fs_enet-main.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534
  1. /*
  2. * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
  11. * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
  12. *
  13. * This file is licensed under the terms of the GNU General Public License
  14. * version 2. This program is licensed "as is" without any warranty of any
  15. * kind, whether express or implied.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <linux/ptrace.h>
  22. #include <linux/errno.h>
  23. #include <linux/ioport.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/etherdevice.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/spinlock.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/bitops.h>
  35. #include <linux/fs.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/phy.h>
  38. #include <linux/vmalloc.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/irq.h>
  41. #include <asm/uaccess.h>
  42. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  43. #include <asm/of_platform.h>
  44. #endif
  45. #include "fs_enet.h"
  46. /*************************************************/
  47. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  48. static char version[] __devinitdata =
  49. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
  50. #endif
  51. MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
  52. MODULE_DESCRIPTION("Freescale Ethernet Driver");
  53. MODULE_LICENSE("GPL");
  54. MODULE_VERSION(DRV_MODULE_VERSION);
  55. static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
  56. module_param(fs_enet_debug, int, 0);
  57. MODULE_PARM_DESC(fs_enet_debug,
  58. "Freescale bitmapped debugging message enable value");
  59. #ifdef CONFIG_NET_POLL_CONTROLLER
  60. static void fs_enet_netpoll(struct net_device *dev);
  61. #endif
  62. static void fs_set_multicast_list(struct net_device *dev)
  63. {
  64. struct fs_enet_private *fep = netdev_priv(dev);
  65. (*fep->ops->set_multicast_list)(dev);
  66. }
  67. static void skb_align(struct sk_buff *skb, int align)
  68. {
  69. int off = ((unsigned long)skb->data) & (align - 1);
  70. if (off)
  71. skb_reserve(skb, align - off);
  72. }
  73. /* NAPI receive function */
  74. static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
  75. {
  76. struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
  77. struct net_device *dev = fep->ndev;
  78. const struct fs_platform_info *fpi = fep->fpi;
  79. cbd_t __iomem *bdp;
  80. struct sk_buff *skb, *skbn, *skbt;
  81. int received = 0;
  82. u16 pkt_len, sc;
  83. int curidx;
  84. /*
  85. * First, grab all of the stats for the incoming packet.
  86. * These get messed up if we get called due to a busy condition.
  87. */
  88. bdp = fep->cur_rx;
  89. /* clear RX status bits for napi*/
  90. (*fep->ops->napi_clear_rx_event)(dev);
  91. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  92. curidx = bdp - fep->rx_bd_base;
  93. /*
  94. * Since we have allocated space to hold a complete frame,
  95. * the last indicator should be set.
  96. */
  97. if ((sc & BD_ENET_RX_LAST) == 0)
  98. printk(KERN_WARNING DRV_MODULE_NAME
  99. ": %s rcv is not +last\n",
  100. dev->name);
  101. /*
  102. * Check for errors.
  103. */
  104. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  105. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  106. fep->stats.rx_errors++;
  107. /* Frame too long or too short. */
  108. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  109. fep->stats.rx_length_errors++;
  110. /* Frame alignment */
  111. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  112. fep->stats.rx_frame_errors++;
  113. /* CRC Error */
  114. if (sc & BD_ENET_RX_CR)
  115. fep->stats.rx_crc_errors++;
  116. /* FIFO overrun */
  117. if (sc & BD_ENET_RX_OV)
  118. fep->stats.rx_crc_errors++;
  119. skb = fep->rx_skbuff[curidx];
  120. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  121. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  122. DMA_FROM_DEVICE);
  123. skbn = skb;
  124. } else {
  125. skb = fep->rx_skbuff[curidx];
  126. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  127. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  128. DMA_FROM_DEVICE);
  129. /*
  130. * Process the incoming frame.
  131. */
  132. fep->stats.rx_packets++;
  133. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  134. fep->stats.rx_bytes += pkt_len + 4;
  135. if (pkt_len <= fpi->rx_copybreak) {
  136. /* +2 to make IP header L1 cache aligned */
  137. skbn = dev_alloc_skb(pkt_len + 2);
  138. if (skbn != NULL) {
  139. skb_reserve(skbn, 2); /* align IP header */
  140. skb_copy_from_linear_data(skb,
  141. skbn->data, pkt_len);
  142. /* swap */
  143. skbt = skb;
  144. skb = skbn;
  145. skbn = skbt;
  146. }
  147. } else {
  148. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  149. if (skbn)
  150. skb_align(skbn, ENET_RX_ALIGN);
  151. }
  152. if (skbn != NULL) {
  153. skb_put(skb, pkt_len); /* Make room */
  154. skb->protocol = eth_type_trans(skb, dev);
  155. received++;
  156. netif_receive_skb(skb);
  157. } else {
  158. printk(KERN_WARNING DRV_MODULE_NAME
  159. ": %s Memory squeeze, dropping packet.\n",
  160. dev->name);
  161. fep->stats.rx_dropped++;
  162. skbn = skb;
  163. }
  164. }
  165. fep->rx_skbuff[curidx] = skbn;
  166. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  167. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  168. DMA_FROM_DEVICE));
  169. CBDW_DATLEN(bdp, 0);
  170. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  171. /*
  172. * Update BD pointer to next entry.
  173. */
  174. if ((sc & BD_ENET_RX_WRAP) == 0)
  175. bdp++;
  176. else
  177. bdp = fep->rx_bd_base;
  178. (*fep->ops->rx_bd_done)(dev);
  179. if (received >= budget)
  180. break;
  181. }
  182. fep->cur_rx = bdp;
  183. if (received < budget) {
  184. /* done */
  185. netif_rx_complete(dev, napi);
  186. (*fep->ops->napi_enable_rx)(dev);
  187. }
  188. return received;
  189. }
  190. /* non NAPI receive function */
  191. static int fs_enet_rx_non_napi(struct net_device *dev)
  192. {
  193. struct fs_enet_private *fep = netdev_priv(dev);
  194. const struct fs_platform_info *fpi = fep->fpi;
  195. cbd_t __iomem *bdp;
  196. struct sk_buff *skb, *skbn, *skbt;
  197. int received = 0;
  198. u16 pkt_len, sc;
  199. int curidx;
  200. /*
  201. * First, grab all of the stats for the incoming packet.
