db8500-prcmu.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453
  1. /*
  2. * Copyright (C) STMicroelectronics 2009
  3. * Copyright (C) ST-Ericsson SA 2010
  4. *
  5. * License Terms: GNU General Public License v2
  6. * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
  7. * Author: Sundar Iyer <sundar.iyer@stericsson.com>
  8. * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
  9. *
  10. * U8500 PRCM Unit interface driver
  11. *
  12. */
  13. #include <linux/module.h>
  14. #include <linux/kernel.h>
  15. #include <linux/delay.h>
  16. #include <linux/errno.h>
  17. #include <linux/err.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/io.h>
  20. #include <linux/slab.h>
  21. #include <linux/mutex.h>
  22. #include <linux/completion.h>
  23. #include <linux/irq.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/bitops.h>
  26. #include <linux/fs.h>
  27. #include <linux/platform_device.h>
  28. #include <linux/uaccess.h>
  29. #include <linux/mfd/core.h>
  30. #include <linux/mfd/dbx500-prcmu.h>
  31. #include <linux/regulator/db8500-prcmu.h>
  32. #include <linux/regulator/machine.h>
  33. #include <mach/hardware.h>
  34. #include <mach/irqs.h>
  35. #include <mach/db8500-regs.h>
  36. #include <mach/id.h>
  37. #include "dbx500-prcmu-regs.h"
  38. /* Offset for the firmware version within the TCPM */
  39. #define PRCMU_FW_VERSION_OFFSET 0xA4
  40. /* Index of different voltages to be used when accessing AVSData */
  41. #define PRCM_AVS_BASE 0x2FC
  42. #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
  43. #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
  44. #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
  45. #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
  46. #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
  47. #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
  48. #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
  49. #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
  50. #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
  51. #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
  52. #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
  53. #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
  54. #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
  55. #define PRCM_AVS_VOLTAGE 0
  56. #define PRCM_AVS_VOLTAGE_MASK 0x3f
  57. #define PRCM_AVS_ISSLOWSTARTUP 6
  58. #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
  59. #define PRCM_AVS_ISMODEENABLE 7
  60. #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
  61. #define PRCM_BOOT_STATUS 0xFFF
  62. #define PRCM_ROMCODE_A2P 0xFFE
  63. #define PRCM_ROMCODE_P2A 0xFFD
  64. #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
  65. #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  66. #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
  67. #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
  68. #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
  69. #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
  70. #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
  71. #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
  72. #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
  73. #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
  74. /* Req Mailboxes */
  75. #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
  76. #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
  77. #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
  78. #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
  79. #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
  80. #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
  81. /* Ack Mailboxes */
  82. #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
  83. #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  84. #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  85. #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  86. #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  87. #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  88. /* Mailbox 0 headers */
  89. #define MB0H_POWER_STATE_TRANS 0
  90. #define MB0H_CONFIG_WAKEUPS_EXE 1
  91. #define MB0H_READ_WAKEUP_ACK 3
  92. #define MB0H_CONFIG_WAKEUPS_SLEEP 4
  93. #define MB0H_WAKEUP_EXE 2
  94. #define MB0H_WAKEUP_SLEEP 5
  95. /* Mailbox 0 REQs */
  96. #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
  97. #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
  98. #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
  99. #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
  100. #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
  101. #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
  102. /* Mailbox 0 ACKs */
  103. #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
  104. #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
  105. #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
  106. #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
  107. #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
  108. #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
  109. #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
  110. /* Mailbox 1 headers */
  111. #define MB1H_ARM_APE_OPP 0x0
  112. #define MB1H_RESET_MODEM 0x2
  113. #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
  114. #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
  115. #define MB1H_RELEASE_USB_WAKEUP 0x5
  116. #define MB1H_PLL_ON_OFF 0x6
  117. /* Mailbox 1 Requests */
  118. #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
  119. #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
  120. #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
  121. #define PLL_SOC1_OFF 0x4
  122. #define PLL_SOC1_ON 0x8
  123. /* Mailbox 1 ACKs */
  124. #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
  125. #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
  126. #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
  127. #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
  128. /* Mailbox 2 headers */
  129. #define MB2H_DPS 0x0
  130. #define MB2H_AUTO_PWR 0x1
  131. /* Mailbox 2 REQs */
  132. #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
  133. #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
  134. #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
  135. #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
  136. #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
  137. #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
  138. #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
  139. #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
  140. #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
  141. #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
  142. /* Mailbox 2 ACKs */
  143. #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
  144. #define HWACC_PWR_ST_OK 0xFE
  145. /* Mailbox 3 headers */
  146. #define MB3H_ANC 0x0
  147. #define MB3H_SIDETONE 0x1
  148. #define MB3H_SYSCLK 0xE
  149. /* Mailbox 3 Requests */
  150. #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
  151. #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
  152. #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
  153. #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
  154. #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
  155. #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
  156. #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
  157. /* Mailbox 4 headers */
  158. #define MB4H_DDR_INIT 0x0
  159. #define MB4H_MEM_ST 0x1
  160. #define MB4H_HOTDOG 0x12
  161. #define MB4H_HOTMON 0x13
  162. #define MB4H_HOT_PERIOD 0x14
  163. #define MB4H_A9WDOG_CONF 0x16
  164. #define MB4H_A9WDOG_EN 0x17
  165. #define MB4H_A9WDOG_DIS 0x18
  166. #define MB4H_A9WDOG_LOAD 0x19
  167. #define MB4H_A9WDOG_KICK 0x20
  168. /* Mailbox 4 Requests */
  169. #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
  170. #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
  171. #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
  172. #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
  173. #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
  174. #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
  175. #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
  176. #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
  177. #define HOTMON_CONFIG_LOW BIT(0)
  178. #define HOTMON_CONFIG_HIGH BIT(1)
  179. #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
  180. #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
  181. #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
  182. #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
  183. #define A9WDOG_AUTO_OFF_EN BIT(7)
  184. #define A9WDOG_AUTO_OFF_DIS 0
  185. #define A9WDOG_ID_MASK 0xf
  186. /* Mailbox 5 Requests */
  187. #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
  188. #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
  189. #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
  190. #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
  191. #define PRCMU_I2C_WRITE(slave) \
  192. (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
  193. #define PRCMU_I2C_READ(slave) \
  194. (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
  195. #define PRCMU_I2C_STOP_EN BIT(3)
  196. /* Mailbox 5 ACKs */
  197. #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
  198. #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
  199. #define I2C_WR_OK 0x1
  200. #define I2C_RD_OK 0x2
  201. #define NUM_MB 8
  202. #define MBOX_BIT BIT
  203. #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
  204. /*
  205. * Wakeups/IRQs
  206. */
  207. #define WAKEUP_BIT_RTC BIT(0)
  208. #define WAKEUP_BIT_RTT0 BIT(1)
  209. #define WAKEUP_BIT_RTT1 BIT(2)
  210. #define WAKEUP_BIT_HSI0 BIT(3)
  211. #define WAKEUP_BIT_HSI1 BIT(4)
  212. #define WAKEUP_BIT_CA_WAKE BIT(5)
  213. #define WAKEUP_BIT_USB BIT(6)
  214. #define WAKEUP_BIT_ABB BIT(7)
  215. #define WAKEUP_BIT_ABB_FIFO BIT(8)
  216. #define WAKEUP_BIT_SYSCLK_OK BIT(9)
  217. #define WAKEUP_BIT_CA_SLEEP BIT(10)
  218. #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
  219. #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
  220. #define WAKEUP_BIT_ANC_OK BIT(13)
  221. #define WAKEUP_BIT_SW_ERROR BIT(14)
  222. #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
  223. #define WAKEUP_BIT_ARM BIT(17)
  224. #define WAKEUP_BIT_HOTMON_LOW BIT(18)
  225. #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
  226. #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
  227. #define WAKEUP_BIT_GPIO0 BIT(23)
  228. #define WAKEUP_BIT_GPIO1 BIT(24)
  229. #define WAKEUP_BIT_GPIO2 BIT(25)
  230. #define WAKEUP_BIT_GPIO3 BIT(26)
  231. #define WAKEUP_BIT_GPIO4 BIT(27)
  232. #define WAKEUP_BIT_GPIO5 BIT(28)
  233. #define WAKEUP_BIT_GPIO6 BIT(29)
  234. #define WAKEUP_BIT_GPIO7 BIT(30)
  235. #define WAKEUP_BIT_GPIO8 BIT(31)
  236. static struct {
  237. bool valid;
  238. struct prcmu_fw_version version;
  239. } fw_info;
  240. /*
  241. * This vector maps irq numbers to the bits in the bit field used in
  242. * communication with the PRCMU firmware.
  243. *
  244. * The reason for having this is to keep the irq numbers contiguous even though
  245. * the bits in the bit field are not. (The bits also have a tendency to move
  246. * around, to further complicate matters.)
