sched.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. /*
  2. * linux/net/sunrpc/sched.c
  3. *
  4. * Scheduling for synchronous and asynchronous RPC requests.
  5. *
  6. * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
  7. *
  8. * TCP NFS related read + write fixes
  9. * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
  10. */
  11. #include <linux/module.h>
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/slab.h>
  15. #include <linux/mempool.h>
  16. #include <linux/smp.h>
  17. #include <linux/spinlock.h>
  18. #include <linux/mutex.h>
  19. #include <linux/sunrpc/clnt.h>
  20. #include "sunrpc.h"
  21. #ifdef RPC_DEBUG
  22. #define RPCDBG_FACILITY RPCDBG_SCHED
  23. #endif
  24. /*
  25. * RPC slabs and memory pools
  26. */
  27. #define RPC_BUFFER_MAXSIZE (2048)
  28. #define RPC_BUFFER_POOLSIZE (8)
  29. #define RPC_TASK_POOLSIZE (8)
  30. static struct kmem_cache *rpc_task_slabp __read_mostly;
  31. static struct kmem_cache *rpc_buffer_slabp __read_mostly;
  32. static mempool_t *rpc_task_mempool __read_mostly;
  33. static mempool_t *rpc_buffer_mempool __read_mostly;
  34. static void rpc_async_schedule(struct work_struct *);
  35. static void rpc_release_task(struct rpc_task *task);
  36. static void __rpc_queue_timer_fn(unsigned long ptr);
  37. /*
  38. * RPC tasks sit here while waiting for conditions to improve.
  39. */
  40. static struct rpc_wait_queue delay_queue;
  41. /*
  42. * rpciod-related stuff
  43. */
  44. struct workqueue_struct *rpciod_workqueue;
  45. /*
  46. * Disable the timer for a given RPC task. Should be called with
  47. * queue->lock and bh_disabled in order to avoid races within
  48. * rpc_run_timer().
  49. */
  50. static void
  51. __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  52. {
  53. if (task->tk_timeout == 0)
  54. return;
  55. dprintk("RPC: %5u disabling timer\n", task->tk_pid);
  56. task->tk_timeout = 0;
  57. list_del(&task->u.tk_wait.timer_list);
  58. if (list_empty(&queue->timer_list.list))
  59. del_timer(&queue->timer_list.timer);
  60. }
  61. static void
  62. rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
  63. {
  64. queue->timer_list.expires = expires;
  65. mod_timer(&queue->timer_list.timer, expires);
  66. }
  67. /*
  68. * Set up a timer for the current task.
  69. */
  70. static void
  71. __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
  72. {
  73. if (!task->tk_timeout)
  74. return;
  75. dprintk("RPC: %5u setting alarm for %lu ms\n",
  76. task->tk_pid, task->tk_timeout * 1000 / HZ);
  77. task->u.tk_wait.expires = jiffies + task->tk_timeout;
  78. if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
  79. rpc_set_queue_timer(queue, task->u.tk_wait.expires);
  80. list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
  81. }
  82. /*
  83. * Add new request to a priority queue.
  84. */
  85. static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
  86. {
  87. struct list_head *q;
  88. struct rpc_task *t;
  89. INIT_LIST_HEAD(&task->u.tk_wait.links);
  90. q = &queue->tasks[task->tk_priority];
  91. if (unlikely(task->tk_priority > queue->maxpriority))
  92. q = &queue->tasks[queue->maxpriority];
  93. list_for_each_entry(t, q, u.tk_wait.list) {
  94. if (t->tk_owner == task->tk_owner) {
  95. list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
  96. return;
  97. }
  98. }
  99. list_add_tail(&task->u.tk_wait.list, q);
  100. }
  101. /*
  102. * Add new request to wait queue.
  103. *
  104. * Swapper tasks always get inserted at the head of the queue.
  105. * This should avoid many nasty memory deadlocks and hopefully
  106. * improve overall performance.
  107. * Everyone else gets appended to the queue to ensure proper FIFO behavior.