  202. * These get messed up if we get called due to a busy condition.
  203. */
  204. bdp = fep->cur_rx;
  205. while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
  206. curidx = bdp - fep->rx_bd_base;
  207. /*
  208. * Since we have allocated space to hold a complete frame,
  209. * the last indicator should be set.
  210. */
  211. if ((sc & BD_ENET_RX_LAST) == 0)
  212. printk(KERN_WARNING DRV_MODULE_NAME
  213. ": %s rcv is not +last\n",
  214. dev->name);
  215. /*
  216. * Check for errors.
  217. */
  218. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
  219. BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  220. fep->stats.rx_errors++;
  221. /* Frame too long or too short. */
  222. if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
  223. fep->stats.rx_length_errors++;
  224. /* Frame alignment */
  225. if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
  226. fep->stats.rx_frame_errors++;
  227. /* CRC Error */
  228. if (sc & BD_ENET_RX_CR)
  229. fep->stats.rx_crc_errors++;
  230. /* FIFO overrun */
  231. if (sc & BD_ENET_RX_OV)
  232. fep->stats.rx_crc_errors++;
  233. skb = fep->rx_skbuff[curidx];
  234. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  235. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  236. DMA_FROM_DEVICE);
  237. skbn = skb;
  238. } else {
  239. skb = fep->rx_skbuff[curidx];
  240. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  241. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  242. DMA_FROM_DEVICE);
  243. /*
  244. * Process the incoming frame.
  245. */
  246. fep->stats.rx_packets++;
  247. pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
  248. fep->stats.rx_bytes += pkt_len + 4;
  249. if (pkt_len <= fpi->rx_copybreak) {
  250. /* +2 to make IP header L1 cache aligned */
  251. skbn = dev_alloc_skb(pkt_len + 2);
  252. if (skbn != NULL) {
  253. skb_reserve(skbn, 2); /* align IP header */
  254. skb_copy_from_linear_data(skb,
  255. skbn->data, pkt_len);
  256. /* swap */
  257. skbt = skb;
  258. skb = skbn;
  259. skbn = skbt;
  260. }
  261. } else {
  262. skbn = dev_alloc_skb(ENET_RX_FRSIZE);
  263. if (skbn)
  264. skb_align(skbn, ENET_RX_ALIGN);
  265. }
  266. if (skbn != NULL) {
  267. skb_put(skb, pkt_len); /* Make room */
  268. skb->protocol = eth_type_trans(skb, dev);
  269. received++;
  270. netif_rx(skb);
  271. } else {
  272. printk(KERN_WARNING DRV_MODULE_NAME
  273. ": %s Memory squeeze, dropping packet.\n",
  274. dev->name);
  275. fep->stats.rx_dropped++;
  276. skbn = skb;
  277. }
  278. }
  279. fep->rx_skbuff[curidx] = skbn;
  280. CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
  281. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  282. DMA_FROM_DEVICE));
  283. CBDW_DATLEN(bdp, 0);
  284. CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
  285. /*
  286. * Update BD pointer to next entry.
  287. */
  288. if ((sc & BD_ENET_RX_WRAP) == 0)
  289. bdp++;
  290. else
  291. bdp = fep->rx_bd_base;
  292. (*fep->ops->rx_bd_done)(dev);
  293. }
  294. fep->cur_rx = bdp;
  295. return 0;
  296. }
  297. static void fs_enet_tx(struct net_device *dev)
  298. {
  299. struct fs_enet_private *fep = netdev_priv(dev);
  300. cbd_t __iomem *bdp;
  301. struct sk_buff *skb;
  302. int dirtyidx, do_wake, do_restart;
  303. u16 sc;
  304. spin_lock(&fep->tx_lock);
  305. bdp = fep->dirty_tx;
  306. do_wake = do_restart = 0;
  307. while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
  308. dirtyidx = bdp - fep->tx_bd_base;
  309. if (fep->tx_free == fep->tx_ring)
  310. break;
  311. skb = fep->tx_skbuff[dirtyidx];
  312. /*
  313. * Check for errors.
  314. */
  315. if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  316. BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
  317. if (sc & BD_ENET_TX_HB) /* No heartbeat */
  318. fep->stats.tx_heartbeat_errors++;
  319. if (sc & BD_ENET_TX_LC) /* Late collision */
  320. fep->stats.tx_window_errors++;
  321. if (sc & BD_ENET_TX_RL) /* Retrans limit */
  322. fep->stats.tx_aborted_errors++;
  323. if (sc & BD_ENET_TX_UN) /* Underrun */
  324. fep->stats.tx_fifo_errors++;
  325. if (sc & BD_ENET_TX_CSL) /* Carrier lost */
  326. fep->stats.tx_carrier_errors++;
  327. if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
  328. fep->stats.tx_errors++;
  329. do_restart = 1;
  330. }
  331. } else
  332. fep->stats.tx_packets++;
  333. if (sc & BD_ENET_TX_READY)
  334. printk(KERN_WARNING DRV_MODULE_NAME
  335. ": %s HEY! Enet xmit interrupt and TX_READY.\n",
  336. dev->name);
  337. /*
  338. * Deferred means some collisions occurred during transmit,
  339. * but we eventually sent the packet OK.
  340. */
  341. if (sc & BD_ENET_TX_DEF)
  342. fep->stats.collisions++;
  343. /* unmap */
  344. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  345. skb->len, DMA_TO_DEVICE);
  346. /*
  347. * Free the sk buffer associated with this last transmit.