  247. */
  248. #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
  249. #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
  250. static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
  251. IRQ_ENTRY(RTC),
  252. IRQ_ENTRY(RTT0),
  253. IRQ_ENTRY(RTT1),
  254. IRQ_ENTRY(HSI0),
  255. IRQ_ENTRY(HSI1),
  256. IRQ_ENTRY(CA_WAKE),
  257. IRQ_ENTRY(USB),
  258. IRQ_ENTRY(ABB),
  259. IRQ_ENTRY(ABB_FIFO),
  260. IRQ_ENTRY(CA_SLEEP),
  261. IRQ_ENTRY(ARM),
  262. IRQ_ENTRY(HOTMON_LOW),
  263. IRQ_ENTRY(HOTMON_HIGH),
  264. IRQ_ENTRY(MODEM_SW_RESET_REQ),
  265. IRQ_ENTRY(GPIO0),
  266. IRQ_ENTRY(GPIO1),
  267. IRQ_ENTRY(GPIO2),
  268. IRQ_ENTRY(GPIO3),
  269. IRQ_ENTRY(GPIO4),
  270. IRQ_ENTRY(GPIO5),
  271. IRQ_ENTRY(GPIO6),
  272. IRQ_ENTRY(GPIO7),
  273. IRQ_ENTRY(GPIO8)
  274. };
  275. #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
  276. #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
  277. static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
  278. WAKEUP_ENTRY(RTC),
  279. WAKEUP_ENTRY(RTT0),
  280. WAKEUP_ENTRY(RTT1),
  281. WAKEUP_ENTRY(HSI0),
  282. WAKEUP_ENTRY(HSI1),
  283. WAKEUP_ENTRY(USB),
  284. WAKEUP_ENTRY(ABB),
  285. WAKEUP_ENTRY(ABB_FIFO),
  286. WAKEUP_ENTRY(ARM)
  287. };
  288. /*
  289. * mb0_transfer - state needed for mailbox 0 communication.
  290. * @lock: The transaction lock.
  291. * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
  292. * the request data.
  293. * @mask_work: Work structure used for (un)masking wakeup interrupts.
  294. * @req: Request data that need to persist between requests.
  295. */
  296. static struct {
  297. spinlock_t lock;
  298. spinlock_t dbb_irqs_lock;
  299. struct work_struct mask_work;
  300. struct mutex ac_wake_lock;
  301. struct completion ac_wake_work;
  302. struct {
  303. u32 dbb_irqs;
  304. u32 dbb_wakeups;
  305. u32 abb_events;
  306. } req;
  307. } mb0_transfer;
  308. /*
  309. * mb1_transfer - state needed for mailbox 1 communication.
  310. * @lock: The transaction lock.
  311. * @work: The transaction completion structure.
  312. * @ack: Reply ("acknowledge") data.
  313. */
  314. static struct {
  315. struct mutex lock;
  316. struct completion work;
  317. struct {
  318. u8 header;
  319. u8 arm_opp;
  320. u8 ape_opp;
  321. u8 ape_voltage_status;
  322. } ack;
  323. } mb1_transfer;
  324. /*
  325. * mb2_transfer - state needed for mailbox 2 communication.
  326. * @lock: The transaction lock.
  327. * @work: The transaction completion structure.
  328. * @auto_pm_lock: The autonomous power management configuration lock.
  329. * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
  330. * @req: Request data that need to persist between requests.
  331. * @ack: Reply ("acknowledge") data.
  332. */
  333. static struct {
  334. struct mutex lock;
  335. struct completion work;
  336. spinlock_t auto_pm_lock;
  337. bool auto_pm_enabled;
  338. struct {
  339. u8 status;
  340. } ack;
  341. } mb2_transfer;
  342. /*
  343. * mb3_transfer - state needed for mailbox 3 communication.
  344. * @lock: The request lock.
  345. * @sysclk_lock: A lock used to handle concurrent sysclk requests.
  346. * @sysclk_work: Work structure used for sysclk requests.
  347. */
  348. static struct {
  349. spinlock_t lock;
  350. struct mutex sysclk_lock;
  351. struct completion sysclk_work;
  352. } mb3_transfer;
  353. /*
  354. * mb4_transfer - state needed for mailbox 4 communication.
  355. * @lock: The transaction lock.
  356. * @work: The transaction completion structure.
  357. */
  358. static struct {
  359. struct mutex lock;
  360. struct completion work;
  361. } mb4_transfer;
  362. /*
  363. * mb5_transfer - state needed for mailbox 5 communication.
  364. * @lock: The transaction lock.
  365. * @work: The transaction completion structure.
  366. * @ack: Reply ("acknowledge") data.
  367. */
  368. static struct {
  369. struct mutex lock;
  370. struct completion work;
  371. struct {
  372. u8 status;
  373. u8 value;
  374. } ack;
  375. } mb5_transfer;
  376. static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
  377. /* Spinlocks */
  378. static DEFINE_SPINLOCK(clkout_lock);
  379. static DEFINE_SPINLOCK(gpiocr_lock);
  380. /* Global var to runtime determine TCDM base for v2 or v1 */
  381. static __iomem void *tcdm_base;
  382. struct clk_mgt {
  383. unsigned int offset;
  384. u32 pllsw;
  385. };
  386. static DEFINE_SPINLOCK(clk_mgt_lock);
  387. #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
  388. struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
  389. CLK_MGT_ENTRY(SGACLK),
  390. CLK_MGT_ENTRY(UARTCLK),
  391. CLK_MGT_ENTRY(MSP02CLK),
  392. CLK_MGT_ENTRY(MSP1CLK),
  393. CLK_MGT_ENTRY(I2CCLK),
  394. CLK_MGT_ENTRY(SDMMCCLK),
  395. CLK_MGT_ENTRY(SLIMCLK),
  396. CLK_MGT_ENTRY(PER1CLK),
  397. CLK_MGT_ENTRY(PER2CLK),
  398. CLK_MGT_ENTRY(PER3CLK),
  399. CLK_MGT_ENTRY(PER5CLK),
  400. CLK_MGT_ENTRY(PER6CLK),
  401. CLK_MGT_ENTRY(PER7CLK),
  402. CLK_MGT_ENTRY(LCDCLK),
  403. CLK_MGT_ENTRY(BMLCLK),
  404. CLK_MGT_ENTRY(HSITXCLK),
  405. CLK_MGT_ENTRY(HSIRXCLK),
  406. CLK_MGT_ENTRY(HDMICLK),
  407. CLK_MGT_ENTRY(APEATCLK),
  408. CLK_MGT_ENTRY(APETRACECLK),
  409. CLK_MGT_ENTRY(MCDECLK),
  410. CLK_MGT_ENTRY(IPI2CCLK),
  411. CLK_MGT_ENTRY(DSIALTCLK),
  412. CLK_MGT_ENTRY(DMACLK),
  413. CLK_MGT_ENTRY(B2R2CLK),
  414. CLK_MGT_ENTRY(TVCLK),
  415. CLK_MGT_ENTRY(SSPCLK),
  416. CLK_MGT_ENTRY(RNGCLK),
  417. CLK_MGT_ENTRY(UICCCLK),
  418. };
  419. static struct regulator *hwacc_regulator[NUM_HW_ACC];
  420. static struct regulator *hwacc_ret_regulator[NUM_HW_ACC];
  421. static bool hwacc_enabled[NUM_HW_ACC];
  422. static bool hwacc_ret_enabled[NUM_HW_ACC];
  423. static const char *hwacc_regulator_name[NUM_HW_ACC] = {
  424. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp",
  425. [HW_ACC_SVAPIPE] = "hwacc-sva-pipe",
  426. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp",
  427. [HW_ACC_SIAPIPE] = "hwacc-sia-pipe",
  428. [HW_ACC_SGA] = "hwacc-sga",
  429. [HW_ACC_B2R2] = "hwacc-b2r2",
  430. [HW_ACC_MCDE] = "hwacc-mcde",
  431. [HW_ACC_ESRAM1] = "hwacc-esram1",
  432. [HW_ACC_ESRAM2] = "hwacc-esram2",
  433. [HW_ACC_ESRAM3] = "hwacc-esram3",
  434. [HW_ACC_ESRAM4] = "hwacc-esram4",
  435. };
  436. static const char *hwacc_ret_regulator_name[NUM_HW_ACC] = {
  437. [HW_ACC_SVAMMDSP] = "hwacc-sva-mmdsp-ret",
  438. [HW_ACC_SIAMMDSP] = "hwacc-sia-mmdsp-ret",
  439. [HW_ACC_ESRAM1] = "hwacc-esram1-ret",
  440. [HW_ACC_ESRAM2] = "hwacc-esram2-ret",
  441. [HW_ACC_ESRAM3] = "hwacc-esram3-ret",
  442. [HW_ACC_ESRAM4] = "hwacc-esram4-ret",
  443. };
  444. /*
  445. * Used by MCDE to setup all necessary PRCMU registers
  446. */
  447. #define PRCMU_RESET_DSIPLL 0x00004000
  448. #define PRCMU_UNCLAMP_DSIPLL 0x00400800
  449. #define PRCMU_CLK_PLL_DIV_SHIFT 0
  450. #define PRCMU_CLK_PLL_SW_SHIFT 5
  451. #define PRCMU_CLK_38 (1 << 9)
  452. #define PRCMU_CLK_38_SRC (1 << 10)
  453. #define PRCMU_CLK_38_DIV (1 << 11)
  454. /* PLLDIV=12, PLLSW=4 (PLLDDR) */
  455. #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
  456. /* DPI 50000000 Hz */
  457. #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
  458. (16 << PRCMU_CLK_PLL_DIV_SHIFT))
  459. #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
  460. /* D=101, N=1, R=4, SELDIV2=0 */
  461. #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
  462. #define PRCMU_ENABLE_PLLDSI 0x00000001
  463. #define PRCMU_DISABLE_PLLDSI 0x00000000
  464. #define PRCMU_RELEASE_RESET_DSS 0x0000400C
  465. #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
  466. /* ESC clk, div0=1, div1=1, div2=3 */
  467. #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
  468. #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
  469. #define PRCMU_DSI_RESET_SW 0x00000007
  470. #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
  471. int db8500_prcmu_enable_dsipll(void)
  472. {
  473. int i;
  474. /* Clear DSIPLL_RESETN */
  475. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
  476. /* Unclamp DSIPLL in/out */
  477. writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
  478. /* Set DSI PLL FREQ */
  479. writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
  480. writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
  481. /* Enable Escape clocks */
  482. writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  483. /* Start DSI PLL */
  484. writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  485. /* Reset DSI PLL */
  486. writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
  487. for (i = 0; i < 10; i++) {
  488. if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
  489. == PRCMU_PLLDSI_LOCKP_LOCKED)
  490. break;
  491. udelay(100);
  492. }
  493. /* Set DSIPLL_RESETN */
  494. writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
  495. return 0;
