pagemap.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453
  1. #ifndef _LINUX_PAGEMAP_H
  2. #define _LINUX_PAGEMAP_H
  3. /*
  4. * Copyright 1995 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/fs.h>
  8. #include <linux/list.h>
  9. #include <linux/highmem.h>
  10. #include <linux/compiler.h>
  11. #include <asm/uaccess.h>
  12. #include <linux/gfp.h>
  13. #include <linux/bitops.h>
  14. #include <linux/hardirq.h> /* for in_interrupt() */
  15. /*
  16. * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
  17. * allocation mode flags.
  18. */
  19. enum mapping_flags {
  20. AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
  21. AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
  22. AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
  23. AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
  24. };
  25. static inline void mapping_set_error(struct address_space *mapping, int error)
  26. {
  27. if (unlikely(error)) {
  28. if (error == -ENOSPC)
  29. set_bit(AS_ENOSPC, &mapping->flags);
  30. else
  31. set_bit(AS_EIO, &mapping->flags);
  32. }
  33. }
  34. static inline void mapping_set_unevictable(struct address_space *mapping)
  35. {
  36. set_bit(AS_UNEVICTABLE, &mapping->flags);
  37. }
  38. static inline void mapping_clear_unevictable(struct address_space *mapping)
  39. {
  40. clear_bit(AS_UNEVICTABLE, &mapping->flags);
  41. }
  42. static inline int mapping_unevictable(struct address_space *mapping)
  43. {
  44. if (likely(mapping))
  45. return test_bit(AS_UNEVICTABLE, &mapping->flags);
  46. return !!mapping;
  47. }
  48. static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
  49. {
  50. return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
  51. }
  52. /*
  53. * This is non-atomic. Only to be used before the mapping is activated.
  54. * Probably needs a barrier...
  55. */
  56. static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
  57. {
  58. m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
  59. (__force unsigned long)mask;
  60. }
  61. /*
  62. * The page cache can done in larger chunks than
  63. * one page, because it allows for more efficient
  64. * throughput (it can then be mapped into user
  65. * space in smaller chunks for same flexibility).
  66. *
  67. * Or rather, it _will_ be done in larger chunks.
  68. */
  69. #define PAGE_CACHE_SHIFT PAGE_SHIFT
  70. #define PAGE_CACHE_SIZE PAGE_SIZE
  71. #define PAGE_CACHE_MASK PAGE_MASK
  72. #define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
  73. #define page_cache_get(page) get_page(page)
  74. #define page_cache_release(page) put_page(page)
  75. void release_pages(struct page **pages, int nr, int cold);
  76. /*
  77. * speculatively take a reference to a page.
  78. * If the page is free (_count == 0), then _count is untouched, and 0
  79. * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
  80. *
  81. * This function must be called inside the same rcu_read_lock() section as has
  82. * been used to lookup the page in the pagecache radix-tree (or page table):
  83. * this allows allocators to use a synchronize_rcu() to stabilize _count.
  84. *
  85. * Unless an RCU grace period has passed, the count of all pages coming out
  86. * of the allocator must be considered unstable. page_count may return higher
  87. * than expected, and put_page must be able to do the right thing when the
  88. * page has been finished with, no matter what it is subsequently allocated
  89. * for (because put_page is what is used here to drop an invalid speculative
  90. * reference).
  91. *
  92. * This is the interesting part of the lockless pagecache (and lockless
  93. * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
  94. * has the following pattern:
  95. * 1. find page in radix tree
  96. * 2. conditionally increment refcount
  97. * 3. check the page is still in pagecache (if no, goto 1)
  98. *
  99. * Remove-side that cares about stability of _count (eg. reclaim) has the
  100. * following (with tree_lock held for write):
  101. * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
  102. * B. remove page from pagecache
  103. * C. free the page
  104. *
  105. * There are 2 critical interleavings that matter:
  106. * - 2 runs before A: in this case, A sees elevated refcount and bails out
  107. * - A runs before 2: in this case, 2 sees zero refcount and retries;
  108. * subsequently, B will complete and 1 will find no page, causing the
  109. * lookup to return NULL.
  110. *
  111. * It is possible that between 1 and 2, the page is removed then the exact same
  112. * page is inserted into the same position in pagecache. That's OK: the
  113. * old find_get_page using tree_lock could equally have run before or after
  114. * such a re-insertion, depending on order that locks are granted.
  115. *
  116. * Lookups racing against pagecache insertion isn't a big problem: either 1
  117. * will find the page or it will not. Likewise, the old find_get_page could run
  118. * either before the insertion or afterwards, depending on timing.
  119. */
  120. static inline int page_cache_get_speculative(struct page *page)
  121. {
  122. VM_BUG_ON(in_interrupt());
  123. #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
  124. # ifdef CONFIG_PREEMPT
  125. VM_BUG_ON(!in_atomic());
  126. # endif
  127. /*
  128. * Preempt must be disabled here - we rely on rcu_read_lock doing
  129. * this for us.
