bnx2x_main.c 372 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819
  1. /* bnx2x_main.c: Broadcom Everest network driver.
  2. *
  3. * Copyright (c) 2007-2012 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  10. * Written by: Eliezer Tamir
  11. * Based on code from Michael Chan's bnx2 driver
  12. * UDP CSUM errata workaround by Arik Gendelman
  13. * Slowpath and fastpath rework by Vladislav Zolotarov
  14. * Statistics and Link management by Yitchak Gertner
  15. *
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/module.h>
  19. #include <linux/moduleparam.h>
  20. #include <linux/kernel.h>
  21. #include <linux/device.h> /* for dev_info() */
  22. #include <linux/timer.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/slab.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/pci.h>
  28. #include <linux/init.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/dma-mapping.h>
  33. #include <linux/bitops.h>
  34. #include <linux/irq.h>
  35. #include <linux/delay.h>
  36. #include <asm/byteorder.h>
  37. #include <linux/time.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/mii.h>
  40. #include <linux/if_vlan.h>
  41. #include <net/ip.h>
  42. #include <net/ipv6.h>
  43. #include <net/tcp.h>
  44. #include <net/checksum.h>
  45. #include <net/ip6_checksum.h>
  46. #include <linux/workqueue.h>
  47. #include <linux/crc32.h>
  48. #include <linux/crc32c.h>
  49. #include <linux/prefetch.h>
  50. #include <linux/zlib.h>
  51. #include <linux/io.h>
  52. #include <linux/semaphore.h>
  53. #include <linux/stringify.h>
  54. #include <linux/vmalloc.h>
  55. #include "bnx2x.h"
  56. #include "bnx2x_init.h"
  57. #include "bnx2x_init_ops.h"
  58. #include "bnx2x_cmn.h"
  59. #include "bnx2x_vfpf.h"
  60. #include "bnx2x_sriov.h"
  61. #include "bnx2x_dcb.h"
  62. #include "bnx2x_sp.h"
  63. #include <linux/firmware.h>
  64. #include "bnx2x_fw_file_hdr.h"
  65. /* FW files */
  66. #define FW_FILE_VERSION \
  67. __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
  68. __stringify(BCM_5710_FW_MINOR_VERSION) "." \
  69. __stringify(BCM_5710_FW_REVISION_VERSION) "." \
  70. __stringify(BCM_5710_FW_ENGINEERING_VERSION)
  71. #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
  72. #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
  73. #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
  74. #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
  75. /* Time in jiffies before concluding the transmitter is hung */
  76. #define TX_TIMEOUT (5*HZ)
  77. static char version[] =
  78. "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
  79. DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  80. MODULE_AUTHOR("Eliezer Tamir");
  81. MODULE_DESCRIPTION("Broadcom NetXtreme II "
  82. "BCM57710/57711/57711E/"
  83. "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
  84. "57840/57840_MF Driver");
  85. MODULE_LICENSE("GPL");
  86. MODULE_VERSION(DRV_MODULE_VERSION);
  87. MODULE_FIRMWARE(FW_FILE_NAME_E1);
  88. MODULE_FIRMWARE(FW_FILE_NAME_E1H);
  89. MODULE_FIRMWARE(FW_FILE_NAME_E2);
  90. int num_queues;
  91. module_param(num_queues, int, 0);
  92. MODULE_PARM_DESC(num_queues,
  93. " Set number of queues (default is as a number of CPUs)");
  94. static int disable_tpa;
  95. module_param(disable_tpa, int, 0);
  96. MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
  97. #define INT_MODE_INTx 1
  98. #define INT_MODE_MSI 2
  99. int int_mode;
  100. module_param(int_mode, int, 0);
  101. MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
  102. "(1 INT#x; 2 MSI)");
  103. static int dropless_fc;
  104. module_param(dropless_fc, int, 0);
  105. MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
  106. static int mrrs = -1;
  107. module_param(mrrs, int, 0);
  108. MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
  109. static int debug;
  110. module_param(debug, int, 0);
  111. MODULE_PARM_DESC(debug, " Default debug msglevel");
  112. struct workqueue_struct *bnx2x_wq;
  113. enum bnx2x_board_type {
  114. BCM57710 = 0,
  115. BCM57711,
  116. BCM57711E,
  117. BCM57712,
  118. BCM57712_MF,
  119. BCM57712_VF,
  120. BCM57800,
  121. BCM57800_MF,
  122. BCM57800_VF,
  123. BCM57810,
  124. BCM57810_MF,
  125. BCM57810_VF,
  126. BCM57840_4_10,
  127. BCM57840_2_20,
  128. BCM57840_MF,
  129. BCM57840_VF,
  130. BCM57811,
  131. BCM57811_MF,
  132. BCM57840_O,
  133. BCM57840_MFO,
  134. BCM57811_VF
  135. };
  136. /* indexed by board_type, above */
  137. static struct {
  138. char *name;
  139. } board_info[] = {
  140. [BCM57710] = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
  141. [BCM57711] = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
  142. [BCM57711E] = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
  143. [BCM57712] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
  144. [BCM57712_MF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
  145. [BCM57712_VF] = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
  146. [BCM57800] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
  147. [BCM57800_MF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
  148. [BCM57800_VF] = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
  149. [BCM57810] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
  150. [BCM57810_MF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
  151. [BCM57810_VF] = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
  152. [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
  153. [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
  154. [BCM57840_MF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
  155. [BCM57840_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
  156. [BCM57811] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
  157. [BCM57811_MF] = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
  158. [BCM57840_O] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
  159. [BCM57840_MFO] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
  160. [BCM57811_VF] = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
  161. };
  162. #ifndef PCI_DEVICE_ID_NX2_57710
  163. #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
  164. #endif
  165. #ifndef PCI_DEVICE_ID_NX2_57711
  166. #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
  167. #endif
  168. #ifndef PCI_DEVICE_ID_NX2_57711E
  169. #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
  170. #endif
  171. #ifndef PCI_DEVICE_ID_NX2_57712
  172. #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
  173. #endif
  174. #ifndef PCI_DEVICE_ID_NX2_57712_MF
  175. #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
  176. #endif
  177. #ifndef PCI_DEVICE_ID_NX2_57800
  178. #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
  179. #endif
  180. #ifndef PCI_DEVICE_ID_NX2_57800_MF
  181. #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
  182. #endif
  183. #ifndef PCI_DEVICE_ID_NX2_57810
  184. #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
  185. #endif
  186. #ifndef PCI_DEVICE_ID_NX2_57810_MF
  187. #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
  188. #endif
  189. #ifndef PCI_DEVICE_ID_NX2_57840_O
  190. #define PCI_DEVICE_ID_NX2_57840_O CHIP_NUM_57840_OBSOLETE
  191. #endif
  192. #ifndef PCI_DEVICE_ID_NX2_57840_4_10
  193. #define PCI_DEVICE_ID_NX2_57840_4_10 CHIP_NUM_57840_4_10
  194. #endif
  195. #ifndef PCI_DEVICE_ID_NX2_57840_2_20
  196. #define PCI_DEVICE_ID_NX2_57840_2_20 CHIP_NUM_57840_2_20
  197. #endif
  198. #ifndef PCI_DEVICE_ID_NX2_57840_MFO
  199. #define PCI_DEVICE_ID_NX2_57840_MFO CHIP_NUM_57840_MF_OBSOLETE
  200. #endif
  201. #ifndef PCI_DEVICE_ID_NX2_57840_MF
  202. #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
  203. #endif
  204. #ifndef PCI_DEVICE_ID_NX2_57811
  205. #define PCI_DEVICE_ID_NX2_57811 CHIP_NUM_57811
  206. #endif
  207. #ifndef PCI_DEVICE_ID_NX2_57811_MF
  208. #define PCI_DEVICE_ID_NX2_57811_MF CHIP_NUM_57811_MF
  209. #endif
  210. static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
  211. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
  212. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
  213. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
  214. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
  215. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
  216. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
  217. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
  218. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
  219. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
  220. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
  221. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
  222. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
  223. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
  224. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
  225. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
  226. { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
  227. { 0 }
  228. };
  229. MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
  230. /* Global resources for unloading a previously loaded device */
  231. #define BNX2X_PREV_WAIT_NEEDED 1
  232. static DEFINE_SEMAPHORE(bnx2x_prev_sem);
  233. static LIST_HEAD(bnx2x_prev_list);
  234. /****************************************************************************
  235. * General service functions
  236. ****************************************************************************/
  237. static void __storm_memset_dma_mapping(struct bnx2x *bp,
  238. u32 addr, dma_addr_t mapping)
  239. {
  240. REG_WR(bp, addr, U64_LO(mapping));
  241. REG_WR(bp, addr + 4, U64_HI(mapping));
  242. }
  243. static void storm_memset_spq_addr(struct bnx2x *bp,
  244. dma_addr_t mapping, u16 abs_fid)
  245. {
  246. u32 addr = XSEM_REG_FAST_MEMORY +
  247. XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
  248. __storm_memset_dma_mapping(bp, addr, mapping);
  249. }
  250. static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
  251. u16 pf_id)
  252. {
  253. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
  254. pf_id);
  255. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
  256. pf_id);
  257. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
  258. pf_id);
  259. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
  260. pf_id);
  261. }
  262. static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
  263. u8 enable)
  264. {
  265. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
  266. enable);
  267. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
  268. enable);
  269. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
  270. enable);
  271. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
  272. enable);
  273. }
  274. static void storm_memset_eq_data(struct bnx2x *bp,
  275. struct event_ring_data *eq_data,
  276. u16 pfid)
  277. {
  278. size_t size = sizeof(struct event_ring_data);
  279. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
  280. __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
  281. }
  282. static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
  283. u16 pfid)
  284. {
  285. u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
  286. REG_WR16(bp, addr, eq_prod);
  287. }
  288. /* used only at init
  289. * locking is done by mcp
  290. */
  291. static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
  292. {
  293. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  294. pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
  295. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  296. PCICFG_VENDOR_ID_OFFSET);
  297. }
  298. static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
  299. {
  300. u32 val;
  301. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
  302. pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
  303. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  304. PCICFG_VENDOR_ID_OFFSET);
  305. return val;
  306. }
  307. #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
  308. #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
  309. #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
  310. #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
  311. #define DMAE_DP_DST_NONE "dst_addr [none]"
  312. /* copy command into DMAE command memory and set DMAE command go */
  313. void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
  314. {
  315. u32 cmd_offset;
  316. int i;
  317. cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
  318. for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
  319. REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
  320. }
  321. REG_WR(bp, dmae_reg_go_c[idx], 1);
  322. }
  323. u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
  324. {
  325. return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
  326. DMAE_CMD_C_ENABLE);
  327. }
  328. u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
  329. {
  330. return opcode & ~DMAE_CMD_SRC_RESET;
  331. }
  332. u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
  333. bool with_comp, u8 comp_type)
  334. {
  335. u32 opcode = 0;
  336. opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
  337. (dst_type << DMAE_COMMAND_DST_SHIFT));
  338. opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
  339. opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
  340. opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
  341. (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
  342. opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
  343. #ifdef __BIG_ENDIAN
  344. opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
  345. #else
  346. opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
  347. #endif
  348. if (with_comp)
  349. opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
  350. return opcode;
  351. }
  352. static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
  353. struct dmae_command *dmae,
  354. u8 src_type, u8 dst_type)
  355. {
  356. memset(dmae, 0, sizeof(struct dmae_command));
  357. /* set the opcode */
  358. dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
  359. true, DMAE_COMP_PCI);
  360. /* fill in the completion parameters */
  361. dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
  362. dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
  363. dmae->comp_val = DMAE_COMP_VAL;
  364. }
  365. /* issue a dmae command over the init-channel and wailt for completion */
  366. static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
  367. struct dmae_command *dmae)
  368. {
  369. u32 *wb_comp = bnx2x_sp(bp, wb_comp);
  370. int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
  371. int rc = 0;
  372. /*
  373. * Lock the dmae channel. Disable BHs to prevent a dead-lock
  374. * as long as this code is called both from syscall context and
  375. * from ndo_set_rx_mode() flow that may be called from BH.
  376. */
  377. spin_lock_bh(&bp->dmae_lock);
  378. /* reset completion */
  379. *wb_comp = 0;
  380. /* post the command on the channel used for initializations */
  381. bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
  382. /* wait for completion */
  383. udelay(5);
  384. while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
  385. if (!cnt ||
  386. (bp->recovery_state != BNX2X_RECOVERY_DONE &&
  387. bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
  388. BNX2X_ERR("DMAE timeout!\n");
  389. rc = DMAE_TIMEOUT;
  390. goto unlock;
  391. }
  392. cnt--;
  393. udelay(50);
  394. }
  395. if (*wb_comp & DMAE_PCI_ERR_FLAG) {
  396. BNX2X_ERR("DMAE PCI error!\n");
  397. rc = DMAE_PCI_ERROR;
  398. }
  399. unlock:
  400. spin_unlock_bh(&bp->dmae_lock);
  401. return rc;
  402. }
  403. void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
  404. u32 len32)
  405. {
  406. struct dmae_command dmae;
  407. if (!bp->dmae_ready) {
  408. u32 *data = bnx2x_sp(bp, wb_data[0]);
  409. if (CHIP_IS_E1(bp))
  410. bnx2x_init_ind_wr(bp, dst_addr, data, len32);
  411. else
  412. bnx2x_init_str_wr(bp, dst_addr, data, len32);
  413. return;
  414. }
  415. /* set opcode and fixed command fields */
  416. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
  417. /* fill in addresses and len */
  418. dmae.src_addr_lo = U64_LO(dma_addr);
  419. dmae.src_addr_hi = U64_HI(dma_addr);
  420. dmae.dst_addr_lo = dst_addr >> 2;
  421. dmae.dst_addr_hi = 0;
  422. dmae.len = len32;
  423. /* issue the command and wait for completion */
  424. bnx2x_issue_dmae_with_comp(bp, &dmae);
  425. }
  426. void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
  427. {
  428. struct dmae_command dmae;
  429. if (!bp->dmae_ready) {
  430. u32 *data = bnx2x_sp(bp, wb_data[0]);
  431. int i;
  432. if (CHIP_IS_E1(bp))
  433. for (i = 0; i < len32; i++)
  434. data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
  435. else
  436. for (i = 0; i < len32; i++)
  437. data[i] = REG_RD(bp, src_addr + i*4);
  438. return;
  439. }
  440. /* set opcode and fixed command fields */
  441. bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
  442. /* fill in addresses and len */
  443. dmae.src_addr_lo = src_addr >> 2;
  444. dmae.src_addr_hi = 0;
  445. dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
  446. dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
  447. dmae.len = len32;
  448. /* issue the command and wait for completion */
  449. bnx2x_issue_dmae_with_comp(bp, &dmae);
  450. }
  451. static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
  452. u32 addr, u32 len)
  453. {
  454. int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
  455. int offset = 0;
  456. while (len > dmae_wr_max) {
  457. bnx2x_write_dmae(bp, phys_addr + offset,
  458. addr + offset, dmae_wr_max);
  459. offset += dmae_wr_max * 4;
  460. len -= dmae_wr_max;
  461. }
  462. bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
  463. }
  464. static int bnx2x_mc_assert(struct bnx2x *bp)
  465. {
  466. char last_idx;
  467. int i, rc = 0;
  468. u32 row0, row1, row2, row3;
  469. /* XSTORM */
  470. last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
  471. XSTORM_ASSERT_LIST_INDEX_OFFSET);
  472. if (last_idx)
  473. BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  474. /* print the asserts */
  475. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  476. row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  477. XSTORM_ASSERT_LIST_OFFSET(i));
  478. row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  479. XSTORM_ASSERT_LIST_OFFSET(i) + 4);
  480. row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  481. XSTORM_ASSERT_LIST_OFFSET(i) + 8);
  482. row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
  483. XSTORM_ASSERT_LIST_OFFSET(i) + 12);
  484. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  485. BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  486. i, row3, row2, row1, row0);
  487. rc++;
  488. } else {
  489. break;
  490. }
  491. }
  492. /* TSTORM */
  493. last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
  494. TSTORM_ASSERT_LIST_INDEX_OFFSET);
  495. if (last_idx)
  496. BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  497. /* print the asserts */
  498. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  499. row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  500. TSTORM_ASSERT_LIST_OFFSET(i));
  501. row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  502. TSTORM_ASSERT_LIST_OFFSET(i) + 4);
  503. row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  504. TSTORM_ASSERT_LIST_OFFSET(i) + 8);
  505. row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
  506. TSTORM_ASSERT_LIST_OFFSET(i) + 12);
  507. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  508. BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  509. i, row3, row2, row1, row0);
  510. rc++;
  511. } else {
  512. break;
  513. }
  514. }
  515. /* CSTORM */
  516. last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
  517. CSTORM_ASSERT_LIST_INDEX_OFFSET);
  518. if (last_idx)
  519. BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  520. /* print the asserts */
  521. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  522. row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  523. CSTORM_ASSERT_LIST_OFFSET(i));
  524. row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  525. CSTORM_ASSERT_LIST_OFFSET(i) + 4);
  526. row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  527. CSTORM_ASSERT_LIST_OFFSET(i) + 8);
  528. row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
  529. CSTORM_ASSERT_LIST_OFFSET(i) + 12);
  530. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  531. BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  532. i, row3, row2, row1, row0);
  533. rc++;
  534. } else {
  535. break;
  536. }
  537. }
  538. /* USTORM */
  539. last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
  540. USTORM_ASSERT_LIST_INDEX_OFFSET);
  541. if (last_idx)
  542. BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
  543. /* print the asserts */
  544. for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
  545. row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
  546. USTORM_ASSERT_LIST_OFFSET(i));
  547. row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
  548. USTORM_ASSERT_LIST_OFFSET(i) + 4);
  549. row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
  550. USTORM_ASSERT_LIST_OFFSET(i) + 8);
  551. row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
  552. USTORM_ASSERT_LIST_OFFSET(i) + 12);
  553. if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
  554. BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
  555. i, row3, row2, row1, row0);
  556. rc++;
  557. } else {
  558. break;
  559. }
  560. }
  561. return rc;
  562. }
  563. void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
  564. {
  565. u32 addr, val;
  566. u32 mark, offset;
  567. __be32 data[9];
  568. int word;
  569. u32 trace_shmem_base;
  570. if (BP_NOMCP(bp)) {
  571. BNX2X_ERR("NO MCP - can not dump\n");
  572. return;
  573. }
  574. netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
  575. (bp->common.bc_ver & 0xff0000) >> 16,
  576. (bp->common.bc_ver & 0xff00) >> 8,
  577. (bp->common.bc_ver & 0xff));
  578. val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
  579. if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
  580. BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
  581. if (BP_PATH(bp) == 0)
  582. trace_shmem_base = bp->common.shmem_base;
  583. else
  584. trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
  585. addr = trace_shmem_base - 0x800;
  586. /* validate TRCB signature */
  587. mark = REG_RD(bp, addr);
  588. if (mark != MFW_TRACE_SIGNATURE) {
  589. BNX2X_ERR("Trace buffer signature is missing.");
  590. return ;
  591. }
  592. /* read cyclic buffer pointer */
  593. addr += 4;
  594. mark = REG_RD(bp, addr);
  595. mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
  596. + ((mark + 0x3) & ~0x3) - 0x08000000;
  597. printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
  598. printk("%s", lvl);
  599. for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
  600. for (word = 0; word < 8; word++)
  601. data[word] = htonl(REG_RD(bp, offset + 4*word));
  602. data[8] = 0x0;
  603. pr_cont("%s", (char *)data);
  604. }
  605. for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
  606. for (word = 0; word < 8; word++)
  607. data[word] = htonl(REG_RD(bp, offset + 4*word));
  608. data[8] = 0x0;
  609. pr_cont("%s", (char *)data);
  610. }
  611. printk("%s" "end of fw dump\n", lvl);
  612. }
  613. static void bnx2x_fw_dump(struct bnx2x *bp)
  614. {
  615. bnx2x_fw_dump_lvl(bp, KERN_ERR);
  616. }
  617. void bnx2x_panic_dump(struct bnx2x *bp)
  618. {
  619. int i;
  620. u16 j;
  621. struct hc_sp_status_block_data sp_sb_data;
  622. int func = BP_FUNC(bp);
  623. #ifdef BNX2X_STOP_ON_ERROR
  624. u16 start = 0, end = 0;
  625. u8 cos;
  626. #endif
  627. bp->stats_state = STATS_STATE_DISABLED;
  628. bp->eth_stats.unrecoverable_error++;
  629. DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
  630. BNX2X_ERR("begin crash dump -----------------\n");
  631. /* Indices */
  632. /* Common */
  633. BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x) spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
  634. bp->def_idx, bp->def_att_idx, bp->attn_state,
  635. bp->spq_prod_idx, bp->stats_counter);
  636. BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
  637. bp->def_status_blk->atten_status_block.attn_bits,
  638. bp->def_status_blk->atten_status_block.attn_bits_ack,
  639. bp->def_status_blk->atten_status_block.status_block_id,
  640. bp->def_status_blk->atten_status_block.attn_bits_index);
  641. BNX2X_ERR(" def (");
  642. for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
  643. pr_cont("0x%x%s",
  644. bp->def_status_blk->sp_sb.index_values[i],
  645. (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
  646. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  647. *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  648. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  649. i*sizeof(u32));
  650. pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
  651. sp_sb_data.igu_sb_id,
  652. sp_sb_data.igu_seg_id,
  653. sp_sb_data.p_func.pf_id,
  654. sp_sb_data.p_func.vnic_id,
  655. sp_sb_data.p_func.vf_id,
  656. sp_sb_data.p_func.vf_valid,
  657. sp_sb_data.state);
  658. for_each_eth_queue(bp, i) {
  659. struct bnx2x_fastpath *fp = &bp->fp[i];
  660. int loop;
  661. struct hc_status_block_data_e2 sb_data_e2;
  662. struct hc_status_block_data_e1x sb_data_e1x;
  663. struct hc_status_block_sm *hc_sm_p =
  664. CHIP_IS_E1x(bp) ?
  665. sb_data_e1x.common.state_machine :
  666. sb_data_e2.common.state_machine;
  667. struct hc_index_data *hc_index_p =
  668. CHIP_IS_E1x(bp) ?
  669. sb_data_e1x.index_data :
  670. sb_data_e2.index_data;
  671. u8 data_size, cos;
  672. u32 *sb_data_p;
  673. struct bnx2x_fp_txdata txdata;
  674. /* Rx */
  675. BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x) rx_comp_prod(0x%x) rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
  676. i, fp->rx_bd_prod, fp->rx_bd_cons,
  677. fp->rx_comp_prod,
  678. fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
  679. BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x) fp_hc_idx(0x%x)\n",
  680. fp->rx_sge_prod, fp->last_max_sge,
  681. le16_to_cpu(fp->fp_hc_idx));
  682. /* Tx */
  683. for_each_cos_in_tx_queue(fp, cos)
  684. {
  685. txdata = *fp->txdata_ptr[cos];
  686. BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x) tx_bd_prod(0x%x) tx_bd_cons(0x%x) *tx_cons_sb(0x%x)\n",
  687. i, txdata.tx_pkt_prod,
  688. txdata.tx_pkt_cons, txdata.tx_bd_prod,
  689. txdata.tx_bd_cons,
  690. le16_to_cpu(*txdata.tx_cons_sb));
  691. }
  692. loop = CHIP_IS_E1x(bp) ?
  693. HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
  694. /* host sb data */
  695. if (IS_FCOE_FP(fp))
  696. continue;
  697. BNX2X_ERR(" run indexes (");
  698. for (j = 0; j < HC_SB_MAX_SM; j++)
  699. pr_cont("0x%x%s",
  700. fp->sb_running_index[j],
  701. (j == HC_SB_MAX_SM - 1) ? ")" : " ");
  702. BNX2X_ERR(" indexes (");
  703. for (j = 0; j < loop; j++)
  704. pr_cont("0x%x%s",
  705. fp->sb_index_values[j],
  706. (j == loop - 1) ? ")" : " ");
  707. /* fw sb data */
  708. data_size = CHIP_IS_E1x(bp) ?
  709. sizeof(struct hc_status_block_data_e1x) :
  710. sizeof(struct hc_status_block_data_e2);
  711. data_size /= sizeof(u32);
  712. sb_data_p = CHIP_IS_E1x(bp) ?
  713. (u32 *)&sb_data_e1x :
  714. (u32 *)&sb_data_e2;
  715. /* copy sb data in here */
  716. for (j = 0; j < data_size; j++)
  717. *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
  718. CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
  719. j * sizeof(u32));
  720. if (!CHIP_IS_E1x(bp)) {
  721. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
  722. sb_data_e2.common.p_func.pf_id,
  723. sb_data_e2.common.p_func.vf_id,
  724. sb_data_e2.common.p_func.vf_valid,
  725. sb_data_e2.common.p_func.vnic_id,
  726. sb_data_e2.common.same_igu_sb_1b,
  727. sb_data_e2.common.state);
  728. } else {
  729. pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) vnic_id(0x%x) same_igu_sb_1b(0x%x) state(0x%x)\n",
  730. sb_data_e1x.common.p_func.pf_id,
  731. sb_data_e1x.common.p_func.vf_id,
  732. sb_data_e1x.common.p_func.vf_valid,
  733. sb_data_e1x.common.p_func.vnic_id,
  734. sb_data_e1x.common.same_igu_sb_1b,
  735. sb_data_e1x.common.state);
  736. }
  737. /* SB_SMs data */
  738. for (j = 0; j < HC_SB_MAX_SM; j++) {
  739. pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x) igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
  740. j, hc_sm_p[j].__flags,
  741. hc_sm_p[j].igu_sb_id,
  742. hc_sm_p[j].igu_seg_id,
  743. hc_sm_p[j].time_to_expire,
  744. hc_sm_p[j].timer_value);
  745. }
  746. /* Indecies data */
  747. for (j = 0; j < loop; j++) {
  748. pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
  749. hc_index_p[j].flags,
  750. hc_index_p[j].timeout);
  751. }
  752. }
  753. #ifdef BNX2X_STOP_ON_ERROR
  754. /* Rings */
  755. /* Rx */
  756. for_each_valid_rx_queue(bp, i) {
  757. struct bnx2x_fastpath *fp = &bp->fp[i];
  758. start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
  759. end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
  760. for (j = start; j != end; j = RX_BD(j + 1)) {
  761. u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
  762. struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
  763. BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
  764. i, j, rx_bd[1], rx_bd[0], sw_bd->data);
  765. }
  766. start = RX_SGE(fp->rx_sge_prod);
  767. end = RX_SGE(fp->last_max_sge);
  768. for (j = start; j != end; j = RX_SGE(j + 1)) {
  769. u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
  770. struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
  771. BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
  772. i, j, rx_sge[1], rx_sge[0], sw_page->page);
  773. }
  774. start = RCQ_BD(fp->rx_comp_cons - 10);
  775. end = RCQ_BD(fp->rx_comp_cons + 503);
  776. for (j = start; j != end; j = RCQ_BD(j + 1)) {
  777. u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
  778. BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
  779. i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
  780. }
  781. }
  782. /* Tx */
  783. for_each_valid_tx_queue(bp, i) {
  784. struct bnx2x_fastpath *fp = &bp->fp[i];
  785. for_each_cos_in_tx_queue(fp, cos) {
  786. struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
  787. start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
  788. end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
  789. for (j = start; j != end; j = TX_BD(j + 1)) {
  790. struct sw_tx_bd *sw_bd =
  791. &txdata->tx_buf_ring[j];
  792. BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
  793. i, cos, j, sw_bd->skb,
  794. sw_bd->first_bd);
  795. }
  796. start = TX_BD(txdata->tx_bd_cons - 10);
  797. end = TX_BD(txdata->tx_bd_cons + 254);
  798. for (j = start; j != end; j = TX_BD(j + 1)) {
  799. u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
  800. BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
  801. i, cos, j, tx_bd[0], tx_bd[1],
  802. tx_bd[2], tx_bd[3]);
  803. }
  804. }
  805. }
  806. #endif
  807. bnx2x_fw_dump(bp);
  808. bnx2x_mc_assert(bp);
  809. BNX2X_ERR("end crash dump -----------------\n");
  810. }
  811. /*
  812. * FLR Support for E2
  813. *
  814. * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
  815. * initialization.
  816. */
  817. #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
  818. #define FLR_WAIT_INTERVAL 50 /* usec */
  819. #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
  820. struct pbf_pN_buf_regs {
  821. int pN;
  822. u32 init_crd;
  823. u32 crd;
  824. u32 crd_freed;
  825. };
  826. struct pbf_pN_cmd_regs {
  827. int pN;
  828. u32 lines_occup;
  829. u32 lines_freed;
  830. };
  831. static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
  832. struct pbf_pN_buf_regs *regs,
  833. u32 poll_count)
  834. {
  835. u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
  836. u32 cur_cnt = poll_count;
  837. crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
  838. crd = crd_start = REG_RD(bp, regs->crd);
  839. init_crd = REG_RD(bp, regs->init_crd);
  840. DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
  841. DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
  842. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
  843. while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
  844. (init_crd - crd_start))) {
  845. if (cur_cnt--) {
  846. udelay(FLR_WAIT_INTERVAL);
  847. crd = REG_RD(bp, regs->crd);
  848. crd_freed = REG_RD(bp, regs->crd_freed);
  849. } else {
  850. DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
  851. regs->pN);
  852. DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
  853. regs->pN, crd);
  854. DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
  855. regs->pN, crd_freed);
  856. break;
  857. }
  858. }
  859. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
  860. poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
  861. }
  862. static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
  863. struct pbf_pN_cmd_regs *regs,
  864. u32 poll_count)
  865. {
  866. u32 occup, to_free, freed, freed_start;
  867. u32 cur_cnt = poll_count;
  868. occup = to_free = REG_RD(bp, regs->lines_occup);
  869. freed = freed_start = REG_RD(bp, regs->lines_freed);
  870. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
  871. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
  872. while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
  873. if (cur_cnt--) {
  874. udelay(FLR_WAIT_INTERVAL);
  875. occup = REG_RD(bp, regs->lines_occup);
  876. freed = REG_RD(bp, regs->lines_freed);
  877. } else {
  878. DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
  879. regs->pN);
  880. DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
  881. regs->pN, occup);
  882. DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
  883. regs->pN, freed);
  884. break;
  885. }
  886. }
  887. DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
  888. poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
  889. }
  890. static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
  891. u32 expected, u32 poll_count)
  892. {
  893. u32 cur_cnt = poll_count;
  894. u32 val;
  895. while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
  896. udelay(FLR_WAIT_INTERVAL);
  897. return val;
  898. }
  899. static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
  900. char *msg, u32 poll_cnt)
  901. {
  902. u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
  903. if (val != 0) {
  904. BNX2X_ERR("%s usage count=%d\n", msg, val);
  905. return 1;
  906. }
  907. return 0;
  908. }
  909. static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
  910. {
  911. /* adjust polling timeout */
  912. if (CHIP_REV_IS_EMUL(bp))
  913. return FLR_POLL_CNT * 2000;
  914. if (CHIP_REV_IS_FPGA(bp))
  915. return FLR_POLL_CNT * 120;
  916. return FLR_POLL_CNT;
  917. }
  918. static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
  919. {
  920. struct pbf_pN_cmd_regs cmd_regs[] = {
  921. {0, (CHIP_IS_E3B0(bp)) ?
  922. PBF_REG_TQ_OCCUPANCY_Q0 :
  923. PBF_REG_P0_TQ_OCCUPANCY,
  924. (CHIP_IS_E3B0(bp)) ?
  925. PBF_REG_TQ_LINES_FREED_CNT_Q0 :
  926. PBF_REG_P0_TQ_LINES_FREED_CNT},
  927. {1, (CHIP_IS_E3B0(bp)) ?
  928. PBF_REG_TQ_OCCUPANCY_Q1 :
  929. PBF_REG_P1_TQ_OCCUPANCY,
  930. (CHIP_IS_E3B0(bp)) ?
  931. PBF_REG_TQ_LINES_FREED_CNT_Q1 :
  932. PBF_REG_P1_TQ_LINES_FREED_CNT},
  933. {4, (CHIP_IS_E3B0(bp)) ?
  934. PBF_REG_TQ_OCCUPANCY_LB_Q :
  935. PBF_REG_P4_TQ_OCCUPANCY,
  936. (CHIP_IS_E3B0(bp)) ?
  937. PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
  938. PBF_REG_P4_TQ_LINES_FREED_CNT}
  939. };
  940. struct pbf_pN_buf_regs buf_regs[] = {
  941. {0, (CHIP_IS_E3B0(bp)) ?
  942. PBF_REG_INIT_CRD_Q0 :
  943. PBF_REG_P0_INIT_CRD ,
  944. (CHIP_IS_E3B0(bp)) ?
  945. PBF_REG_CREDIT_Q0 :
  946. PBF_REG_P0_CREDIT,
  947. (CHIP_IS_E3B0(bp)) ?
  948. PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
  949. PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
  950. {1, (CHIP_IS_E3B0(bp)) ?
  951. PBF_REG_INIT_CRD_Q1 :
  952. PBF_REG_P1_INIT_CRD,
  953. (CHIP_IS_E3B0(bp)) ?
  954. PBF_REG_CREDIT_Q1 :
  955. PBF_REG_P1_CREDIT,
  956. (CHIP_IS_E3B0(bp)) ?
  957. PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
  958. PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
  959. {4, (CHIP_IS_E3B0(bp)) ?
  960. PBF_REG_INIT_CRD_LB_Q :
  961. PBF_REG_P4_INIT_CRD,
  962. (CHIP_IS_E3B0(bp)) ?
  963. PBF_REG_CREDIT_LB_Q :
  964. PBF_REG_P4_CREDIT,
  965. (CHIP_IS_E3B0(bp)) ?
  966. PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
  967. PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
  968. };
  969. int i;
  970. /* Verify the command queues are flushed P0, P1, P4 */
  971. for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
  972. bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
  973. /* Verify the transmission buffers are flushed P0, P1, P4 */
  974. for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
  975. bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
  976. }
  977. #define OP_GEN_PARAM(param) \
  978. (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
  979. #define OP_GEN_TYPE(type) \
  980. (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
  981. #define OP_GEN_AGG_VECT(index) \
  982. (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
  983. static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
  984. u32 poll_cnt)
  985. {
  986. struct sdm_op_gen op_gen = {0};
  987. u32 comp_addr = BAR_CSTRORM_INTMEM +
  988. CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
  989. int ret = 0;
  990. if (REG_RD(bp, comp_addr)) {
  991. BNX2X_ERR("Cleanup complete was not 0 before sending\n");
  992. return 1;
  993. }
  994. op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
  995. op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
  996. op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
  997. op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
  998. DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
  999. REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
  1000. if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
  1001. BNX2X_ERR("FW final cleanup did not succeed\n");
  1002. DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
  1003. (REG_RD(bp, comp_addr)));
  1004. ret = 1;
  1005. }
  1006. /* Zero completion for nxt FLR */
  1007. REG_WR(bp, comp_addr, 0);
  1008. return ret;
  1009. }
  1010. u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
  1011. {
  1012. u16 status;
  1013. pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
  1014. return status & PCI_EXP_DEVSTA_TRPND;
  1015. }
  1016. /* PF FLR specific routines
  1017. */
  1018. static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
  1019. {
  1020. /* wait for CFC PF usage-counter to zero (includes all the VFs) */
  1021. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1022. CFC_REG_NUM_LCIDS_INSIDE_PF,
  1023. "CFC PF usage counter timed out",
  1024. poll_cnt))
  1025. return 1;
  1026. /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
  1027. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1028. DORQ_REG_PF_USAGE_CNT,
  1029. "DQ PF usage counter timed out",
  1030. poll_cnt))
  1031. return 1;
  1032. /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
  1033. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1034. QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
  1035. "QM PF usage counter timed out",
  1036. poll_cnt))
  1037. return 1;
  1038. /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
  1039. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1040. TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
  1041. "Timers VNIC usage counter timed out",
  1042. poll_cnt))
  1043. return 1;
  1044. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1045. TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
  1046. "Timers NUM_SCANS usage counter timed out",
  1047. poll_cnt))
  1048. return 1;
  1049. /* Wait DMAE PF usage counter to zero */
  1050. if (bnx2x_flr_clnup_poll_hw_counter(bp,
  1051. dmae_reg_go_c[INIT_DMAE_C(bp)],
  1052. "DMAE dommand register timed out",
  1053. poll_cnt))
  1054. return 1;
  1055. return 0;
  1056. }
  1057. static void bnx2x_hw_enable_status(struct bnx2x *bp)
  1058. {
  1059. u32 val;
  1060. val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
  1061. DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
  1062. val = REG_RD(bp, PBF_REG_DISABLE_PF);
  1063. DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
  1064. val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
  1065. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
  1066. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
  1067. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
  1068. val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
  1069. DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
  1070. val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
  1071. DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
  1072. val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
  1073. DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
  1074. val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
  1075. DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
  1076. val);
  1077. }
  1078. static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
  1079. {
  1080. u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
  1081. DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
  1082. /* Re-enable PF target read access */
  1083. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  1084. /* Poll HW usage counters */
  1085. DP(BNX2X_MSG_SP, "Polling usage counters\n");
  1086. if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
  1087. return -EBUSY;
  1088. /* Zero the igu 'trailing edge' and 'leading edge' */
  1089. /* Send the FW cleanup command */
  1090. if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
  1091. return -EBUSY;
  1092. /* ATC cleanup */
  1093. /* Verify TX hw is flushed */
  1094. bnx2x_tx_hw_flushed(bp, poll_cnt);
  1095. /* Wait 100ms (not adjusted according to platform) */
  1096. msleep(100);
  1097. /* Verify no pending pci transactions */
  1098. if (bnx2x_is_pcie_pending(bp->pdev))
  1099. BNX2X_ERR("PCIE Transactions still pending\n");
  1100. /* Debug */
  1101. bnx2x_hw_enable_status(bp);
  1102. /*
  1103. * Master enable - Due to WB DMAE writes performed before this
  1104. * register is re-initialized as part of the regular function init
  1105. */
  1106. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  1107. return 0;
  1108. }
  1109. static void bnx2x_hc_int_enable(struct bnx2x *bp)
  1110. {
  1111. int port = BP_PORT(bp);
  1112. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  1113. u32 val = REG_RD(bp, addr);
  1114. bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
  1115. bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
  1116. bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
  1117. if (msix) {
  1118. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1119. HC_CONFIG_0_REG_INT_LINE_EN_0);
  1120. val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1121. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1122. if (single_msix)
  1123. val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
  1124. } else if (msi) {
  1125. val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
  1126. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1127. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1128. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1129. } else {
  1130. val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1131. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1132. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1133. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1134. if (!CHIP_IS_E1(bp)) {
  1135. DP(NETIF_MSG_IFUP,
  1136. "write %x to HC %d (addr 0x%x)\n", val, port, addr);
  1137. REG_WR(bp, addr, val);
  1138. val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
  1139. }
  1140. }
  1141. if (CHIP_IS_E1(bp))
  1142. REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
  1143. DP(NETIF_MSG_IFUP,
  1144. "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
  1145. (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1146. REG_WR(bp, addr, val);
  1147. /*
  1148. * Ensure that HC_CONFIG is written before leading/trailing edge config
  1149. */
  1150. mmiowb();
  1151. barrier();
  1152. if (!CHIP_IS_E1(bp)) {
  1153. /* init leading/trailing edge */
  1154. if (IS_MF(bp)) {
  1155. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1156. if (bp->port.pmf)
  1157. /* enable nig and gpio3 attention */
  1158. val |= 0x1100;
  1159. } else
  1160. val = 0xffff;
  1161. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  1162. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  1163. }
  1164. /* Make sure that interrupts are indeed enabled from here on */
  1165. mmiowb();
  1166. }
  1167. static void bnx2x_igu_int_enable(struct bnx2x *bp)
  1168. {
  1169. u32 val;
  1170. bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
  1171. bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
  1172. bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
  1173. val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  1174. if (msix) {
  1175. val &= ~(IGU_PF_CONF_INT_LINE_EN |
  1176. IGU_PF_CONF_SINGLE_ISR_EN);
  1177. val |= (IGU_PF_CONF_FUNC_EN |
  1178. IGU_PF_CONF_MSI_MSIX_EN |
  1179. IGU_PF_CONF_ATTN_BIT_EN);
  1180. if (single_msix)
  1181. val |= IGU_PF_CONF_SINGLE_ISR_EN;
  1182. } else if (msi) {
  1183. val &= ~IGU_PF_CONF_INT_LINE_EN;
  1184. val |= (IGU_PF_CONF_FUNC_EN |
  1185. IGU_PF_CONF_MSI_MSIX_EN |
  1186. IGU_PF_CONF_ATTN_BIT_EN |
  1187. IGU_PF_CONF_SINGLE_ISR_EN);
  1188. } else {
  1189. val &= ~IGU_PF_CONF_MSI_MSIX_EN;
  1190. val |= (IGU_PF_CONF_FUNC_EN |
  1191. IGU_PF_CONF_INT_LINE_EN |
  1192. IGU_PF_CONF_ATTN_BIT_EN |
  1193. IGU_PF_CONF_SINGLE_ISR_EN);
  1194. }
  1195. DP(NETIF_MSG_IFUP, "write 0x%x to IGU mode %s\n",
  1196. val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
  1197. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1198. if (val & IGU_PF_CONF_INT_LINE_EN)
  1199. pci_intx(bp->pdev, true);
  1200. barrier();
  1201. /* init leading/trailing edge */
  1202. if (IS_MF(bp)) {
  1203. val = (0xee0f | (1 << (BP_VN(bp) + 4)));
  1204. if (bp->port.pmf)
  1205. /* enable nig and gpio3 attention */
  1206. val |= 0x1100;
  1207. } else
  1208. val = 0xffff;
  1209. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  1210. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  1211. /* Make sure that interrupts are indeed enabled from here on */
  1212. mmiowb();
  1213. }
  1214. void bnx2x_int_enable(struct bnx2x *bp)
  1215. {
  1216. if (bp->common.int_block == INT_BLOCK_HC)
  1217. bnx2x_hc_int_enable(bp);
  1218. else
  1219. bnx2x_igu_int_enable(bp);
  1220. }
  1221. static void bnx2x_hc_int_disable(struct bnx2x *bp)
  1222. {
  1223. int port = BP_PORT(bp);
  1224. u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
  1225. u32 val = REG_RD(bp, addr);
  1226. /*
  1227. * in E1 we must use only PCI configuration space to disable
  1228. * MSI/MSIX capablility
  1229. * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
  1230. */
  1231. if (CHIP_IS_E1(bp)) {
  1232. /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
  1233. * Use mask register to prevent from HC sending interrupts
  1234. * after we exit the function
  1235. */
  1236. REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
  1237. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1238. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1239. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1240. } else
  1241. val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
  1242. HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
  1243. HC_CONFIG_0_REG_INT_LINE_EN_0 |
  1244. HC_CONFIG_0_REG_ATTN_BIT_EN_0);
  1245. DP(NETIF_MSG_IFDOWN,
  1246. "write %x to HC %d (addr 0x%x)\n",
  1247. val, port, addr);
  1248. /* flush all outstanding writes */
  1249. mmiowb();
  1250. REG_WR(bp, addr, val);
  1251. if (REG_RD(bp, addr) != val)
  1252. BNX2X_ERR("BUG! proper val not read from IGU!\n");
  1253. }
  1254. static void bnx2x_igu_int_disable(struct bnx2x *bp)
  1255. {
  1256. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  1257. val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
  1258. IGU_PF_CONF_INT_LINE_EN |
  1259. IGU_PF_CONF_ATTN_BIT_EN);
  1260. DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
  1261. /* flush all outstanding writes */
  1262. mmiowb();
  1263. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  1264. if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
  1265. BNX2X_ERR("BUG! proper val not read from IGU!\n");
  1266. }
  1267. static void bnx2x_int_disable(struct bnx2x *bp)
  1268. {
  1269. if (bp->common.int_block == INT_BLOCK_HC)
  1270. bnx2x_hc_int_disable(bp);
  1271. else
  1272. bnx2x_igu_int_disable(bp);
  1273. }
  1274. void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
  1275. {
  1276. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  1277. int i, offset;
  1278. if (disable_hw)
  1279. /* prevent the HW from sending interrupts */
  1280. bnx2x_int_disable(bp);
  1281. /* make sure all ISRs are done */
  1282. if (msix) {
  1283. synchronize_irq(bp->msix_table[0].vector);
  1284. offset = 1;
  1285. if (CNIC_SUPPORT(bp))
  1286. offset++;
  1287. for_each_eth_queue(bp, i)
  1288. synchronize_irq(bp->msix_table[offset++].vector);
  1289. } else
  1290. synchronize_irq(bp->pdev->irq);
  1291. /* make sure sp_task is not running */
  1292. cancel_delayed_work(&bp->sp_task);
  1293. cancel_delayed_work(&bp->period_task);
  1294. flush_workqueue(bnx2x_wq);
  1295. }
  1296. /* fast path */
  1297. /*
  1298. * General service functions
  1299. */
  1300. /* Return true if succeeded to acquire the lock */
  1301. static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
  1302. {
  1303. u32 lock_status;
  1304. u32 resource_bit = (1 << resource);
  1305. int func = BP_FUNC(bp);
  1306. u32 hw_lock_control_reg;
  1307. DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
  1308. "Trying to take a lock on resource %d\n", resource);
  1309. /* Validating that the resource is within range */
  1310. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1311. DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
  1312. "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1313. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1314. return false;
  1315. }
  1316. if (func <= 5)
  1317. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1318. else
  1319. hw_lock_control_reg =
  1320. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1321. /* Try to acquire the lock */
  1322. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1323. lock_status = REG_RD(bp, hw_lock_control_reg);
  1324. if (lock_status & resource_bit)
  1325. return true;
  1326. DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
  1327. "Failed to get a lock on resource %d\n", resource);
  1328. return false;
  1329. }
  1330. /**
  1331. * bnx2x_get_leader_lock_resource - get the recovery leader resource id
  1332. *
  1333. * @bp: driver handle
  1334. *
  1335. * Returns the recovery leader resource id according to the engine this function
  1336. * belongs to. Currently only only 2 engines is supported.
  1337. */
  1338. static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
  1339. {
  1340. if (BP_PATH(bp))
  1341. return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
  1342. else
  1343. return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
  1344. }
  1345. /**
  1346. * bnx2x_trylock_leader_lock- try to aquire a leader lock.
  1347. *
  1348. * @bp: driver handle
  1349. *
  1350. * Tries to aquire a leader lock for current engine.
  1351. */
  1352. static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
  1353. {
  1354. return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1355. }
  1356. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
  1357. void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
  1358. {
  1359. struct bnx2x *bp = fp->bp;
  1360. int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1361. int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
  1362. enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
  1363. struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  1364. DP(BNX2X_MSG_SP,
  1365. "fp %d cid %d got ramrod #%d state is %x type is %d\n",
  1366. fp->index, cid, command, bp->state,
  1367. rr_cqe->ramrod_cqe.ramrod_type);
  1368. switch (command) {
  1369. case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
  1370. DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
  1371. drv_cmd = BNX2X_Q_CMD_UPDATE;
  1372. break;
  1373. case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
  1374. DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
  1375. drv_cmd = BNX2X_Q_CMD_SETUP;
  1376. break;
  1377. case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
  1378. DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
  1379. drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  1380. break;
  1381. case (RAMROD_CMD_ID_ETH_HALT):
  1382. DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
  1383. drv_cmd = BNX2X_Q_CMD_HALT;
  1384. break;
  1385. case (RAMROD_CMD_ID_ETH_TERMINATE):
  1386. DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
  1387. drv_cmd = BNX2X_Q_CMD_TERMINATE;
  1388. break;
  1389. case (RAMROD_CMD_ID_ETH_EMPTY):
  1390. DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
  1391. drv_cmd = BNX2X_Q_CMD_EMPTY;
  1392. break;
  1393. default:
  1394. BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
  1395. command, fp->index);
  1396. return;
  1397. }
  1398. if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
  1399. q_obj->complete_cmd(bp, q_obj, drv_cmd))
  1400. /* q_obj->complete_cmd() failure means that this was
  1401. * an unexpected completion.
  1402. *
  1403. * In this case we don't want to increase the bp->spq_left
  1404. * because apparently we haven't sent this command the first
  1405. * place.
  1406. */
  1407. #ifdef BNX2X_STOP_ON_ERROR
  1408. bnx2x_panic();
  1409. #else
  1410. return;
  1411. #endif
  1412. smp_mb__before_atomic_inc();
  1413. atomic_inc(&bp->cq_spq_left);
  1414. /* push the change in bp->spq_left and towards the memory */
  1415. smp_mb__after_atomic_inc();
  1416. DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
  1417. if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
  1418. (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
  1419. /* if Q update ramrod is completed for last Q in AFEX vif set
  1420. * flow, then ACK MCP at the end
  1421. *
  1422. * mark pending ACK to MCP bit.
  1423. * prevent case that both bits are cleared.