  496. }
  497. int db8500_prcmu_disable_dsipll(void)
  498. {
  499. /* Disable dsi pll */
  500. writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
  501. /* Disable escapeclock */
  502. writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
  503. return 0;
  504. }
  505. int db8500_prcmu_set_display_clocks(void)
  506. {
  507. unsigned long flags;
  508. spin_lock_irqsave(&clk_mgt_lock, flags);
  509. /* Grab the HW semaphore. */
  510. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  511. cpu_relax();
  512. writel(PRCMU_DSI_CLOCK_SETTING, PRCM_HDMICLK_MGT);
  513. writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
  514. writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
  515. /* Release the HW semaphore. */
  516. writel(0, PRCM_SEM);
  517. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  518. return 0;
  519. }
  520. /**
  521. * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
  522. */
  523. void prcmu_enable_spi2(void)
  524. {
  525. u32 reg;
  526. unsigned long flags;
  527. spin_lock_irqsave(&gpiocr_lock, flags);
  528. reg = readl(PRCM_GPIOCR);
  529. writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  530. spin_unlock_irqrestore(&gpiocr_lock, flags);
  531. }
  532. /**
  533. * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
  534. */
  535. void prcmu_disable_spi2(void)
  536. {
  537. u32 reg;
  538. unsigned long flags;
  539. spin_lock_irqsave(&gpiocr_lock, flags);
  540. reg = readl(PRCM_GPIOCR);
  541. writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
  542. spin_unlock_irqrestore(&gpiocr_lock, flags);
  543. }
  544. struct prcmu_fw_version *prcmu_get_fw_version(void)
  545. {
  546. return fw_info.valid ? &fw_info.version : NULL;
  547. }
  548. bool prcmu_has_arm_maxopp(void)
  549. {
  550. return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
  551. PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
  552. }
  553. /**
  554. * prcmu_get_boot_status - PRCMU boot status checking
  555. * Returns: the current PRCMU boot status
  556. */
  557. int prcmu_get_boot_status(void)
  558. {
  559. return readb(tcdm_base + PRCM_BOOT_STATUS);
  560. }
  561. /**
  562. * prcmu_set_rc_a2p - This function is used to run few power state sequences
  563. * @val: Value to be set, i.e. transition requested
  564. * Returns: 0 on success, -EINVAL on invalid argument
  565. *
  566. * This function is used to run the following power state sequences -
  567. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  568. */
  569. int prcmu_set_rc_a2p(enum romcode_write val)
  570. {
  571. if (val < RDY_2_DS || val > RDY_2_XP70_RST)
  572. return -EINVAL;
  573. writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
  574. return 0;
  575. }
  576. /**
  577. * prcmu_get_rc_p2a - This function is used to get power state sequences
  578. * Returns: the power transition that has last happened
  579. *
  580. * This function can return the following transitions-
  581. * any state to ApReset, ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
  582. */
  583. enum romcode_read prcmu_get_rc_p2a(void)
  584. {
  585. return readb(tcdm_base + PRCM_ROMCODE_P2A);
  586. }
  587. /**
  588. * prcmu_get_current_mode - Return the current XP70 power mode
  589. * Returns: Returns the current AP(ARM) power mode: init,
  590. * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
  591. */
  592. enum ap_pwrst prcmu_get_xp70_current_state(void)
  593. {
  594. return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
  595. }
  596. /**
  597. * prcmu_config_clkout - Configure one of the programmable clock outputs.
  598. * @clkout: The CLKOUT number (0 or 1).
  599. * @source: The clock to be used (one of the PRCMU_CLKSRC_*).
  600. * @div: The divider to be applied.
  601. *
  602. * Configures one of the programmable clock outputs (CLKOUTs).
  603. * @div should be in the range [1,63] to request a configuration, or 0 to
  604. * inform that the configuration is no longer requested.
  605. */
  606. int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
  607. {
  608. static int requests[2];
  609. int r = 0;
  610. unsigned long flags;
  611. u32 val;
  612. u32 bits;
  613. u32 mask;
  614. u32 div_mask;
  615. BUG_ON(clkout > 1);
  616. BUG_ON(div > 63);
  617. BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
  618. if (!div && !requests[clkout])
  619. return -EINVAL;
  620. switch (clkout) {
  621. case 0:
  622. div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
  623. mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
  624. bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
  625. (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
  626. break;
  627. case 1:
  628. div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
  629. mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
  630. PRCM_CLKOCR_CLK1TYPE);
  631. bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
  632. (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
  633. break;
  634. }
  635. bits &= mask;
  636. spin_lock_irqsave(&clkout_lock, flags);
  637. val = readl(PRCM_CLKOCR);
  638. if (val & div_mask) {
  639. if (div) {
  640. if ((val & mask) != bits) {
  641. r = -EBUSY;
  642. goto unlock_and_return;
  643. }
  644. } else {
  645. if ((val & mask & ~div_mask) != bits) {
  646. r = -EINVAL;
  647. goto unlock_and_return;
  648. }
  649. }
  650. }
  651. writel((bits | (val & ~mask)), PRCM_CLKOCR);
  652. requests[clkout] += (div ? 1 : -1);
  653. unlock_and_return:
  654. spin_unlock_irqrestore(&clkout_lock, flags);
  655. return r;
  656. }
  657. int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
  658. {
  659. unsigned long flags;
  660. BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
  661. spin_lock_irqsave(&mb0_transfer.lock, flags);
  662. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  663. cpu_relax();
  664. writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  665. writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
  666. writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
  667. writeb((keep_ulp_clk ? 1 : 0),
  668. (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
  669. writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
  670. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  671. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  672. return 0;
  673. }
  674. /* This function should only be called while mb0_transfer.lock is held. */
  675. static void config_wakeups(void)
  676. {
  677. const u8 header[2] = {
  678. MB0H_CONFIG_WAKEUPS_EXE,
  679. MB0H_CONFIG_WAKEUPS_SLEEP
  680. };
  681. static u32 last_dbb_events;
  682. static u32 last_abb_events;
  683. u32 dbb_events;
  684. u32 abb_events;
  685. unsigned int i;
  686. dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
  687. dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
  688. abb_events = mb0_transfer.req.abb_events;
  689. if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
  690. return;
  691. for (i = 0; i < 2; i++) {
  692. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  693. cpu_relax();
  694. writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
  695. writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
  696. writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  697. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  698. }
  699. last_dbb_events = dbb_events;
  700. last_abb_events = abb_events;
  701. }
  702. void db8500_prcmu_enable_wakeups(u32 wakeups)
  703. {
  704. unsigned long flags;
  705. u32 bits;
  706. int i;
  707. BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
  708. for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
  709. if (wakeups & BIT(i))
  710. bits |= prcmu_wakeup_bit[i];
  711. }
  712. spin_lock_irqsave(&mb0_transfer.lock, flags);
  713. mb0_transfer.req.dbb_wakeups = bits;
  714. config_wakeups();
  715. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  716. }
  717. void db8500_prcmu_config_abb_event_readout(u32 abb_events)
  718. {
  719. unsigned long flags;
  720. spin_lock_irqsave(&mb0_transfer.lock, flags);
  721. mb0_transfer.req.abb_events = abb_events;
  722. config_wakeups();
  723. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  724. }
  725. void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
  726. {
  727. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  728. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
  729. else
  730. *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
  731. }
  732. /**
  733. * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
  734. * @opp: The new ARM operating point to which transition is to be made
  735. * Returns: 0 on success, non-zero on failure
  736. *
  737. * This function sets the the operating point of the ARM.