  348. */
  349. dev_kfree_skb_irq(skb);
  350. fep->tx_skbuff[dirtyidx] = NULL;
  351. /*
  352. * Update pointer to next buffer descriptor to be transmitted.
  353. */
  354. if ((sc & BD_ENET_TX_WRAP) == 0)
  355. bdp++;
  356. else
  357. bdp = fep->tx_bd_base;
  358. /*
  359. * Since we have freed up a buffer, the ring is no longer
  360. * full.
  361. */
  362. if (!fep->tx_free++)
  363. do_wake = 1;
  364. }
  365. fep->dirty_tx = bdp;
  366. if (do_restart)
  367. (*fep->ops->tx_restart)(dev);
  368. spin_unlock(&fep->tx_lock);
  369. if (do_wake)
  370. netif_wake_queue(dev);
  371. }
  372. /*
  373. * The interrupt handler.
  374. * This is called from the MPC core interrupt.
  375. */
  376. static irqreturn_t
  377. fs_enet_interrupt(int irq, void *dev_id)
  378. {
  379. struct net_device *dev = dev_id;
  380. struct fs_enet_private *fep;
  381. const struct fs_platform_info *fpi;
  382. u32 int_events;
  383. u32 int_clr_events;
  384. int nr, napi_ok;
  385. int handled;
  386. fep = netdev_priv(dev);
  387. fpi = fep->fpi;
  388. nr = 0;
  389. while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
  390. nr++;
  391. int_clr_events = int_events;
  392. if (fpi->use_napi)
  393. int_clr_events &= ~fep->ev_napi_rx;
  394. (*fep->ops->clear_int_events)(dev, int_clr_events);
  395. if (int_events & fep->ev_err)
  396. (*fep->ops->ev_error)(dev, int_events);
  397. if (int_events & fep->ev_rx) {
  398. if (!fpi->use_napi)
  399. fs_enet_rx_non_napi(dev);
  400. else {
  401. napi_ok = napi_schedule_prep(&fep->napi);
  402. (*fep->ops->napi_disable_rx)(dev);
  403. (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
  404. /* NOTE: it is possible for FCCs in NAPI mode */
  405. /* to submit a spurious interrupt while in poll */
  406. if (napi_ok)
  407. __netif_rx_schedule(dev, &fep->napi);
  408. }
  409. }
  410. if (int_events & fep->ev_tx)
  411. fs_enet_tx(dev);
  412. }
  413. handled = nr > 0;
  414. return IRQ_RETVAL(handled);
  415. }
  416. void fs_init_bds(struct net_device *dev)
  417. {
  418. struct fs_enet_private *fep = netdev_priv(dev);
  419. cbd_t __iomem *bdp;
  420. struct sk_buff *skb;
  421. int i;
  422. fs_cleanup_bds(dev);
  423. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  424. fep->tx_free = fep->tx_ring;
  425. fep->cur_rx = fep->rx_bd_base;
  426. /*
  427. * Initialize the receive buffer descriptors.
  428. */
  429. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  430. skb = dev_alloc_skb(ENET_RX_FRSIZE);
  431. if (skb == NULL) {
  432. printk(KERN_WARNING DRV_MODULE_NAME
  433. ": %s Memory squeeze, unable to allocate skb\n",
  434. dev->name);
  435. break;
  436. }
  437. skb_align(skb, ENET_RX_ALIGN);
  438. fep->rx_skbuff[i] = skb;
  439. CBDW_BUFADDR(bdp,
  440. dma_map_single(fep->dev, skb->data,
  441. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  442. DMA_FROM_DEVICE));
  443. CBDW_DATLEN(bdp, 0); /* zero */
  444. CBDW_SC(bdp, BD_ENET_RX_EMPTY |
  445. ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
  446. }
  447. /*
  448. * if we failed, fillup remainder
  449. */
  450. for (; i < fep->rx_ring; i++, bdp++) {
  451. fep->rx_skbuff[i] = NULL;
  452. CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
  453. }
  454. /*
  455. * ...and the same for transmit.
  456. */
  457. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  458. fep->tx_skbuff[i] = NULL;
  459. CBDW_BUFADDR(bdp, 0);
  460. CBDW_DATLEN(bdp, 0);
  461. CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
  462. }
  463. }
  464. void fs_cleanup_bds(struct net_device *dev)
  465. {
  466. struct fs_enet_private *fep = netdev_priv(dev);
  467. struct sk_buff *skb;
  468. cbd_t __iomem *bdp;
  469. int i;
  470. /*
  471. * Reset SKB transmit buffers.
  472. */
  473. for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
  474. if ((skb = fep->tx_skbuff[i]) == NULL)
  475. continue;
  476. /* unmap */
  477. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  478. skb->len, DMA_TO_DEVICE);
  479. fep->tx_skbuff[i] = NULL;
  480. dev_kfree_skb(skb);
  481. }
  482. /*
  483. * Reset SKB receive buffers
  484. */
  485. for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
  486. if ((skb = fep->rx_skbuff[i]) == NULL)
  487. continue;
  488. /* unmap */
  489. dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
  490. L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
  491. DMA_FROM_DEVICE);
  492. fep->rx_skbuff[i] = NULL;
  493. dev_kfree_skb(skb);
  494. }
  495. }
  496. /**********************************************************************************/
  497. static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  498. {
  499. struct fs_enet_private *fep = netdev_priv(dev);
  500. cbd_t __iomem *bdp;
  501. int curidx;
  502. u16 sc;
  503. unsigned long flags;
  504. spin_lock_irqsave(&fep->tx_lock, flags);
  505. /*
  506. * Fill in a Tx ring entry
  507. */
  508. bdp = fep->cur_tx;
  509. if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
  510. netif_stop_queue(dev);
  511. spin_unlock_irqrestore(&fep->tx_lock, flags);
  512. /*
  513. * Ooops. All transmit buffers are full. Bail out.