  1424. * At the end of load/unload driver checks that
  1425. * sp_state is cleaerd, and this order prevents
  1426. * races
  1427. */
  1428. smp_mb__before_clear_bit();
  1429. set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
  1430. wmb();
  1431. clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
  1432. smp_mb__after_clear_bit();
  1433. /* schedule workqueue to send ack to MCP */
  1434. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  1435. }
  1436. return;
  1437. }
  1438. irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
  1439. {
  1440. struct bnx2x *bp = netdev_priv(dev_instance);
  1441. u16 status = bnx2x_ack_int(bp);
  1442. u16 mask;
  1443. int i;
  1444. u8 cos;
  1445. /* Return here if interrupt is shared and it's not for us */
  1446. if (unlikely(status == 0)) {
  1447. DP(NETIF_MSG_INTR, "not our interrupt!\n");
  1448. return IRQ_NONE;
  1449. }
  1450. DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
  1451. #ifdef BNX2X_STOP_ON_ERROR
  1452. if (unlikely(bp->panic))
  1453. return IRQ_HANDLED;
  1454. #endif
  1455. for_each_eth_queue(bp, i) {
  1456. struct bnx2x_fastpath *fp = &bp->fp[i];
  1457. mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
  1458. if (status & mask) {
  1459. /* Handle Rx or Tx according to SB id */
  1460. prefetch(fp->rx_cons_sb);
  1461. for_each_cos_in_tx_queue(fp, cos)
  1462. prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
  1463. prefetch(&fp->sb_running_index[SM_RX_ID]);
  1464. napi_schedule(&bnx2x_fp(bp, fp->index, napi));
  1465. status &= ~mask;
  1466. }
  1467. }
  1468. if (CNIC_SUPPORT(bp)) {
  1469. mask = 0x2;
  1470. if (status & (mask | 0x1)) {
  1471. struct cnic_ops *c_ops = NULL;
  1472. if (likely(bp->state == BNX2X_STATE_OPEN)) {
  1473. rcu_read_lock();
  1474. c_ops = rcu_dereference(bp->cnic_ops);
  1475. if (c_ops)
  1476. c_ops->cnic_handler(bp->cnic_data,
  1477. NULL);
  1478. rcu_read_unlock();
  1479. }
  1480. status &= ~mask;
  1481. }
  1482. }
  1483. if (unlikely(status & 0x1)) {
  1484. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  1485. status &= ~0x1;
  1486. if (!status)
  1487. return IRQ_HANDLED;
  1488. }
  1489. if (unlikely(status))
  1490. DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
  1491. status);
  1492. return IRQ_HANDLED;
  1493. }
  1494. /* Link */
  1495. /*
  1496. * General service functions
  1497. */
  1498. int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
  1499. {
  1500. u32 lock_status;
  1501. u32 resource_bit = (1 << resource);
  1502. int func = BP_FUNC(bp);
  1503. u32 hw_lock_control_reg;
  1504. int cnt;
  1505. /* Validating that the resource is within range */
  1506. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1507. BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1508. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1509. return -EINVAL;
  1510. }
  1511. if (func <= 5) {
  1512. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1513. } else {
  1514. hw_lock_control_reg =
  1515. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1516. }
  1517. /* Validating that the resource is not already taken */
  1518. lock_status = REG_RD(bp, hw_lock_control_reg);
  1519. if (lock_status & resource_bit) {
  1520. BNX2X_ERR("lock_status 0x%x resource_bit 0x%x\n",
  1521. lock_status, resource_bit);
  1522. return -EEXIST;
  1523. }
  1524. /* Try for 5 second every 5ms */
  1525. for (cnt = 0; cnt < 1000; cnt++) {
  1526. /* Try to acquire the lock */
  1527. REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
  1528. lock_status = REG_RD(bp, hw_lock_control_reg);
  1529. if (lock_status & resource_bit)
  1530. return 0;
  1531. msleep(5);
  1532. }
  1533. BNX2X_ERR("Timeout\n");
  1534. return -EAGAIN;
  1535. }
  1536. int bnx2x_release_leader_lock(struct bnx2x *bp)
  1537. {
  1538. return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
  1539. }
  1540. int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
  1541. {
  1542. u32 lock_status;
  1543. u32 resource_bit = (1 << resource);
  1544. int func = BP_FUNC(bp);
  1545. u32 hw_lock_control_reg;
  1546. /* Validating that the resource is within range */
  1547. if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
  1548. BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
  1549. resource, HW_LOCK_MAX_RESOURCE_VALUE);
  1550. return -EINVAL;
  1551. }
  1552. if (func <= 5) {
  1553. hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
  1554. } else {
  1555. hw_lock_control_reg =
  1556. (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
  1557. }
  1558. /* Validating that the resource is currently taken */
  1559. lock_status = REG_RD(bp, hw_lock_control_reg);
  1560. if (!(lock_status & resource_bit)) {
  1561. BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
  1562. lock_status, resource_bit);
  1563. return -EFAULT;
  1564. }
  1565. REG_WR(bp, hw_lock_control_reg, resource_bit);
  1566. return 0;
  1567. }
  1568. int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
  1569. {
  1570. /* The GPIO should be swapped if swap register is set and active */
  1571. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1572. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1573. int gpio_shift = gpio_num +
  1574. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1575. u32 gpio_mask = (1 << gpio_shift);
  1576. u32 gpio_reg;
  1577. int value;
  1578. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1579. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1580. return -EINVAL;
  1581. }
  1582. /* read GPIO value */
  1583. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1584. /* get the requested pin value */
  1585. if ((gpio_reg & gpio_mask) == gpio_mask)
  1586. value = 1;
  1587. else
  1588. value = 0;
  1589. DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
  1590. return value;
  1591. }
  1592. int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1593. {
  1594. /* The GPIO should be swapped if swap register is set and active */
  1595. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1596. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1597. int gpio_shift = gpio_num +
  1598. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1599. u32 gpio_mask = (1 << gpio_shift);
  1600. u32 gpio_reg;
  1601. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1602. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1603. return -EINVAL;
  1604. }
  1605. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1606. /* read GPIO and mask except the float bits */
  1607. gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
  1608. switch (mode) {
  1609. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1610. DP(NETIF_MSG_LINK,
  1611. "Set GPIO %d (shift %d) -> output low\n",
  1612. gpio_num, gpio_shift);
  1613. /* clear FLOAT and set CLR */
  1614. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1615. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
  1616. break;
  1617. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1618. DP(NETIF_MSG_LINK,
  1619. "Set GPIO %d (shift %d) -> output high\n",
  1620. gpio_num, gpio_shift);
  1621. /* clear FLOAT and set SET */
  1622. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1623. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
  1624. break;
  1625. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1626. DP(NETIF_MSG_LINK,
  1627. "Set GPIO %d (shift %d) -> input\n",
  1628. gpio_num, gpio_shift);
  1629. /* set FLOAT */
  1630. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
  1631. break;
  1632. default:
  1633. break;
  1634. }
  1635. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1636. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1637. return 0;
  1638. }
  1639. int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
  1640. {
  1641. u32 gpio_reg = 0;
  1642. int rc = 0;
  1643. /* Any port swapping should be handled by caller. */
  1644. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1645. /* read GPIO and mask except the float bits */
  1646. gpio_reg = REG_RD(bp, MISC_REG_GPIO);
  1647. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1648. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
  1649. gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
  1650. switch (mode) {
  1651. case MISC_REGISTERS_GPIO_OUTPUT_LOW:
  1652. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
  1653. /* set CLR */
  1654. gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
  1655. break;
  1656. case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
  1657. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
  1658. /* set SET */
  1659. gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
  1660. break;
  1661. case MISC_REGISTERS_GPIO_INPUT_HI_Z:
  1662. DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
  1663. /* set FLOAT */
  1664. gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
  1665. break;
  1666. default:
  1667. BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
  1668. rc = -EINVAL;
  1669. break;
  1670. }
  1671. if (rc == 0)
  1672. REG_WR(bp, MISC_REG_GPIO, gpio_reg);
  1673. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1674. return rc;
  1675. }
  1676. int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
  1677. {
  1678. /* The GPIO should be swapped if swap register is set and active */
  1679. int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
  1680. REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
  1681. int gpio_shift = gpio_num +
  1682. (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
  1683. u32 gpio_mask = (1 << gpio_shift);
  1684. u32 gpio_reg;
  1685. if (gpio_num > MISC_REGISTERS_GPIO_3) {
  1686. BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
  1687. return -EINVAL;
  1688. }
  1689. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1690. /* read GPIO int */
  1691. gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
  1692. switch (mode) {
  1693. case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
  1694. DP(NETIF_MSG_LINK,
  1695. "Clear GPIO INT %d (shift %d) -> output low\n",
  1696. gpio_num, gpio_shift);
  1697. /* clear SET and set CLR */
  1698. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1699. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1700. break;
  1701. case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
  1702. DP(NETIF_MSG_LINK,
  1703. "Set GPIO INT %d (shift %d) -> output high\n",
  1704. gpio_num, gpio_shift);
  1705. /* clear CLR and set SET */
  1706. gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
  1707. gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
  1708. break;
  1709. default:
  1710. break;
  1711. }
  1712. REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
  1713. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
  1714. return 0;
  1715. }
  1716. static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
  1717. {
  1718. u32 spio_reg;
  1719. /* Only 2 SPIOs are configurable */
  1720. if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
  1721. BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
  1722. return -EINVAL;
  1723. }
  1724. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1725. /* read SPIO and mask except the float bits */
  1726. spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
  1727. switch (mode) {
  1728. case MISC_SPIO_OUTPUT_LOW:
  1729. DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
  1730. /* clear FLOAT and set CLR */
  1731. spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
  1732. spio_reg |= (spio << MISC_SPIO_CLR_POS);
  1733. break;
  1734. case MISC_SPIO_OUTPUT_HIGH:
  1735. DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
  1736. /* clear FLOAT and set SET */
  1737. spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
  1738. spio_reg |= (spio << MISC_SPIO_SET_POS);
  1739. break;
  1740. case MISC_SPIO_INPUT_HI_Z:
  1741. DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
  1742. /* set FLOAT */
  1743. spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
  1744. break;
  1745. default:
  1746. break;
  1747. }
  1748. REG_WR(bp, MISC_REG_SPIO, spio_reg);
  1749. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
  1750. return 0;
  1751. }
  1752. void bnx2x_calc_fc_adv(struct bnx2x *bp)
  1753. {
  1754. u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
  1755. switch (bp->link_vars.ieee_fc &
  1756. MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
  1757. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
  1758. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1759. ADVERTISED_Pause);
  1760. break;
  1761. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
  1762. bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
  1763. ADVERTISED_Pause);
  1764. break;
  1765. case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
  1766. bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
  1767. break;
  1768. default:
  1769. bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
  1770. ADVERTISED_Pause);
  1771. break;
  1772. }
  1773. }
  1774. static void bnx2x_set_requested_fc(struct bnx2x *bp)
  1775. {
  1776. /* Initialize link parameters structure variables
  1777. * It is recommended to turn off RX FC for jumbo frames
  1778. * for better performance
  1779. */
  1780. if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
  1781. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
  1782. else
  1783. bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
  1784. }
  1785. int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
  1786. {
  1787. int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
  1788. u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
  1789. if (!BP_NOMCP(bp)) {
  1790. bnx2x_set_requested_fc(bp);
  1791. bnx2x_acquire_phy_lock(bp);
  1792. if (load_mode == LOAD_DIAG) {
  1793. struct link_params *lp = &bp->link_params;
  1794. lp->loopback_mode = LOOPBACK_XGXS;
  1795. /* do PHY loopback at 10G speed, if possible */
  1796. if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
  1797. if (lp->speed_cap_mask[cfx_idx] &
  1798. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
  1799. lp->req_line_speed[cfx_idx] =
  1800. SPEED_10000;
  1801. else
  1802. lp->req_line_speed[cfx_idx] =
  1803. SPEED_1000;
  1804. }
  1805. }
  1806. if (load_mode == LOAD_LOOPBACK_EXT) {
  1807. struct link_params *lp = &bp->link_params;
  1808. lp->loopback_mode = LOOPBACK_EXT;
  1809. }
  1810. rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1811. bnx2x_release_phy_lock(bp);
  1812. bnx2x_calc_fc_adv(bp);
  1813. if (bp->link_vars.link_up) {
  1814. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  1815. bnx2x_link_report(bp);
  1816. }
  1817. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  1818. bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
  1819. return rc;
  1820. }
  1821. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  1822. return -EINVAL;
  1823. }
  1824. void bnx2x_link_set(struct bnx2x *bp)
  1825. {
  1826. if (!BP_NOMCP(bp)) {
  1827. bnx2x_acquire_phy_lock(bp);
  1828. bnx2x_phy_init(&bp->link_params, &bp->link_vars);
  1829. bnx2x_release_phy_lock(bp);
  1830. bnx2x_calc_fc_adv(bp);
  1831. } else
  1832. BNX2X_ERR("Bootcode is missing - can not set link\n");
  1833. }
  1834. static void bnx2x__link_reset(struct bnx2x *bp)
  1835. {
  1836. if (!BP_NOMCP(bp)) {
  1837. bnx2x_acquire_phy_lock(bp);
  1838. bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
  1839. bnx2x_release_phy_lock(bp);
  1840. } else
  1841. BNX2X_ERR("Bootcode is missing - can not reset link\n");
  1842. }
  1843. void bnx2x_force_link_reset(struct bnx2x *bp)
  1844. {
  1845. bnx2x_acquire_phy_lock(bp);
  1846. bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
  1847. bnx2x_release_phy_lock(bp);
  1848. }
  1849. u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
  1850. {
  1851. u8 rc = 0;
  1852. if (!BP_NOMCP(bp)) {
  1853. bnx2x_acquire_phy_lock(bp);
  1854. rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
  1855. is_serdes);
  1856. bnx2x_release_phy_lock(bp);
  1857. } else
  1858. BNX2X_ERR("Bootcode is missing - can not test link\n");
  1859. return rc;
  1860. }
  1861. /* Calculates the sum of vn_min_rates.
  1862. It's needed for further normalizing of the min_rates.
  1863. Returns:
  1864. sum of vn_min_rates.
  1865. or
  1866. 0 - if all the min_rates are 0.
  1867. In the later case fainess algorithm should be deactivated.
  1868. If not all min_rates are zero then those that are zeroes will be set to 1.
  1869. */
  1870. static void bnx2x_calc_vn_min(struct bnx2x *bp,
  1871. struct cmng_init_input *input)
  1872. {
  1873. int all_zero = 1;
  1874. int vn;
  1875. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  1876. u32 vn_cfg = bp->mf_config[vn];
  1877. u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
  1878. FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
  1879. /* Skip hidden vns */
  1880. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
  1881. vn_min_rate = 0;
  1882. /* If min rate is zero - set it to 1 */
  1883. else if (!vn_min_rate)
  1884. vn_min_rate = DEF_MIN_RATE;
  1885. else
  1886. all_zero = 0;
  1887. input->vnic_min_rate[vn] = vn_min_rate;
  1888. }
  1889. /* if ETS or all min rates are zeros - disable fairness */
  1890. if (BNX2X_IS_ETS_ENABLED(bp)) {
  1891. input->flags.cmng_enables &=
  1892. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1893. DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
  1894. } else if (all_zero) {
  1895. input->flags.cmng_enables &=
  1896. ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1897. DP(NETIF_MSG_IFUP,
  1898. "All MIN values are zeroes fairness will be disabled\n");
  1899. } else
  1900. input->flags.cmng_enables |=
  1901. CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
  1902. }
  1903. static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
  1904. struct cmng_init_input *input)
  1905. {
  1906. u16 vn_max_rate;
  1907. u32 vn_cfg = bp->mf_config[vn];
  1908. if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
  1909. vn_max_rate = 0;
  1910. else {
  1911. u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
  1912. if (IS_MF_SI(bp)) {
  1913. /* maxCfg in percents of linkspeed */
  1914. vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
  1915. } else /* SD modes */
  1916. /* maxCfg is absolute in 100Mb units */
  1917. vn_max_rate = maxCfg * 100;
  1918. }
  1919. DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
  1920. input->vnic_max_rate[vn] = vn_max_rate;
  1921. }
  1922. static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
  1923. {
  1924. if (CHIP_REV_IS_SLOW(bp))
  1925. return CMNG_FNS_NONE;
  1926. if (IS_MF(bp))
  1927. return CMNG_FNS_MINMAX;
  1928. return CMNG_FNS_NONE;
  1929. }
  1930. void bnx2x_read_mf_cfg(struct bnx2x *bp)
  1931. {
  1932. int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
  1933. if (BP_NOMCP(bp))
  1934. return; /* what should be the default bvalue in this case */
  1935. /* For 2 port configuration the absolute function number formula
  1936. * is:
  1937. * abs_func = 2 * vn + BP_PORT + BP_PATH
  1938. *
  1939. * and there are 4 functions per port
  1940. *
  1941. * For 4 port configuration it is
  1942. * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
  1943. *
  1944. * and there are 2 functions per port
  1945. */
  1946. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  1947. int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
  1948. if (func >= E1H_FUNC_MAX)
  1949. break;
  1950. bp->mf_config[vn] =
  1951. MF_CFG_RD(bp, func_mf_config[func].config);
  1952. }
  1953. if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
  1954. DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
  1955. bp->flags |= MF_FUNC_DIS;
  1956. } else {
  1957. DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
  1958. bp->flags &= ~MF_FUNC_DIS;
  1959. }
  1960. }
  1961. static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
  1962. {
  1963. struct cmng_init_input input;
  1964. memset(&input, 0, sizeof(struct cmng_init_input));
  1965. input.port_rate = bp->link_vars.line_speed;
  1966. if (cmng_type == CMNG_FNS_MINMAX) {
  1967. int vn;
  1968. /* read mf conf from shmem */
  1969. if (read_cfg)
  1970. bnx2x_read_mf_cfg(bp);
  1971. /* vn_weight_sum and enable fairness if not 0 */
  1972. bnx2x_calc_vn_min(bp, &input);
  1973. /* calculate and set min-max rate for each vn */
  1974. if (bp->port.pmf)
  1975. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
  1976. bnx2x_calc_vn_max(bp, vn, &input);
  1977. /* always enable rate shaping and fairness */
  1978. input.flags.cmng_enables |=
  1979. CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
  1980. bnx2x_init_cmng(&input, &bp->cmng);
  1981. return;
  1982. }
  1983. /* rate shaping and fairness are disabled */
  1984. DP(NETIF_MSG_IFUP,
  1985. "rate shaping and fairness are disabled\n");
  1986. }
  1987. static void storm_memset_cmng(struct bnx2x *bp,
  1988. struct cmng_init *cmng,
  1989. u8 port)
  1990. {
  1991. int vn;
  1992. size_t size = sizeof(struct cmng_struct_per_port);
  1993. u32 addr = BAR_XSTRORM_INTMEM +
  1994. XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
  1995. __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
  1996. for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
  1997. int func = func_by_vn(bp, vn);
  1998. addr = BAR_XSTRORM_INTMEM +
  1999. XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
  2000. size = sizeof(struct rate_shaping_vars_per_vn);
  2001. __storm_memset_struct(bp, addr, size,
  2002. (u32 *)&cmng->vnic.vnic_max_rate[vn]);
  2003. addr = BAR_XSTRORM_INTMEM +
  2004. XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
  2005. size = sizeof(struct fairness_vars_per_vn);
  2006. __storm_memset_struct(bp, addr, size,
  2007. (u32 *)&cmng->vnic.vnic_min_rate[vn]);
  2008. }
  2009. }
  2010. /* This function is called upon link interrupt */
  2011. static void bnx2x_link_attn(struct bnx2x *bp)
  2012. {
  2013. /* Make sure that we are synced with the current statistics */
  2014. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2015. bnx2x_link_update(&bp->link_params, &bp->link_vars);
  2016. if (bp->link_vars.link_up) {
  2017. /* dropless flow control */
  2018. if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
  2019. int port = BP_PORT(bp);
  2020. u32 pause_enabled = 0;
  2021. if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
  2022. pause_enabled = 1;
  2023. REG_WR(bp, BAR_USTRORM_INTMEM +
  2024. USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
  2025. pause_enabled);
  2026. }
  2027. if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
  2028. struct host_port_stats *pstats;
  2029. pstats = bnx2x_sp(bp, port_stats);
  2030. /* reset old mac stats */
  2031. memset(&(pstats->mac_stx[0]), 0,
  2032. sizeof(struct mac_stx));
  2033. }
  2034. if (bp->state == BNX2X_STATE_OPEN)
  2035. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2036. }
  2037. if (bp->link_vars.link_up && bp->link_vars.line_speed) {
  2038. int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
  2039. if (cmng_fns != CMNG_FNS_NONE) {
  2040. bnx2x_cmng_fns_init(bp, false, cmng_fns);
  2041. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2042. } else
  2043. /* rate shaping and fairness are disabled */
  2044. DP(NETIF_MSG_IFUP,
  2045. "single function mode without fairness\n");
  2046. }
  2047. __bnx2x_link_report(bp);
  2048. if (IS_MF(bp))
  2049. bnx2x_link_sync_notify(bp);
  2050. }
  2051. void bnx2x__link_status_update(struct bnx2x *bp)
  2052. {
  2053. if (bp->state != BNX2X_STATE_OPEN)
  2054. return;
  2055. /* read updated dcb configuration */
  2056. if (IS_PF(bp)) {
  2057. bnx2x_dcbx_pmf_update(bp);
  2058. bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
  2059. if (bp->link_vars.link_up)
  2060. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2061. else
  2062. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  2063. /* indicate link status */
  2064. bnx2x_link_report(bp);
  2065. } else { /* VF */
  2066. bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
  2067. SUPPORTED_10baseT_Full |
  2068. SUPPORTED_100baseT_Half |
  2069. SUPPORTED_100baseT_Full |
  2070. SUPPORTED_1000baseT_Full |
  2071. SUPPORTED_2500baseX_Full |
  2072. SUPPORTED_10000baseT_Full |
  2073. SUPPORTED_TP |
  2074. SUPPORTED_FIBRE |
  2075. SUPPORTED_Autoneg |
  2076. SUPPORTED_Pause |
  2077. SUPPORTED_Asym_Pause);
  2078. bp->port.advertising[0] = bp->port.supported[0];
  2079. bp->link_params.bp = bp;
  2080. bp->link_params.port = BP_PORT(bp);
  2081. bp->link_params.req_duplex[0] = DUPLEX_FULL;
  2082. bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
  2083. bp->link_params.req_line_speed[0] = SPEED_10000;
  2084. bp->link_params.speed_cap_mask[0] = 0x7f0000;
  2085. bp->link_params.switch_cfg = SWITCH_CFG_10G;
  2086. bp->link_vars.mac_type = MAC_TYPE_BMAC;
  2087. bp->link_vars.line_speed = SPEED_10000;
  2088. bp->link_vars.link_status =
  2089. (LINK_STATUS_LINK_UP |
  2090. LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
  2091. bp->link_vars.link_up = 1;
  2092. bp->link_vars.duplex = DUPLEX_FULL;
  2093. bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
  2094. __bnx2x_link_report(bp);
  2095. bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
  2096. }
  2097. }
  2098. static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
  2099. u16 vlan_val, u8 allowed_prio)
  2100. {
  2101. struct bnx2x_func_state_params func_params = {0};
  2102. struct bnx2x_func_afex_update_params *f_update_params =
  2103. &func_params.params.afex_update;
  2104. func_params.f_obj = &bp->func_obj;
  2105. func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
  2106. /* no need to wait for RAMROD completion, so don't
  2107. * set RAMROD_COMP_WAIT flag
  2108. */
  2109. f_update_params->vif_id = vifid;
  2110. f_update_params->afex_default_vlan = vlan_val;
  2111. f_update_params->allowed_priorities = allowed_prio;
  2112. /* if ramrod can not be sent, response to MCP immediately */
  2113. if (bnx2x_func_state_change(bp, &func_params) < 0)
  2114. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
  2115. return 0;
  2116. }
  2117. static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
  2118. u16 vif_index, u8 func_bit_map)
  2119. {
  2120. struct bnx2x_func_state_params func_params = {0};
  2121. struct bnx2x_func_afex_viflists_params *update_params =
  2122. &func_params.params.afex_viflists;
  2123. int rc;
  2124. u32 drv_msg_code;
  2125. /* validate only LIST_SET and LIST_GET are received from switch */
  2126. if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
  2127. BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
  2128. cmd_type);
  2129. func_params.f_obj = &bp->func_obj;
  2130. func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
  2131. /* set parameters according to cmd_type */
  2132. update_params->afex_vif_list_command = cmd_type;
  2133. update_params->vif_list_index = cpu_to_le16(vif_index);
  2134. update_params->func_bit_map =
  2135. (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
  2136. update_params->func_to_clear = 0;
  2137. drv_msg_code =
  2138. (cmd_type == VIF_LIST_RULE_GET) ?
  2139. DRV_MSG_CODE_AFEX_LISTGET_ACK :
  2140. DRV_MSG_CODE_AFEX_LISTSET_ACK;
  2141. /* if ramrod can not be sent, respond to MCP immediately for
  2142. * SET and GET requests (other are not triggered from MCP)
  2143. */
  2144. rc = bnx2x_func_state_change(bp, &func_params);
  2145. if (rc < 0)
  2146. bnx2x_fw_command(bp, drv_msg_code, 0);
  2147. return 0;
  2148. }
  2149. static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
  2150. {
  2151. struct afex_stats afex_stats;
  2152. u32 func = BP_ABS_FUNC(bp);
  2153. u32 mf_config;
  2154. u16 vlan_val;
  2155. u32 vlan_prio;
  2156. u16 vif_id;
  2157. u8 allowed_prio;
  2158. u8 vlan_mode;
  2159. u32 addr_to_write, vifid, addrs, stats_type, i;
  2160. if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
  2161. vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
  2162. DP(BNX2X_MSG_MCP,
  2163. "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
  2164. bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
  2165. }
  2166. if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
  2167. vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
  2168. addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
  2169. DP(BNX2X_MSG_MCP,
  2170. "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
  2171. vifid, addrs);
  2172. bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
  2173. addrs);
  2174. }
  2175. if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
  2176. addr_to_write = SHMEM2_RD(bp,
  2177. afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
  2178. stats_type = SHMEM2_RD(bp,
  2179. afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
  2180. DP(BNX2X_MSG_MCP,
  2181. "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
  2182. addr_to_write);
  2183. bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
  2184. /* write response to scratchpad, for MCP */
  2185. for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
  2186. REG_WR(bp, addr_to_write + i*sizeof(u32),
  2187. *(((u32 *)(&afex_stats))+i));
  2188. /* send ack message to MCP */
  2189. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
  2190. }
  2191. if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
  2192. mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
  2193. bp->mf_config[BP_VN(bp)] = mf_config;
  2194. DP(BNX2X_MSG_MCP,
  2195. "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
  2196. mf_config);
  2197. /* if VIF_SET is "enabled" */
  2198. if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
  2199. /* set rate limit directly to internal RAM */
  2200. struct cmng_init_input cmng_input;
  2201. struct rate_shaping_vars_per_vn m_rs_vn;
  2202. size_t size = sizeof(struct rate_shaping_vars_per_vn);
  2203. u32 addr = BAR_XSTRORM_INTMEM +
  2204. XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
  2205. bp->mf_config[BP_VN(bp)] = mf_config;
  2206. bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
  2207. m_rs_vn.vn_counter.rate =
  2208. cmng_input.vnic_max_rate[BP_VN(bp)];
  2209. m_rs_vn.vn_counter.quota =
  2210. (m_rs_vn.vn_counter.rate *
  2211. RS_PERIODIC_TIMEOUT_USEC) / 8;
  2212. __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
  2213. /* read relevant values from mf_cfg struct in shmem */
  2214. vif_id =
  2215. (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  2216. FUNC_MF_CFG_E1HOV_TAG_MASK) >>
  2217. FUNC_MF_CFG_E1HOV_TAG_SHIFT;
  2218. vlan_val =
  2219. (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  2220. FUNC_MF_CFG_AFEX_VLAN_MASK) >>
  2221. FUNC_MF_CFG_AFEX_VLAN_SHIFT;
  2222. vlan_prio = (mf_config &
  2223. FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
  2224. FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
  2225. vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
  2226. vlan_mode =
  2227. (MF_CFG_RD(bp,
  2228. func_mf_config[func].afex_config) &
  2229. FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
  2230. FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
  2231. allowed_prio =
  2232. (MF_CFG_RD(bp,
  2233. func_mf_config[func].afex_config) &
  2234. FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
  2235. FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
  2236. /* send ramrod to FW, return in case of failure */
  2237. if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
  2238. allowed_prio))
  2239. return;
  2240. bp->afex_def_vlan_tag = vlan_val;
  2241. bp->afex_vlan_mode = vlan_mode;
  2242. } else {
  2243. /* notify link down because BP->flags is disabled */
  2244. bnx2x_link_report(bp);
  2245. /* send INVALID VIF ramrod to FW */
  2246. bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
  2247. /* Reset the default afex VLAN */
  2248. bp->afex_def_vlan_tag = -1;
  2249. }
  2250. }
  2251. }
  2252. static void bnx2x_pmf_update(struct bnx2x *bp)
  2253. {
  2254. int port = BP_PORT(bp);
  2255. u32 val;
  2256. bp->port.pmf = 1;
  2257. DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
  2258. /*
  2259. * We need the mb() to ensure the ordering between the writing to
  2260. * bp->port.pmf here and reading it from the bnx2x_periodic_task().
  2261. */
  2262. smp_mb();
  2263. /* queue a periodic task */
  2264. queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
  2265. bnx2x_dcbx_pmf_update(bp);
  2266. /* enable nig attention */
  2267. val = (0xff0f | (1 << (BP_VN(bp) + 4)));
  2268. if (bp->common.int_block == INT_BLOCK_HC) {
  2269. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
  2270. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
  2271. } else if (!CHIP_IS_E1x(bp)) {
  2272. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
  2273. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
  2274. }
  2275. bnx2x_stats_handle(bp, STATS_EVENT_PMF);
  2276. }
  2277. /* end of Link */
  2278. /* slow path */
  2279. /*
  2280. * General service functions
  2281. */
  2282. /* send the MCP a request, block until there is a reply */
  2283. u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
  2284. {
  2285. int mb_idx = BP_FW_MB_IDX(bp);
  2286. u32 seq;
  2287. u32 rc = 0;
  2288. u32 cnt = 1;
  2289. u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
  2290. mutex_lock(&bp->fw_mb_mutex);
  2291. seq = ++bp->fw_seq;
  2292. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
  2293. SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
  2294. DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
  2295. (command | seq), param);
  2296. do {
  2297. /* let the FW do it's magic ... */
  2298. msleep(delay);
  2299. rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
  2300. /* Give the FW up to 5 second (500*10ms) */
  2301. } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
  2302. DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
  2303. cnt*delay, rc, seq);
  2304. /* is this a reply to our command? */
  2305. if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
  2306. rc &= FW_MSG_CODE_MASK;
  2307. else {
  2308. /* FW BUG! */
  2309. BNX2X_ERR("FW failed to respond!\n");
  2310. bnx2x_fw_dump(bp);
  2311. rc = 0;
  2312. }
  2313. mutex_unlock(&bp->fw_mb_mutex);
  2314. return rc;
  2315. }
  2316. static void storm_memset_func_cfg(struct bnx2x *bp,
  2317. struct tstorm_eth_function_common_config *tcfg,
  2318. u16 abs_fid)
  2319. {
  2320. size_t size = sizeof(struct tstorm_eth_function_common_config);
  2321. u32 addr = BAR_TSTRORM_INTMEM +
  2322. TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
  2323. __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
  2324. }
  2325. void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
  2326. {
  2327. if (CHIP_IS_E1x(bp)) {
  2328. struct tstorm_eth_function_common_config tcfg = {0};
  2329. storm_memset_func_cfg(bp, &tcfg, p->func_id);
  2330. }
  2331. /* Enable the function in the FW */
  2332. storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
  2333. storm_memset_func_en(bp, p->func_id, 1);
  2334. /* spq */
  2335. if (p->func_flgs & FUNC_FLG_SPQ) {
  2336. storm_memset_spq_addr(bp, p->spq_map, p->func_id);
  2337. REG_WR(bp, XSEM_REG_FAST_MEMORY +
  2338. XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
  2339. }
  2340. }
  2341. /**
  2342. * bnx2x_get_tx_only_flags - Return common flags
  2343. *
  2344. * @bp device handle
  2345. * @fp queue handle
  2346. * @zero_stats TRUE if statistics zeroing is needed
  2347. *
  2348. * Return the flags that are common for the Tx-only and not normal connections.
  2349. */
  2350. static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
  2351. struct bnx2x_fastpath *fp,
  2352. bool zero_stats)
  2353. {
  2354. unsigned long flags = 0;
  2355. /* PF driver will always initialize the Queue to an ACTIVE state */
  2356. __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
  2357. /* tx only connections collect statistics (on the same index as the
  2358. * parent connection). The statistics are zeroed when the parent
  2359. * connection is initialized.
  2360. */
  2361. __set_bit(BNX2X_Q_FLG_STATS, &flags);
  2362. if (zero_stats)
  2363. __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
  2364. return flags;
  2365. }
  2366. static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
  2367. struct bnx2x_fastpath *fp,
  2368. bool leading)
  2369. {
  2370. unsigned long flags = 0;
  2371. /* calculate other queue flags */
  2372. if (IS_MF_SD(bp))
  2373. __set_bit(BNX2X_Q_FLG_OV, &flags);
  2374. if (IS_FCOE_FP(fp)) {
  2375. __set_bit(BNX2X_Q_FLG_FCOE, &flags);
  2376. /* For FCoE - force usage of default priority (for afex) */
  2377. __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
  2378. }
  2379. if (!fp->disable_tpa) {
  2380. __set_bit(BNX2X_Q_FLG_TPA, &flags);
  2381. __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
  2382. if (fp->mode == TPA_MODE_GRO)
  2383. __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
  2384. }
  2385. if (leading) {
  2386. __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
  2387. __set_bit(BNX2X_Q_FLG_MCAST, &flags);
  2388. }
  2389. /* Always set HW VLAN stripping */
  2390. __set_bit(BNX2X_Q_FLG_VLAN, &flags);
  2391. /* configure silent vlan removal */
  2392. if (IS_MF_AFEX(bp))
  2393. __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
  2394. return flags | bnx2x_get_common_flags(bp, fp, true);
  2395. }
  2396. static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
  2397. struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
  2398. u8 cos)
  2399. {
  2400. gen_init->stat_id = bnx2x_stats_id(fp);
  2401. gen_init->spcl_id = fp->cl_id;
  2402. /* Always use mini-jumbo MTU for FCoE L2 ring */
  2403. if (IS_FCOE_FP(fp))
  2404. gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
  2405. else
  2406. gen_init->mtu = bp->dev->mtu;
  2407. gen_init->cos = cos;
  2408. }
  2409. static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
  2410. struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
  2411. struct bnx2x_rxq_setup_params *rxq_init)
  2412. {
  2413. u8 max_sge = 0;
  2414. u16 sge_sz = 0;
  2415. u16 tpa_agg_size = 0;
  2416. if (!fp->disable_tpa) {
  2417. pause->sge_th_lo = SGE_TH_LO(bp);
  2418. pause->sge_th_hi = SGE_TH_HI(bp);
  2419. /* validate SGE ring has enough to cross high threshold */
  2420. WARN_ON(bp->dropless_fc &&
  2421. pause->sge_th_hi + FW_PREFETCH_CNT >
  2422. MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
  2423. tpa_agg_size = min_t(u32,
  2424. (min_t(u32, 8, MAX_SKB_FRAGS) *
  2425. SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
  2426. max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
  2427. SGE_PAGE_SHIFT;
  2428. max_sge = ((max_sge + PAGES_PER_SGE - 1) &
  2429. (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
  2430. sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
  2431. 0xffff);
  2432. }
  2433. /* pause - not for e1 */
  2434. if (!CHIP_IS_E1(bp)) {
  2435. pause->bd_th_lo = BD_TH_LO(bp);
  2436. pause->bd_th_hi = BD_TH_HI(bp);
  2437. pause->rcq_th_lo = RCQ_TH_LO(bp);
  2438. pause->rcq_th_hi = RCQ_TH_HI(bp);
  2439. /*
  2440. * validate that rings have enough entries to cross
  2441. * high thresholds
  2442. */
  2443. WARN_ON(bp->dropless_fc &&
  2444. pause->bd_th_hi + FW_PREFETCH_CNT >
  2445. bp->rx_ring_size);
  2446. WARN_ON(bp->dropless_fc &&
  2447. pause->rcq_th_hi + FW_PREFETCH_CNT >
  2448. NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
  2449. pause->pri_map = 1;
  2450. }
  2451. /* rxq setup */
  2452. rxq_init->dscr_map = fp->rx_desc_mapping;
  2453. rxq_init->sge_map = fp->rx_sge_mapping;
  2454. rxq_init->rcq_map = fp->rx_comp_mapping;
  2455. rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
  2456. /* This should be a maximum number of data bytes that may be
  2457. * placed on the BD (not including paddings).
  2458. */
  2459. rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
  2460. BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
  2461. rxq_init->cl_qzone_id = fp->cl_qzone_id;
  2462. rxq_init->tpa_agg_sz = tpa_agg_size;
  2463. rxq_init->sge_buf_sz = sge_sz;
  2464. rxq_init->max_sges_pkt = max_sge;
  2465. rxq_init->rss_engine_id = BP_FUNC(bp);
  2466. rxq_init->mcast_engine_id = BP_FUNC(bp);
  2467. /* Maximum number or simultaneous TPA aggregation for this Queue.
  2468. *
  2469. * For PF Clients it should be the maximum avaliable number.
  2470. * VF driver(s) may want to define it to a smaller value.
  2471. */
  2472. rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
  2473. rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
  2474. rxq_init->fw_sb_id = fp->fw_sb_id;
  2475. if (IS_FCOE_FP(fp))
  2476. rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
  2477. else
  2478. rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  2479. /* configure silent vlan removal
  2480. * if multi function mode is afex, then mask default vlan
  2481. */
  2482. if (IS_MF_AFEX(bp)) {
  2483. rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
  2484. rxq_init->silent_removal_mask = VLAN_VID_MASK;
  2485. }
  2486. }
  2487. static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
  2488. struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
  2489. u8 cos)
  2490. {
  2491. txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
  2492. txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
  2493. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
  2494. txq_init->fw_sb_id = fp->fw_sb_id;
  2495. /*
  2496. * set the tss leading client id for TX classfication ==
  2497. * leading RSS client id
  2498. */
  2499. txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
  2500. if (IS_FCOE_FP(fp)) {
  2501. txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
  2502. txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
  2503. }
  2504. }
  2505. static void bnx2x_pf_init(struct bnx2x *bp)
  2506. {
  2507. struct bnx2x_func_init_params func_init = {0};
  2508. struct event_ring_data eq_data = { {0} };
  2509. u16 flags;
  2510. if (!CHIP_IS_E1x(bp)) {
  2511. /* reset IGU PF statistics: MSIX + ATTN */
  2512. /* PF */
  2513. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2514. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2515. (CHIP_MODE_IS_4_PORT(bp) ?
  2516. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2517. /* ATTN */
  2518. REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
  2519. BNX2X_IGU_STAS_MSG_VF_CNT*4 +
  2520. BNX2X_IGU_STAS_MSG_PF_CNT*4 +
  2521. (CHIP_MODE_IS_4_PORT(bp) ?
  2522. BP_FUNC(bp) : BP_VN(bp))*4, 0);
  2523. }
  2524. /* function setup flags */
  2525. flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
  2526. /* This flag is relevant for E1x only.
  2527. * E2 doesn't have a TPA configuration in a function level.
  2528. */
  2529. flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
  2530. func_init.func_flgs = flags;
  2531. func_init.pf_id = BP_FUNC(bp);
  2532. func_init.func_id = BP_FUNC(bp);
  2533. func_init.spq_map = bp->spq_mapping;
  2534. func_init.spq_prod = bp->spq_prod_idx;
  2535. bnx2x_func_init(bp, &func_init);
  2536. memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
  2537. /*
  2538. * Congestion management values depend on the link rate
  2539. * There is no active link so initial link rate is set to 10 Gbps.
  2540. * When the link comes up The congestion management values are
  2541. * re-calculated according to the actual link rate.
  2542. */
  2543. bp->link_vars.line_speed = SPEED_10000;
  2544. bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
  2545. /* Only the PMF sets the HW */
  2546. if (bp->port.pmf)
  2547. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2548. /* init Event Queue */
  2549. eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
  2550. eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
  2551. eq_data.producer = bp->eq_prod;
  2552. eq_data.index_id = HC_SP_INDEX_EQ_CONS;
  2553. eq_data.sb_id = DEF_SB_ID;
  2554. storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
  2555. }
  2556. static void bnx2x_e1h_disable(struct bnx2x *bp)
  2557. {
  2558. int port = BP_PORT(bp);
  2559. bnx2x_tx_disable(bp);
  2560. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  2561. }
  2562. static void bnx2x_e1h_enable(struct bnx2x *bp)
  2563. {
  2564. int port = BP_PORT(bp);
  2565. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  2566. /* Tx queue should be only reenabled */
  2567. netif_tx_wake_all_queues(bp->dev);
  2568. /*
  2569. * Should not call netif_carrier_on since it will be called if the link
  2570. * is up when checking for link state
  2571. */
  2572. }
  2573. #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
  2574. static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
  2575. {
  2576. struct eth_stats_info *ether_stat =
  2577. &bp->slowpath->drv_info_to_mcp.ether_stat;
  2578. strlcpy(ether_stat->version, DRV_MODULE_VERSION,
  2579. ETH_STAT_INFO_VERSION_LEN);
  2580. bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
  2581. DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
  2582. ether_stat->mac_local);
  2583. ether_stat->mtu_size = bp->dev->mtu;
  2584. if (bp->dev->features & NETIF_F_RXCSUM)
  2585. ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
  2586. if (bp->dev->features & NETIF_F_TSO)
  2587. ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
  2588. ether_stat->feature_flags |= bp->common.boot_mode;
  2589. ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
  2590. ether_stat->txq_size = bp->tx_ring_size;
  2591. ether_stat->rxq_size = bp->rx_ring_size;
  2592. }
  2593. static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
  2594. {
  2595. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2596. struct fcoe_stats_info *fcoe_stat =
  2597. &bp->slowpath->drv_info_to_mcp.fcoe_stat;
  2598. if (!CNIC_LOADED(bp))
  2599. return;
  2600. memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
  2601. bp->fip_mac, ETH_ALEN);
  2602. fcoe_stat->qos_priority =
  2603. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
  2604. /* insert FCoE stats from ramrod response */
  2605. if (!NO_FCOE(bp)) {
  2606. struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
  2607. &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
  2608. tstorm_queue_statistics;
  2609. struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
  2610. &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
  2611. xstorm_queue_statistics;
  2612. struct fcoe_statistics_params *fw_fcoe_stat =
  2613. &bp->fw_stats_data->fcoe;
  2614. ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
  2615. fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
  2616. ADD_64(fcoe_stat->rx_bytes_hi,
  2617. fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
  2618. fcoe_stat->rx_bytes_lo,
  2619. fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
  2620. ADD_64(fcoe_stat->rx_bytes_hi,
  2621. fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
  2622. fcoe_stat->rx_bytes_lo,
  2623. fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
  2624. ADD_64(fcoe_stat->rx_bytes_hi,
  2625. fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
  2626. fcoe_stat->rx_bytes_lo,
  2627. fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
  2628. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2629. fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
  2630. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2631. fcoe_q_tstorm_stats->rcv_ucast_pkts);
  2632. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2633. fcoe_q_tstorm_stats->rcv_bcast_pkts);
  2634. ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
  2635. fcoe_q_tstorm_stats->rcv_mcast_pkts);
  2636. ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
  2637. fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
  2638. ADD_64(fcoe_stat->tx_bytes_hi,
  2639. fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
  2640. fcoe_stat->tx_bytes_lo,
  2641. fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
  2642. ADD_64(fcoe_stat->tx_bytes_hi,
  2643. fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
  2644. fcoe_stat->tx_bytes_lo,
  2645. fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
  2646. ADD_64(fcoe_stat->tx_bytes_hi,
  2647. fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
  2648. fcoe_stat->tx_bytes_lo,
  2649. fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
  2650. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2651. fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
  2652. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2653. fcoe_q_xstorm_stats->ucast_pkts_sent);
  2654. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2655. fcoe_q_xstorm_stats->bcast_pkts_sent);
  2656. ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
  2657. fcoe_q_xstorm_stats->mcast_pkts_sent);
  2658. }
  2659. /* ask L5 driver to add data to the struct */
  2660. bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
  2661. }
  2662. static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
  2663. {
  2664. struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
  2665. struct iscsi_stats_info *iscsi_stat =
  2666. &bp->slowpath->drv_info_to_mcp.iscsi_stat;
  2667. if (!CNIC_LOADED(bp))
  2668. return;
  2669. memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
  2670. bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
  2671. iscsi_stat->qos_priority =
  2672. app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
  2673. /* ask L5 driver to add data to the struct */
  2674. bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
  2675. }
  2676. /* called due to MCP event (on pmf):
  2677. * reread new bandwidth configuration
  2678. * configure FW
  2679. * notify others function about the change
  2680. */
  2681. static void bnx2x_config_mf_bw(struct bnx2x *bp)
  2682. {
  2683. if (bp->link_vars.link_up) {
  2684. bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
  2685. bnx2x_link_sync_notify(bp);
  2686. }
  2687. storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
  2688. }
  2689. static void bnx2x_set_mf_bw(struct bnx2x *bp)
  2690. {
  2691. bnx2x_config_mf_bw(bp);
  2692. bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
  2693. }
  2694. static void bnx2x_handle_eee_event(struct bnx2x *bp)
  2695. {
  2696. DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
  2697. bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
  2698. }
  2699. static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
  2700. {
  2701. enum drv_info_opcode op_code;
  2702. u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
  2703. /* if drv_info version supported by MFW doesn't match - send NACK */
  2704. if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
  2705. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2706. return;
  2707. }
  2708. op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
  2709. DRV_INFO_CONTROL_OP_CODE_SHIFT;
  2710. memset(&bp->slowpath->drv_info_to_mcp, 0,
  2711. sizeof(union drv_info_to_mcp));
  2712. switch (op_code) {
  2713. case ETH_STATS_OPCODE:
  2714. bnx2x_drv_info_ether_stat(bp);
  2715. break;
  2716. case FCOE_STATS_OPCODE:
  2717. bnx2x_drv_info_fcoe_stat(bp);
  2718. break;
  2719. case ISCSI_STATS_OPCODE:
  2720. bnx2x_drv_info_iscsi_stat(bp);
  2721. break;
  2722. default:
  2723. /* if op code isn't supported - send NACK */
  2724. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
  2725. return;
  2726. }
  2727. /* if we got drv_info attn from MFW then these fields are defined in
  2728. * shmem2 for sure
  2729. */
  2730. SHMEM2_WR(bp, drv_info_host_addr_lo,
  2731. U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2732. SHMEM2_WR(bp, drv_info_host_addr_hi,
  2733. U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
  2734. bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
  2735. }
  2736. static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
  2737. {
  2738. DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
  2739. if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
  2740. /*
  2741. * This is the only place besides the function initialization
  2742. * where the bp->flags can change so it is done without any
  2743. * locks
  2744. */
  2745. if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
  2746. DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
  2747. bp->flags |= MF_FUNC_DIS;
  2748. bnx2x_e1h_disable(bp);
  2749. } else {
  2750. DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
  2751. bp->flags &= ~MF_FUNC_DIS;
  2752. bnx2x_e1h_enable(bp);
  2753. }
  2754. dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
  2755. }
  2756. if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
  2757. bnx2x_config_mf_bw(bp);
  2758. dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
  2759. }
  2760. /* Report results to MCP */
  2761. if (dcc_event)
  2762. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
  2763. else
  2764. bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
  2765. }
  2766. /* must be called under the spq lock */
  2767. static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
  2768. {
  2769. struct eth_spe *next_spe = bp->spq_prod_bd;
  2770. if (bp->spq_prod_bd == bp->spq_last_bd) {
  2771. bp->spq_prod_bd = bp->spq;
  2772. bp->spq_prod_idx = 0;
  2773. DP(BNX2X_MSG_SP, "end of spq\n");
  2774. } else {
  2775. bp->spq_prod_bd++;
  2776. bp->spq_prod_idx++;
  2777. }
  2778. return next_spe;
  2779. }
  2780. /* must be called under the spq lock */
  2781. static void bnx2x_sp_prod_update(struct bnx2x *bp)
  2782. {
  2783. int func = BP_FUNC(bp);
  2784. /*
  2785. * Make sure that BD data is updated before writing the producer:
  2786. * BD data is written to the memory, the producer is read from the
  2787. * memory, thus we need a full memory barrier to ensure the ordering.
  2788. */
  2789. mb();
  2790. REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
  2791. bp->spq_prod_idx);
  2792. mmiowb();
  2793. }
  2794. /**
  2795. * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
  2796. *
  2797. * @cmd: command to check
  2798. * @cmd_type: command type
  2799. */
  2800. static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
  2801. {
  2802. if ((cmd_type == NONE_CONNECTION_TYPE) ||
  2803. (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
  2804. (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
  2805. (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
  2806. (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
  2807. (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
  2808. (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
  2809. return true;
  2810. else
  2811. return false;
  2812. }
  2813. /**
  2814. * bnx2x_sp_post - place a single command on an SP ring
  2815. *
  2816. * @bp: driver handle
  2817. * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
  2818. * @cid: SW CID the command is related to
  2819. * @data_hi: command private data address (high 32 bits)
  2820. * @data_lo: command private data address (low 32 bits)
  2821. * @cmd_type: command type (e.g. NONE, ETH)
  2822. *
  2823. * SP data is handled as if it's always an address pair, thus data fields are
  2824. * not swapped to little endian in upper functions. Instead this function swaps
  2825. * data as if it's two u32 fields.
  2826. */
  2827. int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
  2828. u32 data_hi, u32 data_lo, int cmd_type)
  2829. {
  2830. struct eth_spe *spe;
  2831. u16 type;
  2832. bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
  2833. #ifdef BNX2X_STOP_ON_ERROR
  2834. if (unlikely(bp->panic)) {
  2835. BNX2X_ERR("Can't post SP when there is panic\n");
  2836. return -EIO;
  2837. }
  2838. #endif
  2839. spin_lock_bh(&bp->spq_lock);
  2840. if (common) {
  2841. if (!atomic_read(&bp->eq_spq_left)) {
  2842. BNX2X_ERR("BUG! EQ ring full!\n");
  2843. spin_unlock_bh(&bp->spq_lock);
  2844. bnx2x_panic();
  2845. return -EBUSY;
  2846. }
  2847. } else if (!atomic_read(&bp->cq_spq_left)) {
  2848. BNX2X_ERR("BUG! SPQ ring full!\n");
  2849. spin_unlock_bh(&bp->spq_lock);
  2850. bnx2x_panic();
  2851. return -EBUSY;
  2852. }
  2853. spe = bnx2x_sp_get_next(bp);
  2854. /* CID needs port number to be encoded int it */
  2855. spe->hdr.conn_and_cmd_data =
  2856. cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
  2857. HW_CID(bp, cid));
  2858. type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
  2859. type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
  2860. SPE_HDR_FUNCTION_ID);
  2861. spe->hdr.type = cpu_to_le16(type);
  2862. spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
  2863. spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
  2864. /*
  2865. * It's ok if the actual decrement is issued towards the memory
  2866. * somewhere between the spin_lock and spin_unlock. Thus no
  2867. * more explict memory barrier is needed.
  2868. */
  2869. if (common)
  2870. atomic_dec(&bp->eq_spq_left);
  2871. else
  2872. atomic_dec(&bp->cq_spq_left);
  2873. DP(BNX2X_MSG_SP,
  2874. "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
  2875. bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
  2876. (u32)(U64_LO(bp->spq_mapping) +
  2877. (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
  2878. HW_CID(bp, cid), data_hi, data_lo, type,
  2879. atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
  2880. bnx2x_sp_prod_update(bp);
  2881. spin_unlock_bh(&bp->spq_lock);
  2882. return 0;
  2883. }
  2884. /* acquire split MCP access lock register */
  2885. static int bnx2x_acquire_alr(struct bnx2x *bp)
  2886. {
  2887. u32 j, val;
  2888. int rc = 0;
  2889. might_sleep();
  2890. for (j = 0; j < 1000; j++) {
  2891. val = (1UL << 31);
  2892. REG_WR(bp, GRCBASE_MCP + 0x9c, val);
  2893. val = REG_RD(bp, GRCBASE_MCP + 0x9c);
  2894. if (val & (1L << 31))
  2895. break;
  2896. msleep(5);
  2897. }
  2898. if (!(val & (1L << 31))) {
  2899. BNX2X_ERR("Cannot acquire MCP access lock register\n");
  2900. rc = -EBUSY;
  2901. }
  2902. return rc;
  2903. }
  2904. /* release split MCP access lock register */
  2905. static void bnx2x_release_alr(struct bnx2x *bp)
  2906. {
  2907. REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
  2908. }
  2909. #define BNX2X_DEF_SB_ATT_IDX 0x0001
  2910. #define BNX2X_DEF_SB_IDX 0x0002
  2911. static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
  2912. {
  2913. struct host_sp_status_block *def_sb = bp->def_status_blk;
  2914. u16 rc = 0;
  2915. barrier(); /* status block is written to by the chip */
  2916. if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
  2917. bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
  2918. rc |= BNX2X_DEF_SB_ATT_IDX;
  2919. }
  2920. if (bp->def_idx != def_sb->sp_sb.running_index) {
  2921. bp->def_idx = def_sb->sp_sb.running_index;
  2922. rc |= BNX2X_DEF_SB_IDX;
  2923. }
  2924. /* Do not reorder: indecies reading should complete before handling */
  2925. barrier();
  2926. return rc;
  2927. }
  2928. /*
  2929. * slow path service functions
  2930. */
  2931. static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
  2932. {
  2933. int port = BP_PORT(bp);
  2934. u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  2935. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  2936. u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
  2937. NIG_REG_MASK_INTERRUPT_PORT0;
  2938. u32 aeu_mask;
  2939. u32 nig_mask = 0;
  2940. u32 reg_addr;
  2941. if (bp->attn_state & asserted)
  2942. BNX2X_ERR("IGU ERROR\n");
  2943. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  2944. aeu_mask = REG_RD(bp, aeu_addr);
  2945. DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
  2946. aeu_mask, asserted);
  2947. aeu_mask &= ~(asserted & 0x3ff);
  2948. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  2949. REG_WR(bp, aeu_addr, aeu_mask);
  2950. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  2951. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  2952. bp->attn_state |= asserted;
  2953. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  2954. if (asserted & ATTN_HARD_WIRED_MASK) {
  2955. if (asserted & ATTN_NIG_FOR_FUNC) {
  2956. bnx2x_acquire_phy_lock(bp);
  2957. /* save nig interrupt mask */
  2958. nig_mask = REG_RD(bp, nig_int_mask_addr);
  2959. /* If nig_mask is not set, no need to call the update
  2960. * function.
  2961. */
  2962. if (nig_mask) {
  2963. REG_WR(bp, nig_int_mask_addr, 0);
  2964. bnx2x_link_attn(bp);
  2965. }
  2966. /* handle unicore attn? */
  2967. }
  2968. if (asserted & ATTN_SW_TIMER_4_FUNC)
  2969. DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
  2970. if (asserted & GPIO_2_FUNC)
  2971. DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
  2972. if (asserted & GPIO_3_FUNC)
  2973. DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
  2974. if (asserted & GPIO_4_FUNC)
  2975. DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
  2976. if (port == 0) {
  2977. if (asserted & ATTN_GENERAL_ATTN_1) {
  2978. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
  2979. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
  2980. }
  2981. if (asserted & ATTN_GENERAL_ATTN_2) {
  2982. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
  2983. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
  2984. }
  2985. if (asserted & ATTN_GENERAL_ATTN_3) {
  2986. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
  2987. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
  2988. }
  2989. } else {
  2990. if (asserted & ATTN_GENERAL_ATTN_4) {
  2991. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
  2992. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
  2993. }
  2994. if (asserted & ATTN_GENERAL_ATTN_5) {
  2995. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
  2996. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
  2997. }
  2998. if (asserted & ATTN_GENERAL_ATTN_6) {
  2999. DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
  3000. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
  3001. }
  3002. }
  3003. } /* if hardwired */
  3004. if (bp->common.int_block == INT_BLOCK_HC)
  3005. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  3006. COMMAND_REG_ATTN_BITS_SET);
  3007. else
  3008. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
  3009. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
  3010. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  3011. REG_WR(bp, reg_addr, asserted);
  3012. /* now set back the mask */
  3013. if (asserted & ATTN_NIG_FOR_FUNC) {
  3014. /* Verify that IGU ack through BAR was written before restoring
  3015. * NIG mask. This loop should exit after 2-3 iterations max.