  738. */
  739. int db8500_prcmu_set_arm_opp(u8 opp)
  740. {
  741. int r;
  742. if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
  743. return -EINVAL;
  744. r = 0;
  745. mutex_lock(&mb1_transfer.lock);
  746. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  747. cpu_relax();
  748. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  749. writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  750. writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  751. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  752. wait_for_completion(&mb1_transfer.work);
  753. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  754. (mb1_transfer.ack.arm_opp != opp))
  755. r = -EIO;
  756. mutex_unlock(&mb1_transfer.lock);
  757. return r;
  758. }
  759. /**
  760. * db8500_prcmu_get_arm_opp - get the current ARM OPP
  761. *
  762. * Returns: the current ARM OPP
  763. */
  764. int db8500_prcmu_get_arm_opp(void)
  765. {
  766. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
  767. }
  768. /**
  769. * prcmu_get_ddr_opp - get the current DDR OPP
  770. *
  771. * Returns: the current DDR OPP
  772. */
  773. int prcmu_get_ddr_opp(void)
  774. {
  775. return readb(PRCM_DDR_SUBSYS_APE_MINBW);
  776. }
  777. /**
  778. * set_ddr_opp - set the appropriate DDR OPP
  779. * @opp: The new DDR operating point to which transition is to be made
  780. * Returns: 0 on success, non-zero on failure
  781. *
  782. * This function sets the operating point of the DDR.
  783. */
  784. int prcmu_set_ddr_opp(u8 opp)
  785. {
  786. if (opp < DDR_100_OPP || opp > DDR_25_OPP)
  787. return -EINVAL;
  788. /* Changing the DDR OPP can hang the hardware pre-v21 */
  789. if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
  790. writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
  791. return 0;
  792. }
  793. /**
  794. * set_ape_opp - set the appropriate APE OPP
  795. * @opp: The new APE operating point to which transition is to be made
  796. * Returns: 0 on success, non-zero on failure
  797. *
  798. * This function sets the operating point of the APE.
  799. */
  800. int prcmu_set_ape_opp(u8 opp)
  801. {
  802. int r = 0;
  803. mutex_lock(&mb1_transfer.lock);
  804. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  805. cpu_relax();
  806. writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  807. writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
  808. writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
  809. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  810. wait_for_completion(&mb1_transfer.work);
  811. if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
  812. (mb1_transfer.ack.ape_opp != opp))
  813. r = -EIO;
  814. mutex_unlock(&mb1_transfer.lock);
  815. return r;
  816. }
  817. /**
  818. * prcmu_get_ape_opp - get the current APE OPP
  819. *
  820. * Returns: the current APE OPP
  821. */
  822. int prcmu_get_ape_opp(void)
  823. {
  824. return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
  825. }
  826. /**
  827. * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
  828. * @enable: true to request the higher voltage, false to drop a request.
  829. *
  830. * Calls to this function to enable and disable requests must be balanced.
  831. */
  832. int prcmu_request_ape_opp_100_voltage(bool enable)
  833. {
  834. int r = 0;
  835. u8 header;
  836. static unsigned int requests;
  837. mutex_lock(&mb1_transfer.lock);
  838. if (enable) {
  839. if (0 != requests++)
  840. goto unlock_and_return;
  841. header = MB1H_REQUEST_APE_OPP_100_VOLT;
  842. } else {
  843. if (requests == 0) {
  844. r = -EIO;
  845. goto unlock_and_return;
  846. } else if (1 != requests--) {
  847. goto unlock_and_return;
  848. }
  849. header = MB1H_RELEASE_APE_OPP_100_VOLT;
  850. }
  851. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  852. cpu_relax();
  853. writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  854. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  855. wait_for_completion(&mb1_transfer.work);
  856. if ((mb1_transfer.ack.header != header) ||
  857. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  858. r = -EIO;
  859. unlock_and_return:
  860. mutex_unlock(&mb1_transfer.lock);
  861. return r;
  862. }
  863. /**
  864. * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
  865. *
  866. * This function releases the power state requirements of a USB wakeup.
  867. */
  868. int prcmu_release_usb_wakeup_state(void)
  869. {
  870. int r = 0;
  871. mutex_lock(&mb1_transfer.lock);
  872. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  873. cpu_relax();
  874. writeb(MB1H_RELEASE_USB_WAKEUP,
  875. (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  876. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  877. wait_for_completion(&mb1_transfer.work);
  878. if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
  879. ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
  880. r = -EIO;
  881. mutex_unlock(&mb1_transfer.lock);
  882. return r;
  883. }
  884. static int request_pll(u8 clock, bool enable)
  885. {
  886. int r = 0;
  887. if (clock == PRCMU_PLLSOC1)
  888. clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
  889. else
  890. return -EINVAL;
  891. mutex_lock(&mb1_transfer.lock);
  892. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  893. cpu_relax();
  894. writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  895. writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
  896. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  897. wait_for_completion(&mb1_transfer.work);
  898. if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
  899. r = -EIO;
  900. mutex_unlock(&mb1_transfer.lock);
  901. return r;
  902. }
  903. /**
  904. * prcmu_set_hwacc - set the power state of a h/w accelerator
  905. * @hwacc_dev: The hardware accelerator (enum hw_acc_dev).
  906. * @state: The new power state (enum hw_acc_state).
  907. *
  908. * This function sets the power state of a hardware accelerator.
  909. * This function should not be called from interrupt context.
  910. *
  911. * NOTE! Deprecated, to be removed when all users switched over to use the
  912. * regulator framework API.
  913. */
  914. int prcmu_set_hwacc(u16 hwacc_dev, u8 state)
  915. {
  916. int r = 0;
  917. bool ram_retention = false;
  918. bool enable, enable_ret;
  919. /* check argument */
  920. BUG_ON(hwacc_dev >= NUM_HW_ACC);
  921. /* get state of switches */
  922. enable = hwacc_enabled[hwacc_dev];
  923. enable_ret = hwacc_ret_enabled[hwacc_dev];
  924. /* set flag if retention is possible */
  925. switch (hwacc_dev) {
  926. case HW_ACC_SVAMMDSP:
  927. case HW_ACC_SIAMMDSP:
  928. case HW_ACC_ESRAM1:
  929. case HW_ACC_ESRAM2:
  930. case HW_ACC_ESRAM3:
  931. case HW_ACC_ESRAM4:
  932. ram_retention = true;
  933. break;
  934. }
  935. /* check argument */
  936. BUG_ON(state > HW_ON);
  937. BUG_ON(state == HW_OFF_RAMRET && !ram_retention);
  938. /* modify enable flags */
  939. switch (state) {
  940. case HW_OFF:
  941. enable_ret = false;
  942. enable = false;
  943. break;
  944. case HW_ON:
  945. enable = true;
  946. break;
  947. case HW_OFF_RAMRET:
  948. enable_ret = true;
  949. enable = false;
  950. break;
  951. }
  952. /* get regulator (lazy) */
  953. if (hwacc_regulator[hwacc_dev] == NULL) {
  954. hwacc_regulator[hwacc_dev] = regulator_get(NULL,
  955. hwacc_regulator_name[hwacc_dev]);
  956. if (IS_ERR(hwacc_regulator[hwacc_dev])) {
  957. pr_err("prcmu: failed to get supply %s\n",
  958. hwacc_regulator_name[hwacc_dev]);
  959. r = PTR_ERR(hwacc_regulator[hwacc_dev]);
  960. goto out;
  961. }
  962. }
  963. if (ram_retention) {
  964. if (hwacc_ret_regulator[hwacc_dev] == NULL) {
  965. hwacc_ret_regulator[hwacc_dev] = regulator_get(NULL,
  966. hwacc_ret_regulator_name[hwacc_dev]);
  967. if (IS_ERR(hwacc_ret_regulator[hwacc_dev])) {
  968. pr_err("prcmu: failed to get supply %s\n",
  969. hwacc_ret_regulator_name[hwacc_dev]);
  970. r = PTR_ERR(hwacc_ret_regulator[hwacc_dev]);
  971. goto out;
  972. }
  973. }
  974. }
  975. /* set regulators */
  976. if (ram_retention) {
  977. if (enable_ret && !hwacc_ret_enabled[hwacc_dev]) {
  978. r = regulator_enable(hwacc_ret_regulator[hwacc_dev]);
  979. if (r < 0) {
  980. pr_err("prcmu_set_hwacc: ret enable failed\n");
  981. goto out;
  982. }
  983. hwacc_ret_enabled[hwacc_dev] = true;
  984. }
  985. }
  986. if (enable && !hwacc_enabled[hwacc_dev]) {
  987. r = regulator_enable(hwacc_regulator[hwacc_dev]);
  988. if (r < 0) {
  989. pr_err("prcmu_set_hwacc: enable failed\n");
  990. goto out;
  991. }
  992. hwacc_enabled[hwacc_dev] = true;
  993. }
  994. if (!enable && hwacc_enabled[hwacc_dev]) {
  995. r = regulator_disable(hwacc_regulator[hwacc_dev]);
  996. if (r < 0) {
  997. pr_err("prcmu_set_hwacc: disable failed\n");
  998. goto out;
  999. }
  1000. hwacc_enabled[hwacc_dev] = false;
  1001. }
  1002. if (ram_retention) {
  1003. if (!enable_ret && hwacc_ret_enabled[hwacc_dev]) {
  1004. r = regulator_disable(hwacc_ret_regulator[hwacc_dev]);
  1005. if (r < 0) {
  1006. pr_err("prcmu_set_hwacc: ret disable failed\n");
  1007. goto out;
  1008. }
  1009. hwacc_ret_enabled[hwacc_dev] = false;
  1010. }
  1011. }
  1012. out:
  1013. return r;
  1014. }
  1015. EXPORT_SYMBOL(prcmu_set_hwacc);
  1016. /**
  1017. * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
  1018. * @epod_id: The EPOD to set
  1019. * @epod_state: The new EPOD state
  1020. *
  1021. * This function sets the state of a EPOD (power domain). It may not be called
  1022. * from interrupt context.