  108. */
  109. static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  110. {
  111. BUG_ON (RPC_IS_QUEUED(task));
  112. if (RPC_IS_PRIORITY(queue))
  113. __rpc_add_wait_queue_priority(queue, task);
  114. else if (RPC_IS_SWAPPER(task))
  115. list_add(&task->u.tk_wait.list, &queue->tasks[0]);
  116. else
  117. list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
  118. task->tk_waitqueue = queue;
  119. queue->qlen++;
  120. rpc_set_queued(task);
  121. dprintk("RPC: %5u added to queue %p \"%s\"\n",
  122. task->tk_pid, queue, rpc_qname(queue));
  123. }
  124. /*
  125. * Remove request from a priority queue.
  126. */
  127. static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
  128. {
  129. struct rpc_task *t;
  130. if (!list_empty(&task->u.tk_wait.links)) {
  131. t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
  132. list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
  133. list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
  134. }
  135. }
  136. /*
  137. * Remove request from queue.
  138. * Note: must be called with spin lock held.
  139. */
  140. static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
  141. {
  142. __rpc_disable_timer(queue, task);
  143. if (RPC_IS_PRIORITY(queue))
  144. __rpc_remove_wait_queue_priority(task);
  145. list_del(&task->u.tk_wait.list);
  146. queue->qlen--;
  147. dprintk("RPC: %5u removed from queue %p \"%s\"\n",
  148. task->tk_pid, queue, rpc_qname(queue));
  149. }
  150. static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
  151. {
  152. queue->priority = priority;
  153. queue->count = 1 << (priority * 2);
  154. }
  155. static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
  156. {
  157. queue->owner = pid;
  158. queue->nr = RPC_BATCH_COUNT;
  159. }
  160. static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
  161. {
  162. rpc_set_waitqueue_priority(queue, queue->maxpriority);
  163. rpc_set_waitqueue_owner(queue, 0);
  164. }
  165. static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
  166. {
  167. int i;
  168. spin_lock_init(&queue->lock);
  169. for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
  170. INIT_LIST_HEAD(&queue->tasks[i]);
  171. queue->maxpriority = nr_queues - 1;
  172. rpc_reset_waitqueue_priority(queue);
  173. queue->qlen = 0;
  174. setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
  175. INIT_LIST_HEAD(&queue->timer_list.list);
  176. #ifdef RPC_DEBUG
  177. queue->name = qname;
  178. #endif
  179. }
  180. void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  181. {
  182. __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
  183. }
  184. EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
  185. void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
  186. {
  187. __rpc_init_priority_wait_queue(queue, qname, 1);
  188. }
  189. EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
  190. void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
  191. {
  192. del_timer_sync(&queue->timer_list.timer);
  193. }
  194. EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
  195. static int rpc_wait_bit_killable(void *word)
  196. {
  197. if (fatal_signal_pending(current))
  198. return -ERESTARTSYS;
  199. schedule();
  200. return 0;
  201. }
  202. #ifdef RPC_DEBUG
  203. static void rpc_task_set_debuginfo(struct rpc_task *task)
  204. {
  205. static atomic_t rpc_pid;
  206. task->tk_pid = atomic_inc_return(&rpc_pid);
  207. }
  208. #else
  209. static inline void rpc_task_set_debuginfo(struct rpc_task *task)
  210. {
  211. }
  212. #endif
  213. static void rpc_set_active(struct rpc_task *task)
  214. {
  215. rpc_task_set_debuginfo(task);
  216. set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  217. }
  218. /*
  219. * Mark an RPC call as having completed by clearing the 'active' bit
  220. * and then waking up all tasks that were sleeping.
