCHED_CPUMASK_FREE((void *)allmasks);
  6536. return 0;
  6537. #ifdef CONFIG_NUMA
  6538. error:
  6539. free_sched_groups(cpu_map, tmpmask);
  6540. SCHED_CPUMASK_FREE((void *)allmasks);
  6541. return -ENOMEM;
  6542. #endif
  6543. }
  6544. static int build_sched_domains(const cpumask_t *cpu_map)
  6545. {
  6546. return __build_sched_domains(cpu_map, NULL);
  6547. }
  6548. static cpumask_t *doms_cur; /* current sched domains */
  6549. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6550. static struct sched_domain_attr *dattr_cur;
  6551. /* attribues of custom domains in 'doms_cur' */
  6552. /*
  6553. * Special case: If a kmalloc of a doms_cur partition (array of
  6554. * cpumask_t) fails, then fallback to a single sched domain,
  6555. * as determined by the single cpumask_t fallback_doms.
  6556. */
  6557. static cpumask_t fallback_doms;
  6558. void __attribute__((weak)) arch_update_cpu_topology(void)
  6559. {
  6560. }
  6561. /*
  6562. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6563. * For now this just excludes isolated cpus, but could be used to
  6564. * exclude other special cases in the future.
  6565. */
  6566. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6567. {
  6568. int err;
  6569. arch_update_cpu_topology();
  6570. ndoms_cur = 1;
  6571. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6572. if (!doms_cur)
  6573. doms_cur = &fallback_doms;
  6574. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6575. dattr_cur = NULL;
  6576. err = build_sched_domains(doms_cur);
  6577. register_sched_domain_sysctl();
  6578. return err;
  6579. }
  6580. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6581. cpumask_t *tmpmask)
  6582. {
  6583. free_sched_groups(cpu_map, tmpmask);
  6584. }
  6585. /*
  6586. * Detach sched domains from a group of cpus specified in cpu_map
  6587. * These cpus will now be attached to the NULL domain
  6588. */
  6589. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6590. {
  6591. cpumask_t tmpmask;
  6592. int i;
  6593. unregister_sched_domain_sysctl();
  6594. for_each_cpu_mask_nr(i, *cpu_map)
  6595. cpu_attach_domain(NULL, &def_root_domain, i);
  6596. synchronize_sched();
  6597. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6598. }
  6599. /* handle null as "default" */
  6600. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6601. struct sched_domain_attr *new, int idx_new)
  6602. {
  6603. struct sched_domain_attr tmp;
  6604. /* fast path */
  6605. if (!new && !cur)
  6606. return 1;
  6607. tmp = SD_ATTR_INIT;
  6608. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6609. new ? (new + idx_new) : &tmp,
  6610. sizeof(struct sched_domain_attr));
  6611. }
  6612. /*
  6613. * Partition sched domains as specified by the 'ndoms_new'
  6614. * cpumasks in the array doms_new[] of cpumasks. This compares
  6615. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6616. * It destroys each deleted domain and builds each new domain.
  6617. *
  6618. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6619. * The masks don't intersect (don't overlap.) We should setup one
  6620. * sched domain for each mask. CPUs not in any of the cpumasks will
  6621. * not be load balanced. If the same cpumask appears both in the
  6622. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6623. * it as it is.
  6624. *
  6625. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6626. * ownership of it and will kfree it when done with it. If the caller
  6627. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6628. * and partition_sched_domains() will fallback to the single partition
  6629. * 'fallback_doms', it also forces the domains to be rebuilt.
  6630. *
  6631. * If doms_new==NULL it will be replaced with cpu_online_map.
  6632. * ndoms_new==0 is a special case for destroying existing domains.
  6633. * It will not create the default domain.
  6634. *
  6635. * Call with hotplug lock held
  6636. */
  6637. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6638. struct sched_domain_attr *dattr_new)
  6639. {
  6640. int i, j, n;
  6641. mutex_lock(&sched_domains_mutex);
  6642. /* always unregister in case we don't destroy any domains */
  6643. unregister_sched_domain_sysctl();
  6644. n = doms_new ? ndoms_new : 0;
  6645. /* Destroy deleted domains */
  6646. for (i = 0; i < ndoms_cur; i++) {
  6647. for (j = 0; j < n; j++) {
  6648. if (cpus_equal(doms_cur[i], doms_new[j])
  6649. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6650. goto match1;
  6651. }
  6652. /* no match - a current sched domain not in new doms_new[] */
  6653. detach_destroy_domains(doms_cur + i);
  6654. match1:
  6655. ;
  6656. }
  6657. if (doms_new == NULL) {
  6658. ndoms_cur = 0;
  6659. doms_new = &fallback_doms;
  6660. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6661. dattr_new = NULL;
  6662. }
  6663. /* Build new domains */
  6664. for (i = 0; i < ndoms_new; i++) {
  6665. for (j = 0; j < ndoms_cur; j++) {
  6666. if (cpus_equal(doms_new[i], doms_cur[j])
  6667. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6668. goto match2;
  6669. }
  6670. /* no match - add a new doms_new */
  6671. __build_sched_domains(doms_new + i,
  6672. dattr_new ? dattr_new + i : NULL);
  6673. match2:
  6674. ;
  6675. }
  6676. /* Remember the new sched domains */
  6677. if (doms_cur != &fallback_doms)
  6678. kfree(doms_cur);
  6679. kfree(dattr_cur); /* kfree(NULL) is safe */
  6680. doms_cur = doms_new;
  6681. dattr_cur = dattr_new;
  6682. ndoms_cur = ndoms_new;
  6683. register_sched_domain_sysctl();
  6684. mutex_unlock(&sched_domains_mutex);
  6685. }
  6686. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6687. int arch_reinit_sched_domains(void)
  6688. {
  6689. get_online_cpus();
  6690. /* Destroy domains first to force the rebuild */
  6691. partition_sched_domains(0, NULL, NULL);
  6692. rebuild_sched_domains();
  6693. put_online_cpus();
  6694. return 0;
  6695. }
  6696. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6697. {
  6698. int ret;
  6699. if (buf[0] != '0' && buf[0] != '1')
  6700. return -EINVAL;
  6701. if (smt)
  6702. sched_smt_power_savings = (buf[0] == '1');
  6703. else
  6704. sched_mc_power_savings = (buf[0] == '1');
  6705. ret = arch_reinit_sched_domains();
  6706. return ret ? ret : count;
  6707. }
  6708. #ifdef CONFIG_SCHED_MC
  6709. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6710. char *page)
  6711. {
  6712. return sprintf(page, "%u\n", sched_mc_power_savings);
  6713. }
  6714. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6715. const char *buf, size_t count)
  6716. {
  6717. return sched_power_savings_store(buf, count, 0);
  6718. }
  6719. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6720. sched_mc_power_savings_show,
  6721. sched_mc_power_savings_store);
  6722. #endif
  6723. #ifdef CONFIG_SCHED_SMT
  6724. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6725. char *page)
  6726. {
  6727. return sprintf(page, "%u\n", sched_smt_power_savings);
  6728. }
  6729. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6730. const char *buf, size_t count)
  6731. {
  6732. return sched_power_savings_store(buf, count, 1);
  6733. }
  6734. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6735. sched_smt_power_savings_show,
  6736. sched_smt_power_savings_store);
  6737. #endif
  6738. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6739. {
  6740. int err = 0;
  6741. #ifdef CONFIG_SCHED_SMT
  6742. if (smt_capable())
  6743. err = sysfs_create_file(&cls->kset.kobj,
  6744. &attr_sched_smt_power_savings.attr);
  6745. #endif
  6746. #ifdef CONFIG_SCHED_MC
  6747. if (!err && mc_capable())
  6748. err = sysfs_create_file(&cls->kset.kobj,
  6749. &attr_sched_mc_power_savings.attr);
  6750. #endif
  6751. return err;
  6752. }
  6753. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6754. #ifndef CONFIG_CPUSETS
  6755. /*
  6756. * Add online and remove offline CPUs from the scheduler domains.