  1023. */
  1024. int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
  1025. {
  1026. int r = 0;
  1027. bool ram_retention = false;
  1028. int i;
  1029. /* check argument */
  1030. BUG_ON(epod_id >= NUM_EPOD_ID);
  1031. /* set flag if retention is possible */
  1032. switch (epod_id) {
  1033. case EPOD_ID_SVAMMDSP:
  1034. case EPOD_ID_SIAMMDSP:
  1035. case EPOD_ID_ESRAM12:
  1036. case EPOD_ID_ESRAM34:
  1037. ram_retention = true;
  1038. break;
  1039. }
  1040. /* check argument */
  1041. BUG_ON(epod_state > EPOD_STATE_ON);
  1042. BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
  1043. /* get lock */
  1044. mutex_lock(&mb2_transfer.lock);
  1045. /* wait for mailbox */
  1046. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
  1047. cpu_relax();
  1048. /* fill in mailbox */
  1049. for (i = 0; i < NUM_EPOD_ID; i++)
  1050. writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
  1051. writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
  1052. writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
  1053. writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
  1054. /*
  1055. * The current firmware version does not handle errors correctly,
  1056. * and we cannot recover if there is an error.
  1057. * This is expected to change when the firmware is updated.
  1058. */
  1059. if (!wait_for_completion_timeout(&mb2_transfer.work,
  1060. msecs_to_jiffies(20000))) {
  1061. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1062. __func__);
  1063. r = -EIO;
  1064. goto unlock_and_return;
  1065. }
  1066. if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
  1067. r = -EIO;
  1068. unlock_and_return:
  1069. mutex_unlock(&mb2_transfer.lock);
  1070. return r;
  1071. }
  1072. /**
  1073. * prcmu_configure_auto_pm - Configure autonomous power management.
  1074. * @sleep: Configuration for ApSleep.
  1075. * @idle: Configuration for ApIdle.
  1076. */
  1077. void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
  1078. struct prcmu_auto_pm_config *idle)
  1079. {
  1080. u32 sleep_cfg;
  1081. u32 idle_cfg;
  1082. unsigned long flags;
  1083. BUG_ON((sleep == NULL) || (idle == NULL));
  1084. sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
  1085. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
  1086. sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
  1087. sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
  1088. sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
  1089. sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
  1090. idle_cfg = (idle->sva_auto_pm_enable & 0xF);
  1091. idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
  1092. idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
  1093. idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
  1094. idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
  1095. idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
  1096. spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
  1097. /*
  1098. * The autonomous power management configuration is done through
  1099. * fields in mailbox 2, but these fields are only used as shared
  1100. * variables - i.e. there is no need to send a message.
  1101. */
  1102. writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
  1103. writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
  1104. mb2_transfer.auto_pm_enabled =
  1105. ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1106. (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1107. (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
  1108. (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
  1109. spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
  1110. }
  1111. EXPORT_SYMBOL(prcmu_configure_auto_pm);
  1112. bool prcmu_is_auto_pm_enabled(void)
  1113. {
  1114. return mb2_transfer.auto_pm_enabled;
  1115. }
  1116. static int request_sysclk(bool enable)
  1117. {
  1118. int r;
  1119. unsigned long flags;
  1120. r = 0;
  1121. mutex_lock(&mb3_transfer.sysclk_lock);
  1122. spin_lock_irqsave(&mb3_transfer.lock, flags);
  1123. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
  1124. cpu_relax();
  1125. writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
  1126. writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
  1127. writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
  1128. spin_unlock_irqrestore(&mb3_transfer.lock, flags);
  1129. /*
  1130. * The firmware only sends an ACK if we want to enable the
  1131. * SysClk, and it succeeds.
  1132. */
  1133. if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
  1134. msecs_to_jiffies(20000))) {
  1135. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1136. __func__);
  1137. r = -EIO;
  1138. }
  1139. mutex_unlock(&mb3_transfer.sysclk_lock);
  1140. return r;
  1141. }
  1142. static int request_timclk(bool enable)
  1143. {
  1144. u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
  1145. if (!enable)
  1146. val |= PRCM_TCR_STOP_TIMERS;
  1147. writel(val, PRCM_TCR);
  1148. return 0;
  1149. }
  1150. static int request_reg_clock(u8 clock, bool enable)
  1151. {
  1152. u32 val;
  1153. unsigned long flags;
  1154. spin_lock_irqsave(&clk_mgt_lock, flags);
  1155. /* Grab the HW semaphore. */
  1156. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1157. cpu_relax();
  1158. val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
  1159. if (enable) {
  1160. val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
  1161. } else {
  1162. clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
  1163. val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
  1164. }
  1165. writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
  1166. /* Release the HW semaphore. */
  1167. writel(0, PRCM_SEM);
  1168. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1169. return 0;
  1170. }
  1171. static int request_sga_clock(u8 clock, bool enable)
  1172. {
  1173. u32 val;
  1174. int ret;
  1175. if (enable) {
  1176. val = readl(PRCM_CGATING_BYPASS);
  1177. writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1178. }
  1179. ret = request_reg_clock(clock, enable);
  1180. if (!ret && !enable) {
  1181. val = readl(PRCM_CGATING_BYPASS);
  1182. writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
  1183. }
  1184. return ret;
  1185. }
  1186. /**
  1187. * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
  1188. * @clock: The clock for which the request is made.
  1189. * @enable: Whether the clock should be enabled (true) or disabled (false).
  1190. *
  1191. * This function should only be used by the clock implementation.
  1192. * Do not use it from any other place!
  1193. */
  1194. int db8500_prcmu_request_clock(u8 clock, bool enable)
  1195. {
  1196. switch(clock) {
  1197. case PRCMU_SGACLK:
  1198. return request_sga_clock(clock, enable);
  1199. case PRCMU_TIMCLK:
  1200. return request_timclk(enable);
  1201. case PRCMU_SYSCLK:
  1202. return request_sysclk(enable);
  1203. case PRCMU_PLLSOC1:
  1204. return request_pll(clock, enable);
  1205. default:
  1206. break;
  1207. }
  1208. if (clock < PRCMU_NUM_REG_CLOCKS)
  1209. return request_reg_clock(clock, enable);
  1210. return -EINVAL;
  1211. }
  1212. int db8500_prcmu_config_esram0_deep_sleep(u8 state)
  1213. {
  1214. if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
  1215. (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
  1216. return -EINVAL;
  1217. mutex_lock(&mb4_transfer.lock);
  1218. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1219. cpu_relax();
  1220. writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1221. writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
  1222. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
  1223. writeb(DDR_PWR_STATE_ON,
  1224. (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
  1225. writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
  1226. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1227. wait_for_completion(&mb4_transfer.work);
  1228. mutex_unlock(&mb4_transfer.lock);
  1229. return 0;
  1230. }
  1231. int prcmu_config_hotdog(u8 threshold)
  1232. {
  1233. mutex_lock(&mb4_transfer.lock);
  1234. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1235. cpu_relax();
  1236. writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
  1237. writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1238. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1239. wait_for_completion(&mb4_transfer.work);
  1240. mutex_unlock(&mb4_transfer.lock);
  1241. return 0;
  1242. }
  1243. int prcmu_config_hotmon(u8 low, u8 high)
  1244. {
  1245. mutex_lock(&mb4_transfer.lock);
  1246. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1247. cpu_relax();
  1248. writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
  1249. writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
  1250. writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
  1251. (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
  1252. writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1253. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1254. wait_for_completion(&mb4_transfer.work);
  1255. mutex_unlock(&mb4_transfer.lock);
  1256. return 0;
  1257. }
  1258. static int config_hot_period(u16 val)
  1259. {
  1260. mutex_lock(&mb4_transfer.lock);
  1261. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1262. cpu_relax();
  1263. writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
  1264. writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1265. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1266. wait_for_completion(&mb4_transfer.work);
  1267. mutex_unlock(&mb4_transfer.lock);
  1268. return 0;
  1269. }
  1270. int prcmu_start_temp_sense(u16 cycles32k)
  1271. {
  1272. if (cycles32k == 0xFFFF)
  1273. return -EINVAL;
  1274. return config_hot_period(cycles32k);
  1275. }
  1276. int prcmu_stop_temp_sense(void)
  1277. {
  1278. return config_hot_period(0xFFFF);
  1279. }
  1280. static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
  1281. {
  1282. mutex_lock(&mb4_transfer.lock);
  1283. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
  1284. cpu_relax();
  1285. writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
  1286. writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
  1287. writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
  1288. writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
  1289. writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
  1290. writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
  1291. wait_for_completion(&mb4_transfer.work);
  1292. mutex_unlock(&mb4_transfer.lock);
  1293. return 0;
  1294. }
  1295. int prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
  1296. {
  1297. BUG_ON(num == 0 || num > 0xf);
  1298. return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
  1299. sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
  1300. A9WDOG_AUTO_OFF_DIS);
  1301. }
  1302. int prcmu_enable_a9wdog(u8 id)
  1303. {
  1304. return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
  1305. }
  1306. int prcmu_disable_a9wdog(u8 id)
  1307. {
  1308. return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
  1309. }
  1310. int prcmu_kick_a9wdog(u8 id)
  1311. {
  1312. return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
  1313. }
  1314. /*
  1315. * timeout is 28 bit, in ms.