  221. */
  222. static int rpc_complete_task(struct rpc_task *task)
  223. {
  224. void *m = &task->tk_runstate;
  225. wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
  226. struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
  227. unsigned long flags;
  228. int ret;
  229. spin_lock_irqsave(&wq->lock, flags);
  230. clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
  231. ret = atomic_dec_and_test(&task->tk_count);
  232. if (waitqueue_active(wq))
  233. __wake_up_locked_key(wq, TASK_NORMAL, &k);
  234. spin_unlock_irqrestore(&wq->lock, flags);
  235. return ret;
  236. }
  237. /*
  238. * Allow callers to wait for completion of an RPC call
  239. *
  240. * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
  241. * to enforce taking of the wq->lock and hence avoid races with
  242. * rpc_complete_task().
  243. */
  244. int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
  245. {
  246. if (action == NULL)
  247. action = rpc_wait_bit_killable;
  248. return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
  249. action, TASK_KILLABLE);
  250. }
  251. EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
  252. /*
  253. * Make an RPC task runnable.
  254. *
  255. * Note: If the task is ASYNC, this must be called with
  256. * the spinlock held to protect the wait queue operation.
  257. */
  258. static void rpc_make_runnable(struct rpc_task *task)
  259. {
  260. rpc_clear_queued(task);
  261. if (rpc_test_and_set_running(task))
  262. return;
  263. if (RPC_IS_ASYNC(task)) {
  264. INIT_WORK(&task->u.tk_work, rpc_async_schedule);
  265. queue_work(rpciod_workqueue, &task->u.tk_work);
  266. } else
  267. wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
  268. }
  269. /*
  270. * Prepare for sleeping on a wait queue.
  271. * By always appending tasks to the list we ensure FIFO behavior.
  272. * NB: An RPC task will only receive interrupt-driven events as long
  273. * as it's on a wait queue.
  274. */
  275. static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  276. rpc_action action)
  277. {
  278. dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
  279. task->tk_pid, rpc_qname(q), jiffies);
  280. __rpc_add_wait_queue(q, task);
  281. BUG_ON(task->tk_callback != NULL);
  282. task->tk_callback = action;
  283. __rpc_add_timer(q, task);
  284. }
  285. void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
  286. rpc_action action)
  287. {
  288. /* We shouldn't ever put an inactive task to sleep */
  289. BUG_ON(!RPC_IS_ACTIVATED(task));
  290. /*
  291. * Protect the queue operations.
  292. */
  293. spin_lock_bh(&q->lock);
  294. __rpc_sleep_on(q, task, action);
  295. spin_unlock_bh(&q->lock);
  296. }
  297. EXPORT_SYMBOL_GPL(rpc_sleep_on);
  298. /**
  299. * __rpc_do_wake_up_task - wake up a single rpc_task
  300. * @queue: wait queue
  301. * @task: task to be woken up
  302. *
  303. * Caller must hold queue->lock, and have cleared the task queued flag.
  304. */
  305. static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  306. {
  307. dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
  308. task->tk_pid, jiffies);
  309. /* Has the task been executed yet? If not, we cannot wake it up! */
  310. if (!RPC_IS_ACTIVATED(task)) {
  311. printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
  312. return;
  313. }
  314. __rpc_remove_wait_queue(queue, task);
  315. rpc_make_runnable(task);
  316. dprintk("RPC: __rpc_wake_up_task done\n");
  317. }
  318. /*
  319. * Wake up a queued task while the queue lock is being held
  320. */
  321. static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
  322. {
  323. if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
  324. __rpc_do_wake_up_task(queue, task);
  325. }
  326. /*
  327. * Tests whether rpc queue is empty
  328. */
  329. int rpc_queue_empty(struct rpc_wait_queue *queue)
  330. {
  331. int res;
  332. spin_lock_bh(&queue->lock);
  333. res = queue->qlen;
  334. spin_unlock_bh(&queue->lock);
  335. return res == 0;
  336. }
  337. EXPORT_SYMBOL_GPL(rpc_queue_empty);
  338. /*
  339. * Wake up a task on a specific queue
  340. */
  341. void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
  342. {
  343. spin_lock_bh(&queue->lock);
  344. rpc_wake_up_task_queue_locked(queue, task);
  345. spin_unlock_bh(&queue->lock);
  346. }
  347. EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
  348. /*
  349. * Wake up the next task on a priority queue.