  6757. * When cpusets are enabled they take over this function.
  6758. */
  6759. static int update_sched_domains(struct notifier_block *nfb,
  6760. unsigned long action, void *hcpu)
  6761. {
  6762. switch (action) {
  6763. case CPU_ONLINE:
  6764. case CPU_ONLINE_FROZEN:
  6765. case CPU_DEAD:
  6766. case CPU_DEAD_FROZEN:
  6767. partition_sched_domains(1, NULL, NULL);
  6768. return NOTIFY_OK;
  6769. default:
  6770. return NOTIFY_DONE;
  6771. }
  6772. }
  6773. #endif
  6774. static int update_runtime(struct notifier_block *nfb,
  6775. unsigned long action, void *hcpu)
  6776. {
  6777. int cpu = (int)(long)hcpu;
  6778. switch (action) {
  6779. case CPU_DOWN_PREPARE:
  6780. case CPU_DOWN_PREPARE_FROZEN:
  6781. disable_runtime(cpu_rq(cpu));
  6782. return NOTIFY_OK;
  6783. case CPU_DOWN_FAILED:
  6784. case CPU_DOWN_FAILED_FROZEN:
  6785. case CPU_ONLINE:
  6786. case CPU_ONLINE_FROZEN:
  6787. enable_runtime(cpu_rq(cpu));
  6788. return NOTIFY_OK;
  6789. default:
  6790. return NOTIFY_DONE;
  6791. }
  6792. }
  6793. void __init sched_init_smp(void)
  6794. {
  6795. cpumask_t non_isolated_cpus;
  6796. #if defined(CONFIG_NUMA)
  6797. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6798. GFP_KERNEL);
  6799. BUG_ON(sched_group_nodes_bycpu == NULL);
  6800. #endif
  6801. get_online_cpus();
  6802. mutex_lock(&sched_domains_mutex);
  6803. arch_init_sched_domains(&cpu_online_map);
  6804. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6805. if (cpus_empty(non_isolated_cpus))
  6806. cpu_set(smp_processor_id(), non_isolated_cpus);
  6807. mutex_unlock(&sched_domains_mutex);
  6808. put_online_cpus();
  6809. #ifndef CONFIG_CPUSETS
  6810. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6811. hotcpu_notifier(update_sched_domains, 0);
  6812. #endif
  6813. /* RT runtime code needs to handle some hotplug events */
  6814. hotcpu_notifier(update_runtime, 0);
  6815. init_hrtick();
  6816. /* Move init over to a non-isolated CPU */
  6817. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6818. BUG();
  6819. sched_init_granularity();
  6820. }
  6821. #else
  6822. void __init sched_init_smp(void)
  6823. {
  6824. sched_init_granularity();
  6825. }
  6826. #endif /* CONFIG_SMP */
  6827. int in_sched_functions(unsigned long addr)
  6828. {
  6829. return in_lock_functions(addr) ||
  6830. (addr >= (unsigned long)__sched_text_start
  6831. && addr < (unsigned long)__sched_text_end);
  6832. }
  6833. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6834. {
  6835. cfs_rq->tasks_timeline = RB_ROOT;
  6836. INIT_LIST_HEAD(&cfs_rq->tasks);
  6837. #ifdef CONFIG_FAIR_GROUP_SCHED
  6838. cfs_rq->rq = rq;
  6839. #endif
  6840. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6841. }
  6842. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6843. {
  6844. struct rt_prio_array *array;
  6845. int i;
  6846. array = &rt_rq->active;
  6847. for (i = 0; i < MAX_RT_PRIO; i++) {
  6848. INIT_LIST_HEAD(array->queue + i);
  6849. __clear_bit(i, array->bitmap);
  6850. }
  6851. /* delimiter for bitsearch: */
  6852. __set_bit(MAX_RT_PRIO, array->bitmap);
  6853. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6854. rt_rq->highest_prio = MAX_RT_PRIO;
  6855. #endif
  6856. #ifdef CONFIG_SMP
  6857. rt_rq->rt_nr_migratory = 0;
  6858. rt_rq->overloaded = 0;
  6859. #endif
  6860. rt_rq->rt_time = 0;
  6861. rt_rq->rt_throttled = 0;
  6862. rt_rq->rt_runtime = 0;
  6863. spin_lock_init(&rt_rq->rt_runtime_lock);
  6864. #ifdef CONFIG_RT_GROUP_SCHED
  6865. rt_rq->rt_nr_boosted = 0;
  6866. rt_rq->rq = rq;
  6867. #endif
  6868. }
  6869. #ifdef CONFIG_FAIR_GROUP_SCHED
  6870. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6871. struct sched_entity *se, int cpu, int add,
  6872. struct sched_entity *parent)
  6873. {
  6874. struct rq *rq = cpu_rq(cpu);
  6875. tg->cfs_rq[cpu] = cfs_rq;
  6876. init_cfs_rq(cfs_rq, rq);
  6877. cfs_rq->tg = tg;
  6878. if (add)
  6879. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6880. tg->se[cpu] = se;
  6881. /* se could be NULL for init_task_group */
  6882. if (!se)
  6883. return;
  6884. if (!parent)
  6885. se->cfs_rq = &rq->cfs;
  6886. else
  6887. se->cfs_rq = parent->my_q;
  6888. se->my_q = cfs_rq;
  6889. se->load.weight = tg->shares;
  6890. se->load.inv_weight = 0;
  6891. se->parent = parent;
  6892. }
  6893. #endif
  6894. #ifdef CONFIG_RT_GROUP_SCHED
  6895. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6896. struct sched_rt_entity *rt_se, int cpu, int add,
  6897. struct sched_rt_entity *parent)
  6898. {
  6899. struct rq *rq = cpu_rq(cpu);
  6900. tg->rt_rq[cpu] = rt_rq;
  6901. init_rt_rq(rt_rq, rq);
  6902. rt_rq->tg = tg;
  6903. rt_rq->rt_se = rt_se;
