cpm2.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. /*
  2. * General Purpose functions for the global management of the
  3. * 8260 Communication Processor Module.
  4. * Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
  5. * Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
  6. * 2.3.99 Updates
  7. *
  8. * 2006 (c) MontaVista Software, Inc.
  9. * Vitaly Bordug <vbordug@ru.mvista.com>
  10. * Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
  11. *
  12. * This file is licensed under the terms of the GNU General Public License
  13. * version 2. This program is licensed "as is" without any warranty of any
  14. * kind, whether express or implied.
  15. */
  16. /*
  17. *
  18. * In addition to the individual control of the communication
  19. * channels, there are a few functions that globally affect the
  20. * communication processor.
  21. *
  22. * Buffer descriptors must be allocated from the dual ported memory
  23. * space. The allocator for that is here. When the communication
  24. * process is reset, we reclaim the memory available. There is
  25. * currently no deallocator for this memory.
  26. */
  27. #include <linux/errno.h>
  28. #include <linux/sched.h>
  29. #include <linux/kernel.h>
  30. #include <linux/param.h>
  31. #include <linux/string.h>
  32. #include <linux/mm.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/module.h>
  35. #include <linux/of.h>
  36. #include <asm/io.h>
  37. #include <asm/irq.h>
  38. #include <asm/mpc8260.h>
  39. #include <asm/page.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/cpm2.h>
  42. #include <asm/rheap.h>
  43. #include <asm/fs_pd.h>
  44. #include <sysdev/fsl_soc.h>
  45. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  46. static void cpm2_dpinit(void);
  47. #endif
  48. cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
  49. /* We allocate this here because it is used almost exclusively for
  50. * the communication processor devices.
  51. */
  52. cpm2_map_t __iomem *cpm2_immr;
  53. #define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
  54. of space for CPM as it is larger
  55. than on PQ2 */
  56. void __init cpm2_reset(void)
  57. {
  58. #ifdef CONFIG_PPC_85xx
  59. cpm2_immr = ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
  60. #else
  61. cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
  62. #endif
  63. /* Reclaim the DP memory for our use.
  64. */
  65. #ifdef CONFIG_PPC_CPM_NEW_BINDING
  66. cpm_muram_init();
  67. #else
  68. cpm2_dpinit();
  69. #endif
  70. /* Tell everyone where the comm processor resides.
  71. */
  72. cpmp = &cpm2_immr->im_cpm;
  73. }
  74. static DEFINE_SPINLOCK(cmd_lock);
  75. #define MAX_CR_CMD_LOOPS 10000
  76. int cpm_command(u32 command, u8 opcode)
  77. {
  78. int i, ret;
  79. unsigned long flags;
  80. spin_lock_irqsave(&cmd_lock, flags);
  81. ret = 0;
  82. out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
  83. for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
  84. if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
  85. goto out;
  86. printk(KERN_ERR "%s(): Not able to issue CPM command\n", __FUNCTION__);
  87. ret = -EIO;
  88. out:
  89. spin_unlock_irqrestore(&cmd_lock, flags);
  90. return ret;
  91. }
  92. EXPORT_SYMBOL(cpm_command);
  93. /* Set a baud rate generator. This needs lots of work. There are
  94. * eight BRGs, which can be connected to the CPM channels or output
  95. * as clocks. The BRGs are in two different block of internal
  96. * memory mapped space.
  97. * The baud rate clock is the system clock divided by something.
  98. * It was set up long ago during the initial boot phase and is
  99. * is given to us.
  100. * Baud rate clocks are zero-based in the driver code (as that maps
  101. * to port numbers). Documentation uses 1-based numbering.
  102. */
  103. #define BRG_INT_CLK (get_brgfreq())
  104. #define BRG_UART_CLK (BRG_INT_CLK/16)
  105. /* This function is used by UARTS, or anything else that uses a 16x
  106. * oversampled clock.
  107. */
  108. void
  109. cpm_setbrg(uint brg, uint rate)
  110. {
  111. u32 __iomem *bp;
  112. /* This is good enough to get SMCs running.....
  113. */
  114. if (brg < 4) {
  115. bp = cpm2_map_size(im_brgc1, 16);
  116. } else {
  117. bp = cpm2_map_size(im_brgc5, 16);
  118. brg -= 4;
  119. }
  120. bp += brg;
  121. out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
  122. cpm2_unmap(bp);
  123. }
  124. /* This function is used to set high speed synchronous baud rate
  125. * clocks.