  130. *
  131. * Pagecache won't be truncated from interrupt context, so if we have
  132. * found a page in the radix tree here, we have pinned its refcount by
  133. * disabling preempt, and hence no need for the "speculative get" that
  134. * SMP requires.
  135. */
  136. VM_BUG_ON(page_count(page) == 0);
  137. atomic_inc(&page->_count);
  138. #else
  139. if (unlikely(!get_page_unless_zero(page))) {
  140. /*
  141. * Either the page has been freed, or will be freed.
  142. * In either case, retry here and the caller should
  143. * do the right thing (see comments above).
  144. */
  145. return 0;
  146. }
  147. #endif
  148. VM_BUG_ON(PageTail(page));
  149. return 1;
  150. }
  151. /*
  152. * Same as above, but add instead of inc (could just be merged)
  153. */
  154. static inline int page_cache_add_speculative(struct page *page, int count)
  155. {
  156. VM_BUG_ON(in_interrupt());
  157. #if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
  158. # ifdef CONFIG_PREEMPT
  159. VM_BUG_ON(!in_atomic());
  160. # endif
  161. VM_BUG_ON(page_count(page) == 0);
  162. atomic_add(count, &page->_count);
  163. #else
  164. if (unlikely(!atomic_add_unless(&page->_count, count, 0)))
  165. return 0;
  166. #endif
  167. VM_BUG_ON(PageCompound(page) && page != compound_head(page));
  168. return 1;
  169. }
  170. static inline int page_freeze_refs(struct page *page, int count)
  171. {
  172. return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
  173. }
  174. static inline void page_unfreeze_refs(struct page *page, int count)
  175. {
  176. VM_BUG_ON(page_count(page) != 0);
  177. VM_BUG_ON(count == 0);
  178. atomic_set(&page->_count, count);
  179. }
  180. #ifdef CONFIG_NUMA
  181. extern struct page *__page_cache_alloc(gfp_t gfp);
  182. #else
  183. static inline struct page *__page_cache_alloc(gfp_t gfp)
  184. {
  185. return alloc_pages(gfp, 0);
  186. }
  187. #endif
  188. static inline struct page *page_cache_alloc(struct address_space *x)
  189. {
  190. return __page_cache_alloc(mapping_gfp_mask(x));
  191. }
  192. static inline struct page *page_cache_alloc_cold(struct address_space *x)
  193. {
  194. return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
  195. }
  196. typedef int filler_t(void *, struct page *);
  197. extern struct page * find_get_page(struct address_space *mapping,
  198. pgoff_t index);
  199. extern struct page * find_lock_page(struct address_space *mapping,
  200. pgoff_t index);
  201. extern struct page * find_or_create_page(struct address_space *mapping,
  202. pgoff_t index, gfp_t gfp_mask);
  203. unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
  204. unsigned int nr_pages, struct page **pages);
  205. unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
  206. unsigned int nr_pages, struct page **pages);
  207. unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
  208. int tag, unsigned int nr_pages, struct page **pages);
  209. struct page *grab_cache_page_write_begin(struct address_space *mapping,
  210. pgoff_t index, unsigned flags);
  211. /*
  212. * Returns locked page at given index in given cache, creating it if needed.
  213. */
  214. static inline struct page *grab_cache_page(struct address_space *mapping,
  215. pgoff_t index)
  216. {
  217. return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
  218. }
  219. extern struct page * grab_cache_page_nowait(struct address_space *mapping,
  220. pgoff_t index);
  221. extern struct page * read_cache_page_async(struct address_space *mapping,
  222. pgoff_t index, filler_t *filler,
  223. void *data);
  224. extern struct page * read_cache_page(struct address_space *mapping,
  225. pgoff_t index, filler_t *filler,
  226. void *data);
  227. extern int read_cache_pages(struct address_space *mapping,
  228. struct list_head *pages, filler_t *filler, void *data);
  229. static inline struct page *read_mapping_page_async(
  230. struct address_space *mapping,
  231. pgoff_t index, void *data)
  232. {
  233. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  234. return read_cache_page_async(mapping, index, filler, data);
  235. }
  236. static inline struct page *read_mapping_page(struct address_space *mapping,
  237. pgoff_t index, void *data)
  238. {
  239. filler_t *filler = (filler_t *)mapping->a_ops->readpage;
  240. return read_cache_page(mapping, index, filler, data);
  241. }
  242. /*
  243. * Return byte-offset into filesystem object for page.