  6904. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6905. if (add)
  6906. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6907. tg->rt_se[cpu] = rt_se;
  6908. if (!rt_se)
  6909. return;
  6910. if (!parent)
  6911. rt_se->rt_rq = &rq->rt;
  6912. else
  6913. rt_se->rt_rq = parent->my_q;
  6914. rt_se->my_q = rt_rq;
  6915. rt_se->parent = parent;
  6916. INIT_LIST_HEAD(&rt_se->run_list);
  6917. }
  6918. #endif
  6919. void __init sched_init(void)
  6920. {
  6921. int i, j;
  6922. unsigned long alloc_size = 0, ptr;
  6923. #ifdef CONFIG_FAIR_GROUP_SCHED
  6924. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6925. #endif
  6926. #ifdef CONFIG_RT_GROUP_SCHED
  6927. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6928. #endif
  6929. #ifdef CONFIG_USER_SCHED
  6930. alloc_size *= 2;
  6931. #endif
  6932. /*
  6933. * As sched_init() is called before page_alloc is setup,
  6934. * we use alloc_bootmem().
  6935. */
  6936. if (alloc_size) {
  6937. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6938. #ifdef CONFIG_FAIR_GROUP_SCHED
  6939. init_task_group.se = (struct sched_entity **)ptr;
  6940. ptr += nr_cpu_ids * sizeof(void **);
  6941. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6942. ptr += nr_cpu_ids * sizeof(void **);
  6943. #ifdef CONFIG_USER_SCHED
  6944. root_task_group.se = (struct sched_entity **)ptr;
  6945. ptr += nr_cpu_ids * sizeof(void **);
  6946. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6947. ptr += nr_cpu_ids * sizeof(void **);
  6948. #endif /* CONFIG_USER_SCHED */
  6949. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6950. #ifdef CONFIG_RT_GROUP_SCHED
  6951. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6952. ptr += nr_cpu_ids * sizeof(void **);
  6953. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6954. ptr += nr_cpu_ids * sizeof(void **);
  6955. #ifdef CONFIG_USER_SCHED
  6956. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6957. ptr += nr_cpu_ids * sizeof(void **);
  6958. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6959. ptr += nr_cpu_ids * sizeof(void **);
  6960. #endif /* CONFIG_USER_SCHED */
  6961. #endif /* CONFIG_RT_GROUP_SCHED */
  6962. }
  6963. #ifdef CONFIG_SMP
  6964. init_defrootdomain();
  6965. #endif
  6966. init_rt_bandwidth(&def_rt_bandwidth,
  6967. global_rt_period(), global_rt_runtime());
  6968. #ifdef CONFIG_RT_GROUP_SCHED
  6969. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6970. global_rt_period(), global_rt_runtime());
  6971. #ifdef CONFIG_USER_SCHED
  6972. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6973. global_rt_period(), RUNTIME_INF);
  6974. #endif /* CONFIG_USER_SCHED */
  6975. #endif /* CONFIG_RT_GROUP_SCHED */
  6976. #ifdef CONFIG_GROUP_SCHED
  6977. list_add(&init_task_group.list, &task_groups);
  6978. INIT_LIST_HEAD(&init_task_group.children);
  6979. #ifdef CONFIG_USER_SCHED
  6980. INIT_LIST_HEAD(&root_task_group.children);
  6981. init_task_group.parent = &root_task_group;
  6982. list_add(&init_task_group.siblings, &root_task_group.children);
  6983. #endif /* CONFIG_USER_SCHED */
  6984. #endif /* CONFIG_GROUP_SCHED */
  6985. for_each_possible_cpu(i) {
  6986. struct rq *rq;
  6987. rq = cpu_rq(i);
  6988. spin_lock_init(&rq->lock);
  6989. rq->nr_running = 0;
  6990. init_cfs_rq(&rq->cfs, rq);
  6991. init_rt_rq(&rq->rt, rq);
  6992. #ifdef CONFIG_FAIR_GROUP_SCHED
  6993. init_task_group.shares = init_task_group_load;
  6994. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6995. #ifdef CONFIG_CGROUP_SCHED
  6996. /*
  6997. * How much cpu bandwidth does init_task_group get?
  6998. *
  6999. * In case of task-groups formed thr' the cgroup filesystem, it
  7000. * gets 100% of the cpu resources in the system. This overall
  7001. * system cpu resource is divided among the tasks of
  7002. * init_task_group and its child task-groups in a fair manner,
  7003. * based on each entity's (task or task-group's) weight
  7004. * (se->load.weight).
  7005. *
  7006. * In other words, if init_task_group has 10 tasks of weight
  7007. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7008. * then A0's share of the cpu resource is:
  7009. *
  7010. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7011. *
  7012. * We achieve this by letting init_task_group's tasks sit
  7013. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7014. */
  7015. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7016. #elif defined CONFIG_USER_SCHED
  7017. root_task_group.shares = NICE_0_LOAD;
  7018. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7019. /*
  7020. * In case of task-groups formed thr' the user id of tasks,
  7021. * init_task_group represents tasks belonging to root user.
  7022. * Hence it forms a sibling of all subsequent groups formed.