  126. */
  127. void
  128. cpm2_fastbrg(uint brg, uint rate, int div16)
  129. {
  130. u32 __iomem *bp;
  131. u32 val;
  132. if (brg < 4) {
  133. bp = cpm2_map_size(im_brgc1, 16);
  134. } else {
  135. bp = cpm2_map_size(im_brgc5, 16);
  136. brg -= 4;
  137. }
  138. bp += brg;
  139. val = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN;
  140. if (div16)
  141. val |= CPM_BRG_DIV16;
  142. out_be32(bp, val);
  143. cpm2_unmap(bp);
  144. }
  145. int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
  146. {
  147. int ret = 0;
  148. int shift;
  149. int i, bits = 0;
  150. cpmux_t __iomem *im_cpmux;
  151. u32 __iomem *reg;
  152. u32 mask = 7;
  153. u8 clk_map[][3] = {
  154. {CPM_CLK_FCC1, CPM_BRG5, 0},
  155. {CPM_CLK_FCC1, CPM_BRG6, 1},
  156. {CPM_CLK_FCC1, CPM_BRG7, 2},
  157. {CPM_CLK_FCC1, CPM_BRG8, 3},
  158. {CPM_CLK_FCC1, CPM_CLK9, 4},
  159. {CPM_CLK_FCC1, CPM_CLK10, 5},
  160. {CPM_CLK_FCC1, CPM_CLK11, 6},
  161. {CPM_CLK_FCC1, CPM_CLK12, 7},
  162. {CPM_CLK_FCC2, CPM_BRG5, 0},
  163. {CPM_CLK_FCC2, CPM_BRG6, 1},
  164. {CPM_CLK_FCC2, CPM_BRG7, 2},
  165. {CPM_CLK_FCC2, CPM_BRG8, 3},
  166. {CPM_CLK_FCC2, CPM_CLK13, 4},
  167. {CPM_CLK_FCC2, CPM_CLK14, 5},
  168. {CPM_CLK_FCC2, CPM_CLK15, 6},
  169. {CPM_CLK_FCC2, CPM_CLK16, 7},
  170. {CPM_CLK_FCC3, CPM_BRG5, 0},
  171. {CPM_CLK_FCC3, CPM_BRG6, 1},
  172. {CPM_CLK_FCC3, CPM_BRG7, 2},
  173. {CPM_CLK_FCC3, CPM_BRG8, 3},
  174. {CPM_CLK_FCC3, CPM_CLK13, 4},
  175. {CPM_CLK_FCC3, CPM_CLK14, 5},
  176. {CPM_CLK_FCC3, CPM_CLK15, 6},
  177. {CPM_CLK_FCC3, CPM_CLK16, 7},
  178. {CPM_CLK_SCC1, CPM_BRG1, 0},
  179. {CPM_CLK_SCC1, CPM_BRG2, 1},
  180. {CPM_CLK_SCC1, CPM_BRG3, 2},
  181. {CPM_CLK_SCC1, CPM_BRG4, 3},
  182. {CPM_CLK_SCC1, CPM_CLK11, 4},
  183. {CPM_CLK_SCC1, CPM_CLK12, 5},
  184. {CPM_CLK_SCC1, CPM_CLK3, 6},
  185. {CPM_CLK_SCC1, CPM_CLK4, 7},
  186. {CPM_CLK_SCC2, CPM_BRG1, 0},
  187. {CPM_CLK_SCC2, CPM_BRG2, 1},
  188. {CPM_CLK_SCC2, CPM_BRG3, 2},
  189. {CPM_CLK_SCC2, CPM_BRG4, 3},
  190. {CPM_CLK_SCC2, CPM_CLK11, 4},
  191. {CPM_CLK_SCC2, CPM_CLK12, 5},
  192. {CPM_CLK_SCC2, CPM_CLK3, 6},
  193. {CPM_CLK_SCC2, CPM_CLK4, 7},
  194. {CPM_CLK_SCC3, CPM_BRG1, 0},
  195. {CPM_CLK_SCC3, CPM_BRG2, 1},
  196. {CPM_CLK_SCC3, CPM_BRG3, 2},
  197. {CPM_CLK_SCC3, CPM_BRG4, 3},
  198. {CPM_CLK_SCC3, CPM_CLK5, 4},
  199. {CPM_CLK_SCC3, CPM_CLK6, 5},
  200. {CPM_CLK_SCC3, CPM_CLK7, 6},
  201. {CPM_CLK_SCC3, CPM_CLK8, 7},
  202. {CPM_CLK_SCC4, CPM_BRG1, 0},
  203. {CPM_CLK_SCC4, CPM_BRG2, 1},
  204. {CPM_CLK_SCC4, CPM_BRG3, 2},
  205. {CPM_CLK_SCC4, CPM_BRG4, 3},
  206. {CPM_CLK_SCC4, CPM_CLK5, 4},
  207. {CPM_CLK_SCC4, CPM_CLK6, 5},
  208. {CPM_CLK_SCC4, CPM_CLK7, 6},