  3016. */
  3017. if (bp->common.int_block != INT_BLOCK_HC) {
  3018. u32 cnt = 0, igu_acked;
  3019. do {
  3020. igu_acked = REG_RD(bp,
  3021. IGU_REG_ATTENTION_ACK_BITS);
  3022. } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
  3023. (++cnt < MAX_IGU_ATTN_ACK_TO));
  3024. if (!igu_acked)
  3025. DP(NETIF_MSG_HW,
  3026. "Failed to verify IGU ack on time\n");
  3027. barrier();
  3028. }
  3029. REG_WR(bp, nig_int_mask_addr, nig_mask);
  3030. bnx2x_release_phy_lock(bp);
  3031. }
  3032. }
  3033. static void bnx2x_fan_failure(struct bnx2x *bp)
  3034. {
  3035. int port = BP_PORT(bp);
  3036. u32 ext_phy_config;
  3037. /* mark the failure */
  3038. ext_phy_config =
  3039. SHMEM_RD(bp,
  3040. dev_info.port_hw_config[port].external_phy_config);
  3041. ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
  3042. ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
  3043. SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
  3044. ext_phy_config);
  3045. /* log the failure */
  3046. netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
  3047. "Please contact OEM Support for assistance\n");
  3048. /*
  3049. * Scheudle device reset (unload)
  3050. * This is due to some boards consuming sufficient power when driver is
  3051. * up to overheat if fan fails.
  3052. */
  3053. smp_mb__before_clear_bit();
  3054. set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
  3055. smp_mb__after_clear_bit();
  3056. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  3057. }
  3058. static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
  3059. {
  3060. int port = BP_PORT(bp);
  3061. int reg_offset;
  3062. u32 val;
  3063. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  3064. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  3065. if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
  3066. val = REG_RD(bp, reg_offset);
  3067. val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
  3068. REG_WR(bp, reg_offset, val);
  3069. BNX2X_ERR("SPIO5 hw attention\n");
  3070. /* Fan failure attention */
  3071. bnx2x_hw_reset_phy(&bp->link_params);
  3072. bnx2x_fan_failure(bp);
  3073. }
  3074. if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
  3075. bnx2x_acquire_phy_lock(bp);
  3076. bnx2x_handle_module_detect_int(&bp->link_params);
  3077. bnx2x_release_phy_lock(bp);
  3078. }
  3079. if (attn & HW_INTERRUT_ASSERT_SET_0) {
  3080. val = REG_RD(bp, reg_offset);
  3081. val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
  3082. REG_WR(bp, reg_offset, val);
  3083. BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
  3084. (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
  3085. bnx2x_panic();
  3086. }
  3087. }
  3088. static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
  3089. {
  3090. u32 val;
  3091. if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
  3092. val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
  3093. BNX2X_ERR("DB hw attention 0x%x\n", val);
  3094. /* DORQ discard attention */
  3095. if (val & 0x2)
  3096. BNX2X_ERR("FATAL error from DORQ\n");
  3097. }
  3098. if (attn & HW_INTERRUT_ASSERT_SET_1) {
  3099. int port = BP_PORT(bp);
  3100. int reg_offset;
  3101. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
  3102. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
  3103. val = REG_RD(bp, reg_offset);
  3104. val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
  3105. REG_WR(bp, reg_offset, val);
  3106. BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
  3107. (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
  3108. bnx2x_panic();
  3109. }
  3110. }
  3111. static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
  3112. {
  3113. u32 val;
  3114. if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
  3115. val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
  3116. BNX2X_ERR("CFC hw attention 0x%x\n", val);
  3117. /* CFC error attention */
  3118. if (val & 0x2)
  3119. BNX2X_ERR("FATAL error from CFC\n");
  3120. }
  3121. if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
  3122. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
  3123. BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
  3124. /* RQ_USDMDP_FIFO_OVERFLOW */
  3125. if (val & 0x18000)
  3126. BNX2X_ERR("FATAL error from PXP\n");
  3127. if (!CHIP_IS_E1x(bp)) {
  3128. val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
  3129. BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
  3130. }
  3131. }
  3132. if (attn & HW_INTERRUT_ASSERT_SET_2) {
  3133. int port = BP_PORT(bp);
  3134. int reg_offset;
  3135. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
  3136. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
  3137. val = REG_RD(bp, reg_offset);
  3138. val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
  3139. REG_WR(bp, reg_offset, val);
  3140. BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
  3141. (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
  3142. bnx2x_panic();
  3143. }
  3144. }
  3145. static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
  3146. {
  3147. u32 val;
  3148. if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
  3149. if (attn & BNX2X_PMF_LINK_ASSERT) {
  3150. int func = BP_FUNC(bp);
  3151. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  3152. bnx2x_read_mf_cfg(bp);
  3153. bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
  3154. func_mf_config[BP_ABS_FUNC(bp)].config);
  3155. val = SHMEM_RD(bp,
  3156. func_mb[BP_FW_MB_IDX(bp)].drv_status);
  3157. if (val & DRV_STATUS_DCC_EVENT_MASK)
  3158. bnx2x_dcc_event(bp,
  3159. (val & DRV_STATUS_DCC_EVENT_MASK));
  3160. if (val & DRV_STATUS_SET_MF_BW)
  3161. bnx2x_set_mf_bw(bp);
  3162. if (val & DRV_STATUS_DRV_INFO_REQ)
  3163. bnx2x_handle_drv_info_req(bp);
  3164. if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
  3165. bnx2x_pmf_update(bp);
  3166. if (bp->port.pmf &&
  3167. (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
  3168. bp->dcbx_enabled > 0)
  3169. /* start dcbx state machine */
  3170. bnx2x_dcbx_set_params(bp,
  3171. BNX2X_DCBX_STATE_NEG_RECEIVED);
  3172. if (val & DRV_STATUS_AFEX_EVENT_MASK)
  3173. bnx2x_handle_afex_cmd(bp,
  3174. val & DRV_STATUS_AFEX_EVENT_MASK);
  3175. if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
  3176. bnx2x_handle_eee_event(bp);
  3177. if (bp->link_vars.periodic_flags &
  3178. PERIODIC_FLAGS_LINK_EVENT) {
  3179. /* sync with link */
  3180. bnx2x_acquire_phy_lock(bp);
  3181. bp->link_vars.periodic_flags &=
  3182. ~PERIODIC_FLAGS_LINK_EVENT;
  3183. bnx2x_release_phy_lock(bp);
  3184. if (IS_MF(bp))
  3185. bnx2x_link_sync_notify(bp);
  3186. bnx2x_link_report(bp);
  3187. }
  3188. /* Always call it here: bnx2x_link_report() will
  3189. * prevent the link indication duplication.
  3190. */
  3191. bnx2x__link_status_update(bp);
  3192. } else if (attn & BNX2X_MC_ASSERT_BITS) {
  3193. BNX2X_ERR("MC assert!\n");
  3194. bnx2x_mc_assert(bp);
  3195. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
  3196. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
  3197. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
  3198. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
  3199. bnx2x_panic();
  3200. } else if (attn & BNX2X_MCP_ASSERT) {
  3201. BNX2X_ERR("MCP assert!\n");
  3202. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
  3203. bnx2x_fw_dump(bp);
  3204. } else
  3205. BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
  3206. }
  3207. if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
  3208. BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
  3209. if (attn & BNX2X_GRC_TIMEOUT) {
  3210. val = CHIP_IS_E1(bp) ? 0 :
  3211. REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
  3212. BNX2X_ERR("GRC time-out 0x%08x\n", val);
  3213. }
  3214. if (attn & BNX2X_GRC_RSV) {
  3215. val = CHIP_IS_E1(bp) ? 0 :
  3216. REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
  3217. BNX2X_ERR("GRC reserved 0x%08x\n", val);
  3218. }
  3219. REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
  3220. }
  3221. }
  3222. /*
  3223. * Bits map:
  3224. * 0-7 - Engine0 load counter.
  3225. * 8-15 - Engine1 load counter.
  3226. * 16 - Engine0 RESET_IN_PROGRESS bit.
  3227. * 17 - Engine1 RESET_IN_PROGRESS bit.
  3228. * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
  3229. * on the engine
  3230. * 19 - Engine1 ONE_IS_LOADED.
  3231. * 20 - Chip reset flow bit. When set none-leader must wait for both engines
  3232. * leader to complete (check for both RESET_IN_PROGRESS bits and not for
  3233. * just the one belonging to its engine).
  3234. *
  3235. */
  3236. #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
  3237. #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
  3238. #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
  3239. #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
  3240. #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
  3241. #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
  3242. #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
  3243. #define BNX2X_GLOBAL_RESET_BIT 0x00040000
  3244. /*
  3245. * Set the GLOBAL_RESET bit.
  3246. *
  3247. * Should be run under rtnl lock
  3248. */
  3249. void bnx2x_set_reset_global(struct bnx2x *bp)
  3250. {
  3251. u32 val;
  3252. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3253. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3254. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
  3255. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3256. }
  3257. /*
  3258. * Clear the GLOBAL_RESET bit.
  3259. *
  3260. * Should be run under rtnl lock
  3261. */
  3262. static void bnx2x_clear_reset_global(struct bnx2x *bp)
  3263. {
  3264. u32 val;
  3265. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3266. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3267. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
  3268. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3269. }
  3270. /*
  3271. * Checks the GLOBAL_RESET bit.
  3272. *
  3273. * should be run under rtnl lock
  3274. */
  3275. static bool bnx2x_reset_is_global(struct bnx2x *bp)
  3276. {
  3277. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3278. DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
  3279. return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
  3280. }
  3281. /*
  3282. * Clear RESET_IN_PROGRESS bit for the current engine.
  3283. *
  3284. * Should be run under rtnl lock
  3285. */
  3286. static void bnx2x_set_reset_done(struct bnx2x *bp)
  3287. {
  3288. u32 val;
  3289. u32 bit = BP_PATH(bp) ?
  3290. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3291. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3292. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3293. /* Clear the bit */
  3294. val &= ~bit;
  3295. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3296. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3297. }
  3298. /*
  3299. * Set RESET_IN_PROGRESS for the current engine.
  3300. *
  3301. * should be run under rtnl lock
  3302. */
  3303. void bnx2x_set_reset_in_progress(struct bnx2x *bp)
  3304. {
  3305. u32 val;
  3306. u32 bit = BP_PATH(bp) ?
  3307. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3308. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3309. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3310. /* Set the bit */
  3311. val |= bit;
  3312. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3313. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3314. }
  3315. /*
  3316. * Checks the RESET_IN_PROGRESS bit for the given engine.
  3317. * should be run under rtnl lock
  3318. */
  3319. bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
  3320. {
  3321. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3322. u32 bit = engine ?
  3323. BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
  3324. /* return false if bit is set */
  3325. return (val & bit) ? false : true;
  3326. }
  3327. /*
  3328. * set pf load for the current pf.
  3329. *
  3330. * should be run under rtnl lock
  3331. */
  3332. void bnx2x_set_pf_load(struct bnx2x *bp)
  3333. {
  3334. u32 val1, val;
  3335. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3336. BNX2X_PATH0_LOAD_CNT_MASK;
  3337. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3338. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3339. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3340. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3341. DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
  3342. /* get the current counter value */
  3343. val1 = (val & mask) >> shift;
  3344. /* set bit of that PF */
  3345. val1 |= (1 << bp->pf_num);
  3346. /* clear the old value */
  3347. val &= ~mask;
  3348. /* set the new one */
  3349. val |= ((val1 << shift) & mask);
  3350. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3351. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3352. }
  3353. /**
  3354. * bnx2x_clear_pf_load - clear pf load mark
  3355. *
  3356. * @bp: driver handle
  3357. *
  3358. * Should be run under rtnl lock.
  3359. * Decrements the load counter for the current engine. Returns
  3360. * whether other functions are still loaded
  3361. */
  3362. bool bnx2x_clear_pf_load(struct bnx2x *bp)
  3363. {
  3364. u32 val1, val;
  3365. u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
  3366. BNX2X_PATH0_LOAD_CNT_MASK;
  3367. u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3368. BNX2X_PATH0_LOAD_CNT_SHIFT;
  3369. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3370. val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3371. DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
  3372. /* get the current counter value */
  3373. val1 = (val & mask) >> shift;
  3374. /* clear bit of that PF */
  3375. val1 &= ~(1 << bp->pf_num);
  3376. /* clear the old value */
  3377. val &= ~mask;
  3378. /* set the new one */
  3379. val |= ((val1 << shift) & mask);
  3380. REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
  3381. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
  3382. return val1 != 0;
  3383. }
  3384. /*
  3385. * Read the load status for the current engine.
  3386. *
  3387. * should be run under rtnl lock
  3388. */
  3389. static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
  3390. {
  3391. u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
  3392. BNX2X_PATH0_LOAD_CNT_MASK);
  3393. u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
  3394. BNX2X_PATH0_LOAD_CNT_SHIFT);
  3395. u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
  3396. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
  3397. val = (val & mask) >> shift;
  3398. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
  3399. engine, val);
  3400. return val != 0;
  3401. }
  3402. static void _print_next_block(int idx, const char *blk)
  3403. {
  3404. pr_cont("%s%s", idx ? ", " : "", blk);
  3405. }
  3406. static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
  3407. bool print)
  3408. {
  3409. int i = 0;
  3410. u32 cur_bit = 0;
  3411. for (i = 0; sig; i++) {
  3412. cur_bit = ((u32)0x1 << i);
  3413. if (sig & cur_bit) {
  3414. switch (cur_bit) {
  3415. case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
  3416. if (print)
  3417. _print_next_block(par_num++, "BRB");
  3418. break;
  3419. case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
  3420. if (print)
  3421. _print_next_block(par_num++, "PARSER");
  3422. break;
  3423. case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
  3424. if (print)
  3425. _print_next_block(par_num++, "TSDM");
  3426. break;
  3427. case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
  3428. if (print)
  3429. _print_next_block(par_num++,
  3430. "SEARCHER");
  3431. break;
  3432. case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
  3433. if (print)
  3434. _print_next_block(par_num++, "TCM");
  3435. break;
  3436. case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
  3437. if (print)
  3438. _print_next_block(par_num++, "TSEMI");
  3439. break;
  3440. case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
  3441. if (print)
  3442. _print_next_block(par_num++, "XPB");
  3443. break;
  3444. }
  3445. /* Clear the bit */
  3446. sig &= ~cur_bit;
  3447. }
  3448. }
  3449. return par_num;
  3450. }
  3451. static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
  3452. bool *global, bool print)
  3453. {
  3454. int i = 0;
  3455. u32 cur_bit = 0;
  3456. for (i = 0; sig; i++) {
  3457. cur_bit = ((u32)0x1 << i);
  3458. if (sig & cur_bit) {
  3459. switch (cur_bit) {
  3460. case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
  3461. if (print)
  3462. _print_next_block(par_num++, "PBF");
  3463. break;
  3464. case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
  3465. if (print)
  3466. _print_next_block(par_num++, "QM");
  3467. break;
  3468. case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
  3469. if (print)
  3470. _print_next_block(par_num++, "TM");
  3471. break;
  3472. case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
  3473. if (print)
  3474. _print_next_block(par_num++, "XSDM");
  3475. break;
  3476. case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
  3477. if (print)
  3478. _print_next_block(par_num++, "XCM");
  3479. break;
  3480. case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
  3481. if (print)
  3482. _print_next_block(par_num++, "XSEMI");
  3483. break;
  3484. case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
  3485. if (print)
  3486. _print_next_block(par_num++,
  3487. "DOORBELLQ");
  3488. break;
  3489. case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
  3490. if (print)
  3491. _print_next_block(par_num++, "NIG");
  3492. break;
  3493. case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
  3494. if (print)
  3495. _print_next_block(par_num++,
  3496. "VAUX PCI CORE");
  3497. *global = true;
  3498. break;
  3499. case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
  3500. if (print)
  3501. _print_next_block(par_num++, "DEBUG");
  3502. break;
  3503. case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
  3504. if (print)
  3505. _print_next_block(par_num++, "USDM");
  3506. break;
  3507. case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
  3508. if (print)
  3509. _print_next_block(par_num++, "UCM");
  3510. break;
  3511. case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
  3512. if (print)
  3513. _print_next_block(par_num++, "USEMI");
  3514. break;
  3515. case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
  3516. if (print)
  3517. _print_next_block(par_num++, "UPB");
  3518. break;
  3519. case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
  3520. if (print)
  3521. _print_next_block(par_num++, "CSDM");
  3522. break;
  3523. case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
  3524. if (print)
  3525. _print_next_block(par_num++, "CCM");
  3526. break;
  3527. }
  3528. /* Clear the bit */
  3529. sig &= ~cur_bit;
  3530. }
  3531. }
  3532. return par_num;
  3533. }
  3534. static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
  3535. bool print)
  3536. {
  3537. int i = 0;
  3538. u32 cur_bit = 0;
  3539. for (i = 0; sig; i++) {
  3540. cur_bit = ((u32)0x1 << i);
  3541. if (sig & cur_bit) {
  3542. switch (cur_bit) {
  3543. case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
  3544. if (print)
  3545. _print_next_block(par_num++, "CSEMI");
  3546. break;
  3547. case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
  3548. if (print)
  3549. _print_next_block(par_num++, "PXP");
  3550. break;
  3551. case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
  3552. if (print)
  3553. _print_next_block(par_num++,
  3554. "PXPPCICLOCKCLIENT");
  3555. break;
  3556. case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
  3557. if (print)
  3558. _print_next_block(par_num++, "CFC");
  3559. break;
  3560. case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
  3561. if (print)
  3562. _print_next_block(par_num++, "CDU");
  3563. break;
  3564. case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
  3565. if (print)
  3566. _print_next_block(par_num++, "DMAE");
  3567. break;
  3568. case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
  3569. if (print)
  3570. _print_next_block(par_num++, "IGU");
  3571. break;
  3572. case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
  3573. if (print)
  3574. _print_next_block(par_num++, "MISC");
  3575. break;
  3576. }
  3577. /* Clear the bit */
  3578. sig &= ~cur_bit;
  3579. }
  3580. }
  3581. return par_num;
  3582. }
  3583. static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
  3584. bool *global, bool print)
  3585. {
  3586. int i = 0;
  3587. u32 cur_bit = 0;
  3588. for (i = 0; sig; i++) {
  3589. cur_bit = ((u32)0x1 << i);
  3590. if (sig & cur_bit) {
  3591. switch (cur_bit) {
  3592. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
  3593. if (print)
  3594. _print_next_block(par_num++, "MCP ROM");
  3595. *global = true;
  3596. break;
  3597. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
  3598. if (print)
  3599. _print_next_block(par_num++,
  3600. "MCP UMP RX");
  3601. *global = true;
  3602. break;
  3603. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
  3604. if (print)
  3605. _print_next_block(par_num++,
  3606. "MCP UMP TX");
  3607. *global = true;
  3608. break;
  3609. case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
  3610. if (print)
  3611. _print_next_block(par_num++,
  3612. "MCP SCPAD");
  3613. *global = true;
  3614. break;
  3615. }
  3616. /* Clear the bit */
  3617. sig &= ~cur_bit;
  3618. }
  3619. }
  3620. return par_num;
  3621. }
  3622. static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
  3623. bool print)
  3624. {
  3625. int i = 0;
  3626. u32 cur_bit = 0;
  3627. for (i = 0; sig; i++) {
  3628. cur_bit = ((u32)0x1 << i);
  3629. if (sig & cur_bit) {
  3630. switch (cur_bit) {
  3631. case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
  3632. if (print)
  3633. _print_next_block(par_num++, "PGLUE_B");
  3634. break;
  3635. case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
  3636. if (print)
  3637. _print_next_block(par_num++, "ATC");
  3638. break;
  3639. }
  3640. /* Clear the bit */
  3641. sig &= ~cur_bit;
  3642. }
  3643. }
  3644. return par_num;
  3645. }
  3646. static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
  3647. u32 *sig)
  3648. {
  3649. if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
  3650. (sig[1] & HW_PRTY_ASSERT_SET_1) ||
  3651. (sig[2] & HW_PRTY_ASSERT_SET_2) ||
  3652. (sig[3] & HW_PRTY_ASSERT_SET_3) ||
  3653. (sig[4] & HW_PRTY_ASSERT_SET_4)) {
  3654. int par_num = 0;
  3655. DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
  3656. "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
  3657. sig[0] & HW_PRTY_ASSERT_SET_0,
  3658. sig[1] & HW_PRTY_ASSERT_SET_1,
  3659. sig[2] & HW_PRTY_ASSERT_SET_2,
  3660. sig[3] & HW_PRTY_ASSERT_SET_3,
  3661. sig[4] & HW_PRTY_ASSERT_SET_4);
  3662. if (print)
  3663. netdev_err(bp->dev,
  3664. "Parity errors detected in blocks: ");
  3665. par_num = bnx2x_check_blocks_with_parity0(
  3666. sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
  3667. par_num = bnx2x_check_blocks_with_parity1(
  3668. sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
  3669. par_num = bnx2x_check_blocks_with_parity2(
  3670. sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
  3671. par_num = bnx2x_check_blocks_with_parity3(
  3672. sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
  3673. par_num = bnx2x_check_blocks_with_parity4(
  3674. sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
  3675. if (print)
  3676. pr_cont("\n");
  3677. return true;
  3678. } else
  3679. return false;
  3680. }
  3681. /**
  3682. * bnx2x_chk_parity_attn - checks for parity attentions.
  3683. *
  3684. * @bp: driver handle
  3685. * @global: true if there was a global attention
  3686. * @print: show parity attention in syslog
  3687. */
  3688. bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
  3689. {
  3690. struct attn_route attn = { {0} };
  3691. int port = BP_PORT(bp);
  3692. attn.sig[0] = REG_RD(bp,
  3693. MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
  3694. port*4);
  3695. attn.sig[1] = REG_RD(bp,
  3696. MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
  3697. port*4);
  3698. attn.sig[2] = REG_RD(bp,
  3699. MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
  3700. port*4);
  3701. attn.sig[3] = REG_RD(bp,
  3702. MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
  3703. port*4);
  3704. if (!CHIP_IS_E1x(bp))
  3705. attn.sig[4] = REG_RD(bp,
  3706. MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
  3707. port*4);
  3708. return bnx2x_parity_attn(bp, global, print, attn.sig);
  3709. }
  3710. static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
  3711. {
  3712. u32 val;
  3713. if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
  3714. val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
  3715. BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
  3716. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
  3717. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
  3718. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
  3719. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
  3720. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
  3721. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
  3722. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
  3723. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
  3724. if (val &
  3725. PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
  3726. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
  3727. if (val &
  3728. PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
  3729. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
  3730. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
  3731. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
  3732. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
  3733. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
  3734. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
  3735. BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
  3736. }
  3737. if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
  3738. val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
  3739. BNX2X_ERR("ATC hw attention 0x%x\n", val);
  3740. if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
  3741. BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
  3742. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
  3743. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
  3744. if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
  3745. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
  3746. if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
  3747. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
  3748. if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
  3749. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
  3750. if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
  3751. BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
  3752. }
  3753. if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  3754. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
  3755. BNX2X_ERR("FATAL parity attention set4 0x%x\n",
  3756. (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
  3757. AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
  3758. }
  3759. }
  3760. static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
  3761. {
  3762. struct attn_route attn, *group_mask;
  3763. int port = BP_PORT(bp);
  3764. int index;
  3765. u32 reg_addr;
  3766. u32 val;
  3767. u32 aeu_mask;
  3768. bool global = false;
  3769. /* need to take HW lock because MCP or other port might also
  3770. try to handle this event */
  3771. bnx2x_acquire_alr(bp);
  3772. if (bnx2x_chk_parity_attn(bp, &global, true)) {
  3773. #ifndef BNX2X_STOP_ON_ERROR
  3774. bp->recovery_state = BNX2X_RECOVERY_INIT;
  3775. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  3776. /* Disable HW interrupts */
  3777. bnx2x_int_disable(bp);
  3778. /* In case of parity errors don't handle attentions so that
  3779. * other function would "see" parity errors.
  3780. */
  3781. #else
  3782. bnx2x_panic();
  3783. #endif
  3784. bnx2x_release_alr(bp);
  3785. return;
  3786. }
  3787. attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
  3788. attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
  3789. attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
  3790. attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
  3791. if (!CHIP_IS_E1x(bp))
  3792. attn.sig[4] =
  3793. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
  3794. else
  3795. attn.sig[4] = 0;
  3796. DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
  3797. attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
  3798. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  3799. if (deasserted & (1 << index)) {
  3800. group_mask = &bp->attn_group[index];
  3801. DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
  3802. index,
  3803. group_mask->sig[0], group_mask->sig[1],
  3804. group_mask->sig[2], group_mask->sig[3],
  3805. group_mask->sig[4]);
  3806. bnx2x_attn_int_deasserted4(bp,
  3807. attn.sig[4] & group_mask->sig[4]);
  3808. bnx2x_attn_int_deasserted3(bp,
  3809. attn.sig[3] & group_mask->sig[3]);
  3810. bnx2x_attn_int_deasserted1(bp,
  3811. attn.sig[1] & group_mask->sig[1]);
  3812. bnx2x_attn_int_deasserted2(bp,
  3813. attn.sig[2] & group_mask->sig[2]);
  3814. bnx2x_attn_int_deasserted0(bp,
  3815. attn.sig[0] & group_mask->sig[0]);
  3816. }
  3817. }
  3818. bnx2x_release_alr(bp);
  3819. if (bp->common.int_block == INT_BLOCK_HC)
  3820. reg_addr = (HC_REG_COMMAND_REG + port*32 +
  3821. COMMAND_REG_ATTN_BITS_CLR);
  3822. else
  3823. reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
  3824. val = ~deasserted;
  3825. DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
  3826. (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
  3827. REG_WR(bp, reg_addr, val);
  3828. if (~bp->attn_state & deasserted)
  3829. BNX2X_ERR("IGU ERROR\n");
  3830. reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  3831. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  3832. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3833. aeu_mask = REG_RD(bp, reg_addr);
  3834. DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
  3835. aeu_mask, deasserted);
  3836. aeu_mask |= (deasserted & 0x3ff);
  3837. DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
  3838. REG_WR(bp, reg_addr, aeu_mask);
  3839. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
  3840. DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
  3841. bp->attn_state &= ~deasserted;
  3842. DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
  3843. }
  3844. static void bnx2x_attn_int(struct bnx2x *bp)
  3845. {
  3846. /* read local copy of bits */
  3847. u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
  3848. attn_bits);
  3849. u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
  3850. attn_bits_ack);
  3851. u32 attn_state = bp->attn_state;
  3852. /* look for changed bits */
  3853. u32 asserted = attn_bits & ~attn_ack & ~attn_state;
  3854. u32 deasserted = ~attn_bits & attn_ack & attn_state;
  3855. DP(NETIF_MSG_HW,
  3856. "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
  3857. attn_bits, attn_ack, asserted, deasserted);
  3858. if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
  3859. BNX2X_ERR("BAD attention state\n");
  3860. /* handle bits that were raised */
  3861. if (asserted)
  3862. bnx2x_attn_int_asserted(bp, asserted);
  3863. if (deasserted)
  3864. bnx2x_attn_int_deasserted(bp, deasserted);
  3865. }
  3866. void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
  3867. u16 index, u8 op, u8 update)
  3868. {
  3869. u32 igu_addr = bp->igu_base_addr;
  3870. igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
  3871. bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
  3872. igu_addr);
  3873. }
  3874. static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
  3875. {
  3876. /* No memory barriers */
  3877. storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
  3878. mmiowb(); /* keep prod updates ordered */
  3879. }
  3880. static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
  3881. union event_ring_elem *elem)
  3882. {
  3883. u8 err = elem->message.error;
  3884. if (!bp->cnic_eth_dev.starting_cid ||
  3885. (cid < bp->cnic_eth_dev.starting_cid &&
  3886. cid != bp->cnic_eth_dev.iscsi_l2_cid))
  3887. return 1;
  3888. DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
  3889. if (unlikely(err)) {
  3890. BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
  3891. cid);
  3892. bnx2x_panic_dump(bp);
  3893. }
  3894. bnx2x_cnic_cfc_comp(bp, cid, err);
  3895. return 0;
  3896. }
  3897. static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
  3898. {
  3899. struct bnx2x_mcast_ramrod_params rparam;
  3900. int rc;
  3901. memset(&rparam, 0, sizeof(rparam));
  3902. rparam.mcast_obj = &bp->mcast_obj;
  3903. netif_addr_lock_bh(bp->dev);
  3904. /* Clear pending state for the last command */
  3905. bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
  3906. /* If there are pending mcast commands - send them */
  3907. if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
  3908. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
  3909. if (rc < 0)
  3910. BNX2X_ERR("Failed to send pending mcast commands: %d\n",
  3911. rc);
  3912. }
  3913. netif_addr_unlock_bh(bp->dev);
  3914. }
  3915. static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
  3916. union event_ring_elem *elem)
  3917. {
  3918. unsigned long ramrod_flags = 0;
  3919. int rc = 0;
  3920. u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
  3921. struct bnx2x_vlan_mac_obj *vlan_mac_obj;
  3922. /* Always push next commands out, don't wait here */
  3923. __set_bit(RAMROD_CONT, &ramrod_flags);
  3924. switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
  3925. case BNX2X_FILTER_MAC_PENDING:
  3926. DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
  3927. if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
  3928. vlan_mac_obj = &bp->iscsi_l2_mac_obj;
  3929. else
  3930. vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
  3931. break;
  3932. case BNX2X_FILTER_MCAST_PENDING:
  3933. DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
  3934. /* This is only relevant for 57710 where multicast MACs are
  3935. * configured as unicast MACs using the same ramrod.
  3936. */
  3937. bnx2x_handle_mcast_eqe(bp);
  3938. return;
  3939. default:
  3940. BNX2X_ERR("Unsupported classification command: %d\n",
  3941. elem->message.data.eth_event.echo);
  3942. return;
  3943. }
  3944. rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
  3945. if (rc < 0)
  3946. BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
  3947. else if (rc > 0)
  3948. DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
  3949. }
  3950. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
  3951. static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
  3952. {
  3953. netif_addr_lock_bh(bp->dev);
  3954. clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  3955. /* Send rx_mode command again if was requested */
  3956. if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
  3957. bnx2x_set_storm_rx_mode(bp);
  3958. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
  3959. &bp->sp_state))
  3960. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  3961. else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
  3962. &bp->sp_state))
  3963. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  3964. netif_addr_unlock_bh(bp->dev);
  3965. }
  3966. static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
  3967. union event_ring_elem *elem)
  3968. {
  3969. if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
  3970. DP(BNX2X_MSG_SP,
  3971. "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
  3972. elem->message.data.vif_list_event.func_bit_map);
  3973. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
  3974. elem->message.data.vif_list_event.func_bit_map);
  3975. } else if (elem->message.data.vif_list_event.echo ==
  3976. VIF_LIST_RULE_SET) {
  3977. DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
  3978. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
  3979. }
  3980. }
  3981. /* called with rtnl_lock */
  3982. static void bnx2x_after_function_update(struct bnx2x *bp)
  3983. {
  3984. int q, rc;
  3985. struct bnx2x_fastpath *fp;
  3986. struct bnx2x_queue_state_params queue_params = {NULL};
  3987. struct bnx2x_queue_update_params *q_update_params =
  3988. &queue_params.params.update;
  3989. /* Send Q update command with afex vlan removal values for all Qs */
  3990. queue_params.cmd = BNX2X_Q_CMD_UPDATE;
  3991. /* set silent vlan removal values according to vlan mode */
  3992. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
  3993. &q_update_params->update_flags);
  3994. __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
  3995. &q_update_params->update_flags);
  3996. __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
  3997. /* in access mode mark mask and value are 0 to strip all vlans */
  3998. if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
  3999. q_update_params->silent_removal_value = 0;
  4000. q_update_params->silent_removal_mask = 0;
  4001. } else {
  4002. q_update_params->silent_removal_value =
  4003. (bp->afex_def_vlan_tag & VLAN_VID_MASK);
  4004. q_update_params->silent_removal_mask = VLAN_VID_MASK;
  4005. }
  4006. for_each_eth_queue(bp, q) {
  4007. /* Set the appropriate Queue object */
  4008. fp = &bp->fp[q];
  4009. queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  4010. /* send the ramrod */
  4011. rc = bnx2x_queue_state_change(bp, &queue_params);
  4012. if (rc < 0)
  4013. BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
  4014. q);
  4015. }
  4016. if (!NO_FCOE(bp)) {
  4017. fp = &bp->fp[FCOE_IDX(bp)];
  4018. queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  4019. /* clear pending completion bit */
  4020. __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
  4021. /* mark latest Q bit */
  4022. smp_mb__before_clear_bit();
  4023. set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
  4024. smp_mb__after_clear_bit();
  4025. /* send Q update ramrod for FCoE Q */
  4026. rc = bnx2x_queue_state_change(bp, &queue_params);
  4027. if (rc < 0)
  4028. BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
  4029. q);
  4030. } else {
  4031. /* If no FCoE ring - ACK MCP now */
  4032. bnx2x_link_report(bp);
  4033. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
  4034. }
  4035. }
  4036. static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
  4037. struct bnx2x *bp, u32 cid)
  4038. {
  4039. DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
  4040. if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
  4041. return &bnx2x_fcoe_sp_obj(bp, q_obj);
  4042. else
  4043. return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
  4044. }
  4045. static void bnx2x_eq_int(struct bnx2x *bp)
  4046. {
  4047. u16 hw_cons, sw_cons, sw_prod;
  4048. union event_ring_elem *elem;
  4049. u8 echo;
  4050. u32 cid;
  4051. u8 opcode;
  4052. int spqe_cnt = 0;
  4053. struct bnx2x_queue_sp_obj *q_obj;
  4054. struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
  4055. struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
  4056. hw_cons = le16_to_cpu(*bp->eq_cons_sb);
  4057. /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
  4058. * when we get the the next-page we nned to adjust so the loop
  4059. * condition below will be met. The next element is the size of a
  4060. * regular element and hence incrementing by 1
  4061. */
  4062. if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
  4063. hw_cons++;
  4064. /* This function may never run in parallel with itself for a
  4065. * specific bp, thus there is no need in "paired" read memory
  4066. * barrier here.
  4067. */
  4068. sw_cons = bp->eq_cons;
  4069. sw_prod = bp->eq_prod;
  4070. DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
  4071. hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
  4072. for (; sw_cons != hw_cons;
  4073. sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
  4074. elem = &bp->eq_ring[EQ_DESC(sw_cons)];
  4075. cid = SW_CID(elem->message.data.cfc_del_event.cid);
  4076. opcode = elem->message.opcode;
  4077. /* handle eq element */
  4078. switch (opcode) {
  4079. case EVENT_RING_OPCODE_STAT_QUERY:
  4080. DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
  4081. "got statistics comp event %d\n",
  4082. bp->stats_comp++);
  4083. /* nothing to do with stats comp */
  4084. goto next_spqe;
  4085. case EVENT_RING_OPCODE_CFC_DEL:
  4086. /* handle according to cid range */
  4087. /*
  4088. * we may want to verify here that the bp state is
  4089. * HALTING
  4090. */
  4091. DP(BNX2X_MSG_SP,
  4092. "got delete ramrod for MULTI[%d]\n", cid);
  4093. if (CNIC_LOADED(bp) &&
  4094. !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
  4095. goto next_spqe;
  4096. q_obj = bnx2x_cid_to_q_obj(bp, cid);
  4097. if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
  4098. break;
  4099. goto next_spqe;
  4100. case EVENT_RING_OPCODE_STOP_TRAFFIC:
  4101. DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
  4102. if (f_obj->complete_cmd(bp, f_obj,
  4103. BNX2X_F_CMD_TX_STOP))
  4104. break;
  4105. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
  4106. goto next_spqe;
  4107. case EVENT_RING_OPCODE_START_TRAFFIC:
  4108. DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
  4109. if (f_obj->complete_cmd(bp, f_obj,
  4110. BNX2X_F_CMD_TX_START))
  4111. break;
  4112. bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
  4113. goto next_spqe;
  4114. case EVENT_RING_OPCODE_FUNCTION_UPDATE:
  4115. echo = elem->message.data.function_update_event.echo;
  4116. if (echo == SWITCH_UPDATE) {
  4117. DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
  4118. "got FUNC_SWITCH_UPDATE ramrod\n");
  4119. if (f_obj->complete_cmd(
  4120. bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
  4121. break;
  4122. } else {
  4123. DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
  4124. "AFEX: ramrod completed FUNCTION_UPDATE\n");
  4125. f_obj->complete_cmd(bp, f_obj,
  4126. BNX2X_F_CMD_AFEX_UPDATE);
  4127. /* We will perform the Queues update from
  4128. * sp_rtnl task as all Queue SP operations
  4129. * should run under rtnl_lock.
  4130. */
  4131. smp_mb__before_clear_bit();
  4132. set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
  4133. &bp->sp_rtnl_state);
  4134. smp_mb__after_clear_bit();
  4135. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  4136. }
  4137. goto next_spqe;
  4138. case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
  4139. f_obj->complete_cmd(bp, f_obj,
  4140. BNX2X_F_CMD_AFEX_VIFLISTS);
  4141. bnx2x_after_afex_vif_lists(bp, elem);
  4142. goto next_spqe;
  4143. case EVENT_RING_OPCODE_FUNCTION_START:
  4144. DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
  4145. "got FUNC_START ramrod\n");
  4146. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
  4147. break;
  4148. goto next_spqe;
  4149. case EVENT_RING_OPCODE_FUNCTION_STOP:
  4150. DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
  4151. "got FUNC_STOP ramrod\n");
  4152. if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
  4153. break;
  4154. goto next_spqe;
  4155. }
  4156. switch (opcode | bp->state) {
  4157. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  4158. BNX2X_STATE_OPEN):
  4159. case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
  4160. BNX2X_STATE_OPENING_WAIT4_PORT):
  4161. cid = elem->message.data.eth_event.echo &
  4162. BNX2X_SWCID_MASK;
  4163. DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
  4164. cid);
  4165. rss_raw->clear_pending(rss_raw);
  4166. break;
  4167. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
  4168. case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
  4169. case (EVENT_RING_OPCODE_SET_MAC |
  4170. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4171. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  4172. BNX2X_STATE_OPEN):
  4173. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  4174. BNX2X_STATE_DIAG):
  4175. case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
  4176. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4177. DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
  4178. bnx2x_handle_classification_eqe(bp, elem);
  4179. break;
  4180. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  4181. BNX2X_STATE_OPEN):
  4182. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  4183. BNX2X_STATE_DIAG):
  4184. case (EVENT_RING_OPCODE_MULTICAST_RULES |
  4185. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4186. DP(BNX2X_MSG_SP, "got mcast ramrod\n");
  4187. bnx2x_handle_mcast_eqe(bp);
  4188. break;
  4189. case (EVENT_RING_OPCODE_FILTERS_RULES |
  4190. BNX2X_STATE_OPEN):
  4191. case (EVENT_RING_OPCODE_FILTERS_RULES |
  4192. BNX2X_STATE_DIAG):
  4193. case (EVENT_RING_OPCODE_FILTERS_RULES |
  4194. BNX2X_STATE_CLOSING_WAIT4_HALT):
  4195. DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
  4196. bnx2x_handle_rx_mode_eqe(bp);
  4197. break;
  4198. default:
  4199. /* unknown event log error and continue */
  4200. BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
  4201. elem->message.opcode, bp->state);
  4202. }
  4203. next_spqe:
  4204. spqe_cnt++;
  4205. } /* for */
  4206. smp_mb__before_atomic_inc();
  4207. atomic_add(spqe_cnt, &bp->eq_spq_left);
  4208. bp->eq_cons = sw_cons;
  4209. bp->eq_prod = sw_prod;
  4210. /* Make sure that above mem writes were issued towards the memory */
  4211. smp_wmb();
  4212. /* update producer */
  4213. bnx2x_update_eq_prod(bp, bp->eq_prod);
  4214. }
  4215. static void bnx2x_sp_task(struct work_struct *work)
  4216. {
  4217. struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
  4218. u16 status;
  4219. status = bnx2x_update_dsb_idx(bp);
  4220. /* if (status == 0) */
  4221. /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
  4222. DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
  4223. /* HW attentions */
  4224. if (status & BNX2X_DEF_SB_ATT_IDX) {
  4225. bnx2x_attn_int(bp);
  4226. status &= ~BNX2X_DEF_SB_ATT_IDX;
  4227. }
  4228. /* SP events: STAT_QUERY and others */
  4229. if (status & BNX2X_DEF_SB_IDX) {
  4230. struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
  4231. if (FCOE_INIT(bp) &&
  4232. (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
  4233. /*
  4234. * Prevent local bottom-halves from running as
  4235. * we are going to change the local NAPI list.
  4236. */
  4237. local_bh_disable();
  4238. napi_schedule(&bnx2x_fcoe(bp, napi));
  4239. local_bh_enable();
  4240. }
  4241. /* Handle EQ completions */
  4242. bnx2x_eq_int(bp);
  4243. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
  4244. le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
  4245. status &= ~BNX2X_DEF_SB_IDX;
  4246. }
  4247. if (unlikely(status))
  4248. DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
  4249. status);
  4250. bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
  4251. le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
  4252. /* afex - poll to check if VIFSET_ACK should be sent to MFW */
  4253. if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
  4254. &bp->sp_state)) {
  4255. bnx2x_link_report(bp);
  4256. bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
  4257. }
  4258. }
  4259. irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
  4260. {
  4261. struct net_device *dev = dev_instance;
  4262. struct bnx2x *bp = netdev_priv(dev);
  4263. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
  4264. IGU_INT_DISABLE, 0);
  4265. #ifdef BNX2X_STOP_ON_ERROR
  4266. if (unlikely(bp->panic))
  4267. return IRQ_HANDLED;
  4268. #endif
  4269. if (CNIC_LOADED(bp)) {
  4270. struct cnic_ops *c_ops;
  4271. rcu_read_lock();
  4272. c_ops = rcu_dereference(bp->cnic_ops);
  4273. if (c_ops)
  4274. c_ops->cnic_handler(bp->cnic_data, NULL);
  4275. rcu_read_unlock();
  4276. }
  4277. queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
  4278. return IRQ_HANDLED;
  4279. }
  4280. /* end of slow path */
  4281. void bnx2x_drv_pulse(struct bnx2x *bp)
  4282. {
  4283. SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
  4284. bp->fw_drv_pulse_wr_seq);
  4285. }
  4286. static void bnx2x_timer(unsigned long data)
  4287. {
  4288. struct bnx2x *bp = (struct bnx2x *) data;
  4289. if (!netif_running(bp->dev))
  4290. return;
  4291. if (!BP_NOMCP(bp)) {
  4292. int mb_idx = BP_FW_MB_IDX(bp);
  4293. u32 drv_pulse;
  4294. u32 mcp_pulse;
  4295. ++bp->fw_drv_pulse_wr_seq;
  4296. bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
  4297. /* TBD - add SYSTEM_TIME */
  4298. drv_pulse = bp->fw_drv_pulse_wr_seq;
  4299. bnx2x_drv_pulse(bp);
  4300. mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
  4301. MCP_PULSE_SEQ_MASK);
  4302. /* The delta between driver pulse and mcp response
  4303. * should be 1 (before mcp response) or 0 (after mcp response)
  4304. */
  4305. if ((drv_pulse != mcp_pulse) &&
  4306. (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
  4307. /* someone lost a heartbeat... */
  4308. BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
  4309. drv_pulse, mcp_pulse);
  4310. }
  4311. }
  4312. if (bp->state == BNX2X_STATE_OPEN)
  4313. bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
  4314. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4315. }
  4316. /* end of Statistics */
  4317. /* nic init */
  4318. /*
  4319. * nic init service functions
  4320. */
  4321. static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
  4322. {
  4323. u32 i;
  4324. if (!(len%4) && !(addr%4))
  4325. for (i = 0; i < len; i += 4)
  4326. REG_WR(bp, addr + i, fill);
  4327. else
  4328. for (i = 0; i < len; i++)
  4329. REG_WR8(bp, addr + i, fill);
  4330. }
  4331. /* helper: writes FP SP data to FW - data_size in dwords */
  4332. static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
  4333. int fw_sb_id,
  4334. u32 *sb_data_p,
  4335. u32 data_size)
  4336. {
  4337. int index;
  4338. for (index = 0; index < data_size; index++)
  4339. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4340. CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
  4341. sizeof(u32)*index,
  4342. *(sb_data_p + index));
  4343. }
  4344. static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
  4345. {
  4346. u32 *sb_data_p;
  4347. u32 data_size = 0;
  4348. struct hc_status_block_data_e2 sb_data_e2;
  4349. struct hc_status_block_data_e1x sb_data_e1x;
  4350. /* disable the function first */
  4351. if (!CHIP_IS_E1x(bp)) {
  4352. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4353. sb_data_e2.common.state = SB_DISABLED;
  4354. sb_data_e2.common.p_func.vf_valid = false;
  4355. sb_data_p = (u32 *)&sb_data_e2;
  4356. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4357. } else {
  4358. memset(&sb_data_e1x, 0,
  4359. sizeof(struct hc_status_block_data_e1x));
  4360. sb_data_e1x.common.state = SB_DISABLED;
  4361. sb_data_e1x.common.p_func.vf_valid = false;
  4362. sb_data_p = (u32 *)&sb_data_e1x;
  4363. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4364. }
  4365. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4366. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4367. CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
  4368. CSTORM_STATUS_BLOCK_SIZE);
  4369. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4370. CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
  4371. CSTORM_SYNC_BLOCK_SIZE);
  4372. }
  4373. /* helper: writes SP SB data to FW */
  4374. static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
  4375. struct hc_sp_status_block_data *sp_sb_data)
  4376. {
  4377. int func = BP_FUNC(bp);
  4378. int i;
  4379. for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
  4380. REG_WR(bp, BAR_CSTRORM_INTMEM +
  4381. CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
  4382. i*sizeof(u32),
  4383. *((u32 *)sp_sb_data + i));
  4384. }
  4385. static void bnx2x_zero_sp_sb(struct bnx2x *bp)
  4386. {
  4387. int func = BP_FUNC(bp);
  4388. struct hc_sp_status_block_data sp_sb_data;
  4389. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4390. sp_sb_data.state = SB_DISABLED;
  4391. sp_sb_data.p_func.vf_valid = false;
  4392. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4393. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4394. CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
  4395. CSTORM_SP_STATUS_BLOCK_SIZE);
  4396. bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
  4397. CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
  4398. CSTORM_SP_SYNC_BLOCK_SIZE);
  4399. }
  4400. static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
  4401. int igu_sb_id, int igu_seg_id)
  4402. {
  4403. hc_sm->igu_sb_id = igu_sb_id;
  4404. hc_sm->igu_seg_id = igu_seg_id;
  4405. hc_sm->timer_value = 0xFF;
  4406. hc_sm->time_to_expire = 0xFFFFFFFF;
  4407. }
  4408. /* allocates state machine ids. */
  4409. static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
  4410. {
  4411. /* zero out state machine indices */
  4412. /* rx indices */
  4413. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4414. /* tx indices */
  4415. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
  4416. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
  4417. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
  4418. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
  4419. /* map indices */
  4420. /* rx indices */
  4421. index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
  4422. SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4423. /* tx indices */
  4424. index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
  4425. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4426. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
  4427. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4428. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
  4429. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4430. index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
  4431. SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
  4432. }
  4433. static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
  4434. u8 vf_valid, int fw_sb_id, int igu_sb_id)
  4435. {
  4436. int igu_seg_id;
  4437. struct hc_status_block_data_e2 sb_data_e2;
  4438. struct hc_status_block_data_e1x sb_data_e1x;
  4439. struct hc_status_block_sm *hc_sm_p;
  4440. int data_size;
  4441. u32 *sb_data_p;
  4442. if (CHIP_INT_MODE_IS_BC(bp))
  4443. igu_seg_id = HC_SEG_ACCESS_NORM;
  4444. else
  4445. igu_seg_id = IGU_SEG_ACCESS_NORM;
  4446. bnx2x_zero_fp_sb(bp, fw_sb_id);
  4447. if (!CHIP_IS_E1x(bp)) {
  4448. memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
  4449. sb_data_e2.common.state = SB_ENABLED;
  4450. sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
  4451. sb_data_e2.common.p_func.vf_id = vfid;
  4452. sb_data_e2.common.p_func.vf_valid = vf_valid;
  4453. sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
  4454. sb_data_e2.common.same_igu_sb_1b = true;
  4455. sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
  4456. sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
  4457. hc_sm_p = sb_data_e2.common.state_machine;
  4458. sb_data_p = (u32 *)&sb_data_e2;
  4459. data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
  4460. bnx2x_map_sb_state_machines(sb_data_e2.index_data);
  4461. } else {
  4462. memset(&sb_data_e1x, 0,
  4463. sizeof(struct hc_status_block_data_e1x));
  4464. sb_data_e1x.common.state = SB_ENABLED;
  4465. sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
  4466. sb_data_e1x.common.p_func.vf_id = 0xff;
  4467. sb_data_e1x.common.p_func.vf_valid = false;
  4468. sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
  4469. sb_data_e1x.common.same_igu_sb_1b = true;
  4470. sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
  4471. sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
  4472. hc_sm_p = sb_data_e1x.common.state_machine;
  4473. sb_data_p = (u32 *)&sb_data_e1x;
  4474. data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
  4475. bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
  4476. }
  4477. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
  4478. igu_sb_id, igu_seg_id);
  4479. bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
  4480. igu_sb_id, igu_seg_id);
  4481. DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
  4482. /* write indecies to HW */
  4483. bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
  4484. }
  4485. static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
  4486. u16 tx_usec, u16 rx_usec)
  4487. {
  4488. bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
  4489. false, rx_usec);
  4490. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4491. HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
  4492. tx_usec);
  4493. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4494. HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
  4495. tx_usec);
  4496. bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
  4497. HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
  4498. tx_usec);
  4499. }
  4500. static void bnx2x_init_def_sb(struct bnx2x *bp)
  4501. {
  4502. struct host_sp_status_block *def_sb = bp->def_status_blk;
  4503. dma_addr_t mapping = bp->def_status_blk_mapping;
  4504. int igu_sp_sb_index;
  4505. int igu_seg_id;
  4506. int port = BP_PORT(bp);
  4507. int func = BP_FUNC(bp);
  4508. int reg_offset, reg_offset_en5;
  4509. u64 section;
  4510. int index;
  4511. struct hc_sp_status_block_data sp_sb_data;
  4512. memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
  4513. if (CHIP_INT_MODE_IS_BC(bp)) {
  4514. igu_sp_sb_index = DEF_SB_IGU_ID;
  4515. igu_seg_id = HC_SEG_ACCESS_DEF;
  4516. } else {
  4517. igu_sp_sb_index = bp->igu_dsb_id;
  4518. igu_seg_id = IGU_SEG_ACCESS_DEF;
  4519. }
  4520. /* ATTN */
  4521. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4522. atten_status_block);
  4523. def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
  4524. bp->attn_state = 0;
  4525. reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  4526. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  4527. reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
  4528. MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
  4529. for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
  4530. int sindex;
  4531. /* take care of sig[0]..sig[4] */
  4532. for (sindex = 0; sindex < 4; sindex++)
  4533. bp->attn_group[index].sig[sindex] =
  4534. REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
  4535. if (!CHIP_IS_E1x(bp))
  4536. /*
  4537. * enable5 is separate from the rest of the registers,
  4538. * and therefore the address skip is 4
  4539. * and not 16 between the different groups
  4540. */
  4541. bp->attn_group[index].sig[4] = REG_RD(bp,
  4542. reg_offset_en5 + 0x4*index);
  4543. else
  4544. bp->attn_group[index].sig[4] = 0;
  4545. }
  4546. if (bp->common.int_block == INT_BLOCK_HC) {
  4547. reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
  4548. HC_REG_ATTN_MSG0_ADDR_L);
  4549. REG_WR(bp, reg_offset, U64_LO(section));
  4550. REG_WR(bp, reg_offset + 4, U64_HI(section));
  4551. } else if (!CHIP_IS_E1x(bp)) {
  4552. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
  4553. REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
  4554. }
  4555. section = ((u64)mapping) + offsetof(struct host_sp_status_block,
  4556. sp_sb);
  4557. bnx2x_zero_sp_sb(bp);
  4558. sp_sb_data.state = SB_ENABLED;
  4559. sp_sb_data.host_sb_addr.lo = U64_LO(section);
  4560. sp_sb_data.host_sb_addr.hi = U64_HI(section);
  4561. sp_sb_data.igu_sb_id = igu_sp_sb_index;
  4562. sp_sb_data.igu_seg_id = igu_seg_id;
  4563. sp_sb_data.p_func.pf_id = func;
  4564. sp_sb_data.p_func.vnic_id = BP_VN(bp);
  4565. sp_sb_data.p_func.vf_id = 0xff;
  4566. bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
  4567. bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
  4568. }
  4569. void bnx2x_update_coalesce(struct bnx2x *bp)
  4570. {
  4571. int i;
  4572. for_each_eth_queue(bp, i)
  4573. bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
  4574. bp->tx_ticks, bp->rx_ticks);
  4575. }
  4576. static void bnx2x_init_sp_ring(struct bnx2x *bp)
  4577. {
  4578. spin_lock_init(&bp->spq_lock);
  4579. atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
  4580. bp->spq_prod_idx = 0;
  4581. bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
  4582. bp->spq_prod_bd = bp->spq;
  4583. bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
  4584. }
  4585. static void bnx2x_init_eq_ring(struct bnx2x *bp)
  4586. {
  4587. int i;
  4588. for (i = 1; i <= NUM_EQ_PAGES; i++) {
  4589. union event_ring_elem *elem =
  4590. &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
  4591. elem->next_page.addr.hi =
  4592. cpu_to_le32(U64_HI(bp->eq_mapping +
  4593. BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
  4594. elem->next_page.addr.lo =
  4595. cpu_to_le32(U64_LO(bp->eq_mapping +
  4596. BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
  4597. }
  4598. bp->eq_cons = 0;
  4599. bp->eq_prod = NUM_EQ_DESC;
  4600. bp->eq_cons_sb = BNX2X_EQ_INDEX;
  4601. /* we want a warning message before it gets rought... */
  4602. atomic_set(&bp->eq_spq_left,
  4603. min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
  4604. }
  4605. /* called with netif_addr_lock_bh() */
  4606. void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
  4607. unsigned long rx_mode_flags,
  4608. unsigned long rx_accept_flags,
  4609. unsigned long tx_accept_flags,
  4610. unsigned long ramrod_flags)
  4611. {
  4612. struct bnx2x_rx_mode_ramrod_params ramrod_param;
  4613. int rc;
  4614. memset(&ramrod_param, 0, sizeof(ramrod_param));
  4615. /* Prepare ramrod parameters */
  4616. ramrod_param.cid = 0;
  4617. ramrod_param.cl_id = cl_id;
  4618. ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
  4619. ramrod_param.func_id = BP_FUNC(bp);
  4620. ramrod_param.pstate = &bp->sp_state;
  4621. ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
  4622. ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
  4623. ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
  4624. set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
  4625. ramrod_param.ramrod_flags = ramrod_flags;
  4626. ramrod_param.rx_mode_flags = rx_mode_flags;
  4627. ramrod_param.rx_accept_flags = rx_accept_flags;
  4628. ramrod_param.tx_accept_flags = tx_accept_flags;
  4629. rc = bnx2x_config_rx_mode(bp, &ramrod_param);
  4630. if (rc < 0) {
  4631. BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
  4632. return;
  4633. }
  4634. }
  4635. /* called with netif_addr_lock_bh() */
  4636. void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
  4637. {
  4638. unsigned long rx_mode_flags = 0, ramrod_flags = 0;
  4639. unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
  4640. if (!NO_FCOE(bp))
  4641. /* Configure rx_mode of FCoE Queue */
  4642. __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
  4643. switch (bp->rx_mode) {
  4644. case BNX2X_RX_MODE_NONE:
  4645. /*
  4646. * 'drop all' supersedes any accept flags that may have been
  4647. * passed to the function.