  7023. * In this case, init_task_group gets only a fraction of overall
  7024. * system cpu resource, based on the weight assigned to root
  7025. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7026. * by letting tasks of init_task_group sit in a separate cfs_rq
  7027. * (init_cfs_rq) and having one entity represent this group of
  7028. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7029. */
  7030. init_tg_cfs_entry(&init_task_group,
  7031. &per_cpu(init_cfs_rq, i),
  7032. &per_cpu(init_sched_entity, i), i, 1,
  7033. root_task_group.se[i]);
  7034. #endif
  7035. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7036. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7037. #ifdef CONFIG_RT_GROUP_SCHED
  7038. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7039. #ifdef CONFIG_CGROUP_SCHED
  7040. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7041. #elif defined CONFIG_USER_SCHED
  7042. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7043. init_tg_rt_entry(&init_task_group,
  7044. &per_cpu(init_rt_rq, i),
  7045. &per_cpu(init_sched_rt_entity, i), i, 1,
  7046. root_task_group.rt_se[i]);
  7047. #endif
  7048. #endif
  7049. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7050. rq->cpu_load[j] = 0;
  7051. #ifdef CONFIG_SMP
  7052. rq->sd = NULL;
  7053. rq->rd = NULL;
  7054. rq->active_balance = 0;
  7055. rq->next_balance = jiffies;
  7056. rq->push_cpu = 0;
  7057. rq->cpu = i;
  7058. rq->online = 0;
  7059. rq->migration_thread = NULL;
  7060. INIT_LIST_HEAD(&rq->migration_queue);
  7061. rq_attach_root(rq, &def_root_domain);
  7062. #endif
  7063. init_rq_hrtick(rq);
  7064. atomic_set(&rq->nr_iowait, 0);
  7065. }
  7066. set_load_weight(&init_task);
  7067. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7068. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7069. #endif
  7070. #ifdef CONFIG_SMP
  7071. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  7072. #endif
  7073. #ifdef CONFIG_RT_MUTEXES
  7074. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  7075. #endif
  7076. /*
  7077. * The boot idle thread does lazy MMU switching as well:
  7078. */
  7079. atomic_inc(&init_mm.mm_count);
  7080. enter_lazy_tlb(&init_mm, current);
  7081. /*
  7082. * Make us the idle thread. Technically, schedule() should not be
  7083. * called from this thread, however somewhere below it might be,
  7084. * but because we are the idle thread, we just pick up running again
  7085. * when this runqueue becomes "idle".
  7086. */
  7087. init_idle(current, smp_processor_id());
  7088. /*
  7089. * During early bootup we pretend to be a normal task:
  7090. */
  7091. current->sched_class = &fair_sched_class;
  7092. scheduler_running = 1;
  7093. }
  7094. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  7095. void __might_sleep(char *file, int line)
  7096. {
  7097. #ifdef in_atomic
  7098. static unsigned long prev_jiffy; /* ratelimiting */
  7099. if ((!in_atomic() && !irqs_disabled()) ||
  7100. system_state != SYSTEM_RUNNING || oops_in_progress)
  7101. return;
  7102. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  7103. return;
  7104. prev_jiffy = jiffies;
  7105. printk(KERN_ERR
  7106. "BUG: sleeping function called from invalid context at %s:%d\n",
  7107. file, line);
  7108. printk(KERN_ERR
  7109. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  7110. in_atomic(), irqs_disabled(),
  7111. current->pid, current->comm);
  7112. debug_show_held_locks(current);
  7113. if (irqs_disabled())
  7114. print_irqtrace_events(current);
  7115. dump_stack();
  7116. #endif
  7117. }
  7118. EXPORT_SYMBOL(__might_sleep);
  7119. #endif
  7120. #ifdef CONFIG_MAGIC_SYSRQ
  7121. static void normalize_task(struct rq *rq, struct task_struct *p)
  7122. {
  7123. int on_rq;
  7124. update_rq_clock(rq);
  7125. on_rq = p->se.on_rq;
  7126. if (on_rq)
  7127. deactivate_task(rq, p, 0);
  7128. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7129. if (on_rq) {
  7130. activate_task(rq, p, 0);
  7131. resched_task(rq->curr);
  7132. }
  7133. }
  7134. void normalize_rt_tasks(void)
  7135. {
  7136. struct task_struct *g, *p;
  7137. unsigned long flags;
  7138. struct rq *rq;
  7139. read_lock_irqsave(&tasklist_lock, flags);
  7140. do_each_thread(g, p) {
  7141. /*
  7142. * Only normalize user tasks:
  7143. */
  7144. if (!p->mm)
  7145. continue;
  7146. p->se.exec_start = 0;
  7147. #ifdef CONFIG_SCHEDSTATS
  7148. p->se.wait_start = 0;
  7149. p->se.sleep_start = 0;
  7150. p->se.block_start = 0;
  7151. #endif
  7152. if (!rt_task(p)) {
  7153. /*
  7154. * Renice negative nice level userspace
  7155. * tasks back to 0:
  7156. */
  7157. if (TASK_NICE(p) < 0 && p->mm)
  7158. set_user_nice(p, 0);
  7159. continue;
  7160. }
  7161. spin_lock(&p->pi_lock);
  7162. rq = __task_rq_lock(p);
  7163. normalize_task(rq, p);
  7164. __task_rq_unlock(rq);
  7165. spin_unlock(&p->pi_lock);
  7166. } while_each_thread(g, p);
  7167. read_unlock_irqrestore(&tasklist_lock, flags);
  7168. }
  7169. #endif /* CONFIG_MAGIC_SYSRQ */
  7170. #ifdef CONFIG_IA64
  7171. /*
  7172. * These functions are only useful for the IA64 MCA handling.
  7173. *
  7174. * They can only be called when the whole system has been
  7175. * stopped - every CPU needs to be quiescent, and no scheduling
  7176. * activity can take place. Using them for anything else would
  7177. * be a serious bug, and as a result, they aren't even visible
  7178. * under any other configuration.
  7179. */
  7180. /**
  7181. * curr_task - return the current task for a given cpu.
  7182. * @cpu: the processor in question.
  7183. *
  7184. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7185. */
  7186. struct task_struct *curr_task(int cpu)
  7187. {
  7188. return cpu_curr(cpu);
  7189. }
  7190. /**
  7191. * set_curr_task - set the current task for a given cpu.
  7192. * @cpu: the processor in question.
  7193. * @p: the task pointer to set.