  209. {CPM_CLK_SCC4, CPM_CLK8, 7},
  210. };
  211. im_cpmux = cpm2_map(im_cpmux);
  212. switch (target) {
  213. case CPM_CLK_SCC1:
  214. reg = &im_cpmux->cmx_scr;
  215. shift = 24;
  216. case CPM_CLK_SCC2:
  217. reg = &im_cpmux->cmx_scr;
  218. shift = 16;
  219. break;
  220. case CPM_CLK_SCC3:
  221. reg = &im_cpmux->cmx_scr;
  222. shift = 8;
  223. break;
  224. case CPM_CLK_SCC4:
  225. reg = &im_cpmux->cmx_scr;
  226. shift = 0;
  227. break;
  228. case CPM_CLK_FCC1:
  229. reg = &im_cpmux->cmx_fcr;
  230. shift = 24;
  231. break;
  232. case CPM_CLK_FCC2:
  233. reg = &im_cpmux->cmx_fcr;
  234. shift = 16;
  235. break;
  236. case CPM_CLK_FCC3:
  237. reg = &im_cpmux->cmx_fcr;
  238. shift = 8;
  239. break;
  240. default:
  241. printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
  242. return -EINVAL;
  243. }
  244. if (mode == CPM_CLK_RX)
  245. shift += 3;
  246. for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  247. if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  248. bits = clk_map[i][2];
  249. break;
  250. }
  251. }
  252. if (i == ARRAY_SIZE(clk_map))
  253. ret = -EINVAL;
  254. bits <<= shift;
  255. mask <<= shift;
  256. out_be32(reg, (in_be32(reg) & ~mask) | bits);
  257. cpm2_unmap(im_cpmux);
  258. return ret;
  259. }
  260. int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
  261. {
  262. int ret = 0;
  263. int shift;
  264. int i, bits = 0;
  265. cpmux_t __iomem *im_cpmux;
  266. u8 __iomem *reg;
  267. u8 mask = 3;
  268. u8 clk_map[][3] = {
  269. {CPM_CLK_SMC1, CPM_BRG1, 0},
  270. {CPM_CLK_SMC1, CPM_BRG7, 1},
  271. {CPM_CLK_SMC1, CPM_CLK7, 2},
  272. {CPM_CLK_SMC1, CPM_CLK9, 3},
  273. {CPM_CLK_SMC2, CPM_BRG2, 0},
  274. {CPM_CLK_SMC2, CPM_BRG8, 1},
  275. {CPM_CLK_SMC2, CPM_CLK4, 2},
  276. {CPM_CLK_SMC2, CPM_CLK15, 3},
  277. };
  278. im_cpmux = cpm2_map(im_cpmux);
  279. switch (target) {
  280. case CPM_CLK_SMC1:
  281. reg = &im_cpmux->cmx_smr;
  282. mask = 3;
  283. shift = 4;
  284. break;
  285. case CPM_CLK_SMC2:
  286. reg = &im_cpmux->cmx_smr;
  287. mask = 3;
  288. shift = 0;
  289. break;
  290. default:
  291. printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
  292. return -EINVAL;
  293. }
  294. for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
  295. if (clk_map[i][0] == target && clk_map[i][1] == clock) {
  296. bits = clk_map[i][2];
  297. break;
  298. }
  299. }
  300. if (i == ARRAY_SIZE(clk_map))
  301. ret = -EINVAL;
  302. bits <<= shift;
  303. mask <<= shift;
  304. out_8(reg, (in_8(reg) & ~mask) | bits);
  305. cpm2_unmap(im_cpmux);
  306. return ret;
  307. }
  308. #ifndef CONFIG_PPC_CPM_NEW_BINDING
  309. /*
  310. * dpalloc / dpfree bits.