  514. * This should not happen, since the tx queue should be stopped.
  515. */
  516. printk(KERN_WARNING DRV_MODULE_NAME
  517. ": %s tx queue full!.\n", dev->name);
  518. return NETDEV_TX_BUSY;
  519. }
  520. curidx = bdp - fep->tx_bd_base;
  521. /*
  522. * Clear all of the status flags.
  523. */
  524. CBDC_SC(bdp, BD_ENET_TX_STATS);
  525. /*
  526. * Save skb pointer.
  527. */
  528. fep->tx_skbuff[curidx] = skb;
  529. fep->stats.tx_bytes += skb->len;
  530. /*
  531. * Push the data cache so the CPM does not get stale memory data.
  532. */
  533. CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
  534. skb->data, skb->len, DMA_TO_DEVICE));
  535. CBDW_DATLEN(bdp, skb->len);
  536. dev->trans_start = jiffies;
  537. /*
  538. * If this was the last BD in the ring, start at the beginning again.
  539. */
  540. if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
  541. fep->cur_tx++;
  542. else
  543. fep->cur_tx = fep->tx_bd_base;
  544. if (!--fep->tx_free)
  545. netif_stop_queue(dev);
  546. /* Trigger transmission start */
  547. sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
  548. BD_ENET_TX_LAST | BD_ENET_TX_TC;
  549. /* note that while FEC does not have this bit
  550. * it marks it as available for software use
  551. * yay for hw reuse :) */
  552. if (skb->len <= 60)
  553. sc |= BD_ENET_TX_PAD;
  554. CBDS_SC(bdp, sc);
  555. (*fep->ops->tx_kickstart)(dev);
  556. spin_unlock_irqrestore(&fep->tx_lock, flags);
  557. return NETDEV_TX_OK;
  558. }
  559. static int fs_request_irq(struct net_device *dev, int irq, const char *name,
  560. irq_handler_t irqf)
  561. {
  562. struct fs_enet_private *fep = netdev_priv(dev);
  563. (*fep->ops->pre_request_irq)(dev, irq);
  564. return request_irq(irq, irqf, IRQF_SHARED, name, dev);
  565. }
  566. static void fs_free_irq(struct net_device *dev, int irq)
  567. {
  568. struct fs_enet_private *fep = netdev_priv(dev);
  569. free_irq(irq, dev);
  570. (*fep->ops->post_free_irq)(dev, irq);
  571. }
  572. static void fs_timeout(struct net_device *dev)
  573. {
  574. struct fs_enet_private *fep = netdev_priv(dev);
  575. unsigned long flags;
  576. int wake = 0;
  577. fep->stats.tx_errors++;
  578. spin_lock_irqsave(&fep->lock, flags);
  579. if (dev->flags & IFF_UP) {
  580. phy_stop(fep->phydev);
  581. (*fep->ops->stop)(dev);
  582. (*fep->ops->restart)(dev);
  583. phy_start(fep->phydev);
  584. }
  585. phy_start(fep->phydev);
  586. wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
  587. spin_unlock_irqrestore(&fep->lock, flags);
  588. if (wake)
  589. netif_wake_queue(dev);
  590. }
  591. /*-----------------------------------------------------------------------------
  592. * generic link-change handler - should be sufficient for most cases
  593. *-----------------------------------------------------------------------------*/
  594. static void generic_adjust_link(struct net_device *dev)
  595. {
  596. struct fs_enet_private *fep = netdev_priv(dev);
  597. struct phy_device *phydev = fep->phydev;
  598. int new_state = 0;
  599. if (phydev->link) {
  600. /* adjust to duplex mode */
  601. if (phydev->duplex != fep->oldduplex) {
  602. new_state = 1;
  603. fep->oldduplex = phydev->duplex;
  604. }
  605. if (phydev->speed != fep->oldspeed) {
  606. new_state = 1;
  607. fep->oldspeed = phydev->speed;
  608. }
  609. if (!fep->oldlink) {
  610. new_state = 1;
  611. fep->oldlink = 1;
  612. netif_schedule(dev);
  613. netif_carrier_on(dev);
  614. netif_start_queue(dev);
  615. }
  616. if (new_state)
  617. fep->ops->restart(dev);
  618. } else if (fep->oldlink) {
  619. new_state = 1;
  620. fep->oldlink = 0;
  621. fep->oldspeed = 0;
  622. fep->oldduplex = -1;
  623. netif_carrier_off(dev);
  624. netif_stop_queue(dev);
  625. }
  626. if (new_state && netif_msg_link(fep))
  627. phy_print_status(phydev);
  628. }
  629. static void fs_adjust_link(struct net_device *dev)
  630. {
  631. struct fs_enet_private *fep = netdev_priv(dev);
  632. unsigned long flags;
  633. spin_lock_irqsave(&fep->lock, flags);
  634. if(fep->ops->adjust_link)
  635. fep->ops->adjust_link(dev);
  636. else
  637. generic_adjust_link(dev);
  638. spin_unlock_irqrestore(&fep->lock, flags);
  639. }
  640. static int fs_init_phy(struct net_device *dev)
  641. {
  642. struct fs_enet_private *fep = netdev_priv(dev);
  643. struct phy_device *phydev;
  644. fep->oldlink = 0;
  645. fep->oldspeed = 0;
  646. fep->oldduplex = -1;
  647. if(fep->fpi->bus_id)
  648. phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
  649. PHY_INTERFACE_MODE_MII);
  650. else {
  651. printk("No phy bus ID specified in BSP code\n");
  652. return -EINVAL;
  653. }
  654. if (IS_ERR(phydev)) {
  655. printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
  656. return PTR_ERR(phydev);
  657. }
  658. fep->phydev = phydev;
  659. return 0;
  660. }
  661. static int fs_enet_open(struct net_device *dev)
  662. {
  663. struct fs_enet_private *fep = netdev_priv(dev);
  664. int r;
  665. int err;
  666. if (fep->fpi->use_napi)
  667. napi_enable(&fep->napi);
  668. /* Install our interrupt handler. */
  669. r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
  670. if (r != 0) {
  671. printk(KERN_ERR DRV_MODULE_NAME
  672. ": %s Could not allocate FS_ENET IRQ!", dev->name);
  673. if (fep->fpi->use_napi)
  674. napi_disable(&fep->napi);
  675. return -EINVAL;
  676. }
  677. err = fs_init_phy(dev);
  678. if (err) {
  679. if (fep->fpi->use_napi)
  680. napi_disable(&fep->napi);
  681. return err;
  682. }
  683. phy_start(fep->phydev);
  684. return 0;