  1316. */
  1317. #define MAX_WATCHDOG_TIMEOUT 131000
  1318. int prcmu_load_a9wdog(u8 id, u32 timeout)
  1319. {
  1320. if (timeout > MAX_WATCHDOG_TIMEOUT)
  1321. /*
  1322. * Due to calculation bug in prcmu fw, timeouts
  1323. * can't be bigger than 131 seconds.
  1324. */
  1325. return -EINVAL;
  1326. return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
  1327. (id & A9WDOG_ID_MASK) |
  1328. /*
  1329. * Put the lowest 28 bits of timeout at
  1330. * offset 4. Four first bits are used for id.
  1331. */
  1332. (u8)((timeout << 4) & 0xf0),
  1333. (u8)((timeout >> 4) & 0xff),
  1334. (u8)((timeout >> 12) & 0xff),
  1335. (u8)((timeout >> 20) & 0xff));
  1336. }
  1337. /**
  1338. * prcmu_set_clock_divider() - Configure the clock divider.
  1339. * @clock: The clock for which the request is made.
  1340. * @divider: The clock divider. (< 32)
  1341. *
  1342. * This function should only be used by the clock implementation.
  1343. * Do not use it from any other place!
  1344. */
  1345. int prcmu_set_clock_divider(u8 clock, u8 divider)
  1346. {
  1347. u32 val;
  1348. unsigned long flags;
  1349. if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
  1350. return -EINVAL;
  1351. spin_lock_irqsave(&clk_mgt_lock, flags);
  1352. /* Grab the HW semaphore. */
  1353. while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
  1354. cpu_relax();
  1355. val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
  1356. val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
  1357. val |= (u32)divider;
  1358. writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
  1359. /* Release the HW semaphore. */
  1360. writel(0, PRCM_SEM);
  1361. spin_unlock_irqrestore(&clk_mgt_lock, flags);
  1362. return 0;
  1363. }
  1364. /**
  1365. * prcmu_abb_read() - Read register value(s) from the ABB.
  1366. * @slave: The I2C slave address.
  1367. * @reg: The (start) register address.
  1368. * @value: The read out value(s).
  1369. * @size: The number of registers to read.
  1370. *
  1371. * Reads register value(s) from the ABB.
  1372. * @size has to be 1 for the current firmware version.
  1373. */
  1374. int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
  1375. {
  1376. int r;
  1377. if (size != 1)
  1378. return -EINVAL;
  1379. mutex_lock(&mb5_transfer.lock);
  1380. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1381. cpu_relax();
  1382. writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1383. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1384. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1385. writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1386. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1387. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1388. msecs_to_jiffies(20000))) {
  1389. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1390. __func__);
  1391. r = -EIO;
  1392. } else {
  1393. r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
  1394. }
  1395. if (!r)
  1396. *value = mb5_transfer.ack.value;
  1397. mutex_unlock(&mb5_transfer.lock);
  1398. return r;
  1399. }
  1400. /**
  1401. * prcmu_abb_write() - Write register value(s) to the ABB.
  1402. * @slave: The I2C slave address.
  1403. * @reg: The (start) register address.
  1404. * @value: The value(s) to write.
  1405. * @size: The number of registers to write.
  1406. *
  1407. * Reads register value(s) from the ABB.
  1408. * @size has to be 1 for the current firmware version.
  1409. */
  1410. int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
  1411. {
  1412. int r;
  1413. if (size != 1)
  1414. return -EINVAL;
  1415. mutex_lock(&mb5_transfer.lock);
  1416. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
  1417. cpu_relax();
  1418. writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
  1419. writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
  1420. writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
  1421. writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
  1422. writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
  1423. if (!wait_for_completion_timeout(&mb5_transfer.work,
  1424. msecs_to_jiffies(20000))) {
  1425. pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
  1426. __func__);
  1427. r = -EIO;
  1428. } else {
  1429. r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
  1430. }
  1431. mutex_unlock(&mb5_transfer.lock);
  1432. return r;
  1433. }
  1434. /**
  1435. * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
  1436. */
  1437. void prcmu_ac_wake_req(void)
  1438. {
  1439. u32 val;
  1440. u32 status;
  1441. mutex_lock(&mb0_transfer.ac_wake_lock);
  1442. val = readl(PRCM_HOSTACCESS_REQ);
  1443. if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
  1444. goto unlock_and_return;
  1445. atomic_set(&ac_wake_req_state, 1);
  1446. retry:
  1447. writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
  1448. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1449. msecs_to_jiffies(5000))) {
  1450. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1451. __func__);
  1452. goto unlock_and_return;
  1453. }
  1454. /*
  1455. * The modem can generate an AC_WAKE_ACK, and then still go to sleep.
  1456. * As a workaround, we wait, and then check that the modem is indeed
  1457. * awake (in terms of the value of the PRCM_MOD_AWAKE_STATUS
  1458. * register, which may not be the whole truth).
  1459. */
  1460. udelay(400);
  1461. status = (readl(PRCM_MOD_AWAKE_STATUS) & BITS(0, 2));
  1462. if (status != (PRCM_MOD_AWAKE_STATUS_PRCM_MOD_AAPD_AWAKE |
  1463. PRCM_MOD_AWAKE_STATUS_PRCM_MOD_COREPD_AWAKE)) {
  1464. pr_err("prcmu: %s received ack, but modem not awake (0x%X).\n",
  1465. __func__, status);
  1466. udelay(1200);
  1467. writel(val, PRCM_HOSTACCESS_REQ);
  1468. if (wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1469. msecs_to_jiffies(5000)))
  1470. goto retry;
  1471. pr_crit("prcmu: %s timed out (5 s) waiting for AC_SLEEP_ACK.\n",
  1472. __func__);
  1473. }
  1474. unlock_and_return:
  1475. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1476. }
  1477. /**
  1478. * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
  1479. */
  1480. void prcmu_ac_sleep_req()
  1481. {
  1482. u32 val;
  1483. mutex_lock(&mb0_transfer.ac_wake_lock);
  1484. val = readl(PRCM_HOSTACCESS_REQ);
  1485. if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
  1486. goto unlock_and_return;
  1487. writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
  1488. PRCM_HOSTACCESS_REQ);
  1489. if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
  1490. msecs_to_jiffies(5000))) {
  1491. pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
  1492. __func__);
  1493. }
  1494. atomic_set(&ac_wake_req_state, 0);
  1495. unlock_and_return:
  1496. mutex_unlock(&mb0_transfer.ac_wake_lock);
  1497. }
  1498. bool db8500_prcmu_is_ac_wake_requested(void)
  1499. {
  1500. return (atomic_read(&ac_wake_req_state) != 0);
  1501. }
  1502. /**
  1503. * db8500_prcmu_system_reset - System reset
  1504. *
  1505. * Saves the reset reason code and then sets the APE_SOFTRST register which
  1506. * fires interrupt to fw
  1507. */
  1508. void db8500_prcmu_system_reset(u16 reset_code)
  1509. {
  1510. writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
  1511. writel(1, PRCM_APE_SOFTRST);
  1512. }
  1513. /**
  1514. * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
  1515. *
  1516. * Retrieves the reset reason code stored by prcmu_system_reset() before
  1517. * last restart.