  350. */
  351. static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
  352. {
  353. struct list_head *q;
  354. struct rpc_task *task;
  355. /*
  356. * Service a batch of tasks from a single owner.
  357. */
  358. q = &queue->tasks[queue->priority];
  359. if (!list_empty(q)) {
  360. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  361. if (queue->owner == task->tk_owner) {
  362. if (--queue->nr)
  363. goto out;
  364. list_move_tail(&task->u.tk_wait.list, q);
  365. }
  366. /*
  367. * Check if we need to switch queues.
  368. */
  369. if (--queue->count)
  370. goto new_owner;
  371. }
  372. /*
  373. * Service the next queue.
  374. */
  375. do {
  376. if (q == &queue->tasks[0])
  377. q = &queue->tasks[queue->maxpriority];
  378. else
  379. q = q - 1;
  380. if (!list_empty(q)) {
  381. task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
  382. goto new_queue;
  383. }
  384. } while (q != &queue->tasks[queue->priority]);
  385. rpc_reset_waitqueue_priority(queue);
  386. return NULL;
  387. new_queue:
  388. rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
  389. new_owner:
  390. rpc_set_waitqueue_owner(queue, task->tk_owner);
  391. out:
  392. rpc_wake_up_task_queue_locked(queue, task);
  393. return task;
  394. }
  395. /*
  396. * Wake up the next task on the wait queue.
  397. */
  398. struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
  399. {
  400. struct rpc_task *task = NULL;
  401. dprintk("RPC: wake_up_next(%p \"%s\")\n",
  402. queue, rpc_qname(queue));
  403. spin_lock_bh(&queue->lock);
  404. if (RPC_IS_PRIORITY(queue))
  405. task = __rpc_wake_up_next_priority(queue);
  406. else {
  407. task_for_first(task, &queue->tasks[0])
  408. rpc_wake_up_task_queue_locked(queue, task);
  409. }
  410. spin_unlock_bh(&queue->lock);
  411. return task;
  412. }
  413. EXPORT_SYMBOL_GPL(rpc_wake_up_next);
  414. /**
  415. * rpc_wake_up - wake up all rpc_tasks
  416. * @queue: rpc_wait_queue on which the tasks are sleeping
  417. *
  418. * Grabs queue->lock
  419. */
  420. void rpc_wake_up(struct rpc_wait_queue *queue)
  421. {
  422. struct rpc_task *task, *next;
  423. struct list_head *head;
  424. spin_lock_bh(&queue->lock);
  425. head = &queue->tasks[queue->maxpriority];
  426. for (;;) {
  427. list_for_each_entry_safe(task, next, head, u.tk_wait.list)
  428. rpc_wake_up_task_queue_locked(queue, task);
  429. if (head == &queue->tasks[0])
  430. break;
  431. head--;
  432. }
  433. spin_unlock_bh(&queue->lock);
  434. }
  435. EXPORT_SYMBOL_GPL(rpc_wake_up);
  436. /**
  437. * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
  438. * @queue: rpc_wait_queue on which the tasks are sleeping
  439. * @status: status value to set
  440. *
  441. * Grabs queue->lock
  442. */
  443. void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
  444. {
  445. struct rpc_task *task, *next;
  446. struct list_head *head;
  447. spin_lock_bh(&queue->lock);
  448. head = &queue->tasks[queue->maxpriority];
  449. for (;;) {
  450. list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
  451. task->tk_status = status;
  452. rpc_wake_up_task_queue_locked(queue, task);
  453. }
  454. if (head == &queue->tasks[0])
  455. break;
  456. head--;
  457. }
  458. spin_unlock_bh(&queue->lock);
  459. }
  460. EXPORT_SYMBOL_GPL(rpc_wake_up_status);
  461. static void __rpc_queue_timer_fn(unsigned long ptr)
  462. {