  4648. */
  4649. break;
  4650. case BNX2X_RX_MODE_NORMAL:
  4651. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4652. __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
  4653. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4654. /* internal switching mode */
  4655. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4656. __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
  4657. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4658. break;
  4659. case BNX2X_RX_MODE_ALLMULTI:
  4660. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4661. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
  4662. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4663. /* internal switching mode */
  4664. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4665. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
  4666. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4667. break;
  4668. case BNX2X_RX_MODE_PROMISC:
  4669. /* According to deffinition of SI mode, iface in promisc mode
  4670. * should receive matched and unmatched (in resolution of port)
  4671. * unicast packets.
  4672. */
  4673. __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
  4674. __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
  4675. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
  4676. __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
  4677. /* internal switching mode */
  4678. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
  4679. __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
  4680. if (IS_MF_SI(bp))
  4681. __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
  4682. else
  4683. __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
  4684. break;
  4685. default:
  4686. BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
  4687. return;
  4688. }
  4689. if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
  4690. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
  4691. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
  4692. }
  4693. __set_bit(RAMROD_RX, &ramrod_flags);
  4694. __set_bit(RAMROD_TX, &ramrod_flags);
  4695. bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
  4696. tx_accept_flags, ramrod_flags);
  4697. }
  4698. static void bnx2x_init_internal_common(struct bnx2x *bp)
  4699. {
  4700. int i;
  4701. if (IS_MF_SI(bp))
  4702. /*
  4703. * In switch independent mode, the TSTORM needs to accept
  4704. * packets that failed classification, since approximate match
  4705. * mac addresses aren't written to NIG LLH
  4706. */
  4707. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  4708. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
  4709. else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
  4710. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  4711. TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
  4712. /* Zero this manually as its initialization is
  4713. currently missing in the initTool */
  4714. for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
  4715. REG_WR(bp, BAR_USTRORM_INTMEM +
  4716. USTORM_AGG_DATA_OFFSET + i * 4, 0);
  4717. if (!CHIP_IS_E1x(bp)) {
  4718. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
  4719. CHIP_INT_MODE_IS_BC(bp) ?
  4720. HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
  4721. }
  4722. }
  4723. static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
  4724. {
  4725. switch (load_code) {
  4726. case FW_MSG_CODE_DRV_LOAD_COMMON:
  4727. case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
  4728. bnx2x_init_internal_common(bp);
  4729. /* no break */
  4730. case FW_MSG_CODE_DRV_LOAD_PORT:
  4731. /* nothing to do */
  4732. /* no break */
  4733. case FW_MSG_CODE_DRV_LOAD_FUNCTION:
  4734. /* internal memory per function is
  4735. initialized inside bnx2x_pf_init */
  4736. break;
  4737. default:
  4738. BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
  4739. break;
  4740. }
  4741. }
  4742. static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
  4743. {
  4744. return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
  4745. }
  4746. static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
  4747. {
  4748. return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
  4749. }
  4750. static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
  4751. {
  4752. if (CHIP_IS_E1x(fp->bp))
  4753. return BP_L_ID(fp->bp) + fp->index;
  4754. else /* We want Client ID to be the same as IGU SB ID for 57712 */
  4755. return bnx2x_fp_igu_sb_id(fp);
  4756. }
  4757. static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
  4758. {
  4759. struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
  4760. u8 cos;
  4761. unsigned long q_type = 0;
  4762. u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
  4763. fp->rx_queue = fp_idx;
  4764. fp->cid = fp_idx;
  4765. fp->cl_id = bnx2x_fp_cl_id(fp);
  4766. fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
  4767. fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
  4768. /* qZone id equals to FW (per path) client id */
  4769. fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
  4770. /* init shortcut */
  4771. fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
  4772. /* Setup SB indicies */
  4773. fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
  4774. /* Configure Queue State object */
  4775. __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
  4776. __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
  4777. BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
  4778. /* init tx data */
  4779. for_each_cos_in_tx_queue(fp, cos) {
  4780. bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
  4781. CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
  4782. FP_COS_TO_TXQ(fp, cos, bp),
  4783. BNX2X_TX_SB_INDEX_BASE + cos, fp);
  4784. cids[cos] = fp->txdata_ptr[cos]->cid;
  4785. }
  4786. /* nothing more for vf to do here */
  4787. if (IS_VF(bp))
  4788. return;
  4789. bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
  4790. fp->fw_sb_id, fp->igu_sb_id);
  4791. bnx2x_update_fpsb_idx(fp);
  4792. bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
  4793. fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
  4794. bnx2x_sp_mapping(bp, q_rdata), q_type);
  4795. /**
  4796. * Configure classification DBs: Always enable Tx switching
  4797. */
  4798. bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
  4799. DP(NETIF_MSG_IFUP,
  4800. "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
  4801. fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
  4802. fp->igu_sb_id);
  4803. }
  4804. static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
  4805. {
  4806. int i;
  4807. for (i = 1; i <= NUM_TX_RINGS; i++) {
  4808. struct eth_tx_next_bd *tx_next_bd =
  4809. &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
  4810. tx_next_bd->addr_hi =
  4811. cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
  4812. BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
  4813. tx_next_bd->addr_lo =
  4814. cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
  4815. BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
  4816. }
  4817. SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
  4818. txdata->tx_db.data.zero_fill1 = 0;
  4819. txdata->tx_db.data.prod = 0;
  4820. txdata->tx_pkt_prod = 0;
  4821. txdata->tx_pkt_cons = 0;
  4822. txdata->tx_bd_prod = 0;
  4823. txdata->tx_bd_cons = 0;
  4824. txdata->tx_pkt = 0;
  4825. }
  4826. static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
  4827. {
  4828. int i;
  4829. for_each_tx_queue_cnic(bp, i)
  4830. bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
  4831. }
  4832. static void bnx2x_init_tx_rings(struct bnx2x *bp)
  4833. {
  4834. int i;
  4835. u8 cos;
  4836. for_each_eth_queue(bp, i)
  4837. for_each_cos_in_tx_queue(&bp->fp[i], cos)
  4838. bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
  4839. }
  4840. void bnx2x_nic_init_cnic(struct bnx2x *bp)
  4841. {
  4842. if (!NO_FCOE(bp))
  4843. bnx2x_init_fcoe_fp(bp);
  4844. bnx2x_init_sb(bp, bp->cnic_sb_mapping,
  4845. BNX2X_VF_ID_INVALID, false,
  4846. bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
  4847. /* ensure status block indices were read */
  4848. rmb();
  4849. bnx2x_init_rx_rings_cnic(bp);
  4850. bnx2x_init_tx_rings_cnic(bp);
  4851. /* flush all */
  4852. mb();
  4853. mmiowb();
  4854. }
  4855. void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
  4856. {
  4857. int i;
  4858. for_each_eth_queue(bp, i)
  4859. bnx2x_init_eth_fp(bp, i);
  4860. /* ensure status block indices were read */
  4861. rmb();
  4862. bnx2x_init_rx_rings(bp);
  4863. bnx2x_init_tx_rings(bp);
  4864. if (IS_VF(bp))
  4865. return;
  4866. /* Initialize MOD_ABS interrupts */
  4867. bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
  4868. bp->common.shmem_base, bp->common.shmem2_base,
  4869. BP_PORT(bp));
  4870. bnx2x_init_def_sb(bp);
  4871. bnx2x_update_dsb_idx(bp);
  4872. bnx2x_init_sp_ring(bp);
  4873. bnx2x_init_eq_ring(bp);
  4874. bnx2x_init_internal(bp, load_code);
  4875. bnx2x_pf_init(bp);
  4876. bnx2x_stats_init(bp);
  4877. /* flush all before enabling interrupts */
  4878. mb();
  4879. mmiowb();
  4880. bnx2x_int_enable(bp);
  4881. /* Check for SPIO5 */
  4882. bnx2x_attn_int_deasserted0(bp,
  4883. REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
  4884. AEU_INPUTS_ATTN_BITS_SPIO5);
  4885. }
  4886. /* end of nic init */
  4887. /*
  4888. * gzip service functions
  4889. */
  4890. static int bnx2x_gunzip_init(struct bnx2x *bp)
  4891. {
  4892. bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
  4893. &bp->gunzip_mapping, GFP_KERNEL);
  4894. if (bp->gunzip_buf == NULL)
  4895. goto gunzip_nomem1;
  4896. bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
  4897. if (bp->strm == NULL)
  4898. goto gunzip_nomem2;
  4899. bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
  4900. if (bp->strm->workspace == NULL)
  4901. goto gunzip_nomem3;
  4902. return 0;
  4903. gunzip_nomem3:
  4904. kfree(bp->strm);
  4905. bp->strm = NULL;
  4906. gunzip_nomem2:
  4907. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  4908. bp->gunzip_mapping);
  4909. bp->gunzip_buf = NULL;
  4910. gunzip_nomem1:
  4911. BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
  4912. return -ENOMEM;
  4913. }
  4914. static void bnx2x_gunzip_end(struct bnx2x *bp)
  4915. {
  4916. if (bp->strm) {
  4917. vfree(bp->strm->workspace);
  4918. kfree(bp->strm);
  4919. bp->strm = NULL;
  4920. }
  4921. if (bp->gunzip_buf) {
  4922. dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
  4923. bp->gunzip_mapping);
  4924. bp->gunzip_buf = NULL;
  4925. }
  4926. }
  4927. static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
  4928. {
  4929. int n, rc;
  4930. /* check gzip header */
  4931. if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
  4932. BNX2X_ERR("Bad gzip header\n");
  4933. return -EINVAL;
  4934. }
  4935. n = 10;
  4936. #define FNAME 0x8
  4937. if (zbuf[3] & FNAME)
  4938. while ((zbuf[n++] != 0) && (n < len));
  4939. bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
  4940. bp->strm->avail_in = len - n;
  4941. bp->strm->next_out = bp->gunzip_buf;
  4942. bp->strm->avail_out = FW_BUF_SIZE;
  4943. rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
  4944. if (rc != Z_OK)
  4945. return rc;
  4946. rc = zlib_inflate(bp->strm, Z_FINISH);
  4947. if ((rc != Z_OK) && (rc != Z_STREAM_END))
  4948. netdev_err(bp->dev, "Firmware decompression error: %s\n",
  4949. bp->strm->msg);
  4950. bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
  4951. if (bp->gunzip_outlen & 0x3)
  4952. netdev_err(bp->dev,
  4953. "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
  4954. bp->gunzip_outlen);
  4955. bp->gunzip_outlen >>= 2;
  4956. zlib_inflateEnd(bp->strm);
  4957. if (rc == Z_STREAM_END)
  4958. return 0;
  4959. return rc;
  4960. }
  4961. /* nic load/unload */
  4962. /*
  4963. * General service functions
  4964. */
  4965. /* send a NIG loopback debug packet */
  4966. static void bnx2x_lb_pckt(struct bnx2x *bp)
  4967. {
  4968. u32 wb_write[3];
  4969. /* Ethernet source and destination addresses */
  4970. wb_write[0] = 0x55555555;
  4971. wb_write[1] = 0x55555555;
  4972. wb_write[2] = 0x20; /* SOP */
  4973. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  4974. /* NON-IP protocol */
  4975. wb_write[0] = 0x09000000;
  4976. wb_write[1] = 0x55555555;
  4977. wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
  4978. REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
  4979. }
  4980. /* some of the internal memories
  4981. * are not directly readable from the driver
  4982. * to test them we send debug packets
  4983. */
  4984. static int bnx2x_int_mem_test(struct bnx2x *bp)
  4985. {
  4986. int factor;
  4987. int count, i;
  4988. u32 val = 0;
  4989. if (CHIP_REV_IS_FPGA(bp))
  4990. factor = 120;
  4991. else if (CHIP_REV_IS_EMUL(bp))
  4992. factor = 200;
  4993. else
  4994. factor = 1;
  4995. /* Disable inputs of parser neighbor blocks */
  4996. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  4997. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  4998. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  4999. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  5000. /* Write 0 to parser credits for CFC search request */
  5001. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  5002. /* send Ethernet packet */
  5003. bnx2x_lb_pckt(bp);
  5004. /* TODO do i reset NIG statistic? */
  5005. /* Wait until NIG register shows 1 packet of size 0x10 */
  5006. count = 1000 * factor;
  5007. while (count) {
  5008. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5009. val = *bnx2x_sp(bp, wb_data[0]);
  5010. if (val == 0x10)
  5011. break;
  5012. msleep(10);
  5013. count--;
  5014. }
  5015. if (val != 0x10) {
  5016. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  5017. return -1;
  5018. }
  5019. /* Wait until PRS register shows 1 packet */
  5020. count = 1000 * factor;
  5021. while (count) {
  5022. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  5023. if (val == 1)
  5024. break;
  5025. msleep(10);
  5026. count--;
  5027. }
  5028. if (val != 0x1) {
  5029. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  5030. return -2;
  5031. }
  5032. /* Reset and init BRB, PRS */
  5033. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  5034. msleep(50);
  5035. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  5036. msleep(50);
  5037. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5038. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5039. DP(NETIF_MSG_HW, "part2\n");
  5040. /* Disable inputs of parser neighbor blocks */
  5041. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
  5042. REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
  5043. REG_WR(bp, CFC_REG_DEBUG0, 0x1);
  5044. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
  5045. /* Write 0 to parser credits for CFC search request */
  5046. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
  5047. /* send 10 Ethernet packets */
  5048. for (i = 0; i < 10; i++)
  5049. bnx2x_lb_pckt(bp);
  5050. /* Wait until NIG register shows 10 + 1
  5051. packets of size 11*0x10 = 0xb0 */
  5052. count = 1000 * factor;
  5053. while (count) {
  5054. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5055. val = *bnx2x_sp(bp, wb_data[0]);
  5056. if (val == 0xb0)
  5057. break;
  5058. msleep(10);
  5059. count--;
  5060. }
  5061. if (val != 0xb0) {
  5062. BNX2X_ERR("NIG timeout val = 0x%x\n", val);
  5063. return -3;
  5064. }
  5065. /* Wait until PRS register shows 2 packets */
  5066. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  5067. if (val != 2)
  5068. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  5069. /* Write 1 to parser credits for CFC search request */
  5070. REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
  5071. /* Wait until PRS register shows 3 packets */
  5072. msleep(10 * factor);
  5073. /* Wait until NIG register shows 1 packet of size 0x10 */
  5074. val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
  5075. if (val != 3)
  5076. BNX2X_ERR("PRS timeout val = 0x%x\n", val);
  5077. /* clear NIG EOP FIFO */
  5078. for (i = 0; i < 11; i++)
  5079. REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
  5080. val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
  5081. if (val != 1) {
  5082. BNX2X_ERR("clear of NIG failed\n");
  5083. return -4;
  5084. }
  5085. /* Reset and init BRB, PRS, NIG */
  5086. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
  5087. msleep(50);
  5088. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
  5089. msleep(50);
  5090. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5091. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5092. if (!CNIC_SUPPORT(bp))
  5093. /* set NIC mode */
  5094. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  5095. /* Enable inputs of parser neighbor blocks */
  5096. REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
  5097. REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
  5098. REG_WR(bp, CFC_REG_DEBUG0, 0x0);
  5099. REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
  5100. DP(NETIF_MSG_HW, "done\n");
  5101. return 0; /* OK */
  5102. }
  5103. static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
  5104. {
  5105. u32 val;
  5106. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  5107. if (!CHIP_IS_E1x(bp))
  5108. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
  5109. else
  5110. REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
  5111. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  5112. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  5113. /*
  5114. * mask read length error interrupts in brb for parser
  5115. * (parsing unit and 'checksum and crc' unit)
  5116. * these errors are legal (PU reads fixed length and CAC can cause
  5117. * read length error on truncated packets)
  5118. */
  5119. REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
  5120. REG_WR(bp, QM_REG_QM_INT_MASK, 0);
  5121. REG_WR(bp, TM_REG_TM_INT_MASK, 0);
  5122. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
  5123. REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
  5124. REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
  5125. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
  5126. /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
  5127. REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
  5128. REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
  5129. REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
  5130. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
  5131. /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
  5132. REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
  5133. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
  5134. REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
  5135. REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
  5136. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
  5137. /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
  5138. val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
  5139. PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
  5140. PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
  5141. if (!CHIP_IS_E1x(bp))
  5142. val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
  5143. PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
  5144. REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
  5145. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
  5146. REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
  5147. REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
  5148. /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
  5149. if (!CHIP_IS_E1x(bp))
  5150. /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
  5151. REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
  5152. REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
  5153. REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
  5154. /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
  5155. REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
  5156. }
  5157. static void bnx2x_reset_common(struct bnx2x *bp)
  5158. {
  5159. u32 val = 0x1400;
  5160. /* reset_common */
  5161. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  5162. 0xd3ffff7f);
  5163. if (CHIP_IS_E3(bp)) {
  5164. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  5165. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  5166. }
  5167. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
  5168. }
  5169. static void bnx2x_setup_dmae(struct bnx2x *bp)
  5170. {
  5171. bp->dmae_ready = 0;
  5172. spin_lock_init(&bp->dmae_lock);
  5173. }
  5174. static void bnx2x_init_pxp(struct bnx2x *bp)
  5175. {
  5176. u16 devctl;
  5177. int r_order, w_order;
  5178. pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
  5179. DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
  5180. w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
  5181. if (bp->mrrs == -1)
  5182. r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
  5183. else {
  5184. DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
  5185. r_order = bp->mrrs;
  5186. }
  5187. bnx2x_init_pxp_arb(bp, r_order, w_order);
  5188. }
  5189. static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
  5190. {
  5191. int is_required;
  5192. u32 val;
  5193. int port;
  5194. if (BP_NOMCP(bp))
  5195. return;
  5196. is_required = 0;
  5197. val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
  5198. SHARED_HW_CFG_FAN_FAILURE_MASK;
  5199. if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
  5200. is_required = 1;
  5201. /*
  5202. * The fan failure mechanism is usually related to the PHY type since
  5203. * the power consumption of the board is affected by the PHY. Currently,
  5204. * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
  5205. */
  5206. else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
  5207. for (port = PORT_0; port < PORT_MAX; port++) {
  5208. is_required |=
  5209. bnx2x_fan_failure_det_req(
  5210. bp,
  5211. bp->common.shmem_base,
  5212. bp->common.shmem2_base,
  5213. port);
  5214. }
  5215. DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
  5216. if (is_required == 0)
  5217. return;
  5218. /* Fan failure is indicated by SPIO 5 */
  5219. bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
  5220. /* set to active low mode */
  5221. val = REG_RD(bp, MISC_REG_SPIO_INT);
  5222. val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
  5223. REG_WR(bp, MISC_REG_SPIO_INT, val);
  5224. /* enable interrupt to signal the IGU */
  5225. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  5226. val |= MISC_SPIO_SPIO5;
  5227. REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
  5228. }
  5229. void bnx2x_pf_disable(struct bnx2x *bp)
  5230. {
  5231. u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
  5232. val &= ~IGU_PF_CONF_FUNC_EN;
  5233. REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
  5234. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5235. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
  5236. }
  5237. static void bnx2x__common_init_phy(struct bnx2x *bp)
  5238. {
  5239. u32 shmem_base[2], shmem2_base[2];
  5240. /* Avoid common init in case MFW supports LFA */
  5241. if (SHMEM2_RD(bp, size) >
  5242. (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
  5243. return;
  5244. shmem_base[0] = bp->common.shmem_base;
  5245. shmem2_base[0] = bp->common.shmem2_base;
  5246. if (!CHIP_IS_E1x(bp)) {
  5247. shmem_base[1] =
  5248. SHMEM2_RD(bp, other_shmem_base_addr);
  5249. shmem2_base[1] =
  5250. SHMEM2_RD(bp, other_shmem2_base_addr);
  5251. }
  5252. bnx2x_acquire_phy_lock(bp);
  5253. bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
  5254. bp->common.chip_id);
  5255. bnx2x_release_phy_lock(bp);
  5256. }
  5257. /**
  5258. * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
  5259. *
  5260. * @bp: driver handle
  5261. */
  5262. static int bnx2x_init_hw_common(struct bnx2x *bp)
  5263. {
  5264. u32 val;
  5265. DP(NETIF_MSG_HW, "starting common init func %d\n", BP_ABS_FUNC(bp));
  5266. /*
  5267. * take the UNDI lock to protect undi_unload flow from accessing
  5268. * registers while we're resetting the chip
  5269. */
  5270. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5271. bnx2x_reset_common(bp);
  5272. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
  5273. val = 0xfffc;
  5274. if (CHIP_IS_E3(bp)) {
  5275. val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
  5276. val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
  5277. }
  5278. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
  5279. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  5280. bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
  5281. if (!CHIP_IS_E1x(bp)) {
  5282. u8 abs_func_id;
  5283. /**
  5284. * 4-port mode or 2-port mode we need to turn of master-enable
  5285. * for everyone, after that, turn it back on for self.
  5286. * so, we disregard multi-function or not, and always disable
  5287. * for all functions on the given path, this means 0,2,4,6 for
  5288. * path 0 and 1,3,5,7 for path 1
  5289. */
  5290. for (abs_func_id = BP_PATH(bp);
  5291. abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
  5292. if (abs_func_id == BP_ABS_FUNC(bp)) {
  5293. REG_WR(bp,
  5294. PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
  5295. 1);
  5296. continue;
  5297. }
  5298. bnx2x_pretend_func(bp, abs_func_id);
  5299. /* clear pf enable */
  5300. bnx2x_pf_disable(bp);
  5301. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5302. }
  5303. }
  5304. bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
  5305. if (CHIP_IS_E1(bp)) {
  5306. /* enable HW interrupt from PXP on USDM overflow
  5307. bit 16 on INT_MASK_0 */
  5308. REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
  5309. }
  5310. bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
  5311. bnx2x_init_pxp(bp);
  5312. #ifdef __BIG_ENDIAN
  5313. REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
  5314. REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
  5315. REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
  5316. REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
  5317. REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
  5318. /* make sure this value is 0 */
  5319. REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
  5320. /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
  5321. REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
  5322. REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
  5323. REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
  5324. REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
  5325. #endif
  5326. bnx2x_ilt_init_page_size(bp, INITOP_SET);
  5327. if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
  5328. REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
  5329. /* let the HW do it's magic ... */
  5330. msleep(100);
  5331. /* finish PXP init */
  5332. val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
  5333. if (val != 1) {
  5334. BNX2X_ERR("PXP2 CFG failed\n");
  5335. return -EBUSY;
  5336. }
  5337. val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
  5338. if (val != 1) {
  5339. BNX2X_ERR("PXP2 RD_INIT failed\n");
  5340. return -EBUSY;
  5341. }
  5342. /* Timers bug workaround E2 only. We need to set the entire ILT to
  5343. * have entries with value "0" and valid bit on.
  5344. * This needs to be done by the first PF that is loaded in a path
  5345. * (i.e. common phase)
  5346. */
  5347. if (!CHIP_IS_E1x(bp)) {
  5348. /* In E2 there is a bug in the timers block that can cause function 6 / 7
  5349. * (i.e. vnic3) to start even if it is marked as "scan-off".
  5350. * This occurs when a different function (func2,3) is being marked
  5351. * as "scan-off". Real-life scenario for example: if a driver is being
  5352. * load-unloaded while func6,7 are down. This will cause the timer to access
  5353. * the ilt, translate to a logical address and send a request to read/write.
  5354. * Since the ilt for the function that is down is not valid, this will cause
  5355. * a translation error which is unrecoverable.
  5356. * The Workaround is intended to make sure that when this happens nothing fatal
  5357. * will occur. The workaround:
  5358. * 1. First PF driver which loads on a path will:
  5359. * a. After taking the chip out of reset, by using pretend,
  5360. * it will write "0" to the following registers of
  5361. * the other vnics.
  5362. * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
  5363. * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
  5364. * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
  5365. * And for itself it will write '1' to
  5366. * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
  5367. * dmae-operations (writing to pram for example.)
  5368. * note: can be done for only function 6,7 but cleaner this
  5369. * way.
  5370. * b. Write zero+valid to the entire ILT.
  5371. * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
  5372. * VNIC3 (of that port). The range allocated will be the
  5373. * entire ILT. This is needed to prevent ILT range error.
  5374. * 2. Any PF driver load flow:
  5375. * a. ILT update with the physical addresses of the allocated
  5376. * logical pages.
  5377. * b. Wait 20msec. - note that this timeout is needed to make
  5378. * sure there are no requests in one of the PXP internal
  5379. * queues with "old" ILT addresses.
  5380. * c. PF enable in the PGLC.
  5381. * d. Clear the was_error of the PF in the PGLC. (could have
  5382. * occured while driver was down)
  5383. * e. PF enable in the CFC (WEAK + STRONG)
  5384. * f. Timers scan enable
  5385. * 3. PF driver unload flow:
  5386. * a. Clear the Timers scan_en.
  5387. * b. Polling for scan_on=0 for that PF.
  5388. * c. Clear the PF enable bit in the PXP.
  5389. * d. Clear the PF enable in the CFC (WEAK + STRONG)
  5390. * e. Write zero+valid to all ILT entries (The valid bit must
  5391. * stay set)
  5392. * f. If this is VNIC 3 of a port then also init
  5393. * first_timers_ilt_entry to zero and last_timers_ilt_entry
  5394. * to the last enrty in the ILT.
  5395. *
  5396. * Notes:
  5397. * Currently the PF error in the PGLC is non recoverable.
  5398. * In the future the there will be a recovery routine for this error.
  5399. * Currently attention is masked.
  5400. * Having an MCP lock on the load/unload process does not guarantee that
  5401. * there is no Timer disable during Func6/7 enable. This is because the
  5402. * Timers scan is currently being cleared by the MCP on FLR.
  5403. * Step 2.d can be done only for PF6/7 and the driver can also check if
  5404. * there is error before clearing it. But the flow above is simpler and
  5405. * more general.
  5406. * All ILT entries are written by zero+valid and not just PF6/7
  5407. * ILT entries since in the future the ILT entries allocation for
  5408. * PF-s might be dynamic.
  5409. */
  5410. struct ilt_client_info ilt_cli;
  5411. struct bnx2x_ilt ilt;
  5412. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  5413. memset(&ilt, 0, sizeof(struct bnx2x_ilt));
  5414. /* initialize dummy TM client */
  5415. ilt_cli.start = 0;
  5416. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  5417. ilt_cli.client_num = ILT_CLIENT_TM;
  5418. /* Step 1: set zeroes to all ilt page entries with valid bit on
  5419. * Step 2: set the timers first/last ilt entry to point
  5420. * to the entire range to prevent ILT range error for 3rd/4th
  5421. * vnic (this code assumes existance of the vnic)
  5422. *
  5423. * both steps performed by call to bnx2x_ilt_client_init_op()
  5424. * with dummy TM client
  5425. *
  5426. * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
  5427. * and his brother are split registers
  5428. */
  5429. bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
  5430. bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
  5431. bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
  5432. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
  5433. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
  5434. REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
  5435. }
  5436. REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
  5437. REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
  5438. if (!CHIP_IS_E1x(bp)) {
  5439. int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
  5440. (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
  5441. bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
  5442. bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
  5443. /* let the HW do it's magic ... */
  5444. do {
  5445. msleep(200);
  5446. val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
  5447. } while (factor-- && (val != 1));
  5448. if (val != 1) {
  5449. BNX2X_ERR("ATC_INIT failed\n");
  5450. return -EBUSY;
  5451. }
  5452. }
  5453. bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
  5454. bnx2x_iov_init_dmae(bp);
  5455. /* clean the DMAE memory */
  5456. bp->dmae_ready = 1;
  5457. bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
  5458. bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
  5459. bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
  5460. bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
  5461. bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
  5462. bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
  5463. bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
  5464. bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
  5465. bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
  5466. bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
  5467. /* QM queues pointers table */
  5468. bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
  5469. /* soft reset pulse */
  5470. REG_WR(bp, QM_REG_SOFT_RESET, 1);
  5471. REG_WR(bp, QM_REG_SOFT_RESET, 0);
  5472. if (CNIC_SUPPORT(bp))
  5473. bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
  5474. bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
  5475. REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
  5476. if (!CHIP_REV_IS_SLOW(bp))
  5477. /* enable hw interrupt from doorbell Q */
  5478. REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
  5479. bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
  5480. bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
  5481. REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
  5482. if (!CHIP_IS_E1(bp))
  5483. REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
  5484. if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
  5485. if (IS_MF_AFEX(bp)) {
  5486. /* configure that VNTag and VLAN headers must be
  5487. * received in afex mode
  5488. */
  5489. REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
  5490. REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
  5491. REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
  5492. REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
  5493. REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
  5494. } else {
  5495. /* Bit-map indicating which L2 hdrs may appear
  5496. * after the basic Ethernet header
  5497. */
  5498. REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
  5499. bp->path_has_ovlan ? 7 : 6);
  5500. }
  5501. }
  5502. bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
  5503. bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
  5504. bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
  5505. bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
  5506. if (!CHIP_IS_E1x(bp)) {
  5507. /* reset VFC memories */
  5508. REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5509. VFC_MEMORIES_RST_REG_CAM_RST |
  5510. VFC_MEMORIES_RST_REG_RAM_RST);
  5511. REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
  5512. VFC_MEMORIES_RST_REG_CAM_RST |
  5513. VFC_MEMORIES_RST_REG_RAM_RST);
  5514. msleep(20);
  5515. }
  5516. bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
  5517. bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
  5518. bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
  5519. bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
  5520. /* sync semi rtc */
  5521. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  5522. 0x80000000);
  5523. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
  5524. 0x80000000);
  5525. bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
  5526. bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
  5527. bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
  5528. if (!CHIP_IS_E1x(bp)) {
  5529. if (IS_MF_AFEX(bp)) {
  5530. /* configure that VNTag and VLAN headers must be
  5531. * sent in afex mode
  5532. */
  5533. REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
  5534. REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
  5535. REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
  5536. REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
  5537. REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
  5538. } else {
  5539. REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
  5540. bp->path_has_ovlan ? 7 : 6);
  5541. }
  5542. }
  5543. REG_WR(bp, SRC_REG_SOFT_RST, 1);
  5544. bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
  5545. if (CNIC_SUPPORT(bp)) {
  5546. REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
  5547. REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
  5548. REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
  5549. REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
  5550. REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
  5551. REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
  5552. REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
  5553. REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
  5554. REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
  5555. REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
  5556. }
  5557. REG_WR(bp, SRC_REG_SOFT_RST, 0);
  5558. if (sizeof(union cdu_context) != 1024)
  5559. /* we currently assume that a context is 1024 bytes */
  5560. dev_alert(&bp->pdev->dev,
  5561. "please adjust the size of cdu_context(%ld)\n",
  5562. (long)sizeof(union cdu_context));
  5563. bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
  5564. val = (4 << 24) + (0 << 12) + 1024;
  5565. REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
  5566. bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
  5567. REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
  5568. /* enable context validation interrupt from CFC */
  5569. REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
  5570. /* set the thresholds to prevent CFC/CDU race */
  5571. REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
  5572. bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
  5573. if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
  5574. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
  5575. bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
  5576. bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
  5577. /* Reset PCIE errors for debug */
  5578. REG_WR(bp, 0x2814, 0xffffffff);
  5579. REG_WR(bp, 0x3820, 0xffffffff);
  5580. if (!CHIP_IS_E1x(bp)) {
  5581. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
  5582. (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
  5583. PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
  5584. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
  5585. (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
  5586. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
  5587. PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
  5588. REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
  5589. (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
  5590. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
  5591. PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
  5592. }
  5593. bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
  5594. if (!CHIP_IS_E1(bp)) {
  5595. /* in E3 this done in per-port section */
  5596. if (!CHIP_IS_E3(bp))
  5597. REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
  5598. }
  5599. if (CHIP_IS_E1H(bp))
  5600. /* not applicable for E2 (and above ...) */
  5601. REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
  5602. if (CHIP_REV_IS_SLOW(bp))
  5603. msleep(200);
  5604. /* finish CFC init */
  5605. val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
  5606. if (val != 1) {
  5607. BNX2X_ERR("CFC LL_INIT failed\n");
  5608. return -EBUSY;
  5609. }
  5610. val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
  5611. if (val != 1) {
  5612. BNX2X_ERR("CFC AC_INIT failed\n");
  5613. return -EBUSY;
  5614. }
  5615. val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
  5616. if (val != 1) {
  5617. BNX2X_ERR("CFC CAM_INIT failed\n");
  5618. return -EBUSY;
  5619. }
  5620. REG_WR(bp, CFC_REG_DEBUG0, 0);
  5621. if (CHIP_IS_E1(bp)) {
  5622. /* read NIG statistic
  5623. to see if this is our first up since powerup */
  5624. bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
  5625. val = *bnx2x_sp(bp, wb_data[0]);
  5626. /* do internal memory self test */
  5627. if ((val == 0) && bnx2x_int_mem_test(bp)) {
  5628. BNX2X_ERR("internal mem self test failed\n");
  5629. return -EBUSY;
  5630. }
  5631. }
  5632. bnx2x_setup_fan_failure_detection(bp);
  5633. /* clear PXP2 attentions */
  5634. REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
  5635. bnx2x_enable_blocks_attention(bp);
  5636. bnx2x_enable_blocks_parity(bp);
  5637. if (!BP_NOMCP(bp)) {
  5638. if (CHIP_IS_E1x(bp))
  5639. bnx2x__common_init_phy(bp);
  5640. } else
  5641. BNX2X_ERR("Bootcode is missing - can not initialize link\n");
  5642. return 0;
  5643. }
  5644. /**
  5645. * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
  5646. *
  5647. * @bp: driver handle
  5648. */
  5649. static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
  5650. {
  5651. int rc = bnx2x_init_hw_common(bp);
  5652. if (rc)
  5653. return rc;
  5654. /* In E2 2-PORT mode, same ext phy is used for the two paths */
  5655. if (!BP_NOMCP(bp))
  5656. bnx2x__common_init_phy(bp);
  5657. return 0;
  5658. }
  5659. static int bnx2x_init_hw_port(struct bnx2x *bp)
  5660. {
  5661. int port = BP_PORT(bp);
  5662. int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
  5663. u32 low, high;
  5664. u32 val;
  5665. DP(NETIF_MSG_HW, "starting port init port %d\n", port);
  5666. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  5667. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  5668. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  5669. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  5670. /* Timers bug workaround: disables the pf_master bit in pglue at
  5671. * common phase, we need to enable it here before any dmae access are
  5672. * attempted. Therefore we manually added the enable-master to the
  5673. * port phase (it also happens in the function phase)
  5674. */
  5675. if (!CHIP_IS_E1x(bp))
  5676. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  5677. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  5678. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  5679. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  5680. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  5681. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  5682. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  5683. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  5684. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  5685. /* QM cid (connection) count */
  5686. bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
  5687. if (CNIC_SUPPORT(bp)) {
  5688. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  5689. REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
  5690. REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
  5691. }
  5692. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  5693. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  5694. if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
  5695. if (IS_MF(bp))
  5696. low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
  5697. else if (bp->dev->mtu > 4096) {
  5698. if (bp->flags & ONE_PORT_FLAG)
  5699. low = 160;
  5700. else {
  5701. val = bp->dev->mtu;
  5702. /* (24*1024 + val*4)/256 */
  5703. low = 96 + (val/64) +
  5704. ((val % 64) ? 1 : 0);
  5705. }
  5706. } else
  5707. low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
  5708. high = low + 56; /* 14*1024/256 */
  5709. REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
  5710. REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
  5711. }
  5712. if (CHIP_MODE_IS_4_PORT(bp))
  5713. REG_WR(bp, (BP_PORT(bp) ?
  5714. BRB1_REG_MAC_GUARANTIED_1 :
  5715. BRB1_REG_MAC_GUARANTIED_0), 40);
  5716. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  5717. if (CHIP_IS_E3B0(bp)) {
  5718. if (IS_MF_AFEX(bp)) {
  5719. /* configure headers for AFEX mode */
  5720. REG_WR(bp, BP_PORT(bp) ?
  5721. PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
  5722. PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
  5723. REG_WR(bp, BP_PORT(bp) ?
  5724. PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
  5725. PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
  5726. REG_WR(bp, BP_PORT(bp) ?
  5727. PRS_REG_MUST_HAVE_HDRS_PORT_1 :
  5728. PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
  5729. } else {
  5730. /* Ovlan exists only if we are in multi-function +
  5731. * switch-dependent mode, in switch-independent there
  5732. * is no ovlan headers
  5733. */
  5734. REG_WR(bp, BP_PORT(bp) ?
  5735. PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
  5736. PRS_REG_HDRS_AFTER_BASIC_PORT_0,
  5737. (bp->path_has_ovlan ? 7 : 6));
  5738. }
  5739. }
  5740. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  5741. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  5742. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  5743. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  5744. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  5745. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  5746. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  5747. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  5748. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  5749. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  5750. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  5751. if (CHIP_IS_E1x(bp)) {
  5752. /* configure PBF to work without PAUSE mtu 9000 */
  5753. REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
  5754. /* update threshold */
  5755. REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
  5756. /* update init credit */
  5757. REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
  5758. /* probe changes */
  5759. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
  5760. udelay(50);
  5761. REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
  5762. }
  5763. if (CNIC_SUPPORT(bp))
  5764. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  5765. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  5766. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  5767. if (CHIP_IS_E1(bp)) {
  5768. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  5769. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  5770. }
  5771. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  5772. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  5773. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  5774. /* init aeu_mask_attn_func_0/1:
  5775. * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
  5776. * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
  5777. * bits 4-7 are used for "per vn group attention" */
  5778. val = IS_MF(bp) ? 0xF7 : 0x7;
  5779. /* Enable DCBX attention for all but E1 */
  5780. val |= CHIP_IS_E1(bp) ? 0 : 0x10;
  5781. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
  5782. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  5783. if (!CHIP_IS_E1x(bp)) {
  5784. /* Bit-map indicating which L2 hdrs may appear after the
  5785. * basic Ethernet header
  5786. */
  5787. if (IS_MF_AFEX(bp))
  5788. REG_WR(bp, BP_PORT(bp) ?
  5789. NIG_REG_P1_HDRS_AFTER_BASIC :
  5790. NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
  5791. else
  5792. REG_WR(bp, BP_PORT(bp) ?
  5793. NIG_REG_P1_HDRS_AFTER_BASIC :
  5794. NIG_REG_P0_HDRS_AFTER_BASIC,
  5795. IS_MF_SD(bp) ? 7 : 6);
  5796. if (CHIP_IS_E3(bp))
  5797. REG_WR(bp, BP_PORT(bp) ?
  5798. NIG_REG_LLH1_MF_MODE :
  5799. NIG_REG_LLH_MF_MODE, IS_MF(bp));
  5800. }
  5801. if (!CHIP_IS_E3(bp))
  5802. REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
  5803. if (!CHIP_IS_E1(bp)) {
  5804. /* 0x2 disable mf_ov, 0x1 enable */
  5805. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
  5806. (IS_MF_SD(bp) ? 0x1 : 0x2));
  5807. if (!CHIP_IS_E1x(bp)) {
  5808. val = 0;
  5809. switch (bp->mf_mode) {
  5810. case MULTI_FUNCTION_SD:
  5811. val = 1;
  5812. break;
  5813. case MULTI_FUNCTION_SI:
  5814. case MULTI_FUNCTION_AFEX:
  5815. val = 2;
  5816. break;
  5817. }
  5818. REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
  5819. NIG_REG_LLH0_CLS_TYPE), val);
  5820. }
  5821. {
  5822. REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
  5823. REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
  5824. REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
  5825. }
  5826. }
  5827. /* If SPIO5 is set to generate interrupts, enable it for this port */
  5828. val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
  5829. if (val & MISC_SPIO_SPIO5) {
  5830. u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
  5831. MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
  5832. val = REG_RD(bp, reg_addr);
  5833. val |= AEU_INPUTS_ATTN_BITS_SPIO5;
  5834. REG_WR(bp, reg_addr, val);
  5835. }
  5836. return 0;
  5837. }
  5838. static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
  5839. {
  5840. int reg;
  5841. u32 wb_write[2];
  5842. if (CHIP_IS_E1(bp))
  5843. reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
  5844. else
  5845. reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
  5846. wb_write[0] = ONCHIP_ADDR1(addr);
  5847. wb_write[1] = ONCHIP_ADDR2(addr);
  5848. REG_WR_DMAE(bp, reg, wb_write, 2);
  5849. }
  5850. void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
  5851. {
  5852. u32 data, ctl, cnt = 100;
  5853. u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
  5854. u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
  5855. u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
  5856. u32 sb_bit = 1 << (idu_sb_id%32);
  5857. u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
  5858. u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
  5859. /* Not supported in BC mode */
  5860. if (CHIP_INT_MODE_IS_BC(bp))
  5861. return;
  5862. data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
  5863. << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
  5864. IGU_REGULAR_CLEANUP_SET |
  5865. IGU_REGULAR_BCLEANUP;
  5866. ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
  5867. func_encode << IGU_CTRL_REG_FID_SHIFT |
  5868. IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
  5869. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  5870. data, igu_addr_data);
  5871. REG_WR(bp, igu_addr_data, data);
  5872. mmiowb();
  5873. barrier();
  5874. DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
  5875. ctl, igu_addr_ctl);
  5876. REG_WR(bp, igu_addr_ctl, ctl);
  5877. mmiowb();
  5878. barrier();
  5879. /* wait for clean up to finish */
  5880. while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
  5881. msleep(20);
  5882. if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
  5883. DP(NETIF_MSG_HW,
  5884. "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
  5885. idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
  5886. }
  5887. }
  5888. static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
  5889. {
  5890. bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
  5891. }
  5892. static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
  5893. {
  5894. u32 i, base = FUNC_ILT_BASE(func);
  5895. for (i = base; i < base + ILT_PER_FUNC; i++)
  5896. bnx2x_ilt_wr(bp, i, 0);
  5897. }
  5898. static void bnx2x_init_searcher(struct bnx2x *bp)
  5899. {
  5900. int port = BP_PORT(bp);
  5901. bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
  5902. /* T1 hash bits value determines the T1 number of entries */
  5903. REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
  5904. }
  5905. static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
  5906. {
  5907. int rc;
  5908. struct bnx2x_func_state_params func_params = {NULL};
  5909. struct bnx2x_func_switch_update_params *switch_update_params =
  5910. &func_params.params.switch_update;
  5911. /* Prepare parameters for function state transitions */
  5912. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  5913. __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
  5914. func_params.f_obj = &bp->func_obj;
  5915. func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
  5916. /* Function parameters */
  5917. switch_update_params->suspend = suspend;
  5918. rc = bnx2x_func_state_change(bp, &func_params);
  5919. return rc;
  5920. }
  5921. static int bnx2x_reset_nic_mode(struct bnx2x *bp)
  5922. {
  5923. int rc, i, port = BP_PORT(bp);
  5924. int vlan_en = 0, mac_en[NUM_MACS];
  5925. /* Close input from network */
  5926. if (bp->mf_mode == SINGLE_FUNCTION) {
  5927. bnx2x_set_rx_filter(&bp->link_params, 0);
  5928. } else {
  5929. vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
  5930. NIG_REG_LLH0_FUNC_EN);
  5931. REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
  5932. NIG_REG_LLH0_FUNC_EN, 0);
  5933. for (i = 0; i < NUM_MACS; i++) {
  5934. mac_en[i] = REG_RD(bp, port ?
  5935. (NIG_REG_LLH1_FUNC_MEM_ENABLE +
  5936. 4 * i) :
  5937. (NIG_REG_LLH0_FUNC_MEM_ENABLE +
  5938. 4 * i));
  5939. REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
  5940. 4 * i) :
  5941. (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
  5942. }
  5943. }
  5944. /* Close BMC to host */
  5945. REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
  5946. NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
  5947. /* Suspend Tx switching to the PF. Completion of this ramrod
  5948. * further guarantees that all the packets of that PF / child
  5949. * VFs in BRB were processed by the Parser, so it is safe to
  5950. * change the NIC_MODE register.
  5951. */
  5952. rc = bnx2x_func_switch_update(bp, 1);
  5953. if (rc) {
  5954. BNX2X_ERR("Can't suspend tx-switching!\n");
  5955. return rc;
  5956. }
  5957. /* Change NIC_MODE register */
  5958. REG_WR(bp, PRS_REG_NIC_MODE, 0);
  5959. /* Open input from network */
  5960. if (bp->mf_mode == SINGLE_FUNCTION) {
  5961. bnx2x_set_rx_filter(&bp->link_params, 1);
  5962. } else {
  5963. REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
  5964. NIG_REG_LLH0_FUNC_EN, vlan_en);
  5965. for (i = 0; i < NUM_MACS; i++) {
  5966. REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
  5967. 4 * i) :
  5968. (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
  5969. mac_en[i]);
  5970. }
  5971. }
  5972. /* Enable BMC to host */
  5973. REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
  5974. NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
  5975. /* Resume Tx switching to the PF */
  5976. rc = bnx2x_func_switch_update(bp, 0);
  5977. if (rc) {
  5978. BNX2X_ERR("Can't resume tx-switching!\n");
  5979. return rc;
  5980. }
  5981. DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
  5982. return 0;
  5983. }
  5984. int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
  5985. {
  5986. int rc;
  5987. bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
  5988. if (CONFIGURE_NIC_MODE(bp)) {
  5989. /* Configrue searcher as part of function hw init */
  5990. bnx2x_init_searcher(bp);
  5991. /* Reset NIC mode */
  5992. rc = bnx2x_reset_nic_mode(bp);
  5993. if (rc)
  5994. BNX2X_ERR("Can't change NIC mode!\n");
  5995. return rc;
  5996. }
  5997. return 0;
  5998. }
  5999. static int bnx2x_init_hw_func(struct bnx2x *bp)
  6000. {
  6001. int port = BP_PORT(bp);
  6002. int func = BP_FUNC(bp);
  6003. int init_phase = PHASE_PF0 + func;
  6004. struct bnx2x_ilt *ilt = BP_ILT(bp);
  6005. u16 cdu_ilt_start;
  6006. u32 addr, val;
  6007. u32 main_mem_base, main_mem_size, main_mem_prty_clr;
  6008. int i, main_mem_width, rc;
  6009. DP(NETIF_MSG_HW, "starting func init func %d\n", func);
  6010. /* FLR cleanup - hmmm */
  6011. if (!CHIP_IS_E1x(bp)) {
  6012. rc = bnx2x_pf_flr_clnup(bp);
  6013. if (rc)
  6014. return rc;
  6015. }
  6016. /* set MSI reconfigure capability */
  6017. if (bp->common.int_block == INT_BLOCK_HC) {
  6018. addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
  6019. val = REG_RD(bp, addr);
  6020. val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
  6021. REG_WR(bp, addr, val);
  6022. }
  6023. bnx2x_init_block(bp, BLOCK_PXP, init_phase);
  6024. bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
  6025. ilt = BP_ILT(bp);
  6026. cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
  6027. if (IS_SRIOV(bp))
  6028. cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
  6029. cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
  6030. /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
  6031. * those of the VFs, so start line should be reset
  6032. */
  6033. cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
  6034. for (i = 0; i < L2_ILT_LINES(bp); i++) {
  6035. ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
  6036. ilt->lines[cdu_ilt_start + i].page_mapping =
  6037. bp->context[i].cxt_mapping;
  6038. ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
  6039. }
  6040. bnx2x_ilt_init_op(bp, INITOP_SET);
  6041. if (!CONFIGURE_NIC_MODE(bp)) {
  6042. bnx2x_init_searcher(bp);
  6043. REG_WR(bp, PRS_REG_NIC_MODE, 0);
  6044. DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
  6045. } else {
  6046. /* Set NIC mode */
  6047. REG_WR(bp, PRS_REG_NIC_MODE, 1);
  6048. DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
  6049. }
  6050. if (!CHIP_IS_E1x(bp)) {
  6051. u32 pf_conf = IGU_PF_CONF_FUNC_EN;
  6052. /* Turn on a single ISR mode in IGU if driver is going to use
  6053. * INT#x or MSI
  6054. */
  6055. if (!(bp->flags & USING_MSIX_FLAG))
  6056. pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
  6057. /*
  6058. * Timers workaround bug: function init part.