  685. }
  686. static int fs_enet_close(struct net_device *dev)
  687. {
  688. struct fs_enet_private *fep = netdev_priv(dev);
  689. unsigned long flags;
  690. netif_stop_queue(dev);
  691. netif_carrier_off(dev);
  692. napi_disable(&fep->napi);
  693. phy_stop(fep->phydev);
  694. spin_lock_irqsave(&fep->lock, flags);
  695. spin_lock(&fep->tx_lock);
  696. (*fep->ops->stop)(dev);
  697. spin_unlock(&fep->tx_lock);
  698. spin_unlock_irqrestore(&fep->lock, flags);
  699. /* release any irqs */
  700. phy_disconnect(fep->phydev);
  701. fep->phydev = NULL;
  702. fs_free_irq(dev, fep->interrupt);
  703. return 0;
  704. }
  705. static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
  706. {
  707. struct fs_enet_private *fep = netdev_priv(dev);
  708. return &fep->stats;
  709. }
  710. /*************************************************************************/
  711. static void fs_get_drvinfo(struct net_device *dev,
  712. struct ethtool_drvinfo *info)
  713. {
  714. strcpy(info->driver, DRV_MODULE_NAME);
  715. strcpy(info->version, DRV_MODULE_VERSION);
  716. }
  717. static int fs_get_regs_len(struct net_device *dev)
  718. {
  719. struct fs_enet_private *fep = netdev_priv(dev);
  720. return (*fep->ops->get_regs_len)(dev);
  721. }
  722. static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  723. void *p)
  724. {
  725. struct fs_enet_private *fep = netdev_priv(dev);
  726. unsigned long flags;
  727. int r, len;
  728. len = regs->len;
  729. spin_lock_irqsave(&fep->lock, flags);
  730. r = (*fep->ops->get_regs)(dev, p, &len);
  731. spin_unlock_irqrestore(&fep->lock, flags);
  732. if (r == 0)
  733. regs->version = 0;
  734. }
  735. static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  736. {
  737. struct fs_enet_private *fep = netdev_priv(dev);
  738. if (!fep->phydev)
  739. return -ENODEV;
  740. return phy_ethtool_gset(fep->phydev, cmd);
  741. }
  742. static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  743. {
  744. struct fs_enet_private *fep = netdev_priv(dev);
  745. if (!fep->phydev)
  746. return -ENODEV;
  747. return phy_ethtool_sset(fep->phydev, cmd);
  748. }
  749. static int fs_nway_reset(struct net_device *dev)
  750. {
  751. return 0;
  752. }
  753. static u32 fs_get_msglevel(struct net_device *dev)
  754. {
  755. struct fs_enet_private *fep = netdev_priv(dev);
  756. return fep->msg_enable;
  757. }
  758. static void fs_set_msglevel(struct net_device *dev, u32 value)
  759. {
  760. struct fs_enet_private *fep = netdev_priv(dev);
  761. fep->msg_enable = value;
  762. }
  763. static const struct ethtool_ops fs_ethtool_ops = {
  764. .get_drvinfo = fs_get_drvinfo,
  765. .get_regs_len = fs_get_regs_len,
  766. .get_settings = fs_get_settings,
  767. .set_settings = fs_set_settings,
  768. .nway_reset = fs_nway_reset,
  769. .get_link = ethtool_op_get_link,
  770. .get_msglevel = fs_get_msglevel,
  771. .set_msglevel = fs_set_msglevel,
  772. .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
  773. .set_sg = ethtool_op_set_sg,
  774. .get_regs = fs_get_regs,
  775. };
  776. static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  777. {
  778. struct fs_enet_private *fep = netdev_priv(dev);
  779. struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
  780. unsigned long flags;
  781. int rc;
  782. if (!netif_running(dev))
  783. return -EINVAL;
  784. spin_lock_irqsave(&fep->lock, flags);
  785. rc = phy_mii_ioctl(fep->phydev, mii, cmd);
  786. spin_unlock_irqrestore(&fep->lock, flags);
  787. return rc;
  788. }
  789. extern int fs_mii_connect(struct net_device *dev);
  790. extern void fs_mii_disconnect(struct net_device *dev);
  791. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  792. static struct net_device *fs_init_instance(struct device *dev,
  793. struct fs_platform_info *fpi)
  794. {
  795. struct net_device *ndev = NULL;
  796. struct fs_enet_private *fep = NULL;
  797. int privsize, i, r, err = 0, registered = 0;
  798. fpi->fs_no = fs_get_id(fpi);
  799. /* guard */
  800. if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
  801. return ERR_PTR(-EINVAL);
  802. privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
  803. (fpi->rx_ring + fpi->tx_ring));
  804. ndev = alloc_etherdev(privsize);
  805. if (!ndev) {
  806. err = -ENOMEM;
  807. goto err;
  808. }
  809. fep = netdev_priv(ndev);
  810. fep->dev = dev;
  811. dev_set_drvdata(dev, ndev);
  812. fep->fpi = fpi;
  813. if (fpi->init_ioports)
  814. fpi->init_ioports((struct fs_platform_info *)fpi);
  815. #ifdef CONFIG_FS_ENET_HAS_FEC
  816. if (fs_get_fec_index(fpi->fs_no) >= 0)
  817. fep->ops = &fs_fec_ops;
  818. #endif
  819. #ifdef CONFIG_FS_ENET_HAS_SCC
  820. if (fs_get_scc_index(fpi->fs_no) >=0)
  821. fep->ops = &fs_scc_ops;
  822. #endif
  823. #ifdef CONFIG_FS_ENET_HAS_FCC
  824. if (fs_get_fcc_index(fpi->fs_no) >= 0)
  825. fep->ops = &fs_fcc_ops;
  826. #endif
  827. if (fep->ops == NULL) {
  828. printk(KERN_ERR DRV_MODULE_NAME
  829. ": %s No matching ops found (%d).\n",
  830. ndev->name, fpi->fs_no);
  831. err = -EINVAL;
  832. goto err;
  833. }
  834. r = (*fep->ops->setup_data)(ndev);
  835. if (r != 0) {
  836. printk(KERN_ERR DRV_MODULE_NAME
  837. ": %s setup_data failed\n",
  838. ndev->name);
  839. err = r;
  840. goto err;
  841. }
  842. /* point rx_skbuff, tx_skbuff */
  843. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  844. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  845. /* init locks */
  846. spin_lock_init(&fep->lock);
  847. spin_lock_init(&fep->tx_lock);
  848. /*
  849. * Set the Ethernet address.