  1518. */
  1519. u16 db8500_prcmu_get_reset_code(void)
  1520. {
  1521. return readw(tcdm_base + PRCM_SW_RST_REASON);
  1522. }
  1523. /**
  1524. * prcmu_reset_modem - ask the PRCMU to reset modem
  1525. */
  1526. void prcmu_modem_reset(void)
  1527. {
  1528. mutex_lock(&mb1_transfer.lock);
  1529. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
  1530. cpu_relax();
  1531. writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
  1532. writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
  1533. wait_for_completion(&mb1_transfer.work);
  1534. /*
  1535. * No need to check return from PRCMU as modem should go in reset state
  1536. * This state is already managed by upper layer
  1537. */
  1538. mutex_unlock(&mb1_transfer.lock);
  1539. }
  1540. static void ack_dbb_wakeup(void)
  1541. {
  1542. unsigned long flags;
  1543. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1544. while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
  1545. cpu_relax();
  1546. writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
  1547. writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
  1548. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1549. }
  1550. static inline void print_unknown_header_warning(u8 n, u8 header)
  1551. {
  1552. pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
  1553. header, n);
  1554. }
  1555. static bool read_mailbox_0(void)
  1556. {
  1557. bool r;
  1558. u32 ev;
  1559. unsigned int n;
  1560. u8 header;
  1561. header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
  1562. switch (header) {
  1563. case MB0H_WAKEUP_EXE:
  1564. case MB0H_WAKEUP_SLEEP:
  1565. if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
  1566. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
  1567. else
  1568. ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
  1569. if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
  1570. complete(&mb0_transfer.ac_wake_work);
  1571. if (ev & WAKEUP_BIT_SYSCLK_OK)
  1572. complete(&mb3_transfer.sysclk_work);
  1573. ev &= mb0_transfer.req.dbb_irqs;
  1574. for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
  1575. if (ev & prcmu_irq_bit[n])
  1576. generic_handle_irq(IRQ_PRCMU_BASE + n);
  1577. }
  1578. r = true;
  1579. break;
  1580. default:
  1581. print_unknown_header_warning(0, header);
  1582. r = false;
  1583. break;
  1584. }
  1585. writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
  1586. return r;
  1587. }
  1588. static bool read_mailbox_1(void)
  1589. {
  1590. mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
  1591. mb1_transfer.ack.arm_opp = readb(tcdm_base +
  1592. PRCM_ACK_MB1_CURRENT_ARM_OPP);
  1593. mb1_transfer.ack.ape_opp = readb(tcdm_base +
  1594. PRCM_ACK_MB1_CURRENT_APE_OPP);
  1595. mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
  1596. PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
  1597. writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
  1598. complete(&mb1_transfer.work);
  1599. return false;
  1600. }
  1601. static bool read_mailbox_2(void)
  1602. {
  1603. mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
  1604. writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
  1605. complete(&mb2_transfer.work);
  1606. return false;
  1607. }
  1608. static bool read_mailbox_3(void)
  1609. {
  1610. writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
  1611. return false;
  1612. }
  1613. static bool read_mailbox_4(void)
  1614. {
  1615. u8 header;
  1616. bool do_complete = true;
  1617. header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
  1618. switch (header) {
  1619. case MB4H_MEM_ST:
  1620. case MB4H_HOTDOG:
  1621. case MB4H_HOTMON:
  1622. case MB4H_HOT_PERIOD:
  1623. case MB4H_A9WDOG_CONF:
  1624. case MB4H_A9WDOG_EN:
  1625. case MB4H_A9WDOG_DIS:
  1626. case MB4H_A9WDOG_LOAD:
  1627. case MB4H_A9WDOG_KICK:
  1628. break;
  1629. default:
  1630. print_unknown_header_warning(4, header);
  1631. do_complete = false;
  1632. break;
  1633. }
  1634. writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
  1635. if (do_complete)
  1636. complete(&mb4_transfer.work);
  1637. return false;
  1638. }
  1639. static bool read_mailbox_5(void)
  1640. {
  1641. mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
  1642. mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
  1643. writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
  1644. complete(&mb5_transfer.work);
  1645. return false;
  1646. }
  1647. static bool read_mailbox_6(void)
  1648. {
  1649. writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
  1650. return false;
  1651. }
  1652. static bool read_mailbox_7(void)
  1653. {
  1654. writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
  1655. return false;
  1656. }
  1657. static bool (* const read_mailbox[NUM_MB])(void) = {
  1658. read_mailbox_0,
  1659. read_mailbox_1,
  1660. read_mailbox_2,
  1661. read_mailbox_3,
  1662. read_mailbox_4,
  1663. read_mailbox_5,
  1664. read_mailbox_6,
  1665. read_mailbox_7
  1666. };
  1667. static irqreturn_t prcmu_irq_handler(int irq, void *data)
  1668. {
  1669. u32 bits;
  1670. u8 n;
  1671. irqreturn_t r;
  1672. bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
  1673. if (unlikely(!bits))
  1674. return IRQ_NONE;
  1675. r = IRQ_HANDLED;
  1676. for (n = 0; bits; n++) {
  1677. if (bits & MBOX_BIT(n)) {
  1678. bits -= MBOX_BIT(n);
  1679. if (read_mailbox[n]())
  1680. r = IRQ_WAKE_THREAD;
  1681. }
  1682. }
  1683. return r;
  1684. }
  1685. static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
  1686. {
  1687. ack_dbb_wakeup();
  1688. return IRQ_HANDLED;
  1689. }
  1690. static void prcmu_mask_work(struct work_struct *work)
  1691. {
  1692. unsigned long flags;
  1693. spin_lock_irqsave(&mb0_transfer.lock, flags);
  1694. config_wakeups();
  1695. spin_unlock_irqrestore(&mb0_transfer.lock, flags);
  1696. }
  1697. static void prcmu_irq_mask(struct irq_data *d)
  1698. {
  1699. unsigned long flags;
  1700. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  1701. mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  1702. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  1703. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  1704. schedule_work(&mb0_transfer.mask_work);
  1705. }
  1706. static void prcmu_irq_unmask(struct irq_data *d)
  1707. {
  1708. unsigned long flags;
  1709. spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
  1710. mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
  1711. spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
  1712. if (d->irq != IRQ_PRCMU_CA_SLEEP)
  1713. schedule_work(&mb0_transfer.mask_work);
  1714. }
  1715. static void noop(struct irq_data *d)
  1716. {
  1717. }
  1718. static struct irq_chip prcmu_irq_chip = {
  1719. .name = "prcmu",
  1720. .irq_disable = prcmu_irq_mask,
  1721. .irq_ack = noop,
  1722. .irq_mask = prcmu_irq_mask,
  1723. .irq_unmask = prcmu_irq_unmask,
  1724. };
  1725. static char *fw_project_name(u8 project)
  1726. {
  1727. switch (project) {
  1728. case PRCMU_FW_PROJECT_U8500:
  1729. return "U8500";
  1730. case PRCMU_FW_PROJECT_U8500_C2:
  1731. return "U8500 C2";
  1732. case PRCMU_FW_PROJECT_U9500:
  1733. return "U9500";
  1734. case PRCMU_FW_PROJECT_U9500_C2:
  1735. return "U9500 C2";
  1736. default:
  1737. return "Unknown";
  1738. }
  1739. }
  1740. void __init db8500_prcmu_early_init(void)
  1741. {
  1742. unsigned int i;
  1743. if (cpu_is_u8500v2()) {
  1744. void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
  1745. if (tcpm_base != NULL) {
  1746. u32 version;
  1747. version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
  1748. fw_info.version.project = version & 0xFF;
  1749. fw_info.version.api_version = (version >> 8) & 0xFF;
  1750. fw_info.version.func_version = (version >> 16) & 0xFF;
  1751. fw_info.version.errata = (version >> 24) & 0xFF;
  1752. fw_info.valid = true;
  1753. pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
  1754. fw_project_name(fw_info.version.project),
  1755. (version >> 8) & 0xFF, (version >> 16) & 0xFF,
  1756. (version >> 24) & 0xFF);
  1757. iounmap(tcpm_base);
  1758. }
  1759. tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
  1760. } else {
  1761. pr_err("prcmu: Unsupported chip version\n");
  1762. BUG();
  1763. }
  1764. spin_lock_init(&mb0_transfer.lock);
  1765. spin_lock_init(&mb0_transfer.dbb_irqs_lock);
  1766. mutex_init(&mb0_transfer.ac_wake_lock);
  1767. init_completion(&mb0_transfer.ac_wake_work);
  1768. mutex_init(&mb1_transfer.lock);
  1769. init_completion(&mb1_transfer.work);
  1770. mutex_init(&mb2_transfer.lock);
  1771. init_completion(&mb2_transfer.work);
  1772. spin_lock_init(&mb2_transfer.auto_pm_lock);
  1773. spin_lock_init(&mb3_transfer.lock);
  1774. mutex_init(&mb3_transfer.sysclk_lock);
  1775. init_completion(&mb3_transfer.sysclk_work);
  1776. mutex_init(&mb4_transfer.lock);
  1777. init_completion(&mb4_transfer.work);
  1778. mutex_init(&mb5_transfer.lock);
  1779. init_completion(&mb5_transfer.work);
  1780. INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
  1781. /* Initalize irqs. */
  1782. for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
  1783. unsigned int irq;
  1784. irq = IRQ_PRCMU_BASE + i;
  1785. irq_set_chip_and_handler(irq, &prcmu_irq_chip,
  1786. handle_simple_irq);
  1787. set_irq_flags(irq, IRQF_VALID);
  1788. }
  1789. }
  1790. static void __init db8500_prcmu_init_clkforce(void)
  1791. {
  1792. u32 val;
  1793. val = readl(PRCM_A9PL_FORCE_CLKEN);
  1794. val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
  1795. PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
  1796. writel(val, (PRCM_A9PL_FORCE_CLKEN));
  1797. }
  1798. /*
  1799. * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
  1800. */
  1801. static struct regulator_consumer_supply db8500_vape_consumers[] = {
  1802. REGULATOR_SUPPLY("v-ape", NULL),
  1803. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