  7194. *
  7195. * Description: This function must only be used when non-maskable interrupts
  7196. * are serviced on a separate stack. It allows the architecture to switch the
  7197. * notion of the current task on a cpu in a non-blocking manner. This function
  7198. * must be called with all CPU's synchronized, and interrupts disabled, the
  7199. * and caller must save the original value of the current task (see
  7200. * curr_task() above) and restore that value before reenabling interrupts and
  7201. * re-starting the system.
  7202. *
  7203. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7204. */
  7205. void set_curr_task(int cpu, struct task_struct *p)
  7206. {
  7207. cpu_curr(cpu) = p;
  7208. }
  7209. #endif
  7210. #ifdef CONFIG_FAIR_GROUP_SCHED
  7211. static void free_fair_sched_group(struct task_group *tg)
  7212. {
  7213. int i;
  7214. for_each_possible_cpu(i) {
  7215. if (tg->cfs_rq)
  7216. kfree(tg->cfs_rq[i]);
  7217. if (tg->se)
  7218. kfree(tg->se[i]);
  7219. }
  7220. kfree(tg->cfs_rq);
  7221. kfree(tg->se);
  7222. }
  7223. static
  7224. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7225. {
  7226. struct cfs_rq *cfs_rq;
  7227. struct sched_entity *se, *parent_se;
  7228. struct rq *rq;
  7229. int i;
  7230. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7231. if (!tg->cfs_rq)
  7232. goto err;
  7233. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7234. if (!tg->se)
  7235. goto err;
  7236. tg->shares = NICE_0_LOAD;
  7237. for_each_possible_cpu(i) {
  7238. rq = cpu_rq(i);
  7239. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7240. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7241. if (!cfs_rq)
  7242. goto err;
  7243. se = kmalloc_node(sizeof(struct sched_entity),
  7244. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7245. if (!se)
  7246. goto err;
  7247. parent_se = parent ? parent->se[i] : NULL;
  7248. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7249. }
  7250. return 1;
  7251. err:
  7252. return 0;
  7253. }
  7254. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7255. {
  7256. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7257. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7258. }
  7259. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7260. {
  7261. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7262. }
  7263. #else /* !CONFG_FAIR_GROUP_SCHED */
  7264. static inline void free_fair_sched_group(struct task_group *tg)
  7265. {
  7266. }
  7267. static inline
  7268. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7269. {
  7270. return 1;
  7271. }
  7272. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7273. {
  7274. }
  7275. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7276. {
  7277. }
  7278. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7279. #ifdef CONFIG_RT_GROUP_SCHED
  7280. static void free_rt_sched_group(struct task_group *tg)
  7281. {
  7282. int i;
  7283. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7284. for_each_possible_cpu(i) {
  7285. if (tg->rt_rq)
  7286. kfree(tg->rt_rq[i]);
  7287. if (tg->rt_se)
  7288. kfree(tg->rt_se[i]);
  7289. }
  7290. kfree(tg->rt_rq);
  7291. kfree(tg->rt_se);
  7292. }
  7293. static
  7294. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7295. {
  7296. struct rt_rq *rt_rq;
  7297. struct sched_rt_entity *rt_se, *parent_se;
  7298. struct rq *rq;
  7299. int i;
  7300. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7301. if (!tg->rt_rq)
  7302. goto err;
  7303. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7304. if (!tg->rt_se)
  7305. goto err;
  7306. init_rt_bandwidth(&tg->rt_bandwidth,
  7307. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7308. for_each_possible_cpu(i) {
  7309. rq = cpu_rq(i);
  7310. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7311. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7312. if (!rt_rq)
  7313. goto err;
  7314. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7315. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7316. if (!rt_se)
  7317. goto err;
  7318. parent_se = parent ? parent->rt_se[i] : NULL;
  7319. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7320. }
  7321. return 1;
  7322. err:
  7323. return 0;
  7324. }
  7325. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7326. {
  7327. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7328. &cpu_rq(cpu)->leaf_rt_rq_list);
  7329. }
  7330. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7331. {
  7332. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7333. }
  7334. #else /* !CONFIG_RT_GROUP_SCHED */
  7335. static inline void free_rt_sched_group(struct task_group *tg)
  7336. {
  7337. }
  7338. static inline
  7339. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7340. {
  7341. return 1;
  7342. }
  7343. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7344. {
  7345. }
  7346. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7347. {
  7348. }
  7349. #endif /* CONFIG_RT_GROUP_SCHED */
  7350. #ifdef CONFIG_GROUP_SCHED
  7351. static void free_sched_group(struct task_group *tg)
  7352. {
  7353. free_fair_sched_group(tg);
  7354. free_rt_sched_group(tg);
  7355. kfree(tg);
  7356. }
  7357. /* allocate runqueue etc for a new task group */
  7358. struct task_group *sched_create_group(struct task_group *parent)
  7359. {
  7360. struct task_group *tg;
  7361. unsigned long flags;
  7362. int i;
  7363. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7364. if (!tg)
  7365. return ERR_PTR(-ENOMEM);
  7366. if (!alloc_fair_sched_group(tg, parent))
  7367. goto err;
  7368. if (!alloc_rt_sched_group(tg, parent))
  7369. goto err;
  7370. spin_lock_irqsave(&task_group_lock, flags);
  7371. for_each_possible_cpu(i) {
  7372. register_fair_sched_group(tg, i);
  7373. register_rt_sched_group(tg, i);
  7374. }
  7375. list_add_rcu(&tg->list, &task_groups);
  7376. WARN_ON(!parent); /* root should already exist */
  7377. tg->parent = parent;
  7378. INIT_LIST_HEAD(&tg->children);
  7379. list_add_rcu(&tg->siblings, &parent->children);
  7380. spin_unlock_irqrestore(&task_group_lock, flags);
  7381. return tg;
  7382. err:
  7383. free_sched_group(tg);
  7384. return ERR_PTR(-ENOMEM);
  7385. }
  7386. /* rcu callback to free various structures associated with a task group */
  7387. static void free_sched_group_rcu(struct rcu_head *rhp)
  7388. {
  7389. /* now it should be safe to free those cfs_rqs */
  7390. free_sched_group(container_of(rhp, struct task_group, rcu));
  7391. }
  7392. /* Destroy runqueue etc associated with a task group */
  7393. void sched_destroy_group(struct task_group *tg)
  7394. {
  7395. unsigned long flags;
  7396. int i;
  7397. spin_lock_irqsave(&task_group_lock, flags);
  7398. for_each_possible_cpu(i) {
  7399. unregister_fair_sched_group(tg, i);
  7400. unregister_rt_sched_group(tg, i);
  7401. }
  7402. list_del_rcu(&tg->list);
  7403. list_del_rcu(&tg->siblings);
  7404. spin_unlock_irqrestore(&task_group_lock, flags);
  7405. /* wait for possible concurrent references to cfs_rqs complete */
  7406. call_rcu(&tg->rcu, free_sched_group_rcu);
  7407. }
  7408. /* change task's runqueue when it moves between groups.