  6059. * Need to wait 20msec after initializing ILT,
  6060. * needed to make sure there are no requests in
  6061. * one of the PXP internal queues with "old" ILT addresses
  6062. */
  6063. msleep(20);
  6064. /*
  6065. * Master enable - Due to WB DMAE writes performed before this
  6066. * register is re-initialized as part of the regular function
  6067. * init
  6068. */
  6069. REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
  6070. /* Enable the function in IGU */
  6071. REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
  6072. }
  6073. bp->dmae_ready = 1;
  6074. bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
  6075. if (!CHIP_IS_E1x(bp))
  6076. REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
  6077. bnx2x_init_block(bp, BLOCK_ATC, init_phase);
  6078. bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
  6079. bnx2x_init_block(bp, BLOCK_NIG, init_phase);
  6080. bnx2x_init_block(bp, BLOCK_SRC, init_phase);
  6081. bnx2x_init_block(bp, BLOCK_MISC, init_phase);
  6082. bnx2x_init_block(bp, BLOCK_TCM, init_phase);
  6083. bnx2x_init_block(bp, BLOCK_UCM, init_phase);
  6084. bnx2x_init_block(bp, BLOCK_CCM, init_phase);
  6085. bnx2x_init_block(bp, BLOCK_XCM, init_phase);
  6086. bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
  6087. bnx2x_init_block(bp, BLOCK_USEM, init_phase);
  6088. bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
  6089. bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
  6090. if (!CHIP_IS_E1x(bp))
  6091. REG_WR(bp, QM_REG_PF_EN, 1);
  6092. if (!CHIP_IS_E1x(bp)) {
  6093. REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6094. REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6095. REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6096. REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
  6097. }
  6098. bnx2x_init_block(bp, BLOCK_QM, init_phase);
  6099. bnx2x_init_block(bp, BLOCK_TM, init_phase);
  6100. bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
  6101. bnx2x_iov_init_dq(bp);
  6102. bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
  6103. bnx2x_init_block(bp, BLOCK_PRS, init_phase);
  6104. bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
  6105. bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
  6106. bnx2x_init_block(bp, BLOCK_USDM, init_phase);
  6107. bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
  6108. bnx2x_init_block(bp, BLOCK_UPB, init_phase);
  6109. bnx2x_init_block(bp, BLOCK_XPB, init_phase);
  6110. bnx2x_init_block(bp, BLOCK_PBF, init_phase);
  6111. if (!CHIP_IS_E1x(bp))
  6112. REG_WR(bp, PBF_REG_DISABLE_PF, 0);
  6113. bnx2x_init_block(bp, BLOCK_CDU, init_phase);
  6114. bnx2x_init_block(bp, BLOCK_CFC, init_phase);
  6115. if (!CHIP_IS_E1x(bp))
  6116. REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
  6117. if (IS_MF(bp)) {
  6118. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
  6119. REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
  6120. }
  6121. bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
  6122. /* HC init per function */
  6123. if (bp->common.int_block == INT_BLOCK_HC) {
  6124. if (CHIP_IS_E1H(bp)) {
  6125. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  6126. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  6127. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  6128. }
  6129. bnx2x_init_block(bp, BLOCK_HC, init_phase);
  6130. } else {
  6131. int num_segs, sb_idx, prod_offset;
  6132. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
  6133. if (!CHIP_IS_E1x(bp)) {
  6134. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  6135. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  6136. }
  6137. bnx2x_init_block(bp, BLOCK_IGU, init_phase);
  6138. if (!CHIP_IS_E1x(bp)) {
  6139. int dsb_idx = 0;
  6140. /**
  6141. * Producer memory:
  6142. * E2 mode: address 0-135 match to the mapping memory;
  6143. * 136 - PF0 default prod; 137 - PF1 default prod;
  6144. * 138 - PF2 default prod; 139 - PF3 default prod;
  6145. * 140 - PF0 attn prod; 141 - PF1 attn prod;
  6146. * 142 - PF2 attn prod; 143 - PF3 attn prod;
  6147. * 144-147 reserved.
  6148. *
  6149. * E1.5 mode - In backward compatible mode;
  6150. * for non default SB; each even line in the memory
  6151. * holds the U producer and each odd line hold
  6152. * the C producer. The first 128 producers are for
  6153. * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
  6154. * producers are for the DSB for each PF.
  6155. * Each PF has five segments: (the order inside each
  6156. * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
  6157. * 132-135 C prods; 136-139 X prods; 140-143 T prods;
  6158. * 144-147 attn prods;
  6159. */
  6160. /* non-default-status-blocks */
  6161. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  6162. IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
  6163. for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
  6164. prod_offset = (bp->igu_base_sb + sb_idx) *
  6165. num_segs;
  6166. for (i = 0; i < num_segs; i++) {
  6167. addr = IGU_REG_PROD_CONS_MEMORY +
  6168. (prod_offset + i) * 4;
  6169. REG_WR(bp, addr, 0);
  6170. }
  6171. /* send consumer update with value 0 */
  6172. bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
  6173. USTORM_ID, 0, IGU_INT_NOP, 1);
  6174. bnx2x_igu_clear_sb(bp,
  6175. bp->igu_base_sb + sb_idx);
  6176. }
  6177. /* default-status-blocks */
  6178. num_segs = CHIP_INT_MODE_IS_BC(bp) ?
  6179. IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
  6180. if (CHIP_MODE_IS_4_PORT(bp))
  6181. dsb_idx = BP_FUNC(bp);
  6182. else
  6183. dsb_idx = BP_VN(bp);
  6184. prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
  6185. IGU_BC_BASE_DSB_PROD + dsb_idx :
  6186. IGU_NORM_BASE_DSB_PROD + dsb_idx);
  6187. /*
  6188. * igu prods come in chunks of E1HVN_MAX (4) -
  6189. * does not matters what is the current chip mode
  6190. */
  6191. for (i = 0; i < (num_segs * E1HVN_MAX);
  6192. i += E1HVN_MAX) {
  6193. addr = IGU_REG_PROD_CONS_MEMORY +
  6194. (prod_offset + i)*4;
  6195. REG_WR(bp, addr, 0);
  6196. }
  6197. /* send consumer update with 0 */
  6198. if (CHIP_INT_MODE_IS_BC(bp)) {
  6199. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6200. USTORM_ID, 0, IGU_INT_NOP, 1);
  6201. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6202. CSTORM_ID, 0, IGU_INT_NOP, 1);
  6203. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6204. XSTORM_ID, 0, IGU_INT_NOP, 1);
  6205. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6206. TSTORM_ID, 0, IGU_INT_NOP, 1);
  6207. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6208. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  6209. } else {
  6210. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6211. USTORM_ID, 0, IGU_INT_NOP, 1);
  6212. bnx2x_ack_sb(bp, bp->igu_dsb_id,
  6213. ATTENTION_ID, 0, IGU_INT_NOP, 1);
  6214. }
  6215. bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
  6216. /* !!! these should become driver const once
  6217. rf-tool supports split-68 const */
  6218. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
  6219. REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
  6220. REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
  6221. REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
  6222. REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
  6223. REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
  6224. }
  6225. }
  6226. /* Reset PCIE errors for debug */
  6227. REG_WR(bp, 0x2114, 0xffffffff);
  6228. REG_WR(bp, 0x2120, 0xffffffff);
  6229. if (CHIP_IS_E1x(bp)) {
  6230. main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
  6231. main_mem_base = HC_REG_MAIN_MEMORY +
  6232. BP_PORT(bp) * (main_mem_size * 4);
  6233. main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
  6234. main_mem_width = 8;
  6235. val = REG_RD(bp, main_mem_prty_clr);
  6236. if (val)
  6237. DP(NETIF_MSG_HW,
  6238. "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
  6239. val);
  6240. /* Clear "false" parity errors in MSI-X table */
  6241. for (i = main_mem_base;
  6242. i < main_mem_base + main_mem_size * 4;
  6243. i += main_mem_width) {
  6244. bnx2x_read_dmae(bp, i, main_mem_width / 4);
  6245. bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
  6246. i, main_mem_width / 4);
  6247. }
  6248. /* Clear HC parity attention */
  6249. REG_RD(bp, main_mem_prty_clr);
  6250. }
  6251. #ifdef BNX2X_STOP_ON_ERROR
  6252. /* Enable STORMs SP logging */
  6253. REG_WR8(bp, BAR_USTRORM_INTMEM +
  6254. USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6255. REG_WR8(bp, BAR_TSTRORM_INTMEM +
  6256. TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6257. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6258. CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6259. REG_WR8(bp, BAR_XSTRORM_INTMEM +
  6260. XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
  6261. #endif
  6262. bnx2x_phy_probe(&bp->link_params);
  6263. return 0;
  6264. }
  6265. void bnx2x_free_mem_cnic(struct bnx2x *bp)
  6266. {
  6267. bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
  6268. if (!CHIP_IS_E1x(bp))
  6269. BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
  6270. sizeof(struct host_hc_status_block_e2));
  6271. else
  6272. BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
  6273. sizeof(struct host_hc_status_block_e1x));
  6274. BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
  6275. }
  6276. void bnx2x_free_mem(struct bnx2x *bp)
  6277. {
  6278. int i;
  6279. /* fastpath */
  6280. bnx2x_free_fp_mem(bp);
  6281. /* end of fastpath */
  6282. BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
  6283. sizeof(struct host_sp_status_block));
  6284. BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
  6285. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  6286. BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
  6287. sizeof(struct bnx2x_slowpath));
  6288. for (i = 0; i < L2_ILT_LINES(bp); i++)
  6289. BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
  6290. bp->context[i].size);
  6291. bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
  6292. BNX2X_FREE(bp->ilt->lines);
  6293. BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
  6294. BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
  6295. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  6296. }
  6297. static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
  6298. {
  6299. int num_groups;
  6300. int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
  6301. /* number of queues for statistics is number of eth queues + FCoE */
  6302. u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
  6303. /* Total number of FW statistics requests =
  6304. * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
  6305. * num of queues
  6306. */
  6307. bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
  6308. /* Request is built from stats_query_header and an array of
  6309. * stats_query_cmd_group each of which contains
  6310. * STATS_QUERY_CMD_COUNT rules. The real number or requests is
  6311. * configured in the stats_query_header.
  6312. */
  6313. num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
  6314. (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
  6315. bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
  6316. num_groups * sizeof(struct stats_query_cmd_group);
  6317. /* Data for statistics requests + stats_conter
  6318. *
  6319. * stats_counter holds per-STORM counters that are incremented
  6320. * when STORM has finished with the current request.
  6321. *
  6322. * memory for FCoE offloaded statistics are counted anyway,
  6323. * even if they will not be sent.
  6324. */
  6325. bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
  6326. sizeof(struct per_pf_stats) +
  6327. sizeof(struct fcoe_statistics_params) +
  6328. sizeof(struct per_queue_stats) * num_queue_stats +
  6329. sizeof(struct stats_counter);
  6330. BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
  6331. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  6332. /* Set shortcuts */
  6333. bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
  6334. bp->fw_stats_req_mapping = bp->fw_stats_mapping;
  6335. bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
  6336. ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
  6337. bp->fw_stats_data_mapping = bp->fw_stats_mapping +
  6338. bp->fw_stats_req_sz;
  6339. return 0;
  6340. alloc_mem_err:
  6341. BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
  6342. bp->fw_stats_data_sz + bp->fw_stats_req_sz);
  6343. BNX2X_ERR("Can't allocate memory\n");
  6344. return -ENOMEM;
  6345. }
  6346. int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
  6347. {
  6348. if (!CHIP_IS_E1x(bp))
  6349. /* size = the status block + ramrod buffers */
  6350. BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
  6351. sizeof(struct host_hc_status_block_e2));
  6352. else
  6353. BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
  6354. &bp->cnic_sb_mapping,
  6355. sizeof(struct
  6356. host_hc_status_block_e1x));
  6357. if (CONFIGURE_NIC_MODE(bp))
  6358. /* allocate searcher T2 table, as it wan't allocated before */
  6359. BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
  6360. /* write address to which L5 should insert its values */
  6361. bp->cnic_eth_dev.addr_drv_info_to_mcp =
  6362. &bp->slowpath->drv_info_to_mcp;
  6363. if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
  6364. goto alloc_mem_err;
  6365. return 0;
  6366. alloc_mem_err:
  6367. bnx2x_free_mem_cnic(bp);
  6368. BNX2X_ERR("Can't allocate memory\n");
  6369. return -ENOMEM;
  6370. }
  6371. int bnx2x_alloc_mem(struct bnx2x *bp)
  6372. {
  6373. int i, allocated, context_size;
  6374. if (!CONFIGURE_NIC_MODE(bp))
  6375. /* allocate searcher T2 table */
  6376. BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
  6377. BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
  6378. sizeof(struct host_sp_status_block));
  6379. BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
  6380. sizeof(struct bnx2x_slowpath));
  6381. /* Allocated memory for FW statistics */
  6382. if (bnx2x_alloc_fw_stats_mem(bp))
  6383. goto alloc_mem_err;
  6384. /* Allocate memory for CDU context:
  6385. * This memory is allocated separately and not in the generic ILT
  6386. * functions because CDU differs in few aspects:
  6387. * 1. There are multiple entities allocating memory for context -
  6388. * 'regular' driver, CNIC and SRIOV driver. Each separately controls
  6389. * its own ILT lines.
  6390. * 2. Since CDU page-size is not a single 4KB page (which is the case
  6391. * for the other ILT clients), to be efficient we want to support
  6392. * allocation of sub-page-size in the last entry.
  6393. * 3. Context pointers are used by the driver to pass to FW / update
  6394. * the context (for the other ILT clients the pointers are used just to
  6395. * free the memory during unload).
  6396. */
  6397. context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
  6398. for (i = 0, allocated = 0; allocated < context_size; i++) {
  6399. bp->context[i].size = min(CDU_ILT_PAGE_SZ,
  6400. (context_size - allocated));
  6401. BNX2X_PCI_ALLOC(bp->context[i].vcxt,
  6402. &bp->context[i].cxt_mapping,
  6403. bp->context[i].size);
  6404. allocated += bp->context[i].size;
  6405. }
  6406. BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
  6407. if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
  6408. goto alloc_mem_err;
  6409. /* Slow path ring */
  6410. BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
  6411. /* EQ */
  6412. BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
  6413. BCM_PAGE_SIZE * NUM_EQ_PAGES);
  6414. /* fastpath */
  6415. /* need to be done at the end, since it's self adjusting to amount
  6416. * of memory available for RSS queues
  6417. */
  6418. if (bnx2x_alloc_fp_mem(bp))
  6419. goto alloc_mem_err;
  6420. return 0;
  6421. alloc_mem_err:
  6422. bnx2x_free_mem(bp);
  6423. BNX2X_ERR("Can't allocate memory\n");
  6424. return -ENOMEM;
  6425. }
  6426. /*
  6427. * Init service functions
  6428. */
  6429. int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
  6430. struct bnx2x_vlan_mac_obj *obj, bool set,
  6431. int mac_type, unsigned long *ramrod_flags)
  6432. {
  6433. int rc;
  6434. struct bnx2x_vlan_mac_ramrod_params ramrod_param;
  6435. memset(&ramrod_param, 0, sizeof(ramrod_param));
  6436. /* Fill general parameters */
  6437. ramrod_param.vlan_mac_obj = obj;
  6438. ramrod_param.ramrod_flags = *ramrod_flags;
  6439. /* Fill a user request section if needed */
  6440. if (!test_bit(RAMROD_CONT, ramrod_flags)) {
  6441. memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
  6442. __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
  6443. /* Set the command: ADD or DEL */
  6444. if (set)
  6445. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
  6446. else
  6447. ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
  6448. }
  6449. rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
  6450. if (rc == -EEXIST) {
  6451. DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
  6452. /* do not treat adding same MAC as error */
  6453. rc = 0;
  6454. } else if (rc < 0)
  6455. BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
  6456. return rc;
  6457. }
  6458. int bnx2x_del_all_macs(struct bnx2x *bp,
  6459. struct bnx2x_vlan_mac_obj *mac_obj,
  6460. int mac_type, bool wait_for_comp)
  6461. {
  6462. int rc;
  6463. unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
  6464. /* Wait for completion of requested */
  6465. if (wait_for_comp)
  6466. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  6467. /* Set the mac type of addresses we want to clear */
  6468. __set_bit(mac_type, &vlan_mac_flags);
  6469. rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
  6470. if (rc < 0)
  6471. BNX2X_ERR("Failed to delete MACs: %d\n", rc);
  6472. return rc;
  6473. }
  6474. int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
  6475. {
  6476. unsigned long ramrod_flags = 0;
  6477. if (is_zero_ether_addr(bp->dev->dev_addr) &&
  6478. (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
  6479. DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
  6480. "Ignoring Zero MAC for STORAGE SD mode\n");
  6481. return 0;
  6482. }
  6483. DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
  6484. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  6485. /* Eth MAC is set on RSS leading client (fp[0]) */
  6486. return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
  6487. set, BNX2X_ETH_MAC, &ramrod_flags);
  6488. }
  6489. int bnx2x_setup_leading(struct bnx2x *bp)
  6490. {
  6491. return bnx2x_setup_queue(bp, &bp->fp[0], 1);
  6492. }
  6493. /**
  6494. * bnx2x_set_int_mode - configure interrupt mode
  6495. *
  6496. * @bp: driver handle
  6497. *
  6498. * In case of MSI-X it will also try to enable MSI-X.
  6499. */
  6500. int bnx2x_set_int_mode(struct bnx2x *bp)
  6501. {
  6502. int rc = 0;
  6503. if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX)
  6504. return -EINVAL;
  6505. switch (int_mode) {
  6506. case BNX2X_INT_MODE_MSIX:
  6507. /* attempt to enable msix */
  6508. rc = bnx2x_enable_msix(bp);
  6509. /* msix attained */
  6510. if (!rc)
  6511. return 0;
  6512. /* vfs use only msix */
  6513. if (rc && IS_VF(bp))
  6514. return rc;
  6515. /* failed to enable multiple MSI-X */
  6516. BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
  6517. bp->num_queues,
  6518. 1 + bp->num_cnic_queues);
  6519. /* falling through... */
  6520. case BNX2X_INT_MODE_MSI:
  6521. bnx2x_enable_msi(bp);
  6522. /* falling through... */
  6523. case BNX2X_INT_MODE_INTX:
  6524. bp->num_ethernet_queues = 1;
  6525. bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
  6526. BNX2X_DEV_INFO("set number of queues to 1\n");
  6527. break;
  6528. default:
  6529. BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
  6530. return -EINVAL;
  6531. }
  6532. return 0;
  6533. }
  6534. /* must be called prior to any HW initializations */
  6535. static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
  6536. {
  6537. if (IS_SRIOV(bp))
  6538. return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
  6539. return L2_ILT_LINES(bp);
  6540. }
  6541. void bnx2x_ilt_set_info(struct bnx2x *bp)
  6542. {
  6543. struct ilt_client_info *ilt_client;
  6544. struct bnx2x_ilt *ilt = BP_ILT(bp);
  6545. u16 line = 0;
  6546. ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
  6547. DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
  6548. /* CDU */
  6549. ilt_client = &ilt->clients[ILT_CLIENT_CDU];
  6550. ilt_client->client_num = ILT_CLIENT_CDU;
  6551. ilt_client->page_size = CDU_ILT_PAGE_SZ;
  6552. ilt_client->flags = ILT_CLIENT_SKIP_MEM;
  6553. ilt_client->start = line;
  6554. line += bnx2x_cid_ilt_lines(bp);
  6555. if (CNIC_SUPPORT(bp))
  6556. line += CNIC_ILT_LINES;
  6557. ilt_client->end = line - 1;
  6558. DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6559. ilt_client->start,
  6560. ilt_client->end,
  6561. ilt_client->page_size,
  6562. ilt_client->flags,
  6563. ilog2(ilt_client->page_size >> 12));
  6564. /* QM */
  6565. if (QM_INIT(bp->qm_cid_count)) {
  6566. ilt_client = &ilt->clients[ILT_CLIENT_QM];
  6567. ilt_client->client_num = ILT_CLIENT_QM;
  6568. ilt_client->page_size = QM_ILT_PAGE_SZ;
  6569. ilt_client->flags = 0;
  6570. ilt_client->start = line;
  6571. /* 4 bytes for each cid */
  6572. line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
  6573. QM_ILT_PAGE_SZ);
  6574. ilt_client->end = line - 1;
  6575. DP(NETIF_MSG_IFUP,
  6576. "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6577. ilt_client->start,
  6578. ilt_client->end,
  6579. ilt_client->page_size,
  6580. ilt_client->flags,
  6581. ilog2(ilt_client->page_size >> 12));
  6582. }
  6583. if (CNIC_SUPPORT(bp)) {
  6584. /* SRC */
  6585. ilt_client = &ilt->clients[ILT_CLIENT_SRC];
  6586. ilt_client->client_num = ILT_CLIENT_SRC;
  6587. ilt_client->page_size = SRC_ILT_PAGE_SZ;
  6588. ilt_client->flags = 0;
  6589. ilt_client->start = line;
  6590. line += SRC_ILT_LINES;
  6591. ilt_client->end = line - 1;
  6592. DP(NETIF_MSG_IFUP,
  6593. "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6594. ilt_client->start,
  6595. ilt_client->end,
  6596. ilt_client->page_size,
  6597. ilt_client->flags,
  6598. ilog2(ilt_client->page_size >> 12));
  6599. /* TM */
  6600. ilt_client = &ilt->clients[ILT_CLIENT_TM];
  6601. ilt_client->client_num = ILT_CLIENT_TM;
  6602. ilt_client->page_size = TM_ILT_PAGE_SZ;
  6603. ilt_client->flags = 0;
  6604. ilt_client->start = line;
  6605. line += TM_ILT_LINES;
  6606. ilt_client->end = line - 1;
  6607. DP(NETIF_MSG_IFUP,
  6608. "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
  6609. ilt_client->start,
  6610. ilt_client->end,
  6611. ilt_client->page_size,
  6612. ilt_client->flags,
  6613. ilog2(ilt_client->page_size >> 12));
  6614. }
  6615. BUG_ON(line > ILT_MAX_LINES);
  6616. }
  6617. /**
  6618. * bnx2x_pf_q_prep_init - prepare INIT transition parameters
  6619. *
  6620. * @bp: driver handle
  6621. * @fp: pointer to fastpath
  6622. * @init_params: pointer to parameters structure
  6623. *
  6624. * parameters configured:
  6625. * - HC configuration
  6626. * - Queue's CDU context
  6627. */
  6628. static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
  6629. struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
  6630. {
  6631. u8 cos;
  6632. int cxt_index, cxt_offset;
  6633. /* FCoE Queue uses Default SB, thus has no HC capabilities */
  6634. if (!IS_FCOE_FP(fp)) {
  6635. __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
  6636. __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
  6637. /* If HC is supporterd, enable host coalescing in the transition
  6638. * to INIT state.
  6639. */
  6640. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
  6641. __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
  6642. /* HC rate */
  6643. init_params->rx.hc_rate = bp->rx_ticks ?
  6644. (1000000 / bp->rx_ticks) : 0;
  6645. init_params->tx.hc_rate = bp->tx_ticks ?
  6646. (1000000 / bp->tx_ticks) : 0;
  6647. /* FW SB ID */
  6648. init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
  6649. fp->fw_sb_id;
  6650. /*
  6651. * CQ index among the SB indices: FCoE clients uses the default
  6652. * SB, therefore it's different.
  6653. */
  6654. init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
  6655. init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
  6656. }
  6657. /* set maximum number of COSs supported by this queue */
  6658. init_params->max_cos = fp->max_cos;
  6659. DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
  6660. fp->index, init_params->max_cos);
  6661. /* set the context pointers queue object */
  6662. for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
  6663. cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
  6664. cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
  6665. ILT_PAGE_CIDS);
  6666. init_params->cxts[cos] =
  6667. &bp->context[cxt_index].vcxt[cxt_offset].eth;
  6668. }
  6669. }
  6670. static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  6671. struct bnx2x_queue_state_params *q_params,
  6672. struct bnx2x_queue_setup_tx_only_params *tx_only_params,
  6673. int tx_index, bool leading)
  6674. {
  6675. memset(tx_only_params, 0, sizeof(*tx_only_params));
  6676. /* Set the command */
  6677. q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
  6678. /* Set tx-only QUEUE flags: don't zero statistics */
  6679. tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
  6680. /* choose the index of the cid to send the slow path on */
  6681. tx_only_params->cid_index = tx_index;
  6682. /* Set general TX_ONLY_SETUP parameters */
  6683. bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
  6684. /* Set Tx TX_ONLY_SETUP parameters */
  6685. bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
  6686. DP(NETIF_MSG_IFUP,
  6687. "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
  6688. tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
  6689. q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
  6690. tx_only_params->gen_params.spcl_id, tx_only_params->flags);
  6691. /* send the ramrod */
  6692. return bnx2x_queue_state_change(bp, q_params);
  6693. }
  6694. /**
  6695. * bnx2x_setup_queue - setup queue
  6696. *
  6697. * @bp: driver handle
  6698. * @fp: pointer to fastpath
  6699. * @leading: is leading
  6700. *
  6701. * This function performs 2 steps in a Queue state machine
  6702. * actually: 1) RESET->INIT 2) INIT->SETUP
  6703. */
  6704. int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
  6705. bool leading)
  6706. {
  6707. struct bnx2x_queue_state_params q_params = {NULL};
  6708. struct bnx2x_queue_setup_params *setup_params =
  6709. &q_params.params.setup;
  6710. struct bnx2x_queue_setup_tx_only_params *tx_only_params =
  6711. &q_params.params.tx_only;
  6712. int rc;
  6713. u8 tx_index;
  6714. DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
  6715. /* reset IGU state skip FCoE L2 queue */
  6716. if (!IS_FCOE_FP(fp))
  6717. bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
  6718. IGU_INT_ENABLE, 0);
  6719. q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  6720. /* We want to wait for completion in this context */
  6721. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  6722. /* Prepare the INIT parameters */
  6723. bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
  6724. /* Set the command */
  6725. q_params.cmd = BNX2X_Q_CMD_INIT;
  6726. /* Change the state to INIT */
  6727. rc = bnx2x_queue_state_change(bp, &q_params);
  6728. if (rc) {
  6729. BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
  6730. return rc;
  6731. }
  6732. DP(NETIF_MSG_IFUP, "init complete\n");
  6733. /* Now move the Queue to the SETUP state... */
  6734. memset(setup_params, 0, sizeof(*setup_params));
  6735. /* Set QUEUE flags */
  6736. setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
  6737. /* Set general SETUP parameters */
  6738. bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
  6739. FIRST_TX_COS_INDEX);
  6740. bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
  6741. &setup_params->rxq_params);
  6742. bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
  6743. FIRST_TX_COS_INDEX);
  6744. /* Set the command */
  6745. q_params.cmd = BNX2X_Q_CMD_SETUP;
  6746. if (IS_FCOE_FP(fp))
  6747. bp->fcoe_init = true;
  6748. /* Change the state to SETUP */
  6749. rc = bnx2x_queue_state_change(bp, &q_params);
  6750. if (rc) {
  6751. BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
  6752. return rc;
  6753. }
  6754. /* loop through the relevant tx-only indices */
  6755. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  6756. tx_index < fp->max_cos;
  6757. tx_index++) {
  6758. /* prepare and send tx-only ramrod*/
  6759. rc = bnx2x_setup_tx_only(bp, fp, &q_params,
  6760. tx_only_params, tx_index, leading);
  6761. if (rc) {
  6762. BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
  6763. fp->index, tx_index);
  6764. return rc;
  6765. }
  6766. }
  6767. return rc;
  6768. }
  6769. static int bnx2x_stop_queue(struct bnx2x *bp, int index)
  6770. {
  6771. struct bnx2x_fastpath *fp = &bp->fp[index];
  6772. struct bnx2x_fp_txdata *txdata;
  6773. struct bnx2x_queue_state_params q_params = {NULL};
  6774. int rc, tx_index;
  6775. DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
  6776. q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
  6777. /* We want to wait for completion in this context */
  6778. __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
  6779. /* close tx-only connections */
  6780. for (tx_index = FIRST_TX_ONLY_COS_INDEX;
  6781. tx_index < fp->max_cos;
  6782. tx_index++){
  6783. /* ascertain this is a normal queue*/
  6784. txdata = fp->txdata_ptr[tx_index];
  6785. DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
  6786. txdata->txq_index);
  6787. /* send halt terminate on tx-only connection */
  6788. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  6789. memset(&q_params.params.terminate, 0,
  6790. sizeof(q_params.params.terminate));
  6791. q_params.params.terminate.cid_index = tx_index;
  6792. rc = bnx2x_queue_state_change(bp, &q_params);
  6793. if (rc)
  6794. return rc;
  6795. /* send halt terminate on tx-only connection */
  6796. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  6797. memset(&q_params.params.cfc_del, 0,
  6798. sizeof(q_params.params.cfc_del));
  6799. q_params.params.cfc_del.cid_index = tx_index;
  6800. rc = bnx2x_queue_state_change(bp, &q_params);
  6801. if (rc)
  6802. return rc;
  6803. }
  6804. /* Stop the primary connection: */
  6805. /* ...halt the connection */
  6806. q_params.cmd = BNX2X_Q_CMD_HALT;
  6807. rc = bnx2x_queue_state_change(bp, &q_params);
  6808. if (rc)
  6809. return rc;
  6810. /* ...terminate the connection */
  6811. q_params.cmd = BNX2X_Q_CMD_TERMINATE;
  6812. memset(&q_params.params.terminate, 0,
  6813. sizeof(q_params.params.terminate));
  6814. q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
  6815. rc = bnx2x_queue_state_change(bp, &q_params);
  6816. if (rc)
  6817. return rc;
  6818. /* ...delete cfc entry */
  6819. q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
  6820. memset(&q_params.params.cfc_del, 0,
  6821. sizeof(q_params.params.cfc_del));
  6822. q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
  6823. return bnx2x_queue_state_change(bp, &q_params);
  6824. }
  6825. static void bnx2x_reset_func(struct bnx2x *bp)
  6826. {
  6827. int port = BP_PORT(bp);
  6828. int func = BP_FUNC(bp);
  6829. int i;
  6830. /* Disable the function in the FW */
  6831. REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
  6832. REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
  6833. REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
  6834. REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
  6835. /* FP SBs */
  6836. for_each_eth_queue(bp, i) {
  6837. struct bnx2x_fastpath *fp = &bp->fp[i];
  6838. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6839. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
  6840. SB_DISABLED);
  6841. }
  6842. if (CNIC_LOADED(bp))
  6843. /* CNIC SB */
  6844. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6845. CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
  6846. (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
  6847. /* SP SB */
  6848. REG_WR8(bp, BAR_CSTRORM_INTMEM +
  6849. CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
  6850. SB_DISABLED);
  6851. for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
  6852. REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
  6853. 0);
  6854. /* Configure IGU */
  6855. if (bp->common.int_block == INT_BLOCK_HC) {
  6856. REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
  6857. REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
  6858. } else {
  6859. REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
  6860. REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
  6861. }
  6862. if (CNIC_LOADED(bp)) {
  6863. /* Disable Timer scan */
  6864. REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
  6865. /*
  6866. * Wait for at least 10ms and up to 2 second for the timers
  6867. * scan to complete
  6868. */
  6869. for (i = 0; i < 200; i++) {
  6870. msleep(10);
  6871. if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
  6872. break;
  6873. }
  6874. }
  6875. /* Clear ILT */
  6876. bnx2x_clear_func_ilt(bp, func);
  6877. /* Timers workaround bug for E2: if this is vnic-3,
  6878. * we need to set the entire ilt range for this timers.
  6879. */
  6880. if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
  6881. struct ilt_client_info ilt_cli;
  6882. /* use dummy TM client */
  6883. memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
  6884. ilt_cli.start = 0;
  6885. ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
  6886. ilt_cli.client_num = ILT_CLIENT_TM;
  6887. bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
  6888. }
  6889. /* this assumes that reset_port() called before reset_func()*/
  6890. if (!CHIP_IS_E1x(bp))
  6891. bnx2x_pf_disable(bp);
  6892. bp->dmae_ready = 0;
  6893. }
  6894. static void bnx2x_reset_port(struct bnx2x *bp)
  6895. {
  6896. int port = BP_PORT(bp);
  6897. u32 val;
  6898. /* Reset physical Link */
  6899. bnx2x__link_reset(bp);
  6900. REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
  6901. /* Do not rcv packets to BRB */
  6902. REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
  6903. /* Do not direct rcv packets that are not for MCP to the BRB */
  6904. REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
  6905. NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
  6906. /* Configure AEU */
  6907. REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
  6908. msleep(100);
  6909. /* Check for BRB port occupancy */
  6910. val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
  6911. if (val)
  6912. DP(NETIF_MSG_IFDOWN,
  6913. "BRB1 is not empty %d blocks are occupied\n", val);
  6914. /* TODO: Close Doorbell port? */
  6915. }
  6916. static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
  6917. {
  6918. struct bnx2x_func_state_params func_params = {NULL};
  6919. /* Prepare parameters for function state transitions */
  6920. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  6921. func_params.f_obj = &bp->func_obj;
  6922. func_params.cmd = BNX2X_F_CMD_HW_RESET;
  6923. func_params.params.hw_init.load_phase = load_code;
  6924. return bnx2x_func_state_change(bp, &func_params);
  6925. }
  6926. static int bnx2x_func_stop(struct bnx2x *bp)
  6927. {
  6928. struct bnx2x_func_state_params func_params = {NULL};
  6929. int rc;
  6930. /* Prepare parameters for function state transitions */
  6931. __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
  6932. func_params.f_obj = &bp->func_obj;
  6933. func_params.cmd = BNX2X_F_CMD_STOP;
  6934. /*
  6935. * Try to stop the function the 'good way'. If fails (in case
  6936. * of a parity error during bnx2x_chip_cleanup()) and we are
  6937. * not in a debug mode, perform a state transaction in order to
  6938. * enable further HW_RESET transaction.
  6939. */
  6940. rc = bnx2x_func_state_change(bp, &func_params);
  6941. if (rc) {
  6942. #ifdef BNX2X_STOP_ON_ERROR
  6943. return rc;
  6944. #else
  6945. BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
  6946. __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
  6947. return bnx2x_func_state_change(bp, &func_params);
  6948. #endif
  6949. }
  6950. return 0;
  6951. }
  6952. /**
  6953. * bnx2x_send_unload_req - request unload mode from the MCP.
  6954. *
  6955. * @bp: driver handle
  6956. * @unload_mode: requested function's unload mode
  6957. *
  6958. * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
  6959. */
  6960. u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
  6961. {
  6962. u32 reset_code = 0;
  6963. int port = BP_PORT(bp);
  6964. /* Select the UNLOAD request mode */
  6965. if (unload_mode == UNLOAD_NORMAL)
  6966. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  6967. else if (bp->flags & NO_WOL_FLAG)
  6968. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
  6969. else if (bp->wol) {
  6970. u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
  6971. u8 *mac_addr = bp->dev->dev_addr;
  6972. u32 val;
  6973. u16 pmc;
  6974. /* The mac address is written to entries 1-4 to
  6975. * preserve entry 0 which is used by the PMF
  6976. */
  6977. u8 entry = (BP_VN(bp) + 1)*8;
  6978. val = (mac_addr[0] << 8) | mac_addr[1];
  6979. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
  6980. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  6981. (mac_addr[4] << 8) | mac_addr[5];
  6982. EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
  6983. /* Enable the PME and clear the status */
  6984. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
  6985. pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
  6986. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
  6987. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
  6988. } else
  6989. reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
  6990. /* Send the request to the MCP */
  6991. if (!BP_NOMCP(bp))
  6992. reset_code = bnx2x_fw_command(bp, reset_code, 0);
  6993. else {
  6994. int path = BP_PATH(bp);
  6995. DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] %d, %d, %d\n",
  6996. path, load_count[path][0], load_count[path][1],
  6997. load_count[path][2]);
  6998. load_count[path][0]--;
  6999. load_count[path][1 + port]--;
  7000. DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] %d, %d, %d\n",
  7001. path, load_count[path][0], load_count[path][1],
  7002. load_count[path][2]);
  7003. if (load_count[path][0] == 0)
  7004. reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
  7005. else if (load_count[path][1 + port] == 0)
  7006. reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
  7007. else
  7008. reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
  7009. }
  7010. return reset_code;
  7011. }
  7012. /**
  7013. * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
  7014. *
  7015. * @bp: driver handle
  7016. * @keep_link: true iff link should be kept up
  7017. */
  7018. void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
  7019. {
  7020. u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
  7021. /* Report UNLOAD_DONE to MCP */
  7022. if (!BP_NOMCP(bp))
  7023. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
  7024. }
  7025. static int bnx2x_func_wait_started(struct bnx2x *bp)
  7026. {
  7027. int tout = 50;
  7028. int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
  7029. if (!bp->port.pmf)
  7030. return 0;
  7031. /*
  7032. * (assumption: No Attention from MCP at this stage)
  7033. * PMF probably in the middle of TXdisable/enable transaction
  7034. * 1. Sync IRS for default SB
  7035. * 2. Sync SP queue - this guarantes us that attention handling started
  7036. * 3. Wait, that TXdisable/enable transaction completes
  7037. *
  7038. * 1+2 guranty that if DCBx attention was scheduled it already changed
  7039. * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
  7040. * received complettion for the transaction the state is TX_STOPPED.
  7041. * State will return to STARTED after completion of TX_STOPPED-->STARTED
  7042. * transaction.
  7043. */
  7044. /* make sure default SB ISR is done */
  7045. if (msix)
  7046. synchronize_irq(bp->msix_table[0].vector);
  7047. else
  7048. synchronize_irq(bp->pdev->irq);
  7049. flush_workqueue(bnx2x_wq);
  7050. while (bnx2x_func_get_state(bp, &bp->func_obj) !=
  7051. BNX2X_F_STATE_STARTED && tout--)
  7052. msleep(20);
  7053. if (bnx2x_func_get_state(bp, &bp->func_obj) !=
  7054. BNX2X_F_STATE_STARTED) {
  7055. #ifdef BNX2X_STOP_ON_ERROR
  7056. BNX2X_ERR("Wrong function state\n");
  7057. return -EBUSY;
  7058. #else
  7059. /*
  7060. * Failed to complete the transaction in a "good way"
  7061. * Force both transactions with CLR bit
  7062. */
  7063. struct bnx2x_func_state_params func_params = {NULL};
  7064. DP(NETIF_MSG_IFDOWN,
  7065. "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
  7066. func_params.f_obj = &bp->func_obj;
  7067. __set_bit(RAMROD_DRV_CLR_ONLY,
  7068. &func_params.ramrod_flags);
  7069. /* STARTED-->TX_ST0PPED */
  7070. func_params.cmd = BNX2X_F_CMD_TX_STOP;
  7071. bnx2x_func_state_change(bp, &func_params);
  7072. /* TX_ST0PPED-->STARTED */
  7073. func_params.cmd = BNX2X_F_CMD_TX_START;
  7074. return bnx2x_func_state_change(bp, &func_params);
  7075. #endif
  7076. }
  7077. return 0;
  7078. }
  7079. void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
  7080. {
  7081. int port = BP_PORT(bp);
  7082. int i, rc = 0;
  7083. u8 cos;
  7084. struct bnx2x_mcast_ramrod_params rparam = {NULL};
  7085. u32 reset_code;
  7086. /* Wait until tx fastpath tasks complete */
  7087. for_each_tx_queue(bp, i) {
  7088. struct bnx2x_fastpath *fp = &bp->fp[i];
  7089. for_each_cos_in_tx_queue(fp, cos)
  7090. rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
  7091. #ifdef BNX2X_STOP_ON_ERROR
  7092. if (rc)
  7093. return;
  7094. #endif
  7095. }
  7096. /* Give HW time to discard old tx messages */
  7097. usleep_range(1000, 1000);
  7098. /* Clean all ETH MACs */
  7099. rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
  7100. false);
  7101. if (rc < 0)
  7102. BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
  7103. /* Clean up UC list */
  7104. rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
  7105. true);
  7106. if (rc < 0)
  7107. BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
  7108. rc);
  7109. /* Disable LLH */
  7110. if (!CHIP_IS_E1(bp))
  7111. REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
  7112. /* Set "drop all" (stop Rx).
  7113. * We need to take a netif_addr_lock() here in order to prevent
  7114. * a race between the completion code and this code.
  7115. */
  7116. netif_addr_lock_bh(bp->dev);
  7117. /* Schedule the rx_mode command */
  7118. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  7119. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  7120. else
  7121. bnx2x_set_storm_rx_mode(bp);
  7122. /* Cleanup multicast configuration */
  7123. rparam.mcast_obj = &bp->mcast_obj;
  7124. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  7125. if (rc < 0)
  7126. BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
  7127. netif_addr_unlock_bh(bp->dev);
  7128. /*
  7129. * Send the UNLOAD_REQUEST to the MCP. This will return if
  7130. * this function should perform FUNC, PORT or COMMON HW
  7131. * reset.
  7132. */
  7133. reset_code = bnx2x_send_unload_req(bp, unload_mode);
  7134. /*
  7135. * (assumption: No Attention from MCP at this stage)
  7136. * PMF probably in the middle of TXdisable/enable transaction
  7137. */
  7138. rc = bnx2x_func_wait_started(bp);
  7139. if (rc) {
  7140. BNX2X_ERR("bnx2x_func_wait_started failed\n");
  7141. #ifdef BNX2X_STOP_ON_ERROR
  7142. return;
  7143. #endif
  7144. }
  7145. /* Close multi and leading connections
  7146. * Completions for ramrods are collected in a synchronous way
  7147. */
  7148. for_each_eth_queue(bp, i)
  7149. if (bnx2x_stop_queue(bp, i))
  7150. #ifdef BNX2X_STOP_ON_ERROR
  7151. return;
  7152. #else
  7153. goto unload_error;
  7154. #endif
  7155. if (CNIC_LOADED(bp)) {
  7156. for_each_cnic_queue(bp, i)
  7157. if (bnx2x_stop_queue(bp, i))
  7158. #ifdef BNX2X_STOP_ON_ERROR
  7159. return;
  7160. #else
  7161. goto unload_error;
  7162. #endif
  7163. }
  7164. /* If SP settings didn't get completed so far - something
  7165. * very wrong has happen.
  7166. */
  7167. if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
  7168. BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
  7169. #ifndef BNX2X_STOP_ON_ERROR
  7170. unload_error:
  7171. #endif
  7172. rc = bnx2x_func_stop(bp);
  7173. if (rc) {
  7174. BNX2X_ERR("Function stop failed!\n");
  7175. #ifdef BNX2X_STOP_ON_ERROR
  7176. return;
  7177. #endif
  7178. }
  7179. /* Disable HW interrupts, NAPI */
  7180. bnx2x_netif_stop(bp, 1);
  7181. /* Delete all NAPI objects */
  7182. bnx2x_del_all_napi(bp);
  7183. if (CNIC_LOADED(bp))
  7184. bnx2x_del_all_napi_cnic(bp);
  7185. /* Release IRQs */
  7186. bnx2x_free_irq(bp);
  7187. /* Reset the chip */
  7188. rc = bnx2x_reset_hw(bp, reset_code);
  7189. if (rc)
  7190. BNX2X_ERR("HW_RESET failed\n");
  7191. /* Report UNLOAD_DONE to MCP */
  7192. bnx2x_send_unload_done(bp, keep_link);
  7193. }
  7194. void bnx2x_disable_close_the_gate(struct bnx2x *bp)
  7195. {
  7196. u32 val;
  7197. DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
  7198. if (CHIP_IS_E1(bp)) {
  7199. int port = BP_PORT(bp);
  7200. u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
  7201. MISC_REG_AEU_MASK_ATTN_FUNC_0;
  7202. val = REG_RD(bp, addr);
  7203. val &= ~(0x300);
  7204. REG_WR(bp, addr, val);
  7205. } else {
  7206. val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
  7207. val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
  7208. MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
  7209. REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
  7210. }
  7211. }
  7212. /* Close gates #2, #3 and #4: */
  7213. static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
  7214. {
  7215. u32 val;
  7216. /* Gates #2 and #4a are closed/opened for "not E1" only */
  7217. if (!CHIP_IS_E1(bp)) {
  7218. /* #4 */
  7219. REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
  7220. /* #2 */
  7221. REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
  7222. }
  7223. /* #3 */
  7224. if (CHIP_IS_E1x(bp)) {
  7225. /* Prevent interrupts from HC on both ports */
  7226. val = REG_RD(bp, HC_REG_CONFIG_1);
  7227. REG_WR(bp, HC_REG_CONFIG_1,
  7228. (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
  7229. (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
  7230. val = REG_RD(bp, HC_REG_CONFIG_0);
  7231. REG_WR(bp, HC_REG_CONFIG_0,
  7232. (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
  7233. (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
  7234. } else {
  7235. /* Prevent incomming interrupts in IGU */
  7236. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  7237. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
  7238. (!close) ?
  7239. (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
  7240. (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
  7241. }
  7242. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
  7243. close ? "closing" : "opening");
  7244. mmiowb();
  7245. }
  7246. #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
  7247. static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
  7248. {
  7249. /* Do some magic... */
  7250. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  7251. *magic_val = val & SHARED_MF_CLP_MAGIC;
  7252. MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
  7253. }
  7254. /**
  7255. * bnx2x_clp_reset_done - restore the value of the `magic' bit.
  7256. *
  7257. * @bp: driver handle
  7258. * @magic_val: old value of the `magic' bit.
  7259. */
  7260. static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
  7261. {
  7262. /* Restore the `magic' bit value... */
  7263. u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
  7264. MF_CFG_WR(bp, shared_mf_config.clp_mb,
  7265. (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
  7266. }
  7267. /**
  7268. * bnx2x_reset_mcp_prep - prepare for MCP reset.
  7269. *
  7270. * @bp: driver handle
  7271. * @magic_val: old value of 'magic' bit.
  7272. *
  7273. * Takes care of CLP configurations.
  7274. */
  7275. static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
  7276. {
  7277. u32 shmem;
  7278. u32 validity_offset;
  7279. DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
  7280. /* Set `magic' bit in order to save MF config */
  7281. if (!CHIP_IS_E1(bp))
  7282. bnx2x_clp_reset_prep(bp, magic_val);
  7283. /* Get shmem offset */
  7284. shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  7285. validity_offset =
  7286. offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
  7287. /* Clear validity map flags */
  7288. if (shmem > 0)
  7289. REG_WR(bp, shmem + validity_offset, 0);
  7290. }
  7291. #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
  7292. #define MCP_ONE_TIMEOUT 100 /* 100 ms */
  7293. /**
  7294. * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
  7295. *
  7296. * @bp: driver handle
  7297. */
  7298. static void bnx2x_mcp_wait_one(struct bnx2x *bp)
  7299. {
  7300. /* special handling for emulation and FPGA,
  7301. wait 10 times longer */
  7302. if (CHIP_REV_IS_SLOW(bp))
  7303. msleep(MCP_ONE_TIMEOUT*10);
  7304. else
  7305. msleep(MCP_ONE_TIMEOUT);
  7306. }
  7307. /*
  7308. * initializes bp->common.shmem_base and waits for validity signature to appear
  7309. */
  7310. static int bnx2x_init_shmem(struct bnx2x *bp)
  7311. {
  7312. int cnt = 0;
  7313. u32 val = 0;
  7314. do {
  7315. bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
  7316. if (bp->common.shmem_base) {
  7317. val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
  7318. if (val & SHR_MEM_VALIDITY_MB)
  7319. return 0;
  7320. }
  7321. bnx2x_mcp_wait_one(bp);
  7322. } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
  7323. BNX2X_ERR("BAD MCP validity signature\n");
  7324. return -ENODEV;
  7325. }
  7326. static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
  7327. {
  7328. int rc = bnx2x_init_shmem(bp);
  7329. /* Restore the `magic' bit value */
  7330. if (!CHIP_IS_E1(bp))
  7331. bnx2x_clp_reset_done(bp, magic_val);
  7332. return rc;
  7333. }
  7334. static void bnx2x_pxp_prep(struct bnx2x *bp)
  7335. {
  7336. if (!CHIP_IS_E1(bp)) {
  7337. REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
  7338. REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
  7339. mmiowb();
  7340. }
  7341. }
  7342. /*
  7343. * Reset the whole chip except for:
  7344. * - PCIE core
  7345. * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
  7346. * one reset bit)
  7347. * - IGU
  7348. * - MISC (including AEU)
  7349. * - GRC
  7350. * - RBCN, RBCP
  7351. */
  7352. static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
  7353. {
  7354. u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
  7355. u32 global_bits2, stay_reset2;
  7356. /*
  7357. * Bits that have to be set in reset_mask2 if we want to reset 'global'
  7358. * (per chip) blocks.
  7359. */
  7360. global_bits2 =
  7361. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
  7362. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
  7363. /* Don't reset the following blocks.
  7364. * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
  7365. * reset, as in 4 port device they might still be owned
  7366. * by the MCP (there is only one leader per path).
  7367. */
  7368. not_reset_mask1 =
  7369. MISC_REGISTERS_RESET_REG_1_RST_HC |
  7370. MISC_REGISTERS_RESET_REG_1_RST_PXPV |
  7371. MISC_REGISTERS_RESET_REG_1_RST_PXP;
  7372. not_reset_mask2 =
  7373. MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
  7374. MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
  7375. MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
  7376. MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
  7377. MISC_REGISTERS_RESET_REG_2_RST_RBCN |
  7378. MISC_REGISTERS_RESET_REG_2_RST_GRC |
  7379. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
  7380. MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
  7381. MISC_REGISTERS_RESET_REG_2_RST_ATC |
  7382. MISC_REGISTERS_RESET_REG_2_PGLC |
  7383. MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
  7384. MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
  7385. MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
  7386. MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
  7387. MISC_REGISTERS_RESET_REG_2_UMAC0 |
  7388. MISC_REGISTERS_RESET_REG_2_UMAC1;
  7389. /*
  7390. * Keep the following blocks in reset:
  7391. * - all xxMACs are handled by the bnx2x_link code.
  7392. */
  7393. stay_reset2 =
  7394. MISC_REGISTERS_RESET_REG_2_XMAC |
  7395. MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
  7396. /* Full reset masks according to the chip */
  7397. reset_mask1 = 0xffffffff;
  7398. if (CHIP_IS_E1(bp))
  7399. reset_mask2 = 0xffff;
  7400. else if (CHIP_IS_E1H(bp))
  7401. reset_mask2 = 0x1ffff;
  7402. else if (CHIP_IS_E2(bp))
  7403. reset_mask2 = 0xfffff;
  7404. else /* CHIP_IS_E3 */
  7405. reset_mask2 = 0x3ffffff;
  7406. /* Don't reset global blocks unless we need to */
  7407. if (!global)
  7408. reset_mask2 &= ~global_bits2;
  7409. /*
  7410. * In case of attention in the QM, we need to reset PXP
  7411. * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
  7412. * because otherwise QM reset would release 'close the gates' shortly
  7413. * before resetting the PXP, then the PSWRQ would send a write
  7414. * request to PGLUE. Then when PXP is reset, PGLUE would try to
  7415. * read the payload data from PSWWR, but PSWWR would not
  7416. * respond. The write queue in PGLUE would stuck, dmae commands
  7417. * would not return. Therefore it's important to reset the second
  7418. * reset register (containing the
  7419. * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
  7420. * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
  7421. * bit).
  7422. */
  7423. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
  7424. reset_mask2 & (~not_reset_mask2));
  7425. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
  7426. reset_mask1 & (~not_reset_mask1));
  7427. barrier();
  7428. mmiowb();
  7429. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
  7430. reset_mask2 & (~stay_reset2));
  7431. barrier();
  7432. mmiowb();
  7433. REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
  7434. mmiowb();
  7435. }
  7436. /**
  7437. * bnx2x_er_poll_igu_vq - poll for pending writes bit.
  7438. * It should get cleared in no more than 1s.
  7439. *
  7440. * @bp: driver handle
  7441. *
  7442. * It should get cleared in no more than 1s. Returns 0 if
  7443. * pending writes bit gets cleared.