  850. */
  851. for (i = 0; i < 6; i++)
  852. ndev->dev_addr[i] = fpi->macaddr[i];
  853. r = (*fep->ops->allocate_bd)(ndev);
  854. if (fep->ring_base == NULL) {
  855. printk(KERN_ERR DRV_MODULE_NAME
  856. ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
  857. err = r;
  858. goto err;
  859. }
  860. /*
  861. * Set receive and transmit descriptor base.
  862. */
  863. fep->rx_bd_base = fep->ring_base;
  864. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  865. /* initialize ring size variables */
  866. fep->tx_ring = fpi->tx_ring;
  867. fep->rx_ring = fpi->rx_ring;
  868. /*
  869. * The FEC Ethernet specific entries in the device structure.
  870. */
  871. ndev->open = fs_enet_open;
  872. ndev->hard_start_xmit = fs_enet_start_xmit;
  873. ndev->tx_timeout = fs_timeout;
  874. ndev->watchdog_timeo = 2 * HZ;
  875. ndev->stop = fs_enet_close;
  876. ndev->get_stats = fs_enet_get_stats;
  877. ndev->set_multicast_list = fs_set_multicast_list;
  878. #ifdef CONFIG_NET_POLL_CONTROLLER
  879. ndev->poll_controller = fs_enet_netpoll;
  880. #endif
  881. netif_napi_add(ndev, &fep->napi,
  882. fs_enet_rx_napi, fpi->napi_weight);
  883. ndev->ethtool_ops = &fs_ethtool_ops;
  884. ndev->do_ioctl = fs_ioctl;
  885. init_timer(&fep->phy_timer_list);
  886. netif_carrier_off(ndev);
  887. err = register_netdev(ndev);
  888. if (err != 0) {
  889. printk(KERN_ERR DRV_MODULE_NAME
  890. ": %s register_netdev failed.\n", ndev->name);
  891. goto err;
  892. }
  893. registered = 1;
  894. return ndev;
  895. err:
  896. if (ndev != NULL) {
  897. if (registered)
  898. unregister_netdev(ndev);
  899. if (fep != NULL) {
  900. (*fep->ops->free_bd)(ndev);
  901. (*fep->ops->cleanup_data)(ndev);
  902. }
  903. free_netdev(ndev);
  904. }
  905. dev_set_drvdata(dev, NULL);
  906. return ERR_PTR(err);
  907. }
  908. static int fs_cleanup_instance(struct net_device *ndev)
  909. {
  910. struct fs_enet_private *fep;
  911. const struct fs_platform_info *fpi;
  912. struct device *dev;
  913. if (ndev == NULL)
  914. return -EINVAL;
  915. fep = netdev_priv(ndev);
  916. if (fep == NULL)
  917. return -EINVAL;
  918. fpi = fep->fpi;
  919. unregister_netdev(ndev);
  920. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  921. (void __force *)fep->ring_base, fep->ring_mem_addr);
  922. /* reset it */
  923. (*fep->ops->cleanup_data)(ndev);
  924. dev = fep->dev;
  925. if (dev != NULL) {
  926. dev_set_drvdata(dev, NULL);
  927. fep->dev = NULL;
  928. }
  929. free_netdev(ndev);
  930. return 0;
  931. }
  932. #endif
  933. /**************************************************************************************/
  934. /* handy pointer to the immap */
  935. void __iomem *fs_enet_immap = NULL;
  936. static int setup_immap(void)
  937. {
  938. #ifdef CONFIG_CPM1
  939. fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
  940. WARN_ON(!fs_enet_immap);
  941. #elif defined(CONFIG_CPM2)
  942. fs_enet_immap = cpm2_immr;
  943. #endif
  944. return 0;
  945. }
  946. static void cleanup_immap(void)
  947. {
  948. #if defined(CONFIG_CPM1)
  949. iounmap(fs_enet_immap);
  950. #endif
  951. }
  952. /**************************************************************************************/
  953. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  954. static int __devinit find_phy(struct device_node *np,
  955. struct fs_platform_info *fpi)
  956. {
  957. struct device_node *phynode, *mdionode;
  958. struct resource res;
  959. int ret = 0, len;
  960. const u32 *data;
  961. data = of_get_property(np, "fixed-link", NULL);
  962. if (data) {
  963. snprintf(fpi->bus_id, 16, PHY_ID_FMT, 0, *data);
  964. return 0;
  965. }
  966. data = of_get_property(np, "phy-handle", &len);
  967. if (!data || len != 4)
  968. return -EINVAL;
  969. phynode = of_find_node_by_phandle(*data);
  970. if (!phynode)
  971. return -EINVAL;
  972. mdionode = of_get_parent(phynode);
  973. if (!mdionode)
  974. goto out_put_phy;
  975. ret = of_address_to_resource(mdionode, 0, &res);
  976. if (ret)
  977. goto out_put_mdio;
  978. data = of_get_property(phynode, "reg", &len);
  979. if (!data || len != 4)