  1804. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
  1805. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
  1806. REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
  1807. /* "v-mmc" changed to "vcore" in the mainline kernel */
  1808. REGULATOR_SUPPLY("vcore", "sdi0"),
  1809. REGULATOR_SUPPLY("vcore", "sdi1"),
  1810. REGULATOR_SUPPLY("vcore", "sdi2"),
  1811. REGULATOR_SUPPLY("vcore", "sdi3"),
  1812. REGULATOR_SUPPLY("vcore", "sdi4"),
  1813. REGULATOR_SUPPLY("v-dma", "dma40.0"),
  1814. REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
  1815. /* "v-uart" changed to "vcore" in the mainline kernel */
  1816. REGULATOR_SUPPLY("vcore", "uart0"),
  1817. REGULATOR_SUPPLY("vcore", "uart1"),
  1818. REGULATOR_SUPPLY("vcore", "uart2"),
  1819. REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
  1820. };
  1821. static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
  1822. /* CG2900 and CW1200 power to off-chip peripherals */
  1823. REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
  1824. REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
  1825. REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
  1826. /* AV8100 regulator */
  1827. REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
  1828. };
  1829. static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
  1830. REGULATOR_SUPPLY("vsupply", "b2r2.0"),
  1831. REGULATOR_SUPPLY("vsupply", "mcde"),
  1832. };
  1833. /* SVA MMDSP regulator switch */
  1834. static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
  1835. REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
  1836. };
  1837. /* SVA pipe regulator switch */
  1838. static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
  1839. REGULATOR_SUPPLY("sva-pipe", "cm_control"),
  1840. };
  1841. /* SIA MMDSP regulator switch */
  1842. static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
  1843. REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
  1844. };
  1845. /* SIA pipe regulator switch */
  1846. static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
  1847. REGULATOR_SUPPLY("sia-pipe", "cm_control"),
  1848. };
  1849. static struct regulator_consumer_supply db8500_sga_consumers[] = {
  1850. REGULATOR_SUPPLY("v-mali", NULL),
  1851. };
  1852. /* ESRAM1 and 2 regulator switch */
  1853. static struct regulator_consumer_supply db8500_esram12_consumers[] = {
  1854. REGULATOR_SUPPLY("esram12", "cm_control"),
  1855. };
  1856. /* ESRAM3 and 4 regulator switch */
  1857. static struct regulator_consumer_supply db8500_esram34_consumers[] = {
  1858. REGULATOR_SUPPLY("v-esram34", "mcde"),
  1859. REGULATOR_SUPPLY("esram34", "cm_control"),
  1860. };
  1861. static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
  1862. [DB8500_REGULATOR_VAPE] = {
  1863. .constraints = {
  1864. .name = "db8500-vape",
  1865. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1866. },
  1867. .consumer_supplies = db8500_vape_consumers,
  1868. .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
  1869. },
  1870. [DB8500_REGULATOR_VARM] = {
  1871. .constraints = {
  1872. .name = "db8500-varm",
  1873. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1874. },
  1875. },
  1876. [DB8500_REGULATOR_VMODEM] = {
  1877. .constraints = {
  1878. .name = "db8500-vmodem",
  1879. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1880. },
  1881. },
  1882. [DB8500_REGULATOR_VPLL] = {
  1883. .constraints = {
  1884. .name = "db8500-vpll",
  1885. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1886. },
  1887. },
  1888. [DB8500_REGULATOR_VSMPS1] = {
  1889. .constraints = {
  1890. .name = "db8500-vsmps1",
  1891. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1892. },
  1893. },
  1894. [DB8500_REGULATOR_VSMPS2] = {
  1895. .constraints = {
  1896. .name = "db8500-vsmps2",
  1897. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1898. },
  1899. .consumer_supplies = db8500_vsmps2_consumers,
  1900. .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
  1901. },
  1902. [DB8500_REGULATOR_VSMPS3] = {
  1903. .constraints = {
  1904. .name = "db8500-vsmps3",
  1905. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1906. },
  1907. },
  1908. [DB8500_REGULATOR_VRF1] = {
  1909. .constraints = {
  1910. .name = "db8500-vrf1",
  1911. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1912. },
  1913. },
  1914. [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
  1915. .supply_regulator = "db8500-vape",
  1916. .constraints = {
  1917. .name = "db8500-sva-mmdsp",
  1918. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1919. },
  1920. .consumer_supplies = db8500_svammdsp_consumers,
  1921. .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
  1922. },
  1923. [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
  1924. .constraints = {
  1925. /* "ret" means "retention" */
  1926. .name = "db8500-sva-mmdsp-ret",
  1927. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1928. },
  1929. },
  1930. [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
  1931. .supply_regulator = "db8500-vape",
  1932. .constraints = {
  1933. .name = "db8500-sva-pipe",
  1934. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1935. },
  1936. .consumer_supplies = db8500_svapipe_consumers,
  1937. .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
  1938. },
  1939. [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
  1940. .supply_regulator = "db8500-vape",
  1941. .constraints = {
  1942. .name = "db8500-sia-mmdsp",
  1943. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1944. },
  1945. .consumer_supplies = db8500_siammdsp_consumers,
  1946. .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
  1947. },
  1948. [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
  1949. .constraints = {
  1950. .name = "db8500-sia-mmdsp-ret",
  1951. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1952. },
  1953. },
  1954. [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
  1955. .supply_regulator = "db8500-vape",
  1956. .constraints = {
  1957. .name = "db8500-sia-pipe",
  1958. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1959. },
  1960. .consumer_supplies = db8500_siapipe_consumers,
  1961. .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
  1962. },
  1963. [DB8500_REGULATOR_SWITCH_SGA] = {
  1964. .supply_regulator = "db8500-vape",
  1965. .constraints = {
  1966. .name = "db8500-sga",
  1967. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1968. },
  1969. .consumer_supplies = db8500_sga_consumers,
  1970. .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
  1971. },
  1972. [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
  1973. .supply_regulator = "db8500-vape",
  1974. .constraints = {
  1975. .name = "db8500-b2r2-mcde",
  1976. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1977. },
  1978. .consumer_supplies = db8500_b2r2_mcde_consumers,
  1979. .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
  1980. },
  1981. [DB8500_REGULATOR_SWITCH_ESRAM12] = {
  1982. .supply_regulator = "db8500-vape",
  1983. .constraints = {
  1984. .name = "db8500-esram12",
  1985. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1986. },
  1987. .consumer_supplies = db8500_esram12_consumers,
  1988. .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
  1989. },
  1990. [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
  1991. .constraints = {
  1992. .name = "db8500-esram12-ret",
  1993. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  1994. },
  1995. },
  1996. [DB8500_REGULATOR_SWITCH_ESRAM34] = {
  1997. .supply_regulator = "db8500-vape",
  1998. .constraints = {
  1999. .name = "db8500-esram34",
  2000. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2001. },
  2002. .consumer_supplies = db8500_esram34_consumers,
  2003. .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
  2004. },
  2005. [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
  2006. .constraints = {
  2007. .name = "db8500-esram34-ret",
  2008. .valid_ops_mask = REGULATOR_CHANGE_STATUS,
  2009. },
  2010. },
  2011. };
  2012. static struct mfd_cell db8500_prcmu_devs[] = {
  2013. {
  2014. .name = "db8500-prcmu-regulators",
  2015. .platform_data = &db8500_regulators,
  2016. .pdata_size = sizeof(db8500_regulators),
  2017. },
  2018. {
  2019. .name = "cpufreq-u8500",
  2020. },
  2021. };
  2022. /**
  2023. * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
  2024. *
  2025. */
  2026. static int __init db8500_prcmu_probe(struct platform_device *pdev)
  2027. {
  2028. int err = 0;
  2029. if (ux500_is_svp())
  2030. return -ENODEV;
  2031. db8500_prcmu_init_clkforce();
  2032. /* Clean up the mailbox interrupts after pre-kernel code. */
  2033. writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
  2034. err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
  2035. prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
  2036. if (err < 0) {
  2037. pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
  2038. err = -EBUSY;
  2039. goto no_irq_return;
  2040. }
  2041. if (cpu_is_u8500v20_or_later())
  2042. prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
  2043. err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
  2044. ARRAY_SIZE(db8500_prcmu_devs), NULL,
  2045. 0);
  2046. if (err)
  2047. pr_err("prcmu: Failed to add subdevices\n");
  2048. else
  2049. pr_info("DB8500 PRCMU initialized\n");
  2050. no_irq_return:
  2051. return err;
  2052. }
  2053. static struct platform_driver db8500_prcmu_driver = {
  2054. .driver = {
  2055. .name = "db8500-prcmu",
  2056. .owner = THIS_MODULE,
  2057. },
  2058. };
  2059. static int __init db8500_prcmu_init(void)
  2060. {
  2061. return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
  2062. }
  2063. arch_initcall(db8500_prcmu_init);
  2064. MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
  2065. MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
  2066. MODULE_LICENSE("GPL v2");