  7444. */
  7445. static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
  7446. {
  7447. u32 cnt = 1000;
  7448. u32 pend_bits = 0;
  7449. do {
  7450. pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
  7451. if (pend_bits == 0)
  7452. break;
  7453. usleep_range(1000, 1000);
  7454. } while (cnt-- > 0);
  7455. if (cnt <= 0) {
  7456. BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
  7457. pend_bits);
  7458. return -EBUSY;
  7459. }
  7460. return 0;
  7461. }
  7462. static int bnx2x_process_kill(struct bnx2x *bp, bool global)
  7463. {
  7464. int cnt = 1000;
  7465. u32 val = 0;
  7466. u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
  7467. u32 tags_63_32 = 0;
  7468. /* Empty the Tetris buffer, wait for 1s */
  7469. do {
  7470. sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
  7471. blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
  7472. port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
  7473. port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
  7474. pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
  7475. if (CHIP_IS_E3(bp))
  7476. tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
  7477. if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
  7478. ((port_is_idle_0 & 0x1) == 0x1) &&
  7479. ((port_is_idle_1 & 0x1) == 0x1) &&
  7480. (pgl_exp_rom2 == 0xffffffff) &&
  7481. (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
  7482. break;
  7483. usleep_range(1000, 1000);
  7484. } while (cnt-- > 0);
  7485. if (cnt <= 0) {
  7486. BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
  7487. BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
  7488. sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
  7489. pgl_exp_rom2);
  7490. return -EAGAIN;
  7491. }
  7492. barrier();
  7493. /* Close gates #2, #3 and #4 */
  7494. bnx2x_set_234_gates(bp, true);
  7495. /* Poll for IGU VQs for 57712 and newer chips */
  7496. if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
  7497. return -EAGAIN;
  7498. /* TBD: Indicate that "process kill" is in progress to MCP */
  7499. /* Clear "unprepared" bit */
  7500. REG_WR(bp, MISC_REG_UNPREPARED, 0);
  7501. barrier();
  7502. /* Make sure all is written to the chip before the reset */
  7503. mmiowb();
  7504. /* Wait for 1ms to empty GLUE and PCI-E core queues,
  7505. * PSWHST, GRC and PSWRD Tetris buffer.
  7506. */
  7507. usleep_range(1000, 1000);
  7508. /* Prepare to chip reset: */
  7509. /* MCP */
  7510. if (global)
  7511. bnx2x_reset_mcp_prep(bp, &val);
  7512. /* PXP */
  7513. bnx2x_pxp_prep(bp);
  7514. barrier();
  7515. /* reset the chip */
  7516. bnx2x_process_kill_chip_reset(bp, global);
  7517. barrier();
  7518. /* Recover after reset: */
  7519. /* MCP */
  7520. if (global && bnx2x_reset_mcp_comp(bp, val))
  7521. return -EAGAIN;
  7522. /* TBD: Add resetting the NO_MCP mode DB here */
  7523. /* Open the gates #2, #3 and #4 */
  7524. bnx2x_set_234_gates(bp, false);
  7525. /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
  7526. * reset state, re-enable attentions. */
  7527. return 0;
  7528. }
  7529. static int bnx2x_leader_reset(struct bnx2x *bp)
  7530. {
  7531. int rc = 0;
  7532. bool global = bnx2x_reset_is_global(bp);
  7533. u32 load_code;
  7534. /* if not going to reset MCP - load "fake" driver to reset HW while
  7535. * driver is owner of the HW
  7536. */
  7537. if (!global && !BP_NOMCP(bp)) {
  7538. load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
  7539. DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
  7540. if (!load_code) {
  7541. BNX2X_ERR("MCP response failure, aborting\n");
  7542. rc = -EAGAIN;
  7543. goto exit_leader_reset;
  7544. }
  7545. if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
  7546. (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
  7547. BNX2X_ERR("MCP unexpected resp, aborting\n");
  7548. rc = -EAGAIN;
  7549. goto exit_leader_reset2;
  7550. }
  7551. load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
  7552. if (!load_code) {
  7553. BNX2X_ERR("MCP response failure, aborting\n");
  7554. rc = -EAGAIN;
  7555. goto exit_leader_reset2;
  7556. }
  7557. }
  7558. /* Try to recover after the failure */
  7559. if (bnx2x_process_kill(bp, global)) {
  7560. BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
  7561. BP_PATH(bp));
  7562. rc = -EAGAIN;
  7563. goto exit_leader_reset2;
  7564. }
  7565. /*
  7566. * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
  7567. * state.
  7568. */
  7569. bnx2x_set_reset_done(bp);
  7570. if (global)
  7571. bnx2x_clear_reset_global(bp);
  7572. exit_leader_reset2:
  7573. /* unload "fake driver" if it was loaded */
  7574. if (!global && !BP_NOMCP(bp)) {
  7575. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
  7576. bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
  7577. }
  7578. exit_leader_reset:
  7579. bp->is_leader = 0;
  7580. bnx2x_release_leader_lock(bp);
  7581. smp_mb();
  7582. return rc;
  7583. }
  7584. static void bnx2x_recovery_failed(struct bnx2x *bp)
  7585. {
  7586. netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
  7587. /* Disconnect this device */
  7588. netif_device_detach(bp->dev);
  7589. /*
  7590. * Block ifup for all function on this engine until "process kill"
  7591. * or power cycle.
  7592. */
  7593. bnx2x_set_reset_in_progress(bp);
  7594. /* Shut down the power */
  7595. bnx2x_set_power_state(bp, PCI_D3hot);
  7596. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  7597. smp_mb();
  7598. }
  7599. /*
  7600. * Assumption: runs under rtnl lock. This together with the fact
  7601. * that it's called only from bnx2x_sp_rtnl() ensure that it
  7602. * will never be called when netif_running(bp->dev) is false.
  7603. */
  7604. static void bnx2x_parity_recover(struct bnx2x *bp)
  7605. {
  7606. bool global = false;
  7607. u32 error_recovered, error_unrecovered;
  7608. bool is_parity;
  7609. DP(NETIF_MSG_HW, "Handling parity\n");
  7610. while (1) {
  7611. switch (bp->recovery_state) {
  7612. case BNX2X_RECOVERY_INIT:
  7613. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
  7614. is_parity = bnx2x_chk_parity_attn(bp, &global, false);
  7615. WARN_ON(!is_parity);
  7616. /* Try to get a LEADER_LOCK HW lock */
  7617. if (bnx2x_trylock_leader_lock(bp)) {
  7618. bnx2x_set_reset_in_progress(bp);
  7619. /*
  7620. * Check if there is a global attention and if
  7621. * there was a global attention, set the global
  7622. * reset bit.
  7623. */
  7624. if (global)
  7625. bnx2x_set_reset_global(bp);
  7626. bp->is_leader = 1;
  7627. }
  7628. /* Stop the driver */
  7629. /* If interface has been removed - break */
  7630. if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
  7631. return;
  7632. bp->recovery_state = BNX2X_RECOVERY_WAIT;
  7633. /* Ensure "is_leader", MCP command sequence and
  7634. * "recovery_state" update values are seen on other
  7635. * CPUs.
  7636. */
  7637. smp_mb();
  7638. break;
  7639. case BNX2X_RECOVERY_WAIT:
  7640. DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
  7641. if (bp->is_leader) {
  7642. int other_engine = BP_PATH(bp) ? 0 : 1;
  7643. bool other_load_status =
  7644. bnx2x_get_load_status(bp, other_engine);
  7645. bool load_status =
  7646. bnx2x_get_load_status(bp, BP_PATH(bp));
  7647. global = bnx2x_reset_is_global(bp);
  7648. /*
  7649. * In case of a parity in a global block, let
  7650. * the first leader that performs a
  7651. * leader_reset() reset the global blocks in
  7652. * order to clear global attentions. Otherwise
  7653. * the the gates will remain closed for that
  7654. * engine.
  7655. */
  7656. if (load_status ||
  7657. (global && other_load_status)) {
  7658. /* Wait until all other functions get
  7659. * down.
  7660. */
  7661. schedule_delayed_work(&bp->sp_rtnl_task,
  7662. HZ/10);
  7663. return;
  7664. } else {
  7665. /* If all other functions got down -
  7666. * try to bring the chip back to
  7667. * normal. In any case it's an exit
  7668. * point for a leader.
  7669. */
  7670. if (bnx2x_leader_reset(bp)) {
  7671. bnx2x_recovery_failed(bp);
  7672. return;
  7673. }
  7674. /* If we are here, means that the
  7675. * leader has succeeded and doesn't
  7676. * want to be a leader any more. Try
  7677. * to continue as a none-leader.
  7678. */
  7679. break;
  7680. }
  7681. } else { /* non-leader */
  7682. if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
  7683. /* Try to get a LEADER_LOCK HW lock as
  7684. * long as a former leader may have
  7685. * been unloaded by the user or
  7686. * released a leadership by another
  7687. * reason.
  7688. */
  7689. if (bnx2x_trylock_leader_lock(bp)) {
  7690. /* I'm a leader now! Restart a
  7691. * switch case.
  7692. */
  7693. bp->is_leader = 1;
  7694. break;
  7695. }
  7696. schedule_delayed_work(&bp->sp_rtnl_task,
  7697. HZ/10);
  7698. return;
  7699. } else {
  7700. /*
  7701. * If there was a global attention, wait
  7702. * for it to be cleared.
  7703. */
  7704. if (bnx2x_reset_is_global(bp)) {
  7705. schedule_delayed_work(
  7706. &bp->sp_rtnl_task,
  7707. HZ/10);
  7708. return;
  7709. }
  7710. error_recovered =
  7711. bp->eth_stats.recoverable_error;
  7712. error_unrecovered =
  7713. bp->eth_stats.unrecoverable_error;
  7714. bp->recovery_state =
  7715. BNX2X_RECOVERY_NIC_LOADING;
  7716. if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
  7717. error_unrecovered++;
  7718. netdev_err(bp->dev,
  7719. "Recovery failed. Power cycle needed\n");
  7720. /* Disconnect this device */
  7721. netif_device_detach(bp->dev);
  7722. /* Shut down the power */
  7723. bnx2x_set_power_state(
  7724. bp, PCI_D3hot);
  7725. smp_mb();
  7726. } else {
  7727. bp->recovery_state =
  7728. BNX2X_RECOVERY_DONE;
  7729. error_recovered++;
  7730. smp_mb();
  7731. }
  7732. bp->eth_stats.recoverable_error =
  7733. error_recovered;
  7734. bp->eth_stats.unrecoverable_error =
  7735. error_unrecovered;
  7736. return;
  7737. }
  7738. }
  7739. default:
  7740. return;
  7741. }
  7742. }
  7743. }
  7744. static int bnx2x_close(struct net_device *dev);
  7745. /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
  7746. * scheduled on a general queue in order to prevent a dead lock.
  7747. */
  7748. static void bnx2x_sp_rtnl_task(struct work_struct *work)
  7749. {
  7750. struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
  7751. rtnl_lock();
  7752. if (!netif_running(bp->dev))
  7753. goto sp_rtnl_exit;
  7754. /* if stop on error is defined no recovery flows should be executed */
  7755. #ifdef BNX2X_STOP_ON_ERROR
  7756. BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
  7757. "you will need to reboot when done\n");
  7758. goto sp_rtnl_not_reset;
  7759. #endif
  7760. if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
  7761. /*
  7762. * Clear all pending SP commands as we are going to reset the
  7763. * function anyway.
  7764. */
  7765. bp->sp_rtnl_state = 0;
  7766. smp_mb();
  7767. bnx2x_parity_recover(bp);
  7768. goto sp_rtnl_exit;
  7769. }
  7770. if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
  7771. /*
  7772. * Clear all pending SP commands as we are going to reset the
  7773. * function anyway.
  7774. */
  7775. bp->sp_rtnl_state = 0;
  7776. smp_mb();
  7777. bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
  7778. bnx2x_nic_load(bp, LOAD_NORMAL);
  7779. goto sp_rtnl_exit;
  7780. }
  7781. #ifdef BNX2X_STOP_ON_ERROR
  7782. sp_rtnl_not_reset:
  7783. #endif
  7784. if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
  7785. bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
  7786. if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
  7787. bnx2x_after_function_update(bp);
  7788. /*
  7789. * in case of fan failure we need to reset id if the "stop on error"
  7790. * debug flag is set, since we trying to prevent permanent overheating
  7791. * damage
  7792. */
  7793. if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
  7794. DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
  7795. netif_device_detach(bp->dev);
  7796. bnx2x_close(bp->dev);
  7797. }
  7798. if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
  7799. DP(BNX2X_MSG_SP,
  7800. "sending set mcast vf pf channel message from rtnl sp-task\n");
  7801. bnx2x_vfpf_set_mcast(bp->dev);
  7802. }
  7803. if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
  7804. &bp->sp_rtnl_state)) {
  7805. DP(BNX2X_MSG_SP,
  7806. "sending set storm rx mode vf pf channel message from rtnl sp-task\n");
  7807. bnx2x_vfpf_storm_rx_mode(bp);
  7808. }
  7809. sp_rtnl_exit:
  7810. rtnl_unlock();
  7811. }
  7812. /* end of nic load/unload */
  7813. static void bnx2x_period_task(struct work_struct *work)
  7814. {
  7815. struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
  7816. if (!netif_running(bp->dev))
  7817. goto period_task_exit;
  7818. if (CHIP_REV_IS_SLOW(bp)) {
  7819. BNX2X_ERR("period task called on emulation, ignoring\n");
  7820. goto period_task_exit;
  7821. }
  7822. bnx2x_acquire_phy_lock(bp);
  7823. /*
  7824. * The barrier is needed to ensure the ordering between the writing to
  7825. * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
  7826. * the reading here.
  7827. */
  7828. smp_mb();
  7829. if (bp->port.pmf) {
  7830. bnx2x_period_func(&bp->link_params, &bp->link_vars);
  7831. /* Re-queue task in 1 sec */
  7832. queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
  7833. }
  7834. bnx2x_release_phy_lock(bp);
  7835. period_task_exit:
  7836. return;
  7837. }
  7838. /*
  7839. * Init service functions
  7840. */
  7841. u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
  7842. {
  7843. u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
  7844. u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
  7845. return base + (BP_ABS_FUNC(bp)) * stride;
  7846. }
  7847. static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
  7848. {
  7849. u32 reg = bnx2x_get_pretend_reg(bp);
  7850. /* Flush all outstanding writes */
  7851. mmiowb();
  7852. /* Pretend to be function 0 */
  7853. REG_WR(bp, reg, 0);
  7854. REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
  7855. /* From now we are in the "like-E1" mode */
  7856. bnx2x_int_disable(bp);
  7857. /* Flush all outstanding writes */
  7858. mmiowb();
  7859. /* Restore the original function */
  7860. REG_WR(bp, reg, BP_ABS_FUNC(bp));
  7861. REG_RD(bp, reg);
  7862. }
  7863. static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
  7864. {
  7865. if (CHIP_IS_E1(bp))
  7866. bnx2x_int_disable(bp);
  7867. else
  7868. bnx2x_undi_int_disable_e1h(bp);
  7869. }
  7870. static void bnx2x_prev_unload_close_mac(struct bnx2x *bp)
  7871. {
  7872. u32 val, base_addr, offset, mask, reset_reg;
  7873. bool mac_stopped = false;
  7874. u8 port = BP_PORT(bp);
  7875. reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
  7876. if (!CHIP_IS_E3(bp)) {
  7877. val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
  7878. mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
  7879. if ((mask & reset_reg) && val) {
  7880. u32 wb_data[2];
  7881. BNX2X_DEV_INFO("Disable bmac Rx\n");
  7882. base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
  7883. : NIG_REG_INGRESS_BMAC0_MEM;
  7884. offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
  7885. : BIGMAC_REGISTER_BMAC_CONTROL;
  7886. /*
  7887. * use rd/wr since we cannot use dmae. This is safe
  7888. * since MCP won't access the bus due to the request
  7889. * to unload, and no function on the path can be
  7890. * loaded at this time.
  7891. */
  7892. wb_data[0] = REG_RD(bp, base_addr + offset);
  7893. wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
  7894. wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
  7895. REG_WR(bp, base_addr + offset, wb_data[0]);
  7896. REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
  7897. }
  7898. BNX2X_DEV_INFO("Disable emac Rx\n");
  7899. REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
  7900. mac_stopped = true;
  7901. } else {
  7902. if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
  7903. BNX2X_DEV_INFO("Disable xmac Rx\n");
  7904. base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
  7905. val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
  7906. REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
  7907. val & ~(1 << 1));
  7908. REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
  7909. val | (1 << 1));
  7910. REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
  7911. mac_stopped = true;
  7912. }
  7913. mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
  7914. if (mask & reset_reg) {
  7915. BNX2X_DEV_INFO("Disable umac Rx\n");
  7916. base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
  7917. REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
  7918. mac_stopped = true;
  7919. }
  7920. }
  7921. if (mac_stopped)
  7922. msleep(20);
  7923. }
  7924. #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
  7925. #define BNX2X_PREV_UNDI_RCQ(val) ((val) & 0xffff)
  7926. #define BNX2X_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
  7927. #define BNX2X_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
  7928. static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
  7929. {
  7930. u16 rcq, bd;
  7931. u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
  7932. rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
  7933. bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
  7934. tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
  7935. REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
  7936. BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
  7937. port, bd, rcq);
  7938. }
  7939. static int bnx2x_prev_mcp_done(struct bnx2x *bp)
  7940. {
  7941. u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
  7942. DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
  7943. if (!rc) {
  7944. BNX2X_ERR("MCP response failure, aborting\n");
  7945. return -EBUSY;
  7946. }
  7947. return 0;
  7948. }
  7949. static struct bnx2x_prev_path_list *
  7950. bnx2x_prev_path_get_entry(struct bnx2x *bp)
  7951. {
  7952. struct bnx2x_prev_path_list *tmp_list;
  7953. list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
  7954. if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
  7955. bp->pdev->bus->number == tmp_list->bus &&
  7956. BP_PATH(bp) == tmp_list->path)
  7957. return tmp_list;
  7958. return NULL;
  7959. }
  7960. static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
  7961. {
  7962. struct bnx2x_prev_path_list *tmp_list;
  7963. int rc = false;
  7964. if (down_trylock(&bnx2x_prev_sem))
  7965. return false;
  7966. list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
  7967. if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
  7968. bp->pdev->bus->number == tmp_list->bus &&
  7969. BP_PATH(bp) == tmp_list->path) {
  7970. rc = true;
  7971. BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
  7972. BP_PATH(bp));
  7973. break;
  7974. }
  7975. }
  7976. up(&bnx2x_prev_sem);
  7977. return rc;
  7978. }
  7979. static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
  7980. {
  7981. struct bnx2x_prev_path_list *tmp_list;
  7982. int rc;
  7983. tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
  7984. if (!tmp_list) {
  7985. BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
  7986. return -ENOMEM;
  7987. }
  7988. tmp_list->bus = bp->pdev->bus->number;
  7989. tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
  7990. tmp_list->path = BP_PATH(bp);
  7991. tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
  7992. rc = down_interruptible(&bnx2x_prev_sem);
  7993. if (rc) {
  7994. BNX2X_ERR("Received %d when tried to take lock\n", rc);
  7995. kfree(tmp_list);
  7996. } else {
  7997. BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
  7998. BP_PATH(bp));
  7999. list_add(&tmp_list->list, &bnx2x_prev_list);
  8000. up(&bnx2x_prev_sem);
  8001. }
  8002. return rc;
  8003. }
  8004. static int bnx2x_do_flr(struct bnx2x *bp)
  8005. {
  8006. int i;
  8007. u16 status;
  8008. struct pci_dev *dev = bp->pdev;
  8009. if (CHIP_IS_E1x(bp)) {
  8010. BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
  8011. return -EINVAL;
  8012. }
  8013. /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
  8014. if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
  8015. BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
  8016. bp->common.bc_ver);
  8017. return -EINVAL;
  8018. }
  8019. /* Wait for Transaction Pending bit clean */
  8020. for (i = 0; i < 4; i++) {
  8021. if (i)
  8022. msleep((1 << (i - 1)) * 100);
  8023. pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
  8024. if (!(status & PCI_EXP_DEVSTA_TRPND))
  8025. goto clear;
  8026. }
  8027. dev_err(&dev->dev,
  8028. "transaction is not cleared; proceeding with reset anyway\n");
  8029. clear:
  8030. BNX2X_DEV_INFO("Initiating FLR\n");
  8031. bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
  8032. return 0;
  8033. }
  8034. static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
  8035. {
  8036. int rc;
  8037. BNX2X_DEV_INFO("Uncommon unload Flow\n");
  8038. /* Test if previous unload process was already finished for this path */
  8039. if (bnx2x_prev_is_path_marked(bp))
  8040. return bnx2x_prev_mcp_done(bp);
  8041. /* If function has FLR capabilities, and existing FW version matches
  8042. * the one required, then FLR will be sufficient to clean any residue
  8043. * left by previous driver
  8044. */
  8045. rc = bnx2x_nic_load_analyze_req(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION);
  8046. if (!rc) {
  8047. /* fw version is good */
  8048. BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
  8049. rc = bnx2x_do_flr(bp);
  8050. }
  8051. if (!rc) {
  8052. /* FLR was performed */
  8053. BNX2X_DEV_INFO("FLR successful\n");
  8054. return 0;
  8055. }
  8056. BNX2X_DEV_INFO("Could not FLR\n");
  8057. /* Close the MCP request, return failure*/
  8058. rc = bnx2x_prev_mcp_done(bp);
  8059. if (!rc)
  8060. rc = BNX2X_PREV_WAIT_NEEDED;
  8061. return rc;
  8062. }
  8063. static int bnx2x_prev_unload_common(struct bnx2x *bp)
  8064. {
  8065. u32 reset_reg, tmp_reg = 0, rc;
  8066. bool prev_undi = false;
  8067. /* It is possible a previous function received 'common' answer,
  8068. * but hasn't loaded yet, therefore creating a scenario of
  8069. * multiple functions receiving 'common' on the same path.
  8070. */
  8071. BNX2X_DEV_INFO("Common unload Flow\n");
  8072. if (bnx2x_prev_is_path_marked(bp))
  8073. return bnx2x_prev_mcp_done(bp);
  8074. reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
  8075. /* Reset should be performed after BRB is emptied */
  8076. if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
  8077. u32 timer_count = 1000;
  8078. /* Close the MAC Rx to prevent BRB from filling up */
  8079. bnx2x_prev_unload_close_mac(bp);
  8080. /* Check if the UNDI driver was previously loaded
  8081. * UNDI driver initializes CID offset for normal bell to 0x7
  8082. */
  8083. reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
  8084. if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
  8085. tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
  8086. if (tmp_reg == 0x7) {
  8087. BNX2X_DEV_INFO("UNDI previously loaded\n");
  8088. prev_undi = true;
  8089. /* clear the UNDI indication */
  8090. REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
  8091. }
  8092. }
  8093. /* wait until BRB is empty */
  8094. tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
  8095. while (timer_count) {
  8096. u32 prev_brb = tmp_reg;
  8097. tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
  8098. if (!tmp_reg)
  8099. break;
  8100. BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
  8101. /* reset timer as long as BRB actually gets emptied */
  8102. if (prev_brb > tmp_reg)
  8103. timer_count = 1000;
  8104. else
  8105. timer_count--;
  8106. /* If UNDI resides in memory, manually increment it */
  8107. if (prev_undi)
  8108. bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
  8109. udelay(10);
  8110. }
  8111. if (!timer_count)
  8112. BNX2X_ERR("Failed to empty BRB, hope for the best\n");
  8113. }
  8114. /* No packets are in the pipeline, path is ready for reset */
  8115. bnx2x_reset_common(bp);
  8116. rc = bnx2x_prev_mark_path(bp, prev_undi);
  8117. if (rc) {
  8118. bnx2x_prev_mcp_done(bp);
  8119. return rc;
  8120. }
  8121. return bnx2x_prev_mcp_done(bp);
  8122. }
  8123. /* previous driver DMAE transaction may have occurred when pre-boot stage ended
  8124. * and boot began, or when kdump kernel was loaded. Either case would invalidate
  8125. * the addresses of the transaction, resulting in was-error bit set in the pci
  8126. * causing all hw-to-host pcie transactions to timeout. If this happened we want
  8127. * to clear the interrupt which detected this from the pglueb and the was done
  8128. * bit
  8129. */
  8130. static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
  8131. {
  8132. if (!CHIP_IS_E1x(bp)) {
  8133. u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
  8134. if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
  8135. BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
  8136. REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
  8137. 1 << BP_FUNC(bp));
  8138. }
  8139. }
  8140. }
  8141. static int bnx2x_prev_unload(struct bnx2x *bp)
  8142. {
  8143. int time_counter = 10;
  8144. u32 rc, fw, hw_lock_reg, hw_lock_val;
  8145. struct bnx2x_prev_path_list *prev_list;
  8146. BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
  8147. /* clear hw from errors which may have resulted from an interrupted
  8148. * dmae transaction.
  8149. */
  8150. bnx2x_prev_interrupted_dmae(bp);
  8151. /* Release previously held locks */
  8152. hw_lock_reg = (BP_FUNC(bp) <= 5) ?
  8153. (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
  8154. (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
  8155. hw_lock_val = (REG_RD(bp, hw_lock_reg));
  8156. if (hw_lock_val) {
  8157. if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
  8158. BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
  8159. REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
  8160. (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
  8161. }
  8162. BNX2X_DEV_INFO("Release Previously held hw lock\n");
  8163. REG_WR(bp, hw_lock_reg, 0xffffffff);
  8164. } else
  8165. BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
  8166. if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
  8167. BNX2X_DEV_INFO("Release previously held alr\n");
  8168. REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
  8169. }
  8170. do {
  8171. /* Lock MCP using an unload request */
  8172. fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
  8173. if (!fw) {
  8174. BNX2X_ERR("MCP response failure, aborting\n");
  8175. rc = -EBUSY;
  8176. break;
  8177. }
  8178. if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
  8179. rc = bnx2x_prev_unload_common(bp);
  8180. break;
  8181. }
  8182. /* non-common reply from MCP night require looping */
  8183. rc = bnx2x_prev_unload_uncommon(bp);
  8184. if (rc != BNX2X_PREV_WAIT_NEEDED)
  8185. break;
  8186. msleep(20);
  8187. } while (--time_counter);
  8188. if (!time_counter || rc) {
  8189. BNX2X_ERR("Failed unloading previous driver, aborting\n");
  8190. rc = -EBUSY;
  8191. }
  8192. /* Mark function if its port was used to boot from SAN */
  8193. prev_list = bnx2x_prev_path_get_entry(bp);
  8194. if (prev_list && (prev_list->undi & (1 << BP_PORT(bp))))
  8195. bp->link_params.feature_config_flags |=
  8196. FEATURE_CONFIG_BOOT_FROM_SAN;
  8197. BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
  8198. return rc;
  8199. }
  8200. static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
  8201. {
  8202. u32 val, val2, val3, val4, id, boot_mode;
  8203. u16 pmc;
  8204. /* Get the chip revision id and number. */
  8205. /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
  8206. val = REG_RD(bp, MISC_REG_CHIP_NUM);
  8207. id = ((val & 0xffff) << 16);
  8208. val = REG_RD(bp, MISC_REG_CHIP_REV);
  8209. id |= ((val & 0xf) << 12);
  8210. val = REG_RD(bp, MISC_REG_CHIP_METAL);
  8211. id |= ((val & 0xff) << 4);
  8212. val = REG_RD(bp, MISC_REG_BOND_ID);
  8213. id |= (val & 0xf);
  8214. bp->common.chip_id = id;
  8215. /* force 57811 according to MISC register */
  8216. if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
  8217. if (CHIP_IS_57810(bp))
  8218. bp->common.chip_id = (CHIP_NUM_57811 << 16) |
  8219. (bp->common.chip_id & 0x0000FFFF);
  8220. else if (CHIP_IS_57810_MF(bp))
  8221. bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
  8222. (bp->common.chip_id & 0x0000FFFF);
  8223. bp->common.chip_id |= 0x1;
  8224. }
  8225. /* Set doorbell size */
  8226. bp->db_size = (1 << BNX2X_DB_SHIFT);
  8227. if (!CHIP_IS_E1x(bp)) {
  8228. val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
  8229. if ((val & 1) == 0)
  8230. val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
  8231. else
  8232. val = (val >> 1) & 1;
  8233. BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
  8234. "2_PORT_MODE");
  8235. bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
  8236. CHIP_2_PORT_MODE;
  8237. if (CHIP_MODE_IS_4_PORT(bp))
  8238. bp->pfid = (bp->pf_num >> 1); /* 0..3 */
  8239. else
  8240. bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
  8241. } else {
  8242. bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
  8243. bp->pfid = bp->pf_num; /* 0..7 */
  8244. }
  8245. BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
  8246. bp->link_params.chip_id = bp->common.chip_id;
  8247. BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
  8248. val = (REG_RD(bp, 0x2874) & 0x55);
  8249. if ((bp->common.chip_id & 0x1) ||
  8250. (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
  8251. bp->flags |= ONE_PORT_FLAG;
  8252. BNX2X_DEV_INFO("single port device\n");
  8253. }
  8254. val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
  8255. bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
  8256. (val & MCPR_NVM_CFG4_FLASH_SIZE));
  8257. BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
  8258. bp->common.flash_size, bp->common.flash_size);
  8259. bnx2x_init_shmem(bp);
  8260. bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
  8261. MISC_REG_GENERIC_CR_1 :
  8262. MISC_REG_GENERIC_CR_0));
  8263. bp->link_params.shmem_base = bp->common.shmem_base;
  8264. bp->link_params.shmem2_base = bp->common.shmem2_base;
  8265. if (SHMEM2_RD(bp, size) >
  8266. (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
  8267. bp->link_params.lfa_base =
  8268. REG_RD(bp, bp->common.shmem2_base +
  8269. (u32)offsetof(struct shmem2_region,
  8270. lfa_host_addr[BP_PORT(bp)]));
  8271. else
  8272. bp->link_params.lfa_base = 0;
  8273. BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
  8274. bp->common.shmem_base, bp->common.shmem2_base);
  8275. if (!bp->common.shmem_base) {
  8276. BNX2X_DEV_INFO("MCP not active\n");
  8277. bp->flags |= NO_MCP_FLAG;
  8278. return;
  8279. }
  8280. bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
  8281. BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
  8282. bp->link_params.hw_led_mode = ((bp->common.hw_config &
  8283. SHARED_HW_CFG_LED_MODE_MASK) >>
  8284. SHARED_HW_CFG_LED_MODE_SHIFT);
  8285. bp->link_params.feature_config_flags = 0;
  8286. val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
  8287. if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
  8288. bp->link_params.feature_config_flags |=
  8289. FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  8290. else
  8291. bp->link_params.feature_config_flags &=
  8292. ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
  8293. val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
  8294. bp->common.bc_ver = val;
  8295. BNX2X_DEV_INFO("bc_ver %X\n", val);
  8296. if (val < BNX2X_BC_VER) {
  8297. /* for now only warn
  8298. * later we might need to enforce this */
  8299. BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
  8300. BNX2X_BC_VER, val);
  8301. }
  8302. bp->link_params.feature_config_flags |=
  8303. (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
  8304. FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
  8305. bp->link_params.feature_config_flags |=
  8306. (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
  8307. FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
  8308. bp->link_params.feature_config_flags |=
  8309. (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
  8310. FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
  8311. bp->link_params.feature_config_flags |=
  8312. (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
  8313. FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
  8314. bp->link_params.feature_config_flags |=
  8315. (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
  8316. FEATURE_CONFIG_MT_SUPPORT : 0;
  8317. bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
  8318. BC_SUPPORTS_PFC_STATS : 0;
  8319. bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
  8320. BC_SUPPORTS_FCOE_FEATURES : 0;
  8321. bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
  8322. BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
  8323. boot_mode = SHMEM_RD(bp,
  8324. dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
  8325. PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
  8326. switch (boot_mode) {
  8327. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
  8328. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
  8329. break;
  8330. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
  8331. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
  8332. break;
  8333. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
  8334. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
  8335. break;
  8336. case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
  8337. bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
  8338. break;
  8339. }
  8340. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
  8341. bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
  8342. BNX2X_DEV_INFO("%sWoL capable\n",
  8343. (bp->flags & NO_WOL_FLAG) ? "not " : "");
  8344. val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
  8345. val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
  8346. val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
  8347. val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
  8348. dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
  8349. val, val2, val3, val4);
  8350. }
  8351. #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
  8352. #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
  8353. static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
  8354. {
  8355. int pfid = BP_FUNC(bp);
  8356. int igu_sb_id;
  8357. u32 val;
  8358. u8 fid, igu_sb_cnt = 0;
  8359. bp->igu_base_sb = 0xff;
  8360. if (CHIP_INT_MODE_IS_BC(bp)) {
  8361. int vn = BP_VN(bp);
  8362. igu_sb_cnt = bp->igu_sb_cnt;
  8363. bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
  8364. FP_SB_MAX_E1x;
  8365. bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
  8366. (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
  8367. return 0;
  8368. }
  8369. /* IGU in normal mode - read CAM */
  8370. for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
  8371. igu_sb_id++) {
  8372. val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
  8373. if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
  8374. continue;
  8375. fid = IGU_FID(val);
  8376. if ((fid & IGU_FID_ENCODE_IS_PF)) {
  8377. if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
  8378. continue;
  8379. if (IGU_VEC(val) == 0)
  8380. /* default status block */
  8381. bp->igu_dsb_id = igu_sb_id;
  8382. else {
  8383. if (bp->igu_base_sb == 0xff)
  8384. bp->igu_base_sb = igu_sb_id;
  8385. igu_sb_cnt++;
  8386. }
  8387. }
  8388. }
  8389. #ifdef CONFIG_PCI_MSI
  8390. /* Due to new PF resource allocation by MFW T7.4 and above, it's
  8391. * optional that number of CAM entries will not be equal to the value
  8392. * advertised in PCI.
  8393. * Driver should use the minimal value of both as the actual status
  8394. * block count
  8395. */
  8396. bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
  8397. #endif
  8398. if (igu_sb_cnt == 0) {
  8399. BNX2X_ERR("CAM configuration error\n");
  8400. return -EINVAL;
  8401. }
  8402. return 0;
  8403. }
  8404. static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
  8405. {
  8406. int cfg_size = 0, idx, port = BP_PORT(bp);
  8407. /* Aggregation of supported attributes of all external phys */
  8408. bp->port.supported[0] = 0;
  8409. bp->port.supported[1] = 0;
  8410. switch (bp->link_params.num_phys) {
  8411. case 1:
  8412. bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
  8413. cfg_size = 1;
  8414. break;
  8415. case 2:
  8416. bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
  8417. cfg_size = 1;
  8418. break;
  8419. case 3:
  8420. if (bp->link_params.multi_phy_config &
  8421. PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
  8422. bp->port.supported[1] =
  8423. bp->link_params.phy[EXT_PHY1].supported;
  8424. bp->port.supported[0] =
  8425. bp->link_params.phy[EXT_PHY2].supported;
  8426. } else {
  8427. bp->port.supported[0] =
  8428. bp->link_params.phy[EXT_PHY1].supported;
  8429. bp->port.supported[1] =
  8430. bp->link_params.phy[EXT_PHY2].supported;
  8431. }
  8432. cfg_size = 2;
  8433. break;
  8434. }
  8435. if (!(bp->port.supported[0] || bp->port.supported[1])) {
  8436. BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
  8437. SHMEM_RD(bp,
  8438. dev_info.port_hw_config[port].external_phy_config),
  8439. SHMEM_RD(bp,
  8440. dev_info.port_hw_config[port].external_phy_config2));
  8441. return;
  8442. }
  8443. if (CHIP_IS_E3(bp))
  8444. bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
  8445. else {
  8446. switch (switch_cfg) {
  8447. case SWITCH_CFG_1G:
  8448. bp->port.phy_addr = REG_RD(
  8449. bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
  8450. break;
  8451. case SWITCH_CFG_10G:
  8452. bp->port.phy_addr = REG_RD(
  8453. bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
  8454. break;
  8455. default:
  8456. BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
  8457. bp->port.link_config[0]);
  8458. return;
  8459. }
  8460. }
  8461. BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
  8462. /* mask what we support according to speed_cap_mask per configuration */
  8463. for (idx = 0; idx < cfg_size; idx++) {
  8464. if (!(bp->link_params.speed_cap_mask[idx] &
  8465. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
  8466. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
  8467. if (!(bp->link_params.speed_cap_mask[idx] &
  8468. PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
  8469. bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
  8470. if (!(bp->link_params.speed_cap_mask[idx] &
  8471. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
  8472. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
  8473. if (!(bp->link_params.speed_cap_mask[idx] &
  8474. PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
  8475. bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
  8476. if (!(bp->link_params.speed_cap_mask[idx] &
  8477. PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
  8478. bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
  8479. SUPPORTED_1000baseT_Full);
  8480. if (!(bp->link_params.speed_cap_mask[idx] &
  8481. PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
  8482. bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
  8483. if (!(bp->link_params.speed_cap_mask[idx] &
  8484. PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
  8485. bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
  8486. }
  8487. BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
  8488. bp->port.supported[1]);
  8489. }
  8490. static void bnx2x_link_settings_requested(struct bnx2x *bp)
  8491. {
  8492. u32 link_config, idx, cfg_size = 0;
  8493. bp->port.advertising[0] = 0;
  8494. bp->port.advertising[1] = 0;
  8495. switch (bp->link_params.num_phys) {
  8496. case 1:
  8497. case 2:
  8498. cfg_size = 1;
  8499. break;
  8500. case 3:
  8501. cfg_size = 2;
  8502. break;
  8503. }
  8504. for (idx = 0; idx < cfg_size; idx++) {
  8505. bp->link_params.req_duplex[idx] = DUPLEX_FULL;
  8506. link_config = bp->port.link_config[idx];
  8507. switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
  8508. case PORT_FEATURE_LINK_SPEED_AUTO:
  8509. if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
  8510. bp->link_params.req_line_speed[idx] =
  8511. SPEED_AUTO_NEG;
  8512. bp->port.advertising[idx] |=
  8513. bp->port.supported[idx];
  8514. if (bp->link_params.phy[EXT_PHY1].type ==
  8515. PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
  8516. bp->port.advertising[idx] |=
  8517. (SUPPORTED_100baseT_Half |
  8518. SUPPORTED_100baseT_Full);
  8519. } else {
  8520. /* force 10G, no AN */
  8521. bp->link_params.req_line_speed[idx] =
  8522. SPEED_10000;
  8523. bp->port.advertising[idx] |=
  8524. (ADVERTISED_10000baseT_Full |
  8525. ADVERTISED_FIBRE);
  8526. continue;
  8527. }
  8528. break;
  8529. case PORT_FEATURE_LINK_SPEED_10M_FULL:
  8530. if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
  8531. bp->link_params.req_line_speed[idx] =
  8532. SPEED_10;
  8533. bp->port.advertising[idx] |=
  8534. (ADVERTISED_10baseT_Full |
  8535. ADVERTISED_TP);
  8536. } else {
  8537. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8538. link_config,
  8539. bp->link_params.speed_cap_mask[idx]);
  8540. return;
  8541. }
  8542. break;
  8543. case PORT_FEATURE_LINK_SPEED_10M_HALF:
  8544. if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
  8545. bp->link_params.req_line_speed[idx] =
  8546. SPEED_10;
  8547. bp->link_params.req_duplex[idx] =
  8548. DUPLEX_HALF;
  8549. bp->port.advertising[idx] |=
  8550. (ADVERTISED_10baseT_Half |
  8551. ADVERTISED_TP);
  8552. } else {
  8553. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8554. link_config,
  8555. bp->link_params.speed_cap_mask[idx]);
  8556. return;
  8557. }
  8558. break;
  8559. case PORT_FEATURE_LINK_SPEED_100M_FULL:
  8560. if (bp->port.supported[idx] &
  8561. SUPPORTED_100baseT_Full) {
  8562. bp->link_params.req_line_speed[idx] =
  8563. SPEED_100;
  8564. bp->port.advertising[idx] |=
  8565. (ADVERTISED_100baseT_Full |
  8566. ADVERTISED_TP);
  8567. } else {
  8568. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8569. link_config,
  8570. bp->link_params.speed_cap_mask[idx]);
  8571. return;
  8572. }
  8573. break;
  8574. case PORT_FEATURE_LINK_SPEED_100M_HALF:
  8575. if (bp->port.supported[idx] &
  8576. SUPPORTED_100baseT_Half) {
  8577. bp->link_params.req_line_speed[idx] =
  8578. SPEED_100;
  8579. bp->link_params.req_duplex[idx] =
  8580. DUPLEX_HALF;
  8581. bp->port.advertising[idx] |=
  8582. (ADVERTISED_100baseT_Half |
  8583. ADVERTISED_TP);
  8584. } else {
  8585. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8586. link_config,
  8587. bp->link_params.speed_cap_mask[idx]);
  8588. return;
  8589. }
  8590. break;
  8591. case PORT_FEATURE_LINK_SPEED_1G:
  8592. if (bp->port.supported[idx] &
  8593. SUPPORTED_1000baseT_Full) {
  8594. bp->link_params.req_line_speed[idx] =
  8595. SPEED_1000;
  8596. bp->port.advertising[idx] |=
  8597. (ADVERTISED_1000baseT_Full |
  8598. ADVERTISED_TP);
  8599. } else {
  8600. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8601. link_config,
  8602. bp->link_params.speed_cap_mask[idx]);
  8603. return;
  8604. }
  8605. break;
  8606. case PORT_FEATURE_LINK_SPEED_2_5G:
  8607. if (bp->port.supported[idx] &
  8608. SUPPORTED_2500baseX_Full) {
  8609. bp->link_params.req_line_speed[idx] =
  8610. SPEED_2500;
  8611. bp->port.advertising[idx] |=
  8612. (ADVERTISED_2500baseX_Full |
  8613. ADVERTISED_TP);
  8614. } else {
  8615. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8616. link_config,
  8617. bp->link_params.speed_cap_mask[idx]);
  8618. return;
  8619. }
  8620. break;
  8621. case PORT_FEATURE_LINK_SPEED_10G_CX4:
  8622. if (bp->port.supported[idx] &
  8623. SUPPORTED_10000baseT_Full) {
  8624. bp->link_params.req_line_speed[idx] =
  8625. SPEED_10000;
  8626. bp->port.advertising[idx] |=
  8627. (ADVERTISED_10000baseT_Full |
  8628. ADVERTISED_FIBRE);
  8629. } else {
  8630. BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x speed_cap_mask 0x%x\n",
  8631. link_config,
  8632. bp->link_params.speed_cap_mask[idx]);
  8633. return;
  8634. }
  8635. break;
  8636. case PORT_FEATURE_LINK_SPEED_20G:
  8637. bp->link_params.req_line_speed[idx] = SPEED_20000;
  8638. break;
  8639. default:
  8640. BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
  8641. link_config);
  8642. bp->link_params.req_line_speed[idx] =
  8643. SPEED_AUTO_NEG;
  8644. bp->port.advertising[idx] =
  8645. bp->port.supported[idx];
  8646. break;
  8647. }
  8648. bp->link_params.req_flow_ctrl[idx] = (link_config &
  8649. PORT_FEATURE_FLOW_CONTROL_MASK);
  8650. if (bp->link_params.req_flow_ctrl[idx] ==
  8651. BNX2X_FLOW_CTRL_AUTO) {
  8652. if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
  8653. bp->link_params.req_flow_ctrl[idx] =
  8654. BNX2X_FLOW_CTRL_NONE;
  8655. else
  8656. bnx2x_set_requested_fc(bp);
  8657. }
  8658. BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
  8659. bp->link_params.req_line_speed[idx],
  8660. bp->link_params.req_duplex[idx],
  8661. bp->link_params.req_flow_ctrl[idx],
  8662. bp->port.advertising[idx]);
  8663. }
  8664. }
  8665. static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
  8666. {
  8667. mac_hi = cpu_to_be16(mac_hi);
  8668. mac_lo = cpu_to_be32(mac_lo);
  8669. memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
  8670. memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
  8671. }
  8672. static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
  8673. {
  8674. int port = BP_PORT(bp);
  8675. u32 config;
  8676. u32 ext_phy_type, ext_phy_config, eee_mode;
  8677. bp->link_params.bp = bp;
  8678. bp->link_params.port = port;
  8679. bp->link_params.lane_config =
  8680. SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
  8681. bp->link_params.speed_cap_mask[0] =
  8682. SHMEM_RD(bp,
  8683. dev_info.port_hw_config[port].speed_capability_mask);
  8684. bp->link_params.speed_cap_mask[1] =
  8685. SHMEM_RD(bp,
  8686. dev_info.port_hw_config[port].speed_capability_mask2);
  8687. bp->port.link_config[0] =
  8688. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
  8689. bp->port.link_config[1] =
  8690. SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
  8691. bp->link_params.multi_phy_config =
  8692. SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
  8693. /* If the device is capable of WoL, set the default state according
  8694. * to the HW
  8695. */
  8696. config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
  8697. bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
  8698. (config & PORT_FEATURE_WOL_ENABLED));
  8699. BNX2X_DEV_INFO("lane_config 0x%08x speed_cap_mask0 0x%08x link_config0 0x%08x\n",
  8700. bp->link_params.lane_config,
  8701. bp->link_params.speed_cap_mask[0],
  8702. bp->port.link_config[0]);
  8703. bp->link_params.switch_cfg = (bp->port.link_config[0] &
  8704. PORT_FEATURE_CONNECTED_SWITCH_MASK);
  8705. bnx2x_phy_probe(&bp->link_params);
  8706. bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
  8707. bnx2x_link_settings_requested(bp);
  8708. /*
  8709. * If connected directly, work with the internal PHY, otherwise, work
  8710. * with the external PHY
  8711. */
  8712. ext_phy_config =
  8713. SHMEM_RD(bp,
  8714. dev_info.port_hw_config[port].external_phy_config);
  8715. ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
  8716. if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
  8717. bp->mdio.prtad = bp->port.phy_addr;
  8718. else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
  8719. (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
  8720. bp->mdio.prtad =
  8721. XGXS_EXT_PHY_ADDR(ext_phy_config);
  8722. /* Configure link feature according to nvram value */
  8723. eee_mode = (((SHMEM_RD(bp, dev_info.
  8724. port_feature_config[port].eee_power_mode)) &
  8725. PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
  8726. PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
  8727. if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
  8728. bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
  8729. EEE_MODE_ENABLE_LPI |
  8730. EEE_MODE_OUTPUT_TIME;
  8731. } else {
  8732. bp->link_params.eee_mode = 0;
  8733. }
  8734. }
  8735. void bnx2x_get_iscsi_info(struct bnx2x *bp)
  8736. {
  8737. u32 no_flags = NO_ISCSI_FLAG;
  8738. int port = BP_PORT(bp);
  8739. u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  8740. drv_lic_key[port].max_iscsi_conn);
  8741. if (!CNIC_SUPPORT(bp)) {
  8742. bp->flags |= no_flags;
  8743. return;
  8744. }
  8745. /* Get the number of maximum allowed iSCSI connections */
  8746. bp->cnic_eth_dev.max_iscsi_conn =
  8747. (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
  8748. BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
  8749. BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
  8750. bp->cnic_eth_dev.max_iscsi_conn);
  8751. /*
  8752. * If maximum allowed number of connections is zero -
  8753. * disable the feature.
  8754. */
  8755. if (!bp->cnic_eth_dev.max_iscsi_conn)
  8756. bp->flags |= no_flags;
  8757. }
  8758. static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
  8759. {
  8760. /* Port info */
  8761. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  8762. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
  8763. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  8764. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
  8765. /* Node info */
  8766. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  8767. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
  8768. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  8769. MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
  8770. }
  8771. static void bnx2x_get_fcoe_info(struct bnx2x *bp)
  8772. {
  8773. int port = BP_PORT(bp);
  8774. int func = BP_ABS_FUNC(bp);
  8775. u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
  8776. drv_lic_key[port].max_fcoe_conn);
  8777. if (!CNIC_SUPPORT(bp)) {
  8778. bp->flags |= NO_FCOE_FLAG;
  8779. return;
  8780. }
  8781. /* Get the number of maximum allowed FCoE connections */
  8782. bp->cnic_eth_dev.max_fcoe_conn =
  8783. (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
  8784. BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
  8785. /* Read the WWN: */
  8786. if (!IS_MF(bp)) {
  8787. /* Port info */
  8788. bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
  8789. SHMEM_RD(bp,
  8790. dev_info.port_hw_config[port].
  8791. fcoe_wwn_port_name_upper);
  8792. bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
  8793. SHMEM_RD(bp,
  8794. dev_info.port_hw_config[port].
  8795. fcoe_wwn_port_name_lower);
  8796. /* Node info */
  8797. bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
  8798. SHMEM_RD(bp,
  8799. dev_info.port_hw_config[port].
  8800. fcoe_wwn_node_name_upper);
  8801. bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
  8802. SHMEM_RD(bp,
  8803. dev_info.port_hw_config[port].
  8804. fcoe_wwn_node_name_lower);
  8805. } else if (!IS_MF_SD(bp)) {
  8806. /*
  8807. * Read the WWN info only if the FCoE feature is enabled for
  8808. * this function.
  8809. */
  8810. if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
  8811. bnx2x_get_ext_wwn_info(bp, func);
  8812. } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
  8813. bnx2x_get_ext_wwn_info(bp, func);
  8814. }
  8815. BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
  8816. /*
  8817. * If maximum allowed number of connections is zero -
  8818. * disable the feature.
  8819. */
  8820. if (!bp->cnic_eth_dev.max_fcoe_conn)
  8821. bp->flags |= NO_FCOE_FLAG;
  8822. }
  8823. static void bnx2x_get_cnic_info(struct bnx2x *bp)
  8824. {
  8825. /*
  8826. * iSCSI may be dynamically disabled but reading
  8827. * info here we will decrease memory usage by driver
  8828. * if the feature is disabled for good
  8829. */
  8830. bnx2x_get_iscsi_info(bp);
  8831. bnx2x_get_fcoe_info(bp);
  8832. }
  8833. static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
  8834. {
  8835. u32 val, val2;
  8836. int func = BP_ABS_FUNC(bp);
  8837. int port = BP_PORT(bp);
  8838. u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
  8839. u8 *fip_mac = bp->fip_mac;
  8840. if (IS_MF(bp)) {
  8841. /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
  8842. * FCoE MAC then the appropriate feature should be disabled.
  8843. * In non SD mode features configuration comes from struct
  8844. * func_ext_config.
  8845. */
  8846. if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
  8847. u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
  8848. if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
  8849. val2 = MF_CFG_RD(bp, func_ext_config[func].
  8850. iscsi_mac_addr_upper);
  8851. val = MF_CFG_RD(bp, func_ext_config[func].
  8852. iscsi_mac_addr_lower);
  8853. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  8854. BNX2X_DEV_INFO
  8855. ("Read iSCSI MAC: %pM\n", iscsi_mac);
  8856. } else {
  8857. bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
  8858. }
  8859. if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
  8860. val2 = MF_CFG_RD(bp, func_ext_config[func].
  8861. fcoe_mac_addr_upper);
  8862. val = MF_CFG_RD(bp, func_ext_config[func].
  8863. fcoe_mac_addr_lower);
  8864. bnx2x_set_mac_buf(fip_mac, val, val2);
  8865. BNX2X_DEV_INFO
  8866. ("Read FCoE L2 MAC: %pM\n", fip_mac);
  8867. } else {
  8868. bp->flags |= NO_FCOE_FLAG;
  8869. }
  8870. bp->mf_ext_config = cfg;
  8871. } else { /* SD MODE */
  8872. if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
  8873. /* use primary mac as iscsi mac */
  8874. memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
  8875. BNX2X_DEV_INFO("SD ISCSI MODE\n");
  8876. BNX2X_DEV_INFO
  8877. ("Read iSCSI MAC: %pM\n", iscsi_mac);
  8878. } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
  8879. /* use primary mac as fip mac */
  8880. memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
  8881. BNX2X_DEV_INFO("SD FCoE MODE\n");
  8882. BNX2X_DEV_INFO
  8883. ("Read FIP MAC: %pM\n", fip_mac);
  8884. }
  8885. }
  8886. if (IS_MF_STORAGE_SD(bp))
  8887. /* Zero primary MAC configuration */
  8888. memset(bp->dev->dev_addr, 0, ETH_ALEN);
  8889. if (IS_MF_FCOE_AFEX(bp))
  8890. /* use FIP MAC as primary MAC */
  8891. memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
  8892. } else {
  8893. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8894. iscsi_mac_upper);
  8895. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8896. iscsi_mac_lower);
  8897. bnx2x_set_mac_buf(iscsi_mac, val, val2);
  8898. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8899. fcoe_fip_mac_upper);
  8900. val = SHMEM_RD(bp, dev_info.port_hw_config[port].