  980. goto out_put_mdio;
  981. snprintf(fpi->bus_id, 16, PHY_ID_FMT, res.start, *data);
  982. out_put_mdio:
  983. of_node_put(mdionode);
  984. out_put_phy:
  985. of_node_put(phynode);
  986. return ret;
  987. }
  988. #ifdef CONFIG_FS_ENET_HAS_FEC
  989. #define IS_FEC(match) ((match)->data == &fs_fec_ops)
  990. #else
  991. #define IS_FEC(match) 0
  992. #endif
  993. static int __devinit fs_enet_probe(struct of_device *ofdev,
  994. const struct of_device_id *match)
  995. {
  996. struct net_device *ndev;
  997. struct fs_enet_private *fep;
  998. struct fs_platform_info *fpi;
  999. const u32 *data;
  1000. const u8 *mac_addr;
  1001. int privsize, len, ret = -ENODEV;
  1002. fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
  1003. if (!fpi)
  1004. return -ENOMEM;
  1005. if (!IS_FEC(match)) {
  1006. data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
  1007. if (!data || len != 4)
  1008. goto out_free_fpi;
  1009. fpi->cp_command = *data;
  1010. }
  1011. fpi->rx_ring = 32;
  1012. fpi->tx_ring = 32;
  1013. fpi->rx_copybreak = 240;
  1014. fpi->use_napi = 1;
  1015. fpi->napi_weight = 17;
  1016. ret = find_phy(ofdev->node, fpi);
  1017. if (ret)
  1018. goto out_free_fpi;
  1019. privsize = sizeof(*fep) +
  1020. sizeof(struct sk_buff **) *
  1021. (fpi->rx_ring + fpi->tx_ring);
  1022. ndev = alloc_etherdev(privsize);
  1023. if (!ndev) {
  1024. ret = -ENOMEM;
  1025. goto out_free_fpi;
  1026. }
  1027. dev_set_drvdata(&ofdev->dev, ndev);
  1028. fep = netdev_priv(ndev);
  1029. fep->dev = &ofdev->dev;
  1030. fep->ndev = ndev;
  1031. fep->fpi = fpi;
  1032. fep->ops = match->data;
  1033. ret = fep->ops->setup_data(ndev);
  1034. if (ret)
  1035. goto out_free_dev;
  1036. fep->rx_skbuff = (struct sk_buff **)&fep[1];
  1037. fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
  1038. spin_lock_init(&fep->lock);
  1039. spin_lock_init(&fep->tx_lock);
  1040. mac_addr = of_get_mac_address(ofdev->node);
  1041. if (mac_addr)
  1042. memcpy(ndev->dev_addr, mac_addr, 6);
  1043. ret = fep->ops->allocate_bd(ndev);
  1044. if (ret)
  1045. goto out_cleanup_data;
  1046. fep->rx_bd_base = fep->ring_base;
  1047. fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
  1048. fep->tx_ring = fpi->tx_ring;
  1049. fep->rx_ring = fpi->rx_ring;
  1050. ndev->open = fs_enet_open;
  1051. ndev->hard_start_xmit = fs_enet_start_xmit;
  1052. ndev->tx_timeout = fs_timeout;
  1053. ndev->watchdog_timeo = 2 * HZ;
  1054. ndev->stop = fs_enet_close;
  1055. ndev->get_stats = fs_enet_get_stats;
  1056. ndev->set_multicast_list = fs_set_multicast_list;
  1057. if (fpi->use_napi)
  1058. netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
  1059. fpi->napi_weight);
  1060. ndev->ethtool_ops = &fs_ethtool_ops;
  1061. ndev->do_ioctl = fs_ioctl;
  1062. init_timer(&fep->phy_timer_list);
  1063. netif_carrier_off(ndev);
  1064. ret = register_netdev(ndev);
  1065. if (ret)
  1066. goto out_free_bd;
  1067. printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
  1068. ndev->name,
  1069. ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
  1070. ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
  1071. return 0;
  1072. out_free_bd:
  1073. fep->ops->free_bd(ndev);
  1074. out_cleanup_data:
  1075. fep->ops->cleanup_data(ndev);
  1076. out_free_dev:
  1077. free_netdev(ndev);
  1078. dev_set_drvdata(&ofdev->dev, NULL);
  1079. out_free_fpi:
  1080. kfree(fpi);
  1081. return ret;
  1082. }
  1083. static int fs_enet_remove(struct of_device *ofdev)
  1084. {
  1085. struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
  1086. struct fs_enet_private *fep = netdev_priv(ndev);
  1087. unregister_netdev(ndev);
  1088. fep->ops->free_bd(ndev);
  1089. fep->ops->cleanup_data(ndev);
  1090. dev_set_drvdata(fep->dev, NULL);
  1091. free_netdev(ndev);
  1092. return 0;
  1093. }
  1094. static struct of_device_id fs_enet_match[] = {
  1095. #ifdef CONFIG_FS_ENET_HAS_SCC
  1096. {
  1097. .compatible = "fsl,cpm1-scc-enet",
  1098. .data = (void *)&fs_scc_ops,
  1099. },
  1100. #endif
  1101. #ifdef CONFIG_FS_ENET_HAS_FCC
  1102. {
  1103. .compatible = "fsl,cpm2-fcc-enet",
  1104. .data = (void *)&fs_fcc_ops,