  7409. * The caller of this function should have put the task in its new group
  7410. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7411. * reflect its new group.
  7412. */
  7413. void sched_move_task(struct task_struct *tsk)
  7414. {
  7415. int on_rq, running;
  7416. unsigned long flags;
  7417. struct rq *rq;
  7418. rq = task_rq_lock(tsk, &flags);
  7419. update_rq_clock(rq);
  7420. running = task_current(rq, tsk);
  7421. on_rq = tsk->se.on_rq;
  7422. if (on_rq)
  7423. dequeue_task(rq, tsk, 0);
  7424. if (unlikely(running))
  7425. tsk->sched_class->put_prev_task(rq, tsk);
  7426. set_task_rq(tsk, task_cpu(tsk));
  7427. #ifdef CONFIG_FAIR_GROUP_SCHED
  7428. if (tsk->sched_class->moved_group)
  7429. tsk->sched_class->moved_group(tsk);
  7430. #endif
  7431. if (unlikely(running))
  7432. tsk->sched_class->set_curr_task(rq);
  7433. if (on_rq)
  7434. enqueue_task(rq, tsk, 0);
  7435. task_rq_unlock(rq, &flags);
  7436. }
  7437. #endif /* CONFIG_GROUP_SCHED */
  7438. #ifdef CONFIG_FAIR_GROUP_SCHED
  7439. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7440. {
  7441. struct cfs_rq *cfs_rq = se->cfs_rq;
  7442. int on_rq;
  7443. on_rq = se->on_rq;
  7444. if (on_rq)
  7445. dequeue_entity(cfs_rq, se, 0);
  7446. se->load.weight = shares;
  7447. se->load.inv_weight = 0;
  7448. if (on_rq)
  7449. enqueue_entity(cfs_rq, se, 0);
  7450. }
  7451. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7452. {
  7453. struct cfs_rq *cfs_rq = se->cfs_rq;
  7454. struct rq *rq = cfs_rq->rq;
  7455. unsigned long flags;
  7456. spin_lock_irqsave(&rq->lock, flags);
  7457. __set_se_shares(se, shares);
  7458. spin_unlock_irqrestore(&rq->lock, flags);
  7459. }
  7460. static DEFINE_MUTEX(shares_mutex);
  7461. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7462. {
  7463. int i;
  7464. unsigned long flags;
  7465. /*
  7466. * We can't change the weight of the root cgroup.
  7467. */
  7468. if (!tg->se[0])
  7469. return -EINVAL;
  7470. if (shares < MIN_SHARES)
  7471. shares = MIN_SHARES;
  7472. else if (shares > MAX_SHARES)
  7473. shares = MAX_SHARES;
  7474. mutex_lock(&shares_mutex);
  7475. if (tg->shares == shares)
  7476. goto done;
  7477. spin_lock_irqsave(&task_group_lock, flags);
  7478. for_each_possible_cpu(i)
  7479. unregister_fair_sched_group(tg, i);
  7480. list_del_rcu(&tg->siblings);
  7481. spin_unlock_irqrestore(&task_group_lock, flags);
  7482. /* wait for any ongoing reference to this group to finish */
  7483. synchronize_sched();
  7484. /*
  7485. * Now we are free to modify the group's share on each cpu
  7486. * w/o tripping rebalance_share or load_balance_fair.
  7487. */
  7488. tg->shares = shares;
  7489. for_each_possible_cpu(i) {
  7490. /*
  7491. * force a rebalance
  7492. */
  7493. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7494. set_se_shares(tg->se[i], shares);
  7495. }
  7496. /*
  7497. * Enable load balance activity on this group, by inserting it back on
  7498. * each cpu's rq->leaf_cfs_rq_list.
  7499. */
  7500. spin_lock_irqsave(&task_group_lock, flags);
  7501. for_each_possible_cpu(i)
  7502. register_fair_sched_group(tg, i);
  7503. list_add_rcu(&tg->siblings, &tg->parent->children);
  7504. spin_unlock_irqrestore(&task_group_lock, flags);
  7505. done:
  7506. mutex_unlock(&shares_mutex);
  7507. return 0;
  7508. }
  7509. unsigned long sched_group_shares(struct task_group *tg)
  7510. {
  7511. return tg->shares;
  7512. }
  7513. #endif
  7514. #ifdef CONFIG_RT_GROUP_SCHED
  7515. /*
  7516. * Ensure that the real time constraints are schedulable.
  7517. */
  7518. static DEFINE_MUTEX(rt_constraints_mutex);
  7519. static unsigned long to_ratio(u64 period, u64 runtime)
  7520. {
  7521. if (runtime == RUNTIME_INF)
  7522. return 1ULL << 20;
  7523. return div64_u64(runtime << 20, period);
  7524. }
  7525. /* Must be called with tasklist_lock held */
  7526. static inline int tg_has_rt_tasks(struct task_group *tg)
  7527. {
  7528. struct task_struct *g, *p;
  7529. do_each_thread(g, p) {
  7530. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7531. return 1;
  7532. } while_each_thread(g, p);
  7533. return 0;
  7534. }
  7535. struct rt_schedulable_data {
  7536. struct task_group *tg;
  7537. u64 rt_period;
  7538. u64 rt_runtime;
  7539. };
  7540. static int tg_schedulable(struct task_group *tg, void *data)
  7541. {
  7542. struct rt_schedulable_data *d = data;
  7543. struct task_group *child;
  7544. unsigned long total, sum = 0;
  7545. u64 period, runtime;
  7546. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7547. runtime = tg->rt_bandwidth.rt_runtime;
  7548. if (tg == d->tg) {
  7549. period = d->rt_period;
  7550. runtime = d->rt_runtime;
  7551. }
  7552. /*
  7553. * Cannot have more runtime than the period.
  7554. */
  7555. if (runtime > period && runtime != RUNTIME_INF)
  7556. return -EINVAL;
  7557. /*
  7558. * Ensure we don't starve existing RT tasks.