  8901. fcoe_fip_mac_lower);
  8902. bnx2x_set_mac_buf(fip_mac, val, val2);
  8903. }
  8904. /* Disable iSCSI OOO if MAC configuration is invalid. */
  8905. if (!is_valid_ether_addr(iscsi_mac)) {
  8906. bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
  8907. memset(iscsi_mac, 0, ETH_ALEN);
  8908. }
  8909. /* Disable FCoE if MAC configuration is invalid. */
  8910. if (!is_valid_ether_addr(fip_mac)) {
  8911. bp->flags |= NO_FCOE_FLAG;
  8912. memset(bp->fip_mac, 0, ETH_ALEN);
  8913. }
  8914. }
  8915. static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
  8916. {
  8917. u32 val, val2;
  8918. int func = BP_ABS_FUNC(bp);
  8919. int port = BP_PORT(bp);
  8920. /* Zero primary MAC configuration */
  8921. memset(bp->dev->dev_addr, 0, ETH_ALEN);
  8922. if (BP_NOMCP(bp)) {
  8923. BNX2X_ERROR("warning: random MAC workaround active\n");
  8924. eth_hw_addr_random(bp->dev);
  8925. } else if (IS_MF(bp)) {
  8926. val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
  8927. val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
  8928. if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
  8929. (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
  8930. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  8931. if (CNIC_SUPPORT(bp))
  8932. bnx2x_get_cnic_mac_hwinfo(bp);
  8933. } else {
  8934. /* in SF read MACs from port configuration */
  8935. val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
  8936. val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
  8937. bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
  8938. if (CNIC_SUPPORT(bp))
  8939. bnx2x_get_cnic_mac_hwinfo(bp);
  8940. }
  8941. memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
  8942. memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
  8943. if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
  8944. dev_err(&bp->pdev->dev,
  8945. "bad Ethernet MAC address configuration: %pM\n"
  8946. "change it manually before bringing up the appropriate network interface\n",
  8947. bp->dev->dev_addr);
  8948. }
  8949. static bool bnx2x_get_dropless_info(struct bnx2x *bp)
  8950. {
  8951. int tmp;
  8952. u32 cfg;
  8953. if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
  8954. /* Take function: tmp = func */
  8955. tmp = BP_ABS_FUNC(bp);
  8956. cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
  8957. cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
  8958. } else {
  8959. /* Take port: tmp = port */
  8960. tmp = BP_PORT(bp);
  8961. cfg = SHMEM_RD(bp,
  8962. dev_info.port_hw_config[tmp].generic_features);
  8963. cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
  8964. }
  8965. return cfg;
  8966. }
  8967. static int bnx2x_get_hwinfo(struct bnx2x *bp)
  8968. {
  8969. int /*abs*/func = BP_ABS_FUNC(bp);
  8970. int vn;
  8971. u32 val = 0;
  8972. int rc = 0;
  8973. bnx2x_get_common_hwinfo(bp);
  8974. /*
  8975. * initialize IGU parameters
  8976. */
  8977. if (CHIP_IS_E1x(bp)) {
  8978. bp->common.int_block = INT_BLOCK_HC;
  8979. bp->igu_dsb_id = DEF_SB_IGU_ID;
  8980. bp->igu_base_sb = 0;
  8981. } else {
  8982. bp->common.int_block = INT_BLOCK_IGU;
  8983. /* do not allow device reset during IGU info preocessing */
  8984. bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  8985. val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
  8986. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  8987. int tout = 5000;
  8988. BNX2X_DEV_INFO("FORCING Normal Mode\n");
  8989. val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
  8990. REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
  8991. REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
  8992. while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  8993. tout--;
  8994. usleep_range(1000, 1000);
  8995. }
  8996. if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
  8997. dev_err(&bp->pdev->dev,
  8998. "FORCING Normal Mode failed!!!\n");
  8999. bnx2x_release_hw_lock(bp,
  9000. HW_LOCK_RESOURCE_RESET);
  9001. return -EPERM;
  9002. }
  9003. }
  9004. if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
  9005. BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
  9006. bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
  9007. } else
  9008. BNX2X_DEV_INFO("IGU Normal Mode\n");
  9009. rc = bnx2x_get_igu_cam_info(bp);
  9010. bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
  9011. if (rc)
  9012. return rc;
  9013. }
  9014. /*
  9015. * set base FW non-default (fast path) status block id, this value is
  9016. * used to initialize the fw_sb_id saved on the fp/queue structure to
  9017. * determine the id used by the FW.
  9018. */
  9019. if (CHIP_IS_E1x(bp))
  9020. bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
  9021. else /*
  9022. * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
  9023. * the same queue are indicated on the same IGU SB). So we prefer
  9024. * FW and IGU SBs to be the same value.
  9025. */
  9026. bp->base_fw_ndsb = bp->igu_base_sb;
  9027. BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
  9028. "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
  9029. bp->igu_sb_cnt, bp->base_fw_ndsb);
  9030. /*
  9031. * Initialize MF configuration
  9032. */
  9033. bp->mf_ov = 0;
  9034. bp->mf_mode = 0;
  9035. vn = BP_VN(bp);
  9036. if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
  9037. BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
  9038. bp->common.shmem2_base, SHMEM2_RD(bp, size),
  9039. (u32)offsetof(struct shmem2_region, mf_cfg_addr));
  9040. if (SHMEM2_HAS(bp, mf_cfg_addr))
  9041. bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
  9042. else
  9043. bp->common.mf_cfg_base = bp->common.shmem_base +
  9044. offsetof(struct shmem_region, func_mb) +
  9045. E1H_FUNC_MAX * sizeof(struct drv_func_mb);
  9046. /*
  9047. * get mf configuration:
  9048. * 1. existence of MF configuration
  9049. * 2. MAC address must be legal (check only upper bytes)
  9050. * for Switch-Independent mode;
  9051. * OVLAN must be legal for Switch-Dependent mode
  9052. * 3. SF_MODE configures specific MF mode
  9053. */
  9054. if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  9055. /* get mf configuration */
  9056. val = SHMEM_RD(bp,
  9057. dev_info.shared_feature_config.config);
  9058. val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
  9059. switch (val) {
  9060. case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
  9061. val = MF_CFG_RD(bp, func_mf_config[func].
  9062. mac_upper);
  9063. /* check for legal mac (upper bytes)*/
  9064. if (val != 0xffff) {
  9065. bp->mf_mode = MULTI_FUNCTION_SI;
  9066. bp->mf_config[vn] = MF_CFG_RD(bp,
  9067. func_mf_config[func].config);
  9068. } else
  9069. BNX2X_DEV_INFO("illegal MAC address for SI\n");
  9070. break;
  9071. case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
  9072. if ((!CHIP_IS_E1x(bp)) &&
  9073. (MF_CFG_RD(bp, func_mf_config[func].
  9074. mac_upper) != 0xffff) &&
  9075. (SHMEM2_HAS(bp,
  9076. afex_driver_support))) {
  9077. bp->mf_mode = MULTI_FUNCTION_AFEX;
  9078. bp->mf_config[vn] = MF_CFG_RD(bp,
  9079. func_mf_config[func].config);
  9080. } else {
  9081. BNX2X_DEV_INFO("can not configure afex mode\n");
  9082. }
  9083. break;
  9084. case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
  9085. /* get OV configuration */
  9086. val = MF_CFG_RD(bp,
  9087. func_mf_config[FUNC_0].e1hov_tag);
  9088. val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
  9089. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  9090. bp->mf_mode = MULTI_FUNCTION_SD;
  9091. bp->mf_config[vn] = MF_CFG_RD(bp,
  9092. func_mf_config[func].config);
  9093. } else
  9094. BNX2X_DEV_INFO("illegal OV for SD\n");
  9095. break;
  9096. default:
  9097. /* Unknown configuration: reset mf_config */
  9098. bp->mf_config[vn] = 0;
  9099. BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
  9100. }
  9101. }
  9102. BNX2X_DEV_INFO("%s function mode\n",
  9103. IS_MF(bp) ? "multi" : "single");
  9104. switch (bp->mf_mode) {
  9105. case MULTI_FUNCTION_SD:
  9106. val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
  9107. FUNC_MF_CFG_E1HOV_TAG_MASK;
  9108. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
  9109. bp->mf_ov = val;
  9110. bp->path_has_ovlan = true;
  9111. BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
  9112. func, bp->mf_ov, bp->mf_ov);
  9113. } else {
  9114. dev_err(&bp->pdev->dev,
  9115. "No valid MF OV for func %d, aborting\n",
  9116. func);
  9117. return -EPERM;
  9118. }
  9119. break;
  9120. case MULTI_FUNCTION_AFEX:
  9121. BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
  9122. break;
  9123. case MULTI_FUNCTION_SI:
  9124. BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
  9125. func);
  9126. break;
  9127. default:
  9128. if (vn) {
  9129. dev_err(&bp->pdev->dev,
  9130. "VN %d is in a single function mode, aborting\n",
  9131. vn);
  9132. return -EPERM;
  9133. }
  9134. break;
  9135. }
  9136. /* check if other port on the path needs ovlan:
  9137. * Since MF configuration is shared between ports
  9138. * Possible mixed modes are only
  9139. * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
  9140. */
  9141. if (CHIP_MODE_IS_4_PORT(bp) &&
  9142. !bp->path_has_ovlan &&
  9143. !IS_MF(bp) &&
  9144. bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
  9145. u8 other_port = !BP_PORT(bp);
  9146. u8 other_func = BP_PATH(bp) + 2*other_port;
  9147. val = MF_CFG_RD(bp,
  9148. func_mf_config[other_func].e1hov_tag);
  9149. if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
  9150. bp->path_has_ovlan = true;
  9151. }
  9152. }
  9153. /* adjust igu_sb_cnt to MF for E1x */
  9154. if (CHIP_IS_E1x(bp) && IS_MF(bp))
  9155. bp->igu_sb_cnt /= E1HVN_MAX;
  9156. /* port info */
  9157. bnx2x_get_port_hwinfo(bp);
  9158. /* Get MAC addresses */
  9159. bnx2x_get_mac_hwinfo(bp);
  9160. bnx2x_get_cnic_info(bp);
  9161. return rc;
  9162. }
  9163. static void bnx2x_read_fwinfo(struct bnx2x *bp)
  9164. {
  9165. int cnt, i, block_end, rodi;
  9166. char vpd_start[BNX2X_VPD_LEN+1];
  9167. char str_id_reg[VENDOR_ID_LEN+1];
  9168. char str_id_cap[VENDOR_ID_LEN+1];
  9169. char *vpd_data;
  9170. char *vpd_extended_data = NULL;
  9171. u8 len;
  9172. cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
  9173. memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
  9174. if (cnt < BNX2X_VPD_LEN)
  9175. goto out_not_found;
  9176. /* VPD RO tag should be first tag after identifier string, hence
  9177. * we should be able to find it in first BNX2X_VPD_LEN chars
  9178. */
  9179. i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
  9180. PCI_VPD_LRDT_RO_DATA);
  9181. if (i < 0)
  9182. goto out_not_found;
  9183. block_end = i + PCI_VPD_LRDT_TAG_SIZE +
  9184. pci_vpd_lrdt_size(&vpd_start[i]);
  9185. i += PCI_VPD_LRDT_TAG_SIZE;
  9186. if (block_end > BNX2X_VPD_LEN) {
  9187. vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
  9188. if (vpd_extended_data == NULL)
  9189. goto out_not_found;
  9190. /* read rest of vpd image into vpd_extended_data */
  9191. memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
  9192. cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
  9193. block_end - BNX2X_VPD_LEN,
  9194. vpd_extended_data + BNX2X_VPD_LEN);
  9195. if (cnt < (block_end - BNX2X_VPD_LEN))
  9196. goto out_not_found;
  9197. vpd_data = vpd_extended_data;
  9198. } else
  9199. vpd_data = vpd_start;
  9200. /* now vpd_data holds full vpd content in both cases */
  9201. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  9202. PCI_VPD_RO_KEYWORD_MFR_ID);
  9203. if (rodi < 0)
  9204. goto out_not_found;
  9205. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  9206. if (len != VENDOR_ID_LEN)
  9207. goto out_not_found;
  9208. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  9209. /* vendor specific info */
  9210. snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
  9211. snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
  9212. if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
  9213. !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
  9214. rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
  9215. PCI_VPD_RO_KEYWORD_VENDOR0);
  9216. if (rodi >= 0) {
  9217. len = pci_vpd_info_field_size(&vpd_data[rodi]);
  9218. rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
  9219. if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
  9220. memcpy(bp->fw_ver, &vpd_data[rodi], len);
  9221. bp->fw_ver[len] = ' ';
  9222. }
  9223. }
  9224. kfree(vpd_extended_data);
  9225. return;
  9226. }
  9227. out_not_found:
  9228. kfree(vpd_extended_data);
  9229. return;
  9230. }
  9231. static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
  9232. {
  9233. u32 flags = 0;
  9234. if (CHIP_REV_IS_FPGA(bp))
  9235. SET_FLAGS(flags, MODE_FPGA);
  9236. else if (CHIP_REV_IS_EMUL(bp))
  9237. SET_FLAGS(flags, MODE_EMUL);
  9238. else
  9239. SET_FLAGS(flags, MODE_ASIC);
  9240. if (CHIP_MODE_IS_4_PORT(bp))
  9241. SET_FLAGS(flags, MODE_PORT4);
  9242. else
  9243. SET_FLAGS(flags, MODE_PORT2);
  9244. if (CHIP_IS_E2(bp))
  9245. SET_FLAGS(flags, MODE_E2);
  9246. else if (CHIP_IS_E3(bp)) {
  9247. SET_FLAGS(flags, MODE_E3);
  9248. if (CHIP_REV(bp) == CHIP_REV_Ax)
  9249. SET_FLAGS(flags, MODE_E3_A0);
  9250. else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
  9251. SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
  9252. }
  9253. if (IS_MF(bp)) {
  9254. SET_FLAGS(flags, MODE_MF);
  9255. switch (bp->mf_mode) {
  9256. case MULTI_FUNCTION_SD:
  9257. SET_FLAGS(flags, MODE_MF_SD);
  9258. break;
  9259. case MULTI_FUNCTION_SI:
  9260. SET_FLAGS(flags, MODE_MF_SI);
  9261. break;
  9262. case MULTI_FUNCTION_AFEX:
  9263. SET_FLAGS(flags, MODE_MF_AFEX);
  9264. break;
  9265. }
  9266. } else
  9267. SET_FLAGS(flags, MODE_SF);
  9268. #if defined(__LITTLE_ENDIAN)
  9269. SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
  9270. #else /*(__BIG_ENDIAN)*/
  9271. SET_FLAGS(flags, MODE_BIG_ENDIAN);
  9272. #endif
  9273. INIT_MODE_FLAGS(bp) = flags;
  9274. }
  9275. static int bnx2x_init_bp(struct bnx2x *bp)
  9276. {
  9277. int func;
  9278. int rc;
  9279. mutex_init(&bp->port.phy_mutex);
  9280. mutex_init(&bp->fw_mb_mutex);
  9281. spin_lock_init(&bp->stats_lock);
  9282. INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
  9283. INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
  9284. INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
  9285. if (IS_PF(bp)) {
  9286. rc = bnx2x_get_hwinfo(bp);
  9287. if (rc)
  9288. return rc;
  9289. } else {
  9290. random_ether_addr(bp->dev->dev_addr);
  9291. }
  9292. bnx2x_set_modes_bitmap(bp);
  9293. rc = bnx2x_alloc_mem_bp(bp);
  9294. if (rc)
  9295. return rc;
  9296. bnx2x_read_fwinfo(bp);
  9297. func = BP_FUNC(bp);
  9298. /* need to reset chip if undi was active */
  9299. if (IS_PF(bp) && !BP_NOMCP(bp)) {
  9300. /* init fw_seq */
  9301. bp->fw_seq =
  9302. SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
  9303. DRV_MSG_SEQ_NUMBER_MASK;
  9304. BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
  9305. bnx2x_prev_unload(bp);
  9306. }
  9307. if (CHIP_REV_IS_FPGA(bp))
  9308. dev_err(&bp->pdev->dev, "FPGA detected\n");
  9309. if (BP_NOMCP(bp) && (func == 0))
  9310. dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
  9311. bp->disable_tpa = disable_tpa;
  9312. bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
  9313. /* Set TPA flags */
  9314. if (bp->disable_tpa) {
  9315. bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
  9316. bp->dev->features &= ~NETIF_F_LRO;
  9317. } else {
  9318. bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
  9319. bp->dev->features |= NETIF_F_LRO;
  9320. }
  9321. if (CHIP_IS_E1(bp))
  9322. bp->dropless_fc = 0;
  9323. else
  9324. bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
  9325. bp->mrrs = mrrs;
  9326. bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
  9327. if (IS_VF(bp))
  9328. bp->rx_ring_size = MAX_RX_AVAIL;
  9329. /* make sure that the numbers are in the right granularity */
  9330. bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
  9331. bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
  9332. bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
  9333. init_timer(&bp->timer);
  9334. bp->timer.expires = jiffies + bp->current_interval;
  9335. bp->timer.data = (unsigned long) bp;
  9336. bp->timer.function = bnx2x_timer;
  9337. if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
  9338. SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
  9339. SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
  9340. SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
  9341. bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
  9342. bnx2x_dcbx_init_params(bp);
  9343. } else {
  9344. bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
  9345. }
  9346. if (CHIP_IS_E1x(bp))
  9347. bp->cnic_base_cl_id = FP_SB_MAX_E1x;
  9348. else
  9349. bp->cnic_base_cl_id = FP_SB_MAX_E2;
  9350. /* multiple tx priority */
  9351. if (IS_VF(bp))
  9352. bp->max_cos = 1;
  9353. else if (CHIP_IS_E1x(bp))
  9354. bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
  9355. else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
  9356. bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
  9357. else if (CHIP_IS_E3B0(bp))
  9358. bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
  9359. else
  9360. BNX2X_ERR("unknown chip %x revision %x\n",
  9361. CHIP_NUM(bp), CHIP_REV(bp));
  9362. BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
  9363. /* We need at least one default status block for slow-path events,
  9364. * second status block for the L2 queue, and a third status block for
  9365. * CNIC if supproted.
  9366. */
  9367. if (CNIC_SUPPORT(bp))
  9368. bp->min_msix_vec_cnt = 3;
  9369. else
  9370. bp->min_msix_vec_cnt = 2;
  9371. BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
  9372. return rc;
  9373. }
  9374. /****************************************************************************
  9375. * General service functions
  9376. ****************************************************************************/
  9377. /*
  9378. * net_device service functions
  9379. */
  9380. /* called with rtnl_lock */
  9381. static int bnx2x_open(struct net_device *dev)
  9382. {
  9383. struct bnx2x *bp = netdev_priv(dev);
  9384. bool global = false;
  9385. int other_engine = BP_PATH(bp) ? 0 : 1;
  9386. bool other_load_status, load_status;
  9387. bp->stats_init = true;
  9388. netif_carrier_off(dev);
  9389. bnx2x_set_power_state(bp, PCI_D0);
  9390. /* If parity had happen during the unload, then attentions
  9391. * and/or RECOVERY_IN_PROGRES may still be set. In this case we
  9392. * want the first function loaded on the current engine to
  9393. * complete the recovery.
  9394. * Parity recovery is only relevant for PF driver.
  9395. */
  9396. if (IS_PF(bp)) {
  9397. other_load_status = bnx2x_get_load_status(bp, other_engine);
  9398. load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
  9399. if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
  9400. bnx2x_chk_parity_attn(bp, &global, true)) {
  9401. do {
  9402. /* If there are attentions and they are in a
  9403. * global blocks, set the GLOBAL_RESET bit
  9404. * regardless whether it will be this function
  9405. * that will complete the recovery or not.
  9406. */
  9407. if (global)
  9408. bnx2x_set_reset_global(bp);
  9409. /* Only the first function on the current
  9410. * engine should try to recover in open. In case
  9411. * of attentions in global blocks only the first
  9412. * in the chip should try to recover.
  9413. */
  9414. if ((!load_status &&
  9415. (!global || !other_load_status)) &&
  9416. bnx2x_trylock_leader_lock(bp) &&
  9417. !bnx2x_leader_reset(bp)) {
  9418. netdev_info(bp->dev,
  9419. "Recovered in open\n");
  9420. break;
  9421. }
  9422. /* recovery has failed... */
  9423. bnx2x_set_power_state(bp, PCI_D3hot);
  9424. bp->recovery_state = BNX2X_RECOVERY_FAILED;
  9425. BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
  9426. "If you still see this message after a few retries then power cycle is required.\n");
  9427. return -EAGAIN;
  9428. } while (0);
  9429. }
  9430. }
  9431. bp->recovery_state = BNX2X_RECOVERY_DONE;
  9432. return bnx2x_nic_load(bp, LOAD_OPEN);
  9433. }
  9434. /* called with rtnl_lock */
  9435. static int bnx2x_close(struct net_device *dev)
  9436. {
  9437. struct bnx2x *bp = netdev_priv(dev);
  9438. /* Unload the driver, release IRQs */
  9439. bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
  9440. /* Power off */
  9441. bnx2x_set_power_state(bp, PCI_D3hot);
  9442. return 0;
  9443. }
  9444. static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
  9445. struct bnx2x_mcast_ramrod_params *p)
  9446. {
  9447. int mc_count = netdev_mc_count(bp->dev);
  9448. struct bnx2x_mcast_list_elem *mc_mac =
  9449. kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
  9450. struct netdev_hw_addr *ha;
  9451. if (!mc_mac)
  9452. return -ENOMEM;
  9453. INIT_LIST_HEAD(&p->mcast_list);
  9454. netdev_for_each_mc_addr(ha, bp->dev) {
  9455. mc_mac->mac = bnx2x_mc_addr(ha);
  9456. list_add_tail(&mc_mac->link, &p->mcast_list);
  9457. mc_mac++;
  9458. }
  9459. p->mcast_list_len = mc_count;
  9460. return 0;
  9461. }
  9462. static void bnx2x_free_mcast_macs_list(
  9463. struct bnx2x_mcast_ramrod_params *p)
  9464. {
  9465. struct bnx2x_mcast_list_elem *mc_mac =
  9466. list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
  9467. link);
  9468. WARN_ON(!mc_mac);
  9469. kfree(mc_mac);
  9470. }
  9471. /**
  9472. * bnx2x_set_uc_list - configure a new unicast MACs list.
  9473. *
  9474. * @bp: driver handle
  9475. *
  9476. * We will use zero (0) as a MAC type for these MACs.
  9477. */
  9478. static int bnx2x_set_uc_list(struct bnx2x *bp)
  9479. {
  9480. int rc;
  9481. struct net_device *dev = bp->dev;
  9482. struct netdev_hw_addr *ha;
  9483. struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
  9484. unsigned long ramrod_flags = 0;
  9485. /* First schedule a cleanup up of old configuration */
  9486. rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
  9487. if (rc < 0) {
  9488. BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
  9489. return rc;
  9490. }
  9491. netdev_for_each_uc_addr(ha, dev) {
  9492. rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
  9493. BNX2X_UC_LIST_MAC, &ramrod_flags);
  9494. if (rc == -EEXIST) {
  9495. DP(BNX2X_MSG_SP,
  9496. "Failed to schedule ADD operations: %d\n", rc);
  9497. /* do not treat adding same MAC as error */
  9498. rc = 0;
  9499. } else if (rc < 0) {
  9500. BNX2X_ERR("Failed to schedule ADD operations: %d\n",
  9501. rc);
  9502. return rc;
  9503. }
  9504. }
  9505. /* Execute the pending commands */
  9506. __set_bit(RAMROD_CONT, &ramrod_flags);
  9507. return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
  9508. BNX2X_UC_LIST_MAC, &ramrod_flags);
  9509. }
  9510. static int bnx2x_set_mc_list(struct bnx2x *bp)
  9511. {
  9512. struct net_device *dev = bp->dev;
  9513. struct bnx2x_mcast_ramrod_params rparam = {NULL};
  9514. int rc = 0;
  9515. rparam.mcast_obj = &bp->mcast_obj;
  9516. /* first, clear all configured multicast MACs */
  9517. rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
  9518. if (rc < 0) {
  9519. BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
  9520. return rc;
  9521. }
  9522. /* then, configure a new MACs list */
  9523. if (netdev_mc_count(dev)) {
  9524. rc = bnx2x_init_mcast_macs_list(bp, &rparam);
  9525. if (rc) {
  9526. BNX2X_ERR("Failed to create multicast MACs list: %d\n",
  9527. rc);
  9528. return rc;
  9529. }
  9530. /* Now add the new MACs */
  9531. rc = bnx2x_config_mcast(bp, &rparam,
  9532. BNX2X_MCAST_CMD_ADD);
  9533. if (rc < 0)
  9534. BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
  9535. rc);
  9536. bnx2x_free_mcast_macs_list(&rparam);
  9537. }
  9538. return rc;
  9539. }
  9540. /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
  9541. void bnx2x_set_rx_mode(struct net_device *dev)
  9542. {
  9543. struct bnx2x *bp = netdev_priv(dev);
  9544. u32 rx_mode = BNX2X_RX_MODE_NORMAL;
  9545. if (bp->state != BNX2X_STATE_OPEN) {
  9546. DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
  9547. return;
  9548. }
  9549. DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
  9550. if (dev->flags & IFF_PROMISC)
  9551. rx_mode = BNX2X_RX_MODE_PROMISC;
  9552. else if ((dev->flags & IFF_ALLMULTI) ||
  9553. ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
  9554. CHIP_IS_E1(bp)))
  9555. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  9556. else {
  9557. if (IS_PF(bp)) {
  9558. /* some multicasts */
  9559. if (bnx2x_set_mc_list(bp) < 0)
  9560. rx_mode = BNX2X_RX_MODE_ALLMULTI;
  9561. if (bnx2x_set_uc_list(bp) < 0)
  9562. rx_mode = BNX2X_RX_MODE_PROMISC;
  9563. } else {
  9564. /* configuring mcast to a vf involves sleeping (when we
  9565. * wait for the pf's response). Since this function is
  9566. * called from non sleepable context we must schedule
  9567. * a work item for this purpose
  9568. */
  9569. smp_mb__before_clear_bit();
  9570. set_bit(BNX2X_SP_RTNL_VFPF_MCAST,
  9571. &bp->sp_rtnl_state);
  9572. smp_mb__after_clear_bit();
  9573. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  9574. }
  9575. }
  9576. bp->rx_mode = rx_mode;
  9577. /* handle ISCSI SD mode */
  9578. if (IS_MF_ISCSI_SD(bp))
  9579. bp->rx_mode = BNX2X_RX_MODE_NONE;
  9580. /* Schedule the rx_mode command */
  9581. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
  9582. set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
  9583. return;
  9584. }
  9585. if (IS_PF(bp)) {
  9586. bnx2x_set_storm_rx_mode(bp);
  9587. } else {
  9588. /* configuring rx mode to storms in a vf involves sleeping (when
  9589. * we wait for the pf's response). Since this function is
  9590. * called from non sleepable context we must schedule
  9591. * a work item for this purpose
  9592. */
  9593. smp_mb__before_clear_bit();
  9594. set_bit(BNX2X_SP_RTNL_VFPF_STORM_RX_MODE,
  9595. &bp->sp_rtnl_state);
  9596. smp_mb__after_clear_bit();
  9597. schedule_delayed_work(&bp->sp_rtnl_task, 0);
  9598. }
  9599. }
  9600. /* called with rtnl_lock */
  9601. static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
  9602. int devad, u16 addr)
  9603. {
  9604. struct bnx2x *bp = netdev_priv(netdev);
  9605. u16 value;
  9606. int rc;
  9607. DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
  9608. prtad, devad, addr);
  9609. /* The HW expects different devad if CL22 is used */
  9610. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  9611. bnx2x_acquire_phy_lock(bp);
  9612. rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
  9613. bnx2x_release_phy_lock(bp);
  9614. DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
  9615. if (!rc)
  9616. rc = value;
  9617. return rc;
  9618. }
  9619. /* called with rtnl_lock */
  9620. static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
  9621. u16 addr, u16 value)
  9622. {
  9623. struct bnx2x *bp = netdev_priv(netdev);
  9624. int rc;
  9625. DP(NETIF_MSG_LINK,
  9626. "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
  9627. prtad, devad, addr, value);
  9628. /* The HW expects different devad if CL22 is used */
  9629. devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
  9630. bnx2x_acquire_phy_lock(bp);
  9631. rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
  9632. bnx2x_release_phy_lock(bp);
  9633. return rc;
  9634. }
  9635. /* called with rtnl_lock */
  9636. static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  9637. {
  9638. struct bnx2x *bp = netdev_priv(dev);
  9639. struct mii_ioctl_data *mdio = if_mii(ifr);
  9640. DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
  9641. mdio->phy_id, mdio->reg_num, mdio->val_in);
  9642. if (!netif_running(dev))
  9643. return -EAGAIN;
  9644. return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
  9645. }
  9646. #ifdef CONFIG_NET_POLL_CONTROLLER
  9647. static void poll_bnx2x(struct net_device *dev)
  9648. {
  9649. struct bnx2x *bp = netdev_priv(dev);
  9650. int i;
  9651. for_each_eth_queue(bp, i) {
  9652. struct bnx2x_fastpath *fp = &bp->fp[i];
  9653. napi_schedule(&bnx2x_fp(bp, fp->index, napi));
  9654. }
  9655. }
  9656. #endif
  9657. static int bnx2x_validate_addr(struct net_device *dev)
  9658. {
  9659. struct bnx2x *bp = netdev_priv(dev);
  9660. if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
  9661. BNX2X_ERR("Non-valid Ethernet address\n");
  9662. return -EADDRNOTAVAIL;
  9663. }
  9664. return 0;
  9665. }
  9666. static const struct net_device_ops bnx2x_netdev_ops = {
  9667. .ndo_open = bnx2x_open,
  9668. .ndo_stop = bnx2x_close,
  9669. .ndo_start_xmit = bnx2x_start_xmit,
  9670. .ndo_select_queue = bnx2x_select_queue,
  9671. .ndo_set_rx_mode = bnx2x_set_rx_mode,
  9672. .ndo_set_mac_address = bnx2x_change_mac_addr,
  9673. .ndo_validate_addr = bnx2x_validate_addr,
  9674. .ndo_do_ioctl = bnx2x_ioctl,
  9675. .ndo_change_mtu = bnx2x_change_mtu,
  9676. .ndo_fix_features = bnx2x_fix_features,
  9677. .ndo_set_features = bnx2x_set_features,
  9678. .ndo_tx_timeout = bnx2x_tx_timeout,
  9679. #ifdef CONFIG_NET_POLL_CONTROLLER
  9680. .ndo_poll_controller = poll_bnx2x,
  9681. #endif
  9682. .ndo_setup_tc = bnx2x_setup_tc,
  9683. #ifdef NETDEV_FCOE_WWNN
  9684. .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
  9685. #endif
  9686. };
  9687. static int bnx2x_set_coherency_mask(struct bnx2x *bp)
  9688. {
  9689. struct device *dev = &bp->pdev->dev;
  9690. if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
  9691. bp->flags |= USING_DAC_FLAG;
  9692. if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
  9693. dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
  9694. return -EIO;
  9695. }
  9696. } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
  9697. dev_err(dev, "System does not support DMA, aborting\n");
  9698. return -EIO;
  9699. }
  9700. return 0;
  9701. }
  9702. static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
  9703. struct net_device *dev, unsigned long board_type)
  9704. {
  9705. int rc;
  9706. u32 pci_cfg_dword;
  9707. bool chip_is_e1x = (board_type == BCM57710 ||
  9708. board_type == BCM57711 ||
  9709. board_type == BCM57711E);
  9710. SET_NETDEV_DEV(dev, &pdev->dev);
  9711. bp->dev = dev;
  9712. bp->pdev = pdev;
  9713. rc = pci_enable_device(pdev);
  9714. if (rc) {
  9715. dev_err(&bp->pdev->dev,
  9716. "Cannot enable PCI device, aborting\n");
  9717. goto err_out;
  9718. }
  9719. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  9720. dev_err(&bp->pdev->dev,
  9721. "Cannot find PCI device base address, aborting\n");
  9722. rc = -ENODEV;
  9723. goto err_out_disable;
  9724. }
  9725. if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  9726. dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
  9727. rc = -ENODEV;
  9728. goto err_out_disable;
  9729. }
  9730. pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
  9731. if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
  9732. PCICFG_REVESION_ID_ERROR_VAL) {
  9733. pr_err("PCI device error, probably due to fan failure, aborting\n");
  9734. rc = -ENODEV;
  9735. goto err_out_disable;
  9736. }
  9737. if (atomic_read(&pdev->enable_cnt) == 1) {
  9738. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  9739. if (rc) {
  9740. dev_err(&bp->pdev->dev,
  9741. "Cannot obtain PCI resources, aborting\n");
  9742. goto err_out_disable;
  9743. }
  9744. pci_set_master(pdev);
  9745. pci_save_state(pdev);
  9746. }
  9747. if (IS_PF(bp)) {
  9748. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  9749. if (bp->pm_cap == 0) {
  9750. dev_err(&bp->pdev->dev,
  9751. "Cannot find power management capability, aborting\n");
  9752. rc = -EIO;
  9753. goto err_out_release;
  9754. }
  9755. }
  9756. if (!pci_is_pcie(pdev)) {
  9757. dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
  9758. rc = -EIO;
  9759. goto err_out_release;
  9760. }
  9761. rc = bnx2x_set_coherency_mask(bp);
  9762. if (rc)
  9763. goto err_out_release;
  9764. dev->mem_start = pci_resource_start(pdev, 0);
  9765. dev->base_addr = dev->mem_start;
  9766. dev->mem_end = pci_resource_end(pdev, 0);
  9767. dev->irq = pdev->irq;
  9768. bp->regview = pci_ioremap_bar(pdev, 0);
  9769. if (!bp->regview) {
  9770. dev_err(&bp->pdev->dev,
  9771. "Cannot map register space, aborting\n");
  9772. rc = -ENOMEM;
  9773. goto err_out_release;
  9774. }
  9775. /* In E1/E1H use pci device function given by kernel.
  9776. * In E2/E3 read physical function from ME register since these chips
  9777. * support Physical Device Assignment where kernel BDF maybe arbitrary
  9778. * (depending on hypervisor).
  9779. */
  9780. if (chip_is_e1x)
  9781. bp->pf_num = PCI_FUNC(pdev->devfn);
  9782. else {/* chip is E2/3*/
  9783. pci_read_config_dword(bp->pdev,
  9784. PCICFG_ME_REGISTER, &pci_cfg_dword);
  9785. bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
  9786. ME_REG_ABS_PF_NUM_SHIFT);
  9787. }
  9788. BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
  9789. bnx2x_set_power_state(bp, PCI_D0);
  9790. /* clean indirect addresses */
  9791. pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
  9792. PCICFG_VENDOR_ID_OFFSET);
  9793. /*
  9794. * Clean the following indirect addresses for all functions since it
  9795. * is not used by the driver.
  9796. */
  9797. if (IS_PF(bp)) {
  9798. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
  9799. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
  9800. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
  9801. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
  9802. if (chip_is_e1x) {
  9803. REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
  9804. REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
  9805. REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
  9806. REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
  9807. }
  9808. /* Enable internal target-read (in case we are probed after PF
  9809. * FLR). Must be done prior to any BAR read access. Only for
  9810. * 57712 and up
  9811. */
  9812. if (!chip_is_e1x)
  9813. REG_WR(bp,
  9814. PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
  9815. }
  9816. dev->watchdog_timeo = TX_TIMEOUT;
  9817. dev->netdev_ops = &bnx2x_netdev_ops;
  9818. bnx2x_set_ethtool_ops(dev);
  9819. dev->priv_flags |= IFF_UNICAST_FLT;
  9820. dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  9821. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
  9822. NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
  9823. NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
  9824. dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  9825. NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
  9826. dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
  9827. if (bp->flags & USING_DAC_FLAG)
  9828. dev->features |= NETIF_F_HIGHDMA;
  9829. /* Add Loopback capability to the device */
  9830. dev->hw_features |= NETIF_F_LOOPBACK;
  9831. #ifdef BCM_DCBNL
  9832. dev->dcbnl_ops = &bnx2x_dcbnl_ops;
  9833. #endif
  9834. /* get_port_hwinfo() will set prtad and mmds properly */
  9835. bp->mdio.prtad = MDIO_PRTAD_NONE;
  9836. bp->mdio.mmds = 0;
  9837. bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
  9838. bp->mdio.dev = dev;
  9839. bp->mdio.mdio_read = bnx2x_mdio_read;
  9840. bp->mdio.mdio_write = bnx2x_mdio_write;
  9841. return 0;
  9842. err_out_release:
  9843. if (atomic_read(&pdev->enable_cnt) == 1)
  9844. pci_release_regions(pdev);
  9845. err_out_disable:
  9846. pci_disable_device(pdev);
  9847. pci_set_drvdata(pdev, NULL);
  9848. err_out:
  9849. return rc;
  9850. }
  9851. static void bnx2x_get_pcie_width_speed(struct bnx2x *bp, int *width, int *speed)
  9852. {
  9853. u32 val = 0;
  9854. pci_read_config_dword(bp->pdev, PCICFG_LINK_CONTROL, &val);
  9855. *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
  9856. /* return value of 1=2.5GHz 2=5GHz */
  9857. *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
  9858. }
  9859. static int bnx2x_check_firmware(struct bnx2x *bp)
  9860. {
  9861. const struct firmware *firmware = bp->firmware;
  9862. struct bnx2x_fw_file_hdr *fw_hdr;
  9863. struct bnx2x_fw_file_section *sections;
  9864. u32 offset, len, num_ops;
  9865. u16 *ops_offsets;
  9866. int i;
  9867. const u8 *fw_ver;
  9868. if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
  9869. BNX2X_ERR("Wrong FW size\n");
  9870. return -EINVAL;
  9871. }
  9872. fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
  9873. sections = (struct bnx2x_fw_file_section *)fw_hdr;
  9874. /* Make sure none of the offsets and sizes make us read beyond
  9875. * the end of the firmware data */
  9876. for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
  9877. offset = be32_to_cpu(sections[i].offset);
  9878. len = be32_to_cpu(sections[i].len);
  9879. if (offset + len > firmware->size) {
  9880. BNX2X_ERR("Section %d length is out of bounds\n", i);
  9881. return -EINVAL;
  9882. }
  9883. }
  9884. /* Likewise for the init_ops offsets */
  9885. offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
  9886. ops_offsets = (u16 *)(firmware->data + offset);
  9887. num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
  9888. for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
  9889. if (be16_to_cpu(ops_offsets[i]) > num_ops) {
  9890. BNX2X_ERR("Section offset %d is out of bounds\n", i);
  9891. return -EINVAL;
  9892. }
  9893. }
  9894. /* Check FW version */
  9895. offset = be32_to_cpu(fw_hdr->fw_version.offset);
  9896. fw_ver = firmware->data + offset;
  9897. if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
  9898. (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
  9899. (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
  9900. (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
  9901. BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
  9902. fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
  9903. BCM_5710_FW_MAJOR_VERSION,
  9904. BCM_5710_FW_MINOR_VERSION,
  9905. BCM_5710_FW_REVISION_VERSION,
  9906. BCM_5710_FW_ENGINEERING_VERSION);
  9907. return -EINVAL;
  9908. }
  9909. return 0;
  9910. }
  9911. static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  9912. {
  9913. const __be32 *source = (const __be32 *)_source;
  9914. u32 *target = (u32 *)_target;
  9915. u32 i;
  9916. for (i = 0; i < n/4; i++)
  9917. target[i] = be32_to_cpu(source[i]);
  9918. }
  9919. /*
  9920. Ops array is stored in the following format:
  9921. {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
  9922. */
  9923. static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
  9924. {
  9925. const __be32 *source = (const __be32 *)_source;
  9926. struct raw_op *target = (struct raw_op *)_target;
  9927. u32 i, j, tmp;
  9928. for (i = 0, j = 0; i < n/8; i++, j += 2) {
  9929. tmp = be32_to_cpu(source[j]);
  9930. target[i].op = (tmp >> 24) & 0xff;
  9931. target[i].offset = tmp & 0xffffff;
  9932. target[i].raw_data = be32_to_cpu(source[j + 1]);
  9933. }
  9934. }
  9935. /* IRO array is stored in the following format:
  9936. * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
  9937. */
  9938. static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
  9939. {
  9940. const __be32 *source = (const __be32 *)_source;
  9941. struct iro *target = (struct iro *)_target;
  9942. u32 i, j, tmp;
  9943. for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
  9944. target[i].base = be32_to_cpu(source[j]);
  9945. j++;
  9946. tmp = be32_to_cpu(source[j]);
  9947. target[i].m1 = (tmp >> 16) & 0xffff;
  9948. target[i].m2 = tmp & 0xffff;
  9949. j++;
  9950. tmp = be32_to_cpu(source[j]);
  9951. target[i].m3 = (tmp >> 16) & 0xffff;
  9952. target[i].size = tmp & 0xffff;
  9953. j++;
  9954. }
  9955. }
  9956. static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
  9957. {
  9958. const __be16 *source = (const __be16 *)_source;
  9959. u16 *target = (u16 *)_target;
  9960. u32 i;
  9961. for (i = 0; i < n/2; i++)
  9962. target[i] = be16_to_cpu(source[i]);
  9963. }
  9964. #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
  9965. do { \
  9966. u32 len = be32_to_cpu(fw_hdr->arr.len); \
  9967. bp->arr = kmalloc(len, GFP_KERNEL); \
  9968. if (!bp->arr) \
  9969. goto lbl; \
  9970. func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
  9971. (u8 *)bp->arr, len); \
  9972. } while (0)
  9973. static int bnx2x_init_firmware(struct bnx2x *bp)
  9974. {
  9975. const char *fw_file_name;
  9976. struct bnx2x_fw_file_hdr *fw_hdr;
  9977. int rc;
  9978. if (bp->firmware)
  9979. return 0;
  9980. if (CHIP_IS_E1(bp))
  9981. fw_file_name = FW_FILE_NAME_E1;
  9982. else if (CHIP_IS_E1H(bp))
  9983. fw_file_name = FW_FILE_NAME_E1H;
  9984. else if (!CHIP_IS_E1x(bp))
  9985. fw_file_name = FW_FILE_NAME_E2;
  9986. else {
  9987. BNX2X_ERR("Unsupported chip revision\n");
  9988. return -EINVAL;
  9989. }
  9990. BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
  9991. rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
  9992. if (rc) {
  9993. BNX2X_ERR("Can't load firmware file %s\n",
  9994. fw_file_name);
  9995. goto request_firmware_exit;
  9996. }
  9997. rc = bnx2x_check_firmware(bp);
  9998. if (rc) {
  9999. BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
  10000. goto request_firmware_exit;
  10001. }
  10002. fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
  10003. /* Initialize the pointers to the init arrays */
  10004. /* Blob */
  10005. BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
  10006. /* Opcodes */
  10007. BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
  10008. /* Offsets */
  10009. BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
  10010. be16_to_cpu_n);
  10011. /* STORMs firmware */
  10012. INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10013. be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
  10014. INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
  10015. be32_to_cpu(fw_hdr->tsem_pram_data.offset);
  10016. INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10017. be32_to_cpu(fw_hdr->usem_int_table_data.offset);
  10018. INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
  10019. be32_to_cpu(fw_hdr->usem_pram_data.offset);
  10020. INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10021. be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
  10022. INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
  10023. be32_to_cpu(fw_hdr->xsem_pram_data.offset);
  10024. INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
  10025. be32_to_cpu(fw_hdr->csem_int_table_data.offset);
  10026. INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
  10027. be32_to_cpu(fw_hdr->csem_pram_data.offset);
  10028. /* IRO */
  10029. BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
  10030. return 0;
  10031. iro_alloc_err:
  10032. kfree(bp->init_ops_offsets);
  10033. init_offsets_alloc_err:
  10034. kfree(bp->init_ops);
  10035. init_ops_alloc_err:
  10036. kfree(bp->init_data);
  10037. request_firmware_exit:
  10038. release_firmware(bp->firmware);
  10039. bp->firmware = NULL;
  10040. return rc;
  10041. }
  10042. static void bnx2x_release_firmware(struct bnx2x *bp)
  10043. {
  10044. kfree(bp->init_ops_offsets);
  10045. kfree(bp->init_ops);
  10046. kfree(bp->init_data);
  10047. release_firmware(bp->firmware);
  10048. bp->firmware = NULL;
  10049. }
  10050. static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
  10051. .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
  10052. .init_hw_cmn = bnx2x_init_hw_common,
  10053. .init_hw_port = bnx2x_init_hw_port,
  10054. .init_hw_func = bnx2x_init_hw_func,
  10055. .reset_hw_cmn = bnx2x_reset_common,
  10056. .reset_hw_port = bnx2x_reset_port,
  10057. .reset_hw_func = bnx2x_reset_func,
  10058. .gunzip_init = bnx2x_gunzip_init,
  10059. .gunzip_end = bnx2x_gunzip_end,
  10060. .init_fw = bnx2x_init_firmware,
  10061. .release_fw = bnx2x_release_firmware,
  10062. };
  10063. void bnx2x__init_func_obj(struct bnx2x *bp)
  10064. {
  10065. /* Prepare DMAE related driver resources */
  10066. bnx2x_setup_dmae(bp);
  10067. bnx2x_init_func_obj(bp, &bp->func_obj,
  10068. bnx2x_sp(bp, func_rdata),
  10069. bnx2x_sp_mapping(bp, func_rdata),
  10070. bnx2x_sp(bp, func_afex_rdata),
  10071. bnx2x_sp_mapping(bp, func_afex_rdata),
  10072. &bnx2x_func_sp_drv);
  10073. }
  10074. /* must be called after sriov-enable */
  10075. static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
  10076. {
  10077. int cid_count = BNX2X_L2_MAX_CID(bp);
  10078. if (IS_SRIOV(bp))
  10079. cid_count += BNX2X_VF_CIDS;
  10080. if (CNIC_SUPPORT(bp))
  10081. cid_count += CNIC_CID_MAX;
  10082. return roundup(cid_count, QM_CID_ROUND);
  10083. }
  10084. /**
  10085. * bnx2x_get_num_none_def_sbs - return the number of none default SBs
  10086. *
  10087. * @dev: pci device
  10088. *
  10089. */
  10090. static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
  10091. int cnic_cnt, bool is_vf)
  10092. {
  10093. int pos, index;
  10094. u16 control = 0;
  10095. pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
  10096. /*
  10097. * If MSI-X is not supported - return number of SBs needed to support
  10098. * one fast path queue: one FP queue + SB for CNIC
  10099. */
  10100. if (!pos) {
  10101. dev_info(&pdev->dev, "no msix capability found\n");
  10102. return 1 + cnic_cnt;
  10103. }
  10104. dev_info(&pdev->dev, "msix capability found\n");
  10105. /*
  10106. * The value in the PCI configuration space is the index of the last
  10107. * entry, namely one less than the actual size of the table, which is
  10108. * exactly what we want to return from this function: number of all SBs
  10109. * without the default SB.
  10110. * For VFs there is no default SB, then we return (index+1).
  10111. */
  10112. pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
  10113. index = control & PCI_MSIX_FLAGS_QSIZE;
  10114. return is_vf ? index + 1 : index;
  10115. }
  10116. static int set_max_cos_est(int chip_id)
  10117. {
  10118. switch (chip_id) {
  10119. case BCM57710:
  10120. case BCM57711:
  10121. case BCM57711E:
  10122. return BNX2X_MULTI_TX_COS_E1X;
  10123. case BCM57712:
  10124. case BCM57712_MF:
  10125. case BCM57712_VF:
  10126. return BNX2X_MULTI_TX_COS_E2_E3A0;
  10127. case BCM57800:
  10128. case BCM57800_MF:
  10129. case BCM57800_VF:
  10130. case BCM57810:
  10131. case BCM57810_MF:
  10132. case BCM57840_4_10:
  10133. case BCM57840_2_20:
  10134. case BCM57840_O:
  10135. case BCM57840_MFO:
  10136. case BCM57810_VF:
  10137. case BCM57840_MF:
  10138. case BCM57840_VF:
  10139. case BCM57811:
  10140. case BCM57811_MF:
  10141. case BCM57811_VF:
  10142. return BNX2X_MULTI_TX_COS_E3B0;
  10143. return 1;
  10144. default:
  10145. pr_err("Unknown board_type (%d), aborting\n", chip_id);
  10146. return -ENODEV;
  10147. }
  10148. }
  10149. static int set_is_vf(int chip_id)
  10150. {
  10151. switch (chip_id) {
  10152. case BCM57712_VF:
  10153. case BCM57800_VF:
  10154. case BCM57810_VF:
  10155. case BCM57840_VF:
  10156. case BCM57811_VF:
  10157. return true;
  10158. default:
  10159. return false;
  10160. }
  10161. }
  10162. struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
  10163. static int bnx2x_init_one(struct pci_dev *pdev,
  10164. const struct pci_device_id *ent)
  10165. {
  10166. struct net_device *dev = NULL;
  10167. struct bnx2x *bp;
  10168. int pcie_width, pcie_speed;
  10169. int rc, max_non_def_sbs;
  10170. int rx_count, tx_count, rss_count, doorbell_size;
  10171. int max_cos_est;
  10172. bool is_vf;
  10173. int cnic_cnt;
  10174. /* An estimated maximum supported CoS number according to the chip
  10175. * version.
  10176. * We will try to roughly estimate the maximum number of CoSes this chip
  10177. * may support in order to minimize the memory allocated for Tx
  10178. * netdev_queue's. This number will be accurately calculated during the
  10179. * initialization of bp->max_cos based on the chip versions AND chip
  10180. * revision in the bnx2x_init_bp().
  10181. */
  10182. max_cos_est = set_max_cos_est(ent->driver_data);
  10183. if (max_cos_est < 0)
  10184. return max_cos_est;
  10185. is_vf = set_is_vf(ent->driver_data);
  10186. cnic_cnt = is_vf ? 0 : 1;
  10187. max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt, is_vf);
  10188. /* Maximum number of RSS queues: one IGU SB goes to CNIC */
  10189. rss_count = is_vf ? 1 : max_non_def_sbs - cnic_cnt;
  10190. if (rss_count < 1)
  10191. return -EINVAL;
  10192. /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
  10193. rx_count = rss_count + cnic_cnt;
  10194. /* Maximum number of netdev Tx queues:
  10195. * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
  10196. */
  10197. tx_count = rss_count * max_cos_est + cnic_cnt;
  10198. /* dev zeroed in init_etherdev */
  10199. dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
  10200. if (!dev)
  10201. return -ENOMEM;
  10202. bp = netdev_priv(dev);
  10203. bp->flags = 0;
  10204. if (is_vf)
  10205. bp->flags |= IS_VF_FLAG;
  10206. bp->igu_sb_cnt = max_non_def_sbs;
  10207. bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
  10208. bp->msg_enable = debug;
  10209. bp->cnic_support = cnic_cnt;
  10210. bp->cnic_probe = bnx2x_cnic_probe;
  10211. pci_set_drvdata(pdev, dev);
  10212. rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
  10213. if (rc < 0) {
  10214. free_netdev(dev);
  10215. return rc;
  10216. }
  10217. BNX2X_DEV_INFO("This is a %s function\n",
  10218. IS_PF(bp) ? "physical" : "virtual");
  10219. BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
  10220. BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
  10221. BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
  10222. tx_count, rx_count);
  10223. rc = bnx2x_init_bp(bp);
  10224. if (rc)
  10225. goto init_one_exit;
  10226. /* Map doorbells here as we need the real value of bp->max_cos which
  10227. * is initialized in bnx2x_init_bp() to determine the number of
  10228. * l2 connections.
  10229. */
  10230. if (IS_VF(bp)) {
  10231. /* vf doorbells are embedded within the regview */
  10232. bp->doorbells = bp->regview + PXP_VF_ADDR_DB_START;
  10233. /* allocate vf2pf mailbox for vf to pf channel */
  10234. BNX2X_PCI_ALLOC(bp->vf2pf_mbox, &bp->vf2pf_mbox_mapping,
  10235. sizeof(struct bnx2x_vf_mbx_msg));
  10236. } else {
  10237. doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
  10238. if (doorbell_size > pci_resource_len(pdev, 2)) {
  10239. dev_err(&bp->pdev->dev,
  10240. "Cannot map doorbells, bar size too small, aborting\n");
  10241. rc = -ENOMEM;
  10242. goto init_one_exit;
  10243. }
  10244. bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
  10245. doorbell_size);
  10246. }
  10247. if (!bp->doorbells) {
  10248. dev_err(&bp->pdev->dev,
  10249. "Cannot map doorbell space, aborting\n");
  10250. rc = -ENOMEM;
  10251. goto init_one_exit;
  10252. }
  10253. if (IS_VF(bp)) {
  10254. rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
  10255. if (rc)
  10256. goto init_one_exit;
  10257. }
  10258. /* Enable SRIOV if capability found in configuration space.
  10259. * Once the generic SR-IOV framework makes it in from the
  10260. * pci tree this will be revised, to allow dynamic control
  10261. * over the number of VFs. Right now, change the num of vfs
  10262. * param below to enable SR-IOV.