  463. struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
  464. struct rpc_task *task, *n;
  465. unsigned long expires, now, timeo;
  466. spin_lock(&queue->lock);
  467. expires = now = jiffies;
  468. list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
  469. timeo = task->u.tk_wait.expires;
  470. if (time_after_eq(now, timeo)) {
  471. dprintk("RPC: %5u timeout\n", task->tk_pid);
  472. task->tk_status = -ETIMEDOUT;
  473. rpc_wake_up_task_queue_locked(queue, task);
  474. continue;
  475. }
  476. if (expires == now || time_after(expires, timeo))
  477. expires = timeo;
  478. }
  479. if (!list_empty(&queue->timer_list.list))
  480. rpc_set_queue_timer(queue, expires);
  481. spin_unlock(&queue->lock);
  482. }
  483. static void __rpc_atrun(struct rpc_task *task)
  484. {
  485. task->tk_status = 0;
  486. }
  487. /*
  488. * Run a task at a later time
  489. */
  490. void rpc_delay(struct rpc_task *task, unsigned long delay)
  491. {
  492. task->tk_timeout = delay;
  493. rpc_sleep_on(&delay_queue, task, __rpc_atrun);
  494. }
  495. EXPORT_SYMBOL_GPL(rpc_delay);
  496. /*
  497. * Helper to call task->tk_ops->rpc_call_prepare
  498. */
  499. void rpc_prepare_task(struct rpc_task *task)
  500. {
  501. task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
  502. }
  503. /*
  504. * Helper that calls task->tk_ops->rpc_call_done if it exists
  505. */
  506. void rpc_exit_task(struct rpc_task *task)
  507. {
  508. task->tk_action = NULL;
  509. if (task->tk_ops->rpc_call_done != NULL) {
  510. task->tk_ops->rpc_call_done(task, task->tk_calldata);
  511. if (task->tk_action != NULL) {
  512. WARN_ON(RPC_ASSASSINATED(task));
  513. /* Always release the RPC slot and buffer memory */
  514. xprt_release(task);
  515. }
  516. }
  517. }
  518. void rpc_exit(struct rpc_task *task, int status)
  519. {
  520. task->tk_status = status;
  521. task->tk_action = rpc_exit_task;
  522. if (RPC_IS_QUEUED(task))
  523. rpc_wake_up_queued_task(task->tk_waitqueue, task);
  524. }
  525. EXPORT_SYMBOL_GPL(rpc_exit);
  526. void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
  527. {
  528. if (ops->rpc_release != NULL)
  529. ops->rpc_release(calldata);
  530. }
  531. /*
  532. * This is the RPC `scheduler' (or rather, the finite state machine).
  533. */
  534. static void __rpc_execute(struct rpc_task *task)
  535. {
  536. struct rpc_wait_queue *queue;
  537. int task_is_async = RPC_IS_ASYNC(task);
  538. int status = 0;
  539. dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
  540. task->tk_pid, task->tk_flags);
  541. BUG_ON(RPC_IS_QUEUED(task));
  542. for (;;) {
  543. void (*do_action)(struct rpc_task *);
  544. /*
  545. * Execute any pending callback first.
  546. */
  547. do_action = task->tk_callback;
  548. task->tk_callback = NULL;
  549. if (do_action == NULL) {
  550. /*
  551. * Perform the next FSM step.
  552. * tk_action may be NULL if the task has been killed.
  553. * In particular, note that rpc_killall_tasks may
  554. * do this at any time, so beware when dereferencing.
  555. */
  556. do_action = task->tk_action;
  557. if (do_action == NULL)
  558. break;
  559. }
  560. do_action(task);
  561. /*
  562. * Lockless check for whether task is sleeping or not.
  563. */
  564. if (!RPC_IS_QUEUED(task))
  565. continue;
  566. /*
  567. * The queue->lock protects against races with
  568. * rpc_make_runnable().