  244. */
  245. static inline loff_t page_offset(struct page *page)
  246. {
  247. return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
  248. }
  249. static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
  250. unsigned long address)
  251. {
  252. pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
  253. pgoff += vma->vm_pgoff;
  254. return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  255. }
  256. extern void __lock_page(struct page *page);
  257. extern int __lock_page_killable(struct page *page);
  258. extern void __lock_page_nosync(struct page *page);
  259. extern void unlock_page(struct page *page);
  260. static inline void __set_page_locked(struct page *page)
  261. {
  262. __set_bit(PG_locked, &page->flags);
  263. }
  264. static inline void __clear_page_locked(struct page *page)
  265. {
  266. __clear_bit(PG_locked, &page->flags);
  267. }
  268. static inline int trylock_page(struct page *page)
  269. {
  270. return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
  271. }
  272. /*
  273. * lock_page may only be called if we have the page's inode pinned.
  274. */
  275. static inline void lock_page(struct page *page)
  276. {
  277. might_sleep();
  278. if (!trylock_page(page))
  279. __lock_page(page);
  280. }
  281. /*
  282. * lock_page_killable is like lock_page but can be interrupted by fatal
  283. * signals. It returns 0 if it locked the page and -EINTR if it was
  284. * killed while waiting.
  285. */
  286. static inline int lock_page_killable(struct page *page)
  287. {
  288. might_sleep();
  289. if (!trylock_page(page))
  290. return __lock_page_killable(page);
  291. return 0;
  292. }
  293. /*
  294. * lock_page_nosync should only be used if we can't pin the page's inode.
  295. * Doesn't play quite so well with block device plugging.
  296. */
  297. static inline void lock_page_nosync(struct page *page)
  298. {
  299. might_sleep();
  300. if (!trylock_page(page))
  301. __lock_page_nosync(page);
  302. }
  303. /*
  304. * This is exported only for wait_on_page_locked/wait_on_page_writeback.
  305. * Never use this directly!
  306. */
  307. extern void wait_on_page_bit(struct page *page, int bit_nr);
  308. /*
  309. * Wait for a page to be unlocked.
  310. *
  311. * This must be called with the caller "holding" the page,
  312. * ie with increased "page->count" so that the page won't
  313. * go away during the wait..
  314. */
  315. static inline void wait_on_page_locked(struct page *page)
  316. {
  317. if (PageLocked(page))
  318. wait_on_page_bit(page, PG_locked);
  319. }
  320. /*
  321. * Wait for a page to complete writeback
  322. */
  323. static inline void wait_on_page_writeback(struct page *page)
  324. {
  325. if (PageWriteback(page))
  326. wait_on_page_bit(page, PG_writeback);
  327. }
  328. extern void end_page_writeback(struct page *page);
  329. /*
  330. * Add an arbitrary waiter to a page's wait queue
  331. */
  332. extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
  333. /*
  334. * Fault a userspace page into pagetables. Return non-zero on a fault.
  335. *
  336. * This assumes that two userspace pages are always sufficient. That's
  337. * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
  338. */
  339. static inline int fault_in_pages_writeable(char __user *uaddr, int size)
  340. {
  341. int ret;
  342. if (unlikely(size == 0))
  343. return 0;
  344. /*
  345. * Writing zeroes into userspace here is OK, because we know that if
  346. * the zero gets there, we'll be overwriting it.
  347. */
  348. ret = __put_user(0, uaddr);
  349. if (ret == 0) {
  350. char __user *end = uaddr + size - 1;
  351. /*
  352. * If the page was already mapped, this will get a cache miss
  353. * for sure, so try to avoid doing it.
  354. */
  355. if (((unsigned long)uaddr & PAGE_MASK) !=
  356. ((unsigned long)end & PAGE_MASK))
  357. ret = __put_user(0, end);
  358. }
  359. return ret;
  360. }
  361. static inline int fault_in_pages_readable(const char __user *uaddr, int size)
  362. {
  363. volatile char c;
  364. int ret;
  365. if (unlikely(size == 0))
  366. return 0;
  367. ret = __get_user(c, uaddr);
  368. if (ret == 0) {
  369. const char __user *end = uaddr + size - 1;
  370. if (((unsigned long)uaddr & PAGE_MASK) !=
  371. ((unsigned long)end & PAGE_MASK))
  372. ret = __get_user(c, end);
  373. }
  374. return ret;
  375. }
  376. int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
  377. pgoff_t index, gfp_t gfp_mask);
  378. int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
  379. pgoff_t index, gfp_t gfp_mask);
  380. extern void remove_from_page_cache(struct page *page);
  381. extern void __remove_from_page_cache(struct page *page);
  382. /*
  383. * Like add_to_page_cache_locked, but used to add newly allocated pages:
  384. * the page is new, so we can just run __set_page_locked() against it.
  385. */
  386. static inline int add_to_page_cache(struct page *page,
  387. struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
  388. {
  389. int error;
  390. __set_page_locked(page);
  391. error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
  392. if (unlikely(error))
  393. __clear_page_locked(page);
  394. return error;
  395. }
  396. #endif /* _LINUX_PAGEMAP_H */