  10263. */
  10264. rc = bnx2x_iov_init_one(bp, int_mode, 0/*num vfs*/);
  10265. if (rc)
  10266. goto init_one_exit;
  10267. /* calc qm_cid_count */
  10268. bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
  10269. BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
  10270. /* disable FCOE L2 queue for E1x*/
  10271. if (CHIP_IS_E1x(bp))
  10272. bp->flags |= NO_FCOE_FLAG;
  10273. /* disable FCOE for 57840 device, until FW supports it */
  10274. switch (ent->driver_data) {
  10275. case BCM57840_O:
  10276. case BCM57840_4_10:
  10277. case BCM57840_2_20:
  10278. case BCM57840_MFO:
  10279. case BCM57840_MF:
  10280. bp->flags |= NO_FCOE_FLAG;
  10281. }
  10282. /* Set bp->num_queues for MSI-X mode*/
  10283. bnx2x_set_num_queues(bp);
  10284. /* Configure interrupt mode: try to enable MSI-X/MSI if
  10285. * needed.
  10286. */
  10287. rc = bnx2x_set_int_mode(bp);
  10288. if (rc) {
  10289. dev_err(&pdev->dev, "Cannot set interrupts\n");
  10290. goto init_one_exit;
  10291. }
  10292. /* register the net device */
  10293. rc = register_netdev(dev);
  10294. if (rc) {
  10295. dev_err(&pdev->dev, "Cannot register net device\n");
  10296. goto init_one_exit;
  10297. }
  10298. BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
  10299. if (!NO_FCOE(bp)) {
  10300. /* Add storage MAC address */
  10301. rtnl_lock();
  10302. dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  10303. rtnl_unlock();
  10304. }
  10305. bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
  10306. BNX2X_DEV_INFO("got pcie width %d and speed %d\n",
  10307. pcie_width, pcie_speed);
  10308. BNX2X_DEV_INFO(
  10309. "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
  10310. board_info[ent->driver_data].name,
  10311. (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
  10312. pcie_width,
  10313. ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
  10314. (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
  10315. "5GHz (Gen2)" : "2.5GHz",
  10316. dev->base_addr, bp->pdev->irq, dev->dev_addr);
  10317. return 0;
  10318. alloc_mem_err:
  10319. BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
  10320. sizeof(struct bnx2x_vf_mbx_msg));
  10321. rc = -ENOMEM;
  10322. init_one_exit:
  10323. if (bp->regview)
  10324. iounmap(bp->regview);
  10325. if (IS_PF(bp) && bp->doorbells)
  10326. iounmap(bp->doorbells);
  10327. free_netdev(dev);
  10328. if (atomic_read(&pdev->enable_cnt) == 1)
  10329. pci_release_regions(pdev);
  10330. pci_disable_device(pdev);
  10331. pci_set_drvdata(pdev, NULL);
  10332. return rc;
  10333. }
  10334. static void bnx2x_remove_one(struct pci_dev *pdev)
  10335. {
  10336. struct net_device *dev = pci_get_drvdata(pdev);
  10337. struct bnx2x *bp;
  10338. if (!dev) {
  10339. dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
  10340. return;
  10341. }
  10342. bp = netdev_priv(dev);
  10343. /* Delete storage MAC address */
  10344. if (!NO_FCOE(bp)) {
  10345. rtnl_lock();
  10346. dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
  10347. rtnl_unlock();
  10348. }
  10349. #ifdef BCM_DCBNL
  10350. /* Delete app tlvs from dcbnl */
  10351. bnx2x_dcbnl_update_applist(bp, true);
  10352. #endif
  10353. unregister_netdev(dev);
  10354. /* Power on: we can't let PCI layer write to us while we are in D3 */
  10355. if (IS_PF(bp))
  10356. bnx2x_set_power_state(bp, PCI_D0);
  10357. /* Disable MSI/MSI-X */
  10358. bnx2x_disable_msi(bp);
  10359. /* Power off */
  10360. if (IS_PF(bp))
  10361. bnx2x_set_power_state(bp, PCI_D3hot);
  10362. /* Make sure RESET task is not scheduled before continuing */
  10363. cancel_delayed_work_sync(&bp->sp_rtnl_task);
  10364. bnx2x_iov_remove_one(bp);
  10365. /* send message via vfpf channel to release the resources of this vf */
  10366. if (IS_VF(bp))
  10367. bnx2x_vfpf_release(bp);
  10368. if (bp->regview)
  10369. iounmap(bp->regview);
  10370. /* for vf doorbells are part of the regview and were unmapped along with
  10371. * it. FW is only loaded by PF.
  10372. */
  10373. if (IS_PF(bp)) {
  10374. if (bp->doorbells)
  10375. iounmap(bp->doorbells);
  10376. bnx2x_release_firmware(bp);
  10377. }
  10378. bnx2x_free_mem_bp(bp);
  10379. free_netdev(dev);
  10380. if (atomic_read(&pdev->enable_cnt) == 1)
  10381. pci_release_regions(pdev);
  10382. pci_disable_device(pdev);
  10383. pci_set_drvdata(pdev, NULL);
  10384. }
  10385. static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
  10386. {
  10387. int i;
  10388. bp->state = BNX2X_STATE_ERROR;
  10389. bp->rx_mode = BNX2X_RX_MODE_NONE;
  10390. if (CNIC_LOADED(bp))
  10391. bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
  10392. /* Stop Tx */
  10393. bnx2x_tx_disable(bp);
  10394. bnx2x_netif_stop(bp, 0);
  10395. /* Delete all NAPI objects */
  10396. bnx2x_del_all_napi(bp);
  10397. if (CNIC_LOADED(bp))
  10398. bnx2x_del_all_napi_cnic(bp);
  10399. del_timer_sync(&bp->timer);
  10400. bnx2x_stats_handle(bp, STATS_EVENT_STOP);
  10401. /* Release IRQs */
  10402. bnx2x_free_irq(bp);
  10403. /* Free SKBs, SGEs, TPA pool and driver internals */
  10404. bnx2x_free_skbs(bp);
  10405. for_each_rx_queue(bp, i)
  10406. bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
  10407. bnx2x_free_mem(bp);
  10408. bp->state = BNX2X_STATE_CLOSED;
  10409. netif_carrier_off(bp->dev);
  10410. return 0;
  10411. }
  10412. static void bnx2x_eeh_recover(struct bnx2x *bp)
  10413. {
  10414. u32 val;
  10415. mutex_init(&bp->port.phy_mutex);
  10416. val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
  10417. if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
  10418. != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
  10419. BNX2X_ERR("BAD MCP validity signature\n");
  10420. }
  10421. /**
  10422. * bnx2x_io_error_detected - called when PCI error is detected
  10423. * @pdev: Pointer to PCI device
  10424. * @state: The current pci connection state
  10425. *
  10426. * This function is called after a PCI bus error affecting
  10427. * this device has been detected.
  10428. */
  10429. static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
  10430. pci_channel_state_t state)
  10431. {
  10432. struct net_device *dev = pci_get_drvdata(pdev);
  10433. struct bnx2x *bp = netdev_priv(dev);
  10434. rtnl_lock();
  10435. netif_device_detach(dev);
  10436. if (state == pci_channel_io_perm_failure) {
  10437. rtnl_unlock();
  10438. return PCI_ERS_RESULT_DISCONNECT;
  10439. }
  10440. if (netif_running(dev))
  10441. bnx2x_eeh_nic_unload(bp);
  10442. pci_disable_device(pdev);
  10443. rtnl_unlock();
  10444. /* Request a slot reset */
  10445. return PCI_ERS_RESULT_NEED_RESET;
  10446. }
  10447. /**
  10448. * bnx2x_io_slot_reset - called after the PCI bus has been reset
  10449. * @pdev: Pointer to PCI device
  10450. *
  10451. * Restart the card from scratch, as if from a cold-boot.
  10452. */
  10453. static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
  10454. {
  10455. struct net_device *dev = pci_get_drvdata(pdev);
  10456. struct bnx2x *bp = netdev_priv(dev);
  10457. rtnl_lock();
  10458. if (pci_enable_device(pdev)) {
  10459. dev_err(&pdev->dev,
  10460. "Cannot re-enable PCI device after reset\n");
  10461. rtnl_unlock();
  10462. return PCI_ERS_RESULT_DISCONNECT;
  10463. }
  10464. pci_set_master(pdev);
  10465. pci_restore_state(pdev);
  10466. if (netif_running(dev))
  10467. bnx2x_set_power_state(bp, PCI_D0);
  10468. rtnl_unlock();
  10469. return PCI_ERS_RESULT_RECOVERED;
  10470. }
  10471. /**
  10472. * bnx2x_io_resume - called when traffic can start flowing again
  10473. * @pdev: Pointer to PCI device
  10474. *
  10475. * This callback is called when the error recovery driver tells us that
  10476. * its OK to resume normal operation.
  10477. */
  10478. static void bnx2x_io_resume(struct pci_dev *pdev)
  10479. {
  10480. struct net_device *dev = pci_get_drvdata(pdev);
  10481. struct bnx2x *bp = netdev_priv(dev);
  10482. if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
  10483. netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
  10484. return;
  10485. }
  10486. rtnl_lock();
  10487. bnx2x_eeh_recover(bp);
  10488. if (netif_running(dev))
  10489. bnx2x_nic_load(bp, LOAD_NORMAL);
  10490. netif_device_attach(dev);
  10491. rtnl_unlock();
  10492. }
  10493. static const struct pci_error_handlers bnx2x_err_handler = {
  10494. .error_detected = bnx2x_io_error_detected,
  10495. .slot_reset = bnx2x_io_slot_reset,
  10496. .resume = bnx2x_io_resume,
  10497. };
  10498. static struct pci_driver bnx2x_pci_driver = {
  10499. .name = DRV_MODULE_NAME,
  10500. .id_table = bnx2x_pci_tbl,
  10501. .probe = bnx2x_init_one,
  10502. .remove = bnx2x_remove_one,
  10503. .suspend = bnx2x_suspend,
  10504. .resume = bnx2x_resume,
  10505. .err_handler = &bnx2x_err_handler,
  10506. };
  10507. static int __init bnx2x_init(void)
  10508. {
  10509. int ret;
  10510. pr_info("%s", version);
  10511. bnx2x_wq = create_singlethread_workqueue("bnx2x");
  10512. if (bnx2x_wq == NULL) {
  10513. pr_err("Cannot create workqueue\n");
  10514. return -ENOMEM;
  10515. }
  10516. ret = pci_register_driver(&bnx2x_pci_driver);
  10517. if (ret) {
  10518. pr_err("Cannot register driver\n");
  10519. destroy_workqueue(bnx2x_wq);
  10520. }
  10521. return ret;
  10522. }
  10523. static void __exit bnx2x_cleanup(void)
  10524. {
  10525. struct list_head *pos, *q;
  10526. pci_unregister_driver(&bnx2x_pci_driver);
  10527. destroy_workqueue(bnx2x_wq);
  10528. /* Free globablly allocated resources */
  10529. list_for_each_safe(pos, q, &bnx2x_prev_list) {
  10530. struct bnx2x_prev_path_list *tmp =
  10531. list_entry(pos, struct bnx2x_prev_path_list, list);
  10532. list_del(pos);
  10533. kfree(tmp);
  10534. }
  10535. }
  10536. void bnx2x_notify_link_changed(struct bnx2x *bp)
  10537. {
  10538. REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
  10539. }
  10540. module_init(bnx2x_init);
  10541. module_exit(bnx2x_cleanup);
  10542. /**
  10543. * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
  10544. *
  10545. * @bp: driver handle
  10546. * @set: set or clear the CAM entry
  10547. *
  10548. * This function will wait until the ramdord completion returns.
  10549. * Return 0 if success, -ENODEV if ramrod doesn't return.
  10550. */
  10551. static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
  10552. {
  10553. unsigned long ramrod_flags = 0;
  10554. __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
  10555. return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
  10556. &bp->iscsi_l2_mac_obj, true,
  10557. BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
  10558. }
  10559. /* count denotes the number of new completions we have seen */
  10560. static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
  10561. {
  10562. struct eth_spe *spe;
  10563. int cxt_index, cxt_offset;
  10564. #ifdef BNX2X_STOP_ON_ERROR
  10565. if (unlikely(bp->panic))
  10566. return;
  10567. #endif
  10568. spin_lock_bh(&bp->spq_lock);
  10569. BUG_ON(bp->cnic_spq_pending < count);
  10570. bp->cnic_spq_pending -= count;
  10571. for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
  10572. u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
  10573. & SPE_HDR_CONN_TYPE) >>
  10574. SPE_HDR_CONN_TYPE_SHIFT;
  10575. u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
  10576. >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
  10577. /* Set validation for iSCSI L2 client before sending SETUP
  10578. * ramrod
  10579. */
  10580. if (type == ETH_CONNECTION_TYPE) {
  10581. if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
  10582. cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
  10583. ILT_PAGE_CIDS;
  10584. cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
  10585. (cxt_index * ILT_PAGE_CIDS);
  10586. bnx2x_set_ctx_validation(bp,
  10587. &bp->context[cxt_index].
  10588. vcxt[cxt_offset].eth,
  10589. BNX2X_ISCSI_ETH_CID(bp));
  10590. }
  10591. }
  10592. /*
  10593. * There may be not more than 8 L2, not more than 8 L5 SPEs
  10594. * and in the air. We also check that number of outstanding
  10595. * COMMON ramrods is not more than the EQ and SPQ can
  10596. * accommodate.
  10597. */
  10598. if (type == ETH_CONNECTION_TYPE) {
  10599. if (!atomic_read(&bp->cq_spq_left))
  10600. break;
  10601. else
  10602. atomic_dec(&bp->cq_spq_left);
  10603. } else if (type == NONE_CONNECTION_TYPE) {
  10604. if (!atomic_read(&bp->eq_spq_left))
  10605. break;
  10606. else
  10607. atomic_dec(&bp->eq_spq_left);
  10608. } else if ((type == ISCSI_CONNECTION_TYPE) ||
  10609. (type == FCOE_CONNECTION_TYPE)) {
  10610. if (bp->cnic_spq_pending >=
  10611. bp->cnic_eth_dev.max_kwqe_pending)
  10612. break;
  10613. else
  10614. bp->cnic_spq_pending++;
  10615. } else {
  10616. BNX2X_ERR("Unknown SPE type: %d\n", type);
  10617. bnx2x_panic();
  10618. break;
  10619. }
  10620. spe = bnx2x_sp_get_next(bp);
  10621. *spe = *bp->cnic_kwq_cons;
  10622. DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
  10623. bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
  10624. if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
  10625. bp->cnic_kwq_cons = bp->cnic_kwq;
  10626. else
  10627. bp->cnic_kwq_cons++;
  10628. }
  10629. bnx2x_sp_prod_update(bp);
  10630. spin_unlock_bh(&bp->spq_lock);
  10631. }
  10632. static int bnx2x_cnic_sp_queue(struct net_device *dev,
  10633. struct kwqe_16 *kwqes[], u32 count)
  10634. {
  10635. struct bnx2x *bp = netdev_priv(dev);
  10636. int i;
  10637. #ifdef BNX2X_STOP_ON_ERROR
  10638. if (unlikely(bp->panic)) {
  10639. BNX2X_ERR("Can't post to SP queue while panic\n");
  10640. return -EIO;
  10641. }
  10642. #endif
  10643. if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
  10644. (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
  10645. BNX2X_ERR("Handling parity error recovery. Try again later\n");
  10646. return -EAGAIN;
  10647. }
  10648. spin_lock_bh(&bp->spq_lock);
  10649. for (i = 0; i < count; i++) {
  10650. struct eth_spe *spe = (struct eth_spe *)kwqes[i];
  10651. if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
  10652. break;
  10653. *bp->cnic_kwq_prod = *spe;
  10654. bp->cnic_kwq_pending++;
  10655. DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
  10656. spe->hdr.conn_and_cmd_data, spe->hdr.type,
  10657. spe->data.update_data_addr.hi,
  10658. spe->data.update_data_addr.lo,
  10659. bp->cnic_kwq_pending);
  10660. if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
  10661. bp->cnic_kwq_prod = bp->cnic_kwq;
  10662. else
  10663. bp->cnic_kwq_prod++;
  10664. }
  10665. spin_unlock_bh(&bp->spq_lock);
  10666. if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
  10667. bnx2x_cnic_sp_post(bp, 0);
  10668. return i;
  10669. }
  10670. static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  10671. {
  10672. struct cnic_ops *c_ops;
  10673. int rc = 0;
  10674. mutex_lock(&bp->cnic_mutex);
  10675. c_ops = rcu_dereference_protected(bp->cnic_ops,
  10676. lockdep_is_held(&bp->cnic_mutex));
  10677. if (c_ops)
  10678. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  10679. mutex_unlock(&bp->cnic_mutex);
  10680. return rc;
  10681. }
  10682. static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
  10683. {
  10684. struct cnic_ops *c_ops;
  10685. int rc = 0;
  10686. rcu_read_lock();
  10687. c_ops = rcu_dereference(bp->cnic_ops);
  10688. if (c_ops)
  10689. rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
  10690. rcu_read_unlock();
  10691. return rc;
  10692. }
  10693. /*
  10694. * for commands that have no data
  10695. */
  10696. int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
  10697. {
  10698. struct cnic_ctl_info ctl = {0};
  10699. ctl.cmd = cmd;
  10700. return bnx2x_cnic_ctl_send(bp, &ctl);
  10701. }
  10702. static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
  10703. {
  10704. struct cnic_ctl_info ctl = {0};
  10705. /* first we tell CNIC and only then we count this as a completion */
  10706. ctl.cmd = CNIC_CTL_COMPLETION_CMD;
  10707. ctl.data.comp.cid = cid;
  10708. ctl.data.comp.error = err;
  10709. bnx2x_cnic_ctl_send_bh(bp, &ctl);
  10710. bnx2x_cnic_sp_post(bp, 0);
  10711. }
  10712. /* Called with netif_addr_lock_bh() taken.
  10713. * Sets an rx_mode config for an iSCSI ETH client.
  10714. * Doesn't block.
  10715. * Completion should be checked outside.
  10716. */
  10717. static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
  10718. {
  10719. unsigned long accept_flags = 0, ramrod_flags = 0;
  10720. u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  10721. int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
  10722. if (start) {
  10723. /* Start accepting on iSCSI L2 ring. Accept all multicasts
  10724. * because it's the only way for UIO Queue to accept
  10725. * multicasts (in non-promiscuous mode only one Queue per
  10726. * function will receive multicast packets (leading in our
  10727. * case).
  10728. */
  10729. __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
  10730. __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
  10731. __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
  10732. __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
  10733. /* Clear STOP_PENDING bit if START is requested */
  10734. clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
  10735. sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
  10736. } else
  10737. /* Clear START_PENDING bit if STOP is requested */
  10738. clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
  10739. if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
  10740. set_bit(sched_state, &bp->sp_state);
  10741. else {
  10742. __set_bit(RAMROD_RX, &ramrod_flags);
  10743. bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
  10744. ramrod_flags);
  10745. }
  10746. }
  10747. static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
  10748. {
  10749. struct bnx2x *bp = netdev_priv(dev);
  10750. int rc = 0;
  10751. switch (ctl->cmd) {
  10752. case DRV_CTL_CTXTBL_WR_CMD: {
  10753. u32 index = ctl->data.io.offset;
  10754. dma_addr_t addr = ctl->data.io.dma_addr;
  10755. bnx2x_ilt_wr(bp, index, addr);
  10756. break;
  10757. }
  10758. case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
  10759. int count = ctl->data.credit.credit_count;
  10760. bnx2x_cnic_sp_post(bp, count);
  10761. break;
  10762. }
  10763. /* rtnl_lock is held. */
  10764. case DRV_CTL_START_L2_CMD: {
  10765. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  10766. unsigned long sp_bits = 0;
  10767. /* Configure the iSCSI classification object */
  10768. bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
  10769. cp->iscsi_l2_client_id,
  10770. cp->iscsi_l2_cid, BP_FUNC(bp),
  10771. bnx2x_sp(bp, mac_rdata),
  10772. bnx2x_sp_mapping(bp, mac_rdata),
  10773. BNX2X_FILTER_MAC_PENDING,
  10774. &bp->sp_state, BNX2X_OBJ_TYPE_RX,
  10775. &bp->macs_pool);
  10776. /* Set iSCSI MAC address */
  10777. rc = bnx2x_set_iscsi_eth_mac_addr(bp);
  10778. if (rc)
  10779. break;
  10780. mmiowb();
  10781. barrier();
  10782. /* Start accepting on iSCSI L2 ring */
  10783. netif_addr_lock_bh(dev);
  10784. bnx2x_set_iscsi_eth_rx_mode(bp, true);
  10785. netif_addr_unlock_bh(dev);
  10786. /* bits to wait on */
  10787. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  10788. __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
  10789. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  10790. BNX2X_ERR("rx_mode completion timed out!\n");
  10791. break;
  10792. }
  10793. /* rtnl_lock is held. */
  10794. case DRV_CTL_STOP_L2_CMD: {
  10795. unsigned long sp_bits = 0;
  10796. /* Stop accepting on iSCSI L2 ring */
  10797. netif_addr_lock_bh(dev);
  10798. bnx2x_set_iscsi_eth_rx_mode(bp, false);
  10799. netif_addr_unlock_bh(dev);
  10800. /* bits to wait on */
  10801. __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
  10802. __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
  10803. if (!bnx2x_wait_sp_comp(bp, sp_bits))
  10804. BNX2X_ERR("rx_mode completion timed out!\n");
  10805. mmiowb();
  10806. barrier();
  10807. /* Unset iSCSI L2 MAC */
  10808. rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
  10809. BNX2X_ISCSI_ETH_MAC, true);
  10810. break;
  10811. }
  10812. case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
  10813. int count = ctl->data.credit.credit_count;
  10814. smp_mb__before_atomic_inc();
  10815. atomic_add(count, &bp->cq_spq_left);
  10816. smp_mb__after_atomic_inc();
  10817. break;
  10818. }
  10819. case DRV_CTL_ULP_REGISTER_CMD: {
  10820. int ulp_type = ctl->data.register_data.ulp_type;
  10821. if (CHIP_IS_E3(bp)) {
  10822. int idx = BP_FW_MB_IDX(bp);
  10823. u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  10824. int path = BP_PATH(bp);
  10825. int port = BP_PORT(bp);
  10826. int i;
  10827. u32 scratch_offset;
  10828. u32 *host_addr;
  10829. /* first write capability to shmem2 */
  10830. if (ulp_type == CNIC_ULP_ISCSI)
  10831. cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  10832. else if (ulp_type == CNIC_ULP_FCOE)
  10833. cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  10834. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  10835. if ((ulp_type != CNIC_ULP_FCOE) ||
  10836. (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
  10837. (!(bp->flags & BC_SUPPORTS_FCOE_FEATURES)))
  10838. break;
  10839. /* if reached here - should write fcoe capabilities */
  10840. scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
  10841. if (!scratch_offset)
  10842. break;
  10843. scratch_offset += offsetof(struct glob_ncsi_oem_data,
  10844. fcoe_features[path][port]);
  10845. host_addr = (u32 *) &(ctl->data.register_data.
  10846. fcoe_features);
  10847. for (i = 0; i < sizeof(struct fcoe_capabilities);
  10848. i += 4)
  10849. REG_WR(bp, scratch_offset + i,
  10850. *(host_addr + i/4));
  10851. }
  10852. break;
  10853. }
  10854. case DRV_CTL_ULP_UNREGISTER_CMD: {
  10855. int ulp_type = ctl->data.ulp_type;
  10856. if (CHIP_IS_E3(bp)) {
  10857. int idx = BP_FW_MB_IDX(bp);
  10858. u32 cap;
  10859. cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
  10860. if (ulp_type == CNIC_ULP_ISCSI)
  10861. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
  10862. else if (ulp_type == CNIC_ULP_FCOE)
  10863. cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
  10864. SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
  10865. }
  10866. break;
  10867. }
  10868. default:
  10869. BNX2X_ERR("unknown command %x\n", ctl->cmd);
  10870. rc = -EINVAL;
  10871. }
  10872. return rc;
  10873. }
  10874. void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
  10875. {
  10876. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  10877. if (bp->flags & USING_MSIX_FLAG) {
  10878. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  10879. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  10880. cp->irq_arr[0].vector = bp->msix_table[1].vector;
  10881. } else {
  10882. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  10883. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  10884. }
  10885. if (!CHIP_IS_E1x(bp))
  10886. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
  10887. else
  10888. cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
  10889. cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
  10890. cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
  10891. cp->irq_arr[1].status_blk = bp->def_status_blk;
  10892. cp->irq_arr[1].status_blk_num = DEF_SB_ID;
  10893. cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
  10894. cp->num_irq = 2;
  10895. }
  10896. void bnx2x_setup_cnic_info(struct bnx2x *bp)
  10897. {
  10898. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  10899. cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
  10900. bnx2x_cid_ilt_lines(bp);
  10901. cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
  10902. cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
  10903. cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
  10904. if (NO_ISCSI_OOO(bp))
  10905. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
  10906. }
  10907. static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  10908. void *data)
  10909. {
  10910. struct bnx2x *bp = netdev_priv(dev);
  10911. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  10912. int rc;
  10913. DP(NETIF_MSG_IFUP, "Register_cnic called\n");
  10914. if (ops == NULL) {
  10915. BNX2X_ERR("NULL ops received\n");
  10916. return -EINVAL;
  10917. }
  10918. if (!CNIC_SUPPORT(bp)) {
  10919. BNX2X_ERR("Can't register CNIC when not supported\n");
  10920. return -EOPNOTSUPP;
  10921. }
  10922. if (!CNIC_LOADED(bp)) {
  10923. rc = bnx2x_load_cnic(bp);
  10924. if (rc) {
  10925. BNX2X_ERR("CNIC-related load failed\n");
  10926. return rc;
  10927. }
  10928. }
  10929. bp->cnic_enabled = true;
  10930. bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
  10931. if (!bp->cnic_kwq)
  10932. return -ENOMEM;
  10933. bp->cnic_kwq_cons = bp->cnic_kwq;
  10934. bp->cnic_kwq_prod = bp->cnic_kwq;
  10935. bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
  10936. bp->cnic_spq_pending = 0;
  10937. bp->cnic_kwq_pending = 0;
  10938. bp->cnic_data = data;
  10939. cp->num_irq = 0;
  10940. cp->drv_state |= CNIC_DRV_STATE_REGD;
  10941. cp->iro_arr = bp->iro_arr;
  10942. bnx2x_setup_cnic_irq_info(bp);
  10943. rcu_assign_pointer(bp->cnic_ops, ops);
  10944. return 0;
  10945. }
  10946. static int bnx2x_unregister_cnic(struct net_device *dev)
  10947. {
  10948. struct bnx2x *bp = netdev_priv(dev);
  10949. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  10950. mutex_lock(&bp->cnic_mutex);
  10951. cp->drv_state = 0;
  10952. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  10953. mutex_unlock(&bp->cnic_mutex);
  10954. synchronize_rcu();
  10955. kfree(bp->cnic_kwq);
  10956. bp->cnic_kwq = NULL;
  10957. return 0;
  10958. }
  10959. struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
  10960. {
  10961. struct bnx2x *bp = netdev_priv(dev);
  10962. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  10963. /* If both iSCSI and FCoE are disabled - return NULL in
  10964. * order to indicate CNIC that it should not try to work
  10965. * with this device.
  10966. */
  10967. if (NO_ISCSI(bp) && NO_FCOE(bp))
  10968. return NULL;
  10969. cp->drv_owner = THIS_MODULE;
  10970. cp->chip_id = CHIP_ID(bp);
  10971. cp->pdev = bp->pdev;
  10972. cp->io_base = bp->regview;
  10973. cp->io_base2 = bp->doorbells;
  10974. cp->max_kwqe_pending = 8;
  10975. cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
  10976. cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
  10977. bnx2x_cid_ilt_lines(bp);
  10978. cp->ctx_tbl_len = CNIC_ILT_LINES;
  10979. cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
  10980. cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
  10981. cp->drv_ctl = bnx2x_drv_ctl;
  10982. cp->drv_register_cnic = bnx2x_register_cnic;
  10983. cp->drv_unregister_cnic = bnx2x_unregister_cnic;
  10984. cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
  10985. cp->iscsi_l2_client_id =
  10986. bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
  10987. cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
  10988. if (NO_ISCSI_OOO(bp))
  10989. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
  10990. if (NO_ISCSI(bp))
  10991. cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
  10992. if (NO_FCOE(bp))
  10993. cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
  10994. BNX2X_DEV_INFO(
  10995. "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
  10996. cp->ctx_blk_size,
  10997. cp->ctx_tbl_offset,
  10998. cp->ctx_tbl_len,
  10999. cp->starting_cid);
  11000. return cp;
  11001. }
  11002. int bnx2x_send_msg2pf(struct bnx2x *bp, u8 *done, dma_addr_t msg_mapping)
  11003. {
  11004. struct cstorm_vf_zone_data __iomem *zone_data =
  11005. REG_ADDR(bp, PXP_VF_ADDR_CSDM_GLOBAL_START);
  11006. int tout = 600, interval = 100; /* wait for 60 seconds */
  11007. if (*done) {
  11008. BNX2X_ERR("done was non zero before message to pf was sent\n");
  11009. WARN_ON(true);
  11010. return -EINVAL;
  11011. }
  11012. /* Write message address */
  11013. writel(U64_LO(msg_mapping),
  11014. &zone_data->non_trigger.vf_pf_channel.msg_addr_lo);
  11015. writel(U64_HI(msg_mapping),
  11016. &zone_data->non_trigger.vf_pf_channel.msg_addr_hi);
  11017. /* make sure the address is written before FW accesses it */
  11018. wmb();
  11019. /* Trigger the PF FW */
  11020. writeb(1, &zone_data->trigger.vf_pf_channel.addr_valid);
  11021. /* Wait for PF to complete */
  11022. while ((tout >= 0) && (!*done)) {
  11023. msleep(interval);
  11024. tout -= 1;
  11025. /* progress indicator - HV can take its own sweet time in
  11026. * answering VFs...
  11027. */
  11028. DP_CONT(BNX2X_MSG_IOV, ".");
  11029. }
  11030. if (!*done) {
  11031. BNX2X_ERR("PF response has timed out\n");
  11032. return -EAGAIN;
  11033. }
  11034. DP(BNX2X_MSG_SP, "Got a response from PF\n");
  11035. return 0;
  11036. }
  11037. int bnx2x_get_vf_id(struct bnx2x *bp, u32 *vf_id)
  11038. {
  11039. u32 me_reg;
  11040. int tout = 10, interval = 100; /* Wait for 1 sec */
  11041. do {
  11042. /* pxp traps vf read of doorbells and returns me reg value */
  11043. me_reg = readl(bp->doorbells);
  11044. if (GOOD_ME_REG(me_reg))
  11045. break;
  11046. msleep(interval);
  11047. BNX2X_ERR("Invalid ME register value: 0x%08x\n. Is pf driver up?",
  11048. me_reg);
  11049. } while (tout-- > 0);
  11050. if (!GOOD_ME_REG(me_reg)) {
  11051. BNX2X_ERR("Invalid ME register value: 0x%08x\n", me_reg);
  11052. return -EINVAL;
  11053. }
  11054. BNX2X_ERR("valid ME register value: 0x%08x\n", me_reg);
  11055. *vf_id = (me_reg & ME_REG_VF_NUM_MASK) >> ME_REG_VF_NUM_SHIFT;
  11056. return 0;
  11057. }
  11058. int bnx2x_vfpf_acquire(struct bnx2x *bp, u8 tx_count, u8 rx_count)
  11059. {
  11060. int rc = 0, attempts = 0;
  11061. struct vfpf_acquire_tlv *req = &bp->vf2pf_mbox->req.acquire;
  11062. struct pfvf_acquire_resp_tlv *resp = &bp->vf2pf_mbox->resp.acquire_resp;
  11063. u32 vf_id;
  11064. bool resources_acquired = false;
  11065. /* clear mailbox and prep first tlv */
  11066. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_ACQUIRE, sizeof(*req));
  11067. if (bnx2x_get_vf_id(bp, &vf_id))
  11068. return -EAGAIN;
  11069. req->vfdev_info.vf_id = vf_id;
  11070. req->vfdev_info.vf_os = 0;
  11071. req->resc_request.num_rxqs = rx_count;
  11072. req->resc_request.num_txqs = tx_count;
  11073. req->resc_request.num_sbs = bp->igu_sb_cnt;
  11074. req->resc_request.num_mac_filters = VF_ACQUIRE_MAC_FILTERS;
  11075. req->resc_request.num_mc_filters = VF_ACQUIRE_MC_FILTERS;
  11076. /* add list termination tlv */
  11077. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11078. sizeof(struct channel_list_end_tlv));
  11079. /* output tlvs list */
  11080. bnx2x_dp_tlv_list(bp, req);
  11081. while (!resources_acquired) {
  11082. DP(BNX2X_MSG_SP, "attempting to acquire resources\n");
  11083. /* send acquire request */
  11084. rc = bnx2x_send_msg2pf(bp,
  11085. &resp->hdr.status,
  11086. bp->vf2pf_mbox_mapping);
  11087. /* PF timeout */
  11088. if (rc)
  11089. return rc;
  11090. /* copy acquire response from buffer to bp */
  11091. memcpy(&bp->acquire_resp, resp, sizeof(bp->acquire_resp));
  11092. attempts++;
  11093. /* test whether the PF accepted our request. If not, humble the
  11094. * the request and try again.
  11095. */
  11096. if (bp->acquire_resp.hdr.status == PFVF_STATUS_SUCCESS) {
  11097. DP(BNX2X_MSG_SP, "resources acquired\n");
  11098. resources_acquired = true;
  11099. } else if (bp->acquire_resp.hdr.status ==
  11100. PFVF_STATUS_NO_RESOURCE &&
  11101. attempts < VF_ACQUIRE_THRESH) {
  11102. DP(BNX2X_MSG_SP,
  11103. "PF unwilling to fulfill resource request. Try PF recommended amount\n");
  11104. /* humble our request */
  11105. req->resc_request.num_txqs =
  11106. bp->acquire_resp.resc.num_txqs;
  11107. req->resc_request.num_rxqs =
  11108. bp->acquire_resp.resc.num_rxqs;
  11109. req->resc_request.num_sbs =
  11110. bp->acquire_resp.resc.num_sbs;
  11111. req->resc_request.num_mac_filters =
  11112. bp->acquire_resp.resc.num_mac_filters;
  11113. req->resc_request.num_vlan_filters =
  11114. bp->acquire_resp.resc.num_vlan_filters;
  11115. req->resc_request.num_mc_filters =
  11116. bp->acquire_resp.resc.num_mc_filters;
  11117. /* Clear response buffer */
  11118. memset(&bp->vf2pf_mbox->resp, 0,
  11119. sizeof(union pfvf_tlvs));
  11120. } else {
  11121. /* PF reports error */
  11122. BNX2X_ERR("Failed to get the requested amount of resources: %d. Breaking...\n",
  11123. bp->acquire_resp.hdr.status);
  11124. return -EAGAIN;
  11125. }
  11126. }
  11127. /* get HW info */
  11128. bp->common.chip_id |= (bp->acquire_resp.pfdev_info.chip_num & 0xffff);
  11129. bp->link_params.chip_id = bp->common.chip_id;
  11130. bp->db_size = bp->acquire_resp.pfdev_info.db_size;
  11131. bp->common.int_block = INT_BLOCK_IGU;
  11132. bp->common.chip_port_mode = CHIP_2_PORT_MODE;
  11133. bp->igu_dsb_id = -1;
  11134. bp->mf_ov = 0;
  11135. bp->mf_mode = 0;
  11136. bp->common.flash_size = 0;
  11137. bp->flags |=
  11138. NO_WOL_FLAG | NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG | NO_FCOE_FLAG;
  11139. bp->igu_sb_cnt = 1;
  11140. bp->igu_base_sb = bp->acquire_resp.resc.hw_sbs[0].hw_sb_id;
  11141. strlcpy(bp->fw_ver, bp->acquire_resp.pfdev_info.fw_ver,
  11142. sizeof(bp->fw_ver));
  11143. if (is_valid_ether_addr(bp->acquire_resp.resc.current_mac_addr))
  11144. memcpy(bp->dev->dev_addr,
  11145. bp->acquire_resp.resc.current_mac_addr,
  11146. ETH_ALEN);
  11147. return 0;
  11148. }
  11149. int bnx2x_vfpf_release(struct bnx2x *bp)
  11150. {
  11151. struct vfpf_release_tlv *req = &bp->vf2pf_mbox->req.release;
  11152. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11153. u32 rc = 0, vf_id;
  11154. /* clear mailbox and prep first tlv */
  11155. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_RELEASE, sizeof(*req));
  11156. if (bnx2x_get_vf_id(bp, &vf_id))
  11157. return -EAGAIN;
  11158. req->vf_id = vf_id;
  11159. /* add list termination tlv */
  11160. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11161. sizeof(struct channel_list_end_tlv));
  11162. /* output tlvs list */
  11163. bnx2x_dp_tlv_list(bp, req);
  11164. /* send release request */
  11165. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11166. if (rc)
  11167. /* PF timeout */
  11168. return rc;
  11169. if (resp->hdr.status == PFVF_STATUS_SUCCESS) {
  11170. /* PF released us */
  11171. DP(BNX2X_MSG_SP, "vf released\n");
  11172. } else {
  11173. /* PF reports error */
  11174. BNX2X_ERR("PF failed our release request - are we out of sync? response status: %d\n",
  11175. resp->hdr.status);
  11176. return -EAGAIN;
  11177. }
  11178. return 0;
  11179. }
  11180. /* Tell PF about SB addresses */
  11181. int bnx2x_vfpf_init(struct bnx2x *bp)
  11182. {
  11183. struct vfpf_init_tlv *req = &bp->vf2pf_mbox->req.init;
  11184. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11185. int rc, i;
  11186. /* clear mailbox and prep first tlv */
  11187. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_INIT, sizeof(*req));
  11188. /* status blocks */
  11189. for_each_eth_queue(bp, i)
  11190. req->sb_addr[i] = (dma_addr_t)bnx2x_fp(bp, i,
  11191. status_blk_mapping);
  11192. /* statistics - requests only supports single queue for now */
  11193. req->stats_addr = bp->fw_stats_data_mapping +
  11194. offsetof(struct bnx2x_fw_stats_data, queue_stats);
  11195. /* add list termination tlv */
  11196. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11197. sizeof(struct channel_list_end_tlv));
  11198. /* output tlvs list */
  11199. bnx2x_dp_tlv_list(bp, req);
  11200. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11201. if (rc)
  11202. return rc;
  11203. if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
  11204. BNX2X_ERR("INIT VF failed: %d. Breaking...\n",
  11205. resp->hdr.status);
  11206. return -EAGAIN;
  11207. }
  11208. DP(BNX2X_MSG_SP, "INIT VF Succeeded\n");
  11209. return 0;
  11210. }
  11211. /* CLOSE VF - opposite to INIT_VF */
  11212. void bnx2x_vfpf_close_vf(struct bnx2x *bp)
  11213. {
  11214. struct vfpf_close_tlv *req = &bp->vf2pf_mbox->req.close;
  11215. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11216. int i, rc;
  11217. u32 vf_id;
  11218. /* If we haven't got a valid VF id, there is no sense to
  11219. * continue with sending messages
  11220. */
  11221. if (bnx2x_get_vf_id(bp, &vf_id))
  11222. goto free_irq;
  11223. /* Close the queues */
  11224. for_each_queue(bp, i)
  11225. bnx2x_vfpf_teardown_queue(bp, i);
  11226. /* clear mailbox and prep first tlv */
  11227. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_CLOSE, sizeof(*req));
  11228. req->vf_id = vf_id;
  11229. /* add list termination tlv */
  11230. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11231. sizeof(struct channel_list_end_tlv));
  11232. /* output tlvs list */
  11233. bnx2x_dp_tlv_list(bp, req);
  11234. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11235. if (rc)
  11236. BNX2X_ERR("Sending CLOSE failed. rc was: %d\n", rc);
  11237. else if (resp->hdr.status != PFVF_STATUS_SUCCESS)
  11238. BNX2X_ERR("Sending CLOSE failed: pf response was %d\n",
  11239. resp->hdr.status);
  11240. free_irq:
  11241. /* Disable HW interrupts, NAPI */
  11242. bnx2x_netif_stop(bp, 0);
  11243. /* Delete all NAPI objects */
  11244. bnx2x_del_all_napi(bp);
  11245. /* Release IRQs */
  11246. bnx2x_free_irq(bp);
  11247. }
  11248. /* ask the pf to open a queue for the vf */
  11249. int bnx2x_vfpf_setup_q(struct bnx2x *bp, int fp_idx)
  11250. {
  11251. struct vfpf_setup_q_tlv *req = &bp->vf2pf_mbox->req.setup_q;
  11252. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11253. struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
  11254. u16 tpa_agg_size = 0, flags = 0;
  11255. int rc;
  11256. /* clear mailbox and prep first tlv */
  11257. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SETUP_Q, sizeof(*req));
  11258. /* select tpa mode to request */
  11259. if (!fp->disable_tpa) {
  11260. flags |= VFPF_QUEUE_FLG_TPA;
  11261. flags |= VFPF_QUEUE_FLG_TPA_IPV6;
  11262. if (fp->mode == TPA_MODE_GRO)
  11263. flags |= VFPF_QUEUE_FLG_TPA_GRO;
  11264. tpa_agg_size = TPA_AGG_SIZE;
  11265. }
  11266. /* calculate queue flags */
  11267. flags |= VFPF_QUEUE_FLG_STATS;
  11268. flags |= VFPF_QUEUE_FLG_CACHE_ALIGN;
  11269. flags |= IS_MF_SD(bp) ? VFPF_QUEUE_FLG_OV : 0;
  11270. flags |= VFPF_QUEUE_FLG_VLAN;
  11271. DP(NETIF_MSG_IFUP, "vlan removal enabled\n");
  11272. /* Common */
  11273. req->vf_qid = fp_idx;
  11274. req->param_valid = VFPF_RXQ_VALID | VFPF_TXQ_VALID;
  11275. /* Rx */
  11276. req->rxq.rcq_addr = fp->rx_comp_mapping;
  11277. req->rxq.rcq_np_addr = fp->rx_comp_mapping + BCM_PAGE_SIZE;
  11278. req->rxq.rxq_addr = fp->rx_desc_mapping;
  11279. req->rxq.sge_addr = fp->rx_sge_mapping;
  11280. req->rxq.vf_sb = fp_idx;
  11281. req->rxq.sb_index = HC_INDEX_ETH_RX_CQ_CONS;
  11282. req->rxq.hc_rate = bp->rx_ticks ? 1000000/bp->rx_ticks : 0;
  11283. req->rxq.mtu = bp->dev->mtu;
  11284. req->rxq.buf_sz = fp->rx_buf_size;
  11285. req->rxq.sge_buf_sz = BCM_PAGE_SIZE * PAGES_PER_SGE;
  11286. req->rxq.tpa_agg_sz = tpa_agg_size;
  11287. req->rxq.max_sge_pkt = SGE_PAGE_ALIGN(bp->dev->mtu) >> SGE_PAGE_SHIFT;
  11288. req->rxq.max_sge_pkt = ((req->rxq.max_sge_pkt + PAGES_PER_SGE - 1) &
  11289. (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
  11290. req->rxq.flags = flags;
  11291. req->rxq.drop_flags = 0;
  11292. req->rxq.cache_line_log = BNX2X_RX_ALIGN_SHIFT;
  11293. req->rxq.stat_id = -1; /* No stats at the moment */
  11294. /* Tx */
  11295. req->txq.txq_addr = fp->txdata_ptr[FIRST_TX_COS_INDEX]->tx_desc_mapping;
  11296. req->txq.vf_sb = fp_idx;
  11297. req->txq.sb_index = HC_INDEX_ETH_TX_CQ_CONS_COS0;
  11298. req->txq.hc_rate = bp->tx_ticks ? 1000000/bp->tx_ticks : 0;
  11299. req->txq.flags = flags;
  11300. req->txq.traffic_type = LLFC_TRAFFIC_TYPE_NW;
  11301. /* add list termination tlv */
  11302. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11303. sizeof(struct channel_list_end_tlv));
  11304. /* output tlvs list */
  11305. bnx2x_dp_tlv_list(bp, req);
  11306. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11307. if (rc)
  11308. BNX2X_ERR("Sending SETUP_Q message for queue[%d] failed!\n",
  11309. fp_idx);
  11310. if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
  11311. BNX2X_ERR("Status of SETUP_Q for queue[%d] is %d\n",
  11312. fp_idx, resp->hdr.status);
  11313. return -EINVAL;
  11314. }
  11315. return rc;
  11316. }
  11317. int bnx2x_vfpf_teardown_queue(struct bnx2x *bp, int qidx)
  11318. {
  11319. struct vfpf_q_op_tlv *req = &bp->vf2pf_mbox->req.q_op;
  11320. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11321. int rc;
  11322. /* clear mailbox and prep first tlv */
  11323. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_TEARDOWN_Q,
  11324. sizeof(*req));
  11325. req->vf_qid = qidx;
  11326. /* add list termination tlv */
  11327. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11328. sizeof(struct channel_list_end_tlv));
  11329. /* output tlvs list */
  11330. bnx2x_dp_tlv_list(bp, req);
  11331. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11332. if (rc) {
  11333. BNX2X_ERR("Sending TEARDOWN for queue %d failed: %d\n", qidx,
  11334. rc);
  11335. return rc;
  11336. }
  11337. if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
  11338. BNX2X_ERR("TEARDOWN for queue %d failed: %d\n", qidx,
  11339. resp->hdr.status);
  11340. return -EINVAL;
  11341. }
  11342. return 0;
  11343. }
  11344. /* request pf to add a mac for the vf */
  11345. int bnx2x_vfpf_set_mac(struct bnx2x *bp)
  11346. {
  11347. struct vfpf_set_q_filters_tlv *req = &bp->vf2pf_mbox->req.set_q_filters;
  11348. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11349. int rc;
  11350. /* clear mailbox and prep first tlv */
  11351. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SET_Q_FILTERS,
  11352. sizeof(*req));
  11353. req->flags = VFPF_SET_Q_FILTERS_MAC_VLAN_CHANGED;
  11354. req->vf_qid = 0;
  11355. req->n_mac_vlan_filters = 1;
  11356. req->filters[0].flags =
  11357. VFPF_Q_FILTER_DEST_MAC_VALID | VFPF_Q_FILTER_SET_MAC;
  11358. /* copy mac from device to request */
  11359. memcpy(req->filters[0].mac, bp->dev->dev_addr, ETH_ALEN);
  11360. /* add list termination tlv */
  11361. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11362. sizeof(struct channel_list_end_tlv));
  11363. /* output tlvs list */
  11364. bnx2x_dp_tlv_list(bp, req);
  11365. /* send message to pf */
  11366. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11367. if (rc) {
  11368. BNX2X_ERR("failed to send message to pf. rc was %d\n", rc);
  11369. return rc;
  11370. }
  11371. /* PF failed the transaction */
  11372. if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
  11373. BNX2X_ERR("vfpf SET MAC failed: %d\n", resp->hdr.status);
  11374. return -EINVAL;
  11375. }
  11376. return 0;
  11377. }
  11378. int bnx2x_vfpf_set_mcast(struct net_device *dev)
  11379. {
  11380. struct bnx2x *bp = netdev_priv(dev);
  11381. struct vfpf_set_q_filters_tlv *req = &bp->vf2pf_mbox->req.set_q_filters;
  11382. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11383. int rc, i = 0;
  11384. struct netdev_hw_addr *ha;
  11385. if (bp->state != BNX2X_STATE_OPEN) {
  11386. DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
  11387. return -EINVAL;
  11388. }
  11389. /* clear mailbox and prep first tlv */
  11390. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SET_Q_FILTERS,
  11391. sizeof(*req));
  11392. /* Get Rx mode requested */
  11393. DP(NETIF_MSG_IFUP, "dev->flags = %x\n", dev->flags);
  11394. netdev_for_each_mc_addr(ha, dev) {
  11395. DP(NETIF_MSG_IFUP, "Adding mcast MAC: %pM\n",
  11396. bnx2x_mc_addr(ha));
  11397. memcpy(req->multicast[i], bnx2x_mc_addr(ha), ETH_ALEN);
  11398. i++;
  11399. }
  11400. /* We support four PFVF_MAX_MULTICAST_PER_VF mcast
  11401. * addresses tops
  11402. */
  11403. if (i >= PFVF_MAX_MULTICAST_PER_VF) {
  11404. DP(NETIF_MSG_IFUP,
  11405. "VF supports not more than %d multicast MAC addresses\n",
  11406. PFVF_MAX_MULTICAST_PER_VF);
  11407. return -EINVAL;
  11408. }
  11409. req->n_multicast = i;
  11410. req->flags |= VFPF_SET_Q_FILTERS_MULTICAST_CHANGED;
  11411. req->vf_qid = 0;
  11412. /* add list termination tlv */
  11413. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11414. sizeof(struct channel_list_end_tlv));
  11415. /* output tlvs list */
  11416. bnx2x_dp_tlv_list(bp, req);
  11417. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11418. if (rc) {
  11419. BNX2X_ERR("Sending a message failed: %d\n", rc);
  11420. return rc;
  11421. }
  11422. if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
  11423. BNX2X_ERR("Set Rx mode/multicast failed: %d\n",
  11424. resp->hdr.status);
  11425. return -EINVAL;
  11426. }
  11427. return 0;
  11428. }
  11429. int bnx2x_vfpf_storm_rx_mode(struct bnx2x *bp)
  11430. {
  11431. int mode = bp->rx_mode;
  11432. struct vfpf_set_q_filters_tlv *req = &bp->vf2pf_mbox->req.set_q_filters;
  11433. struct pfvf_general_resp_tlv *resp = &bp->vf2pf_mbox->resp.general_resp;
  11434. int rc;
  11435. /* clear mailbox and prep first tlv */
  11436. bnx2x_vfpf_prep(bp, &req->first_tlv, CHANNEL_TLV_SET_Q_FILTERS,
  11437. sizeof(*req));
  11438. DP(NETIF_MSG_IFUP, "Rx mode is %d\n", mode);
  11439. switch (mode) {
  11440. case BNX2X_RX_MODE_NONE: /* no Rx */
  11441. req->rx_mask = VFPF_RX_MASK_ACCEPT_NONE;
  11442. break;
  11443. case BNX2X_RX_MODE_NORMAL:
  11444. req->rx_mask = VFPF_RX_MASK_ACCEPT_MATCHED_MULTICAST;
  11445. req->rx_mask |= VFPF_RX_MASK_ACCEPT_MATCHED_UNICAST;
  11446. req->rx_mask |= VFPF_RX_MASK_ACCEPT_BROADCAST;
  11447. break;
  11448. case BNX2X_RX_MODE_ALLMULTI:
  11449. req->rx_mask = VFPF_RX_MASK_ACCEPT_ALL_MULTICAST;
  11450. req->rx_mask |= VFPF_RX_MASK_ACCEPT_MATCHED_UNICAST;
  11451. req->rx_mask |= VFPF_RX_MASK_ACCEPT_BROADCAST;
  11452. break;
  11453. case BNX2X_RX_MODE_PROMISC:
  11454. req->rx_mask = VFPF_RX_MASK_ACCEPT_ALL_UNICAST;
  11455. req->rx_mask |= VFPF_RX_MASK_ACCEPT_ALL_MULTICAST;
  11456. req->rx_mask |= VFPF_RX_MASK_ACCEPT_BROADCAST;
  11457. break;
  11458. default:
  11459. BNX2X_ERR("BAD rx mode (%d)\n", mode);
  11460. return -EINVAL;
  11461. }
  11462. req->flags |= VFPF_SET_Q_FILTERS_RX_MASK_CHANGED;
  11463. req->vf_qid = 0;
  11464. /* add list termination tlv */
  11465. bnx2x_add_tlv(bp, req, req->first_tlv.tl.length, CHANNEL_TLV_LIST_END,
  11466. sizeof(struct channel_list_end_tlv));
  11467. /* output tlvs list */
  11468. bnx2x_dp_tlv_list(bp, req);
  11469. rc = bnx2x_send_msg2pf(bp, &resp->hdr.status, bp->vf2pf_mbox_mapping);
  11470. if (rc)
  11471. BNX2X_ERR("Sending a message failed: %d\n", rc);
  11472. if (resp->hdr.status != PFVF_STATUS_SUCCESS) {
  11473. BNX2X_ERR("Set Rx mode failed: %d\n", resp->hdr.status);
  11474. return -EINVAL;
  11475. }
  11476. return rc;
  11477. }