  311. */
  312. static spinlock_t cpm_dpmem_lock;
  313. /* 16 blocks should be enough to satisfy all requests
  314. * until the memory subsystem goes up... */
  315. static rh_block_t cpm_boot_dpmem_rh_block[16];
  316. static rh_info_t cpm_dpmem_info;
  317. static u8 __iomem *im_dprambase;
  318. static void cpm2_dpinit(void)
  319. {
  320. spin_lock_init(&cpm_dpmem_lock);
  321. /* initialize the info header */
  322. rh_init(&cpm_dpmem_info, 1,
  323. sizeof(cpm_boot_dpmem_rh_block) /
  324. sizeof(cpm_boot_dpmem_rh_block[0]),
  325. cpm_boot_dpmem_rh_block);
  326. im_dprambase = cpm2_immr;
  327. /* Attach the usable dpmem area */
  328. /* XXX: This is actually crap. CPM_DATAONLY_BASE and
  329. * CPM_DATAONLY_SIZE is only a subset of the available dpram. It
  330. * varies with the processor and the microcode patches activated.
  331. * But the following should be at least safe.
  332. */
  333. rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
  334. }
  335. /* This function returns an index into the DPRAM area.
  336. */
  337. unsigned long cpm_dpalloc(uint size, uint align)
  338. {
  339. unsigned long start;
  340. unsigned long flags;
  341. spin_lock_irqsave(&cpm_dpmem_lock, flags);
  342. cpm_dpmem_info.alignment = align;
  343. start = rh_alloc(&cpm_dpmem_info, size, "commproc");
  344. spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
  345. return (uint)start;
  346. }
  347. EXPORT_SYMBOL(cpm_dpalloc);
  348. int cpm_dpfree(unsigned long offset)
  349. {
  350. int ret;
  351. unsigned long flags;
  352. spin_lock_irqsave(&cpm_dpmem_lock, flags);
  353. ret = rh_free(&cpm_dpmem_info, offset);
  354. spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
  355. return ret;
  356. }
  357. EXPORT_SYMBOL(cpm_dpfree);
  358. /* not sure if this is ever needed */
  359. unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
  360. {
  361. unsigned long start;
  362. unsigned long flags;
  363. spin_lock_irqsave(&cpm_dpmem_lock, flags);
  364. cpm_dpmem_info.alignment = align;
  365. start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
  366. spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
  367. return start;
  368. }
  369. EXPORT_SYMBOL(cpm_dpalloc_fixed);
  370. void cpm_dpdump(void)
  371. {
  372. rh_dump(&cpm_dpmem_info);
  373. }
  374. EXPORT_SYMBOL(cpm_dpdump);
  375. void *cpm_dpram_addr(unsigned long offset)
  376. {
  377. return (void *)(im_dprambase + offset);
  378. }
  379. EXPORT_SYMBOL(cpm_dpram_addr);
  380. #endif /* !CONFIG_PPC_CPM_NEW_BINDING */
  381. struct cpm2_ioports {
  382. u32 dir, par, sor, odr, dat;
  383. u32 res[3];
  384. };
  385. void cpm2_set_pin(int port, int pin, int flags)
  386. {
  387. struct cpm2_ioports __iomem *iop =
  388. (struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
  389. pin = 1 << (31 - pin);
  390. if (flags & CPM_PIN_OUTPUT)
  391. setbits32(&iop[port].dir, pin);
  392. else
  393. clrbits32(&iop[port].dir, pin);
  394. if (!(flags & CPM_PIN_GPIO))
  395. setbits32(&iop[port].par, pin);
  396. else
  397. clrbits32(&iop[port].par, pin);
  398. if (flags & CPM_PIN_SECONDARY)
  399. setbits32(&iop[port].sor, pin);
  400. else
  401. clrbits32(&iop[port].sor, pin);
  402. if (flags & CPM_PIN_OPENDRAIN)
  403. setbits32(&iop[port].odr, pin);
  404. else
  405. clrbits32(&iop[port].odr, pin);
  406. }