  1105. },
  1106. #endif
  1107. #ifdef CONFIG_FS_ENET_HAS_FEC
  1108. {
  1109. .compatible = "fsl,pq1-fec-enet",
  1110. .data = (void *)&fs_fec_ops,
  1111. },
  1112. #endif
  1113. {}
  1114. };
  1115. static struct of_platform_driver fs_enet_driver = {
  1116. .name = "fs_enet",
  1117. .match_table = fs_enet_match,
  1118. .probe = fs_enet_probe,
  1119. .remove = fs_enet_remove,
  1120. };
  1121. static int __init fs_init(void)
  1122. {
  1123. int r = setup_immap();
  1124. if (r != 0)
  1125. return r;
  1126. r = of_register_platform_driver(&fs_enet_driver);
  1127. if (r != 0)
  1128. goto out;
  1129. return 0;
  1130. out:
  1131. cleanup_immap();
  1132. return r;
  1133. }
  1134. static void __exit fs_cleanup(void)
  1135. {
  1136. of_unregister_platform_driver(&fs_enet_driver);
  1137. cleanup_immap();
  1138. }
  1139. #else
  1140. static int __devinit fs_enet_probe(struct device *dev)
  1141. {
  1142. struct net_device *ndev;
  1143. /* no fixup - no device */
  1144. if (dev->platform_data == NULL) {
  1145. printk(KERN_INFO "fs_enet: "
  1146. "probe called with no platform data; "
  1147. "remove unused devices\n");
  1148. return -ENODEV;
  1149. }
  1150. ndev = fs_init_instance(dev, dev->platform_data);
  1151. if (IS_ERR(ndev))
  1152. return PTR_ERR(ndev);
  1153. return 0;
  1154. }
  1155. static int fs_enet_remove(struct device *dev)
  1156. {
  1157. return fs_cleanup_instance(dev_get_drvdata(dev));
  1158. }
  1159. static struct device_driver fs_enet_fec_driver = {
  1160. .name = "fsl-cpm-fec",
  1161. .bus = &platform_bus_type,
  1162. .probe = fs_enet_probe,
  1163. .remove = fs_enet_remove,
  1164. #ifdef CONFIG_PM
  1165. /* .suspend = fs_enet_suspend, TODO */
  1166. /* .resume = fs_enet_resume, TODO */
  1167. #endif
  1168. };
  1169. static struct device_driver fs_enet_scc_driver = {
  1170. .name = "fsl-cpm-scc",
  1171. .bus = &platform_bus_type,
  1172. .probe = fs_enet_probe,
  1173. .remove = fs_enet_remove,
  1174. #ifdef CONFIG_PM
  1175. /* .suspend = fs_enet_suspend, TODO */
  1176. /* .resume = fs_enet_resume, TODO */
  1177. #endif
  1178. };
  1179. static struct device_driver fs_enet_fcc_driver = {
  1180. .name = "fsl-cpm-fcc",
  1181. .bus = &platform_bus_type,
  1182. .probe = fs_enet_probe,
  1183. .remove = fs_enet_remove,
  1184. #ifdef CONFIG_PM
  1185. /* .suspend = fs_enet_suspend, TODO */
  1186. /* .resume = fs_enet_resume, TODO */
  1187. #endif
  1188. };
  1189. static int __init fs_init(void)
  1190. {
  1191. int r;
  1192. printk(KERN_INFO
  1193. "%s", version);
  1194. r = setup_immap();
  1195. if (r != 0)
  1196. return r;
  1197. #ifdef CONFIG_FS_ENET_HAS_FCC
  1198. /* let's insert mii stuff */
  1199. r = fs_enet_mdio_bb_init();
  1200. if (r != 0) {
  1201. printk(KERN_ERR DRV_MODULE_NAME
  1202. "BB PHY init failed.\n");
  1203. return r;
  1204. }
  1205. r = driver_register(&fs_enet_fcc_driver);
  1206. if (r != 0)
  1207. goto err;
  1208. #endif
  1209. #ifdef CONFIG_FS_ENET_HAS_FEC
  1210. r = fs_enet_mdio_fec_init();
  1211. if (r != 0) {
  1212. printk(KERN_ERR DRV_MODULE_NAME
  1213. "FEC PHY init failed.\n");
  1214. return r;
  1215. }
  1216. r = driver_register(&fs_enet_fec_driver);
  1217. if (r != 0)
  1218. goto err;
  1219. #endif
  1220. #ifdef CONFIG_FS_ENET_HAS_SCC
  1221. r = driver_register(&fs_enet_scc_driver);
  1222. if (r != 0)
  1223. goto err;
  1224. #endif
  1225. return 0;
  1226. err:
  1227. cleanup_immap();
  1228. return r;
  1229. }
  1230. static void __exit fs_cleanup(void)
  1231. {
  1232. driver_unregister(&fs_enet_fec_driver);
  1233. driver_unregister(&fs_enet_fcc_driver);
  1234. driver_unregister(&fs_enet_scc_driver);
  1235. cleanup_immap();
  1236. }
  1237. #endif
  1238. #ifdef CONFIG_NET_POLL_CONTROLLER
  1239. static void fs_enet_netpoll(struct net_device *dev)
  1240. {
  1241. disable_irq(dev->irq);
  1242. fs_enet_interrupt(dev->irq, dev, NULL);
  1243. enable_irq(dev->irq);
  1244. }
  1245. #endif
  1246. /**************************************************************************************/
  1247. module_init(fs_init);
  1248. module_exit(fs_cleanup);