  569. *
  570. * Note that once we clear RPC_TASK_RUNNING on an asynchronous
  571. * rpc_task, rpc_make_runnable() can assign it to a
  572. * different workqueue. We therefore cannot assume that the
  573. * rpc_task pointer may still be dereferenced.
  574. */
  575. queue = task->tk_waitqueue;
  576. spin_lock_bh(&queue->lock);
  577. if (!RPC_IS_QUEUED(task)) {
  578. spin_unlock_bh(&queue->lock);
  579. continue;
  580. }
  581. rpc_clear_running(task);
  582. spin_unlock_bh(&queue->lock);
  583. if (task_is_async)
  584. return;
  585. /* sync task: sleep here */
  586. dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
  587. status = out_of_line_wait_on_bit(&task->tk_runstate,
  588. RPC_TASK_QUEUED, rpc_wait_bit_killable,
  589. TASK_KILLABLE);
  590. if (status == -ERESTARTSYS) {
  591. /*
  592. * When a sync task receives a signal, it exits with
  593. * -ERESTARTSYS. In order to catch any callbacks that
  594. * clean up after sleeping on some queue, we don't
  595. * break the loop here, but go around once more.
  596. */
  597. dprintk("RPC: %5u got signal\n", task->tk_pid);
  598. task->tk_flags |= RPC_TASK_KILLED;
  599. rpc_exit(task, -ERESTARTSYS);
  600. }
  601. rpc_set_running(task);
  602. dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
  603. }
  604. dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
  605. task->tk_status);
  606. /* Release all resources associated with the task */
  607. rpc_release_task(task);
  608. }
  609. /*
  610. * User-visible entry point to the scheduler.
  611. *
  612. * This may be called recursively if e.g. an async NFS task updates
  613. * the attributes and finds that dirty pages must be flushed.
  614. * NOTE: Upon exit of this function the task is guaranteed to be
  615. * released. In particular note that tk_release() will have
  616. * been called, so your task memory may have been freed.
  617. */
  618. void rpc_execute(struct rpc_task *task)
  619. {
  620. rpc_set_active(task);
  621. rpc_make_runnable(task);
  622. if (!RPC_IS_ASYNC(task))
  623. __rpc_execute(task);
  624. }
  625. static void rpc_async_schedule(struct work_struct *work)
  626. {
  627. __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
  628. }
  629. /**
  630. * rpc_malloc - allocate an RPC buffer
  631. * @task: RPC task that will use this buffer
  632. * @size: requested byte size
  633. *
  634. * To prevent rpciod from hanging, this allocator never sleeps,
  635. * returning NULL if the request cannot be serviced immediately.
  636. * The caller can arrange to sleep in a way that is safe for rpciod.
  637. *
  638. * Most requests are 'small' (under 2KiB) and can be serviced from a
  639. * mempool, ensuring that NFS reads and writes can always proceed,
  640. * and that there is good locality of reference for these buffers.
  641. *
  642. * In order to avoid memory starvation triggering more writebacks of
  643. * NFS requests, we avoid using GFP_KERNEL.