  7559. */
  7560. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7561. return -EBUSY;
  7562. total = to_ratio(period, runtime);
  7563. /*
  7564. * Nobody can have more than the global setting allows.
  7565. */
  7566. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7567. return -EINVAL;
  7568. /*
  7569. * The sum of our children's runtime should not exceed our own.
  7570. */
  7571. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7572. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7573. runtime = child->rt_bandwidth.rt_runtime;
  7574. if (child == d->tg) {
  7575. period = d->rt_period;
  7576. runtime = d->rt_runtime;
  7577. }
  7578. sum += to_ratio(period, runtime);
  7579. }
  7580. if (sum > total)
  7581. return -EINVAL;
  7582. return 0;
  7583. }
  7584. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7585. {
  7586. struct rt_schedulable_data data = {
  7587. .tg = tg,
  7588. .rt_period = period,
  7589. .rt_runtime = runtime,
  7590. };
  7591. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7592. }
  7593. static int tg_set_bandwidth(struct task_group *tg,
  7594. u64 rt_period, u64 rt_runtime)
  7595. {
  7596. int i, err = 0;
  7597. mutex_lock(&rt_constraints_mutex);
  7598. read_lock(&tasklist_lock);
  7599. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7600. if (err)
  7601. goto unlock;
  7602. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7603. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7604. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7605. for_each_possible_cpu(i) {
  7606. struct rt_rq *rt_rq = tg->rt_rq[i];
  7607. spin_lock(&rt_rq->rt_runtime_lock);
  7608. rt_rq->rt_runtime = rt_runtime;
  7609. spin_unlock(&rt_rq->rt_runtime_lock);
  7610. }
  7611. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7612. unlock:
  7613. read_unlock(&tasklist_lock);
  7614. mutex_unlock(&rt_constraints_mutex);
  7615. return err;
  7616. }
  7617. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7618. {
  7619. u64 rt_runtime, rt_period;
  7620. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7621. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7622. if (rt_runtime_us < 0)
  7623. rt_runtime = RUNTIME_INF;
  7624. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7625. }
  7626. long sched_group_rt_runtime(struct task_group *tg)
  7627. {
  7628. u64 rt_runtime_us;
  7629. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7630. return -1;
  7631. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7632. do_div(rt_runtime_us, NSEC_PER_USEC);
  7633. return rt_runtime_us;
  7634. }
  7635. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7636. {
  7637. u64 rt_runtime, rt_period;
  7638. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7639. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7640. if (rt_period == 0)
  7641. return -EINVAL;
  7642. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7643. }
  7644. long sched_group_rt_period(struct task_group *tg)
  7645. {
  7646. u64 rt_period_us;
  7647. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7648. do_div(rt_period_us, NSEC_PER_USEC);
  7649. return rt_period_us;
  7650. }
  7651. static int sched_rt_global_constraints(void)
  7652. {
  7653. u64 runtime, period;
  7654. int ret = 0;
  7655. if (sysctl_sched_rt_period <= 0)
  7656. return -EINVAL;
  7657. runtime = global_rt_runtime();
  7658. period = global_rt_period();
  7659. /*
  7660. * Sanity check on the sysctl variables.
  7661. */
  7662. if (runtime > period && runtime != RUNTIME_INF)
  7663. return -EINVAL;
  7664. mutex_lock(&rt_constraints_mutex);
  7665. read_lock(&tasklist_lock);
  7666. ret = __rt_schedulable(NULL, 0, 0);
  7667. read_unlock(&tasklist_lock);
  7668. mutex_unlock(&rt_constraints_mutex);
  7669. return ret;
  7670. }
  7671. #else /* !CONFIG_RT_GROUP_SCHED */
  7672. static int sched_rt_global_constraints(void)
  7673. {
  7674. unsigned long flags;
  7675. int i;
  7676. if (sysctl_sched_rt_period <= 0)
  7677. return -EINVAL;
  7678. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7679. for_each_possible_cpu(i) {
  7680. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7681. spin_lock(&rt_rq->rt_runtime_lock);
  7682. rt_rq->rt_runtime = global_rt_runtime();
  7683. spin_unlock(&rt_rq->rt_runtime_lock);
  7684. }
  7685. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7686. return 0;
  7687. }
  7688. #endif /* CONFIG_RT_GROUP_SCHED */
  7689. int sched_rt_handler(struct ctl_table *table, int write,
  7690. struct file *filp, void __user *buffer, size_t *lenp,
  7691. loff_t *ppos)
  7692. {
  7693. int ret;
  7694. int old_period, old_runtime;
  7695. static DEFINE_MUTEX(mutex);
  7696. mutex_lock(&mutex);
  7697. old_period = sysctl_sched_rt_period;
  7698. old_runtime = sysctl_sched_rt_runtime;
  7699. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7700. if (!ret && write) {
  7701. ret = sched_rt_global_constraints();
  7702. if (ret) {
  7703. sysctl_sched_rt_period = old_period;
  7704. sysctl_sched_rt_runtime = old_runtime;
  7705. } else {
  7706. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7707. def_rt_bandwidth.rt_period =
  7708. ns_to_ktime(global_rt_period());
  7709. }
  7710. }
  7711. mutex_unlock(&mutex);
  7712. return ret;
  7713. }
  7714. #ifdef CONFIG_CGROUP_SCHED
  7715. /* return corresponding task_group object of a cgroup */
  7716. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7717. {
  7718. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7719. struct task_group, css);
  7720. }
  7721. static struct cgroup_subsys_state *
  7722. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7723. {
  7724. struct task_group *tg, *parent;
  7725. if (!cgrp->parent) {
  7726. /* This is early initialization for the top cgroup */
  7727. return &init_task_group.css;
  7728. }
  7729. parent = cgroup_tg(cgrp->parent);
  7730. tg = sched_create_group(parent);
  7731. if (IS_ERR(tg))
  7732. return ERR_PTR(-ENOMEM);
  7733. return &tg->css;
  7734. }
  7735. static void
  7736. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7737. {
  7738. struct task_group *tg = cgroup_tg(cgrp);
  7739. sched_destroy_group(tg);
  7740. }
  7741. static int
  7742. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7743. struct task_struct *tsk)
  7744. {
  7745. #ifdef CONFIG_RT_GROUP_SCHED
  7746. /* Don't accept realtime tasks when there is no way for them to run */