  644. */
  645. void *rpc_malloc(struct rpc_task *task, size_t size)
  646. {
  647. struct rpc_buffer *buf;
  648. gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
  649. size += sizeof(struct rpc_buffer);
  650. if (size <= RPC_BUFFER_MAXSIZE)
  651. buf = mempool_alloc(rpc_buffer_mempool, gfp);
  652. else
  653. buf = kmalloc(size, gfp);
  654. if (!buf)
  655. return NULL;
  656. buf->len = size;
  657. dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
  658. task->tk_pid, size, buf);
  659. return &buf->data;
  660. }
  661. EXPORT_SYMBOL_GPL(rpc_malloc);
  662. /**
  663. * rpc_free - free buffer allocated via rpc_malloc
  664. * @buffer: buffer to free
  665. *
  666. */
  667. void rpc_free(void *buffer)
  668. {
  669. size_t size;
  670. struct rpc_buffer *buf;
  671. if (!buffer)
  672. return;
  673. buf = container_of(buffer, struct rpc_buffer, data);
  674. size = buf->len;
  675. dprintk("RPC: freeing buffer of size %zu at %p\n",
  676. size, buf);
  677. if (size <= RPC_BUFFER_MAXSIZE)
  678. mempool_free(buf, rpc_buffer_mempool);
  679. else
  680. kfree(buf);
  681. }
  682. EXPORT_SYMBOL_GPL(rpc_free);
  683. /*
  684. * Creation and deletion of RPC task structures
  685. */
  686. static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
  687. {
  688. memset(task, 0, sizeof(*task));
  689. atomic_set(&task->tk_count, 1);
  690. task->tk_flags = task_setup_data->flags;
  691. task->tk_ops = task_setup_data->callback_ops;
  692. task->tk_calldata = task_setup_data->callback_data;
  693. INIT_LIST_HEAD(&task->tk_task);
  694. /* Initialize retry counters */
  695. task->tk_garb_retry = 2;
  696. task->tk_cred_retry = 2;
  697. task->tk_rebind_retry = 2;
  698. task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
  699. task->tk_owner = current->tgid;
  700. /* Initialize workqueue for async tasks */
  701. task->tk_workqueue = task_setup_data->workqueue;
  702. if (task->tk_ops->rpc_call_prepare != NULL)
  703. task->tk_action = rpc_prepare_task;
  704. /* starting timestamp */
  705. task->tk_start = ktime_get();
  706. dprintk("RPC: new task initialized, procpid %u\n",
  707. task_pid_nr(current));
  708. }
  709. static struct rpc_task *
  710. rpc_alloc_task(void)
  711. {
  712. return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
  713. }
  714. /*
  715. * Create a new task for the specified client.
  716. */
  717. struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
  718. {
  719. struct rpc_task *task = setup_data->task;
  720. unsigned short flags = 0;
  721. if (task == NULL) {
  722. task = rpc_alloc_task();
  723. if (task == NULL) {
  724. rpc_release_calldata(setup_data->callback_ops,
  725. setup_data->callback_data);
  726. return ERR_PTR(-ENOMEM);
  727. }
  728. flags = RPC_TASK_DYNAMIC;
  729. }
  730. rpc_init_task(task, setup_data);
  731. task->tk_flags |= flags;
  732. dprintk("RPC: allocated task %p\n", task);
  733. return task;
  734. }
  735. static void rpc_free_task(struct rpc_task *task)
  736. {
  737. const struct rpc_call_ops *tk_ops = task->tk_ops;
  738. void *calldata = task->tk_calldata;
  739. if (task->tk_flags & RPC_TASK_DYNAMIC) {
  740. dprintk("RPC: %5u freeing task\n", task->tk_pid);
  741. mempool_free(task, rpc_task_mempool);
  742. }
  743. rpc_release_calldata(tk_ops, calldata);
  744. }
  745. static void rpc_async_release(struct work_struct *work)
  746. {
  747. rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
  748. }
  749. static void rpc_release_resources_task(struct rpc_task *task)
  750. {
  751. if (task->tk_rqstp)
  752. xprt_release(task);
  753. if (task->tk_msg.rpc_cred) {
  754. put_rpccred(task->tk_msg.rpc_cred);
  755. task->tk_msg.rpc_cred = NULL;
  756. }
  757. rpc_task_release_client(task);
  758. }
  759. static void rpc_final_put_task(struct rpc_task *task,
  760. struct workqueue_struct *q)
  761. {
  762. if (q != NULL) {
  763. INIT_WORK(&task->u.tk_work, rpc_async_release);
  764. queue_work(q, &task->u.tk_work);
  765. } else
  766. rpc_free_task(task);
  767. }
  768. static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
  769. {
  770. if (atomic_dec_and_test(&task->tk_count)) {
  771. rpc_release_resources_task(task);
  772. rpc_final_put_task(task, q);
  773. }
  774. }
  775. void rpc_put_task(struct rpc_task *task)
  776. {
  777. rpc_do_put_task(task, NULL);
  778. }
  779. EXPORT_SYMBOL_GPL(rpc_put_task);
  780. void rpc_put_task_async(struct rpc_task *task)
  781. {
  782. rpc_do_put_task(task, task->tk_workqueue);
  783. }
  784. EXPORT_SYMBOL_GPL(rpc_put_task_async);
  785. static void rpc_release_task(struct rpc_task *task)
  786. {
  787. dprintk("RPC: %5u release task\n", task->tk_pid);
  788. BUG_ON (RPC_IS_QUEUED(task));
  789. rpc_release_resources_task(task);
  790. /*
  791. * Note: at this point we have been removed from rpc_clnt->cl_tasks,
  792. * so it should be safe to use task->tk_count as a test for whether
  793. * or not any other processes still hold references to our rpc_task.
  794. */
  795. if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
  796. /* Wake up anyone who may be waiting for task completion */
  797. if (!rpc_complete_task(task))
  798. return;
  799. } else {
  800. if (!atomic_dec_and_test(&task->tk_count))
  801. return;
  802. }
  803. rpc_final_put_task(task, task->tk_workqueue);
  804. }
  805. int rpciod_up(void)
  806. {
  807. return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
  808. }
  809. void rpciod_down(void)
  810. {
  811. module_put(THIS_MODULE);
  812. }
  813. /*
  814. * Start up the rpciod workqueue.
  815. */
  816. static int rpciod_start(void)
  817. {
  818. struct workqueue_struct *wq;
  819. /*
  820. * Create the rpciod thread and wait for it to start.
  821. */
  822. dprintk("RPC: creating workqueue rpciod\n");
  823. wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
  824. rpciod_workqueue = wq;
  825. return rpciod_workqueue != NULL;
  826. }
  827. static void rpciod_stop(void)
  828. {
  829. struct workqueue_struct *wq = NULL;
  830. if (rpciod_workqueue == NULL)
  831. return;
  832. dprintk("RPC: destroying workqueue rpciod\n");
  833. wq = rpciod_workqueue;
  834. rpciod_workqueue = NULL;
  835. destroy_workqueue(wq);
  836. }
  837. void
  838. rpc_destroy_mempool(void)
  839. {
  840. rpciod_stop();
  841. if (rpc_buffer_mempool)
  842. mempool_destroy(rpc_buffer_mempool);
  843. if (rpc_task_mempool)
  844. mempool_destroy(rpc_task_mempool);
  845. if (rpc_task_slabp)
  846. kmem_cache_destroy(rpc_task_slabp);
  847. if (rpc_buffer_slabp)
  848. kmem_cache_destroy(rpc_buffer_slabp);
  849. rpc_destroy_wait_queue(&delay_queue);
  850. }
  851. int
  852. rpc_init_mempool(void)
  853. {
  854. /*
  855. * The following is not strictly a mempool initialisation,
  856. * but there is no harm in doing it here
  857. */
  858. rpc_init_wait_queue(&delay_queue, "delayq");
  859. if (!rpciod_start())
  860. goto err_nomem;
  861. rpc_task_slabp = kmem_cache_create("rpc_tasks",
  862. sizeof(struct rpc_task),
  863. 0, SLAB_HWCACHE_ALIGN,
  864. NULL);
  865. if (!rpc_task_slabp)
  866. goto err_nomem;
  867. rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
  868. RPC_BUFFER_MAXSIZE,
  869. 0, SLAB_HWCACHE_ALIGN,
  870. NULL);
  871. if (!rpc_buffer_slabp)
  872. goto err_nomem;
  873. rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
  874. rpc_task_slabp);
  875. if (!rpc_task_mempool)
  876. goto err_nomem;
  877. rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
  878. rpc_buffer_slabp);
  879. if (!rpc_buffer_mempool)
  880. goto err_nomem;
  881. return 0;
  882. err_nomem:
  883. rpc_destroy_mempool();
  884. return -ENOMEM;
  885. }