  7747. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7748. return -EINVAL;
  7749. #else
  7750. /* We don't support RT-tasks being in separate groups */
  7751. if (tsk->sched_class != &fair_sched_class)
  7752. return -EINVAL;
  7753. #endif
  7754. return 0;
  7755. }
  7756. static void
  7757. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7758. struct cgroup *old_cont, struct task_struct *tsk)
  7759. {
  7760. sched_move_task(tsk);
  7761. }
  7762. #ifdef CONFIG_FAIR_GROUP_SCHED
  7763. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7764. u64 shareval)
  7765. {
  7766. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7767. }
  7768. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7769. {
  7770. struct task_group *tg = cgroup_tg(cgrp);
  7771. return (u64) tg->shares;
  7772. }
  7773. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7774. #ifdef CONFIG_RT_GROUP_SCHED
  7775. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7776. s64 val)
  7777. {
  7778. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7779. }
  7780. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7781. {
  7782. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7783. }
  7784. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7785. u64 rt_period_us)
  7786. {
  7787. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7788. }
  7789. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7790. {
  7791. return sched_group_rt_period(cgroup_tg(cgrp));
  7792. }
  7793. #endif /* CONFIG_RT_GROUP_SCHED */
  7794. static struct cftype cpu_files[] = {
  7795. #ifdef CONFIG_FAIR_GROUP_SCHED
  7796. {
  7797. .name = "shares",
  7798. .read_u64 = cpu_shares_read_u64,
  7799. .write_u64 = cpu_shares_write_u64,
  7800. },
  7801. #endif
  7802. #ifdef CONFIG_RT_GROUP_SCHED
  7803. {
  7804. .name = "rt_runtime_us",
  7805. .read_s64 = cpu_rt_runtime_read,
  7806. .write_s64 = cpu_rt_runtime_write,
  7807. },
  7808. {
  7809. .name = "rt_period_us",
  7810. .read_u64 = cpu_rt_period_read_uint,
  7811. .write_u64 = cpu_rt_period_write_uint,
  7812. },
  7813. #endif
  7814. };
  7815. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7816. {
  7817. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7818. }
  7819. struct cgroup_subsys cpu_cgroup_subsys = {
  7820. .name = "cpu",
  7821. .create = cpu_cgroup_create,
  7822. .destroy = cpu_cgroup_destroy,
  7823. .can_attach = cpu_cgroup_can_attach,
  7824. .attach = cpu_cgroup_attach,
  7825. .populate = cpu_cgroup_populate,
  7826. .subsys_id = cpu_cgroup_subsys_id,
  7827. .early_init = 1,
  7828. };
  7829. #endif /* CONFIG_CGROUP_SCHED */
  7830. #ifdef CONFIG_CGROUP_CPUACCT
  7831. /*
  7832. * CPU accounting code for task groups.
  7833. *
  7834. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7835. * (balbir@in.ibm.com).
  7836. */
  7837. /* track cpu usage of a group of tasks */
  7838. struct cpuacct {
  7839. struct cgroup_subsys_state css;
  7840. /* cpuusage holds pointer to a u64-type object on every cpu */
  7841. u64 *cpuusage;
  7842. };
  7843. struct cgroup_subsys cpuacct_subsys;
  7844. /* return cpu accounting group corresponding to this container */
  7845. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7846. {
  7847. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7848. struct cpuacct, css);
  7849. }
  7850. /* return cpu accounting group to which this task belongs */
  7851. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7852. {
  7853. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7854. struct cpuacct, css);
  7855. }
  7856. /* create a new cpu accounting group */
  7857. static struct cgroup_subsys_state *cpuacct_create(
  7858. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7859. {
  7860. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7861. if (!ca)
  7862. return ERR_PTR(-ENOMEM);
  7863. ca->cpuusage = alloc_percpu(u64);
  7864. if (!ca->cpuusage) {
  7865. kfree(ca);
  7866. return ERR_PTR(-ENOMEM);
  7867. }
  7868. return &ca->css;
  7869. }
  7870. /* destroy an existing cpu accounting group */
  7871. static void
  7872. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7873. {
  7874. struct cpuacct *ca = cgroup_ca(cgrp);
  7875. free_percpu(ca->cpuusage);
  7876. kfree(ca);
  7877. }
  7878. /* return total cpu usage (in nanoseconds) of a group */
  7879. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7880. {
  7881. struct cpuacct *ca = cgroup_ca(cgrp);
  7882. u64 totalcpuusage = 0;
  7883. int i;
  7884. for_each_possible_cpu(i) {
  7885. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7886. /*
  7887. * Take rq->lock to make 64-bit addition safe on 32-bit
  7888. * platforms.
  7889. */
  7890. spin_lock_irq(&cpu_rq(i)->lock);
  7891. totalcpuusage += *cpuusage;
  7892. spin_unlock_irq(&cpu_rq(i)->lock);
  7893. }
  7894. return totalcpuusage;
  7895. }
  7896. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7897. u64 reset)
  7898. {
  7899. struct cpuacct *ca = cgroup_ca(cgrp);
  7900. int err = 0;
  7901. int i;
  7902. if (reset) {
  7903. err = -EINVAL;
  7904. goto out;
  7905. }
  7906. for_each_possible_cpu(i) {
  7907. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7908. spin_lock_irq(&cpu_rq(i)->lock);
  7909. *cpuusage = 0;
  7910. spin_unlock_irq(&cpu_rq(i)->lock);
  7911. }
  7912. out:
  7913. return err;
  7914. }
  7915. static struct cftype files[] = {
  7916. {
  7917. .name = "usage",
  7918. .read_u64 = cpuusage_read,
  7919. .write_u64 = cpuusage_write,
  7920. },
  7921. };
  7922. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7923. {
  7924. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7925. }
  7926. /*
  7927. * charge this task's execution time to its accounting group.
  7928. *
  7929. * called with rq->lock held.
  7930. */
  7931. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7932. {
  7933. struct cpuacct *ca;
  7934. if (!cpuacct_subsys.active)
  7935. return;
  7936. ca = task_ca(tsk);
  7937. if (ca) {
  7938. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7939. *cpuusage += cputime;
  7940. }
  7941. }
  7942. struct cgroup_subsys cpuacct_subsys = {
  7943. .name = "cpuacct",
  7944. .create = cpuacct_create,
  7945. .destroy = cpuacct_destroy,
  7946. .populate = cpuacct_populate,
  7947. .subsys_id = cpuacct_subsys_id,
  7948. };
  7949. #endif /* CONFIG_CGROUP_CPUACCT */